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Preface

Computer-based information technol ogies have been extensively used to help
industries managetheir processes, and information systems hereby become
their nervous center. More specifically, databases are designed to support the
datastorage, processing, and retrieval activitiesrelated to data management
ininformation systems. Database management systems provide efficient task
support, and database systems are the key to implementing industrial data
management. Industrial data management requires database technical sup-
port. Industrial applications, however, aretypically data- and knowledge-in-
tensive and have some unique characteristics (e.g., large volumes of datawith
complex structures) that make them difficult to manage. Some new techniques
such asthe Web, artificial intelligence, and so forth have been introduced into
industrial applications. These unique characteristics and the usage of new tech-
nologieshave put many potential requirementsonindustrial datamanagement,
which challengestoday’s database systems and promotestheir evolvement.

Viewed from database technol ogy, information modeling in databases (data-
base modeling for short) can beidentified at two levels. conceptual datamod-
eling and database modeling. Thisresultsin conceptual (semantic) datamodel
and logical database model. Generally, aconceptual datamodel isdesigned,
then the designed conceptual datamodel will be transformed into achosen
logical database schema. Database systems based on logical database mod-
elsare used to build information systemsfor datamanagement. Much atten-
tion has been directed at conceptual datamodeling of industrial information
systems. Product datamodels, for example, can be viewed as a class of se-
mantic datamodels (i.e., conceptual data models) that take into account the
needs of engineering data. Recently, conceptual datamodeling of enterprises
hasreceived increasing attention. Generally speaking, traditional ER/EER or
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UML modelsin database areas can be used for industrial datamodeling at the
conceptual level. But, limited by their power inindustrial datamodeling, some
new conceptual data models such asIDEF1X and STEP/EXPRESS have
been developed. In particular, to implement share and exchange of industrial
data, the Standard for the Exchange of Product Model Data (STEP) isbeing
developed by the International Organization for Standardization (1SO). EX-
PRESS is the description methods of STEP and a conceptual schemalan-
guage, which can model product design, manufacturing, and production data.
EXPRESS model hereby becomesamajor one of conceptual datamodelsfor
industrial data modeling. Many research works have been reported on the
database implementation of the EXPRESS model in context of STEP, and
some software packages and tools are availablein the marketplace. For in-
dustrial datamodeling in database systems, the genericlogical database mod-
elssuch asrelational, nested relational, and object-oriented databases have
been used. However, these generic logical database models do not always
satisfy the requirements of industrial datamanagement. In non-transaction pro-
ng such asCAD/CAM, knowledge-based system, multimediaand Internet
systems, for example, most of these data-intensi ve application systems suffer
from the samelimitations of relational databases. Some non-traditional data-
base model s based on special, hybrid, and/or the extended database models
above have been proposed accordingly.

Database technology istypically application-oriented. With advancesand in-
depth applications of computer technol ogiesin industry, database modeling
for industrial datamanagement isemerging asanew discipline. Theresearch
and devel opment of industrial databasesisreceiving increasing attention. By
means of database technology, large volumes of industrial datawith complex
structures can be modeled in conceptual datamodelsand further stored in
databases. Industrial information systems based the databases can handleand
retrieve these datato support variousindustrial activities. Therefore, database
modeling for industrial datamanagement isafield which must beinvestigated
by academic researchers, together with devel opers and users both from data-
base and industry areas.

Introduction

Thisbook, which consists of 11 chapters, is organized into two major sec-
tions. Thefirst section discussestheissues of industrial databases and appli-
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cationsin thefirst nine chapters. The next two chapters covering the data
modeling issuein generic databases comprise the second section.

First of all, we take alook at the problems of theindustrial databases and
applications.

Databases are designed to support data storage, processing, and retrieval
activitiesrelated to data management, and database systems are the key to
implementing engineering information modeling. But some engineering re-
quirements challenge current mainstream databases, which are mainly used
for business applications, and promote their evolvement. Matriesto identify
therequirementsfor engineering information modeling and then investigates
the satisfactions of current database models to these requirements at two
levels: conceptual datamodelsand logical database models. Also, therela-
tionships among the conceptual datamodelsand thelogical database models
for engineering information modeling are presented as viewed from database
conceptual design.

ASSO isadatabase design methodology defined for achieving conceptual
schemaconsi stency, logical schemacorrectness, flexibility inreflecting thereal -
life changes on the schema, and efficiency in accessing and storing informa-
tion. B isanindustrial formal method for specifying, designing, and coding
software systems. L ocuratol o investigates the integration of the ASSO fea-
turesin B. Starting from a B specification of the data structure and of the
transactions allowed on adatabase, two model transformations are designed:
Theresulting model Structured Database Schema integrates static and dy-
namics, exploiting the novel concepts of Class-Machines and Specialized
Class-Machines. Formal detailswhich must be specified if the conceptual
model of ASSO isdirectly constructed in B are avoided; the costs of the
consistency obligations are minimized. Class-Machines supported by seman-
tic datamodels can be correctly linked with Class-Machines supported by
object models.

Carnduff and Goonetillake present research aimed at determining therequire-
mentsof adatabase softwaretool that supportsintegrity validation of versioned
design artifactsthrough effective management of evolving constraints. It re-
sultsin the design and devel opment of aconstraint management model, which
allows constraint evol ution through representing constraints within versioned
objects called Constraint Versions Objects (CVOs). This model operates
around aversion model that uses awell-defined configuration management
strategy to managethe versions of complex artifacts. Internal and interdepen-
dency constraintsare modeled in CV Os. They develop amodel which has
been implemented in aprototype database tool with anintuitive user interface.



The user interface allows designersto manage design constraints without the
need to program. Also, they introduce the innovative concepts devel oped us-
ing an ongoing example of asimplebicycledesign.

Similarity search in database systemsisan important task in modern applica-
tion domains such asmultimedia, molecular biology, medica imaging and many
others. Especially for CAD (Computer-Aided Design), suitable similarity
modelsand aclear representation of the results can help to reduce the cost
of developing and producing new parts by maximizing the reuse of existing
parts. Kriegel, Kroger, Pfeifle, Brecheisen, Potke, Schubert, and Seidl
present different similarity modelsfor voxelized CAD databased on space
partitioning and data partitioning. Based on these similarity models, they in-
troduce an industrial prototype, called BOSS, which helpsthe user to get an
overview over aset of CAD objects. BOSS allowsthe user to easily browse
large data collections by graphically displaying the results of ahierarchical
clustering agorithm.

STEP-NCisan emerging | SO standard, which defines anew generation of
NC programming language and isfully compliant with STEP. Thereisawhole
suite of implementation methods one may utilize for devel opment purposes.
STEP-NC bringsricher information to the numerically-controlled machinetools,
hence intelligent machining and control are made possible. ItsWeb-enabled
featuregivesitsalf an additiona dimensonin that e-manufacturing can bereadily
supported. Xu addressesthe issue of product development chain from the
perspective of datamodeling and streamlining. Thefocusison STEP-NC,
and how it may close the gap between design and manufacturing for acom-
plete, integrated product devel opment environment. A case study isgivento
demonstrate a STEP compliant, Web-enabled manufacturing system.

Yuan shares hisexperience of enabling semantic-based dynamic information
integration across multiple heterogeneousinformation sources. While datais
physically stored in existing legacy datasystems acrossthe networks, thein-
formationisintegrated based upon its semantic meanings. Ontology isused to
describe the semantics of global information content, and semantic enhance-
ment isachieved by mapping the local metadata onto the ontology. For better
system reliability, aunique mechanismisintroduced to perform appropriate
adjustments upon detecting environmental changes.

Panagis, Sakkopoulos, Sioutas, and Tsakalidis present the Web Service ar-
chitecture and propose Web Serviceintegration and management strategies
for large-scal e datasets. They mainly present the elements of Web Service
architecture, the challengesin implementing Web Serviceswhenever large-
scale data areinvolved, and the design decisions and business process re-



engineering stepsto integrate Web Servicesin an enterpriseinformation sys-
tem. Then they provide acase study involving thelargest private-sector tele-
phony provider in Greece, wherethe provider’shilling system datasetsis uti-
lized. Moreover, they present the scientific work on Web Service discovery
along with experiments on implementing an el aborate discovery strategy over
real-world, large-scale data.

Bose, Chun, Yue, Ines, and Helen describe the planning and implementation
of the Wal-Mart datawarehouse and discuss itsintegration with the opera-
tional systems. They also highlight some of the problems encounteredinthe
developmental process of the datawarehouse. Theimplications of the recent
advancesin technologies such asRFID, whichislikely to play animportant
roleinthe Wal-Mart datawarehousein future, isalso detailed.

Content-based imageretrieval (CBIR) can be used to locate medical images
in large databases using image features, such as color and texture, to index
imageswith minimal human intervention. Wei, Li, and Wilson introduce acon-
tent-based approach to medical imageretrieval. First, they introduce the fun-
damentals of the key components of content-based image retrieval systems
areto givean overview of thisarea. Then they present a case study, which
describesthe methodology of a CBIR system for retrieving digital mammo-
gram database.

In the second section, we see the generic database modeling.

A strong design phaseisinvolved in most current application devel opment
processes (e.g., ER design for relational databases). But conceptual design
for XML hasnot been explored significantly inliterature or in practice. Most
XML design processes start by directly marking up datain XML, and the
metadataistypically designed at the time of encoding the documents. So
Mohan and Senguptaintroduce the existing methodol ogiesfor modeling XML.
A discussion is presented comparing and contrasting their capabilities and
deficiencies, and delineating the future trend in conceptual design for XML
applications.

Ravat, Teste, and Zurfluh focus on constraint-based multi-dimensional mod-
eling. The defined model integrates a constellation of facts and dimensions.
Along each dimension, various hierarchies are possibly defined and the model
supportsmultipleinstantiations of dimensions. To facilitate dataquerying, they
also defineamulti-dimensional query algebra, which integratesthe main multi-
dimensional operators. These operators support the constraint-based multi-
dimensiona modeling. Finally, they present two implementations of thisalge-
bra, which are OLAP-SQL and agraphical query language. Theformer isa
textual languageintegrating multi-dimensional concepts (fact, dimension, hier-
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archy), butitisbased on classical SQL syntax. Thislanguageisdedicated to
specialists such asmulti-dimensional database administrators. Thelatter con-
sistsin agraphical representation of multi-dimensional databasesand users

specify directly their queries over thisgraph. This approach is dedicated to
non-computer scientist users.
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Chapterl

Databases Modeling
of Engineering
Information

Z.M. Ma, Northeastern University, China

Abstract

Information systems have become the nerve center of current computer-
based engineering applications, which hereby put the requirements on
engineering information modeling. Databases are designed to support data
storage, processing, and retrieval activities related to data management,
and database systems are the key to implementing engineering information
modeling. It should be noted that, however, the current mainstream
databases are mainly used for business applications. Some new engineering
requirements challenge today’s database technologies and promote their
evolvement. Database modeling can be classified into two levels: conceptual
data modeling and logical database modeling. In this chapter, we try to
identify the requirements for engineering information modeling and then
investigate the satisfactions of current database models to these requirements
at two levels: conceptual data models and logical database models. In
addition, the relationships among the conceptual data models and the
logical database models for engineering information modeling are presented
in the chapter viewed from database conceptual design.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Introduction

Toincreaseproduct competitiveness, current manufacturing enterpriseshave
todeliver their productsat reduced cost and highquality inashorttime. The
changefromsellers marketto buyers' market resultsin asteady decreasein
theproduct lifecycletimeand thedemandsfor tail or-madeand small-batch
products. All thesechangesrequirethat manufacturing enterprisesquickly
respondtomarket changes. Traditional production patternsand manufacturing
technologiesmay findit difficult to satisfy therequirementsof current product
development. Many types of advanced manufacturing techniques, such as
Compurter Integrated M anufacturing (CIM), AgileManufacturing (AM), Con-
current Engineering (CE), and Virtual Enterprise(V E) based on global manu-
facturing have been proposed to meet theserequirements. Oneof thefounda-
tional supporting strategiesisthe computer-based information technology.
Information systemshavebecomethenervecenter of current manufacturing
systems. So somenew requirementsoninformation modeling areintroduced.

Databasesystemsarethekey toimplementinginformation modeling. Engineer-
inginformation modeling requiresdatabasesupport. Engineering applications,
however, are data- and knowledge- intensive applications. Some unique
characteristicsand usageof new technol ogieshave put many potential require-
mentson engineering information modeling, which challengetoday’ sdatabase
systemsand promotetheir evolvement. Database systemshavegonethrough
thedevelopment from hierarchical and network databasestorel ational data-
bases. But in non-transaction processing suchasCAD/CAPP/CAM (com-
puter-ai ded design/computer-ai ded process pl anning/computer-ai ded manu-
facturing), knowledge-based system, multimediaand I nternet systems, most of
thesedata-intensiveapplication systemssuffer fromthe samelimitationsof
relational databases. Therefore, somenon-traditional datamodel shavebeen
proposed. Thesedatamodel sarefundamental tool sfor modeling databasesor
the potential database models. | ncorporation between additional semantics
and datamodel shasbeenamajor goal for databaseresearch and devel opment.

Focusing on engineering appli cationsof databases, inthischapter, weidentify
therequirementsfor engineeringinformation modeling andinvestigatethe
satisfactions of current database models to these requirements. Here we
differentiatetwolevel sof databasemodel s: conceptual datamodelsandlogical
databasemodels. Constructionsof databasemodel sfor engineeringinforma-
tionmodeling arehereby proposed.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Theremainder of thechapter isorganized asfollows: Thenext sectionidentifies
thegenericrequirementsof engineeringinformationmodeling. Theissuesthat
current databasessati sfy theserequirementsaretheninvestigatedinthethird
section. Thefourth section proposesthe constructionsof database models.
Thefinal section concludesthischapter.

Needs for
Engineering Information Modeling

Complex Objects and Relationships

Engineering datahavecomplex structuresand areusually largeinvolume. But
engineering design objects and their components are not independent. In
particular, they aregenerally organized into taxonomical hierarchies. The
Specialization associationisthewell-known association. Alsothepart-whole
association, which rel atescomponentsto thecompound of whichthey arepart,
isanother key associationinengineering settings.

In addition, the position relationshi ps between the components of design
objectsandtheconfigurationinformationaretypically multi-dimensional. Al so,
theinformation of versionevolutionisobviously time-related. All thesekinds
of information shouldbestored. Itisclear that spatio-temporal datamodeling
isessential inengineeringdesign (Manwaring, Jones, & Glagowski, 1996).
Typically, product modeling for product family and product variants has
resultedin product datamodel s, which definetheform and content of product
datageneratedthroughtheproduct lifecyclefromspecificationthroughdesign
tomanufacturing. Productsaregenerally complex (seeFigure 1, which shows
asimpleexampleof product structure) and product datamodel sshould hereby
have advanced modeling abilitiesfor unstructured objects, relationships,
abstractions, and so on (Shaw, Bloor, & dePennington, 1989).

Data Exchange and Share

Engineeringactivitiesaregenerally performed acrossdepartmental and orga-
nization boundaries. Product devel opment based onvirtual enterprises, for

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Figure 1. An example illustration of product structure

| Product |
Part 1 Part 2 Part m
| 1
| Bought Part | | Manufactured Part |
|
| | |
4{ Assembly Part | | Forged Part | | Turned Part |

——  Part-whole association Specialization association
example, isgenerally performed by several independent member companies
that arephysically located at different places. | nformation exchangeand share
among themisnecessary. Itisalsotrueindifferent departmentsor evenin
different groupswithinamember company. Enterpriseinformation systems
(EISs) inmanufacturingindustry, for example, typically consist of supply chain
management (SCM), enterpriseresource planning (ERP) (Ho, Wu, & Tai,
2004), and CAD/CAPP/CAM. Theseindividual software systemsneed to
shareand exchangeproduct and productioninformationinorder toeffectively
organize production activities of enterprise. However, they are generally
devel opedindependently. Insuchanenvironment of distributed and heteroge-
neouscomputer-based systems, exchanging and sharing dataacrossunitsare
very difficult. An effective meansmust be provided so that the data.can be
exchanged and shared among deferent appli cationsand enterprises. Recently,
the PDM (product data management) system (ClMdata, 1997) is being
extensively used to integrate both the engineering data and the product
development processthroughout the product lifecycle, although the PDM
system al so hasthe problem of exchanging datawith ERP.

Web-Based Applications

Information systemsintoday’ smanufacturing enterprisesaredistributed. Data
exchange and share can be performed by computer network systems. The
Internetisalargeand connected network of computers, andtheWorld Wide
Web (WWW) is the fastest growing segment of the Internet. Enterprise
operationsgoincreasingly global, and Web-based manufacturing enterprises

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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cannot only obtainonlineinformation but al So organi ze production activities.
Web technology facilitates cross-enterprise information sharing through
interconnectivity andintegration, which can connect enterprisestotheir strate-
gicpartnersaswell astotheir customers. SoWeb-based virtual enterprises
(Zhang, Zhang, & Wang, 2000), Web-based PDM (Chu & Fan, 1999; Liu &
Xu, 2001), Web-based concurrent engineering (Xue & Xu, 2003), Web-
based supply chain management, and Web-based B2B e-commerce for
manufacturing (Fensel etal ., 2001; Shaw, 20003, 2000b; Soliman & Y oussef,
2003; Tan, Shaw, & Fulkerson, 2000) areemerging. A comprehensivereview
wasgiven of recent research on devel oping Web-based manuf acturing systems
inYangand Xue(2003).

Thedataresourcesstored onthe Web arevery rich. In additionto common
typesof data, therearemany special typesof datasuch asmultimediadataand
hypertext link, which arereferred to assemi-structured data. With therecent
popularity of the WWW and i nformative manufacturing enterprises, how to
model and mani pul ate semi-structured datacoming fromvarioussourcesin
manufacturing databasesisbecoming moreand moreimportant. Web-based
applications, including Web-based supply chain management, B2B e-com-
merce, and PDM systems, havebeen evolved frominformation publicationto
information shareand exchange. HTM L -based Web appli cation cannot satisfy
suchrequirements.

Intelligence for Engineering

Artificial intelligenceand expert systemshaveextensively been usedinmany
engineering activitiessuch asproduct design, manufacturing, assembly, fault
diagnosis, and production management. Fiveartificial intelligencetool sthat are
most applicableto engineering problemswerereviewedin Pham and Pham
(1999), which are knowledge-based systems, fuzzy logic, inductive learn-
ing, neural networks, and genetic algorithms. Each of these tools was
outlinedinthepaper together withexampl esof their useindifferent branches
of engineering. Inlssa, Shen, and Chew (1994), an expert systemthat applies
anal ogical reasoning to mechanism design wasdevel oped. Based onfuzzy
logic, anintegration of financial and strategicjustification approacheswas
proposed for manufacturingin Chiadamrong (1999).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Imprecision and Uncertainty

Imprecisionismost notableintheearly phase of thedesign processand has
been defined asthe choice between alternatives (Antonsoon & Otto, 1995).
Four sourcesof imprecisionfoundinengineering designwereclassified as
relationship imprecision, data imprecision, linguistic imprecision, and
inconsistency imprecisioninGiachetti etal. (1997). Inadditiontoengineering
design, impreciseand uncertai ninformation can befoundinmany engineering
activities. Theimprecision and uncertainty in activity control for product
development wasinvestigatedin Grabot and Geneste (1998). Tomanagethe
uncertainty occurringinindustrial firms, thevarioustypesof bufferswere
providedin Caputo (1996) according to different typesof uncertainty faced
and to the characteristics of the production system. Buffers are used as
alternativeand complementary factorstoattaintechnol ogical flexibility whena
firmisunabletoachievethedesiredlevel of flexibility and facesuncertainty.
Nine types of flexibility (machine, routing, material handling system,
product, operation, process, volume, expansion, and labor) inmanufactur-
ingweresummarizedin Tsourvel oudisand Phillis(1998).

Concerningtherepresentation of imprecisionand uncertainty, attemptshave
been madeto addresstheissueof imprecisionandinconsistency indesign by
way of intervals(Kimetal., 1995). Other approachesto representingimpre-
cisionindesignincludeusing utility theory, implicit representationsusing
optimization methods, matrix methodssuch asQuality Function Deployment,
probability methods, and necessity methods. An extensivereview of these
approacheswasprovidedin Antonsoon and Otto (1995). Thesemethodshave
all hadlimited successinsolvingdesignproblemswithimprecision. Itisbelieved
that fuzzy reorientationof imprecisionwill play anincreasingly importantrolein
designsystems(Zimmermann, 1999).

Fuzzy settheory (Zadeh, 1965) isageneralization of classical settheory. In
normal set theory, an object may or may not beamember of aset. Thereare
only two states. Fuzzy setscontain elementsto acertain degree. Thus, itis
possible to represent an object that has partial membership in a set. The
membership value of element u in afuzzy setisrepresented by w(ux) andis
normalized suchthat u(u) isin[0, 1]. Formally, let F'beafuzzy setinauniverse
of discourse Uandp,: U— [0, 1] bethemembershipfunctionfor thefuzzy set
F.Thenthefuzzy set Fisdescribed as:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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F={w(u)u, u(u)lu, ..., u(u)u}, whereu, e U(i=1,2,...,n).

Fuzzy setscanrepresent linguistic termsand impreci se quantitiesand make
systemsmoreflexibleandrobust. Sofuzzy set theory hasbeen usedinsome
engineering applications(e.g., engineering/product design and manufacturing,
productionmanagement, manufacturingflexibility, e-manufacturing, etc.), where,
either crispinformationisnot availableorinformationflexibleprocessingis
necessary.

1.  Concerningengineering/product designand manufacturing, theneedsfor
fuzzy logicinthedevelopment of CAD systemswereidentified and how
fuzzy logic could be used to model aesthetic factorswasdiscussed in
Pham (1998). Thedevel opment of an expert systemwith productionrules
andtheintegrati onof fuzzy techniques(fuzzy rulesandfuzzy datacal culus)
wasdescribedfor thepreliminary designin Francoisand Bigeon (1995).
I ntegrati ng knowl edge-based methodswith multi-criteriadecision-mak-
ingandfuzzy logic, an approach to engineering design and configuration
problemswasdevel opedinorder to enrich existing design and configu-
rationsupport systemswithmoreintel ligent abilitiesinMuller and Sebastian
(1997). A methodol ogy for makingthetransitionfromimprecisegoa sand
requirementsto the precise specifications needed to manufacture the
product wasintroduced using fuzzy set theory in Giachetti etal. (1997).
In Jonesand Hua(1998), an approach to engineering design inwhich
fuzzy sets were used to represent the range of variants on existing
mechanismswasdescribed so that novel requirementsof engineering
design could be met. A method for design candidate evaluation and
identificationusing neural network-based fuzzy reasoning waspresented
in Sun, Kalenchuk, Xue, and Gu (2000).

2. Inproduction management, the potential applicationsof fuzzy set theory
to new product devel opment; facility location and layout; production
scheduling and control; inventory management; and qual ity and cost-
benefit analysis were identified in Karwowski and Evans (1986). A
comprehensiveliterature survey on fuzzy set applicationsin product
management researchwasgivenin Guiffridaand Nagi (1998). A classi-
fication schemefor fuzzy applicationsin product management research
wasdefinedintheir paper, includingjob shop scheduling; quality manage-
ment; project scheduling; facilitiesl ocation and layout; aggregate plan-
ning; productionandinventory planning; andforecasting.
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3. Inmanufacturingdomain, flexibilityisaninherently vaguenotion. Sofuzzy
logicwasintroduced and afuzzy knowledge-based approach wasused
tomeasuremanufacturingflexibility (Tsourveloudis& Phillis, 1998).

4. Morerecently, theresearch on supply chainmanagement and el ectronic
commerce have also shown that fuzzy set can be used in customer
demand, supply deliveriesalong the supply chain, external or market
supply, targeted marketing, and product category description (Petrovic,
Roy, & Petrovic, 1998, 1999; Y ager, 2000; Y ager & Pasi, 2001).

Itisbelievedthat fuzzy set theory hasconsiderablepotential for intelligent
manufacturing systemsandwill beemployedin moreand moreengineering
applications.

Knowledge Management

Engineeringapplicationisaknowl edge-intens veapplication. Knowledge-based
managementshavecoveredthewhol eactivitiesof currententerprises(O’ Leary,
1998; Maedcheet al ., 2003; Wong, 2005), i ncluding manufacturing enterprises
(Michael & Khemani, 2002). In Tanand Platts(2004), theuseof theconnectance
concept for managing manufacturingknowledgewasproposed. A softwaretool
called Tool for Action Plan Selection (TAPS) hasbeen devel oped based onthe
connectance concept, which enables managersto sketch and visualize their
knowledgeof how variablesinteract inaconnectancenetwork. Based onthe
computer-integrated manufacturing open-systemarchitecturereferencemodel
(CIMOSA), aformalismwaspresentedinde Souza, Ying,and Y ang (1998) to
specify thebusi nessprocessesand enterpriseactivitiesat theknowledgelevel.
Theformalismused anintegration of multipletypesof knowledge, including
precise, muddy, and random symbolicand numerical knowledgeto systemati-
cally represent enterprisebehavior and functionality. Instead of focusingon
individua humanknowledge, asin Thannhuber, Tseng, and Bullinger (2001), the
ability of anenterprisetodynamically deriveprocessesto meet theexterna needs
andinternal stability wasidentified astheorgani zationa knowledge. Onthebasis,
aknowledgemanagement system hasbeen devel oped.

Themanagement of engineering knowledgeentail sitsmodeling, mai ntenance,
integration, anduse(Ma& Mili, 2003; Mili etal., 2001). Knowledgemodeling
consistsof representing theknowledgein somesel ected languageor notation.
Knowledge maintenanceencompassesall activitiesrel ated tothevalidation,
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growth, and evol ution of theknowledge. Knowledgeintegrationisthesynthesis
of knowledgefromrelated sources. Theuseof theknowledgerequiresbridging
thegap between the obj ectiveexpressed by theknowledgeand thedirectives
needed to support engineering activities.

It should benoticed that Web-based engi neering knowl edge management has
emerged because of Web-based engineering applications (Caldwell etal .,
2000). Inaddition, engineering knowledgeisclosely related to engineering
data, althoughthey aredifferent. Engineering knowledgeisgenerally embed-
dedinengineeringdata. Soitisnecessary to synthetically manageengineering
knowledge and datain bases (Xue, Y adav, & Norrie, 1999; Zhang & Xue,
2002). Findly, thefieldof artificial intelligence(Al) isusually concernedwith
theproblemscaused by impreciseand uncertaininformation (Parsons, 1996).
Knowledgerepresentationisoneof themost basic and activeresearch areas
of Al. Theconventional approachesto knowledgerepresentation, however,
only support exact rather than approximatereasoning, and fuzzy logicisapt for
knowledgerepresentation (Zadeh, 1989). Fuzzy rules(Dubois& Prade, 1996)
andfuzzy constraints(Dubois, Fargier, & Prade, 1996) have been advocated
andemployedasakey tool for expressing piecesof knowledgeinfuzzy logic.
Inparticular, fuzzy constraint satisfaction problem (FCSP) hasbeenusedin
many engineering activitiessuch asdesign and optimization (Dzbor, 1999;
Kapadia & Fromherz, 1997; Y oung, Giachetti, & Ress, 1996) as well as
planning and scheduling (Dubois, Fargier, & Prade, 1995; Fargier & Thierry,
1999; Johtelaet al., 1999).

Data Mining and Knowledge Discovery

Engineering knowledge playsacrucial rolein engineering activities. But
engineeringknowledgeisnot alwaysrepresented explicitly. Dataminingand
knowledgediscovery fromdatabases(KDD) can extract information charac-
terized as “knowledge” from data that can be very complex and in large
guantities. Sothefield of dataminingandknowledgediscovery from databases
hasemerged asanew disciplineinengineering (Gertosio & Dussauchoy, 2004)
and now isextensively studied and appliedinmany industrial processes. In
Ben-Arieh, Chopra, and Bleyberg (1998), datamining applicationfor real-time
distributed shop-floor control waspresented. With adatamining approach, the
prediction problem encounteredinengineering design wassolvedin Kusiak
and Tseng (2000). Furthermore, thedataminingissuesand requirementswithin
anenterprisewereexaminedinKleissner (1998).
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Withthehugeamount of informationavailableonline, theWorldWideWebis
afertileareafor data mining research. The Web mining researchis at the
crossroadsof researchfrom several research communitiessuch asdatabase,
information retrieval, and within Al, especially the sub-areas of machine
learning and natural language processing (Kosala & Blockeel, 2000). In
addition, soft computing methodol ogies(involvingfuzzy sets, neural networks,
geneticalgorithms, and rough sets) aremost widely appliedinthedatamining
step of the overall KDD process (Mitra, Pal, & Mitra, 2002). Fuzzy sets
provideanatural framework for theprocessindealingwithuncertainty. Neural
networksandrough setsarewidely usedfor classificationandrulegeneration.
Geneticalgorithms(GAss) areinvolved invariousoptimization and search
processes, like query optimization and template selection. Particularly, a
review of WebMiningin Soft Computing Framework wasgiveninPal, Talwar,
and Mitra(2002).

Current Database Models

Engineering information modeling in databases can be carried out at two
different levels: conceptual datamodeling andlogical database modeling.
Therefore, wehave conceptual datamodel sand | ogical database model sfor
engineering information modeling, respectively. In thischapter, database
model sfor engineeringinformation modeling refer to conceptual datamodels
andlogical databasemodel ssimultaneously. Table 1 givessomeconceptual
datamodelsand|ogical database model sthat may beapplied for engineering
information modeling. Thefollowing two sub-sectionsgivethemoredetailed
explanationsabout thesemodels.

Conceptual Data Models

Much attention hasbeen directed at conceptual datamodeling of engineering
information (Mannistoetal., 2001; McKay, Bloor, & dePennington, 1996).
Product datamodels, for exampl e, can beviewed asaclassof semantic data
models (i.e., conceptual data models) that take into account the needs of
engineering data(Shaw, Bloor, & dePennington, 1989). Recently, conceptual
information modeling of enterprisessuch asvirtual enterpriseshasreceived
increasing attention (Zhang & Li, 1999). Generally speaking, traditional ER
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Table 1. Database models for engineering information modeling

Database Models
Conceptual Data Models Logical Database Models
Generic Specific Classica Specific & Extended
Conceptua Conceptua Logical XML Hybrid Database
DataModels | DataModels Database Databases Database Models
for Models Models
Engineering
e ER data e IDEF1X Relational Classical | e Active Fuzzy
model data model databases logical databases relational
e EERdata | e EXPRESS Nested databases | e Deductive databases
model data model relational Native databases Fuzzy
e UML data databases XML e Constraint nested
model e Object- databases databases relational
e XML data oriented o Spatio- databases
model databases temporal | e Fuzzy
* Object- databases object-
relational o Object- oriented
databases oriented databases
active e Deductive
databases fuzzy
o Deductive relational
object- databases
relational
databases

(entity-relationship) and EER (extended entity-rel ationship) can be used for
engineeringinformationmodeling at conceptual level (Chen, 1976). Butlimited
by their power in engineering modeling, some improved conceptual data
model shave been devel oped.

IDEF1X isamethodfor designingrelational databaseswith asyntax designed
to support the semantic constructs necessary in developing a conceptual
schema. Someresearchhasfocused onthel DEF1X methodol ogy. A thorough
treatment of the IDEF1X method can be found in Wizdom Systems Inc.
(1985). Theuseof thel DEF1X methodol ogy to build adatabasefor multiple
applicationswasaddressed inKusiak, L etsche, and Zakarian (1997).

Inorder to shareand exchange product data, the Standard for the Exchange
of Product Model Data (STEP) is being developed by the International
Organizationfor Standardization (1SO). STEP providesameansto describe
a product model throughout its life cycle and to exchange data between
different units. STEP consistsof four major categories, whicharedescription
methods, implementation methods, conformance testing methodology

and framework, and standardized application data models/schemata,
respectively. EXPRESS (Schenck & Wilson, 1994), asthedescri ption meth-
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odsof STEPand aconceptual schemalanguage, can model product design,
manufacturing, and production data. EXPRESSmodel hereby becomesoneof
themajor conceptual datamodel sfor engineeringinformation modeling.

Withregardto CAD/CAM devel opment for product modeling, areview was
conducted in Eastman and Fereshetian (1994), and fiveinformation models
used in product modeling, namely, ER, NAIM, IDEF1X, EXPRESS and
EDM, werestudied. Comparedwith DEF1X, EXPRESScan model complex
semanti csinengineering application, including engineering objectsand their
relationships. Based on EXPRESSmodel, itiseasy toimplement shareand
exchangeengineeringinformation.

It should benoted that ER/EER, IDEF1X and EXPRESS could model neither
knowledgenor fuzzy information. Thefirst effort wasdonein Zvieli and Chen
(1996) to extend ER model torepresent threelevel sof fuzziness. Thefirstlevel
refers to the set of semantic objects, resulting in fuzzy entity sets, fuzzy
relationship sets and fuzzy attribute sets. The second level concerns the
occurrences of entities and relationships. Thethird level isrelated to the
fuzzinessin attributeval uesof entitiesand rel ationships. Consequently, ER
algebrawasfuzzily extended to manipul ate fuzzy data. In Chenand Kerre
(1998), several major notionsin EER model wereextended, including fuzzy
extensiontogeneralization/specialization, and shared subclass/category aswell
asfuzzy multipleinheritance, fuzzy selectiveinheritance, andfuzzy inheritance
for derived attributes. Morerecently, using fuzzy setsand possibility distribu-
tion (Zadeh, 1978), fuzzy extensionsto IDEF1X and EXPRESSwere pro-
posedinMa, Zhang, and Ma(2002) and Ma(in press), respectively.

UML (Unified Modeling L anguage) (Booch, Rumbaugh, & Jacobson, 1998;
OMG, 2003), being standardized by the Object Management Group (OMG), is
aset of OO modeling notations. UML providesacollection of model sto capture
many aspectsof asoftwaresystem. Fromtheinformationmodeling point of view,
themost relevant model i stheclassmodel. Thebuilding blocksinthisclassmodel
arethoseof classesand el ationships. Theclassmodel of UML encompassesthe
conceptsusedin ER, aswell asother OO concepts. Inaddition, it also presents
theadvantageof being openandextensible, allowingitsadaptationtothespecific
needsof theapplication such asworkflow modeling of e-commerce(Chang et
al., 2000) and product structure mapping (Oh, Hana, & Suhb, 2001). In
particular, theclassmodel of UML isextended for therepresentation of class
constraintsand theintroduction of stereotypeassociations(Mili etal., 2001).

Withthepopularity of Web-based desi gn, manufacturing, and businessactivi-
ties, therequirement hasbeen put on theexchangeand share of engineering
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informationover theWeb. XML (eXtensibleMarkup L anguage), created by
theWorld WideWeb Consortium, letsinformation publishersinvent their own
tagsfor particular applications or work with other organizationsto define
shared sets of tags that promote interoperability and that clearly separate
content and presentation. XML providesaWeb-friendly and well-understood
syntax for theexchangeof data. Because XM L impactsondatadefinitionand
shareontheWeb (Seligman & Rosenthal, 2001), XML technology hasbeen
increasingly studied, and more and more Web tools and Web servers are
capable of supporting XML. In Bourret (2004), product datamarkup lan-
guage, the XML for product dataexchange and integration, hasbeen devel -
oped. Asto XML modeling at concept level, UML wasused for designing
XML DTD (document- typedefinition) in Conrad, Scheffner, and Freytag
(2000). In Xiao et al. (2001), an object-oriented conceptual model was
developedtodesign XML schema. ER model wasused for conceptual design
of semi-structured databasesinLeeetal. (2001). But XML doesnot support
impreci seand uncertai ninformation modeling and knowledgemodeling. Intro-
ducingimprecisionand uncertainty into XML hasincreasingly becomeatopic
of research (Abiteboul, Segoufin, & Vianu, 2001; Damiani, Oliboni, & Tanca,
2001; Ma, 2005).

Logical Database Models

Classical Logical Database Models

Astoengineeringinformationmodelingindatabasesystems, thegenericlogical
database model ssuchrel ational databases, nested rel ational databases, and
object-oriented databases can beused. Also, somehybrid|ogical database
model ssuch asobject-relational databasesarevery useful for thispurpose.

In Ahmed (2004), the K SS (K raftwerk Kennzei chen System) identification
and classification system was used to devel op database system for plant
mai ntenanceand management. Ontop of arelational DBM S, an EXPRESS-
orientedinformationsystemwasbuiltin Arnalteand Scala(1997) for support-
inginformationintegrationinacomputer-integrated manufacturing environ-
ment. In this case, the conceptual model of the information was built in
EXPRESS and then parsed and translated to the corresponding relational
constructs. Relational databasesfor STEP/EXPRESSwerealsodiscussedin
Krebsand L ihrsen (1995). Inaddition, an object-oriented layer wasdevel -
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opedinBarsalouand Wiederhold (1990) to model complex entitieson top of
arelational database. Thisdomain-independent architecture permitsobject-
oriented accesstoinformation storedinrel ational format-informationthat can
beshared among applications.

Obj ect-oriented databasesprovidean approach for expressing and manipul at-
ing complex objects. A prototype object-oriented database system, called
ORION, wasthus designed and implemented to support CAD (Kimetal.,
1990). Object-oriented databasesfor STEP/EXPRESShavebeen studiedin
Gohetal. (1994, 1997). Inaddition, an object-oriented active databasewas
alsodesignedfor STEP/EXPRESSmodelsinDong, Y . etal. (1997). Accord-
ingtothecharacteristicsof engineeringdesign, aframework for theclassifica-
tion of queriesin object-oriented engineering databases was provided in
Samaras, Spooner, and Hardwick (1994), where the strategy for query
evaluation isdifferent from traditional relational databases. Based on the
comparisonwithrelational databases, the sel ectionsand characteristicsof the
obj ect-oriented database and database management systems(OODBMS) in
manufacturing were discussed in Zhang (2001). The current studies and
applicationswereal sosummarized.

XML Databases

Itiscrucial for Web-based applications to model, store, manipulate, and
manage XML datadocuments. XML documentscan beclassifiedinto data-
centric documentsand document-centric documents(Bourret, 2004). Data-
centric documentsarecharacterized by fairly regul ar structure, fine-grained
data(i.e., thesmallestindependent unit of dataisat thelevel of aPCDATA-
only element or anattribute), andlittleor nomixed content. Theorder inwhich
siblingelementsand PCDATA occursisgenerally not significant, except when
validating thedocument. Data-centric documentsaredocumentsthat use XML
asadatatransport. They aredesigned for machine consumption and thefact
that XML isusedat all isusually superfluous. Thatis, itisnotimportanttothe
applicationor thedatabasethat thedatais, for somelength of time, storedin
an XML document. Asageneral rule, thedatain data-centric documentsis
stored in atraditional database, such as a relational, object-oriented, or
hierarchical database. The datacan also betransferred from adatabasetoa
XML document. For thetransfersbetween XML documentsand databases,
the mapping rel ationships between their architecturesaswell astheir data
should becreated (Lee& Chu, 2000; Surjanto, Ritter, & L oeser, 2000). Note
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that itispossibleto discard someinformation such asthedocument and its
physical structurewhentransferring databetween them. It must bepointed out,
however, that the datain data-centric documentssuch assemi-structured data
can also be stored in anative XML database, in which adocument-centric
documentisusually stored. Document-centricdocumentsarecharacterized by
lessregular orirregular structure, larger-grained data(that is, the smallest
independent unit of datamight beat thelevel of an element with mixed content
or theentiredocument itself), and lotsof mixed content. Theorder inwhich
siblingelementsand PCDAT A occursisa most alwayssignificant. Document-
centric documentsareusual ly documentsthat are designed for human con-
sumption. Asageneral rule, thedocumentsindocument-centricdocumentsare
stored in a native XML database or a content management system (an
application designed to managedocumentsand built ontop of anative XML
database). Native XML databases are databases designed especially for
storing XML documents. Theonly differenceof native XML databasesfrom
other databasesisthat their internal model i sbased on XML and not something
else, suchastherelational model.

In practice, however, the distinction between data-centric and document-
centricdocumentsisnot al\waysclear. Sothepreviously-mentionedrulesare
not of acertainty. Data, especially semi-structured data, can bestoredinnative
XML databases, and documentscan bestoredintraditional databaseswhen
few XM L-specificfeaturesareneeded. Furthermore, theboundariesbetween
traditional databases and native XML databases are beginning to blur, as
traditional databasesadd native XML capabilitiesand native XML databases
support the storage of document fragmentsin external databases.

In Seng, Lin, Wang, and Y u (2003), atechnical review of XML and XML
database technology, including storage method, mapping technique, and
transformation paradigm, was provided and an analytic and comparative
framework was devel oped. By collecting and compiling the IBM, Oracle,
Sybase, and Microsoft XML database products, theframework wasused and
each of these XML databasetechniqueswasanalyzed.

Special, Hybrid, and Extended Logical Database Models

It should be pointed out that, however, thegenericlogical databasemodels
suchasrelational databases, nested rel ational databases, and object-oriented
databasesdo not al wayssati sfy therequirementsof engineeringmodeling. As
pointedoutinLiu(1999), relational databasesdo not describethecomplex
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structurerel ationship of datanaturally, and separaterel ationsmay resultindata
inconsi stencieswhenupdatingthedata. | naddition, theproblemof inconsi stent
datastill existsin nestedrel ational databases, and themechanismof sharingand
reusing CAD objectsisnot fully effectivein object-oriented databases. In
particul ar, thesedatabase model scannot handl eengineering knowledge. Some
special databasesbased onrelational or object-oriented modelsare hereby
introduced. InDongand Goh (1998), an obj ect-oriented active databasefor
engineering application was developed to support intelligent activitiesin
engineering applications. InLiu(1999), deductivedatabaseswereconsidered
asthepreferabledatabase model sfor CAD databases, and deductive object-
relational databasesfor CAD wereintroducedinLiuand Katragadda(2001).
Constraint databasesbased onthegenericlogical databasemodel sareusedto
represent largeor eveninfinitesetsinacompact way and are suitablehereby
for modeling spatial and temporal data(Belussi, Bertino, & Catania, 1998;
Kuper, Libkin, & Paredaens, 2000). Also, itiswell establishedthat engineering
designisaconstraint-based activity (Dzbor, 1999; Guiffrida, & Nagi, 1998;
Y oung, Giachetti, & Ress, 1996). So constraint databasesarepromisingasa
technol ogy for modeling engineeringinformation that can becharacterized by
largedatainvolume, complex relationships(structure, spatial and/or temporal
semantics), intensive knowledge and so forth. In Posselt and Hillebrand
(2002), the issue about constraint database support for evolving data in
product designwasinvestigated.

It should benoted that fuzzy databases have been proposed to capturefuzzy
informationin engineering (Sebastian & Antonsson, 1996; Zimmermann,
1999). Fuzzy databasesmay bebased onthegenericlogical databasemodels
such asrelational databases (Buckles & Petry, 1982; Prade & Testemale,
1984), nested rel ational databases (Y azici et al., 1999), and object-oriented
databases (Bordogna, Pasi, & Lucarella, 1999; George et al., 1996; van
Gyseghem & deCaluwe, 1998). Also, somespecial databasesare extended
for fuzzy informationhandling. InMedinaet al. (1997), thearchitecturefor
deductivefuzzy relational database was presented, and afuzzy deductive
object-oriented datamodel wasproposedinBostanand Y azici (1998). More
recently, how to construct fuzzy event setsautomatically and apply ittoactive
databaseswasinvestigatedin Sayginand Ulusoy (2001).
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Constructions of Database Models

Depending ondataabstract | evel sand actual applications, different database
model shavetheir advantagesand disadvantages. Thisisthereasonwhy there
exist alot of database models, conceptual ones and logical ones. It isnot
appropriateto statethat onedatabase model isalwaysbetter thantheothers.
Conceptual datamodel saregenerally usedfor engineeringinformation mod-
elingat ahighlevel of abstraction. However, engineeringinformation systems
are constructed based on logical database models. So at the level of data
manipulation, that is, alow level of abstraction, thelogical databasemodel is
usedfor engineeringinformation modeling. Here, logical databasemodelsare
often created through mapping conceptual datamodel sintological database
models. This conversion is called conceptual design of databases. The
relationshipsamong conceptual datamodels, |ogical database models, and
engineeringinformation systemsareshowninFigure?2.

Inthisfigure, Logical DB Model (A) and Logical DB Model (B) aredifferent
database systems. That meansthat they may havedifferentlogical database
models, say relational database and obj ect-oriented database, or they may be
different database products, say Oracle™ and DB2, althoughthey havethe
samelogical database model. It can beseenfromthefigurethat adevel oped
conceptual datamodel can bemappedintodifferent |ogical databasemodels.
Besides, it canalso beseenthat alogical database model can bemappedinto
aconceptual datamodel. Thisconversioniscalled database reverse engi-
neering.Itisclearthatitispossiblethat different|ogical databasemodelscan
beconverted oneanother through databasereverse engineering.

Figure 2. Relationships among conceptual data model, logical database
model, and engineering information systems
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Development of Conceptual Data Models

It hasbeen shownthat databasemodeling of engineeringinformationgenerally
startsfrom conceptual datamodels, and then thedevel oped conceptual data
model saremappedintological databasemodels. Firstof all, let usfocusonthe
choice, design, conversion, and extension of conceptual data modelsin
databasemodeling of engineeringinformation.

Generally speaking, ER and IDEF1X datamodelsare good candidatesfor
busi nessprocessinengineering applications. But for designand manufacturing,
object-oriented conceptual datamodel ssuchEER, UML, and EXPRESSare
powerful . Being the description methodsof STEP and aconceptual schema
language, EXPRESSIisextensively acceptedinindustrial applications. How-
ever, EXPRESSIisnot agraphical schemalanguage, unlikeEERandUML. In
order to construct EXPRESS data model at a higher level of abstract,
EXPRESS-G, beingthegraphical representation of EXPRESS, isintroduced.
Note that EXPRESS-G can only express a subset of the full language of
EXPRESS. EXPESS-G provides supports for the notions of entity, type,
relationship, cardinality, and schema. Thefunctions, procedures, andrulesin
EXPRESSI|anguage arenot supported by EXPRESS-G. SoEERand UML
should beused to design EXPRESS datamodel conceptually, and then such
EER and UML datamodelscan betranslated into EXPRESSdatamodel.

It should bepointed out that, however, for Web-based engineering applica-
tions, XML should beusedfor conceptual datamodeling. Just like EXPRESS,
XML isnot agraphical schemalanguage, either. EER and UML canbeused
todesign XML datamodel conceptually, and then suchEER and UML data
modelscan betranslatedinto XML datamodel.

That multiplegraphical datamodel scan beemployedfacilitatesthedesigners
withdifferent backgroundtodesigntheir conceptua model seasily by usingone
of thegraphical datamodel swithwhichthey arefamiliar. However, acomplex
conceptual datamodel isgenerally completed cooperatively by adesigngroup,
inwhich each member may use adifferent graphical datamodel. All these
graphical datamodels, designed by different members, should beconverted
intoaunion datamodel finally. Furthermore, the EXPRESS schemacan be
turnedinto XML DTD. Sofar, thedatamodel conversionsamong EXPRESS-
G, IDEF1X, ER/EER, and UML only receivefew attentionsalthough such
conversionsarecrucial inengineeringinformationmodeling. In(Cherfi, Akoka,
and Comyn-Wattiau, 2002), the conceptual modeling quality between EER
and UML wasinvestigated. In Arnold and Podehl (1999), amapping from
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Figure 3. Relationships among conceptual data models
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EXPRESS-GtoUML wasintroducedinorder to definealinking bridgeand
bringthebest of theworldsof product datatechnol ogy and softwareengineer-
ingtogether. Also, theformal transformation of EER and EXPRESS-G was
developedinMaet al. (2003). Inaddition, thecomparisonof UML and IDEF
wasgiveninNoran (2000).

Figure 3 showsthedesignand conversionrel ationshipsamong conceptual data
models.

Inorder tomodel fuzzy engineeringinformationinaconceptual datamodel, it
isnecessary to extend itsmodeling capability. Asweknow, most database
model smakeuseof threelevel sof abstraction, namely, thedatadictionary, the
database schema, and thedatabase contents(Erens, McKay, & Bloor, 1994).
Thefuzzy extensionsof conceptual datamodel sshould beconducted at all
threelevel sof abstraction. Of course, theconstructsof conceptual datamodels
should accordingly beextendedto support fuzzy informationmodeling at these
threelevel sof abstraction. InZvieli and Chen (1996), for example, threelevels
of fuzziness were captured in the extended ER model. The first level is
concerned withtheschemaand referstothe set of semantic objects, resulting
infuzzy entity sets, fuzzy relationship setsand fuzzy attribute sets. Thesecond
level isconcerned withthe schemalinstanceand refersto the set of instances,
resultinginfuzzy occurrencesof entitiesandrelationships. Thethirdlevel is
concerned withthe content and refersto the set of values, resultinginfuzzy
attributevaluesof entitiesand rel ationships.

EXPRESSpermitsnull valuesinarray datatypesandrolenamesby utilizingthe
keyword Optional and usedthree-valuedlogic (False, Unknown,and True).
Inaddition, thesel ect datatypein EX PRESSdefinesonekind of impreciseand
uncertaindatatypewhich actual typeisunknown at present. So EXPRESS
indeed supportsimpreci seinformationmodeling but very weakly. Further fuzzy
extensionto EXPRESSisneeded. Just likefuzzy ER, fuzzy EXPRESSshould
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capturethreelevelsof fuzzinessanditsconstructssuch asthebasic elements

(reservedwordsandliterals), thedatatypes, theentities, theexpressionsand
so on, should hereby be extended.

Development of Logical Database Models

It should be noticed that there might be semantic incompatibility between
conceptual datamodelsandlogical database models. So when aconceptual
datamodel ismappedinto alogical databasemodel, we should adopt sucha
logical databasemodel which expressivepower isclosetotheconceptua data
model sothat theoriginal information and semanticsintheconceptual data
model canbepreserved and supported furthest. Table2 showshow rel ational
and object-oriented databasesfair against various conceptual datamodels.
Here, CDM and LDBM denote conceptual datamodel and logical database
model, respectively.

Itisclear fromthetablethat rel ational databasessupport ERand IDEF1X well.
So, when an ER or IDEF1X datamodel is converted, relational databases
shouldbeused. Of course, thetarget rel ational databasesshould befuzzy ones
if ERor IDEF1X datamodel isafuzzy one. Itisalsoseenthat EER, UML, or
EXPRESS data model should be mapped into object-oriented databases.
EXPRESSisextensively accepted inindustrial application area. EER and
UML, being graphical conceptual datamodels, can be used to design EX-
PRESSdatamodel conceptually, andthen EER and UML datamodelscanbe
translatedinto EXPRESSdatamodel (Oh, Hana, & Suhb, 2001). Inaddition,
the EXPRESS schemacan beturnedinto XML DTD (Burkett, 2001). So, in
thefollowing, wefocusonlogical databaseimplementation of EXPRESSdata
model.

Inorder toconstruct alogical databasearound an EXPRESSdatamodel, the
followingtasksmust be performed: (1) defining thedatabase structuresfrom
EXPRESSdatamodel and (2) providing SDAI (STEP Standard DataA ccess

Table 2. Match of logical database models to conceptual data models

CDM LDEM Relational Databases Object-Oriented Databases
ER good bad
IDEF1X good bad
EER fair good
UML fair good
EXPRESS fair good
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Interface) accessto the database. Users define their databases using EX-
PRESS, manipul atethe databasesusing SDAI, and exchangedatawith other
applicationsthrough thedatabase systems.

Relational and Object-Oriented Database Support
for EXPRESS Data Model

In EXPRESS data models, entity instances are identified by their unique
identifiers. Entity instancescan berepresented astupl esinrel ational databases,

wherethetuplesareidentified by their keys. To manipul atethedataof entity
instancesinrel ational databases, theproblemthat entity instancesareidentified
inrelational databasesmust beresolved. Asweknow, in EXPRESS, thereare
attributeswith UNIQUE constraints. When an entity typeismappedintoa
relation and each entity instanceismapped into atuple, itisclear that such
attributescan beviewed asthekey of thetuplestoidentify instances. Soan
EXPRESS data model must contain such an attribute with UNIQUE con-
straintsat |east when rel ational databasesare used to model EXPRESSdata
model. Inaddition, inverse clause and where clause can beimplementedin
relational databasesastheconstraintsof foreign key and domain, respectively.

Complex entitiesand subtype/superclassin EXPRESS datamodelscan be
implementedinrel ational databasesviathereferencerelationshipsbetween
relations. Such organizations, however, donot naturally represent thestructural

relationshi psamong the objectsdescribed. When usersmakeaquery, some
joinoperationsmust beused. Therefore, object-oriented databasesshould be
used for the EXPRESSdatamodel.

Unliketherelational databases, thereisnowidely accepted definitionasto
what constitutesan object-oriented database, al though object-oriented data-
base standardshave beenreleased by ODM G (2000). Not only isit truethat
not all featuresin oneobject-oriented database can befoundinanother, but the
interpretation of similar featuresmay also differ. But somefeaturesarein
commonwith obj ect-oriented databases, including object identity, complex
objects, encapsul ation, types, andinheritance. EXPRESSisobject-orientedin
nature, which supportsthesecommon featuresin obj ect-oriented databases.
Therefore, there should be amore direct way to mapping EXPRESS data
model into obj ect-oriented databases. It should benoted that thereisincom-
patibility betweenthe EXPRESS datamodel and object-oriented databases.
Nowidely accepted definition of object-oriented databasemodel resultsinthe
fact that thereisnot acommon set of incompatibilitiesbetween EXPRESSand
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obj ect-oriented databases. Some possibleincompatibilitiescanbefoundin
Gohetal. (1997).

Now let us focus on fuzzy relational and object-oriented databases. As
mentioned previously, the fuzzy EXPRESS should capture threelevels of
fuzziness: theschemalevel, the schemalinstance, and the content. Depending
onthemodeling capability, however, fuzzy rel ational databasesonly support
thelast twolevel sof fuzziness, namely, theschema/instanceand thecontent. It
ispossiblethat object-oriented databases are extended to support all three
levelsof fuzzinessinfuzzy EXPRESS.

Requirements and Implementation of SDAI Functions

Thegoal of SDAI isto providetheuserswith uniform manipul ationinterfaces
and reducethecost of integrated product databases. When EXPRESS data
model sare mapped into databases, userswill facedatabases. Asadataaccess
interface, SDAI fallsintothecategory of theapplication userswho accessand
mani pul atethedata. Sotherequirementsof SDAI functionsaredecided by the
requirementsof theapplication usersof databases. However, SDAI itself isin
astateof evolution. Consideringtheenormity of thetask and thedifficulty for
achieving agreement astowhat functionsareto beincluded andtheviability of
implementing the suggestions, only some basic requirements such asdata
guery, dataupdate, structurequery, and validation arecateredfor. Further-
more, under fuzzy information environment, therequirementsof SDAI func-
tionsneeded for mani pul ating thefuzzy EXPRESSdatamodel must consider
thefuzzy information processing such asflexibledataquery.

Using SDAI operations, the SDAI applicationscan access EXPRESS data
model. However, only thespecificationsof SDAI operationsaregivenin STEP
Part 23 and Part 24. Theimplementation of these operationsisempty, which
should bedevel oped utilizing the special bindinglanguageaccordingto data-
basesystems. Onewill meet twodifficultieswhenimplementing SDAI inthe
databases. First, the SDAI specifications are still in a state of evolution.
Second, theimplementation of SDAI functionsisproduct-related. Inaddition,
object-oriented databases are not standardized. It isextremely truefor the
databaseimplementation of the SDAI functionsneeded for manipul ating the
fuzzy EXPRESSdatamodel, becausetherearenocommercial fuzzy relational
database management systems, and littleresearchisdoneon fuzzy object-
oriented databasessofar.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Databases Modeling of Engineering Information 23

It shoul d bepointed out that, however, thereexistsahigher-level implementa-
tion of EXPRESS datamodel than databaseimplementation, whichisknow!-
edge-based. Knowledge-based implementation hasthefeaturesof database
implementations, plusfull support for EXPRESS constraint validation. A
knowledge-based system shoul d read and writeexchangefiles, make product
dataavailableto applicationsin structuresdefined by EXPRESS, work ondata
storedinacentral database, and should beableto reason about the contents
of the database. Knowledge-based systems encode rules using techniques
such asframes, semanticnets, andvariouslogic systems, and then useinference
techniques such as forward and backward chaining to reason about the
contentsof adatabase. Although someinteresting preliminary work wasdone,
knowledge-based i mplementations do not exist. Deductive databases and
constraint databases based on relational and/or object-oriented database
model sareuseful in knowledge-intensive engineering applicationsfor this
purpose. In deductivedatabases, rulescan be model ed and knowledge bases
arehereby constituted. I n constrai nt databases, compl ex spatial and/or tempo-
ral datacanbemodeled. Inparticular, constraint databasescanhandleawealth
of constraintsinengineeringdesign.

Conclusion

Manufacturing enterprisesobtainincreasing product varietiesand products
with lower price, high quality and shorter lead time by using enterprise
information systems. Theenterpriseinformation systemshavebecomethe
nervecenter of current computer-based manufacturing enterprises. Manufac-
turing engineeringistypically adata- and knowledge-intensiveapplicationarea
and engineering information modelingishereby oneof thecrucial tasksto
implement engineeringinformation systems. Databasesaredesi gnedto support
datastorage, processing, andretrieval activitiesrel ated to datamanagement,
and database systemsarethekey toimplementing engineering information
modeling. But the current mainstream databases are mainly designed for
businessapplications. Therearesomeuniquerequirementsfromengineering
information modeling, whichimposeachallengeto databasestechnol ogiesand
promotetheir evolvement. Itisespecially truefor contemporary engineering
applications, wheresomenew techniqueshavebeenincreasingly appliedand
their operational patternsarehereby evolved (e.g., e-manufacturing, Web-
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based PDM, etc.). Onecan find many researchesinliteraturethat focuson
usi ng databasetechniquesfor engineeringinformation modeling to support
variousengineering activities. It should benoted that, however, most of these
papersonly discusssomeof theissuesaccordingtothedifferent viewpointsand
application requirements. Engineeringinformation modelingiscomplex be-
causeit should cover product lifecycletimes. Ontheother hand, databases
cover widevariety of topicsand evolvequickly. Currently, few papersprovide
comprehensivediscussionsabout how current engineering information model -
ing can besupported by databasetechnol ogies. Thischapter triestofill thisgap.

Inthischapter, wefirstidentify somerequirementsfor engineeringinformation
modeling, whichincludecompl ex objectsand rel ationshi ps, dataexchangeand
share, Web-based applications, imprecision and uncertainty, and knowledge
management. Sincethecurrent mainstream databasesaremainly designedfor
busi nessapplications, and thedatabasemodel scan becl assifiedinto conceptual
data models and logical database models, we then investigate how current
conceptual datamodel sandlogical databasemodel ssatisfy therequirementsof
engineeringinformation modeling indatabases. The purposeof engineering
information modelingindatabasesisto construct thelogical databasemodels,
whicharethefoundation of theengineeringinformationsystems. Generally the
constructionsof |ogical databasemodel sstart fromtheconstructionsof concep-
tual datamodel sand thenthedevel oped conceptual datamodel sareconverted
intothelogical databasemodels. Sothechapter presentsnot only thedevel op-
ment of someconceptua datamodel sfor engineeringinformationmodeling, but
alsothedevel opment of therel ational and object-oriented databaseswhichare
usedtoimplement EXPRESS/STEP. Thecontribution of thechapteristoidentify
thedirection of databasestudy viewed fromengineering applicationsand provide
aguidanceof informationmodelingfor engineering design, manufacturing, and
production management. It can bebelieved that somemorepowerful database
model swill bedevel opedto satisfy engineeringinformation modeling.
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ChapterlIl

Database Design
Based on B

Elvira Locuratolo, ISTI, Consiglio Nazionale delle Ricerche, Italy

Abstract

This chapter is devoted to the integration of the ASSO features in B. ASSO
is a database design methodology defined for achieving conceptual
schema consistency, logical schema correctness, flexibility in reflecting
the real-life changes on the schema and efficiency in accessing and storing
information. B is an industrial formal method for specifying, designing,
and coding software systems. Starting from a B specification of the data
structures and of the transactions allowed on a database, two model
transformations are designed: The resulting model, called Structured
Database Schema, integrates static and dynamics exploiting the novel
concepts of Class-Machineand Specialized Class-Machine. Formal details
which must be specified if the conceptual model of ASSO is directly
constructed in B are avoided, the costs of the consistency obligations are
minimized. Class-Machines supported by semantic data models can be
correctly linked with Class-Machines supported by object Models.
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Introduction

TheB Method (Abrial, 1996) isanindustrial general -purposeformal method
whichusesamodel, the Abstract Machine, to encapsul ateafragment of the
statewithinaprovably consistent specification and arefinement theory to
derive correct programs. The direct use of B for developing database
applicationscanleadto several advantagesincludingthepossibility of guaran-
teeing the correctness of the design process; however, it presents some
shortcomings: TheB Method | ackstheabstraction mechani smssupported by
thedatabase conceptual |anguages, anditsrefinement hasnot been designed
to obtai n efficient databasei mpl ementati ons. Specifying adatabaseapplication
with the B notation is atedious process, since many propertiesimplicitly
declaredwithinthedatabase conceptual schemasmust beexplicated. Further,
theconsistency proofsaretoo expensive, sincethey must beperformedwith
respect not only to the application constraints, but also to the conceptual
schemaconstraints.

ASSO (Locuratolo, 1997, 2002, 2004; L ocuratolo & Matthews, 1999a, b, c)
isaninnovativedatabasedesign methodol ogy definedfor achieving conceptual
schemaconsistency, logical schemacorrectness, flexibility inreflectingthe
real-life changes on the schema and efficiency in accessing and storing
information. Thismakesit possibleto overcomesomeinadequaciesof existing
informal methodologies (Batini, Ceri, & Navathe, 1992; Booch, 1994,
Rumbaugh, Booch, & Jacobson, 1999) such asto guaranteethe conceptual
schemaconsi stency andthelogical schemacorrectness. Backgroundinforma-
tionon ASSO canbefoundininitially disjointed approachesof work: A former
approach aimed at establishing formal rel ationshi psbetween classesof objects
based on semanti c datamodel sand classesof obj ectsbased on object models.
Theobjectivewasto achievetheflexibility of semantic datamodelsandthe
efficiency of the object-oriented database systems. This approach, called
Partitioning Method, wasproposed asastatic methodin 1992 (L ocuratolo
& Rabitti, 1998). A | atter approach aimed at integrating featuresfrom concep-
tual modeling and abstract machinesin order to guarantee the conceptual
schema consistency (Castelli & Locuratolo, 1994). ASSO (Castelli &
Locuratolo, 1995) tried to integrate these two approaches; however, the
proposed model was not suitabl e to the Partitioning M ethod applicability.
Approaches of study to design the conceptual model of ASSO, called
Structured Database Schema and the ASSO refinement can be found in
Andolinaand Locuratolo (1997) and Locuratolo (1997). The Structured

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Database Design Based on B 37

Database Schemaintegratesthe specification of both structural and behavioral
information at a high abstraction level. It extends the model on which the
Partitioning works by designing elementary operations that add objects,
removeobjects, modify attributes, or et theclassunchangedin order to still
allowthePartitioning applicability. Approachesof trand ationfrom ASSOto B
have been proposed in papers by L ocuratolo and Matthews (1999, &, b, c).
The approach employed to define ASSO, called MetaASSO has been
describedinLocuratolo (2002). Theunitary elementinthedefinitionof ASSO
isthat of correct model transformation, asevidencedin L ocuratolo (2004).
Differently fromarecent approach to the specification and devel opment of
database applications based on B (Mammar & Laleau, 2003), where the
databaseapplicationrefinementshavebeenimplemented using therel ational
database model, in ASSO classes of objects supported by semantic data
model sand classesof objectssupported by object systemsarelinkedtogether.

Thischapter aimsat raising theabstractionlevel of B exploiting featuresof
ASSO. Starting from a B specification of the data structures and of the
transactionsallowed on adatabase, two model transformationsaredesigned.
Theformer transformation, called Database Schema Model, restrictsthestate
of themodel supported by B inorder to represent aspectswhich aretypical of
databaseapplications. Thelatter transformation, called Structured Database
Schema, reduces the possible B operations on the state of the Database
SchemaModel. TheStructured Database SchemaisaConceptual/Semantic
model based onagraphwhichintegratesstatic and dynamics. The Structured
Database Schemaspecificationsarewritten using aformal notationwhich
exploitstheconceptsof Class-Machine and Specialized Class-Machine,two
conceptswhich enrichthe corresponding conceptssupported by the database
conceptual languageswith transactionsand application constraints. Inthe
Structured Database Schemaspecifications, many formal detailsareavoided
with respect totheB specificationsand only the statetransf ormations, which
satisfy theclassand the specialization constraints, areallowed.

Two different forms of refinement are applied to a conceptual schema:
behavioral refinement anddata refinement. Thebehavioural refinementis
defined by steps of B refinements which leave the state unchanged while
modifyingtransactions, whereasthedatarefinementisbased onanalgorithm
of schematransformationswhich generatesalogical schema. Theconsistency
obligationsof any two behaviorally refined schemasarerel ated by thelogical
implication, whereasgraphtransformationspreserving theschemaequival ence
establishaformal link betweenthelast behaviorally refined conceptual schema
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and an obj ect-oriented | ogical schema. V ariousapproacheshavebeendevel -
oped to capture object-oriented modelingin B (Facon, Laleau, & Nguyen,
1996; Shore, 1996); however, differently fromthem, the proposed approach
linkstogether conceptual andlogical schemasof databases, inorder togainthe
benefits of both conceptual/semantic data modeling and object-oriented
modeling.

Theemphasisof thischapter ison database application modeling and correct
model transformations. Thisapproach canhavevariouspractical implications:

*  Tominimizethenumber of proof obligationsandthecoststoguaranteethe
Structured Database Schemaconsistency.

*  Tointerpret thespecialization hierarchiesof the Structured Database
Schemas as an approach to eliminate redundancy of not necessarily
executablecode.

»  Toacquireknowledgefor specializing general purpose methodsem-
ployedatindustrial level for specificapplication aress.

Thechapter isorganized asfollows: Thedescriptionof B isfirst given; the
abstraction level of B is then raised; conceptual and logical schemas of
databasesarethen linked together; conclusionand further devel opmentsare
enclosedinafinal section.

B-Method

TheB-Method (Abrial, 1989, 1996) isaformal method of softwaredevel op-
ment which reducesthedistinction between thetwo traditional activitiesof
specification and programming, thusensuring the systematic passagefrom
specificationtoimplementation. Twoimportant phasescan bedistinguishedin
the softwaredevelopment: specification and refinement. Specification mod-
els the application requirements by means of not necessarily executable
statements, whereasrefinementisastep-wiseapproachwhich, startingfroma
specification, reaches an implementation. Modeling isessential in the B-
M ethod definition, sincethiscan be proposedintermsof model sand model

transformations. Figure Lillustratestheapproach: Srepresentsaspecification,

| animplementation; theintermediate stepsaremodel s, whereasthedirected

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Database Design Based on B 39

Figure 1. B-Method

S>M,—>..>M, =1

arrowsaremodel transformations. Thewholeprocessiscarried out by using
thesameformal model: the Abstract Machine (AM). Thespecificationisa
particular AM, theintermediatemodel sareAM’ s, and a sotheimplementation
isaspecial AM.

AnAM isdefined by meansof amathematical datamodel and aset of operations
whichanimatethedatamodel . Thedatamodel describesthestatic aspectsof the
system, the state, whereasthe operationsdescribethedynamic aspects. Inthe
following, firstthemainfeaturesof boththedatamodel andthemodel animation
will beoutlined, and then aparagraph ontheB refinement will beprovided.

Data Model

Thedatamodel isgivenby listing aset of variablesand writing therelevant
propertiesof thevariables, thatis, theinvariant. Theinvariantisformalized
usingthefull notation of thefirst order predicatel ogicandarestricted version
of theset theory notation. Each of thesenotationsisdefinedintermsof abasis
and aset of constructorsascan beseenin Table 1.

Theseconstructorssufficetodefineother conceptssuchasbinary relationsand
functions, mathematical objectssuchasnatural numbers, finitesequencesand

Table 1.
First Order Notation
Basis: € set membership
Congtructors, | = Implication
A disunction
v conjunction
= negation
ERY quantification
Set Theory Notation
Basis: A,B,C given sets
Constructors: A xB Cartesian
product
P(4) power set
{xe 4 -Px)} set
comprehension
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trees, and common predicateson setssuch assetinclusionand set equality. A
theory of recursive functions on mathematical objectsisalso given. Any
rigorousdefinitionscan thusbeformalized using thesetwo elementary nota-
tions. Thefollowingareexamplesof invariants: x c 4,x € P(4) wherevariables
aredenoted with lower-caseletters, and setswith upper-casel etters.

Model Animation

Ananimated model providesacommon formal framework to specify both
static and dynamic aspectsof applications. Thedynamicaspects, thatis, the
operations, arerepresented asstatetransitionsusing the Generalized Substi-
tution Language (GSL).

A substitution, denoted by “x.=E" ,isafunctionwhichtransformsthegeneric
predicate Rintothepredicateobtained, replacingall thefreeoccurrencesof x
inR by theexpression E. Functionsthat transform predi catesinto predicates
arecalledpredicate transformers. Anexampleof predicatetransformeristhe
following: [x:=x+ 1] (xe N)=(x+1e N)wherevariablex issubstituted
inthepredicate(x € N) withtheexpressionx + 1, thusobtaining the predicate
(x+1e N).Thesubstitutionx: = E specifiesonly total and deterministic state
transformations. Thegeneralized substitutionsallow representing al so partial
and non-deterministic statetransformations.

GSL isdefined by meansof thebasesand constructorsshowninTable2, where
Pisapredicate, Sand T'aregeneralized substitutionsand nisavariabledistinct
fromthoseof themachinestate. A generalized substitution Sdefinesapredicate
transformer S: R — [ S]R which associatestheweakest pre-conditions[S]R
withany post-condition R, ensuring that R holdsjust after the operation has
taken place. Theaxiomsshownin Table3definethe semanticsof theGL Sin
termsof weakest pre-condition predicatetransformers.

Inapre-conditioned substitution, the pre-condition expressestheindispens-
ablecondition under whichtheoperation can beinvoked. Whenthepredicate
P doesnot hold, the substitution cannot establish anything; whereasin the
guarded substitution, when P does not hold, the substitution is able to
establishanything. L et usobservethat for the pre-conditioned substitution, in
order to establishapost-condition, you must prove P, whereasintheguarded
substitutions, in order to establish apost-condition, you may assume P. A
bounded-choice substitution iSanon-deterministic choicebetweenthetwo
substitutionsSand 7. Thisconstruct meansthat thefutureimplementer hasthe
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Table 2.
Generalized Substitution Language
Bases: x:=E simple substitution
skip empty substitution
Constructors: pre P then S end pre-conditioning
P==>S guarding
choice S or else 7 end | bounded-choice
var n in S end unbounded-choice
Table 3.
[pre P then S end] R = PA[SIR
[P ==>S]R | P=ISIR
[choice Sorelse Tend] R | & | [S]RA[TIR
[var nin Send] R = Vn-[S|R

freedomtoimplement either the operation corresponding to S or that corre-
spondingto 7. Theunbounded-choice substitution generalizesthe conjunc-
tion appearinginthechoiceoperator toauniversal quantifier.

Theoperationsspecifiedinan AM arestatetransformationsdescribedinterms
of propertiesthat thevariablemodificationsand theresultsof computationsmust
enjoy. Such operationswill belater realized by meansof programs, that is, by
givingtheprecisedescriptionof howtomodify theval uesof thevariablesandhow
to compute results. A machine operation isdefined by giving aname and a
definition. The operation can also be parametric; in this case, the operation
definesa“family” of statetransformations. Aninstantiationof theparameter yields
a different substitution. In the following, the parametric operation
add.employees(emp) whichmodifiesthemachinestateispresented.

add.employees(emp) =
Pre emp € EMPLOY EES
then employees := employees U { emp}
end

Model Consistency

Theaxiomaticdefinitionof theAM permitspropertiesof themodel, suchasits
consistency,tobeproved. A set of formulas, consistency proofobligations,
must beprovedtodeterminetheAM consistency. If theAM hasinvariant/and
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operationpre P then S end, thentheinteresting consistency obligationisthe
following: P A= [S] 1. Thisconsistency obligationensuresthat under both
the assumptions / and P, the operation S establishes /. However, before
provingthisobligation, it must be proved that theanimated model isnot empty.
For this purpose, a special operation, called initialization, belongsto the
machineoperations. Inparticular, theinitializationisasubstitutionwithtruepre-
conditionswhosefinal statesare starting states of the machine. In order to
guaranteeconsistency, alsotheinitialization must be provedto establishthe
Invariant.

Abstract Machines can be composed to build compl ete systems allowing
modul ar designand devel opment of systems. Thesemodularity mechanisms
have been designed to support the composition of proofs; oncean AM has
been proven consistent, thenit need not be proven again.

Refinement

Refinementisintended asasequenceof AM transformations. Startingfroman
initial AM which is a consistent specification, step by step the designer
proposesnew AMs, each of whichwith moreimplementation detail sthanthe
previousone. At each step, formulasof first-order logicareprovedinorder to
ensurethestep correctness. Asrefinementisatransitiverelation, thewhole
processresultstobecorrect. Refinementisconductedinthreedifferent ways:
abolishment of pre-conditionsand choices; introduction of sequencing and
loop; and transformation of themathematical datastructures(sets, relations,
functions, sequencesandtrees) into structuresthat might be programmable
(simplevariables, arraysorfiles). Inorder to consider astep of refinement, l et
usconsider aconsistent AM; for example, the Abstract Machine M. The
elements proposed to refine M are presented in the Abstract Machine
Refinement N (see Table4).

Theconsistent MachineM isrefinedintomachineN if they arerelated viaa
coupling condition in the invariant of N, and each operation of M has a
counterpartinN. Thefollowing proof obligation of correctnessestablishesthat
thebehavior of therefined operation T'respectsthat of theoriginal operation
S

P(X) AI(X) AJ(XY) = [T] = [S] = J(xy)
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Table 4.
Abstract Machine M Refinement N
Variables X Variables )
Invariant  /(X) Invariant J(X,y)
Operation S (with pre-condition P(x)) Operation T
End End

Thedoubl enegation guaranteesthat thenew operation T'islessnon-determin-
isticthanthecorrespondingoldonesS. TheAbstract MachineN caninturnbe
refinedinasimilarway.

Support tools for B have been realized. In particular, the B-Toolkit isan
integrated suiteof tool swhich providessyntax and typecheckers, support for
structuring, support for animation, proof obligation generation, proof tools,
support for refinement andimplementati on, documentati onand version control
tools, and codegeneration.

Despitethe propertiesof specification consistency andrefinement correct-
ness, which are desired quality features, and the set of tools provided to
support theengineeringtask, the B-M ethod cannot be considered asaformal
method of database design; in fact, it lacks abstraction mechanisms and
featurestypical of thedatabase area. Asaconsequence, both specifications
and proofsareexpensive.

Raising the Abstraction Level of B

In order toillustrate the weaknesses of the AM in specifying a database
application, let usrefer to the specialization hierarchy of asemantic data
model, which presentstwo important mechanismsused inthedatabasearea,
that is, the mechanisms of classification and specialization. Figure 2
providesan example.

The top node of the hierarchy representsthe person class, that is, a set of
person objects in the database having the income attribute, whereas the
bottom noderepresentstheemployee class. Thedirected arrow, called theis-
arelationship of theemployee classwithrespect totheperson class, indicates
that the employee classisaspecialization of the person class, that is, itis
defined through thefollowing properties, called attribute inheritance and
object inclusion, respectively:
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Figure 2. Specialization hierarchy

Person
(income)

*  Theemployee classinheritstheincome attributefromthe person class
and hasalsothespecificsalary attribute; and

*  The objects of the employee class are a subset of the objects of the
person Class.

Theformal definitionof thehierarchy inFigure2 canbeprovided specifyingthe
state of an AM, that is, listing the person, income, employee and salary
variablesandwritingintheinvariant thepropertieswhichdefinethespecializa-
tion hierarchy. Let us call these properties implicit constraints. In the
following, theimplicit constraintswhichmust beenclosedintotheAM invariant
arepresented.

Invariant
person € PERSON A income € person — N A
A employee C person A income.employee € employee — N A

A salary € employee —> N

Inthedatabasearea, thesameactivity of formalization can beperformed more
easily: Asan example, let us consider the database conceptual languages.
These languages provide the following two syntactic forms to specify a
specializationhierarchy:
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class variable of given-set with (attr-list), and

class variable is-a variable with (attr-list),

whereattr-listisasequence of specificationsof theform: variable: set-esp.
Variableand given setsareidentifiersand set-exprisan expressionbuiltin
termsof setsand set operators.

These constructsimplicitly specify the propertiesdefining the abstraction
mechanismof classification, called class constraints, and thetwo properties
of attributeinheritanceand object inclusion, globally called specialization
constraints. Thespecification of themodel representedin Figure2isthenthe
following:

class person of PERSON with (income:N), and

class employee is-a person with (salary:N),

where the implicit constraints are represented by the conjunction of the
classificationandthespecialization constraints.

M odeling adatabaseapplicationusingan AM requiresthespecificationinthe
invariant not only of the implicit constraints, but also of the explicit con-
straints, thatis, of theapplication constraints.

Asfar asthe dynamic aspectsare concerned, that is, the database transac-
tions,thesearespecified usingthe GSL. Theconsistency proofs of theAM
must be performed not only withrespect totheexplicit constraints, but also
with respect to the implicit constraints. This makes the proof process for
ensuring theschemaconsistency too expensive.

Inorder toreducespecificationsand proofs, aparticular AM, called Database
Schema Model, hasbeen defined. The next section describesthe Database
SchemaModel.

Database Schema Model

The Database Schema Model avoids the formal definition of the implicit
constrai ntsusi ng the database conceptual |anguagesconstructs. Thedatabase
transactionsare defined on astate, called database schema state, whichis
reduced with respect to the AM state: The initialization is defined as a
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substitution establishing theimplicit constraints, whereas, anew building bl ock,
not the simple substitution, is considered as the basisfor the transaction
specifications. Thebuilding block, denoted by op-hierarchy(par _list) hasthe
samesemanti csof thesimplest B substitution preservingtheimplicit constraints.
Tospecify atransaction, the GSL constructorsarerecursively appliedtothe
op-hierarchy(par_list). In this way, all and only the B transformations
preservingtheimplicit constraintsarespecified.

Theaxiomaticsemanticsof thebuilding block isthefollowing:

[op-hierarchy (par_list) | R < (implicit = implicit’) AR’

where op-hierarchy(par_list) is the parametric basic substitution, R isa
predicateonthestatevariables, implicit isthe predicatewhichformalizethe
stateandfinally implicit’and R " arethepredicatesimplicit and R respectively
after themultiplesubstitutionsspecified throughpar list. Wefurther consider
asabasi c substitution asubstitutionwhich doesnot specify any statetransfor-
mation. Thisisdefinedinthefollowing: [skip-hierarchy]l R < R.

Inorder toimprovethetransaction specificationreadability, theop-hierarchy
(par_list) substitution hasbeen specialized withfivebasictransactions. The
basic transactionsassociated withthestatein Figure2 areshownin Table5.

Theformer add-hierarchy requiresthe parameters associated with all the
attributesof thetop classtobeenclosedinpar list, thatis, theparameter list;
the latter add-hierarchy requires the parameters associated with both the
attributesof thetop classand the specific attributesof the bottom classto be
enclosedinpar_list. Theformer mig-hierarchy requiresonly the parameters
associated with the specific attributes of the bottom classto beenclosedin
par_list, whereas both the latter mig-hierarchy and the rem-hierarchy
requireonly one parameter tobeenclosedinpar_list.

TheDatabase SchemaM odel isaparticular Abstract Machine, sincenot all the
AM substitutions are database transactions, but only those preserving the
implicitconstraints.

Thestate of aDatabase Schemacan beinterpreted asarestricted statewith
respect tothecorresponding Abrial’SAM. Thisallowsavoidingtheconsis-
tency proofsof the specialization hierarchy with respect totheimplicit con-
straints, whereasnew consistency obligationscanbederivedfromtheAbria’s
consistency obligations.
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Table 5.
add-hierarchy(pers,i) inserts the pers object only into the person class of the
hierarchy
add-hierarchy(pers,i,s) | insertsthe pers object into both the classes of
the hierarchy

mig-hierarchy(pers,s) permits the pers object to migrate from the person class
to the employee class of the hierarchy

mig-hierarchy (pers) permits the pers object to migrate from the employee to
the person class of the hierarchy
rem-hierarchy(pers) removes the pers object from the hierarchy

Inthefollowing, anexampleof databaseapplication (Andolina& Locuratol o,
1997) isgiven: First theapplication requirementsarelisted, then theconceptual
schemasupported by the Database SchemaM odel isspecified.

A Database Application

1. Thedatabasemaintainsinformationabout aset of persons, their income,
asubset of persons inemployment andtheir salary;

2.  Theincome of eachpersonisgreater or equal to 1000; thesalary of each
employee is greater or equal to 500; the income of each employee is
equal totheemployee salary incremented by aval ue;

3. Anoperationaddsinformationtothedatabasewhenaperson storedin
thedatabaseisunrolled;

4. Anoperationpartialy or completely removesinformationwhenaperson
goesaway fromthecompany; and

5. Anoperationremovesinformationrelated withtheemployees.

Figure3illustratesthe conceptual schemaspecification.

The company.schema specification is described listing a clause for each
component of thedatabaseschemamodel. Intheclasses clause, therearetwo
classconstructorswhich specify respectively thetop classand thebottom class
of thespecializationhierarchy inFigure3. Theconstraints clause specifiesthe
explicit constraints describedin point 2 of theapplicationrequirements. Both
theinitialization andthetransaction clausesspecify propertieswhich must
be satisfied by thedatabase schemastatetransformations. Theinitialization
describesaspecial transactionwhich associatesthe empty set with each state
variablesimultaneously. Thenew.employee(pers, s) transaction specifiesa
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Figure 3. Conceptual schema

database schema
company schema

classes
class person of PERSON with (income:N)
class employee is-a person with (salary:N)

constraints
Vp (peperson = income(p)=1000)
Ve (ee employee = salary(e)=500)
Ve (e employee = Ix (xe N A income(e) = salary(e) + x))

initialization
person, income, employee , salary:=8, &, D, &
transactions
new employee(pers, s)=
PRE
perse person A s2500
THEN
mig-hierarchy(pers, s)
END;

delete(pers) =
PRE
perse person
THEN
CHOICE rem-hierarchy(pers) ORELSE mig-hierarchy (pers)
END;

pers(pers) =

perse employee = mig-hierarchy (pers)

end.

parametric operationwhichinsertsthepers object, belongingtotheperson
class, intotheemployee classwhileassociatingthes valuewithhissalary. This
operationisnot abletoestablishanythingwhenthepre-conditions arefal se, that
is, whenthevalueof thepers parameter isnot amember of the set personand/
or thevalueof theinput variables islessthen 500. Thedel ete(pers) specifiesa
parametrictransactionwhich can bedescribed either by the basi ctransaction
rem-hierarchy (pers), whichremovestheobject fromthewholehierarchy, or by
thebasi ctransactionmig-hierarchy(pers), whichremovestheobject only from
theemployee class. Findlly, thepers(pers) specifiesaparametrictransactiononly
defined on the employee class. In order to ensure the conceptual schema
consistency, thefollowing proofobligations must beproved:
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»  Theinitializationsatisfiesboththeimplicitand explicit constraints;
»  Eachoperation preservestheexplicit constraints.

Theformer proof obligation guaranteestheinitialization correctness andthe
latter the operation correctness. The correctness proof of an operationis
performed by demonstrating that thefollowing formulaistrue:

implicit A explicit A pre-conditions = [op-name(par_list)]|explicit

The main features of the Database Schema Model are summarized in the
following:

* ItisanAM;
* |tsstateexpressivity iscomparablewiththat of asemantic datamodel;

* Itensuresthat only transactionswhich are correct with respect to the
implicit constraintscan bespecified;

*  Thestructural aspectsof themodel aredefined through specialization,
whereasthe dynamic aspectsare defined asoperationson arestricted
AM state; and

*  Nospecializationmechanismsallow thetransaction specification.

Thelast feature of the Database SchemaM odel |etsusunderstand that the
transaction specificationisstill atedious process, whereasthe correctness
proof of transactionsisstill anexpensiveprocess. Inorder to overcomethis
shortcoming of the Database SchemaM odel, the abstracti on mechanism of
classification hasbeen extended with basi c transactionstoinsert objectsinto
aclass, toremoveobjectsfromaclass, andto modify attributes. A notion of
behavioural specialization, whichallowsboth structural and behavioural as-
pectsof modelingto bespecifiedinasimilar way, hasbeenintroducedanda
new model called Structured Database Schema whichisbased onaspecial-
ization hierarchy, hasbeen defined. Similarly to attributes, the Structured
Database Schematransactionsareinherited through specialization, so that
specificationsand proofsof inherited transactionsareavoided. Thenodesof
thehierarchy aredatabase schemas, inthefollowing called Class-Machines,
whereastheis-arel ationship hasbeen extended in order to support not only
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attributespecialization, but al so transaction specialization. Theextendedis-a

relationship is called is-a* relationship. In the following, the Structured
Database Schemaisproposed.

Structured Database Schema

The Structured Database SchemaM odel results as acomposition of small
Database SchemaM odels, called Class-Machines, formalizingthenodesof an
extended specializationhierarchy. Thelinksof thehierarchy represent rel ation-
shi psbetween Class-Machineswhich extendsthetraditional is-arel ationship
with anotion of transaction specialization givenin Andolinaand L ocuratol o
(1997).

Definition (Class-Machine)

A Class-Machine is an Abstract Machine whose state variables are con-
strainedto satisfy theclassconstraints.

L et usobservethat, asthe Class-M achine stateis enclosed in the Abstract
Machinestate, not all the Abrial’ sstatetransformationsare Class-M achine
transactions, but only those preserving theclassconstraints.

Property (Class-Machine)

A Class-Machineisan Abstract M achinewhoseinitialization establishesthe
classconstraintsand whosetransactionspreservetheclassconstraints.

Letusobservethat, if theinitialization establi shestheclassconstraintsand the
operationspreservetheclassconstraints, thestate of the Abstract Machinecan
beconsidered asrestricted to the Class-Machinestate.

Relation (Class-Machine and Abstract Machine)

The Class-Machinedefinition and therespective property aretwo equiva-
lent propositions, which establish therel ationship between Class-Machine
and Abstract-Machine. As aconsequence, the Class-Machine formal-
ization can begiven exploiting any model used to formalizethe Abstract

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Database Design Based on B 51

Machinerestricted to captureall and only those Abstract Machineswhich
areClass-Machines.

Definition (Consistency)

A Class-Machineisconsistentif theinitialization establishestheimplicitand
theexplicit constraintsand each of the remai ning operationspreservesthe
explicitconstraints.

Definition (Specialized Class-Machine)

If Class-Machine nameisinis-a* relationship with Class-Machine root,
thenan AM called Specialized Class-Machine name isdefined asfollows:

*  The objects of the Specialized Class-Machine name are those of
Class-Machine name;

»  Theattributes of the Specialized Class-Machine name are both the
attributesof the Class-Machine root restricted totheclassnameandthe
specificattributesof the Class-Machine name;

»  Theexplicit constraintsof the Specialized Class-Machine name are
defined by the conjunction of the explicit constraints of the Class-
Machine root (restricted to corresponding variables of the Class-
Machine name), theexplicit constraints of the Class-Machine name
andtheexplicit constraintsinvolving variablesof both the Class-Ma-
chine root and the Class-Machine name;

*  EachtransactionontheClass-Machine rootisspecialized ontheClass-
Machine name with acorresponding trasaction caled specialization
(Andolina& Locuratolo, 1997). Theinitialization (resp. atransaction
whichinsertsobjects) isexplicitly specialized; theremaining transactions
canbeimplicitly specialized;

* Theinitialization (resp. aninherited transaction) of the Specialized
Class-Machine nameistheparallel composition (Abrial, 1996) of the
initialization (resp. atransaction) of the Class-Machine root restricted
totheClass-Machine name with the corresponding specialization;

»  The specific transactions of the Class-Machine name belong to the
Specialized Class-Machine name; and
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»  Transactionsinvolvingvariablesof boththeClass-Machine root andthe
Class-Machine name belongtotheSpecialized Class-Machine name.

Property (Specialized Class-Machine)

A Specialized Class-Machine isaClass-Machinewhoseinitialization estab-
lishes the specialization constraints and whose transactions preserve the
specializationconstraints.

Definition (Structured Database Schema)

A Structured Database Schema isaconnected acyclic graphwhosenodes
areClass-Machinesand whoselinksareis-a* rel ationshipsbetween Class-
Machines.

Property (Structured Database Schema)

A Structured Database Schema is aset composed by a Class-Machine,
called Root Class-Machine, and by afinite number of Specialized Class-
Machines.

Thedefinition of Structured Database Schemaand therespectiveproperty are
two equivalent propositions; however, whilethedefinitionisexploitedinthe
processfor linking thedatabase conceptual schemawiththelogical schema, the
property permitsto seethe Structured Database Schemaasaset of indepen-
dent Class-Machines, that is, the Root Class-Machine and the Specialized
Class-Machines. Asaconsequence, themodel consistency can bedefined as
follows.

Definition (Structured Database Schema Consistency)

A Structured Database Schema isconsistent if theRoot Class-Machineis
consistent and each Specialized Class-Machineisconsistent.

Thisdefinitionallowsthedecomposition of largeconsistency obligationsintoa
set of independent small obligations. Theproof of theinherited operationsof
Specialized Class-Machinescan beavoided. Thus, inthecaseof operations
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andexplicit constraintsinvol vingonly Class-Machines, the Specialized Class-
Machineconsistency isreduced to the Class-M achineconsistency, whereas,
inthecase of operationsand application constraintsinvol ving variabl es of
Specialized Class-M achines, the consistency proof of the Specialized Class-
Machinecan beoptimized (Locuratolo, 2001).

Thefollowing syntacticformsextendingthosegiven by thedatabaseconceptual
languages are provided to specify the Class-Machines of a Structured
Database Schema:

class variable of given-set with (attr-list; init; oper-list), and

class variable is-a* variable with (attr-list; init, oper-list),

where init and oper-list denote an initialization and a list of database
transactionsonthespecified Class-Machinesstate, respectively.

The Structured Database Schema in Figure 4 comprises two clauses: the
Class-Machines clauseandtheSpecialized-Constraints clause. Withinthe
former, the Class-M achineconstructorsspecify small Database Schemas. The
is-a* relationship of theempl oyee Class-M achinewith respect totheperson
Class-Machineextendstheoriginal is-a relationshiptothebehavior. Withinthe
Specialized-Constraints clause, theexplicit constraintsinvol ving variablesof
boththeperson Class-Machineandtheemployee Class-M achineare speci-
fied. The Structured Database Schemastructure can beusefully exploitedfor
optimizing the proof process. Specifically, in our example, the specified
transactionsinvol vevariablesof Class-Machines, and notransactioninvolves
variablesof Specialized Class-M achine; thusthemodel consistency can be
defined by performing two consistency proofs: theperson Class-Machine
proof andtheemployee Class-Machineproof.

The Structured Database Schema can be seen as a model at a higher
abstractionlevel withrespecttotheB model. Infact, formal detail swhich must
bespecifiedinan Abstract Machineareimplicitly specifiedinaStructured
Database Schema, whereasthe consi stency obligationsrequiredtobeproved
inB arereducedtoaset of small obligations, sinceonly transactionscorrect
withrespect to the specialization constraintscan be specified, and sincethe
proofsof theinherited transactionscan beavoided.

The Behavioral Refinement of aClass-Machine (aSpecialized Class-Ma-
chine) isastep-wiseapproach, whichlet thestate unchanged, weakening the
pre-conditionsand/or reducing thenon-determinism. The Behavioral Refine-
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Figure 4. The Structured Database Schema

Structured Database Schema
company. schema

Class-Machines

class person of PERSON with (income:N;

Vp (pe person = income(p)=1000)

init.person ()=person, income:=J, J;
new.person(pers)=
PRE
perse person
THEN SKIP person END

del.person (pers)=
PRE
perse PERSON
THEN

CHOICE REM person(pers) OR ELSE SKIP person
END)
class employee is-a* person with (salary: N;
Ve (eeemployee = sdary(e)>500)
init.employee()=employee, sdary:=J, &;
new.employee(pers, s) =
PRE
500
THEN

ADD employee(pers, s)
END

del.employee(pers)= REM employee(pers)
pers(pers) = perse employee = REM employee(pers, i)
Specialized - Constraints

employee Ve (ecemployee = 3x (xeN A income(e) = salary(€) + x))

ment of aClass-Machine (aSpecialized Class-Machine) guaranteesthe Class-
Machine(thespecialized Class-Machine) consistency.

WithinaStructured Database Schema, transactionsand explicit constraints
canbespecifiedthatinvolvevariablesof Class-Machines, Specialized Class-
M achinesand speciaization Sub-Hierarchies. TheStructured Database Schema
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consistency can thus be partitioned into the consistency proofs of Class-
M achines, thoseof Specialized Class-Machinesandthoseof Database Schemas
correspondingtothe Specialization Sub-Hierarchies. Similarly, theBehaviora
Refinement of the Structured Database Schema can be reduced to the
Behavioral Refinement of Class-Machines, Specialized Class-Machinesand
Database Schemascorresponding to the Specialization Sub-Hierarchies.

Linking Conceptual and
Logical Database Schemas

Thespecification of database applicationssupported by the Structured Data-
base Schema provides two interpretations of the conceptual schema. The
former interpretation seesaconceptual schemaasacollection of independent
Class-Machines; thisinterpretationisusedfor performingboththeconsistency
proofsandthebehavioral refinement proofs. Thelatter interpretation seesa
conceptual schemaasaconnected acyclic graph of Class-Machines, inthe
followingcalled Conceptual Class-Machines;thisinterpretationisusedwithin
thedatarefinement, whichlinksClass-Machines supported by semantic data
models with Class-Machines supported by object systems. Semantic data
models (Cardenas & McLeod, 1990) are the most appropriate models for
conceptual databasedesign, sincethey allow both arepresentation of database
objectsclosetoreal word objectsand aflexiblereflection ontheschemaof the
changesoccurringinreal life; however, they havenever beenimplemented
efficiently (Nixon & Mylopoulos, 1990). On the contrary, object models
(Abitebul, Hull, & Vianu, 1995), which haveabstraction mechanismssimilar to
thoseof semantic datamodel s, havereached aremarkablelevel of efficiency.
The better results in the engineering of object database systems can be
explained by observing that in semanti c datamodel seach object instancecan
belongto any classof aspecialization hierarchy, thusenhancingflexibility,
whereasin object datamodel seach object instance belongsto oneand only
oneclass, thuslimiting flexibility whileenhancing efficiency. Semantic data
models have always been translated into relational models; an approach
proposedinliteratureto map semantic datamodel sinto object modelsisthe
Partitioning Method (L ocuratolo & Rabitti, 1998).

Thissectiongivesaprocedurefor mappingadirected acyclicgraph of classes
supported by semantic data models, in the following called conceptual
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classes, 1nto classes supported by object models, in the following called
logical classes. Let ussupposethat no direct descendant of theroot hasfurther
descendants. Wediscussan approachtodesigning thegraphof logical classes
G, starting fromagraph of conceptual classesG,.

L et usdistinguishthefollowingtwocases: a, anda,.

a,) Elementary case: Thegraphof Conceptual Classesisonly composed by
aclassinis-arelationshipwiththeroot.

a,) General case: Thegraph of Conceptual Classesiscomposed by more
classesinis-arelationshipwiththeroot.

Caseq, canbesolveddirectly asfollows:

GC:<son>iS—a<r00t>
GL:<son>is—aL<root—son>

Thetwonodes<son >and<root—son >defineapartition of theoriginal root,
whereasis — a, isthelogical specialization, or anorientedlink fromthenode
<son >tothenode< root—son >. Each object belongsto oneand only one
logical class. Thelogical inclusionproperty isindirect, thatis, it holdsinterms
of attributeinheritance.

Case a, can be solved by decomposing the problem into two independent
problemsof the sametypeand by merging therespective solutions.

G.={<son, >i—sa<root>,.... <soon > is —a < root >}

Thesimplest situationillustrating the casea, iscomposed by aroot and two
direct descendantsof theroot. Thegraph G ,.isthen decomposed asfollows:

G., ={<son,>is—a <root—son, >}

G, ={<son,>is —a<root N son, >}
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Thesetwo conceptual graphsbelongtotheprevioussolved elementary case
andthuscan betransformedinto correspondinglogical graphs.

ThelL ogical graphsG,, and G, , arethenmerged by linking their respective
rootsthroughtheis —a, relationship.

Thedescribed procedureisbased on the classic Divide and Conquer tech-
nique. Thistechnique hasbeen adapted in order to be applied to agraph of
conceptual classesasfollows:

1. Directsolution of theproblemwhenappliedtotheelementary case.

2.  Decompositionof theproblemintotwoindependent sub-problemsof the
sametype. The Graph G . isdecomposed into two graphs whose root
defines a partition of the G . root. The partition is obtained by set
differenceand setintersectionbetweenthe G .root andthemost | eft son.

3. Recursivesolutionof eacha, sub-problem.

4. Composition of the two sub-problem solutionsin order to obtain the
global solution.

Attributesand transactionsare associated with thenodes of thegraphsasin
L ocuratolo and Matthews (1999, a, b, c).

Conclusion and Further Developments

Theuseof formal methodsinthedesign of database applicationscanleadto
several advantages, includingthepossibility of guaranteeing thespecification
consistency and thedesign correctness. However, formal methodscanbetoo
difficultandexpensiveif comparedwithexistinginformal methods. Specifying
adatabaseapplication with theabstract machinenotationisatediousprocess,
sincemany propertiesimplicitly declared with the database conceptual lan-
guagesmust beexplicated. Further, thedirect useof B makestheconsistency
proofstoo expensive, sincethesemust beperformed not only with respect to
theexplicit constraints, but al sowith respect totheclassand thespecialization
constraints. Thischapter isdevotedtotheintegration of the ASSO abstraction
mechanismsinB. TheAbstract M achi nestate hasbeen restricted with respect
to B, since only the state transformations which satisfy the class and the
specialization constraintsareallowed.
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If themodel for ASSOisdirectly constructedinB:

1. Moredetail isaddedtothe Abstract Machinesthanisnecessary inthe
formof implicitconstraints;

2. Moreproof obligationsaregenerated and proved thanisnecessary, to
show that transactionsrespect theimplicit constraints; and

3.  MoreAbstract Machinesaredesigned thanisnecessary.

Accordingtothedescribed proposal, only those Class-M achineand Special -
ized Class-Machinesare designed which are necessary to provethe model
consistency.

By designing only thosemachines, wehaverai sed theabstractionlevel of B by
imposingtheimplicitassumptionsof ASSO, andwehavethusproducedamore
efficientway of generating designsinthedatabasefield, whileaddingthequality
of higher design.

Consistency and behavioral refinements of Structured Database Schema
specificationscan beproved exploitingtoolsfor B (B-Core); thepartitioning
tool could bedesigned exploiting thefeaturesof the proposed algorithmwith
theassociated properties.

Theemphasisof thischapter ison database application modeling and correct
model transformations. Thisapproach canhavevariouspractical implications:

*  Tominimizethenumber of proof obligationsandthecoststoguaranteethe
Structured Database Schemaconsistency.

*  Tointerpret thespecialization hierarchiesof the Structured Database
Schemas as an approach to eliminate redundancy of not necessarily
executablecode.

»  Toacquireknowledgefor specializing general purpose methodsem-
ployedatindustrial level for specificapplication aress.
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Chapter I11

The Management of
Evolving Engineering
Design Constraints

T. W. Carnduff, University of Glamorgan, UK
J. S. Goonetillake, University of Colombo, Sri Lanka

Abstract

This chapter presents research aimed at determining the requirements of a
database software tool that supports integrity validation of versioned-
design artefacts through effective management of evolving constraints. It
has resulted in the design and development of a constraint management
model, which allows constraint evolution through representing constraints
within versioned objects called Constraint Versions Objects (CVOs). This
model operates around a version model that uses a well-defined configuration
management strategy to manage the versions of complex artefacts. Internal
and inter-dependency constraints are modelled in CVOs. The combination
of our versioning, configuration management, and constraint management
approaches has produced a unique model which has been implemented in
aprototype database tool with an intuitive user interface. The user interface
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allows designers to manage design constraints without the need to program.

The innovative concepts developed in this chapter are introduced using an
ongoing example of a simple bicycle design.

Introduction

Artefactsin engineering designarestructurally complex and may berepre-
sented in softwareasrecursively compositeobjects. Inall butthemosttrivial
of projects, itisimpossiblefor asingledesigner to performall of thedesign
effort alone, and therefore engineering design requiresteamwork withina
cooperativedesignenvironment. Duetotheevol utionary natureof thedesign
process, design constrai ntsevol ve and the design sol ution of each complex
artefact anditscomponentsprogressthrough aseriesof versions. To produce
consi stent versions, versioning software systemsshoul d beaugmented withan
integrity validation management system. Whileworking withinasoftware
environment in which there are evolving constraintswhich are applied to
complex structural artefacts, designersrequiredesigner-friendly featuresto
enablethemto effectively deal withthedesigntask, without thenecessity to
programthesoftware.

Thischapter presentsresearch aimed at devel oping adatabase softwaretool
that supportsintegrity validation of versioned-designartefactsthrough effective
management of evolvingcongtraints. It hasresultedinthedes gnand devel opment
of aconstraint management model, which allowsconstraint evolution through
representing constraintswithin versioned objectscalled Constraint Versions
Objects(CVOs). Thismodel operatesaround aversionmodel that usesawel |-
defined configuration management strategy to managetheversionsof complex
artefacts. Internal andinter-dependency constraintsaremodelled in CV Os.
Inter-dependency constraintsare used to expressthe consistency semantics
necessary to combinethevalidated component versionsinto useful configura-
tions. Thecombination of our versioning, configuration management and con-
straint management approacheshasproduced auniquemodel whichhasbeen
implementedinaprototypedatabasetool. Thismodel utilisesobject-oriented
technol ogy and operatesin acooperativeand distributed design environment.
Theinnovativeconceptsdevel opedinthispaper areintroduced usnganongoing
exampleof asmplebicycledesign. Theprototypeiseva uated usingthisdesign
whichdemonstratesthefeasibility and viability of our approach.
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Theremainder of thechapter isstructuredinthefollowingway. Webegin by
describingthepractical engineeringdesignenvironmentandgiveabrief analysis
of theissuesrelating to evol utionary design constrai nt management and the
management of evolving design artefacts. Following abrief treatment of the
limitationsof current approachesto managing evolving design constraints, we
present our conceptual framework for integrity constraint management andthe
systemwehavedevel oped for themanagement of evol ving constraintsby end
users. Weconcludewithabrief description of our systemimplementationand
theidentification of futurework

Practical Engineering
Design Environment

Engineering design is normally performed according to a product design
specification (PDS) which containsadetailedlisting of therequirementstobe
met by thedesigned artefact (Dieter, 1991). Initially thesedesignrequirements
may often comefromthe customer representing his/her wisheswithrespectto
thefunctional, structural, or physical aspects, or cost of theartefact. Design
constraintscan bedefined asdesi gnrequirementsthat must besatisfied by the
artefact (Lin, Fox, & Bilgic, 1996a, 1996b). Design constraints impose
restrictions, which may includerestrictionsonindividual datavaluesof the
artefacts, rel ationshi psbetween dataval uesfromdifferent artefacts, or exist-
enceand other dependenciesbetweenartefacts. Theproduct design specifica
tion, when possible, expresses constraints in quantitative terms, and we
addressthemasformal constraints.

Duringthedesign process, designershavetofind valuesfor design param-
etersof thedesign artefact (represented asadesign object inthe software
environment) satisfying the constrai ntsapplied on them (Chandrasekaran,
1989). Itisnecessary to makesurethat theartefactsadhereto thegiven set
of design constraintsto minimisedesignerrors. Theprocessof checking data
values of adesign object for their adherenceto the corresponding set of
constraintsisknown asintegrity validation. We consider integrity hereas
theaccuracy or adherence of object datato itsdesign constraints. Integrity
validationisacumbersome processto performmanually, andit can also be
pronetoerrors. Furthermore, thedesign constraintstend to changeduring the
design process for a number of reasons such as changes in customer
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requirements/market demand, changesin thetechnol ogy/production cost,
and improvements to the performance of the product (Chandrasekaran,
1989; Dieter, 1991, Kott, & Peasant, 1995; Otto & Antonsson, 1991,
Thompson, Tomski, Ellacott, & Kuczora, 1995; Ram, Vivekananda, Rao, &
Mohan, 1997). For thesereasonsthemanual integrity validation processis
difficult. Consequently, itisnecessary that thedesigner issupportedwith an
automaticintegrity validation mechanismtoreducetheburdenimposed on
him or her. Thismechanism shouldidentify the constraint violationsand
should bringthemtothedesigner’ sattention, allowingthedesigner to correct
theviolations. Inthisway, early identification of inconsistent dataval ueswill
enablethedesignersto produce consistent design solutionswithlessrework
andwithfewer designerrors(Twari & Franklin, 1994). Itwill also makethem
moreconfident that thedesigned solutionisconsistent. Formal representation
of constraintsis particularly important for the employment of computer
automationintheintegrity validation process. Weoutlinethekey issuesthat
should be dealt with by a constraint management system that manages
evolving constraintsinaversioning environment:

1. Hexibility inmanipulatingevolutionary constraints.

2. Easy captureof design constraintstaking cognizancethat thedesigneris
not aprogrammer.

3. Supportfor there-useof unchanged constraintswhileavoidingtheir re-
definition.
4. Validationof primitiveversionsand configurationsontheir creationon
explicit user request:
a.  Enforcingthecurrently activeset of constrai ntsthrough couplingthem
automatically toeachversion;
b. Providinginformativemessagesto report violations, enablingthe
designersto correct them appropriately;

c. Assstingthedesignerinsaectingeligiblecomponentversionstoform
aconfiguration; and

d. Reducingthevalidationcost.

5. Validationof existingversionsagai nstanewly applicableset of integrity
constraintsintheevent of constraint changes, and report to thedesigner
whether, or to what extent, the existing versionscomply with the new
constraints.
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6. Managingconstraint evolutionhistories, whichfacilitates:

a.  Understandingthedesigner of theassociation between constraint
evolutionand object evolution;

b. Retrieval of constraintsrelevant to each versionandthushel psthe
designer toview thedifferent consistency statesthroughout thedesign
process; and

c. Changeto aprevious stage of constraint evolution if one line of
constraint evol ution doesnot work out.

Accordingto our observation, theissues4b and 4d on validation mechanism
arerequiredfor any constraint management systemirrespective of whether
constraintsareevolving or static. Other issuesarecrucial for asystemwith
evolutionary constraintsand, in particul ar, theissuesdefinedin4c, 5,and 6 are
important for aconstraint management systemthat deal swith both evolving
constraintsandversions.

Issues Relating to Evolutionary
Design Constraint Management

Evolutionary Nature of Design Constraints

In managing thedesign constraintsand thusproviding an automaticintegrity
validation mechanism, acommon problem encounteredisthat of constraint
evolutionduringthedesign process.

Constraint evolutionmay resultin:

| dentification of new constraints,

M odificationof existing constraints,
Omission of existing constraints, or
Any combination of theabove1-3.

El S A I o

A PDSisadynamicdocument that evol vesand changeswith the progress of
thedesignreflecting theseconstraint modifications(Dieter, 1991). Ininvesti-
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gations with a group of designers, it was revealed that this type of an
evolutionary environment requiresthe constraint changesto beagreed upon
through communication and discussionwith other designerstoavoid design
conflicts. Supporting automeaticintegrity validationwhilst cateringfor constraint
evolutionrequiresanumber of issuesto bedealt with asstatedinthe previous
section, includingincorporation of constraint modificationsand theenforce-
ment of thecurrently activeset of constraintsfor eachvalidation.

Constraint Categories in Design Environment

Tosimplify discussionsonartefact design, weintroducearunning example, a
bicycledesign, whichwill beused throughout thischapter. Thestructureof the
bicycleisindicatedinFigurel.

Thereareanumber of different constraint classification schemesintheliterature
withrespect tothedesignenvironment (Linetal., 1996a, 1996b; Rametal .,
1997; Twari & Franklin, 1994). However, inthischapter, weonly consider
design constraintsimposed on the propertiesof artefacts(Chandrasekaran,
1989) which canbedividedinto:

1. Physica constraints(Linetal., 1996a, 1996b), whichrefer to“ physical”
propertiesof theartefact. For example, inabicycleframetheremay be
constraintsontheframesize, seat angle, head angle, material, and colour.

2. Structural constraints (Lin et al., 1996a, 1996b), which enforce the
composition of sub-component objectsto form acomplex object. For
example, abicycle may consist of aframe, two wheels, saddle, and a
handle; or consider theformation featuresof thecomplex artefact. For
example, toformabicycletheframesizeshouldbe>40cmif thediameter
of thewheel is> 60 cm.

Itisacknowledged that evolutioninstructural constraintsinthe* composi-
tion” category, that is, changesrelevant to the composition of sub-compo-
nents, affects the schema/class definition of the database. This leads to
schema/classversioning, whichisbeyond the scopeof thisresearch, asour
main concernisonobject versioning. Therefore, inour research, weconsider
only the value-based constraintsrelevant to physical and structural con-
straintsthat enforcetheaccuracy of thedataval uesassignedtothecorre-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



68 Carnduff and Goonetillake

sponding attributesof theobject. Tothisend, weconsider thefollowing val ue-
based constraint classification:

Range constraints (e.9.,35 cm<frame_si ze <58 cm) which check the
validity of anattributeval uespecified by thedesigner by returningtrueif the
valueiswithinthespecified rangeandfal seotherwise.

Enumeration constraints (e.9., {steel , stainless steel, tita-
ni um al um ni un}t >mat eri al ) whichmay alsoreturnaBoolean after
validation.

Relationship constraints are used to establish arel ationship between two or
moreattributesthat may belongto either thesameor different objects. The
validation of thisconstraint may either return aderived value(e.g., Spoke
anchor angle = Hub spoke angle * Wheel cross nunber?)
or a Boolean (e.g., checking whether frame_size > 40 cm =>
wheel _di anmeter >60 cm).

Itispossiblefor theconstraintsto changefrom oneconstraint typeto another
constraint typewhenthey evolve. Someof these can be, for example:

enumeration to range (e.9., {40, 44, 45,50} o frane_size may
change to 45 cm<frame_size <55 cm

range to enumeration (€.9.,65<head_angl e<75 i n franme desi gn
may change to {68, 71, 72} o head_angl e).

Figure 1. Artefact decomposition for bicycle design

Bicycle
Structure Speed Control System  Drive Train System Tyre System

2 VN V2N

Sesting Frane Brakes BrakePads Pedals Cranks Wheels Tyres

/N

Seat Saddle Rim Hub
Post
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relationship to enumeration or range (e.9., br akeSi dedi anmeter =
dri veSi dedi anet er constraintinhubmay changetoarangeconstraint,
asin60 mMm<br akeSi dedi amet er <65mmor an enumeration constraint
{62, 65} o brakeSi dedi anet er).

Inengineering design, constraintscan be categorised ashard and soft (Friesen,
Gauthier-Villars, Lefebvre, & Vieille, 1994). Hard constraintsarerestrictive
and cannot beviolated, whilesoft constraintsare not restrictiveand can be
violatedif required.

Artefact Decomposition

Anartefact or adesign object can beacomplex one consisting of anumber of
component artefacts (which are also referred to as component objects or
constituent objectsinthischapter). Asaresult, they aretoo extensiveto be
analysed asawhole, and sol utionsbased onlocal approachesoftenallow them
tobesolvedmorequickly. Artefact decompositionisanimportant aspectinthis
regardin engineering design. Itisbased ontheassumption that any object,
whichisnot treated asasingleel ement, can bedecomposed into other objects
(Rosenman, 1993). I nthedecomposition process, thecomplex design artefact
isoften decomposed into itscomponent parts, whichinturn may bedecom-
posedrecursively insuchaway astoallow theindividual/group of designersto
address them separately (Baldwin & Chung, 1995; Dieter, 1991; Sauce,
Martini, & Powell, 1992). Consequently, if D istheartefact to bedesigned, the
decompositionwouldderiveD —{D,,D,,.....D_} whereD sarecomponents
of D. Thesecomponents may al so be complex which canin turn be decom-
posedintoanumber of other components(Chandrasekaran, 1989). Therefore,
thedecomposition processusually goesdowntothedeepest possiblelevel until
anindivisiblecomponentisencountered, yieldingacomponent hierarchy. We
usetheterm componentingeneral to addressbothindivisibleand complex
components. To distinguish between thetwo component typeswhen neces-
sary, thetermsprimitive component and complex component are used. For
some design problems, there may be anumber of possi ble decompositions
available. Anexamplefor decompositionisillustratedin Figurelfor thebicycle
design.
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Constraint Decomposition

Dueto artefact decomposition, design constraintscan beidentified aslocal

andglobal inrelationto component and complex objectsrespectively. Local
constraints, al soknown asintra-object constraints, belong entirely tothelocal
objectandarevalidonly inthat particul ar object space. Global constraints, al'so
known as inter-object constraints, are those constraints that belong to a
complex obj ect/configurationand whosevalidity may span multipleobjects.
However, itisnecessary to understand that general constraintsat onelevel of
thecompositionhierarchy will belocal constraintstoitsupperlevel. IntheCAD
environment, thereisalso apossibility to split some(global) constraintson
complex objects, into aset of |ocal constraintson componentsor |eaf objects
(Freeman-Benson & Borning, 1992; Gehani & Jagadish, 1991; Jagadish &
Qian,1992; Linetal., 1996a). For example, thewei ght constraint of anartefact
isoften decomposedintolocal constraintsonthecomponentsof that artefact.
ThisisshowninFigure2 usingthebicycleexample. Thedecomposition of
global constraintsto aset of local constraintsisamanual processperformed
by thedesigners. However, defining strategiesfor constraint decompositionis
beyond the scopeof thischapter.

Later in the design process, the resultant designed components from the
decomposition areintegrated (re-composition) toformthecomplex design
object. Consequently, aswiththeoverall design, component designsshouldbe
handled systematically. Otherwise, vital factorswill beomitted and theoverall
productwill beaffected (Pugh, 1991). Tocarry out successful component design
and thus to make the final design a success, it is necessary to consider the
constraintsor limitationsthat shoul d beimposed oneach component. Hence, the
mainemphasi sincomponent designwill belocal performance, local environment,
andlocal constraints(Pugh, 1991). These aspectsaredefinedintherel evant
component design specification (CDS) for each component withintheenve-
lopeof thetotal PDS(Pugh, 1991). Althoughtheaim of thedecompositionis

Figure 2. Constraint decomposition

Bicycle weight
<10Kg
Frameweight >5 & < 7Kg Saddle< 2 Kg Wheel < 1Kg
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to make the component objects as independent as possible, they may not
alwaysbetruly independent (Chandrasekaran, 1989; Prasad, 1996).

Issues Relating to Managing
Evolving Design Artefacts

Versioning and Configuration Management

Therehasbeenal ot of researchover theyearsintovers onmanagementintheareas
of CA SE (Computer-Aided Software Engineering) and CAD (Computer-Aided
Design). CA SE systemssupport thedevel opment and mai ntenanceof software,
andversioningisaimedat providingfacilitiesfor managing evol ving sourcecode
modules(Loomis, 1992). SCCS(Rochkind, 1975) and RCS(Tichy, 1985) are
early file-based vers on systemsthat haveinfluenced other | ater vers onmodel sas
described by Choi and Kwon (1997) and Plaiceand Wadge (1993). Eventhough
therearesomesimilaritiesbetween CAD and CA SE versionmodel s, they have
evolveda mostindependently duetotheir different requirements(Estublier, Favre,
& Morat, 1998; Westfechtel & Conradi, 1998). The fundamental difference
between thetwo areasisdueto thekindsof objectsto bemanaged. CASE has
focused mainly onthemanagement of softwareobjects— mainly programs—
represented astextfiles. Incontrast, objectsin CAD applicationsarenon-textual
andaredefined asdatabaseobjects. Someof thedifferencesbetweenthetwoareas
CADandCASEarehighlightedinTablel (Estublieretal., 1998).

Wewill not consider versioning and configuration of softwaredesignany further
inthischapter.

Asindicated earlier, acompositedesignartefact can belogically decomposed
intoitscomponent parts, whichinturn may bedecomposedrecursively insuch
away toallow theindividual/group of designersto addressthem separately
(Sauceet al., 1992). Subsequently during thedesign process, thisdecomposed
complex artefact isrecomposed by combining its constituent component
artefacts. |naversioning environment, each compositeand component design
object may haveanumber of versions, making thiscompositiontask cumber-
some. For exampl e, if acompositeobject/artefact iscomposed of m objects,
eachoneinnversions, therecan beupto n™different combinationsto beused
for theconstruction of configurationsout of which only afew may beactually
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Table 1. Differences between CAD and CASE

CAD CASE
Data Model Object modelling Weak data models
Main issue Object handling File handling
Decomposition Based on thereal objectsexist | Governed by aspects like ease
in the structure of usg, efficiency, functionality
Components Parts/assemblies Modules, files
Relation Composition, generalisation, Dependence relationship, file
specialisation hierarchy
Representation Database File system

consistent or relevant. A configurationisdefined asastructurally composite
object, that is, an object composed of other objects, formed by combining
other configurations(knownassub-configurations) and versionsof different
primitiveand/or compositeobjects. Useful configurationsareformedfrom
versionsof constituent objectsthat areconsistent together (Cellary & Jomier,
1990). Sincedifferent configurationsmay exist dueto differing constituent
versioncombinations, itwould beuseful if thedesigner hadthefacility tostore
meaningful configurationsandtokeeptrack of configurationevolution. Thiscan
beachievedif configurationscan be managed asversions. Another benefitin
thissituationisthat objectsand configurations may befreely combinedto
construct higher-level configurations(Golendziner & Santos, 1995).

Toproduceaconsistent configuration, all of theconstituent versionsparti ci pat-
inginthat configuration should satisfy theinter-dependency constraintsim-
posed onthem. I nter-dependency constraintsareknown asglobal constraints
sincetheir validity spans multiple objects. Successful validation of inter-
dependency constraints ensures that aconfiguration isconsistent with its
constituent component versions. Consequently, it isimportant to augment
configuration management with an integrity mechanism that checks each
configurationfor datacorrectnessand consistency. However, duetofrequent
constraint changes, different configurationsof thesamecompositeobject may
haveto satisfy different setsof i nter-dependency constraintsat different times.
We have not located in the literature, a version model that deals with the
consistency of design configurations, through managing constraint evolution.

Configuration Management Requirements

In practical terms, thedesigner should beableto construct configurationsby
sel ecting and combi ning component versionswithout theneed for programming
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skill. Intermsof thedesigner’ srolein managing the datavalidation aspects
regardingtheconfiguration consistency, he/sheshould befreedfromtheneed
of:

*  Any manual checking of theinter-dependency constraintsto ensurethe
consistency of configurations, or

*  Typingthecurrently applicableinter-dependency constraintsevery time
anew configurationisconstructed, or

»  Changingand compiling application programswhen constraintschange.

Checkingtheconsistency of thecomponent versionsthat areselectedtoform
aconfiguration should behandled automatically by theconfiguration manage-
ment system based ontheinter-dependency constraintsactiveinthesystemat
thetime. Our configuration management model handles configurationsas
versions. Itispossiblethat aconstituent versioninapreviousconfiguration
versionshould not bepart of thenew configurationversion, if that constituent
versiondoesnot adheretothenew set of constraintsapplicableonitsartefact.
Therefore, we suggest that each new configuration should be created from
scratch by selecting a combination of constituent object versionsthat are
consistent together. Thederivation of new configurationversionsfrom preced-
ing configurations(andthereforetheparent-childrel ationship) isnot applicable
inthissituation. Consequently, instead of usingaversionderivationgraph, a
configurationversionsetisrepresented asan ordered|ist using thetemporal
order of creation. Thisordering doesnot containthelogical inferencethat the
previousconfigurationversioninthelististheparent of itssuccessor version.
Full detail sof our configuration management model aregivenin Carnduff and
Goonetillake(2004).

It isnecessary to clarify the terminology that will be used in this chapter.
Configurationversionsareusedto handleversionsof thecompositeobjects.
Theterm“primitiveobject version” isusedtorefer toversionsof primitive
objects(i.e., objectswithout any constituent/component objects) whenitis
necessary todistinguishthemfromtheconfigurationversions. Otherwise, the
word*“version” or “object version” isusedingeneral intherest of thischapter
for both primitiveand configurationversions. Theversionsthat formaconfigu-
rationversionarecalled* constituent” or “ component versions” which can
themselvesbeeither primitiveor configurationversions. The* object version
model” or “versionmodel” includesthemanagement of both“primitivever-
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sions’ (of theprimitiveobjects) and“ configurationversions’ (of thecomposite
objects). Theterms* primitiveversionmodel” and “ configuration version
model” areusedif itisnecessary to differentiate between these management
mechanisms.

Representing Evolving Design Constraints

Themanagement of integrity constraintsinan object versioningenvironmentis
non-trivial. Thedesignrequirementsof artefactsarerepresented asconstraints
both at configurationand sub- component levels. Theseconstraintsspecify the
characteristicsof individua componentsand theway inwhichthey fittogether
(Pugh, 1991). Therefore, integrity validationisrequired both at configuration
and sub-component levels. These constraints are distributed amongst the
designersof each of the configurationsand sub-components. Inthedatabase
literature, constraintshaveusually beendefined either asactiverules(Ceri &
Fraternali, 1997; Diaz, Paton, & Gray, 1991; Urban, Karadimce, &
Nannapaneni, 1992) attached to classesor within class/schemadefinitions
(Ceri & Fraternali, 1997). Itisdifficult to haveeach of several different objects
bel ongingtothesameclasscomplyingwithitsown set of constraints, if the
means of specifying these constraints relates to the class rather than its
instances. Theunsatisfactory solutionistointroduceanew classfor eachgroup
of versionsthat sharescommon constraints. Thistypeof schemalclassevolu-
tionisundesirable asit imposes significant complexity on the versioning
environment withanundesirableproliferation of sub-types. Thisgreatly com-
plicatesthetypelatticeand makesit difficult for thedesigner (at thetime of
version creation) to understand to which sub-type a new version should
becomeamember (Katz & Chang, 1992).

Limitations of Current Approaches to
Managing Evolving Design Constraints

It does not appear that existing version models (Cellary & Jomier, 1990;
Dittrich& Lorie, 1988; Katz, 1990; Krishnamurthy & Law, 1995) provideany
computer-supportedintegrity validation mechanismfor sub-component ver-
sionsor configurations.
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Buchmann, Carrera, and Vazquez-Galindo, (1992) and Ram, et al. (1997)
describeconstrai nt-handling mechanismsfor engineering designenvironments.
Thesemechanismsprovideamoreflexibleenvironmentinwhich constraints
can beinserted, del eted, and modified dueto constraint evol ution, without
modification of theapplication program. Thisflexibility isachieved by separat-
ing constraintsfromtheclassdefinitionandtreating constraintsthemsel vesas
constraint objectsin the database (Buchmann et al., 1992) or aggregating
constraintsinto aseparateclasscalled theconstraint meta-object (Rametal .,
1997). Constraint objects(Buchmannet al ., 1992) or constrai nt meta-objects
(Rametal., 1997) areassociated with design objects. Inthisway, different
objectsbel ongingtothesameclasscan havetheir own constraints. Inspiteof
theadvantagesoffered, therearea soanumber of drawbacksassociated with
each of the two approaches. One mgjor drawback is that associating con-
straintswith design obj ectsisnot automatic, and both approachesrequirethe
designer toassociatecurrently activeconstraintswiththecorrespondingdesign
objects. Theapproach proposed by Ram, et al. (1997) requiresthedesigner
to change and compile programswrittenin C++ to attach and detach each
constraint to and from the design object. We do not consider this to be
appropriatefor designer userswho arenot programmers. Datavalidationis
cumbersomein both approachessince:

»  Constraintsare normal database objects and datavalidation requires
retrieving propertiesof each constraint stored asattributevaluesinthe
corresponding database object (Buchmannetal., 1992) and

»  Constraintsdefinedintheconstraint meta-object classrequireinterpre-
tation by another program (Ramet al ., 1997).

Moreover, these mechani smshavenot been considered against aversioning
environment, in particular how evolving constraintsshould bemanagedin
presenceof object versions.

The systems proposed in (Twari & Franklin, 1994; Y oo & Suh, 1999) are
concerned with managing design consi stenciesof configuration objectsand
sub-component objectsinaco-operativedesign environment. Thesemecha-
nismsmainly consider reducingtheintegrity validationoverheadinadistributed
environment. Consequently, theintegrity constraintsareseparatedintolocal
and global constraintsand distributed into corresponding local and global
workspaces. Thiseliminatesunnecessary interactionwith remotedatabases.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



76 Carnduff and Goonetillake

However, these approachesdo not consider the connection between evolving
constraintsand object versions, so they do not cater for them.

Doucet, Gancarski, Jomier, and Monties(1996) proposeaframework to deal
with both versionsandintegrity constraints. Theversion model usedinthis
framework isbased on the Database Version (DBV) approach (Cellary &
Jomier, 1990). Each databaseversionrepresentsaconfiguration composed of
oneversion of each constituent object. Thisapproach deal swith constraint
evolutionthroughthe production of DBV's. Consistency isconfinedto each
databaseversionand consequent configurationlevel. Thechecking of some
constrai ntsspansmulti pledatabaseversions, which addstothecomplexity. It
isunlikely that thismodel can be applied to aco-operative and distributed
designenvironment duetothevery highunit of versioninggranularity. Further-
more, inaco-operativedes gnenvironment, thesystemmay endupwithalarge
number of database versions, which will impose a considerable storage
overhead. Usersof theframework must defineconstraintsand their modifica-
tionsinprogramswritteninalogiclanguage, anapproachwithwhichdesigners
areunlikely tobecomfortable. Neverthel ess, to our knowledgethisistheonly
work that dealswith evolving integrity constraintsin the presenceof object
Versions.

Constraint Validation

Constraint validationisperformedto check whether theattributeval uesof the
designobject versionadheretothegivenset of constraints(Thompsonetal.,
1995). Thevalidationissuccessful if attributeval uessatisfy theapplicableset
of constraints. Normally, constraint validationisassociated with atransaction,
whichisconsideredto bring adatabasefrom one consistent stateto another
after asuccessful validation. Consequently, constraintsarenormally checked
inoneof twomodes(Ceri & Fraternali, 1997).

. Deferred constraintsareeval uated at transaction commit; thecommitfails
if thetransactionviolatesany oneof them.

*  Immediateconstraintsareeval uated during thecourseof transactionsoas
to detect violations as soon asthey occur. Their effect isto abort the
transactionimmediately after aviolation.
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In adesign environment, it is desirable for the designer to work without
constraint checkinguntil heor shewantstoverify consistency (Buchmannetal .,
1992). Consequently, the constraint validation process should beinvoked
through explicit user request. Therefore, in CAD the deferred constraint
checking mechanismispreferredtotheimmediateconstraint checking mecha-
nism. Moreover, Buchmann, et al. (1992) suggest that with the deferred
checking mechanism, itisuseful for thedesigner to beprovided with checking
granularities other than end-of-transaction level . These granul arities may
includeconstraint validation onaspecific object or on oneor moresel ected
attributes. A transaction that takesaDB from one consi stent stateto another
consi stent statemai nly deal swith maintaining theconsi stency of thewholeDB.
Thisisimportant for commercial DBs. However, thenotion of consistency in
thedesign environment differsfromthis, and confinesconsistency to each
version object. Therefore, in our opinion, constraint checking on an object
basis, as suggested by Buchmann, et al. (1992), is more appropriate for
engineering design applications. Inaddition, atransactionisnormally aborted
intheevent of aconstraint viol ationwhich causesthedesignerstolosethework
done so far (Doucet & Monties, 1997). In engineering design, thisis an
inappropriateconstraint validation mechanism, and someother optionsshould
be made available. For example, whenever constraints are violated, the
designersshouldbewarned of theviolationsinamanner that enablesthemto
correcttheseviolationsappropriately. It should allow thedesigner to change
and re-specify the values in such away that the constraints are satisfied
(Thompsonetal., 1995).

Someresearch hasfocused on automating theviolation correction process
using activeconstraints(Ceri, Fraternali, Paraboschi, & Tance, 1994; Ceri &
Widom, 1990; Urbanetal., 1992), whicharefired by atriggering mechanism.
Thisinvolveseither automaticreplacement or del etion of datainorder tokeep
thedatabase consistent. Webelievethat inaCAD environment thedesigner
shouldbegiventhefacility tocorrect violations. Tothisend, thereshouldbean
informative messaging system to specify the violated constraints and the
reasonsfor violations. This helpsthe end user/designer to take necessary
actionsto correct theviolations, based ontheinformation heor sheissent. The
validationshouldalsohighlight thedistinction between hard and soft constraints
where:

*  Violation of soft integrity constraints are merely flagged to warn the
designer whilst enabling him/her to proceedin spiteof theviolation.
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* Violationof hardintegrity constraintsshouldwarnthedesigner and at the
sametimeprevent designersfrom proceeding any further without correct-
ingviolations.

Whentherearemultipleconstraintsassoci ated with an object, therewill also
beaquestionregardingwhether theorder of executionisimportant. According
toBassiliadesand Vlahavas (1994) the order of executionisnot important
when constraintsdo not perform any updateson the database.

A Conceptual Framework to
Integrity Constraint Management

Asindicatedearlier inthischapter, itisevident that theexisting versionmodels
do not meet the constrai nt management i ssuesrequired for aco-operativeand
distributed versioning environment. We present our framework asageneral
solutiontoacommon probleminengineeringdesign, irrespectiveof thedesign
area. In proposing our framework, wetaketheview that evolving integrity
constraintsinanengineering designenvironment exhibit similar characteristics
to that of object version data. Embedding thistype of dynamic constraint
informationinaclassdefinition clearly requiresare-definitionof that class
whenever a change occurs. It is also necessary to support the features
discussedinthesection onissuesrel ating to evol utionary design constraint
management. Our framework isbased onthe concept of theCVO. EachCVO
containsaset of integrity constraintsthat needsto be satisfied for an object
version of aparticular artefact at someinstant intime. For abicycleframe
artefact, theCV O may containthecurrently-applicableconstraintsfor itsframe
Size, tubediameter, material, and seat tubelength.

Maintaining CV Osprovidestheflexibility to enablechanged constraintsto be
capturedindependently from artefact classdefinitions. Constraint evolutionis
managed by producing new CV Os. CV Osgovernthevalidity of datain object
versions. Atthetimeof version creation, each new design object versionis
automatically coupledwiththecurrent active CVOfor datavalidation. This
mechanismfacilitatesthevalidation of different object versionsof anartefact,
ondifferent setsof constraints. Theinitial frameworkisdepictedinFigure3. As
showninthediagram, theobject versions(artefactversionl, artefactversion2
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Figure 3. Initial framework

# artefactversionl l l artefactcvo_1
& ] ‘ artefactversion2

ArtefactClass  |¢--------4 artefactversion2 artefactcvo_2

AT \l/
T artefactversion3
artefactcvo_x — CVO for
—> Derivation artefact version
Validation L----- Instance of

and artefactversion3) areinstancesof the sameartefact classbut have been
validated under different CV Os(artefactCVO_1andartefactCVO_2). Any
number of object versionscan beassociated withone CV O. Grouping aset of
constraintsinaCV O alsofacilitatestheretrieval of theset of constraintsthat
apply toaparticular version. Itisimportant toimposeauniform CV O naming
schemefor their uniqueidentificationwithinthedesignenvironment.

CVOsarenot splitintodifferent categoriesto hold different constraint types.
A CV O may containany combination of currently-activeconstraintsof any
category (e.g., range, enumeration, rel ationship, hard and soft). However, as
aresult of the co-operative nature of design and the resultant hierarchical
databasearchitecturethat separatesprivate and shared work, CV Oscan be
divided conceptually into two categories(Goonetillake, Carnduff, & Gray,
2001): local CVOsandglobal CV Os. Local CV Oscontaininglocal constraints
applicableto the sub-components, may resideinlocal workspaces. Global
CV Oscontaining global constraintsapplicableto thecomplex object, may
resideinglobal workspaces. However, theterms/ocal and global arerelative
inrelationto CV Osand aredependent onthe number of levelsinthedesign
databasehierarchy. A global object at onelevel may bealocal object at the
nextlevel upinthehierarchy. Theseparation of local constraintsand global
constraintsmakesiteasier:

*  Toverify dataconsi stency both at sub-component level and configuration
level inadistributed environment. It eliminatesthe compl exity of data
validation that would otherwise have been incurred due to remote
database access;
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*  Tomanageconstraint changesinadistributed environment; for example,
when thereare constraint changes, designersareonly required to deal
withtheconstraintsapplicabletotheir design components;

*  Fordesignerstounderstand and befamiliar withtheconstraintslocal to
the sub-componentsassignedtothem.

Theideaof adefault CV Oisimportantinmaintaining consistency withinthe
designenvironment. Inacooperativeand distributed design environment, the
default CV O enabl esdesignersto consistently identify thecurrent activeCVO
for aparticular artefact. Usually, the last CV O created in the system will
becomethedefault CV O. Thedefault object versionshouldgenerally belinked
withthedefault CV O (Goonetillakeetal ., 2001).

Managing Constraint Evolution

A CVOispartially orwholly invalidated for thefollowing reasons, reiterating
anearlier point:

1. A modification of existing constraints. For example, thetubediameter
constraint of bicycleframemay changefrom (25nm<t ube_di anet er
< 28 mm) to (29mm < tube_di ameter < 31 nmm);

2. Introductionof new constraints(e.g., thehead angleof abicycleframe
whichwasnot restricted before can be constrained to aparticul ar set of
vaues);

3. Omissionof previously used constraints. For example, movingontofree-
s zebicycleframesmeansthesizeconstraintwill nolonger beapplicable; or

4.  Anycombinationof 1-3.

A new CVOhastobecreatedinasituationlikethis. Itisimportant to consider
how therel ationshi p between CV Osismaintai ned. Theimportant aspectsthat
shouldbetakeninto account at thisstageare constraint evol ution representa-
tionand constraint reuse (avoiding constrai nt re-definition). Consequently, a
new CV O containsonly thechangestoitsparent CV O constraint set, and the
meansof referringtoitsparent for theunchanged constraints. Wheninvoking
constraintsfor datavalidationfromthechild CV O, thereshould bemeansto:
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Figure 4. Finalised framework

artefactversionl artefactovo_1
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artefactcvo_x — CVO for

artefact version
—> Derivation
——— Vdidation
. Instance &———mm- Instance of
inheritance

»  Delegateconstraintstotheparent object if not declared withinthechild

object;

»  Overrideconstraintsinthe parent whenthey areredefinedinthechild
object; and

*  Omit constraintsdefined in the parent frame/object when they areno
longer applicable.

SinceCV Osareabjects, weconsider that instanceinheritance (Wilkes, 1988)
with an overridinginheritance mechanismisthemeansto best providethese
CV Ofeatures. Classical-typeinheritancediffersfrominstanceinheritanceand
doesnot cater for theserequirements. For example, using typeinheritancethere
areproblemswithconstraintomissionandoverridinginachildobject (Bassiliades
& Vlahavas, 1994). Typeinheritancemay al so causeclassevolution (Katz &
Chang, 1992). Within CVOs each constraint isarule. A child CVO only
containstherefined constraints(asrules) andinheritstheunchanged onesfrom
its parent. Thisrefined framework is depicted in Figure 4. For reason of
simplicity, itisconsideredthat the CV O evol utiongraphtakestheformof atree
rather than adirected acyclicgraph.

Management of CVO Creation in Practical Design
Environment

Itisassumedthat theinitial CV Osfor each component of thecompl ex artefact
arebasedontheinitial designconstraints. Theinitial CV Osareal so assumed
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to be located in each designer’s local workspace. As a result of design
decomposition, individual designersareonly requiredtodeal withtheCV Os
applicabletotheir owndesigncomponents. Designersstartworkingintheir own
local workspacewiththeinitial CV O assignedtothem. New CV Osmay have
tobecreated and accommodatedintheframework asthedesign progressesand
constraintsevolve. Thisco-operativeenvironment requiresagoodinformation
flow betweenthedesigners, especially when achangeoccurs. Eachchangeis
governed by theappropriate project |eader with the agreement of subordinate
individual designersinhis’her project group. M odificationtosomeconstraintsis
not under thecontrol of thedesigner and requireshigher-level approval (e.g.,
negotiationwiththecustomer). However, all modificationsshoul d bediscussed
withthedesignteam and checked manually tofind out whether the suggested
modificationshaveanimpact onother constraints. All designershavetoagree
tomodificationsbeforethey comeintoeffect. Theagreed modificationsshould
thenbecommunicatedtotheappropriatedesignersby theproject/team|leader.
Thisprocedurewill avoid conflict situationswhere:

1. Differentdesignersmakecontlicting recommendationsregarding attribute
valuesinaconstraint;

2. A changemadeby onedesigner hasanimpact on someother constraints,
makingitimpossibletooffer consistent val uesfor other attributeval ues, or

3. A changein one constraint will adversely affect optimality of other
constraints.

Because of design decomposition, designersareonly required to know the
constraint changesapplicabletotheir owndesigncomponent/s. Thesechanges
will lead tothecreation of new CV Os. Idedlly, theproposed framework should
bemanaged sothat design engineersthemselvescan easily createtheexecut-
ableformof CVOs. Itisunrealisticto expect designerstowriteand compile
programswhen they havelittleideaof theinner workings of the computer
system.

Data Validation for Object Versions

CV Osareused to check the consistency or adherence of aparticul ar object
versiontoagiven set of design requirementsbeforemaking thempersistentin
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the database. The framework is responsible for communicating with the
corresponding (normally default) CV O andinvoking therelevant constraints
forvalidation. Datavalidationisnormally associated with adatabasetransac-
tion, whenachangeor updatein attributevaluesdirectly affectstheconsistent
state of the database (Doucet & Monties, 1997). One would expect this
transactiontobeabortedintheevent of aconstraint violation. Thiswould cause
designerstolosethepotentially largeamountsof designwork. Consequently,
rather than aborting the transaction that causes the violation, aconstraint
validation mechanism should make someother optionsavailable. Somere-
ported research hasfocused on automating theviol ation correction process
using activeconstraints(Twari & Franklin, 1994), which arefired by atrigger
mechanism. Thisinvolveseither automatic replacement or del etion of datain
order tokeepthedatabase consistent. Neverthel ess, webelievethatinaCAD
environment designersshould begiventhefacility tocorrect violationsinorder
to maintai n the autonomy of participating disciplines. Accordingly in our
framework, whenanew object versionisderived, datavalidationisinvoked
by explicit user request and performed on an object-by-object basis. Atthe
sub-component | evel, thedesigner should begiventhe optionto proceed by
changingtheattributevalueinorder to satisfy theconstraint. At theconfigura-
tionlevel, validationispartially concerned with sel ecting valid sub-compo-
nents. Aninformative messaging systemisrequiredto specify theviolated
constraintsandto givethereasonsfor violations. Thiswould hel pthedesigner
totakethenecessary actionsto correct theviolations.

Changing theval uesof aparent object version should not affect the database
stateuntil anew versionisformed. Thisnew versionincorporatesthesechanges
andismadepersistentinthedatabaseafter successful validation (may still have
soft constraint violations). Forming anew version after thesuccessful comple-
tion of thevalidation processensuresthedesignintegrity of object versions
stored inthedatabase. A bottom-up approachisusedinvalidating datafor
complex objects. Tothisend, thesub-componentsarethefirsttobevalidated
againsttheirlocal constraints. Thesuccessfully-validated sub-componentsare
then checked-intotheglobal workspace/databasefor validationagainst global
constraintstoformaconfiguration/compl ex object.

Thevalidationof dataintegrity isaninherently-expensiveandtime-consuming
process. We have explored mechanisms for reducing the evaluation cost
involvedindatavalidation. When anew object versionisderivedbased ona
parent version, it may not benecessary toverify al of theconstraints. If thestate
of theparent object versionisacceptable, it may only be necessary to sel ect
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and validate some of theattribute values. These attributes are those whose
valueshavebeen changedinthenew object version or wheremodification of
theconstraintsimposed onthem hasresultedinachangeof value. Wecall this
deltavalidation, detailsof which havebeen presentedin Goonetillake, et al .
(2001). Theintegrity validation overheadinadistributed environment (dueto
remote database access) isreduced by separating integrity constraintsinto
local and global constraintsand distributing theminto correspondinglocal and
global workspaces.

Validation of an Existing Object Version

When anew CVO iscreated it isreasonableto check some of the existing
object versionsagai nst theintegrity constraintswithinthenewly-created default
CVO. Validation of existing object versions against the new CVO istoo
tediousto beperformed manually. The proposed framework automatesthis
task with designer’ s consent after anew CV O iscreated. In thisway, the
designer findsout whether any existing versionscomply with thenew con-
straints. Thisisalsobeneficial fromthepoint of view that if an existing object
version (or versions) hasbeen validated successfully, the necessity for the
creation of a new object version can be eliminated. To optimise system
efficiency, only aselected set of design object versionsisvalidatedinthis
situation. Theobject versionsselected for thistypeof validation arethose
created under theparent CV O of thenewly created CV O. For example, the
systemwill only pick theshaded designversions(v1,v2,v3, v4) for automatic
validationwhenthe CV O3iscreated (Figure5). Thedesigner will benotified
ontheoutcomeof thevalidation.

A successful validationisfeasible, for example, if thechild CV O contains
constraintswith relaxed or intersected domains. Theuser isnotifiedwhena
successfully-validated design versionisencountered. Thedesigner hasthe
optiontoallow thesystemto proceed withtheother versions(if thereareany)
or tostopthevalidation at that point. If thereareanumber of successfully-
validated designversionsthedesigner hastheoptionto set oneof theversions
tobethenew default object version. Thisal sorequiresthat an object version
isassociated with morethan one CV O asdepicted in Figure6.

If thereareno successful validationsfromtheexisting set of designversions, the
framework iscapableof proposing tothedesigner thoseversionswhichare
closestto successful validation, that is, theversionwhich hastheleast number
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Figure 5. Validation of existing design versions
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of constraint violations. In proposing the closest versions, the designer is
provided with adescription of theconstraint violations. Thiswill assist the
designer indecidinguponthemost suitabledesignversionfromwhichtoderive
the next new design object version. However, it should be noted that the
designer doesnot haveto stick tothedesign versionsproposed by thesystem
andisabletoenforcevalidation agai nst any existing designobject versionhe
or shewants.

Configuration Versions and CVOs

Itisnecessary to check whether the sel ected versionsconstitute aconsistent
configurationthrough satisfying agiven set of constraints. Theconstraintsthat
areusedtovalidate configurationsareknown asinter-dependent or global
constraints. The scope of these constraints spans multiple objects. At the
configurationlevel, validationismainly concerned with sel ecting valid sub-
components. However, aset of design constraintswill evolveover timewith
modifications, theaddition of new constraints, and the omission of existing
constraints.

Previous sections described the management of CV Osin the presence of
versionsingeneral . However, thissection providesan expl anation of themeans
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Figure 7. Integrity validation for wheel configuration versions
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by whichtheintegrity validation systemvalidatesconfigurationversions. With
respect to configuration versions, the sub-components are first validated
against their local constraints. Asaresult, theconstituent component versions
of aconfiguration areassumedto beindividually consistent withtheir local
congtraints. Consequently, at theconfigurationlevel aconfigurationversionwill
only haveto bevalidated against itsglobal constraintsthat expresstheinter-
dependency constraintsbetween the sel ected component object versionsof
that configuration. For exampl e, for awheel configuration, theinter-dependen-
ciescouldbe( nunber of spoke hol es i n hub = nunber of hol es
inrim and if (wheel finish = blue) then (rimfinish
= bl ack and hub finish = bl ue). Each configuration versionis
automatically associated with the default CVO and validated against its
constraintsat thetimeof theconfigurationversion creation (Figure7).

In setting the default configuration version, itisnecessary for the sel ected
configurationversiontoadheretothedefault CV O applicableat that time. The
constituent versionsof thedefault configurationversiondo not necessarily have
tobedefault versionssolong asthey adhereto the CV Oscurrently imposed
onthem.

Data Validation for Configuration Versions

Configuration constructionisconcerned with sel ectingtheversionsthat are
consistent together. A sthebottom-up approachisusedinvalidating datafor
configurationversions, each sel ected object version participatinginthecon-
figurationfirst complieswiththelocal designconstraintscurrently imposedon
their objects (i.e., adhere to the constraints in the default CV O of each
constituent object). Attheconfigurationlevel, thevalidation processmainly
checkstheinter-dependency constraintsthat exist among constituent versions
andisinvokedwhenanew configurationversioniscreated or whenanew CVO
iscreated. Uponthecreationof anew configurationversion, datavalidationis
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invoked by explicit user request. Any constraint viol ationsarereportedtothe
designer, which enables him or her to repair the violation by selecting the
correct constituent versions. Each new configurationversionismadepersi stent
inthedatabaseafter successful validation. Successful validationimpliesthat
component/constituent versionsintheconfiguration areconsistent together.
However, thedeltavalidation mechanismdefinedin Goonetillake, etal . (2001),
will not beapplicableat theconfigurationlevel, aseach configurationversion
iscreated fromscratch andisnot derivedfromaparent version, asisthecase
withprimitiveversions.

When anew CV O iscreated, on the other hand, the existing configuration
versionsarevalidated against thenewly created CV O. Thisisbeneficial from
thepoint of view that if anexisting configurationversion (or versions) hasbeen
validated successfully, the necessity for the creation of anew configuration
version can beeliminated. Inthissituationthe systeminvokestheintegrity
validation process on the creation of anew CVO. Only a selected set of
configurationversionsisvalidatedto optimisesystemefficiency. Theconfigu-
rationversionssel ected for thistypeof validation arethose created under the
previousdefault CV O of theconfiguration. Theseconfigurationversionsshare
thehigh probability of having constituent versionsthat adheretotheir corre-
sponding default CV Os. Neverthel ess, theconstituent versionsof theselected
configurationversionsshould befurther checked beforeproceedingwiththe
validation. For example, thesystemwill only pick the shaded configuration
versions(configV 3and configV 4) for automaticvalidationwhentheCVO_3
iscreated (Figures8aand 8b) provided that their constituent versionsadhere
to the default CV O applicable on each of the corresponding constituent
objects. Itispossibletoimposedeltavalidation onconfigurationversions, by
validating existing configurationversionsonly if thenewly created CVOis
directly connectedtothepreviousdefault CV O asparent and child, asdepicted
inFigure8b. Thisdeltavalidationisbased ontheassumptionthat if the state of
theconfigurationversionisconsistent with theconstraintsintheparent CV O,
itmay only benecessary to performvalidati on agai nst thechanged constraints
inthenew (or thechild) CV O, thusreducing validation costsfurther. If there
arenosuccessful validations, anew configurationversionwill becreatedfrom
scratch.

Toillustrate how the proposed model would operatein aco-operative and
distributed environment, weagai nturntothewheel artefact, which consistsof
thetwo components, hubandrim. Thesecomponentsareassignedtoindividual
designerswhowork onthem separately. Thedesignersusedifferent worksta-
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Figure 8. Validation of existing configuration version
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tions (known as workspaces), which belong to the same network. Each
workspace consistsof aversion manager, which al so handlesconfiguration
versions, adatabase and aconstraint manager (Figure9). Although depi cted
separately for illustrativepurposes, theconstraint eval uator and thecorrespond-
ing CV Osarecomponentsof theconstraint manager. Theprimitiveand configu-
rationversioncreationinterfacesarecomponentsof theconstraint manager. The
successfully-validated component versionsarecheckedintothenextlevel upin
thehierarchy toformwheel configurationversions. Atthislevel, theglobal
constraintsare validated and are used by the team/project |leader toforma

Figure 9. Integrity validation model in a practical design environment
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configurationversion by selectingvalid component versions. Thisactivity is
carried out usingtheuser interfaceindicatedinthenext section of thechapter.

Management of Evolving Constraints
by End Users

Animportantfocusof thiswork wastodevel opthemeansof representingevolving
designconstraintsand providingaframework for validating design objectsagainst
these constraints. Asinteresting asthismay be, it would not be of great useto
designersif they wereunabl eto usethesefacilitieswithout writing programming
code. Werecogni sethat engineering designersarenot normally computer pro-
grammers, sowehavedeve opeduser interfacestoallow designerstoperformtheir
workwithmuchof thecompl exity of our vers oning/configurationmanagement and
integrity constraint management systemsbeinghiddenfromtheuser. Thisfecility is
best describedby illustrating, inoutlinedetail, asequenceof design stepsthrough
the various components of our user interface, where the designer is able to
communicatehigher decisonsthroughtheinterfaceinaform-fillingmanner. This
illugtrationislargely madethroughaseriesof screendumpsshowingvariousaspects
of thesystemuser interface. For reasonsof space, wehavenotincludedevery stage
inthedesigndevelopment, nor detail ed explanation of theunderlying processes.

Validation of a Primitive Version on its Creation

Thisisdemonstrated using aprimitiveartefact of thebicycledesign, ahub
artefact. Tocarry out thedemonstration of primitiveversionvalidationonits
creation, itisassumedthat thefollowing arealready inplaceinthesystem:

1. hubCVO_1,whichisthedefault CVOforthehubartefact; and

2.  Hub.Jeevani 1andHub.Jeevani_ 1.1 whichareactiveversionscreated
for thehub artefact. Theseversionswerevalidated against thedefault
CVO (hubCVO _1)applicableonthehubartefact at their creationtime.

Theprototypeenablesthedesigner toinvoketheprimitiveversion creation/
derivationoptionfromthemainmenu. On selection of thisoption, thedesigner
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Figure 10. User interface that enables the designer to select the required
parameters for a new (primitive) version derivation
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will be prompted to sel ect theartefact namefirst, that is, hubinthiscaseand
theparent version number, seeFigures10aand 10b. Theeligibleparent version
numbersare sel ected by the prototype on sel ection of the artefact name, as
described previously. Inthissituation Hub.Jeevani 1 and Hub.Jeevani_1.1
areboth eligibleto beparent versions, asdepicted inthe Figure 10b.

Onsdlectionof theseparameters, with Hub.Jeevani 1.1 astheparentversion, the
prototypewill bringupthecorresponding GUI for hubvers oncreation/derivation.
A new object versionisderived by changingtheattributeval uesintheparent object
version. In deriving the new version Hub.Jeevani 1.2, thevaluesrelevant to
weight, hublength, left andright flangediametersand spokeanglewerechanged;
seeFigurella Datavalidationisinvokedby explicit user request by pressingthe
vaidatebutton; seeFigurella Thevaidationwill beperformedagainst thedefault
CVOforhubartefact rubCVO 1,whichisalready associated withthenew hub
versionby theprototype; seetheva ueof the Constraint Set attributein Figure 11a.
Thedatavalidationresultsfor Hub.Jeevani 1.2 arerepresentedinFigurellb.

As depicted in the Figure 11b, the designer is provided with informative
messages showing constraint viol ations. Theconstraintssuch asspokeAngle
can bedefinedtoreturn either thecal culated valueor atrue/falsevalueina
violation. Theversion Hub.Jeevani 1.2 withthecorrectedvaluesisshownin
Figure12a, withitsdatavalidationresultsin Figure12b. Thevalidation process
canberepeated until asuccessful validation situationisobtained. Initerative
validation cycles, thenumber of constraintsused for validation can reduce
further, except the constraints that always have to be validated, as the
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Figure I1a. The version Hub.Jeevani_1.2 before data validation

t::: Hub Version

Version Details

Version number 'WH Status  |Active
Logical Parent W Physical Parent W
Last Version frue
Constraint Set |hubC\u’D_1 Default Version true -

In Configuration  |false

Hub Ohject
Type Name W Weight () BO0

Hub L 150 | Axle Diameter{mm) 10
Hub Material aluminium | Left Flange Diameter(mm) R
Right Flange Diameter{mmj sa | Center to Left flange{mim) I

Center to Right 33 | Spoke Holes 28
Spoke Hole Diameter{mm} .2.3 | Spoke Angle .30 |
Hub Make lcnemachining | Hub Side rear |

Colour bisck |

Validate W

Figure 11b. The data validation results for Hub.Jeevani 1.2

:\;; Validation Resulls

Hard constraint :weight is violated, Weight should be bety 350 and 450
Hartd constraint thublength is violated, If (HubSide == rear) then Hublength should be between 125 and 145
Hart constraint :spokeAngie is violated, SpokeAngle is 26.0

No. of constraints validated 5
No of violations 3

| Cancel

constraintsrelevant to successful validation canbeomitted. Thenew version
cannot bemadepersistentinthedatabaseuntil itsdesignval uesaresuccessfully
validated, althoughtheremay still besoft constraint violations. Consequently,
the* create” button, seeFigures11aand 12a, that addsthenew versiontothe
databasewill beenabled only after asuccessful validation.

Theoutcomeof theseresultsdemonstratesthat thesystemretrievesthedefault
CVOdynamically toinvoketherulesrelevanttoitsdesign constraints. This
freesthedesigner from having to manually sel ect and attach the currently-
applicableconstraintstothenew object versionfor validation.
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Figure 12a. The version Hub.Jeevani 1.2 with the corrected attribute
values

t::: Hub Version

Version Details

Version number 'WH Status  |Active
Logical Parent W Physical Parent W
Last Version frue
Constraint Set |hubC\u’D_1 Default Version true -

In Configuration  false

Hub Ohject
Type Name W Weight () 400

Hub L 143 | Axle Diameter(mim) 10
Hub Material aluminium | Left Flange Diameter{mm) R
Right Flange Diameter{mim) sa | Center to Left flange{mm) I

Center to Right 33 | Spoke Holes 28
Spoke Hole Diameter{mm) .2.3 | Spoke Angle .28 |
Hub Make lcnemachining | Hub Side rear |

Colour bisck |

Validate W

Figure 12b. The successful data validation for Hub.Jeevani 1.2
Mo. of constraints validated 5

No of violations 0
Validation is successful

Cancel |

Capturing of the New/Modified Constraints
Relevant to Primitive Artefacts

Thedesigner isprovided with agraphical user interfaceto captureevolving
congtraintsinaform-fillingmanner. Theconstraintslocal toaprimitiveartefact,
arefed/created through the constraint manipul ationinterfacefor sub-compo-
nents, andthedesigner isabletoinvokethisuser interfacethroughthemain
menu. Todemonstratehow itworksat theprimitiveartefactlevel, weusethe
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constraintsrelevant to the same primitive component of thebicycle, thehub
artefact. Thecurrently-activedefault set of constraints(default CV O) for hub
iIShubCVO _1,asexplainedintheprevioussection. Itisassumed that anew set
of constraintswiththenamezubCVO_2isagreed uponfor thehub artefact
whenthedesignevolves, and affected designersareinformed accordingly. The
name of the new constraint set, for example, hubCVO 2, the parent CVO
name, inthiscaseiubCVO_1, andthedetailsof theconstraints(constraint
specification, name of the constraint, constraint category/categories), are
assumed to bestatedintheproject/team |eader’ smessage. Creating thisnew
constraint setinvolvesadding new constraintsand modifying/omittingexisting
constraints. Figure 13illustrateshow theconstraint:

centertolLeftflange — (i f hubLength between 125 and 145
then centertolLeftfl ange between 30 nmto 40 mm) or if
hubLengt h between 95 and 110 then centertolLeftfl ange
between 20 mMmm to 30 nm - hard

belongingto4ubCVO_2isdefined using theuser interface. Each constraint
specificationisdisplayedinthetext box at thebottom, which hel psthedesigner
to check and makecorrections, if thereareany mistakes, beforewriting them
intothe system. On compl etion of each constraint specification, the“write”
buttonispressedto convertitinto executableform. Thecreation of thenew
executableCV Owill becompleted withinthesystem, whenthe*finish” button
ispressed. The process of creating executable CV Osistransparent to the
designer.

Actions Taken by the Prototype on Creation of a
New CVO

Oncompletionof anew CV O creationusingtheuser interfacein Figure 13, the
prototype displaysthe message in Figure 14ato proceed with the existing
versionvalidation. If thedes gner pressesthe OK button, theintegrity validation
processisinvoked tovalidateexisting hub versionsagainst the new default
CVOhubCVO _2.TheexistingversionsHub.Jeevani 1, Hub.Jeevani 1.1
and Hub.Jeevani_1.2 areall proposed by the prototypefor thisvalidation
sincethey areversionscreated under theparent of thenewly created CVO. As
depictedinFigure14b, thedesigner isableto select someor all of theproposed
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Figure 13. The user interface to enter constraint specifications for
primitive artefacts

[ Constraint Sct Creation for Primitive Design Artifacks

Object Name : |Hub | -
New Hame: hubCv0_2

Parent Hame: | hubCv0o_1 -
Type Mame: rmountain

* addimodify ' omitt
Constraint Manipulation

® hard ) soft . Enumeration
C Name: | L ~ (@ Range hetween - |20 anid 20
Attribute Name: Hubl ength | (Relate Centertol eftflange

¥ Rlways Validate | and or | undo

See the Constraint:

if { HubLength in 125.145 3 then (CenlertoLeflange in 30.40 ) or if { HubLenglh in 85.110 ) then (CentertoLeMange in 30,30 )

[ Fnish | [ wite | | cancel |

versionsforvaidation. Inthissituation, itisassumedthat thedesigner wantsa |l the
proposedversionstobevalidated. Thedesigner will benotified of theoutcomeof
thevalidationagainstthenew default CV O hubCVO 2, asillustratedinFigurel4c.
Accordingtothereported outcome, thereareno successful validationsfromthe
exisingset of designversons. Thereforetheprototypeproposestheversionswhich
areclosesttosuccessful validation, thatis, Hub.Jeevani_1.2. Thedesignerisable
toproceed fromtherewith anew versionderivation, sel ecting oneof thecl osest
versonsastheparentversion, by pressingthe’ createversion’ buttoninFigurel4c.
A newversion Hub.Jeevani_1.3,whichisderived, from Hub.Jeevani 1.2 and
validatedagainstthesubCVO_2,will becomethenew default object versionfor
thehubartefact. If therearesuccessfully validated versions, thereisnoneedto
proceedwithversionderivation, and oneof thosevers onscan beset asthedefault
versionatthedesigner’ sdiscretion. Thetest program provesthefeasibility of our
concept of validatingexisting versionsagai nst newly-introduced constraints, and
theadvantagesthereof. Itfurther showstherel ativeeaseof performingthisprocess
fromthedesigner’ spointof view.

Validation of a Configuration Version on its Creation

Thisisdemonstrated usingthewheel configuration of thebicycledesign, which
hashub and rim asitscomponents.
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Figure 14a. The message that will be displayed on completion of a new
CVO creation

[E3 validation Dialog

=0

A new CV0 is created. VYalidate existing design wersions ?

Figure 14b. Proposed hub versions to be validated against the new CVO
hubCVO 2

Egi Existing Yersion Yalidation

Versions proposed by the system

Hub Jeevani_1
Hub.Jeevani_1.1
Hub.Jeevani_1.2

Alternatively type in any other version number
that you want to validate

‘ Vfalidate List H Validate type in ‘ | Cancel

Figure 14c. The outcome of the existing version validation

E%Validalion Results =]

Hub Jeevani_1.2 validation
Hard constraint :spokeHoles is violated, SpokeHoles should be one of 30,3236

Hard constraint (centertoRightflange is violated, CentertoRightflange = CentertolLeftflange

Please Select the VYersion Number

Hub.Jeevani_1.2 «

| Creat Version || Cancel
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Figure 15a. Configuration creation interface for wheel configuration

[2 whee! Conliguration Version

G ion Details
Configuration number  |WheelConfig.Jeevani_1.1 Status  Active
Last Configuration  |irug Constraint Set ’EheelCDnngCVOJ
Default Configuration  |true  w Selected Wheel  Wheel Jeevani_1.1

Selected Rim  |Rim.Jeevani_1 Selected Hub  |Hub.Jeevani_1.3

Wheel Configur ation

Wheel VersionHo: | Wheel.Jeevani_1.1 »

TypeName  |mountain | Model  [acAPy2z|
Wieightig) ’W Diameterimm} ’F
Ho. of Spokes ’Z]D— Spoke Lengthimm) ’W
Spoke Material W Rimside SpokeDiameterimm) ’217
Hubside SpokeDiameter{mm) 23 | Spoke Style [tippleButes |
Spoke Pattern W Cross Mumber
Wheel Side Finish hlack

Rim VersionMo: Rim.Jeevani_1 - Hub VersionMo: Hub..Jeevani_1.3 «

Show HubVersion

It

Show Rimersion

it

Figure 15b. The validation result for the WheelConfig.Jeevani 1.1 for the
selected constituent version combination

Egi\v"alidalion Results
Hard constraint : spokeHole is violated, Wheel NumberOfspokes == Rim_Spok
eHoles and Wheel NumberOfspokes == Hub SpokeHoles
Soft constraint :spokeDiameter is violated, Wheel RimsideSpokeDia + 0.5 ==
im_SpokeholeDiameter and Wheel HubsideSpokeDia + 0.5 == Hub SpokeHole

diameter
Hard constraint :diameter is violated, Wheel Diameter == Rim_Diameter

No. of constraints validated 7
No of violations 2
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Whenthedes gnerinvokesconfigurationcreationfromthemainmenuheor shewill
bepromptedto sel ect theconfiguration namefirst, andinthiscaseitisthewheel
configuration. Thiswill bringuptheconfigurationcreationinterfacefor thewhed
configuration; seeFigure15a. Asdepictedin Figure15a, thedesignerispresented
withlistsof vers on/sub-configurationnumbers, onelist for each of theconstituent
objects. Theseversionnumberscorrespondtotheactiveversions, includingthe
defaultversion, that satisfy theset of constraintscurrently applicableonitsartefact,
andthereforebecomeeligibletobepart of aconfigurationversion. For example,
althoughtherearefour versionsfor thehubartefact, thelist corresponding to hub
artefact containsonly Hub.Jeevani_1.3 asthedigibleverson. Thisisduetothefact
thatitistheonly versionthat adheresto/iubCVO 2,whichcontainsthecurrently-
applicableconstraint set for thehub. Thedesigner isableto select oneversion/
configurationnumber for each constituent versionfromthecorrespondinglistto
constructaconfigurationversion. Ascanbeseen, thedesigner doesnot requireany
programmingknowledgetocresteaconfiguration. Theversion- specificinforma:
tionof thenew configurationversionisalsoshowninFigure15a, withitssystem-
generated configuration| D WheelConfig.Jeevani_1.1whichillustrateshowthe
configurationsaremanaged asversions.

Datavalidationfor thenew configurationisinvoked by explicit user request, by
pressingthevalidatebutton, seeFigure 153, after sel ectingtheconstituent version
numbers. Validation will be performed against the default CVO
wheelConfigCVO 1 whichisalready associated with thenew configuration
version by the system, see the Constraint Set attribute in Figure 15a. The
validated resultsarerepresentedin Figure15b by meansof informativemessages
that enablethedesigner torepair theviol ationsby sel ectingadifferent constituent
version combination. For exampl e, the sel ected version combinationfirst, as
showninFigure15a,isnot consi stent accordingtothevalidated resultsreported
in Figure 15b, with two hard constraint violations. However, by changing
Rim.Jeevani_1t0Rim.Jeevani_1.1 asshowninFigure 16a, aconsistent wheel
configuration, thatis, WheelConfig.Jeevani_1.1,canbeformed, althoughwith
soft constraint violations. Thevalidated resultsfor thissituationaredepictedin
Figure16b. Inthisway, thevalidation processcan berepeated until asuccessful
validation, that is, aconsistent version combination, isobtained. Thisfurther
demonstratesthat thedes gner isabl eto experiment withany versioncombination
fromtheproposedversionsat hisor her discretion, until acons stent configuration
isconstructed. Deltavalidationwill not beapplicableat theconfigurationlevel
since each configuration versionis created from scratch. Aswith primitive
versions, eachnew configurationversionismadepersistentinthedatabaseafter
successful validation, usingthe* create” buttoninFigure 16a.
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Figure 16a. WheelConfig.Jeevani_1.1 after selecting a different constituent

version combination

[2 whee! Conliguration Veision

G ion Details

Configuration numhber
Last Configuration

Default Configuration

WieelConflg.Jeevani_1.1
true
true

Status  Active
Constraint Set

Selected Wheel

wheelConflgCyvio_1

‘Wheel Jeevani_1.1

Selected Rim | Rim.Jeevani_1.1 Selected Hub  |Hub.Jeevani_1.3
Wheel Configur ation
Wheel Versionho: |wneel,Jeevani_1.1 -
Type Name ’Wl Model ’m
Veight{g) ’Wl Diameter{mm} ’8057
No. of Spokes ’30—| Spoke Length{mm} ’Wl
Spoke Material W Rimside SpokeDiameter{mm} ’217
Hubside SpokeDiameter{mm) ’237| Spoke Style ’WM
Spoke Pattern ’WM Cross Number ’37
WheelSide  [rear | Finish  [olack |
Rim VersionNo: Rim.Jeevani_1.1 = Hub VersionNo: Hub.Jeevani_1.3 «
Show RimVersion Show HubVersion |
Validate Cancel

Figure 16b. A successful validation (although with a soft constraint
violation) for WheelConfig.Jeevani 1.1 for the version combination
selected in Figure 16a

[£3 validation Results

Soft constraint :spokeDiameter is violated, Wheel RimsideSpokeDia + 0.5 ==
Rim_SpokeholeDiameter and Wheel HubsideSpokeDia + 0.5 == Hub SpokeHa
lediameter

MNo. of constraints validated 7
No of violations 0
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Capturing the New/Modified Constraints
Relevant to Configurations

Theinter-dependency constraints, or global constraints, inconfigurationsare
created through theconstraint manipulationinterfacefor configurations. The
designer isabletoinvokethisinterfacethroughthemainmenu. Todemonstrate
how theuser interfaceworksat theconfigurationlevel, weusetheconstraints
relevant tothewheel configuration. Thecurrently-active, or default, set of
constraintsfor thewheel configurationiswheelConfigCVO_1,asexplainedin
theprevioussection. Itisassumed that anew set of constraintswiththename
wheelConfigCVO_2isagreed uponfor thewheel configuration, when the
design progressesand iscommunicated to theappropriatedesigners.

As explained earlier, the name of the new constraint set, for example,
wheelConfigCVO_2,theparent CVO name, inthiscasewheelConfigCVO 1,
andthedetailsof theconstraints, such asconstraint specification, nameof each
constraint, areassumedto bestatedintheproject/team|eader’ smessage. Theuser
interfaceusedtoenter constraint specificationsrel evant toconfigurationsisshown
inFigure17,andtheconstraintsaredisplayedinaplainlanguageform. However,
theinter-dependency constraints, or global constraintsinconfigurations, arebased
around establishing thedependenci esbetween attributeval uescomingfromthe
corresponding constituent artefacts. Consequently, theuser interfaceprovides
facilitiestoselect different constituent artefactsandtheir attributes,indefininga
constraint. Forexample, Figurel7illustrateshow theconstraint:

spokestyl e . if Weel spokeStyle !=triple butted then
R m spokehol eDi aneter = Hub_spokehol eDi anet er

belongingtowheelConfigCVO 2, isdefinedusingtheuser interface. However,
asexplained before, themainintention behindthecreation of thisuser interface
istoprovethefeasibility of capturingevolving constraints, without requiringany
programming skillsfrom designers. Therefore, only minimal facilitieswere
incorporatedinthisuser interfaceto demonstrate our concept. However, there
isscopetoimprovethisinterfacefurther by incorporatingfacilitiesto capture
more complicated constraints than the ones given in here, with more error-
checkingfacilitiestoassistthedesigner. Thecreation of thenew executableCVO
will becompleted withinthesysteminamanner, whichistransparent to the
designer, whenthe*finish” buttonispressed; seeFigure17.
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Figure 17. The user interface to enter constraint specifications for
configurations

[ Constraint Sct Creation for Artifact Configurations

Ohyject Mame : |v\memcmmg | -

New: Name: ’Wl
Parent Mame: | wheelConflgCwo_1 |
Type Mame: W

* addimodify . omitt
Constraint Manipulation

® hard ) soft ) Enumeration
Consiramt Name:  spokeStyle ﬂ @ Range - - | |
Component Name:  |Hub Attribute Mame:  SpokeHolediameter

WWheel
am and | or | | unido |
Hub

See the Constraint:

lif (el _Sp = tripp ) then {Rim_Sp Diameler == Hub_SpokeHoledizmetar)

[ Fnish | [ write | [ cancel

Actions Taken by the Prototype on
Creation of a New CVO for a Configuration

Oncompletionof anew CV Ofor theconfiguration, the prototypedisplaysthe
samemessage asin Figure 14ato get thedesigner’ sconsent to proceed with
thevalidation of existing configurationversionsagainst thenew default CV O
wheelConfigCVO 2.TheexistingversionWheelConfig.Jeevani_1.11spro-
posed by the prototype (see Figure 18a) as the eligible version for this
validation. Thedesigner will benotified ontheoutcome, asillustratedin Figure
18b, after validation against thenew default CV OwheelConfigCVO 2.Inthis
situation, theversionWheelConfig.Jeevani_1.1isasosuccessfully validated
againstthewheelConfigCVO 2. Consequently, thenecessity for thecreation
of a new configuration version can be avoided since the version
WheelConfig.Jeevani 1.1 canbeset asthedefaultversion.

Easy Retrieval of Constraints Relevant
to Primitive/Configuration Versions

Theprototypeenablesthedesigner to seetheconstraintsinthedefault CVO
by selecting thedefault CVO optionor inany other CV O by specifyingthe
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Figure 18a. The eligible configuration versions proposed by the prototype
for existing configuration validation

E;g Existing Configuration ¥ alidation

Versions proposed by the system

WheelConfig.Jeevani_1.1

Alternatively type in any other version number
that you want to validate

‘ Validate List H Validate type in | Cancel

Figure 18b. A successful existing configuration validation

E’i\l’alidaliun Resultz [_ O] x|

WheelConfig Jeevani_1.1 validation Successful
There are no =oft aor hard constraint violations.

Please Select the Yersion Number

WheelConfig.Jeevani_1.1 w |

| Cancel || Set Default |

CVO name (or the constraint set). The way in which the constraints in
hubCVO 2 aredisplayedtothedesignerisdepictedinFigure19a, specifying
the CVO name. The designer is also able to retrieve the constraint set
applicableto each object version by specifying therequired object version
name/ID. This is demonstrated in Figure 19b, which displays the CVO
pertinenttoversion Hub.Jeevani_1.3. Theconstraintsandthe CVOdetails
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Figure 19a. Retrieval of constraints relevant to a CVO

[ View Constraints

Select the Ohject Narme Huh

Se a Constraint Set speciiang Constraiit Set name [Mm_z il

Or Elze

See a Constraint Set specifying a Version name - |

Conslrain Sel Dedails
Constraint Set Name |h ubCW0_7 |

Created From hub W01 Type Hame  |mountain

The Constraints in hubC\yi0_2

created from hubCVO_1

rightFlangedia : RightFlangedia should be between 50 and 6(
centertoLeftflange if (HubLength should be between 95 and 110
centertoRightflange : CentertoRightflange < CentertoLeftflange -

spokeHoles : SpokeHoles should be one of 30,3236 - har
spokeHoledi : SpokeHoledi > 2 and SpokeHolediam
colour : Colour should be one of red,black - hard
axleDiameter 1 is omitted

1] | ;ILI
| cancel [

Figure 19b. Retrieval of constraints relevant to a specified version

[g,a\-'ieu Constraints

- [Of =]

Select the Object Name Hub

See a Constraint Set specifing Constraint Set name -

Or Else

See a Constraint Set specifying a Version name Hub.Jeevani_1.3

Constraint Set Detalls

Constraint Set Name  |hubCY0_2
Created From hubCY0o_1 Type Name  |mountain

The Constraints in hubCWiD_2

created from hubCVO_1

rightFlangedia : RightFlangedia should be between 50 and 6
centertoLeftflange  : if (HubLength should be between 95 and 110
centerteRightflange : CentertoRightflange < Centertol eftflange -

spokeHoles : SpekeHoles should be one of 303236 - har

spokeHolediameter : SpokeHolediameter » 2 and SpokeHoledian

colour : Colour should be one of red,black - hard

axleDiamater 1 is omitted

KT — ;I‘I
‘ cancel

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



The Management of Evolving Engineering Design Constraints 103

aredisplayedinaform closeto natural language. However, the prototype
displaysonly themodified or new constraintsdefined for the CV O. Asthe
parent CV O nameisdefinedinthestatement “ created from <CVO name>"
theinherited constraintscan easily beexamined through accessing thecorre-
sponding parent CVO. Listing all the constraintswithinaCV O otherwise
requiresnavigating upintheinheritancehierarchy, and selecting therel evant
constraintsby scanningtheparent CV Os. Althoughthetest program described
here was based around a primitive artefact, the procedure for constraint
retrieval isthe same for CV Os created for configuration objects. Conse-
quently, itisnotillustrated separately here.

Ability to Change to a Previous Stage
of Constraint Evolution

Changetoapreviousstageof constrai nt evol ution can beachieved by setting
thecurrent default CVOtoapreviousCV O, and thisshould bedecided by the
project leader. Asour prototypedoesnot support an effectivecommunication
mechanism, itisassumed that thedesignersreceiveamessagefromtheproject/
group leader withthe CV O nameto beset asthedefault. For thetest program,
weconsider that thedefault hub CV O should bechanged from 2zubCVO _2to
hubCVO 1, and fromwheelConfigCVO 2 towheelConfigCVO I for the
wheel configuration (Wheel Config). Onissueof thecommandto set thedefault
CVO, thedesignerisprovidedwithalist of CV O namescreatedinthesystem
for that artefact. Fromthislist thedesigner isableto select one CV O nameto
bethenew default CV O, whichinthiscaseishubCVO 1 (depictedinFigures
20aand 25b). Asthe newly-selected CV O nameisdifferent to theexisting
default CV O, the prototypeinstructsthedesigner to set anew default object
versionfor that artefact, which adheresto the constraintsinthenew default
CVO.However, at theprimitiveversionlevel, thisstepisimposed only if the
existing default versiondoesnot adheretothenew default CV O. Theprototype
supports the designer in setting a new default version by selecting and
presenting thedesigner, through theversion manager, with thelist of version
numbersthat areeligibletobethedefault. Thisistrivia for primitiveartefacts
suchasahub. AsshowninFigure20d, oneof theversionsfrom Hub.Jeevani_1,
Hub.Jeevani_1.10r Hub.Jeevani 1.2 wouldqualify tobethedefaultversion
of thehub sincethey all adhereto 7ubCVO 1. Nevertheless, selecting the
qualifying versionnumbersto bethedefaultisnon-trivial with configuration
versions. Theconfiguration numberssel ected for thisshould correspondtothe
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Figure 20a. HubCVO 1 is selected as the default CVO

E%View Constraints

[ (O] x]

Select the Object Hame

Hub -
Select the Constraint Version Mame hubhCvO 1

Constraint Set Details

Constraint Set Name  (hubCVO_1
Created From Type Hame |mountain

The Constraints in hubCw0_1

initial cvo

weight : Weight should be between 350 and 450 - hard
hubLength 1 if (HubSide == front ) then HubLength should |
axleDiameter : AxleDiameter should be one of 9,10,11 - hard
hubMaterial : HubMaterial == aluminium - hard
centertoLeftflange : CentertoLeftflange < HubLength /2 - hard
rightFlangedia 1 if (HubSide == front) then RightFlangedia==
spokeAngle : SpokeAngle is round( 720 f SpokeHoles) -har¢
2l | _'l_I

| Set Default || cancel |

Figure 20b. Confirmation message before changing the default CVO

[E3 5et Default Confirm Dialog

Are you sure you want to set
a hubCWO_1 as the default constraint set ?

| OK || Cancel ‘

Figure 20c. The notification message to the designer to set a new default
object version

] The default constraint set is changed.
= Select an object version that satisfies the new constraint set
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Figure 20d. The qualifying version numbers to be the default for the hub
artefact

Eg% Select Object Name =]

Hub.Jeevani_1

Hub.Jeevani_1.1 Show VYersion

Hub.Jeevani_1.2

Set Default

configurationsthat adheretothe current set of i nter-dependency constraints
applicable, and their constituent object versionsshoul d also adheretotheir set
of currently-imposed constraints. For this reason, although there are two
configuration versionsthat are consistent with wheelConfigCVO 1, only
WheelConfig.Jeevani_1 qualifiestobethedefault ascanbeseenfromFigure
21. Onclickingthe“set default” button (see Figure 20d and Figure 20) after
selectingaversionfromthelist, theversion manager updatestheversioning
systemto set thenew default version. If thereareno qualifying configuration
versions, anew configuration version will haveto becreated to satisfy the
requirements. Inconclusion, thistest program showsthat thereisno practical
difficulty inchanging back to apreviousstageof constraint evolution.

Figure 21. The qualifying version numbers to be the default for the wheel
configuration

:a Select Object Name [_ O] x|

‘ WheelConfig hd |

WheelConfig.Jeevani_1 VH Show Current Default Version |

WheelConfig.Jeevani_1 |

‘ Set Default.. H Cancel
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Implementation

Therearetwo componentsto theimplementation of the prototype software.
Thefirst componentistheversion model ; the second component enhancesthis
versioning model with theintegrity mechanism. Java2 and the Objectivity
database system arebeing used toimplement the prototype, and therepresen-
tation of CV Oshasbeen achieved using Prolog. Easy captureof constraintsto
producethenew CV Oisallowed throughtheconstraint manipul ationinterfaces
whichweredeveloped using Java2. Constraintsarerepresented asPrologrules
and CV OsasPrologobjects. Prologallowsrulesto bedefinedinadeclarative
styleand providestheinheritancemechanismrequiredfor CV Os. Significantly,
no compilationisrequiredwhenever anew CVOisspecified. SICStusProlog
(SICStus, 2000) hasbeen chosenfor itsability to define objectscontaining
named col lectionsof predicates(rules) andfor itsinheritancefeature. The
prototypesystem automatically convertseach constraint defined by adesigner
intoacorresponding Prologrule. Each Prolog rulecontainsahead and body.
Thehead definesthenameof theconstraint, and thebody definestheconstraint
andthe messagetodisplay following constraint violation. Theconstraintis
invoked usingtheruleheader. Each new Prolog object (or new CVO) isgiven
aname by the designer and is specified asachild of aparticular parent for
inheritance purposes. For example, theCV Ofor hub?2 inheritsfromAub I and
isdefinedasfollows:

hub?2 :: {
super(hubl) &
rue 1&
rule-2 &

rule-n

}.

The generation of this code is automatic. The syntax of CVOs for sub-
components(local CV Os) and configurations(global CV Os) isthesame. The
CV O management informationfor each artefact (e.g., default CV O, parent
CV O, nameof each CV O, and the constraint namesintroduced/modifiedin
each CVO) is maintained in a separate Java properties text file for easy
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retrieval. Upon creation of anew CV O, thisproperties fileisautomatically
updated with the new information. A package called jasper in SICStus
providesabi-directional interfacebetween Javaand Prol og that enablesrule
executionfor datavalidation. Asexplained earlier, theconstraint validation
process providesdesignerswithinformative messageswhen constraintsare
violated, asisevidenced by Figures 15, 16, and 18. Thedesigner isableto
correct theviol ationsbased onthegiven messages.

Easy retrieval of integrity validation constraintsisal soanimportant aspect from
the designer’s point of view, and constraints and CV O details should be
displayedinanatural languageforminthisregard. Implementation of this
feature can beachieved using aparser, which convertsPrologrulestonatural
language. However, for sakeof simplicity, wehaveimplementedthisfeatureby
writing constraint specifications to a separate text file directly from the
constraint manipulationinterfaceasthey areentered. Onretrieval of aparticular
CVO, thesystem seeksthistext filefor thegiven CV O nameand displaysthe
relevant constraints.

Future Work and Conclusion

Future Work

Thereareseveral topicsrelated to our work, which merit further investigation
asdescribedin subsequent paragraphs.

Incorporation of a Communication Mechanism

Weindicated that an effective communication systemisakey factorinaco-
operativedesignenvironment. Thiswould ensurethat designersaresupplied
withrequired information such asdesign changes, precisely and unambigu-
ously. Inproposing our model, weassumed acommunication protocol where
theproject/team|eader officially notifiestherel evant designerswith changesto
designconstraints. However, our prototypedoesnot implement afull commu-
nicationsystem. Thisismainly duetothefocusof our researchanditsdemands
on time. However, communication systems have been investigated in the
literatureto agreat extent, inrelationto co-operative design environments.
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Therefore, enhancing our prototypewith an eff ective communi cation system
would not bedifficult. Weal so suggest that itisworthinvestigating the use of
agents, whichwould havetheability to check thereceipt of theproject leader’ s
messagesand to bring these messagesup onthedesigner’ scomputer screen.

Improving the Validation Mechanism

Earlierinthischapter wementionedthedel tavalidation concept, whichaimsto
reducevalidation costs. Weconsider itworthwhiletofurther investigatetheuse
of thedeltavalidation mechanismwithaview toimprovingitseffectiveness.

Onedifficulty invalidating inter-dependency constraintsfor configuration
versionsingeneral isthat they may betotally independent of thehierarchical
artefact compositiongraph. For example, inconstructing ahigher-level version
such as atyre system configuration, one might expect that the constraint
dependencies would only exist between the objects that are immediately
connected to each other onthecomposition graph. However, itisevident that
inter-dependenciescan a so exi st between higher-level objectsandlower-level
objects. Inabicycleconfiguration, for example, oneof theconstraintscouldbe
framesize>40cm— wheel diameter > 60 cm, whereframesizeisfromthe
frameobjectinthestructureconfigurationandwheel diameterisfromthewheel
objectinthetyresystem configuration. Sinceconstraintsevolvedynamically
duringthedesign process, itisnot possibleto predictinadvancethenew inter-
dependenciesthat may arise betweentheattribute valuesof the component
artefacts. One solutionisto make all the objects and their attribute values
available in advance from the top to the very bottom of the composition
hierarchy for each configuration validation. However, thiswould gradual ly
becometoo cumbersomewhenvalidation movedfromlower- tohigher-level
configurations. For example, datavalidation at thebicycleconfigurationlevel
might alsorequireaccesstoall of the objectsfromthetoptothevery bottom
of thecomposition hierarchy, including frames, saddles, hubs, andrims. The
greater thenumber of |evel sinthecompositiongraph, themorecomplicatedthis
wouldbecome.

Configuration Management

Currently, our model considersthat all the configuration versionsareina
completestate. However, it may benecessary to allow thecreation of partial
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configurationsif oneor moreconstituent versionshavenot been decided. A
partial configuration could becomeactiveonly after all of itsconstituent obj ect
versions have been decided. Asaresult, the active status flag of apartial
configurationshould besettofalseuntil itscompletion. Nevertheless, itisnot
possibleto check someof theglobal constraintsapplicableontheconfiguration
version, until all the constituent versions are decided. Consequently, the
validationof partial configurationsshouldbedeferreduntil itiscompleted. This
requiresthedatabaseto maintainboth validated configurationsandinvalidated
configurations. Another issuethat should al so be considered with respect to
partial configurationsisthat therecan besituationswherethedefault CV O at
itsinitial creationtimeisdifferenttothecurrentdefault CVOatitsvalidation
time. Inthiscasethecompl eted configuration coul d beassociated and validated
against thecurrent default CV O. Itisthereforenecessary to exploreindetail
astrategy for managing partial configurations.

Improving the Graphical User-Interface

Themainintention behindthecreation of thegraphical interfacesdepictedin
Figures10to 21 wasto provethefeasibility andthepracticality of our concepts
for capturing evol ving constrai ntswithout requiring any programming skills
fromthedesigner. For thisreason, our interfaceshaveonly beenincorporated
with the facilities that achieve this goal. For example, they arelimited in
capturing constraintsonly upto oneconjunction (and) or onedisjunction (or).
However, thereisscopeto further improvethese graphical interfaces. For
exampl e, they could beimproved to capturemorecomplicated constraintsthan
theonesgivenin here. They could al so bemade moredesigner-friendly by
incorporatingfurther error checkingfacilities, for example, anindicationthat an
opening bracketisnot closed. Incorporatingamechanismto generatethenew
CVOnamerather than expectingthedesigner toenter thenamemanually isalso
desirable.

Makingasoftwareenvironment user-friendly to thedesigner with graphical
user-interfacesinvolveslot of programming effort ontheprogrammer/software
developer’ spart. Ingeneral terms, themoreuser-friendly theenvironment, the
moreprogramming effortisrequired. To performsomeoperations, particul arly
operations such as version creation and version display, it is necessary to
develop separateuser interfacesfor each of thedesign artefacts. Toachieve
thiswespecifically devel oped separate classes, which corresponded to the
user interfaces for each design artefact. However, incorporation of anew
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designartefacttothesystemunder thismethodisadifficulttask. Thisproblem
could be solved by using amechanism similar totempl ates. Such atempl ate
approach should enablethe programmer to automatically generateartifact-
specificuser interfaces, by supplying thecorresponding parameters.

Conclusion

Thischapter hasshown how wehavemodelled evolving design constraintsin
acomputer-aided design prototypebuilt around an object-oriented database.
Wehaveshown how integrity validationishandled, and thegraphical interface
that ispresented to thedesigner users. Thecombination of our approachesto
versioning, configurati on management, and constrai nt management represents
asignificant contributiontothedomain of engineering design management.
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Endnote

1 Cross number is atechnical word relevant to bicycle design which
representsthelacing or the binding pattern of spokesinawheel.
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Abstract

Similarity searchin database systems is becoming an increasingly important
taskin modern application domains such as multimedia, molecular biology,
medical imaging, and many others. Especially for CAD (Computer-Aided
Design), suitable similarity models and a clear representation of the results
can help to reduce the cost of developing and producing new parts by
maximizing the reuse of existing parts. In this chapter, we present different
similarity models for voxelized CAD data based on space partitioning and
data partitioning. Based on these similarity models, we introduce an
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industrial prototype, called BOSS, which helps the user to get an overview
over a set of CAD objects. BOSS allows the user to easily browse large data
collections by graphically displaying the results of a hierarchical clustering
algorithm. This representation is well suited for the evaluation of similarity
models and to aid an industrial user searching for similar parts.

Introduction

In the last ten years, an increasing number of database applications have
emerged for which efficient and effective support for similarity searchis
substantial. Theimportanceof similarity searchgrowsinapplicationareassuch
asmultimedia, medical imaging, molecular biology, computer-aided engineer-
ing, marketing and purchasing assi stance, and soforth. Particul arly, thetask of
finding similar shapesin 2D and 3D becomes more and more important.
Examples for new applications that require the retrieval of similar three-
dimensional objectsincludedatabasesfor molecular biology, medical imaging,
andvirtual engineering.

Especialyintheareaof modernengineering, thedevel opment, design, manufac-
turing, and maintenance of productsisavery expensive and complex task.
Shorter product cyclesand agreater diversity of model sarebecomingdecisive
competitivefactorsinthehard-fought automobileand planemarket. To cope
withthisrapidly growingamount of data, effectiveandefficientsmilarity models
arerequiredfor two- andthree-dimensional CAD applications.

Accurate representations of CAD surfaces are typically implemented by
parametric bi-cubicsurfaces, including Hermite, Bézier, and B-splinepatches.
For many operations, such asgraphical display or theefficient computation of
surfaceintersections, these parametricrepresentationsaretoo complex (Mol ler
& Haines, 1999). Asasol ution, approximativepolygon(e.g., triangle) meshes
canbederivedfromtheaccuratesurfacerepresentation. Thesetrianglemeshes
allow for anefficient andinteractivedisplay of complex objects, for instance,
by means of VRML-encoded files, and serve as an ideal input for the
computation of spatial interference.

By meansof auniformthree-dimensi onal voxel grid coveringtheglobal product
space, thegeometry of the CAD partsisoften convertedinto aset of voxels
(cf.Figure 1). Thevoxelization of polygonmeshesisamajor researchtopicin
thefield of computer graphicsand CAD. V oxelizationtechniquesand applica-
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Figure 1. Scan conversion on a triangulated surface

(a) Triangulated object (b) Voxelized object

tionshavebeen proposed, for instance, for interactivevolumevisualization
(Huang, Y agel, Filippov, & Kurzion, 1998) and haptic rendering (McNeely,
Puterbaugh, & Troy, 1999). A basicalgorithmfor the 3D scan-conversion of
polygonsinto avoxel -based occupancy map hasbeen proposed by Kaufmann
(1987). By applyingthisconversiontothegiventrianglemesh of aCAD object
(cf. Figure 1a), a conservative approximation of the object’s surface is
produced (cf. Figure 1b). Inthischapter, wewill present similarity models,
suitablefor thesevoxelized spatial objects.

Theremainder of the chapter isorganized asfollows: First, wereview the
existing spatial similarity model sand provideacl assification of thetechniques
intofeature-based model sand direct geometric models. Thenweintroduce
threespace-partitioning similarity model sand two data-partitioning models.
Next, wedescribeanindustrial prototypewhichdepictsthecluster hierarchy
of the CAD objectsinauser-friendly way and which can beusedto evaluate
thequality of the presented similarity models. Finally, the chapter concludes
withashort summary.

Related Work

Inthissection, wediscusssomeof theapproachespresentedintheliterature
toestablishsimilarity measuresfor spatial objects. Weprovideaclassification
of thetechniquesinto feature-based model sand direct geometric models.

Feature-Based Similarity Search

Feature Transformation. As distance functions form the foundation of
similarity search, weneed object representationswhich allow efficient and
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Figure 2. Feature transformation

meaningful distance computations. A common approachisto represent an
object by anumerical vector, resultinginstraightforward distancefunctions. In
thiscase, afeaturetransformation extractsdistinguishabl espatial characteris-
ticswhich are represented by numerical values and grouped together in a
featurevector (cf. Figure?2).

Using afeaturetransformation, the objectsare mapped onto afeaturevector
inanappropriatemulti-dimensional featurespace. Thesimilarity of twoobjects
isthendefined astheproximity of their featurevectorsinthefeaturespace: The
closer their feature vectors are located, the more similar two objects are
considered. Most applicationsusethe Euclidean metric (L,) toevaluatethe
feature distance, but there are several other metrics commonly used, for
example, theManhattanmetric(L,), andtheMaximummetric(L ).

Feature-Based Similarity Models. Several reasons|ead tothewideuse of
feature-based similarity models: First, themorecompl ex theobjectsare, the
moredifficultit may betofind anappropriatesimilarity distancefunction. A
second reason whereforefeature-based similarity model sarequitepopularis
that they may beeasily tunedtofitto specificapplications. Ingeneral, thistask
isperformedin closecooperationwith domain expertswho specify appropriate
features and adapt them to the specific requirements. Since the existing
techniquesfor query processing areindependent fromtheparticular definition
of thefeatures, efficient support may beprovided without anin-depthinsight
intotheapplicationdomain.

Exampleswheretheparadigm of feature-based similarity hasbeen successfully
appliedtotheretrieval of similar spatial objectsincludestructural featuresof
two-dimensional contours (Mehrotra & Gary, 1993), angular profiles of
polygons(Badel, Mornon, & Hazout, 1992), rectangul ar coversof regions
(Jagadish, 1991), algebraicmoment invariants(Taubin & Cooper, 1991), and
2D section coding (Berchtold, Keim, & Kriegel, 1997). Non-geometric
applicationsincludesimilarity search ontimeseries(Agrawal, Faloutsos, &
Swami, 1993), and on col or histogramsinimagedatabases(Haf ner, Sawhney,
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Equitz, Flickner, & Niblack, 1995; Niblack, Barber, Equitz, Flickner, Glasmann,
Petkovic, Y anker, Faloutsos, & Taubin, 1993), among several others.

Agrawal, Faloutsos, and Swami (1993) presented amethod for similarity
searchinasequence database of one-dimensional data. The sequencesare
mapped onto points of alow-dimensional feature space using a Discrete
Fourier Transform, andthenaPoint AccessMethod (PAM) isusedfor efficient
retrieval. Thistechniquewaslater generalized for sub-sequencematching
(Faloutsos, Ranganathan, & Manolopoulos, 1994), and searching in the
presenceof noise, scaling, andtranslation (Agrawal, Lin, Sawhney, & Shim,
1995). However, it remainsrestricted to one-dimensional sequencedata.

Mehrotraand Gary (1993) suggested the use of boundary featuresfor the
retrieval of shapes. Here, a two-dimensional shape is represented by an
ordered set of surface points, andfixed-sized subsetsof thisrepresentationare
extracted asshapefeatures. All of thesefeaturesaremapped to pointsinmulti-
dimensional spacewhicharestoredusingaPAM. Thismethodisessentially
l[imitedtotwodimensions.

Jagadish (1991) proposed atechniquefor theretrieval of similar shapesintwo
dimensions. Hederivesan appropriate object descriptionfromarectilinear
cover of anobject, that is, acover consisting of axis-parallel rectangles. The
rectanglesbel ongingtoasingleobject aresorted by size, andthelargest ones
serve as aretrieval key for the shape of the object. This method can be
generalizedtothreedimens onsby using coversof hyper-rectangles, aswewill
seelater inthischapter.

Histograms as Feature Vectors. Histogramsrepresent aquitegeneral class
of featurevectorswhichhavebeen successfully appliedto several applications.
For any arbitrary distribution of objects, ahistogram representsamoreor less
fine-grained aggregation of theinformation. Thegeneral ideaistocompletely
partitionthespaceof interestintodigointedregionswhicharecalled cells, and
tomap every object onto asinglebin or to distribute an object among aset of
binsof the corresponding histogram. Then ahistogram can betransformed
directly into afeaturevector by mapping each bin of the histogram onto one
dimension (attribute) of thefeaturevector. Thehistogram approach appliesto
geometric spacesaswell asto non-geometric spaces.

A popular examplefor theuseof histogramsto definethesimilarity of complex
objectsisthecol or histogramapproachwhichisacorecomponent of theQBIC
system(Niblack etal., 1993). Among other techniques, col or histogramswere
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Figure 3. Section coding of 2D regions: (a) original object, (b)
corresponding histogram, and (c) corresponding feature vector
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Figure 4. Shells and sections as basic models for shape histograms (a
single bin is marked in each of the 2D examples)
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usedto encodethepercentageof colorsinanimage (Hafner etal., 1995). Our
second exampl eistakenfrom aspatial database application: The2D section
coding approach (Berchtold, Keim, & Kriegel, 1997) representsaparticul ar
histogram techniquethat was used in the S3 system (Berchtold & Kriegel,
1997) for the retrieval of similar mechanical parts. For each object, the
circumscribing circleisdecomposedinto afixed number of sectorsaroundthe
center point. For each sector, the fraction of the areaisdetermined that is
overlapped by the object. Altogether, theresulting featurevector isahisto-
gram, whose bins represent the corresponding two-dimensional sectors.
Figure3illustratesthetechniqueby an examplewith eight sectors.

Ankerst, Kastenmuller, Kriegel, and Seidl (1998) investigated theretrieval of
similar three-dimensional objectsfromabiomolecular database. Theintro-
duced models are based on shape histograms, where three different ap-
proacheswereused for space partitioning: shell bins, section binsand com-
binedbins(cf. Figure4). Unfortunately, thesemodel sarenotinherently suitable
forvoxelized datawhichareaxis-parallel.
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Geometry-Based Similarity Search

A classof model sthat areto bedistingui shed fromthefeature-basedtechniques
arethesimilarity model sthat aredefined by directly usingthegeometry. Two
objectsareconsideredsimilarif they minimizeadistancecriterionthatispurely
defined by thegeometry of theobjects. Examplesincludethesimilarity retrieval
of mechanical parts, thedifferencevolumeapproach, and theapproximation-
based similarity model for three-dimensional surfacesegments:

Rotational Symmetric Mechanical Parts. Schneider, Kriegel, Seeger, and
Heep (1989) presented amethodto retrieve similar mechanical partsfroma
database. Thesimilarity criterionisdefinedintermsof toleranceareaswhich
arespecifiedaroundthequery object. All objectsthat fitintothetol erancearea
count for being similar. Althoughthepartsarethree-dimensional, only their
two-dimensional contour istakeninto account for theretrieval technique.

Difference Volume Approach. Thedifferencevolumeor error volume of
spatial objectsisapromising approachwhich hasbeen already successfully
appliedtomedical images(e.g., Higgins, 1990; Vincent, 1991). Furthermore,
extens onssuch asthecombinationwith methodsfrom mathematical morphol-
ogy havebeeninvestigated onatumor database (K orn, Sidiropoul os, Fal outsos,
Siegel, & Protopapas, 1996). However, they considered only two-dimen-
sional images. A competing approach is based on a new geometric index
structureassuggested by Keim (1999). Thebasicideaof thissolutionistouse
theconcept of hierarchical approximationsof thethree-dimensional objectsto
speed up the search process.

Approximation-Based Similarity of Three-Dimensional Surface Seg-
ments. Theretrieval of similar three-dimensional surfacesegmentsisatask that
supportsthedocking searchfor proteinsinbiomol ecul ar databases. Following
theapproximation-based model, thesimilarity of surfacesegmentsismeasured
by their mutual approximation error with respect to agiven multi-parametric
surfacefunctionwhich servesastheunderlying approximationmodel. To state
itinasimpleway, two segmentsarethemoresimilar, thebetter they fit tothe
approximation of the partner segment (Kriegel, Schmidt, & Seidl, 1997).
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Table 1. Classification of complex similarity models

Class Definition of Similarity | Examples
feature- similarity isproximity in | e rectangular cover of regions
based |thefeature space e algebraic moment invariants
similarity e 2D contour features

e angular profiles of polygons

e section coding

e timeseries

e color histograms

o 3D shape histograms
geometric | similarity isdirectly e symmetric mechanica parts
similarity | defined by geometry o difference volume

o 3D surface segments

Summary

Tablelsummarizesour classification of similarity model sintofeature-based
approachesand direct geometry-based proposals. Thelist of examplesishby
no means complete, but provides an impression of the potentials of both
paradigms. Inthischapter, effectivesimilarity modelsfor CAD objectswere
introduced, whichrely onthefeature based histogram approach.

Similarity Models for
Voxelized CAD Objects

Inthissection, weconcentrateon similarity model sfor voxelized CAD data.
Westart withintroducingobject similarity functions, emphasi zingin-variance
propertieswhicharerequiredfor effectivesimilarity searchintheareaof virtual
engineering. Afterwards, threedifferent space partitioning similarity models
for voxelized CAD dataarepresented, namely thevolume model, thesolid-
angle model and the eigenvalue model. Then weturn our attentionto data
partitioning Similarity models. Wefirst discussthecover-sequence model
whichservesasastarting pointfor thevector set model. Incontrast totheother
four models, thevector set model usessetsof featurevectorsfor representing
anobjectinstead of singlefeaturevectors.
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Object Similarity

Thedegreeof similarity betweentwo objectsheavily dependsonthechosen
distancefunction. Ideally, adistance measure hasthe propertiesof ametric.

Definition 1 (Metric). Let M beanarbitrary dataspace. A metricisamapping
dist: M x M — IR suchthat for all x, y, ze M thefollowing statementshold:

o dist(x,y) =0 x =y (definiteness)
o dist(x,y) =dist(y, x) (Symmetry)
o dist(x,z) <dist(x,y) + dist(y, z) (triangleinequality)

Based onmetric distance functions, wecan definemetric object similarity.

Definition 2 (Metric Object Similarity). L et O bethedomain of theobjects
and F: O — M be amapping of the objects into a metric data space M.
Furthermore, let dist: M x M — IR beametricdistancefunction. Thenametric
object similarity functionsimdist. O x O — IR isdefined asfollows:

simdist(o,, 0,) = dist(F(0,), F(0,)).

Often, the d-dimensional vector space /R? isused. By means of asuitable
featuretransformationdistinguishablespatial characteristicsareextractedand
groupedtogether inanumerical featurevector (cf. Figure2). Inthisimportant
special case, thesimilarity of two objectscan bedefined asfollows.

Definition 3 (Feature-Based Object Similarity). Let O bethedomainof the
objectsand F: O — IR‘be amapping of the objectsinto the d-dimensional
feature space. Furthermore, let dist: IR?x IR — IR be adistance function
between two d-dimensional feature vectors. Then afeature-based object
similarity functionsimdist. O x O — IR isdefined asfollows:

simdist(o,, 0,) = dist(F(0,), F(0,)).
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Thereexistalot of distancefunctionswhicharesuitablefor similarity search.
In the literature, often an Lp-distance iIsused, for example, the Euclidean
distance (p = 2).

’d
deuclid('i:’j}) :”5(’:_)7”2 =2 Z(‘xi _yi)z'
i=1

Normalization of CAD Data

For effectivesimilarity search, itisoftenrequiredto meetinvarianceproperties
withrespecttoacertain classof transformations, that is, applying atransfor-
mationfromthisclasstoan object should havenoinfluenceontheresult of the
similarity function. Thisleadstothefollowing definition.

Definition 4 (Invariance). Let O bethedomain of the objectsand simdist:
O x O — IR beametric object similarity function. simdistisinvariant with
respect to aclass of transformations C, iff for all objectso,, 0,€ O and all
transformations7e Cholds:

simdist(o,, 0,) = simdist(1(0,), 0,) = simdist(o,, 1(0,)).

Invariance can beachieved by applying appropriatetransformationstothe
objectsinthedatabase. Thisiscalled thenormalization of data. Invariance
properties relevant for similarity search in CAD databases are scaling,
translation, rotation and reflection invariances. It depends on the user as
well asonthechosensimilarity model whichinvarianceshavetobeconsidered
for aparticular application. Thedesired normalization of thedatal eadstothe
followingextended similarity definition.

Definition 5 (Extended Metric Object Similarity). L et O bethedomain of
theobjectsand F: O — M beamapping of theobjectsinto ametric dataspace
M. Furthermore, let dist: M x M — IR beametricdistancefunction, andlet C
betheset of all user-dependent combinationsof scaling, translation, rotation,
and reflection transformations. Then an extended metric object similarity
functionsimdist: O x O — IR isdefined asfollows:
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simdist(o,,0,) =min,_ {dist(F(o,),F(T(0,)))}.

Invarianceisachieved by taking theminimum of thedi stancesbetween object
o, andall transformationsin C applied totheobject o,.

Space Partitioning Similarity Models

Inthissection, wediscussthreedifferent space partitioning sSimilarity models
suitablefor voxelized CAD data, namely thevolume model, thesolid-angle
model andtheeigenvalue model (Kriegel, Kroger, Mashael, Pfeifle, Potke,
& Seidl, 2003). Each of themodel sisbased on shape histograms.

Shape Histograms for Voxelized CAD Data

Shapehistogramsare based on acompl ete partitioning of thedataspaceinto
digointed cell swhich correspondtothebinsof thehistograms. Wedividethe
dataspaceintoaxisparallel, equi-sized partitions(cf. Figure5). Thiskind of
spacepartitioningisespecially suitablefor voxelized data, ascellsand voxels
areof thesameshape, that is, cellscan beregarded ascoarsevoxels. Thedata
gpaceispartitionedineachdimensionintop gridcells. Thus, our histogramwill
consistof k- p®binswherek e IN dependsonthe model specifyingthekind
and number of features extracted from each cell. For agiven object o, let
Ve ={ve V|1<i< p’} bethe set of voxelsthat represent o where V' arethe
voxelscovered by oincell i. 7° c v denotesthe set of voxelsat thesurface
of theobjectsand 7° c v* denotesthe set of thevoxelsinsidetheobject, such
that 7> Uy =y and y° ~Ap° =g holds. Let » bethe number of voxelsof the
dataspaceineach dimension. Inorder to ensureauniqueassignment of the

r

voxelstoagridcell, weassumethat ,, < .

Figure 5. 2D space partitioning with 4 cells (the feature vector generated
by the volume model is depicted on the right hand side)

o

_ 1
objecto fo = 64 11
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After partitioning thedataspace, wehaveto determinethespatial featuresof
theobjectsfor each grid cell depending onthechosen model. By scalingthe
number of partitions, thenumber of dimensionsof thefeaturevector can be
regulated (cf. Figure 5). Obviously, for agrowing number of partitions, smaller
differences between the objects become decisive. Let /. be the computed
featurevector of anobject o. Thei-thvalueof thefeaturevector of theobject
o isdenoted by 1 (.

The Volume Model

A simple and established approach to compare two objectsisbased on the
number of theobject voxels ¥’ ineach cell i of thepartitioning. Inthefollowing,
this model is referred to as the volume model. Each cell represents one
dimensioninthefeaturevector of theobject. Thei-thdimension (1<i <p?®) of
thefeaturevector of object o can becomputed by thenormalized number of
voxelsof olyingincell i. Formally,

I/;()
K

3
f9 =1 where K =(§) :

Figure5illustratesthevolumemodel for thetwo-dimensional case.

The Solid-Angle Model

Thesolid-angle method (Connolly, 1986) measuresthe concavity and the
convexity of geometric surfaces. It is, therefore, agood candidate for ad-
equately model ling geometri c shapesand hasbeenusedindifferent approaches
to spatial similarity modelling. Inthefollowing, amodel isdescribed that
combinesthesolid-angleapproachwith our axis-parallel partitioning.

LetK beasetof voxelsthat describesathree-dimensional voxelized sphere
with central voxel ¢ andradiusr. For each surface-voxel v of anobject o the
so called solid-anglevalueiscomputed asfollows: Thevoxelsof o whichare
insidex, , arecountedanddividedby thesizeof . ,,i.e.thenumber of voxels
ink, . Theresultingmeasureiscalledthesolid-anglevalueSa(v, 7). Formally,
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Figure 6. The solid-angle model: (a) different shapes at different surface
points and (b) effect of the radius

(@)

K, nV°

Sa(v,r)= e

where K. .V’ ={weK, |IvelV’  wx=vxAawy=vyAwz=vz}.

A small solid-anglevalueSa(v, ) indicatesthat an objectisconvex at voxel v
(cf. point p, in Figure 6a). Otherwise, a high value of Sa(v, r) denotes a
concaveshapeof anobject at voxel v (cf. point p, in Figure6a). The choice
of theradiusof themeasurement sphereisacrucial parameter. A particular
radiuscould approximateagivenobject very well (cf. radiusr, inFigure6b),
whereasanother radiusmight beinept (cf. radiusr, inFigure6b).

Thesolid-anglevaluesof thecellsaretransferredinto theaccording histogram
binsasdescribedinthefollowing. Wedistinguishbetweenthreedifferent types
of cells:

e  Cdll i contains surface-voxelsof object o, in other words 7° = @. The
mean of all Sa-valuesof thesurface-voxelsiscomputed asthefeature
valueof thiscell:

N T _
1) == 8a(v,.r) where 7’ ={7, ... 7 }.
m =1 ! "
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e Céllicontainsonlyinside-voxelsof object o, inotherwords? = @ and
Vez@. Thefeaturevalueof thiscell issetto1(i.e., /@ =0).

«  Cellicontainsnovoxelsof objecto, inotherwords V' *= <. Thevalueof
theaccording bin of thehistogramisO (i.e., /) =0).

The Eigenvalue Model

Inthefollowing, weintroduce an approachto extract |ocal featureswhichis
based on eigenval ues. Theset of voxel sof an object canbeconsidered asaset
of pointsinthethree-dimensional dataspacefollowing aparticul ar scattering.
Theeigenvalue model usesthisscattering of thevoxel setstodistinguishthe
objectsby computing theminimum-bounding ellipsoid of thevoxel setineach
cell of thepartitioningindependently (cf. Figure7).

A minimum-boundingellipsoidinthethree-dimensional spacecanbedescribed
by threevectors. In order to computethesevectors, we consider each voxel
v of theobject o asaEuclidianvector y° = (x, y, z) inthedataspaceand apply
principal axistransformation. Todeterminetheprincipal axisof thevectorsin
cell i, wefirst computetheir centroid.

Figure 7. A 2D example for the eigenvalue model

/
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Afterthat, for eachvector ¢ incell i, thefollowing translationiscarried out:
Vv =C°.

Based onthesetransformed vectorsy°, theco-variancematrix Cov ° for each
cell i canbecomputed asfollows:

2
1 E Xpo XY XiE
o __ 2
Cov,.—|Vo|_1 Xy Vi ViE
i

= X.Z z Z2
% Vi j

Thethreeeigenvectorse’ (7 = 1, 2, 3) of thematrix Cov, correspond to the
vectorsspanning the minimum-bounding ellipsoid of thevoxel set V2. The
eigenvalues A/ represent thescaling factorsfor theeigenvectors(cf. Figure 8).
Both eigenvaluesand eigenvectorsaredetermined by thefollowing equation:

Cov)-&/ =)/ &’ .

Theinteresting valuesthat areinserted in the bins of the histogram arethe
eigenval ueswhich describethescattering along the principal axisof thevoxel
set. Thesethreeval uescan becomputed using the characteristic polynomial :

det(Cov’— A/ I1d) =0forj=1, 2, 3.

Usingthisequationweobtainthreee genval ueswhicharesortedindescending
orderinthevector 4. Thehighest valuerepresentsthevarianceal ongthefirst

Figure 8. The eigenvalue model with the principal axis of a sample object

>
)" N Xlel
> e
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principal axis, the second val ue represents the variance along the second
principal axis, and the third value represents the variance along the third
principa axis.

For eachcell i of thepartitioningthevector 1. of thethreeei genval uesiscomputed
asjust described. Itisregisteredintheaccording binsof thehistogram:

A
fO=2=22|
o T 13

Notethat for p® cellsweobtain afeaturevector of 3p®dimensions.

Data Partitioning Similarity Models

Incontrast tothel ast sectionwherewedi scussed spacepartitioning similarity
models, weturn our attention to datapartitioning similarity modelsin this
section. Weintroducetwo different models, namely thecover sequence model
(Jagadish, 1991) and the vector set model (Kriegel, Brecheisen, Kroger,
Pfeifle, & Schubert, 2003). Thecover sequencemode still usesfeaturevectors
for representing objects, whereas the vector set model uses sets of feature
vectorsfor modelling athree-dimensional voxelized CAD object.

The Cover Sequence Model

Thethreemodel sdescribed intheforegoing sectionsarebased onacompl ete
partitioning of thedataspaceinto disjointed cells. Inthissection, amodel by
Jagadish (1991) isadapted to three-dimensional voxelized datawhichisnot
restricted tothisrigid spacepartitioning but rather usesamoreflexibleobject-
oriented partitioning approach. Thismodel isinthefollowingreferredtoas
cover sequence model.

General Idea. As depicted in Figure 9a, each edge of an object can be
extendedinfinitely ineither direction, toobtainagrid of lines. Eachrectangle
inthisgridiscalledgrid primitive, andislocated either entirely insidetheobject,
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Figure 9. The cover sequence model: (a) grid primitives and (b) cover
sequence

[ — — C
(a) (b) &
- ¢
object o | object 0 __ c,
|
gridprimitive C, c.
consisting of -
8voxels S = (GotCy) Errp =21
S = (Co+C)+Cy) Err, =16

S = (((Co+Cp+Cy) Cy) Errs =12

or entirely out-side of the object. Furthermore, any pair of adjacent grid
primitivesmust al soformahyperrectangleinthedataspace. Thebasicideaof
thismodel istofind large clustersof grid primitives, called covers, which
approximatetheobjectinabest possibleway. Thesecoversareorganizedin
acover sequence Which providesasequential description of theobject.

L et o betheobject being approximated. Thequality of acover sequencesS, of
somelength k € IN ismeasured by the symmetric volume difference Err,
between the obj ect o and the sequence S, (cf. Figure 9b). Formally, let the
coversbedrawnfromtheset C of all possiblerectangular covers. Theneach
unit i of thecover sequencecomprisesapair (C.€ C, 0, {+,-}),where*+”
representsset unionand“—" representsset difference.

Thesequenceafter kunitsis:
Sk B (((CO 1 Cl) P Cz) Y Ck)1

where C,isaninitial empty cover at the zero point. Thesymmetric volume
differenceafter kunitsis:

Err,=|o XORS,|.
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Notethat there existssomenatural number N suchthat S, =o and Err, = 0for
all k > N. Atthispoint an exact description of the object o hasbeen obtai ned.

If an object o can be descrl bed by asequences, withj <k coversand Err,=
0,weassign ((S o C,)...0.C)toS.. Thesedummy coversC,donot distort
our similarity Aot on, but guaranteethat all featurevectorsare of the same
dimensionality. Thuscommon spatial index structures (Berchtold, Bohm,
Jagadish, Kriegel, & Sander, 2000; Berchtold, Keim, & Kriegel, 1996; Lin,
Jagadish, & Faloutsos, 1994) can be used in order to accelerate similarity
queries.

Jagadish and Bruckstein (1992) suggest two algorithmsfor theretrieval of a
cover sequences,: abranch and bound algorithmwith exponential run-time
complexity, andagreedy adgorithmwith polynomial run-timecomplexity which
triestominimize Err.ineachstepi < k.

Feature Extraction. Jagadish (1991) describeshow acover sequence
=(((¢,0,C)o0,C,)...0C)

of an object o, can be transformed into a 64-dimensional feature vector.
Thereby, eachcover C,,,0 < i< k-1,ismapped onto 6 valuesinthefeature
vector £ inthefollowingway:

[t =x-positionof C,
f.°*?=y-positionof C.
f.°*3=z-positionof C ,
[ =x-extensionof C.
[ =y-extensionof C,
[0 =z-extensionof C, ..

The Vector Set Model

Asdescribedintheforegoing section, adataobjectisrepresented asafeature
vector which consistsof val uesobtai ned from acover sequenceapproximation.
For similarity queriesthismethodyieldsamajor problem. Alwayscomparing
thetwo covershaving the sameranking according tothesymmetric volume
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Figure 10. Advantages of free permutations: (a) original query object and
(b) permuted query object

(b)

differencedoesnot makesenseinall cases. Two objects can be considered
very different, because of the order of their covers, although they arevery
similar by intuition. Thereasonfor thiseffectisthat theorder of thecoversdoes
not guaranteethat themost similar coversdueto sizeand positionwill bestored
inthesamedimensions. Especially for objectsgenerating two or morecovers
havinga most thesamevolume, theintuitivenotionof similarity canbeseriously
disturbed. Thus, thepossibility to match the coversof two compared objects
withmoredegreesof freedommight offer abetter similarity measure. Figure 10
displaysatwo-dimensional exampleof acomparison betweenaquery object
and a very similar database object. The first sequence (cf. Figure 10a)
representsthe coversof thequery objectintheorder given by thesymmetric
volumedifference. Letusnotethat thecoversC,, C,,and C, arenotvery similar
tothecorresponding coversof the database object and therefore, thecal cu-
lated similarity isrelatively weak. By rearrangingtheorder of thesecovers, the
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total distancebetweenthequery object and thedatabaseobjectisconsiderably
decreasing, whichisdisplayedinFigure10b. Thus, thenew order preservesthe
similarity betweentheobjectsmuch better.

Toguaranteethat the permutationwiththeminimal distanceisused, Kriegel,
Brecheisen, et al. (2003) proposed to represent a CAD object by a set of
featurevectors X < IR where | X| <*.

The Minimal Matching Distance. A distance measure on vector setsthat
demonstratesto besuitablefor definingsimilarity inour applicationisbasedon
theminimal weight perfect matching of sets. Thiswell-known graph problem
canbeapplied here. Let usfirstintroduce somenotations.

Definition 6 (Weighted Complete Bipartite Graph). A graph G = (V, E)
consistsof a(finite) set of vertices Vandaset of edgesE < V' x V. A weighted
graphisagraph G = (V, E) together withaweight functionw: £ — IR. A
bipartite graphisagraphG = (X U Y, E)ywhereX N Y =JandE c X x Y.
A bipartite graph G = (X U Y, E) iscaled complete if E = X X Y.

Definition 7 (Perfect Matching). GivenabipartitegraphG = (X U Y, F)a
matching of Xto Yisaset of edgesM < E suchthat notwoedgesin M share
anendpoint, inother words

V(x,y) (,y)e Mix =x, &y =y,

A matching M of Xto Yismaximal if thereisnomatching A~ of Xto Y such
that [M] < |M]. A maximal matching M of Xto Yiscalledacomplete matching
if M| = min{|X], |Y]}.Inthecase|X]|=|Y]acompletematchingisalsocalleda
perfect matching.

Definition 8 (Minimum Weight Perfect Matching). Given a weighted
bipartitegraph G = (X U Y, E) together withaweight functionw: £ — IR. A
perfect matching Miscalled aminimum weight perfect matching, iff for any
other perfect matching A/, thefollowinginequality holds:
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D W< Y wxny)

(x,y)eM (x,y)eM’

In our application, we build a complete bipartite graph G = (XU Y, E)
betweentwovector setsX, ¥ c IR‘with[X|,|Y| <k.Weset X’=Xx {1} and
Y’=Yx{2} inorder tofulfill theproperty X"n Y’= . Theweight of eachedge
((%,9,(7,2)e X’xY’inthisgraph G isdefined by thedistancedist(x, y) between
thevectors x and y. For exampl e, the Euclidean distance canbeused here. A
perfect matchingisasubset M ¢ X”x Y’that connectseach x € X“toexactly
oneye Y’ andviceversa. A minimal weight perfect matchingisamatchingwith
maximum cardinality andaminimumsumof weightsof itsedges. Sinceaperfect
matching can only befound for setsof equal cardinality, itisnecessary to
introduceweightsfor unmatched nodeswhen defining adistance measure.

Definition 9 (Enumeration of a Set). Let S be any finite set of arbitrary
elements. Thenrisamappingthat assignss € Sauniquenumberie {1,...,
| S|} Thisiswrittenasm(S) = (s,,...,s|, ). Thesetof all possibleenumerations
of SisnamedI1(S).

Definition 10 (Minimal Matching Distance). Let V' /R?and let IR*<IR?
— IR beadistancefunction between two d-dimensional featurevectors. Let

X ={%, .3y }h Y ={1,-. By} € 2 betwo vector sets. Weassumew.|.0.g. | x|
< | Y| <k.Furthermore, letw: 7 — IR beaweight functionfor theunmatched

elements. Thentheminimal matching distance d** : 2" x2" — IR isdefined
asfollows:

» ‘X‘ ‘Y‘
dan™(X,Y) = min (Zdisl(fw%m” > W@ﬂ”)]‘
1

rell(V)| 52 =[x+

Theweight functionw: VV— IR providesthepenalty giventoevery unassigned
element of the set having larger cardinality. Let us note that the minimal
matching distance is a specialization of the netflow distance which was
introduced by Ramon and Bruynooghe (2000). The netflow distance was
showntobeametric andto becomputablein polynomial time. Therefore, we
derivethefollowinglemmawithout further proof.
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Lemma 1. Let V'c /R?. Theminimal matchingdistance 2" x2" — IR isa
metricif theunderlyingdistancefunctiondist: IR“xIR?— IR isametricandthe
weight functionw: V— IR meetsthefollowing conditionsforall x, ye V-

* w(x)>0
o w(x)+w(¥)>dist(z, ¥)

Definition 11 (Dummy Vectors). Let I/ c IR? be a set of d-dimensional
vectors. Let|x - 3|, bethe Euclidean distancebetween z, y € IR?. Furthermore,
let we IR —v bea“ dummy” vector. Thenw, :V — IR, w, (¥) =||% -], denotes
aset of weight functionsbased on dummy vectors.

A good choiceof wfor our applicationis 0, sinceit hasthe shortest average
distancewithinthepositionand hasnovolume. Sincetherearenocovershaving
no volumein any dataobject, the conditionsfor the metric character of the
minimum matching distancearesatisfied (cf. Lemmal).

By using the method proposed by Kuhn (1955) and Munkres (1957), the
minimummatching distance canbecomputedinpolynomial time.

The Industrial Prototype BOSS

Inthissection, wedescribeanindustrial prototype, called BOSS (Browsing
OPTICS-Plotsfor Similarity Search) (Brecheisen, Kriegel, Kroger, & Pfeifle,
2004). BOSS is based on the introduced similarity models and on the
hierarchical clusteringalgorithm OPTICS(Ankerst, Kastenmdiller, Kriegel, &
Seidl , 1999). BOSSisan interactive data browsing tool which depictsthe
reachability plot computed by OPTICSinauser-friendly way together with
appropriaterepresentativesof theclusters. Thisclear illustration supportsthe
user inhistime-consumingtask tofindsimilar parts. BOSShel pstoreducethe
cost of devel oping and producing new partsby maximizingthereuseof existing
partsbecauseit allowstheuser to browsethroughthehierarchical structureof
theclustersinatop-downway. Thustheengineersget anoverview of already
existing partsand areableto navigatetheir way throughthediversity of existing
variantsof products, suchascars. BOSSwasdesigned mainly for twodifferent
reasons:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Similarity Search for Voxelized CAD Objects 137

*  Theevaluationof similarity models(for thescientists), and
o Similarity search (for theindustrial user).

Evaluation of Similarity Models

Ingeneral, similarity model scan beeval uated by computing 4-nearest nei ghbor
(k-nn) queries. A drawback of this evaluation approach isthat the quality
measureof thesimilarity model dependsontheresultsof few similarity queries
and, therefore, on the choice of the query objects. A model may perfectly
reflect theintuitivesimilarity accordingtothechosenquery objectsandwould
beevaluated as“good” althoughit producesdisastrousresultsfor other query
objects. Asaconseguence, theeval uation of similarity model swith samplex-
nn queriesissubjectiveand error-prone.

A better way to evaluateand compareseveral similarity modelsistoapply a
clustering algorithm. Clustering groups aset of objectsinto classeswhere
objects within one class are similar and objects of different classes are
dissimilar toeach other. Theresult can beusedto evaluatewhichmodel isbest
suited for whichkind of objects.

k-nearest neighbor Queries

A k-nnquery retrievesthek most similar database objectsfor agiven query
object. InFigure 11, theresultsof a5-nnquery for two different similarity
models4 and B arepresented, whereby model 4 isaninept model and model
Basuitablesimilarity model for voxelized CAD data. Weachieved satisfying
resultsfor eachmodel depending onthequery object. For atire, for example,
model 4 performsvery well, yielding objectsthat areintuitively very similarto
thequery object (cf. Figure11a). Comparably good resultsareal so produced
by model B for apart of thefender (cf. Figure 11b).

Although both modelsdeliver rather accurate resultsfor the chosen query
objects, wealso seein Figure 11 that theseresultsaredelusive. Figure11c
showsanearest neighbor query for an object wherethereexist several similar
parts to this object within our database. Model 4 does not recognize this.
Furthermore, theremight beobjectsfor whichnosimilarity model canyieldany
intuitively similar parts(cf. Figure11d). Obviously, weshould not discard a
similarity model if thechosen query object belongsto noise. Thisconfirmsthe
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Figure 11. Results of 5-nn queries for a “good” and “bad” similarity
model: (a) “good” query object-“bad” model, (b) “good” query object-
“good” model, (c) “good” query object-“bad” model, and (d) “bad”
query object-“good” model

(@)

(b)

(d)

assumptionthat themethod of eval uating similarity model susing several &-nn
gueriesissubjectiveand error-prone, dueto itsdependency onthe choice of
thequery objects.

By meansof BOSS, whichisbased onthedensity-based hierarchical clustering
algorithm OPTICS, we can overcomethe earlier-described difficulties. A
description of thehierarchical clusteringalgorithm OPTICSisgiveninthe
followingsection.

OPTICS: A Density-Based
Hierarchical Clustering Algorithm

A moreobjectiveway to evaluateand compareseveral similarity modelsisto
apply aclustering algorithm. Clustering groupsaset of objectsinto classes
whereobjectswithinoneclassaresimilar and objectsof different classesare
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Figure 12. Reachability plot (right) computed by OPTICS for a 2D data
set (left)

data space reachability plot

dissimilar toeachother. Theresult can beusedto evaluatewhich model isbest
suitedfor whichkind of objects. Furthermore, by using clustering, theevalu-
ation of themodel sisbased onthewhol edataset and not only onafew sample
objects.

Reachability Plots. Theoutput of OPTICSisalinear ordering of thedatabase
objectsminimizingabinary relationcalled reachabilitywhichis,inmost cases,
equal totheminimum distance of each database object to oneof itspredeces-
sorsintheordering. Thisideaissimilar tothe Single-Link method, butinstead
of adendrogram, theresulting reachability-plotismucheasier toanalyze. The
reachability values can be plotted for each object of the cluster-ordering
computed by OPTICS. Valleysinthisplotindicateclusters; objectshavinga
small reachability value are more similar to their predecessor objectsthan
objectshavingahigher reachability value.

Thereachability plot generated by OPTICScanbecut at any level eparallel
to the abscissa. It represents the density-based clusters according to the
density thresholde: A consecutive subsequence of objectshavingasmaller
reachability valuethane belongtothesamecluster. Anexampleispresented
inFigure12. Foracutatthelevel e , weretrievetwo clustersdenotedas4 and
B.Comparedtothisclustering, acutatlevel ¢, wouldyieldthreeclusters. The
cluster 4 issplitintotwosmaller clustersdenoted as 4, and 4, and cluster B
hasdecreaseditssize.

Note that the visualization of the cluster-order is independent from the
dimensionof thedataset. For example, if theobjectsof ahigh-dimensional data
set aredistributed similar to thedistribution of thetwo-dimensional dataset
depictedinFigure12, thatis, therearethree” Gaussian bumps’ inthedataset,
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thereachability plot wouldlook very similar totheonepresentedin Figure 12.
Furthermore, density-based clusteringisnot only restricted tofeature spaces,
but can beappliedto all kindsof metric spaces, for example, to dataspaces
whereobjectsarerepresented by vector sets.

Experimental Evaluation of the
Voxelized Similarity Models

In thissection, webriefly summarize the main results of our experimental
evaluation. Generally spoken, thedatapartitioningsimilarity models, thatis, the
cover sequence model andthevector set model, reflect theintuitivesimilarity
between CAD objectsbetter than thespace partitioning similarity models, that
IS, the volume model, the solid-angle model and the eigenvalue model.

Theeigenvaluemodel producesthemost meaningful resultsamongthethree
introduced space partitioning similarity models. Using the eigenvaluemodel
asbasisfor theOPTICSrunresultsin clusterscontainingintuitively similar
objects. Neverthel ess, theeigenvaluemodel suffersfromthesameshortcom-
ingsasthedatapartitioning cover sequencemodel. Although bothmodels
producerather meaningful clusters, they fail todetect important cluster hierar-
chies.

Only thevector set model detectsthesehierarchies, which areimportant for
navigating through massivedatasets. To sumup, our new eval uation method
based on clustering showed that the combination of thedatapartitioning cover
sequence model and the new paradigm of using sets of feature vectorsfor
representing objectsisavery powerful approach for thedetection of similar
CAD parts.

Similarity Search

BOSSisal so aninteractivedatamining tool which depictsthereachability plot
computed by OPTICS in a user-friendly way together with appropriate
representativesof theclusters. Thisclear illustration supportstheuserinhis
time-consumingtask tofind similar parts. Fromtheindustrial user’ spoint of
view, BOSSmeetsthefollowingtwo reguirements:
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Figure 13. Browsing through reachability plots with different thresholds €,

t

*  Thehierarchical clustering structureof thedatasetisreveal ed at aglance.
Thereachability plotisanintuitivevisualization of theclustering hierarchy
which hel psto assign each object toitscorresponding cluster or tonoise.
Furthermore, the hierarchical representation of the clustersusing the
reachability plot hel pstheuser toget aquick overview over al clustersand
their relation to each other. As each entry in the reachability plot is
assignedtooneobject, wecaneasily illustratesomerepresentativesof the
clustersbelongingtothecurrent density thresholde_ (cf. Figure13).

»  Theuserisnotonlyinterestedintheshapeandthenumber of theclusters,
but alsointhespecific partsbuildingupacluster. Asfor largeclusters, it
israther difficult to depict all objects; representatives of each cluster
should be displayed. We can browse through the hierarchy of the
representativesinthesameway asthroughthe OPTICSplots.

Thisway, thecost of devel oping and producing new partscould bereduced by
maximizingthereuseof existing parts, becausetheuser can browsethroughthe
hierarchical structureof theclustersinatop-downway. Thustheengineersget
anoverview of already existing partsand areabl eto navigatetheir way through
thediversity of existing variantsof products, suchascars.

System Architecture

The development of the industrial prototype BOSS is an important step
towardsdevel opingacomprehensive, scal able, and distributed computing
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Figure 14. BOSS distributed architecture

solution designed to make the effectiveness of OPTICS and the proposed
cluster recognitionand representationalgorithmsavail ableto abroader audi-
ence. BOSSisaclient/server systemallowing usersto providetheir owndata
locally, alongwithanappropriatesimilarity model (cf. Figure14).

Thedataprovided by theuser will becomprised of theobjectsto beclustered,
aswell asadataset to visualizethese objects, for example, VRML filesfor
CAD data(cf. Figure 15) or JPEG imagesfor multimediadata. Sincethisdata
residesontheuser’ slocal computer andisnot transmittedtotheserver, heavy
network traffic canbeavoided. Inorder for BOSStobeabletointerpret this
data, theuser must supply hisownsimilarity model withwhichthereachability
datacan becal cul ated.

Theindependence of thedataprocessing and the data specification enables
maximumflexibility. Further flexibility isintroduced through the support of
external visual representation. Aslongastheuser iscapabl eof displayingthe
visualizationdatainabrowser, for example, by meansof asuitableplug-in, the
browser will then load Web pages generated by BOSS, displaying the
appropriatedata. Thus, multimediadatasuch asimagesor VRML filescan
easily bedisplayed (cf. Figure 15). By externalizing thevisualization proce-
dure, we can resort to approved software components, which have been
specifically devel opedfor displaying objectswhichareof thesametypeasthe
objectswithinour clusters.
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Figure 15. BOSS screenshot

Conclusion

Inthischapter, weintroduced three spacepartitioning similarity model sand
two datapartitioning similarity model sfor three-dimensional voxelized CAD
data. Furthermore, wepresented hierarchical clustering asan effectiveway to
analyseand comparesimilarity models. Weshowed that hierarchical clustering
ismoresuitablefor theeval uation of similarity model sthanthecommonly used
k-nnqueries. Based onthiseval uation method and ontheintroduced similarity
model s, wedescribed aprototype, called BOSS, whichissuitablefor industrial
use. BOSShel pstheuser to copewithrapidly growing amountsof data, and
hel psthereby to reducethe cost of devel oping and producing new parts.

Aninterestingdirectionfor futureresearchisto combinetheadvantagesof the
eigenwert model and thevector set model . For instance, we could describea
voxelized object not by aset of rectangular covers, but by aset of Gaussian
distributionfunctions. Each of thesedistributionfunctionscan berepresented
by their eigenval uesand eigenvectors. Finding aminimal matching between
thesedistributionfunctionsmight lead to animproved similarity model for
voxelized CAD objects.
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ChapterV

STEP-NC to Complete
Product Development
Chain

XunW. Xu, University of Auckland, New Zealand

Abstract

This chapter addresses the issue of product development chain from the
perspective of data modeling and streamlining. The focus is on an
emerging ISO standard, informally known as STEP-NC, and how it may
close the gap between design and manufacturing for a complete, integrated
product development environment. This new standard defines a new
generation of NC programming language and is fully compliant with
STEP. There is a whole suite of implementation methods one may utilize
for development purposes. STEP-NC brings richer information to the
numerically-controlled machine tools; hence, intelligent machining and
control are made possible. Its Web-enabled feature gives an additional
dimension in that e-manufacturing can be readily supported. A case study
toward the end demonstrates a STEP compliant, Web-enabled
manufacturing system.
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Introduction

In the manufacturing domain, there are two types of traditional product
development models, centralized model and collaborative model. In a
centralized model, manufacturing activitiesoccur withinasinglemanufacturer
or afew manufacturersthat havesimilar informationinfrastructures. Inthis
model, proprietary dataformatsarecommonly used. Inacollaborativemodel,
a middle tier is added using a neutral data exchange format. As such,
collaborativeactivitiesinthemanufacturingenvironment becomeeasier. Figure
lillustratesthedataflowsinthesetwomodels.

In Model A, both CAD and CAM systems use the same proprietary data
format. Overtheyears, CAD/CAM systemvendorshavedevel oped different
dataformatsto support their systemsthroughout thedesi gn and manufacturing
processes. Thebenefitsof thismodel areobvious. CAD and CAM systemsare
unified by thesamedataformat sothat dataincompatibilitiesbetween CAD and
CAM systemsareeliminated. Furthermore, sincethereisnodata-transferring
barrier, system vendorshave morefreedomto model moreinformation. In
additionto puregeometry, integrated CAD/CAM systemscan cater for all the
activitiesranging from designto NC programming. Some of such systems
includePro/ENGINEER (with Pro/NC), CATIA and UGS. However, these
systemsarenot without problems. They assumethat dataexchangeduringa
product life cycle only occurs within one manufacturer or among a few
manufacturers that implement the same CAD/CAM system. When more
manufacturersareinvolvedintheproductlifecycle, itishard, if notimpossible,
tounify thosemanufacturerswith aspecific proprietary dataformat. Therefore,
the structure represented by Model A is deemed unfit for collaborative
manufacturing dueto dataincompatibility.

Model B aimsto sol vethisproblem by using exchangeabl eneutral dataformats
suchasIGES(Initial GraphicsExchange Specification). Neutral dataformats
provideamiddletier to connect CAD and CAM systems. With the help of
neutral dataformats, M odel B createsacollaborative manufacturing environ-
ment and makes design data exchange possible for large projects at the
international level. Y et, someproblemsstill exist:

* IGESwasdesignedtoexchangegeometrical informationonly, soaddi-
tional designor manufacturinginformation (such asfeatureinformation)
withinaproprietary model isignored.
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Figure 1. Two traditional product development models

W orkstation W orkstation W orkstation |

Proprietary CAD files

Intergrated
CAD/CAM

ISO 6983 G-Code

CNC controllers

CNC controllers

Model A (Centralised) Model B (Collaborative)

*  Someinformationmay getlost during datatransfer; geometry stitchingor
model repair isoften needed.

. | GESisnot aninternational standard.

Thereareal so problemscommontobothmodels. Different dataformats(e.g.,
IGESand SO 6983 G-Codes (1SO 6983-1, 1982)) areused inthedesignto
manufacturing chain. Data loss occurs in the transaction from design to
manufacturing becauseonly low-level, step-by-step sequential machining
commands are passed onto the CNC (Computer Numerically Controlled)
controllers, leaving thecompl ete product model behind.

Of particular significanceistheendeavor madeby thel nternational Organiza-
tionfor Standardization (I SO) tointroducethe Standard for the Exchange of
Product model data(i.e., 1ISO 10303 STEP[ISO 10303-1, 1994]). STEPis
afamily of standards defining a robust and time-tested methodol ogy for
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describing product datathroughout thelifecycleof theproduct. Itisnow widely
used in CAD and Product Data M anagement (PDM) systems. M ajor aero-
space and automotive companies have proven the value of STEP through
productionimplementationsresultingin savingsof $150M per yearintheU.S.
(Gallaher, O’ Connor, & Phelps, 2002; PDES, Inc., 2005). Moreover, STEP
has recently been extended to cater for manufacturing data modeling and
executionwithanaimtofill theinformation gap between CAD/CAPP/CAM
and CNC. Thestandardisinformally known asSTEP-compliant Numerical
Control, or otherwise STEP-NCfor short. It wasgivenan SO nameof “1 SO
14649: DataM odel for Computerized Numerical Controllers(1SO 14649-1,
2003)". Like other STEP models, the information is mostly specified in
EXPRESS (1SO 10303-11, 1994), aformal language for the definition of
entity-attributedatamodels.

Theobjectiveof thischapter istotakeanin-depthlook into (1) theSTEP-NC
standards, (2) thedatamodeling tool sand methodsfor STEP-NC, and (3) how
itcanfill thegap between CAD/CAPP/CAM and CNC.

Data Exchange Using
STEP and STEP-NC

STEPisregarded asaunified standardfor describing all aspectsof aproduct
duringitslifecycle. It doesso by establishing variousApplication Protocols
(APs) targeted at different application domains, beit design, manufacturing, or
maintenance.

Data Exchange between CAD Systems Using STEP

The STEP standard wasinitially designed to offer aneutral dataexchange
method inreplacement of IGES. Thetwo APsthat have been established to
mainly support design dataexchanging and sharing arethe APfor configura-
tion-controlled 3D designsof mechanical partsand assemblies(AP203) (1SO
10303-203, 1994), and the APfor coredatafor automotivemechanical design
processes(AP214) (1SO 10303-214, 1994). Currently, most of thecommer-
cial CAD systemscan output STEP AP-203 and/or STEPAP-214filesvia
STEPtranslators. Accordingtothereport from Research Trianglelnstitute
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(1999), when STEPisused asaneutral format to exchangewireframeand
surface data between commonly-used commercial CAD systems, it fares
better than |GES. Thisindicatesthat STEPisready toreplacel GES. However,
the STEP standard is much more than aneutral dataformat that transl ates
geometrical data between CAD systems. The ultimate goal of STEPisto
provideacompletecomputer-interpretable product dataformat, sothat users
can integrate business and technical datato support thewhole product life
cycle: design, analysis, manufacturing, salesand customer services.

Data Flow between CAD, CAM, and CNC Systems

By implementing STEPAP-203and STEPAP-214within CAD systems, data
exchangebarriersareremovedintheheterogeneousdesignenvironment. Y et,
data exchange problems between CAD, CAM, and CNC systems remain
unsolved. CAD systems are designed to describe the geometry of a part
precisely. CAM systems, ontheother hand, focuson using computer systemsto
generate plans and control the manufacturing operations according to the
geometrical informationpresentinaCA D model andtheexistingresourcesonthe
shop-floor. Thefinal resultfromaCAM systemisaset of CNC programsthat
canbeexecuted onaCNC machine. Theneutral dataformatssuchasSTEPAP-
203and STEPAP-2140nly unify theinput dataforaCAM system. Ontheoutput
sideof aCAM system, a50-year-old international standard, | SO 6983, still
dominatesthecontrol systemsof most CNC machines. Outdatedyet still widely
used, | SO 6983 hasbecomeanimpedi ment for thecontemporary collaborative
manufacturing environment. Someof thetechnical limitsand problemsfound
with1SO 6983 aresummarized asfollows(Xu& He, 2004):

1. Thelanguage focuses on programming the path of the cutter center
location (CL) withrespect tothemachineaxes, rather thanthemachining
taskswith respect to the part.

2. Thestandard definesthesyntax of aprogram statement, butinmost cases
|eavesthe semanti csambiguous.

3. Vendorsusually supplement thelanguagewith extensionsthat are not
coveredinthelimited scopeof 1 SO 6983; hence, the CNC programsare
not exchangeable.

4.  Itonly supportsone-way informationflow fromdesignto manufacturing.
The changes made at the shop-floor cannot be directly fed back tothe
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designer. Hence, inval uabl e experiences on the shop-floor cannot be
preserved and reused.

5. Thereislimitedcontrol over programexecution, anditisdifficulttochange
theprogramintheworkshop.

6. CAD dataarenot utilized at amachinetool. Instead, they haveto be
processed by amachine-specific post-processor, only to obtain aset of
low-level, incompletedatathat makesverificationsand simulation diffi-
cult,if notimpossible.

7. 1S0 6983 doesnot support the splinedata, which makesit incapabl e of
controllingfiveor moreaxismillings.

Theseproblemscoll ectively make CNC machining abottleneck intheconcur-
rent manufacturing environment. It also meansthat adesired CAD/CAPP/
CAM/CNC trainisbroken at thelink between CAM and CNC.

STEP-NC: A Replacement for G-Code

AsSTEP-NCisanextension of STEPto handling NC processes, it strictly
followsthe STEP standard. The overriding concept of STEP-NC isthat of
“Workingsteps’. A Workingstepisamanufacturing task that describesinfor-
mation such asasinglemanufacturing operation, atool, or astrategy. Other
high-level information model ed by STEP-NCincludesvariousNCfunctions,
machinefunctions; machining strategi es; auxiliary commands; technol ogical
description such astool data(dimensions, tool type, conditions, and usage of
thetool); and workpiece definitions (surfaces, regions, and features of the
finished part).

Inessence, STEP-NC describes*what todo”, while G-codedescribes“ how
todo”. STEP-NCdescribestasks(pre-drilling, drilling, roughing, finishing)
that arebased onthemachining features(Figure2), sothat the part program
suppliestheshop-floor withhigher-level information, that is, theinformation
about machiningtasksand technol ogical dataontop of puregeometrical and
topological information. Asaresult, modificationsat the shop-floor can be
saved and transferred back to the planning department that enabl esabetter
exchangeand preservation of experienceand knowledge.

Someof thebenefitswithusing STEP-NC areasfollows (Xu & He, 2004):
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Figure 2. Comparison of G-code and STEP-NC
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*  STEP-NCprovidesacompleteand structured datamodel, linked with
geometrical and technol ogical information, sothat noinformationislost

between thedifferent stagesof the product devel opment process.

* Itsdataelements are adequate enough to describe task-oriented NC

data.

*  Thedatamodel isextendabletofurther technol ogiesand scal able(with
Conformance Classes) to match the abilities of aspecific CAM, SFP

(Shop Floor Programming), or NC system.

*  Machining time for small- to medium-sized job lots can be reduced
becauseintelligent optimization can bebuiltintothe STEP-NC control -

lers.

*  Post-processor mechanismwill beeliminated, astheinterfacedoesnot

requiremachine-specificinformation.

*  Machine tools are safer and more adaptable because STEP-NC is

independent from machinetool vendors.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.



STEP-NC to Complete Product Development Chain 155

*  Maodification at the shop-floor can be saved andfed back to thedesign
department; hence, bi-directional informationflow from CAD/CAM to
CNC machinescan beachieved.

e XML filescanbeused asaninformation carrier, henceenableWeb-based
distributed manufacturing.

Currently two versions of STEP-NC are being developed. Thefirstisthe
Application ReferenceModel (ARM), thatis, | SO 14649itself (1SO 14649-
1, 2003; 1SO 14649-10, 2003; I1SO 14649-11, 2003; 1SO 14649-111,
2003; 1SO 14649-12, 2003; 1 SO 14649-121, 2003) and the other Applica-
tionInterpreted Model (AIM), thatis, 1SO 10303 AP238 (1SO/D1S10303-
238, 2005). Beingthe ARM model, | SO 14649 providesadetailed analysis
of therequirementsof CNC applications. Thespecific objectsareaccurately
defined; so aretherelationships among them. On the other hand, the AIM
model of STEP-NC, that is, STEP AP-238, isaway to map the application
requirement datastipulatedin ARM (1SO 14649) using afixed set of STEP
conceptscalled*” genericresources’, intoanintegrated | SO 10303 Application
Protocol. Morediscussionsonthesetwo typesof STEP-NC modelscan be
foundinalater sectionof thischapter.

Global Research Endeavor with STEP-NC

Theglobal researchintheareasof STEP-NC hasremained highly visiblewith
a number of major projects coordinated and conducted across different
countriesinthesameregionaswell asonatruly international scale. Thereare
threetypes of projects, those carried out (1) on theinternational scale, (2)
acrossafew countriesinthe sameregion, and (3) withinacountry. Onthe
international scale, thel M S(Intelligent Manufacturing System) STEP-NC
project (IMS STEP-NC Consortium, 2003; Maeder, Nguyen, Richard, &
Stark, 2002), endorsed in November, 2001, entails a true international
packageof actionswithresearch partnersfromfour different regions: European
Union, Korea, Switzerland, andthe USA. They covered themanufacturersof
all systemsrelatedtothedatainterface (CAM systems, controls, and machine
tools), the users, and academic institutions. Theregional coordinatorsare
Siemens (EU), CADCAMMation (Switzerland), STEP Tools (USA), and
ERC-ACI (Koread). Siemensisal sotheinter-regional coordinator. Formation
of thelM SSTEP-NC projectisseen asthecul mination of anumber of regional
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projectscarried out by different project groups/consortiumsinthe past ten
yearsor so, inparticular, theEuropean ESPRIT STEP-NC Project, the Super
Model Project, the STEP Manufacturing Suite(SM S) Project, and theRapid
Acquisition of Manufactured Parts (RAMP) Project (LSC Group, & R. P.
Management (2002). Because of the Workingstep-based featurein STEP-
NC, many projectshaveincorporated prototype/commercial CAPP(Com-
puter-Aided ProcessPlanning) systemsor CAM systemswith processplan-
ningfunctionalities, thatis, STEPturnfrom I SW Stuttgart, Germany (Storr &
Heusinger, 2002; Storr, Pritschow, Heusinger, & Azotov, 2002), ST-Machine
fromSTEPToolsInc., USA (ST-Machine, 2005; Anonymous, 2003), SFP
systemfromNRL-SNT (National Research Laboratory for STEP-NC Tech-
nology), Korean (Suh & Cheon, 2002a; Suh, Cho, & Hong, 2002b; Suh, Cho,
L ee, Chung, Cheon, & Hong, 2002c; Suh, L ee, Chung, & Cheon, 2003), the
AB-CAM systemfrom Wolfson School of M echanical and Manufacturing
Engineering, Loughborough University, UK (Allen, Newman, Harding, &
Rosso, 2003; Newman, Allen, & Rosso, 2003; Roberto, Rosso, Allen, &
Newman, 2002), NIST STEP-NC Interpreters, National Institute of Stan-
dardsand Technology, USA and STEPcNC Converter fromtheUniversity of
Auckland, New Zealand (Xu, 2004; Xu & Mao, 2004).

STEP-NC Data Model

Likeall the other parts of the STEP standard, the STEP-NC datamodel is
constructed based on the EXPRESS language (1SO 10303-11, 1994). The
EXPRESSI|anguageisaformal languagefor thedefinition of entity-attribute
datamodels. Itisacompl etely generic modeling language and cantherefore
be used to model data objects of any type. The STEP-NC EXPRESS
information model isorganizedinto schemas. These schemascontain model
definitionsand serve asascoopi ng mechanismfor subdivision of STEP-NC
models. EXPRESS also gives STEP-NC an object-oriented flavor. Its
inheritance can beillustrated by the definition of manufacturing features
defined in STEP-NC (1SO 14649-10, 2003) (Figure 3). For every 2%:D
manufacturingfeature, therehasto beafeature placement value. Therefore,
itisdefinedat thetoplevel (intheTwo5D_manufacturing_featureentity). This
attributeisinheritedby all the* child” entities, that is, machining, replicate, and
compoundfeatures. Similarly, each sub-typeof machiningfeatureswill havean
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Figure 3. EXPRESS-G illustration of STEP-NC manufacturing features
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elementary surface to defineits depth, and it is defined oncefor all at the
machiningfeaturelevel.

STEP-NC ARM and AIM Models

TheSTEP-NCARM structurewrittenin EXPRESSi seffectively adescription
method. Ontheother hand, AIM isaway to map theapplication requirement
data(NC datainthiscase) stipulatedinthe ARM using afixed set of STEP
“genericresources’, intoanintegrated | SO 10303 A pplication Protocol, hence
AP238. Because AP-238isbuilt onthe samefoundation astheother STEP
APs, itcansharedataseamlessly.

However, oftenatissueiswhether itisbest, from animplementer’ sviewpoint,
toimplementthe STEP-NC ARM (1SO 14649) modelsdirectly (a.k.a. ARM
implementation), or toimplement the STEP-NC AIM (1SO 10303 AP 238)
models(a.k.a. AIM implementation). Themain difference betweenthesetwo
model sisthedegreetowhichthey usethe STEPrepresentation methodsand
technical architecture (Feeney, Kramer, Proctor, Hardwick, & Loffredo,
2003; Wolf, 2003). Table 1 comparesthesetwo models.

ThelSO 14649 standardismorelikely tobeusedinanenvironmentinwhich
CAM systemshaveexactinformationfromtheshop-floor, whereasSTEPAP-
238, asapart of the STEP standard, ismoresuitablefor completedesignand
manufacturing integration. The SO 14649 standard has no mechanism to
incorporateother typesof STEP data, hencemaking bi-directional dataflow
between design and manufacturing moredifficult. Unlikel SO 14649, STEP
AP-238 encompassesall theinformation from STEP AP-203 and AP-224
(1SO 10303-224, 2001) plusaninterpreted model mapped from 1SO 14649.
Hence, bi-directional dataexchangeisenabled.

Table 1. Comparisons between an ARM and AIM model

Comparison 1SO 14649 (ARM) 1SO 10303-238
criteria model (AIM) model
Storage needed ~10timeslessthan | ~10 times more than
AlM ARM

Programming Easy More complex
Human readable Difficult Almost impossible

Compatibilities Partly compliant Fully compliant

with STEP
Data consistency Original design Original design
information is information is
abandoned preserved
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However, STEP AP-238 isnot without problems. One problemisthat the
STEP Integrated Resources used in AP 238 are not adapted to application
areas, hence, thedatainitsfilesarefragmented and distributed. It only provides
aninformationview of thedata, whereasthe ARM providesafunctional view
of thedata. An AP 238filecanal sobecomemuchlarger thanitsequival ent of
SO 14649. STEPAP-238filesarenot aseasy to decipher as| SO 14649files.
The structure of AP-238 filesismore complex and may cost more storage
space. In order to work with AIM files, tools and/or libraries such STIX
developedby STEPToolsInc., canalleviatedatahandling choresfor devel -
opers(STIX, 2005).

STEP-NC Implementation Methods

EXPRESSI|anguagedoesnot defineany implementation methods. Therefore,
additional implementation methods are defined to describe STEP-NC in-
stances for building product exchange models, for example, 1SO 14649
modelsand 1SO 10303 AP 238 models. There are several implementation
technologiesavailable:

1. A product model-specificfileformat called Part 21 physical file (I1SO
10303-21, 1994);

2. Avariety of programming-language bindingsthat allow an application
programmer to open adata set and accessvaluesinitsentity instances.
Bindingshavebeendevelopedfor C, C++and Java(l SO 10303-221998;
SO 10303-23, 2000; 1SO 10303-24, 2001; ISO 10303-27, 2000);

3. The three methods for mapping EXPRESS defined data into XML
described by Part 28 Edition 1 (1ISO/CD TS 10303-28 [Edition 1],
2002); and

4. TheXML schema-governed representation of EXPRESSdescribed by
Part 28 Edition 2 (1SO/TS 10303-28 [Edition 2], 2004).

Part 21 Physical File Implementation Method

STEPPart 21isthefirstimplementation method, which definesthebasicrules
of storing EXPRESS/STEP datain acharacter-based physical file. Itsaimis
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toprovideamethodsothatitispossibletowrite EXPRESS/STEPentitiesand
transmit thoseentitiesusing normal networkingand communication protocols
(i.e., FTP[FileTransfer Protocol], e-mail,and HTTP[Hyper Text Transfer
Protocol]).
A Part 21 filedoesnot have any EXPRESS schemasincluded. It only defines
the relationships between entities that are defined by external EXPRESS
schemas. ThePart 21 fileformat usestheminimalist stylethat waspopular
beforetheadvent of XML. Inthisstyle, thesameinformationisnever written
twicesothat thereisno possibility of any contradictionsinthedata. Thestyle
assumesthat normally thedatawill only beprocessed by software, that people
will only look at thedatato createtest examplesor find bugs, and that making
thedatamoreeasily readabl eby these peopl eislessimportant than eliminating
redundancies. ThePart 21 formatissimpleand elegant. Each entity instancein
aPart 21filebeginswithauniqueEntity D andterminateswithasemicolon®;”.
TheEntity ID isahash symbol “#” followed by aninteger and hasto beunique
withinthedataexchangefile. TheEntity ID isfollowed by anequal symbol
“=") andthenameof theentity that definestheinstance. Thenamesarea ways
capitalized because EXPRESSiscase-insensitive. Thenameof theinstanceis
thenfollowed by thevaluesof theattributeslisted between parenthesesand
separated by commas. Thefollowingistheexcerpt of aSTEP-NCARM file.

ISO-10303-21;

HEADER;

FILE_DESCRIPTION((‘ASTEP-NCtestingfile’),’1");
FILE_NAME(‘'sample_partl.stp’,$,('AUMS’),(*"), Prototype Mill’,”,”);
FILE_ SCHEMA(('STEP-NC milling schema));

ENDSEC;

DATA,

/I Project and Workplan

#1=PROJECT(‘Contour’ #2,(#3));

#2=WORKPLAN(‘Work plan’,(#4),$,#5);
#3=WORKPIECE(‘Workpiece’ #6,0.01,$,$.#8,0);

/ Workingsteps

#4=MACHINING_WORKINGSTEP(‘Rough Contour’,#13,#16,#17);
#5=SETUP(‘main_setup’ #44,#48,(#51));
#6=MATERIAL('ST-50’,'Steel',(#7));
#7=PROPERTY_PARAMETER(‘E=200000 N/mm"2’);
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#8=BLOCK('Block’,#9,260.000,210.000,110.000);

/l Geometric data

#9=AXIS2_PLACEMENT_3D(‘BLOCK’#10,#11,#12);

/[ Manufacturing features

#16=GENERAL_OUTSIDE_PROFILE(‘Profile’ #3,(#17),#18,#22,$,$,$,$,#23,$,3);
/I Operation data

#17=SIDE_ROUGH_MILLING($,$,'Contour
profile’,;#38,10.000,#39,#40,#43,$,$,$,20.000,5.000,0.000);
#18=AXIS2_PLACEMENT _3D(‘Position of contour’ #19,#20,#21);
#19=CARTESIAN_POINT(‘Position of contour’,(40.000,90.000,100.000));
#20=DIRECTION(",(0.0,0.0,1.0));

#21=DIRECTION(",(1.0,0.0,0.0));
#22=TOLERANCED_LENGTH_MEASURE(20.000,$,$,%);
#23=COMPOSITE_CURVE('Contour Profile’,(#24,#25,#56),.F.);

/I Tool data
#40=CUTTING_TOOL(‘Endmill10mm’#41,(),(50.000),50.000);
#41=TAPERED_ENDMILL(#42,3,.RIGHT.,.F..$,$);
#42=TOOL_DIMENSION(10.000,%$,$,$,$,$.,%);

/I Machining technology
#43=MILLING_TECHNOLOGY($,.TCP.,$,3.3333,$,0.10,.T.,.F.,.F.);
#44=AX1S2_PLACEMENT _3D(‘Reference pointto Machine zero’ #45 #46 #47);
#45=CARTESIAN_POINT(",(20.000,30.000,10.000));
#56=COMPOSITE_CURVE_SEGMENT(.CONTINUOUS.,.T. #57);
#57=POLYLINE(‘Second cutofthe contour’,(#29,#30,#31,#32,#33,#27));
ENDSEC;

END-ISO-10303-21,;

Data Access Implementation Methods

STEPDataAccesslInterface (SDAI) reducesthecostsof managingintegrated
product databy making complex engineering applicationsportableacrossdata
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implementations. Currently, four international standardshavebeen established
for SDAI:

o  Standard dataaccessinterface (1SO 10303-22, 1998);

»  C++languagebindingtothestandard dataaccessinterface (1SO 10303-
23, 2000);

*  Clanguagebinding of standard dataaccessinterface (1SO 10303-24,
2001); and

*  JavaProgramminglanguagebindingtothestandard dataaccessinterface
withInternet/intranet extensions(1SO 10303-27, 2000).

Each standard defines aspecific way of binding the EXPRESS datawitha
particular computer programminglanguage. Bindingisaterminology givento
analgorithmfor mapping constructsfromthe sourcelanguageto thecounter-
parts of another. Generally speaking, the binding defined in SDAI can be
classifiedintoearly andlatebinding. Thedifferencebetweenthemiswhether
theEXRESSdatadictionary isavailabletothesoftwareapplications. Thereis
nodatadictionary inanearly binding, whereasinalatebinding, theEXPRESS
schema definition is needed by late binding applications at run-time. For
example, the SDAI for C++ language binding is a typical early binding
approach; whilethe SDAI for Clanguage bindingisalatebinding approach.

Theearly binding approach generates specific datastructureaccordingtothe
EXPRESS schemasand the programming languagedefinitions. Theentities
defined in EXPRESS schemas are converted to C++ or Javaclasses. The
inheritance propertiesinthe EXPRESS schemasareal so preservedinthose
classes. Theadvantageof anearly bindingisthat thecompiler of theprogram-
ming language can perform additional type checking. But because of the
complexitiesof EXPRESS schemas(for example, theaveragedefinitionsina
STEP-NCAIM model isupto 200, and each definitionintheearly binding
approach needsto haveacorresponding classintheprogramminglanguage),
theinitial preparation, compiling, andlink of anearly binding approach canbe
time-consuming.

Thelatebinding approach, ontheother hand, doesnot map EXPRESSentities
into classes. It uses EXPRESS entity dictionariesfor accessing data. Data
valuesarefound by queryingthose EXPRESSentity dictionaries. Only afew
simplefunctionsneed to bedefined inthelate binding approach to get or set
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values. A latebinding approachissuitablefor aprogramminglanguagethat
doesnot havestrong typechecking such asClanguageor an environment that
may have multiple EXPRESS schemas (when EXPRESS schemachanges, a
latebinding application canuseanew dictionary without changing theapplica-
tionitself). A latebindingissimpler than an early binding approach because
thereisno needto generatethe corresponding classes. However, thelack of
typechecking destinesthat thelate binding approachisnot suitablefor large
systems.

A mixed binding approach may providethe advantagesof an early binding
(compile-timetypechecking and semanticsasfunctionsinaclass) andlate
binding (simplicity). For example, amixed binding takes advantage of the
observationthat applicationsrarely useall of thestructuresdefined by an AP
AIM (e.g.,AP238). Thesubset of structuresthat areused, called theworking
set, can beearly-bound, whiletherest of the APislate-bound. All dataisstill
available, but theapplication devel opment processissimplified. Thenumber of
classesandfilesthat areneeded arereduced dramatically, resultingin quicker
compilations, simpler sourcecontrol and morerapid devel opment.

XML Implementation Method (Part 28, Edition 1)

XML consists of different rules for defining semantic tags that breaks a
document into partsandidentifiesthedifferent partsof thedocument. Further-
more, itisameta-markup languagethat definesasyntax inwhich other field-
specific markup languagescan bewritten (Harold, 2002). Essentially, XML
definesacharacter-based document format. Thefollowingisasimple XML
document definingamillingcutter:

<?xm version="1.0"?>
<M LLI NG_TOOL>
MLL 18MM
</ M LLI NG_TOOL>

ThefirstlineistheXML declaration. Itisusually madeup of anattributenamed
“version” anditsvalue®1.0”. Linestwotofour definea“MILLING _TOOL”
element with “<MILLING_TOOL>" as the start tag and “</
MILLING_TOOL>" theendtag.“MILL 18MM” isthecontent, or inanother

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



164 Xu

word, thevalueof theelement. XML isflexiblebecausethereisnorestriction
tothosetag names. Hence, itispossibleto assign more human-understandable
tag namesin an XML document, while computers just interpret an XML
document according to apre-defined formula. 1t isobviousthat the use of
meaningful tagscanmakean XML document human-understandableaswel | as
computer-interpretable.

When representing EXPRESS schemas, Part 28, Edition 1 (ISO/CD TS
10303-28 [ Edition 1], 2002) specifiesan XML markup declaration set based
onthesyntax of the EXPRESSI|anguage. EXPRESStext representation of
schemasisal so supported. Themarkup declaration setsareintended asformal
specificationsfor theappearance of markupinconforming XML documents.
Thesedeclarationsmay appear aspart of Document TypeDefinitions(DTDs)
for suchdocuments.

Likethemethod usedin SDAI, STEPPart 28, Edition 1 (1SO/CD TS 10303-
28 [ Edition 1], 2002) defined two broad approachesfor representation of data
corresponding to an EXPRESS schema. One approachisto specify asingle
markup decl aration set that i sindependent of the EXPRESS schemaand can
represent dataof any schema. Thisapproachiscalled XML latebinding. The
second approach is to specify the results of the generation of a markup
declaration set that i sdependent onthe EXPRESS schema. Thisapproachis
called XML early binding. STEP Part 28, Edition 1, definesonelate-binding
approach and two early-binding approaches.

XML Implementation Method (Part 28, Edition 2)

It hassoon becomeevident that theuseof DTD syntax to specify mappingsof
EXPRESSto XML asprescribedin Part 28, Edition 1, resultsinasub-optimal
solution. Recognizingthelimitationsof thefirst edition such asthosediscussed
inthe previoussection, | SO hasbeguntowork on the second edition of Part
28 employing W3C XML schema. The Part 28, Edition 2, EXPRESS-to-
XML -schemamapping and configurationlanguage (1SO/TS10303-28[ Edi-
tion2],2004) isstill under development. Themainthemeof thenew implemen-
tation method isitstwo-level method. At the lower level, CAD authoring
systemscan continuetoread andwrite STEP datasets. Theonly differenceon
thislevel isthat these datasetscan now havean XML format to makethem
more compatiblewith thehigher level. At theupper level, thedatasetsare
modularized by insertinginformation from themapping tablesintothe XML
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Figure 4. Definitions generated by the new method
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datato explainthemeaning of each entity sequence. Thenew method canopen
upthedefinitionof an Application Protocol into aseriesof interconnected XML
schemas. AsshowninFigure4, each XML schemadefinestherepresentation
required for one of the STEP-NC ARM objects.

Thismethodisimplemented usingtwolanguages, aconfiguration languagefor
describing how tomap EXPRESSinformationintoan XML definedform, and
theexisting STEP mapping tablelanguage convertedintoan XML form.

Case Study

STEPand EXPRESSIanguageshaveonly beenaroundfor ashort span of time.
XML and other Web toolsand languagesareal sorelatively young. Thefirst
STEP-NC standard waspublishedin2003. Theresearchwork carriedoutin
theManufacturing SystemsL aboratory of theUniversity of Aucklandaimsto
achieveatotal STEP-compliant product devel opment environment (Figure5)
(Xuetal.,2005). Thesystemused STEP (Part 21 and Part 28) and STEP-NC
(AP238) standardsto construct auniversal datamodel.

In the design phase, STEP AP-203 or AP-214 is used as the neutral data
format to exchange design databetween different CAD systemsor between
CAD and CAPPsystems. Twodifferent manufacturinginformation databases
(generic and native) co-exist to support CAPP dataexchange. Thegeneric
manufacturing databasescontai n abstract informati on about machinetool sand
cutting tools of any kind. Hence, process plans generated using generic
manufacturing resourcescannot beexecuted directly at theshop-floor. Thisis
because a STEP-NC-based process plan at this stage hasonly information
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Figure 5. STEP-compliant collaborative manufacturing model
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about “what todo”, that is, thetasks. Examplesof what-to-doinformation
includemachining featuresand the description of requirementsof machine
tool(s) and cutting tool(s). At thisstage, no information about sel ection and
determination of specific machinetool(s) and cutting tool (s) ispresentinthe
STEP-NC program. Generic processplansarethereforemachine-independent.
Thenativemanufacturing databasesref|ect theactual conditionsof ashop-floor
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includingexisting machinetool sand cutting tool sthat can beusedfor popul ating
and optimizingagenericprocessplanandgeneratingnativeprocessplansfor fina
execution. Tothisend, anativemanufacturing database can beconsidered asa
“DNA" bank for al theavailablemanufacturingfacilities.

Thebasicelement of aSTEP-NCfileisWorkingstepinstead of the cutting
tool’ spositions. Workingsteps are built based on machining features. The
systemusesinputsfrom CAD systems, featurerecognizers, CAPPalgorithms,
and manufacturingresourcestogenerateaSTEP-NCfile. Asthe CAPPsystem
isdesigned based onthethree-tiered architecture, it hastheability toswitch
between different manufacturing databases to generate generic or native
STEP-NC files to provide a maximal flexibility to support collaborative
manufacturing. Asshownindashedlinesin Figure5, whenthe CAPPsystem
isconnectedtoagenericdatabase, theoutput STEP-NCfileswill beuniversal
and machine-tool independent. Under thiscondition, theCAM systemcanlater
popul ateand optimizeageneric STEP-NCfilebased onthenative manufac-
turing database on the shop-floor to obtain a suitable STEP-NC filefor a
specific CNC machine. When the CAPP system isdirectly connected to a
native manufacturing database, it will be able to optimize the machining
sequence, sel ect machinetool sand cutting tool sat the processplanning stage,
andgenerateaSTEP-NCfilewhich can bedirectly used by atargeted CNC
machine. Figure6 showsthedetailedinformationflow intheproposed system.

Inthisscenario, CAM systemsaremorelikely to beintegrated with STEP-NC-
enabled CNC machines, or rather their controllers. Themainfunctionsof a
CAM system arethereforeto optimizethegeneric STEP-NCinformationand
offer dataconnectionstoaCAPPsysteminstead of cal cul atingtool trajectories
and generating CNC programs, whichwill behandled by thebuilt-infunctions
of the STEP-NC controller.

System Model

Theabstract model of theproposed STEP-compliant manufacturingsystemis
illustratedin Figure 7. In order to support the collaborative manufacturing
environment, thesystemisof athree-tiered network hierarchy.

Theclienttieriseffectively aGUI, consisting of aset of applicationsandaWeb
browser to enable interactions between users and the system. The main
functionsof theclienttier areto analyzethenecessary interactionsbetween
usersandtheentiresystem, aswell asto providean effectiveway torealizethe
interactionsusingexistingtechnologies.
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Figure 6. IDEFO0 diagram of the STEP-compliant collaborative
manufacturing model
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Businesslogictieristhecoreof theproposed system; it actsasaCAPPserver.
Themainfunctionsinthistier aresimilar tothoseof atraditional CAPPsystem.
Common CA PPtaskssuch asfeaturerecognition, designation of machinetool/
cuttingtool, and operation optimizationsare carried out onthe CAPP server.

Datatier supportsthe CAPPserver. It representsgenericor local shop-floor
information pertai ningto processplanning. By switching betweendifferent data
sources at the datatier, the CAPP system can better support collaborative
manufacturing.

Client Tier: User Interface

Theclienttier directly interactswithusers. AsaSTEP-compliant system, there
are anumber of different modulesthat are needed to providetherequired
functionsintheclienttier. They are:
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Figure 7. Abstract system model of the STEP compliant manufacturing
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* A userinterfacethat can view process plansthrough aspecific query

statement;

* A STEPphysical fileinterpreter that interpretsthe STEPand STEP-NC
structures;

* A GUI thatdisplays3-D model shased onthegeometrical informationin
aSTEPfile;
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* A modulethat presentsmanufacturing plansin STEP-NCterms, that s,
Workplansand Workingsteps,

* A modulethat presents, and allowstheuser to modify, manufacturing
information such asfeatures, machinetools, cuttingtools, andtol erances
inaWorkingstep;

*  Amodulethat allowsuserstoalter thesequenceof Workingstepsand/or
Workplans; and

* AnXML interpreter that caninterpret both the generic manufacturing
informationfromthe CA PP server and nativemanufacturinginformation
fromadatabasein XML format.

Figure8illustratestheinformationflow amongdifferentmodules. Theclienttier
startswithlisting theexisting processplansinaprocessplan databasethrough
aquery statement. When aspecific processplanischosen, Workplansandthe
solidmodelsintheplan can bepresentedtotheuser viaGUI. At thisstage, the
XML interpreter providestheinterpreted XML manufacturinginformationto
the clients. XML DTD, XSLT, and XML schema and/or the controls for
keepingthe XML dataareretrieved fromthe manufacturing databasesin a
desired manner. Indoing so, themanufacturinginformationwithinthe XML
datacan beeasily used to modify the current processplan. Inresponsetothe
requirementsfromtheclienttier, themost suitableframework inwhichthose
modul escan beimplementedisaWeb browser.

Business Logic Tier: CAPP Server

Twodifferenttypesof businesslogictiersarerepresented asshowninFigures
9and 10. Thedifferencebetween themistheway inwhichthe Workingstep
optimizer workswiththeprocessplanner. InModel |, the CAPPserverisable
toaccessdifferent nativemanufacturing resourcesto generatedifferent native
processplans, hencean“integrated” scenario. Model |1, ontheother hand,
generatesthegenericand nativeprocessplansintandem. Thelatterislikely to
begenerated at theshop-floor. Therefore, it supportsan*interfacing” scenario.

Inboth models, featurerecognitionisthefirst task. Theinputstothismodule
are datafiles conforming to 1SO 10303 AP-203 or AP-214. The controls
include SO 10303 AP-203, AP-214, AP-224 and a feature database
compatiblewith AP-224. AP-203 and AP-214 areused to describethepure
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Figure 8. Information flow in the client tier
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geometrical information of a part, whereas AP-224 is used to describe
machiningfeaturesinaprocessplan. Thegoal of using AP-224 asacontrol here
istoprovideauniversal and STEP-compliant machiningfeaturelibrary inplace
of different proprietary featurelibrariesfromdifferent systemvendors. AP224
isalso usedtodefine STEP-NC machining features. Thefeaturerecognition
modulemay havetwo different modes, automatic and manual.

The main function of the process planning modulein Model | isto assign
manufacturing resourcesto thefeaturesgenerated by thefeaturerecognizer.
The controls of the process-planning module include 1SO 10303 AP-238
(STEP-NCAIM), Workingstep optimi zing algorithms, and nativemanuf actur-
ing resourcesdatabases. The native manufacturing resourcesdatabasescon-
formtol SO 14649, Part 111 (toolsfor milling) and Part 121 (tool sfor turning).
Asthemanufacturinginformationisstoredin STEPPart 28, Edition1, XML
format, the connection between the CAPP server and the native resources
databasesisviathelnternet. If thenativeshop-floor manufacturing resources
are connected, the process planning module can directly assign specific
manufacturing resourcessuch asmachinetool sand cuttingtool stoeachfeature
for creation of Workingsteps. Workingsteps are optimized and properly
sequencedto generateaprocessplanwhich canbeexecutedimmediately at the
shop-floor.

In Model I, the Workingstep optimization mechanism is separated from
processplanning and formsanew modul e. Thismay beduetothefact that the
nativemanufacturing resourcesarestill pending. Inthiscase, theoutputsof the
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Figure 9. CAPP server Model I (Integrated model)
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Figure 10. CAPP server Model II (Interfacing model)
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process-planning modul earegeneric processplans. They will be* popul ated”
intheWorkingstep optimizationmodul ewiththeinformationfromanidentified
nativemanufacturing resourcetogiveanativeprocessplan. Essentially, generic
processplanningisaprocessof “ enriching” themachiningfeatures, represented
astheAP-224formatinthiscase, withthenecessary syntaxinformationtoform
entitiesdefined by STEP-NC, for example, Workplansand Workingsteps.
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Somepreliminary decisionssuch asWorkingstep ordering and set-up planning
will bemainly based onthefeatureinformation andtheinformationfroma
generic manufacturing database. Notethat whatever decisionisreachedat this
stage, changescan beeasily madeoncethenativemanufacturinginformation
becomesavailable. Many informationslotsinan STEP-NCfilewill remain
empty or carry default valuesat thisstage. Thisisintended by thestandard, that
is, STEP-NC hastheability tojust model what-to-doinformation.

Torecap, bothModelsl and 11 seemto performsimilar functions. Thereis,
however, afundamental differencebetweenthem. InModel |, theoutput from
theCAPPserverisaspecific, “how-to-do” processplan, whichcanbedirectly
used by aspecificmanufacturingfacility. This*how-to-do” informationmay not
beused by other manufacturingfacilities.InModel 11, thereisanintermediate
result fromtheprocess-planning modul e, that is, ageneric processplan. This
generic processplan contains® what-to-do” instead of “how-to-do” informa-
tion. Itis, therefore, machinetool independent. The*what-to-do” information
mai ntai nsitsgeneric natureuntil thelast moment whenthe CAM systemof the
chosenmachinetool populatesit withthenativemanufacturinginformationso
as to generate a specific (how-to-do) process plan. Therefore, Model 11
possesses the required flexibility and portability to support collaborative
manufacturing.

Data Tier: Data Model

Thedatabasesinthedatatier areconstructed by applying the Part 28, Edition
1, rules to the EXPRESS schemas. For example, the feature database is
constructed by applyingthePart 28 rulesto | SO 10303 AP-224 schemas, and
the cutting tool databaseisconstructed by applyingthePart 28 rulesto | SO
14649, Part 111 and Part 121 schemas. Thefollowing XML codesfromthe
cuttingtool databasedefineacenter drill. Figure11 showssuchinformationin
aWeb browser.

<STEP- XML xni ns: ceb="ur n: i s010303- 28: ceb” >
<cutting_tool ceb:id="66" ceb:copi es="4">
<i d>CENTER DR LL_5MW/ i d>
<its_tool body>
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<center _drill ceb:id="65" ceb: copi es="4">
<di nensi on>
<t ool _di nensi on ceb: i d="59" ceb: copi es="4">
<di anet er >5. 000000</ di anet er >
<t ool _top_angl e>0. 000000</t ool top_angl e>
<ti pcutting_edge | engt h>0. 000000</ti pcutting_edge | engt h>
<edge_radi us>0. 000000</ edge_r adi us>
<edge center_verti cal >0. 000000</ edge center vertical >
<edge_cent er_hori zont al >0. 000000</ edge cent er _hori zont al >
</t ool _di nensi on>
</ di nensi on>
<nunber _of teet h>2</ nuniber of t eet h>
<hand_of cut >
<hand>ri ght </ hand>
</ hand _of cut>
</center _drill>
</its_tool body>
<overal | _assenbl y_| engt h>50. 000000</ overal | _assenbl y | engt h>
<angl e for_spindl e _orientati on>0. 000000</ angl e for_spi ndl e orientati on>

<t ool _hol der _di aneter_for_spindle_orientation>0.000000</
tool _hol der _di aneter _for_spind e orientation>

</cutting_tool >
</ STEP- XM_>

TheRDBM S(Relational DataBase M anagement System) isusedinthedata
tier. Inorder tokeeptheoriginal structurewithinan XML document, XML
documentsarestored asawholeintheRDBM Sor asan external fileoutside
theRDBM . Oncesuch adatabaseisconstructed, theinformationrequired by
the CAPPserver canbecarried by the XML documentsandtransferredviathe
Internet. The XML documentsarereadily viewablein\Web browsersand/or
interpreted by aSTEP-XML interpreter inthe CAPP server to obtainspecific
manufacturinginformation.

Framework Development

Intheinterest of space, only twotypesof development work arediscussed. The
objectivesareto (1) enableaprocessplanner to view and manually edit the
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Figure 1. Cutting tool information in XML format shown in a Web browser
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existing process plans/STEP-NC programsin STEP AP-238, Part 21 file
format using the manufacturing resources providedin STEP Part 28 XM L
format and (2) enabl eaccessto, and modification of, manufacturing databases
acrossthelnternet.

Client Tier Implementation

Theprototypeof theclient tier hasbeen devel oped andimplemented under the
MicrosoftWindows® environment. All dientgpplicationsareunifiedwithinMicrosoft
Internet Explorer® 6.0. A set of devel opment tool sand technol ogiesareused:

*  Microsoft Visual C++® 6.0 and Microsoft Foundation Classes (M FC®);
»  ST-Developer®(ST-Developer, 2005) and STIX® (STIX, 2005);

«  OpenGL®(OpenGraphicsLibrary); and

*  ActiveX®technology.

ST-Devel oper®isasoftwaredevel opment packagefor devel opingandworking
with STEPapplications. It offerslibrariesfor reading, writing, processing, and
checking STEPdataof Part 21 formats. It al soprovidesEXPRESSearly binding
with C++ classes. Thesefeatureshel pto devel op additional STEP-compatible
applications. ApplicationswritteninVisua C++° canoffer functionstoreadand
write STEP Part 21 files, aswell ascreate, delete, traverse, and change any
EXPRESS-defined datasetscompiled asobjectsinC++ style. STIX®isaSTEP
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IndeX library for STEP AP-238 from the same company. It containsaC++
library which providesuseful functionsto processmanufacturing datain STEP
AP-238format. Therefore, STIX® simplifiesimplementationand processing of
STEPAP-238informationinprogramswrittenin Microsoft Visual C++°.
Figure12 showstheclient userinterface. A STEPAP-238filein STEPPart 21
formatisrepresentedinanActiveX control. Theleft panel isatreestructurelisting
all theWorkplansand Workingstepsinthe STEP-NCfile, whereastheright panel
representsthegeometrical model of thefinishedpart. Client userscanmodify the
information suchascuttingtools, toleranceand manufacturingtechnol ogies.

Business Logic Tier Implementation

In the businesslogical tier, aWeb server has been constructed. It utilizes
Internet Information Server (11S®), Visual Basic® [ Sapplication, and Active
Sever Pages (A SP®) togeneratedynamicWeb pagesfor different client users.
TheWeb server separatesusersintotwo groups: theprocessplannersandthe
databaseadministrators.

A processplanner can accessalist of existing processplansgenerated by the
Web server. Theprocessplanner canthen choosethedesired processplanto
modify. Each hyperlink leadsto oneexisting processplanrepresentedinan
AP-238 Part 21 physical fileand storedinthedatatier. Onceaprocessplan
ischosen, theprocessplanfilewill bedownloadedintotheActiveX control and
represented inaWeb browser for modifications. New processplanscan be
uploaded back tothedataserver after modifications.

For databaseadministrators, thetier functionsdifferently. The STEP Part 28
XML documentsthat contai nmanufacturinginformationareparsed by theWeb
server beforetransmission. Hence, database administratorscanfocusonthe
manufacturinginformationinthe XML file. Thegenerated dynamicWeb page
for databaseadministrationisillustratedin Figure13.

Theleftframeintheinterfaceisatreemenu structure presenting thestructure
of an XML document. Theupper-right framerepresentstheextracted manu-
facturinginformation. Thelower-right frameistheediting area, inwhich, the
“Name” sectionrepresentstagsinan XML document, andthe®Value” section
referstothedetailed manufacturinginformationinthe XML tags. Oncethe
modificationsaresubmitted, theWeb server generatesanew XML document
based on the new values. The corresponding values in the manufacturing
databasesareal so updated to reflect the changes.
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Figure 12. Prototype of client tier interface

Data Tier Implementation

Thedatatier iscurrently implemented using Microsoft Access2000°. The
manufacturinginformationisstoredasX ML filesintheoperating systemon
whichthedatatier isimplemented. Thecompletefilepathsof those XML files
arestored. Someimportant attri butessuch astool diameter, tool length, and
tool nameby whichthemanufacturinginformation can beidentified arealso
extracted and storedinthetabl esto enablemorespecificquery statements. The
main benefit of suchanimplementation methodisthat thedatabaseiseasy to
construct, and boththeoriginal XML structureandtheflexibility provided by
SQL canstill be preserved. For example, asimplequery statement, “ Select
filepath from drilltools where tooldiameter = 5.0 and overallasslength =
50.0",will returnthefilepathfor theexistingdrillingtoolswithadiameter 5.0
and overall assembly length 50.0. The CAPP server can then extract the
detailed manufacturinginformationfromthe XML documentsaccordingtothe
filepaths. Figure14illustratesanimplemented tablewhich describestool sfor
drilling.
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Figure 13. Interface for database administration

Conclusion

First publishedin 1994, theinitial scopeof STEP covered geometry, product
structure, andtechnical drawings. Sincethen, thestandard hasbeenextensively
implemented onmajor commercial projectsintheaerospace, automotive, and
other industries. Typical implementationsaretheuseof STEPto combinethe
information on shapeand other characteristicsof individual partswithassembly
structurestoformasingleintegrated representati on of acomplex assembly or
product. Thisinformationisgathered fromarangeof application systemsand
consolidatedintoaSTEPfilewhich canbetransferredto other companiesand
unloadedintotheir corresponding systems. Theadvantagefromcombiningthis
dataisthat it guaranteesconsistency for informationdeliveries, and avoidsthe
administrativecost of ensuringthat datai sconsi stent between multiplesystems.

Now STEPisonthevergeof anew successwiththerel easeof aspecification
for definingthedatainputto CNC controllers— STEP-NC. Currently, these
controllersare driven by vector codes developed in the 1960s. STEP-NC
providesauniqueNC programformat for CAPP, CAM, and NC; avoidspost
processing; and entailsatruly exchangeableformat. Operatorscan now be
supported at the machine tool level by complete information containing
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Figure 14. An implemented table that describes tools for drilling

& Microsolt Access - [Drilltool : Table] =ol x|
e e 2 B R e =lsix
- HESky e o @4 TR (A% @A 3.

ull I toolname |tnnld:imte numberoftoo| handofcut |overallaszsl| filepath |Lastwmodifi.

1 CenterDeillbn 5 Zright 50 d:\EMLACuttir  10/11/200

2 CenterDrilllC 10 4 right B0 d: \EMLMWCurt tdr 10/11/200

EndDrillmm 5 2 right | 50 d:\EMLACuttir  10/11/200
i} 0

understandable geometry (machining features); task oriented operations
(Workingsteps and Workplans); and strategies and tool definitions. CNC
machines implementing STEP-NC can have a more open and adaptable
architecture, makingit easier tointegratewith other manufacturing facilities
such asworkpiece handling devices. Relatively high magnitude of funding
strength over anumber of STEP-NC-rel ated projectsduring ashort span of
timesufficiently demonstrated theimportanceof the STEP-NC-related devel -
opment work. Participation of, and collaboration among, awidevariety of
organi zations such as end users, academic and research institutions, and
manufacturers of CAM systems, controls and machine tools, echoes the
significanceandrel evanceof thiswork, inparticul ar fromtheindustry perspec-
tive. STEP-NC comesintwo“forms’, Application RequirementsModel (1SO
14649) and Application Interpreted Model (1SO 1030 AP-238). AP-238
provides an information view of the data, whereas 1SO 14649 provides a
functional view of thedata.

STEP-NC can al so support distributed and collaborative manufacturing sce-
narios. Thisisdemonstrated by thecasestudy. Theframework inthecasestudy
supportsabi-directional informationflow throughout thedesignand manufac-
turingchain. Designinformationinitsentirety isavailableinthemanufacturing
model. Manufacturinginformationisfeature-based and task-oriented. Ina
collaborative manufacturing environment, designersand manufacturersare
often geographically dispersed. Therefore, the framework adoptsathree-
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tiered, Web-based network architectureto providean openstructurefor the
system. Thisarchitecture providesconvenient waysinexchanging designand
manufacturing datain STEP Part 21 and/or Part 28 fileformat through the
Internet. Theclient user interfaceisimplemented withinaWeb browser sothat
theimplementation and mai ntenance costs can bereduced. Manufacturing
information databasesimplementedin STEPPart 28 XML format enablesthe
CAPP server to switch between geographically-dispersed shop-floor re-
sourcesthrough I nternet connectionstorealizecoll aborative manufacturing.
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Chapter VI

Semantic-Based
Dynamic Enterprise
Information Integration

Jun Yuan, The Boeing Company, USA

Abstract

Decision support systems or mission control systems for network-centric
operations typically need input from multiple heterogeneous information
sources. While the number and size of information sources increase,
information integration and its semantic interoperability are becoming a
growing concern and a major challenge to information management. In
this chapter, we will share our experience of enabling semantic-based
dynamic information integration across multiple heterogeneous
information sources. While data is physically stored in existing/legacy
data systems across the networks, the information is integrated based
upon its semantic meanings. Informally, it sounds like a virtual data
warehousing technique without any physical data conversion required in
advance. Ontology is used to describe the semantics of global information
content, and semantic enhancement is achieved by mapping the local
metadata onto the ontology. For better system reliability, a unique
mechanism is introduced to perform appropriate adjustments upon
detecting environmental changes.
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Introduction

Information | ntegration hasbeenahigh priority inbusinessfor many years. For
building applicationssuch asenterprise-widedeci s onsupport systemsor mission
control systemsinanetwork-centricenvironment, many companieshaveactualy
beenstruggling againstintegrationof legacy/existing datasystemsfor sometime.
With the recent explosion of Internet and Web-based resources, information
integrationanditssemanticinteroperability arebecominganevengreater concern.

Inthischapter, we propose aframework that enablesdynamicinformation
integration across multi ple heterogeneousinformation sources, with special
attentionto semanticinteroperability and adaptationsto adynamicenviron-
ment. Whiledataisphysically storedinexisting/legacy datasystemsacrossthe
networks, theinformationisintegrated based uponitssemantic equival ence.
Ontology isusedto explicitly describethe semanticsof global information
content. Such ontology isindependent of any particul ar information sources,
but only based upondomainexperts’ knowledge. Individua systemsmay have
their own intended models, and there are likely various types of semantic
heterogeneity in between those model s. Semantic heterogeneity resol ution
methodsare provided by mapping thoselocal model sonto the ontology with
aunique mapping mechani sm associ ated with the proposed framework. Our
approachisleveraging withthestate-of-the-art Semantic Web standards. For
instance, the domain ontology as well as the mapping knowledge can be
exportedinto RDF or OWL documents.

Inour framework, each participating information sourceassumesfull local
autonomy. All existing softwareapplicationsthat were built ontop of those
informationresourceswill remainto befunctioningthesameway asthey did
previously. Thereisno needtore-devel op any of these pre-existing applica-
tions. Theintegrationitself isthusapurely incremental enhancement.

A single information access point is provided. Users are able to access
information asif it wereacentralizedinformationrepository. Moreinterest-
ingly, itisasemanticinformation access point, which allowsusersto query
against ontology, for example, conceptsandrelationships, directly. Usersare
thusabletoretrieveinformation from multipleheterogeneousdatasystems
without havingto understandlower-level detail ssuch asphysical distribution,
semantic heterogeneity, andlogical conflictsamonginformationsources. In
addition, query answersareal so presented by aninstantiation of theontology,
andthesemanticscanbeeasily captured and understood by both human beings
and computer systems.
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Background

Inthepast decade, many researchers, from both academiaandindustry, have
conducted extensiveresearch oninformation or dataintegration. Theinforma-
tionsourcesinvolvedininformationintegrationeffortsareinherently heteroge-
neouson many aspects. Different sourcesmay usedifferent datamodelsto
describethedatacontents, which might bearel ational model, ahierarchical
model, anetwork model, an XML schema/DTD, apieceof ontology, or even
afree-textlayout. A specificdatamodel usually hasitsownimplied capabilities
andlimitations, intermsof power of expressiveness, query languages, process-
ing capacities, information qualities, and soforth. Such capabilitiesor limita-
tionsmay differ greatly from oneto another. Evenfor systemswith thesame
datamodel, thedetailed|ogical datastructuresfor informationwith sameor
similar semanticsmay differ significantly fromonetoanother, mainly because
of thefactorssuch as: preferenceson how datashoul d bephysically organi zed;
level sof datageneralization/aggregation; and different naming strategies.

Datawarehousingtechnology (Jarke, Lenzerini, & Vassiliou, 1999) isoneof
thesolutionstointegrate multipledatasystemstogether. Overviewsof data
warehousing as well as OLAP technology can be found in some articles
(Chaudhuri & Dayal, 1997; Widom, 1995). With the support of commercial
datawarehousing products, therehaveal ready been many successful storiesof
building enterprise-wide datawarehousesto perform variousinformation
management tasks (Bontempo & Zagel ow, 1998; Gardner, 1998; Scott, 1998;
Sutter, 1998). Ingeneral, itisto createaseparate, physical datarepository that
contains datafrom multiple sources. It has been used to resolve problems
caused by heterogeneoussystems. Environmental variationcanbesubstantially
reduced throughthepre-conversionof datafromitssourceintoahomogeneous
datawarehouserepresentation. A singlehardwareplatformand DBM Sare
chosen, generally usingacommon set of standards. The datarepresentation
andformatissuesaresimilarly resolved, although oftenwithmoredifficulty.
Resol ution of representational disparitiesistypically based onvaryinglevel sof
schemanormalizationor dimensional modeling, depending onthescopeand
intent of thedatawarehousedesign goals. Theformat of thedataisresolved
throughtransformation of datainto consi stent datatypes, unitsof measure, and
translation of code sets into a consistent form during the load processes.
Resol ution of semantic heterogeneitiesiscurrently addressed only inanad hoc
fashion, usually at accesstime. In conclusion, the datawarehouse approach
does not eliminate the need for resolving heterogeneity; it merely splits
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resolution into apre-conversion during theloading of datacopy, and then
provides conversion as needed during data access. In many cases, such
conversions are embedded in code and are not persistently recorded as a
mai ntai nabl e pi ece of metadata.

Resourcerequirementsfor creation and mai ntenance of adatawarehousecan
be substantial. A data warehouse maintains copies of the data, that is,
duplicated setsof data, from multiple systems. Storagerequirementseasily
doublethoseof the parti cipating datasystems, and theultimate capacity of the
warehouse providesafixedlimit onthescopeof thedatato bewarehoused.
A new team of personnel isrequired to maintainthenew environment. Data
integrationisaprerequisite. Restructuring and reformatting of dataal ready
residing in the data warehouse must be performed at any time when an
extension to the design occurs, as does restructuring of existing loading
procedures. Whilethenumber of sourcesfeeding thedatawarehousegrows,
scheduling of updatesbecomesincreasingly difficult. Toensureintegrity of the
data, proper cross-correlationsin the datawarehouse must be synchronized,
forcing synchronization of theloading processes. If therearemorethanfour or
fivesystemssupplyinginformation, resol ution of thesedependenciescan be
arduous, time-consuming, and thusexpensive.

An alternative approach that emerged recently isthe so-called Enterprise
Information I ntegration (El1). Ell aimsat providing aunified accesspoint of
datafrom disparate systems. The data should be accessiblein “real time,”
meani ng that theinformation consumer should beaccessingthesystemdirectly
asopposedtoaccessing staticdatafrom apreviously-captured snapshot. Unlike
thedatawarehousi ng approach, Ell doesnot haveany physical instanti ationsof
itsmember system’ sdata, so hardware and softwareresourcesare compara-
tively minimal . Additiona maintenanceof themember systemdataisnot required
sincethereisnocopy, andthelatestinformationisawaysavailabledirectly from
the member data systems. A few Ell products have become commercially
available in the past couple of years. A review on a number of today’s
Commercial Off-the-Shelf (COTS) Ell productsisavailablein (Macvittie,
2004). For any Ell product, distributed and heterogeneousdataaccesscapabil -
ity isoneof themost fundamental problemsthat needsto beaddressed. There
aretwomajor issues: Oneistoanswer queriesinadistributed environment, and
theother istoresolvevarioustypesof heterogeneity, particularly the query
capability heterogeneity, among participating datasystems. Thebottomlineis:
how to generateaquery execution plan that answersthequery asquickly as
possiblewithhelpof utilizing, if any, member systems’ querying capability.
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Asshown in Figure 1, atypical COTS Ell product offers different types of
wrappers, each for a specific type of data repository like RDBMS, XML
documents, Excel files, packaged applications, and so forth. A wrapper isa
software module that provides an alternative interface for accessing agiven
softwareresource, and thusawrapper herein can provideacommoninterfacefor
heterogeneously-structured datasources. A so-called” federated view” will be
createdfor each schematicel ementinthemember datasystem. A federated view
isessentially avirtua entity, anduserscanperformany supporteddatamanipul ating
operationsover it, for example, defining aselection, aprojection, and ajoin.
Complexviewscanbefurther created ontop of oneor many federatedviews. Both
federated viewsand compl ex viewsconstitutethe Common Gl obal Schemaof
Data Ingenerd, auser wouldthink thewhol eintegrated systemasifitwereasingle
virtual datawarehouse. Uponreceivingaquery request, theinternal distributed
query engineinEll productwill takethewhol eresponsi bility of decomposingthe
origina query intosub-queries, dispatching sub-queriesto correspondingmember
systems, and mergetheintermediatequery answerstogether.

The COTSEII productshaveprovided avery interesting capability, thatis,
answering queriesagainst avariety of information sourcesacrossthenetworks

Figure 1. COTS EII product architecture
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withasingleunified query interface. Thisofferstremendoushel pinresolving
somelower-level heterogeneity, including: platform(e.g., Operating Systems)
heterogeneity, network heterogeneity, datamodel heterogeneity, and more
importantly, querying capability heterogeneity. However, twomajor issuesare
missinginamost every COTSEII product that wehaveseensofar: semantic
interoperability and dynamic adjustmentsupon changes.

For these COT Sproducts, if any of thedataelementsinaquery becomenot
accessibledueto any possiblereasons, thequery executionwould stop. Users
will endupwithanerror messageindicating that anerror hasarisen. Anextreme
casecould be: Thefailureof onemember datasystem may causethewhole
integrated systemto not functionwell andtherefore poor systemreliability.

Thecommon global schemaisrepresented by using somelower-level data
models, for exampl e, rel ational model or XML schema/DTD files. Theseman-
ticsof theintegratedinformationareusually not explicitly expressed. Instead,
they areimplicitly embeddedintheschemata. Dataisstill retrieved by using
low-level query languagelike SQL or XQuery, withwhichusersmust have
enough databaseknowl edgein understanding both the schemaandthequery
language. Itisnot user-friendly for theso-called averageusers, whousually do
not have enough knowledge on databases, but are very familiar with the
domain.

Ell productsdonot provideuserswith assi stancein understanding themeaning
of thedata, nor dothey helpto resolve semanticinconsistencies. They only
provide data consistency. Users are expected to “learn” Ell terminology
(attribute/view names, for instance) inorder toaccessdatafromtheEl |l server.
Heterogeneity between datastructuresmay beresolved, but heterogeneity
betweenthephysical datastructureand semanticsof theuser domainisnot.

For thelast several years, research hasbeenfocused on semanticinteroperability
of information (Doan, Noy, & Halevy, 2004; Ouksel & Sheth, 1999; Sheth,
1998). Just to nameafew: ThelnfoSleuth project (Fowler, Perry, Nodine, &
Bargmeyer, 1999) used an agent-based architecturefor semanti cintegration of
information sources; the OntoBroker project (Decker, Erdmann, Fensel, &
Studer, 1999) employed the Resource Description FrameWork (RDF) to
represent semantic level metadata; and the DAML project (Hendler &
M cGuinness, 2000) hasextended that representation and applieditto semantic
integration of services. Whilethefocusof theresearch community hasbeenon
devel oping comprehensivesol utionsto semanticintegrationissues, our focus
hasbeen on applying these devel opmentsto specific businessproblems. We
have reported our previous work on semantic information integration in
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(Barrett, Jones, Y uan, Sawaya, Uschold, Adams, et al ., 2002). At that time,
since most of the COTS Ell products were not available, an agent-based
infrastructurewas proposed to apply Semantic Webtechnology totheintegra-
tionof corporateinformation. Theinfrastructureconsi stsof two major compo-
nents: resourcebrokersand domain brokers. Every informationresourcethat
we wish to make available has an associated resource broker. The role of
resource broker isto handlethecommunicationto and fromtheunderlying
resource, anditisactually asemanticwrapper for eachinformationresource.
Theroleof domain broker isto performthesemanticintegrationfor particul ar
domainontology uponreceivinginformationfrommultipleresourcebrokers.
Multipledomain brokersareallowedto co-exist for multipledomains, and a
resourcebroker canwork withmultipledomainbrokerssimultaneously aswell.
Thisinfrastructurehasprovided tremendousflexibility intermsof semantic
interoperability. However, it a sorequireshugeeffortson query optimization,
especially becausemany maturerel ational -based di stributed query optimiza-
tiontechniques(K ossmann, 2000) cannot beapplied directly.

Withtheemergenceof many COTSEII products, weare proposing another
framework, benefiting from using abetter-optimized Ell query engine. The
basicideaistoutilizetheEll products availablecapability ondataintegrating
inmaximum, and provideadditional featuresthat Ell productsdonot have. In
subsequent sections, our discussionwill start withtheoverall architectureof our
framework, following with somedetail ed di scussionson several major issues
including: integrated metadatamanagement, querying against semantics, and
dynamic adjustmentsupon changes.

Semantic-Based Information
Integration Architecture

Anoverall architectureof our proposed semantic-based dynamicenterprise
informationintegrationframeworkispresentedin Figure2. The semanticsof
information contentsinall participating member systemsarerepresented by
ontology. Theontology ispersistently storedinthemetadatarepository. A
COTSEII product isusedto perform low-level dataintegration. Different
typesof utility toolsthat comewiththeselected COTSEII product can beused
tohook the Ell product to each participating system. An EIl common global
schemawill beestablished asan output of thishookup. With hel p of our home-
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Figure 2. Semantic-based dynamic enterprise information integration
framework
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grown mappingtools, asystemintegrator can create mappingsbetweenthe
ontology andlocal metadata, and thusthe EIl common global schema. Such
mappingsareal so storedinthe metadatarepository persistently, andwill be
utilizedto conduct query trand ation fromauser-defined semanticquery toone
or multipleglobal query statementsthat areacceptableby theEll query engine.
Thequery generator, usually aGUI, allowsend usersto definesemanti cqueries
against theontology. Upon receiving asemantic query, the semantic query
translator will translatetheoriginal query into oneor morequery statements
according to the mapping information. Such global query statements are
submittedtotheunderlying COTSEII query engine, and thequery resultsof
COTSEII query enginewill be sent to the post-query processing module,
mainly totransformthequery answersinto aninstantiation of theontology. In
theend, the semantic query answerswill bepresentedto end usersviaGUI.

Inthisframework, different tasksinregardsto semanticinformationintegration
andinteroperability areperformedat twodifferentlayers. Thetask of resolving
lower-level heterogeneity isactually pushed downintothe COTSEII product,
whilethevarioustypesof semantic heterogeneitiesareresolved by bothdomain
ontol ogy and thesemanti c mappingsbetweendomainontology and Ell common
global schema. Thisseparationallowsusto better utilizemany distributed query
optimization strategiesthat have been deployedinthe COTSEI I products.
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Figure 3. Major metadata elements
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M etadatahasalwaysbeen oneof themost essential componentsinevery data
intensivesystem, anditisthesamecasehere. Infact, metadatamanagementis
undoubtedly playingavery important roleinregardsto semantic enhancement.
Inthissection, wewill discussissuesrelating to metadatamanagementina
semanti c-based informationintegration environment from different aspects,
suchas. What isthemetadatacontent frominformationintegration’ sviewpoint;
whereand how to get/maintainthemetadata; what kind of correl ationsbetween
different piecesof metadataneed to becaptured and managed from different
types of datarepositories; and with what kind of unique capabilities the
metadatamanagement isgoing providewith end users, query engines, system
administrators, or whoever el setofulfill information management requests.

Therearethree major typesof metadatael ementscapturedin our proposed
metadataarchitecture. AsshowninFigure 3, they are semantic datarepresen-
tation as represented in a piece of ontology; physical/logical layer data
descriptions(member system metadata) for each member system; and map-
pingsbetween the ontol ogical layer and the physical/logical layersof each
participating system.

Ontology

Anontology isessentially aninformation model of thedomainof interest. The
most commonly quoted definition of ontology is* aformal, explicit specification
of ashared conceptualization” (Gruber, 1993). A detailed introduction to
ontologiesaswell asthe current state of the art for applying ontologiesto
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achievesemantic connectivity ispresentedin Uschold and Gruninger (2004).
Inour approach, ontol ogy isused to subsumethe semanticsof thedataacross
multiple datasystems, and it isindependent of any member system’ sdata
representation. Theontology isaccessed by both usersand client software
components to capture and clarify domain semantics. Use of ontology to
abstract and encapsul ate multi ple datasources servesto obscurethecompl ex-
ity of theindividual dataelementsand indeed providesan opportunity for a
more* user-centric” approachto maturation application development. Thisis
becausehow dataisorganized physically isusually of far lessinterest thanhow
theavailableinformationissemantically described. With ontol ogy, fromend
users' or application developers’ perspectives, theintegrated system then
lookslikeasingleinformationresource, containingall of theavailableinforma-
tion within aspecific domain. They would berelieved of the need to know
wheredataislocated— responsibility for locationandidentification of correct
andrelevant dataelementswould belong to themediation. Ultimately, users
should not need to know the details of the data sources — that is the
responsibility of anintegrated system’ squery formulation processbased on
knowledgeabout physical system particulars.

There may potentially be many choices of representation languages, for
instance, first-order logic- (FOL ) based | ogical |languagesor descriptionlogic-
based ontol ogical specificationssuchasRDF, DAML,and OWL. Whileeach
of themmay haveitsown advantagesaswel | asdisadvantages, our focusisonly
onthebasicelementsof ontology, that is, conceptsand rel ationshi psbetween
concepts, which are available in almost every ontological representation
language. Themetadataarchitecturehereis, therefore, technically applicable
toamost every ontological specificationavailabletoday.

Member System Metadata

Inour framework, withfull local autonomy supported, thedataremainsto be
stored and maintained in each member system. In order to achieve better
performance, user-defined query requestswill beanswered by dynamically
executing sub-queries over each member system. To construct those sub-
queriescorrectly, onehastofully understand theaccessrequirementsand other
detail sabout how datai sdescribed and organizedinthesemember systems, no
matter they arewell-formed database schemataor any semi-structured data
representation. Considerabl eeffort must be putinto understanding the physical
andlogical designof thesystem, and akeenunderstanding of theindividual data
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elementsmust beattained. Itisprudent to take advantage of metadatathat
already existsinmember systemsso asto minimizeredevel opment costsand
ensure consistency. The metadatamost likely to be available are physical
models(usually available), logical models(lesslikely), and datadictionaries
(evenlesslikely, athoughlessformal glossariesaresometimesavailableor can
begleaned fromdesign documentation).

Thephysical model identifiesthelayout of thedata, aprerequisitetofindand
accessdata. Although onecandraw significant knowledgefromthephysical
model, accurate understanding of thedatael ementsthemsel vesmust al so be
achieved. Thenamesusedtolabel informationtendtobecrypticandinconsis-
tently applied (if at all), relationshipsin the data structure are difficult to
recognizedirectly, and nodescriptiveinformationisgenerally availablefor
referenceand preciseinterpretation. A physical model providesthemeansto
traversethoserel ationshi pssupported by thephysical designand may supply
somemeasureof descriptiveinformation onthedesign components(DBMS,
XML structure, tables, fields, etc.).

Thelogical model identifiesconceptual relationshipswithinthedata. A logical
model isusedtoexplicitly identify thoserel ationshipswithout regard tothe
platform-specific optimizationsthat areprovidedinthephysical models. Italso
tendsto apply anaming structurethatismoreuseful inunderstanding thedata
relationshipswithinaparticular datasystem. Theserel ationships, whether
explicit or implicit, are a source of metadata needed to provide semantic
understanding of thedata. Within our approach, thelogical model isusedasan
essential sourceof interpretationfor logical datastructureand determining part
of semanticinterpretation of thedatacontent andtherefore, isultimately oneof
thekey elementsinbridging thegap betweentheontol ogy andthephysical data.

A datadictionary providesatextual description of thedataelementsdefined
withinamodel. Itistheprimary sourcefor explicit semanticinterpretation of the
datawithinadatasystem. Thedatadictionary isnot asemantic model per se,
butit doesprovidecrucial understanding of thedatacontent fromasemantic
perspective. In conjunctionwiththe supporting model, itisused heavily to
ensureproper interpretati on of thedatacontent and correl ation of themappings
to the ontology during the mapping process. Dictionariesaretypically not
provided, and in those cases must be derived from whatever sources are
available: glossaries, other design documentation, system experts (either
administratorsor users), and soforth.
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Mappings

Creation of appropriatemappingsarethemost critical and challenging element
of our approach. Resolution of heterogeneity has always been a major
challengefor any informationintegration effort. Our informationintegration
approach aimsat resolving all types of heterogeneitiesdynamically when
processing queries, and doesnot requireapre-conversion of data. However,
thedynamicmappingsaregenerally moredifficultto createthan performing
static pre-conversion.

Therearethreekey aspectsto create mappingsthat support dynamic hetero-
geneity resolution: (1) thedifferent typesof mappingsthat arerequired, (2) how
they arerepresented, and (3) utilizationissues. Each of thesewill bediscussed
infurther detail inthissection.

Inour definition, mappingsarenct only correl ationsbetween any two (or more)
models, but alsoingeneral bridgesomeportion of theconceptual gap between
thephysical model and theontol ogy. Sincetheontol ogy isnot amodel supplied
by any participating data system, the mappings to the ontology must be
developed. Unfortunately, thereislittleintheway of formal methodol ogiesfor
identifying, devel oping and managing mappings, yetitiscritical totheoperation
of amediated information integration system. What followsprovidesahigh
level description of theapproach devel opedinour effort.

Types of Mappings

Whileformal methodol ogiesfor creating mappingsmay bescant, thereare
many classificationsof mappingspresentedintheliterature. Our approach
attackstheissuefrom how user-defined ontol ogical queriescan beanswered.
M appingsinthismediated architecturearedividedintotwo major categories,
thatis, horizontal mappingsand vertical mappings.

Horizontal mappingisakind of associ ation between elementsat thesamelevel,
suchasmappingamong conceptsfrommulti pleontol ogical model s, or mapping
amongdifferent ontol ogical representati on standardssuch asmappingontology
fromRDFto FOL. Horizontal mappingsareimportant becausethey provide
relationsand constrai ntsbetween ontol ogi cal metadatael ements, and conse-
quently resultin solutionsfor better interoperability at theontol ogical layer.
Sometimes, thetermsthat usersutilizeand thoseempl oyed by theontol ogy may
have no commonality even when they denote the “ same” concept. Thisis
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significant, asthe objects of communication (zerms) no longer denote the
objectsof interest (concepts) unambiguously. Anexampleof thissemantic
mismatchthat may befamiliar toreadersinaircraft maintenancedomainisthe
terminol ogy used to describeavionics* black boxes” that arereplaced aspart
of aflight linemaintenanceaction. Depending ontheorganization performing
themaintenance, thereplaceableunit may bereferredtoasalineReplaceable
Unit (LRU) or a Weapons Replaceable Assembly (WRA). This simple
exampleillustratesthesemantic mismatchissuethat proliferatesthroughout al
mai ntenancedatasystems. Again, what aproduct engineer might call a“ system
fault” may beknownasan“inherentfailure’ inonemaintenancedatasystemand
bereferenced by acryptic codeinanother. Semanticissuesof thisnaturecan
beperplexingfor humansbut can makecreation of automated analysistoolsan
extremely arduoustask.

Vertical mapping, on the other hand, refers to the association between
metadataelementsat different level sof abstraction, such as: mappingsbetween
ontology and lower-level schemata (e.g., alogical or physical schema);
mappingsbetween ontol ogical queriesandlower-level queries; and mappings
betweenlocal security policiesand global security policies.

Inour approach, thevertical mappingsprovidedirectiontothequery proces-
sor, whichusessuchinformationto eval uateand optimizeontol ogical queries
againstmember systemsefficiently and effectively. Theintegrated systemmay
consi st of anumber of member datasystems, each of whichhasitsownlogical/
physical schema. These schematafrom multiplemember systemsmay or may
not sharecommon naming standardsacrosstheir | ogical/physical schema;
however, they do share common semantics as expressed in the ontol ogy.
M appings between the ontology and lower-level schemata connect each
lower-level schematicelement withoneor morecorresponding conceptsinthe
ontology. They are constructed on the basis of semantic equivalence. The
semantic equivalence does not mean “ absolute equity” only, but can also
represent “ approximateequivalence,” inwhich caseaconversion method will
beattached to the mappingsfor datatransformation.

Recalling that the goal of our approach is to access data from multiple
heterogeneousdatasystemsusing asingleontological view of thedata, the
global query enginemust havetheability totranslate queriesand transform
guery resultsfrom oneformat to another between ontol ogical and physical
layers. To achieve this, the query engine must be able to reconcile the
differencesinquery capability between member systems, becausedifferent
member systemsarelikely to deploy different datamodel sand usedifferent
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guery languages. Sometypesof datasources, for example, unstructured data
sourcessuch asplaintextfiles, onlinedocuments, and email systems, do not
haveaquery facility at all, or haveavery limited query mechanism, suchasa
keyword-based search engine. Evenfor astandard query language such as
SQL, dissimilaritiescan befound among variouscommercial products, espe-
cially for advanced operationssuch asouter joins. Thus, themappingsbetween
anontological query and alower-level datasystem query must providethe
information required by the query engine by characterizing and mapping
member system query capabilities so that the engine will be ableto apply
appropriatetranslationruleswhen needed.

Mapping Representations

After asuitablemapping methodol ogy hasbeen created, thenext questionis:
Where and in what format should they be stored? In our architecture, the
metadatarepository istheprimary placewheremost of themappinginformation
resides. Itisastand-aloneinformationrepository. Rule-based | ogic can beused
toextract knowledgefromtherepository for variouspurposessuch asontol ogi-
cal-to-physical query trand ationand physi cal-to-ontol ogical result reconcilia-
tion. Different typesof mappingsarerepresented in different formatsinthe
metadatarepository. For example, somehorizontal mappings(relations) be-
tweenontol ogi cal elementsareembeddedintheontol ogy aspart of theontol ogy
alignment; somevertical mappingsbetween ontol ogical elementsand physical
schematic el ementsaredescribed by using aproprietary set of mapping predi-
catesthat can bedevel oped by system expertsusing aninterfacethat manipu-
latesaset of primitivesand macros; and someother vertical mappings(suchas
query capability mappings) areeither implied or hard-codedindifferent types
of algorithms implemented by using either FOL rules or, in afew cases,
programming codewrittenspecifically forindividual member systems.

Each softwarecomponent hasitsown requirementsfor informationthat must
besupplied during query devel opment processing, andingeneral they usually
require moresophi sticated mappi ng knowledgethan thebasi c mapping predi-
catesthemselves. Thisimpliesthat somederivationsmust bemadebeforethey
canbeused. Thederivationsmight besomething assimpleastransitiveclosure
calculationor ascomplex aseval uating an advanced| ogic program. Thisimposes
arequirement for aninferencecapability ontheontol ogy and mappings, which
makesthechoiceof adeductivedatabasesound morebeneficia asthepersistent
storage medium. With a deductive database, such derivations can be pre-
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definedintermsof rules; thebuilt-ininferenceenginewill thenbeabl etoexecute

these stored rulesto expand theoriginal ontological query to an executable
seriesof queriesusing the pre-defined seriesof basic mappingfacts.

Using Mapping for Semantic Wrapper

Recent effortsto enhanceinteroperability among heterogeneousdatasources
focuses on structured data sources such as databases. Examples include
Relational and Life Sciences DataConnect at IBM, OLEDB at Microsoft,
Virtual Tablelnterfaceat Informix, and Adaptive Component Architectureat
Sybase. Thoughthedetailed techniquesdiffer fromonetoanother, they have
acommon approachto achievedataaccessinteroperability, thatis, towrapthe
individual data source by providing asingle relational access point. The
af orementioned wrapping technol ogy hasprovided avery interesting capabil -
ity, thatis, ahomogeneous SQL -based queryinginterfacefor varioustypesof
databases. However, they mainly concentrateoninteroperability among struc-
tured database systems rather than semi-structured or unstructured data
sources. Moreimportantly, thedataisstill represented by arel ational model,
wheresemanticsarenot explicitly presented. Semanticlinksbetweentablesare
implied by integrity constraintsor joins, and query resultsarepresentedina
simpletabular format. Infact, it hasbrought little, if any, helponimprovingthe
semanticinteroperability.

Instead of wrapping theinformation resourcewith arelational model, amore
preferable approach, in our opinion, is to use an ontology to wrap the
underlying datasource, sothat thedatacontentisexposed and can beretrieved
asaninstantiation of theontology. In general, asemantic wrapper offersa
unified semantic view over thewrappedinformation resource, and performs
on-demand semantictrand ations. It a sowrapsmultipleheterogeneousquery-
inginterfaceswithaunified and mutually-compatibl esemantic queryinginter-
face. Information consumers use thisto query information by semantics,
without havingto understand lower level detail ssuchaslogical/physical data
structures. For thoseinformation resourceswithlesspowerful querying capa-
bility, thesemanticwrapper isnot only asemanticenabler, but alsoaquerying
capability provider.

Uponreceivingasemanticinformationretrieval request, asemanticwrapper
will generate an information access and transformation plan based on the
mappingsbetween theontology andlocal metadata. Depending onthe power
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of thequerying capability of thewrapped informationresource, oneor more
sub-queriesaregenerated and then pushed downintothewrappedinformation
resource. The query answers of these sub-queries are then merged and
translated into aninstantiation of theontol ogy and returned to the software
component that has posted thequery.

Inbuildingasemanticwrapper, threepiecesof informationareimportant: local
metadatafor wrapped information resource, ontology, and mappingsin be-
tweenthetwo. Actually, al of these piecesof information arecapturedinour
metadata repository. Next, we are going to provide an example of how
ontol ogical elements, for exampl e, conceptsand rel ationshi ps, areused tomap
acrossmultiplephysical schematafor thepurposeof answeringthequery. For
thesakeof readability, weassumethat all participant datasystemsarerel ational
databases, and we use pseudo-SQL to represent some of the mappinglogic.

An Example

Wehaveapplied the metadatamanagement methodol ogy presentedinthis
sectioninbuilding adatacollection servicefor airplane health management
(Wilmering, Y uan, & VanRossum, 2003). Such systemrequiresadvanced data
analysisagainst many typesof data, including airplanedesigndata, airplane
performancedata, airplane mai ntenance data, and |l ogisticsdata. Oneof the
primary issuesthat wewerefacingintryingto collect datasufficient toconstruct
auseful analytical model isthat: It existsin multiple datasystemsthat are
designed and maintai ned by multipleorganizations, for instance, bothairplane
manufactures and airline companies. These systems are heterogeneousin
nature— no thought hasever been giventotherelationship of onesystemto
another, let alonethemeaning of thedataelementscontained therein. A key
issuewhen accessi ng heterogeneousinformation sourcesishow toresolvethe
difference that may exist among one and another. Approaches may vary
considerably, depending onthetypeof information sourcesand the degree of
reasoning/inferencerequired. Theexampl ethat followsbriefsour approachin
bridging thedifferencewiththe proposed mapping representation.

A simplifiedthree-entity ontology ispresentedin Figure4. It containsonly three
concepts, anongwhich AIRCRAFT isasub-concept of PART, andtherefore
AIRCRAFT inheritsall attributesand rel ationshipsfrom PART. Twobinary
relationshipsaredefinedinthissampleontology. isPartOf recursively rel ates
thehierarchical structurebetweeninstancesof PART, and hasRecordsindi-
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Figure 4. A piece of simplified ontology

isPartOf
PART
part identifier
#| work unit code
7, 7 part description
4
7/
P 4 hasRecords
2
AIRCRAFT MAINTENANCE
aircraft identifier action identifier
aircraft model action date
action status
action type
action description

Figure 5. Relational schema

DB1: — -~
Part (seria Number, AircraftModel, WUC, description, parentPart)

B747_Job (JCN, serialNumber, JICNDate, status)
MD11_Job (JCN, serialNumber, JCNDate, status)

DB2:
Aircraft(tallNumber, model, description)

—

. . . )
Part(serialNumber, ACModel, WUC, description, nextHigherLevel)
__J

%
Maintenance(actionl D, onPartOrAC, actionDate, type, status)

cates the instances of MAINTENANCE that have been performed with
respect to eachinstanceof PART (including AIRCRAFT).

Inasimplified scenario (Figure5), weassumethat therearetwo relational

databases, DB1 and DB2, and each of them containsthreetablesasshownin
Figure5. Theprimary key attributesareunderlined, and arrow linesdenote
relationshipsbetweentabl es.

M appi ngsbetween the sampl e ontol ogy and schematic elementsin DB 1 and
DB2arepresentedinFigures6and 7, respectively, showninboxeswithitalic
text. Weomit thedetailed mapping for each attributeinthe ontol ogy for the
sakeof economy.
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Figure 6. Mapping ontology with DB1

Mapping ontology with DB1
/ JOIN with DBI.Part.parentPart = DBI.Part.SerialNumber

Part (seriad Number, AircraftModel, WUC, description, parentPart)

[

AIRCRAFT PART
aircraft identifier = = f~ = part identifier
aircraft model work unit code

part description

‘ JOIN with DB1.Part.parentPart = AC.serialNumber ‘ isPartOf

/ \ J hasRecords

SELECT * FROM DBI1.PART A(Q
WHERE DBI1.PART.parentPart is NULL

MAINTENANCE
action identifier
action date
action status
action type
action description

‘ JOIN with AC.serialNumber = JOB.serialNumber ‘

‘ JOIN with 573 1.Part.serialNumber = JOB.serialNumbe\

B747_Job (JCN, serialNumber, JCNDate, status) SELECT * FROM DB1.B747 JOB JOB
— pum— UNION
MD11_Job (JCN, serial Number, JCNDate, status) SELECT * FROM DBI.MD11_JOB

Figure 7. Mapping ontology with DB2

Mapping Ontology with DB2:

Part(serial Number, ACModel, WUC, description, nextHigherLevel)

AIRCRAFT PART
Aircraft(tailNumber, model, description, aircraft identifier — = = = part identifier
aireraft model work unit code
part description
SELECT tailNumber as ID, * FROM Aircraft isPartOf
UNION hasRecords
SELECT serialNumber as ID, * FROM Part P

MAINTENANCE
\ / action identifier

action date
’ Join with P1.ID=P2.nextHigherLevel action status

action type
action description

Join with DB2.Maintenance.onPartOrAC
=DB2.Aircraft.tailNumber

Join with P.ID
=DB2.Maintenance.onPartOrAC

Maintenance(actionl D, onPartOrAC, actionDate, type, status
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P easenotethat thereisnoindividual tablein DB 1 that storesinformation about
aircraft. Infact, anaircraftistreated asaspecial typeof PART (i.e., thetopmost
element in the PART hierarchy). Therefore, the concept AIRCRAFT is
mapped to table PART with an additional condition, that is, “ parentPart is
NULL.” Themaintenanceactionsin DB-1 arerecorded in two tableswith
identical structureaccordingtotheaircraft models(thetablesBoeing747-Job
and MD11-Job). So, the ontological concept MAINTENANCE must be
mappedtoaunionof thosetwotables, that is, therel ationshipsintheontol ogy
aremapped with semanticsimplied by JOIN operationsinrelational algebra.
Becauseof theinheritancebetweentheconcept AIRCRAFT and theconcept
PART, therearemultiplemappingsassociated with every relationship coming
out of concept PART.

DB2, however, doeshaveaspecifictablefor aircraft. Therefore, the concept
AIRCRAFT can be mapped to that table directly. Thisalso meansthat the
PART tableinDB2nolonger containsaircraftinformation. Inorder tomaintain
the semantic consistency of concept PART, that i s, being asuper-concept of
AIRCRAFT, concept PART is mapped to aunion of the AIRCRAFT and
PART tablesinDB-2. Sincethereisno horizontal partition on maintenance
informationinDB2, concept MAINTENANCEismappedtoasinglerelational
table. Similar to DB1, relationshipsaremapped to JOIN operationsbetween
relational tables.

Query Against Semantics

In database systems, queries are questions to be answered or solved by
database engines. A particular database system usually offers a specific
gueryinginterface, for example, adatabasequery language, whichallowsusers
toformulatetheir querying requestsinaspecificformat. A query language
usually hasatight connectionwiththeunderlying datamodel, andthereforeit
may vary significantly from oneto another on both syntax and the power of
expressiveness. Normally, anunderlying database schemanot only detail sthe
structureof how datashoul d beorganized, but it al so providesguidelinesabout
how datashould bequeried. Whiledealingwithdifferent typesof information
sources across the networks, users are likely required to switch query
languagesfromonetoanother inorder tointegraterel ated piecesof information
together. A unified query interfacethat isableto operateover different types
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of information sources becomesgreatly preferablein order to enhancethe
interoperability of heterogeneousdatasystems.

Thesemanticcorrelationthat existsamong different piecesof informationina
heterogeneousenvironmentisthevery reasonwhy informationintegrationshall
happen. Despite the fact that datais presented quite differently on many
aspects, it hasonecommonality, that is, the shared semantics. Unfortunately,
such semantics cannot be explicitly represented by many of today’s data
models. Instead, they areimplicitly represented, if not missing, by someinternal
mechanisms, for exampl e, databaseintegrity constraints. Similarly, traditional
guery languagesthat arebuilt ontop of thesedatamodel sdo not havetheability
toexpressexplicit semanticseither. Taking relational query languages, for
example, itisvery commonthat oneor morejoin operationsneedto bedefined
toinquireconnectionsbetween dataitemsinmultipletables. Inorder to have
thosejoinoperationsexactly reflect thesemantics, usershaveto have substan-
tial knowledgeonbothrelational databasetheory and query languageitself.

Theadvent of thelnternet hasbrought millionsof end usersintotheinformation
cyberspace. All theseso-called averageusersusually havelittle, if any, training
inbothtraditional query languagesand databasesystems. Asaresult, they have
some particular concerns about the easy-ability of query interface. Their
preference might besomething other thanthe current databasel anguagessuch
asSQL or XQuery. They wishto haveahigher-level query language, which
enablethemtoretrieveinformationonly by their sesmanticunderstandingonthe
domain, or at | east, toretrievetheinformation without having to completely
understand thingslikethephysical datadistributionor thelower-level data
structures.

I nformation-sharing capability hasbeen playingamoreand moreimportant
roleintoday’sinformation technology. Query answers have to be shared
among many information consumers. Theinformation consumersarenct only
limitedto human beings, but a so computersor any softwarecomponentsinthe
loop. Theimplicationof computer systemsbeinginformationconsumersis: The
semanticsof query answersshould beboth human- and machine- understand-
able.

Semanticinformation accessmethodol ogy referstoamechanismthat enables
theinformation consumer toretrieveinformationviasemanticsonly. Themajor
di stinction between asemanti cinformati on accessmethodol ogy andtraditional
information access methodol ogy, such asdatabase query languages, isthe
semantic understandability. M achine-understandabl e semanticsneed to be
providedexplicitly for all involved partiesduring thequery processing. Such
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semanti csincludethe semanticsof thedomain, thesemanticsof information
contentineachinformation source, thesemanticsof auser-defined query itsalf,
and the semanticsof returned query answers.

Comparingwith someconventional query paradigms, asemanticinformation
retrieval mechanismshould havesomeuniquefeatures:

1. Itisneutral toany particular semanticrepresentationformat suchasEER
model, RDF/DAML-OIL, or Datalog. Instead, it is built upon basic
semantic elements, that is, conceptsand rel ationships, inany semantic
model.

2. ltrequireslittleprior trainingandisrelatively intuitiveto beutilized by
averageusers.

3. Itispowerful enoughfor userstoexpresstheir query criteria.

4. Ithidescomplexlogical datastructuresand datadistributionfromusers,
and therefore, they do not have to know alot about underlying data
SOurces.

5. Itenablesuserstoformulatetheir queriesinasemanticway basedontheir
knowledgeof theapplicationdomain.

6. Queryanswersaredeliveredasaninstantiation of thereferenced ontol-
ogy, andthereforeare semantic understandabl e.

Query Representation

Wedefined aquery structureby ontol ogy, and specified theindividual queries
asinstantiationsof that ontology. Theinternal formalismof our query structure
isdesigned neutral to any particul ar ontol ogical representation languageor
standard. It isproposed based ontwo fundamental ontol ogical elements, that
is, concept and rel ationship, the counterpartsof which areavailableina most
every ontological languagespecification. Therefore, asshowninFigure8, there
aretwofundamental constructs, that is, concept nodeand relationshipnodein
thequery structure.

A concept nodeinthequery referencesaconcept inthedomain ontology, and
it may containoneor morerel ationship nodes. Likewise, arel ationship node
referencesarel ationship definedinthedomain ontol ogy, andit basically tells
anavigating operation fromoneconcept to another viathereferencedrel ation-
ship. A relationship node may al so contain one or more concept nodes, and
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Figure 8. Query representation structure

Concept Node returnProperty
reference
contains

contains

Relationship

reference

Relationship Node

these concept nodesrefer to theending pointsof an ontol ogical navigation. A
concept nodemay also havelinksto zero or many relationshipsinthedomain
ontology (viareturnProperty), and theselinkstell uswhat aretherequested
guery targetswith respect to the concept node.

Y oumay treat concept nodesasvariablesinaquery, andthey areplaceholders
for instances of concepts. When a property value is requested (via
returnProperty), itwill alwaysbeinthecontext of aspecificinstanceof aclass.
Thisprovidesabenefit whenmerging query answersfrommultiplesub-queries
suchthat weonly includethebindingsfor concept nodesbecausetherequested
property valuescan beeasily cal culated fromtheanswersof sub-queries. This
makesthe post-query processing moreefficient.

Our query structureal so supportsquery constraintsand aggregati on requests,
which can beattached to either concept nodeor relationship node. A query
constraint may beeither asimpleconstraint with comparisonfunctions(EQ,
NE, GT,...) oramorecomplex logical expressioninwhichmultiplesimple
constraintsare connected by | ogical operators(AND, OR, NOT).

Asmentioned early, another important criterion for semantic information
accessmethodol ogy i sthesemanti c understandability of query answers. Inour
guery structure, thequery resultsarereturned asinstantiationsof referenced
ontology. Thedataelementsinquery answersarerepresented asinstances of
conceptsand rel ationshipsdefinedintheontol ogy, andthereforethesemantics
of query answerscan beeasily captured.

Based on the internal query representation, we have also implemented a
graphical query designer that all owsusersto conveniently compose semantic
gueries. With such aquery designer, when defining aquery, auser typically
picksaconcept asastarting point, simply drag-and-drop theconcept intothe
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Figure 9. A sample query with query designer

designing panel, andthequery definitionthereafterismorelikenavigatingthe
wholeontology through sel ected rel ationships.

Differentfrommany conventional relational query designersprovided by major
database vendors, our query designer enables users to define queries by
semanticsonly. Therefore, thereisno concern, fromend users' perspective,
about i ssuessuch asunion compatibility and joinablecolumns, which usually
requiresfairly amount of databaseknowledgeinunderstanding thedatabase
schemata.

Somegenericontol ogy toolssuchasProtégéand Oil Ed?, may alow userstocreste
gueriesby importing thequery representation ontology. However, they arenot
user-friendly enoughlargely becauseitisextremely difficult, if notimpossible, for
end usersto fully understand the abstract and profound query representation
ontology. In contrast, our query designer doesnot require usersto understand
guery representation ontology at all. Instead, semantic queriescan bedefined
againstdomainontology directly,inamucheas er navigationa manner.

A very simple semantic query that complies with our query structure is
presented in Figure 9. Therearethree concept nodes (PART, AIRCRAFT,
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and MAINTENANCE) andtwo rel ationship nodes (i sPartOf and hasRecord)
definedinthequery. Relationship nodeisPartOf refersto anavigationfrom
PART to AIRCRAFT, and hasRecord refersto asemantic navigationfrom
PARTtoMAINTENANCE.

Dynamic Adjustments upon Changes

Inadditiontoall kindsof heterogeneity that needsto betaken careof at thefirst
place, changesof different typesarehappening over thetime. For example, the
accessi bility and capability of eachindividual information sourcemay change;
new data systems are added or existing data systems are removed; the
underlyingdatamodel of particul ar information sourcesmay bemodified; and
network disconnectivity and congestion may occur occasionally. All these
changessometimesprevent usersfromgettinginformation correctly, andthey
usually havebigimpactsonrel ated operations. Therefore, amechanismneeds
tobeestablished, whichnot only canactively monitor changesinreal time, but
should al so beabletotakeappropriatereactionsupon detecting thosechanges.
Suchreactionscan beregarded asto perform areal -timesystemre-configu-
rationandinformationre-integration.

Withtoday’ sCOTSEII products, for example, if any of thedataelementsin
aquery arenot accessibledueto any possiblereasons, the query execution
wouldstop. Userswill end upwithnoinformation being retrieved but only an
error messageindicati ng that somethingwaswrong during query eval uation.

Inorder tofulfill such dynamicinformationre-integration, thequery processor
needsto beableto understand what the semanticimplicationsarefor eachtype
of thechanges. For instance, thefact that aparticul ar datael ement becomes
inaccessi blemay imply differentthingsfor different groupsof usersindifferent
circumstances. Such semanticimplicationsareactually analytical resultson
artifactsincluding: whoistheuser; what isthe semanticsof data; what isthe
semanticsof user-defined queries, whichfinally lead to appropriate adj ust-
mentsonquery evaluation.

L ookingat thisfromanother perspective, theinformati onintegration hereisno
longer thetraditional informationintegration strategy, whereinformationis
integrated in a purely static manner. The proposed dynamic information
integration strategy hasitsuniquefeatureindynamicquery processing. Gener-
ally, givenany query request, withastaticinformationintegration strategy, there
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isonly onequery execution plan begeneratedtoretrievethequery resultinany
circumstance. If anything goes wrong during the query execution, it fails.
However, adynamic information integration strategy herewill be ableto
generatedifferent query execution plansbased onrel ated metadatainforma-
tion, and guarantee usersto get what they are supposed to get, and of course,
accordingtotheir toleranceto approximationinquery results.

Wehavedevel oped aquery rewriting techniqueto performvarioustypes of
dynamic adjustmentsbased ontheaccessibility of thedataelementsthat are
mapped to either conceptsor rel ationshipsintheontology. Thebasicideaof
thisquery rewritingtechniqueisto excludetheinaccess bledataelementsfrom
thetranslated COT Sglobal query statementssuchthat theunderlying COTS
Ell productscan executethose query statementssuccessfully.

Asstatedintheprevioussection, concept nodeand relationship nodearetwo
fundamental constructsinasemanticquery. Remember that aconcept nodewill
referenceoneand only oneconcept intheontol ogy. Thus, when encountering
aconcept nodeinthesemanticquery, our semanticquery translator will utilize
thecorresponding mapping informationfor thereferenced concept to process
the query. Taking relational-based Ell products, for example, we have
mentioned in previoussectionsthat aconcept inontol ogy isusually mappedto
oneor many relational tables. Whenreceiving auser-defined semantic query
on that concept, the query translator will then generate, according to the
number of mapped relational tables, one or many SQL statements. If a
parti cular mappedtabl eisinaccessibleat thetimewhen user-defined query is
received, the SQL statement against that tablewill beeliminated, andtherefore
not submitted totheunderlying Ell query enginefor execution.

AsshowninFigure 10, supposethat Concept A inontology ismapped to both
Tableland Table2. For thesemantic query “ Retrieveall instancesof Concept
A,” thequery translator usually will generatetwo SQL statements, for Tablel
and Table2, respectively. However, because Table2isinaccessible, thequery
generator will maketheadjustment by removing“ SELECT * from Table2” so
that theunderlying Ell query enginewill retrievequery answersonly from
accessibletables.

Relationshipnodeisanother bas cconstructinthesemanti cquery representation.
Similartoaconcept node, arel ationship nodereferencesauniquerelationshipin
ontology. For relational-based COT SEI products, arel ationship betweentwo
conceptsistypically mappedto ajoinoperation betweentwotabl es.

Asshown in Figure 11, Concept A is mapped to Tablel and Table2, and
Concept B is mapped to Table3 and Table4. The Relationship (R-AB) is
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Figure 10. Mapping concept

§10 Tablel | (accessible
ionen?® ¢ )
s,
Mappedro Table2 | (inaccessible)
Semantic Query:

Retrieve all instances of Concept A

Translated Ell Global Query Statements:
SELECT * FROM Tablel;
(SELECT * FROM Table2 will be eliminated)

Figure 11. Mapping relationship

mappedtotwojoinoperations, thatis, Joinl and Join2, whileJoinlisbetween
Table2 and Table3 and Join2 isbetween Table 1 and Table4. We omit the
detailedjoininformation, suchasjoincriteria, dueto spacelimitation.

Therearedifferent typesof join operationsdefinedinrelational world, for
example, inner joinand outer join. Themapping mechanismin our approach
does not specify the type of join. Instead, an appropriatejoin type will be
chosenbasedonusers’ preferenceon semanticnavigations. Weallow usersto
definetwotypesof navigations: optional navigationand mandatory navigation.
An optional navigation from Concept A to Concept B viaR-AB indicates
users’ intention of obtaininginstancesof Concept A evenif thereisnorelated
instance of Concept B under R-AB; whereasamandatory navigation means
that usersarenotinterested in gettinginstancesof Concept A atall if thereis
norelated instance of Concept B under R-AB. Itiseasy to find out that the
meaning of anoptional navigationisvery similar tothat of arelational outer join
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Figure 12. Different scenarios of query translation

Navigation Tablel | Table2 | Table3 | Tabled Ell Globa Query Statements (in pseudo SQL)
select * from Table2 left outer join Table3 on ...
select * from Tablel left outer join Tabled on ...
select * from Table2 left outer join Table3 on ...
select * from Tablel

A| YES | YES | YES YES

B| YES | YES | YES NOT

Optional C| YES NOT | YES YES | select * from Tablel left outer join Tabled on ...
Navigation
D| YES | NOT | YES NOT | select* from Tablel
select * from Table2
E| YES | YES | NOT | NOT select * from Tablel
F | NOT | NOT | YES | YES | (noneQuery statement generated)
Al ves ves | ves YES select * from Table2 inner join Table3 on ...
select * from Tablel inner join Tabled on ...
YES YES | YES NOT | select* from Table2 inner join Table3 on ...
Maerat(_)ry YES NOT | YES YES | select * from Tablel inner join Tabled on ...
Navigation

YES | NOT | YES | NOT | (noneQuery statement generated)
YES | YES | NOT | NOT | (noneQuery statement generated)
NOT | NOT | YES | YES | (noneQuery statement generated)

mim|o|(0O|w

operation, and themeaning of amandatory navigationissimilar tothat of an
inner joinoperation.

In addition to selections of different join types, when the accessibility of
mapped tablechanges, our query rewritingtechniquewill also makedifferent
adjustmentsfor optional and mandatory navigations. Thetablein Figure12
presentsseveral typical scenarios(labeledwith*“A,” “B,” “C,” “D,” “E,” and
“F’), withvarying combination of accessibility inregardstothemappedtables
for the previous mapping exampl e. For eachtable, “ Y ES” meansaccessible
and“NOT” meansinaccessible. For your convenience, pseudo SQL state-
mentsare provided asexamplesof translated Ell global query statements.

For scenario A, whileall four tablesareaccessible, two query statementsare
generated. However, left outer joinsareused for optional navigations, butinner
joinsareused for mandatory navigations.

For scenario B, there are still two query statements generated for optional
navigations, but thejoin between Tablel and Table4 isnot presented inthe
second query statements. Thisisbecause Table4 isinaccessible, and query
statement will only returninstancesof concept A. For mandatory navigations,
duetotheinaccessibility of Table4, thereisonly onequery statement gener-
ated. Thesecond query statement iseliminated mainly becausethesemantics
enforcedin mandatory navigation.
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For scenario C, thereisonly onequery statement generated for either optional
navigationsor mandatory navigations. Thisisbecausetheinaccessibility of
Table2tellsusthat oneof themapped tablesfor concept A isnot available, and
concept A isthestarting point of thenavigation.

Scenario D isactually acombination of scenario B and scenario C. Asaresult,
thereisonly onequery statement generatedfor optional navigation, butthejoin
between Tablel and Table4isomitted becauseof theinaccessibility of Tabled.
For mandatory navigations, thereisno query generated.

Scenario Eisvery similar to scenario B. For optional navigations, two query
statementsaregenerated but neither of them hasjoin operationspresented, and
thereisno query generated for mandatory navigations.

Scenario Fisvery similar to scenario C; neither optional navigation nor
mandatory navigation hasquery statement generated. Thisisbecauseboth of
themapped tablesfor concept A, whichisthestarting point of thenavigation,
arenot accessibleinthiscase.

Future Trends

Ontol ogy playsanimportant to exposetheimplicit semanticsof theinformation
content that hasbeen stored in multiple heterogeneousdatasystems. Inour
approach, we say that the semantics are described explicitly by a single
ontology. However, people may arguethat it isnot viable since universal
agreement on semanticscan never bereached among different groups, particu-
larly for arelatively larger domain. Weacknowledgethis, andwehaveinfact
experienced suchdifficulty whenapplyingthistechnol ogy todifferent business
units. Inour opinion, asingleontol ogy doesnot necessarily imply that such
ontology hasto be created within asingle step. On the contrary, there are
different waysto devel op such ontology. Different groups have choices of
devel oping their own piecesof ontology based ontheir own semantic under-
standing, and these pi ecesof ontol ogy areto bemerged together throughthe
processof ontology alignment. Ontol ogy alignment and management hasbeen
discussedintheresearchcommunity (Doan, M adhavan, Dhamankar, Domingos,
& Halevy, 2003; Maedche, Motik, & Stojanovic, 2003). However, aglobally-
recognized approach hasnot beenreachedyet. Ontology alignmentisactually
oneof theobjectivesof our horizontal mappingsasmentionedinearly sections.
Inadditiontoontol ogy alignment, ontol ogy evolvingisanother issuethat needs
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to be addressed more carefully. Asontology migratesfrom oneversion to
another, an appropriate mechanism needs to be established to track the
semantic differencebetweenversions. Such differenceusually hasimpacts,
moreor |ess, ontheunderlying mappingsbetween ontol ogy andlocal schemata.
A good version control mechanism onontol ogy may providegreat potentials
toincreasethedegreeof automation on mai ntenance of mappings.

Assaidin previoussections, mapping between model sisoneof thekey factors
toward semanti c-based informationintegration. Though mappingsbetweenthe
ontology andlocal metadatacan alwaysbeidentifiedinapuremanual manner,
animproveddegreeof automationincapturing themappinginformationishighly
desiredtosignificantly reducethecost of buildinganintegrated system. InRahm
and Bernstein (2001), theauthorshavepresented asurvey onrecent work about
automatic schemamatching, inwhichafew methodswerementioned ranging
fromstructural matching algorithmson schematic elementsto lingui stic-based
matchingalgorithmsondatainstances(He& Chang, 2003; Kang & Naughton,
2004; Y an, Miller, Haas, & Fagin, 2001). However, acompletely automatic
schemamatching sol ution seemsnot yet viabl eat thistime. Our colleaguesat
Boeing (Coen, 2002) a so proposed databasel exicography, ametadataanalysis
discipline that applies lexical graph theory to database design. Database
lexicography canbefurther appliedto analyzeexisting database models, and
thusprovidepotential sonautomati c schemamatchingwithadditional helpfrom
lexical tools, suchasWordNet (Fellbaum, 1998).

Conclusion

We have presented a framework that supports semantic-based dynamic
enterpriseinformationintegration. With COTSEII query engine, weoffer a
mediated, or “virtual warehouse” approach, in contrast to an explicit data
warehousefor reasonsof economy, reliability, maintainability, and scal ability.
Theresulting synthesisof information management and ontol ogical principles
provides a strong basis for effective computational support for advanced
application devel opment. Wehavediscussed anumber of key issuesrel ated to
thesemanticintegration of corporateresources. Alongwithgivingexamplesfrom
our implementation, weidentified thenecessary technol ogy componentscovering
anumber of aspects, including integrated metadata management, semantic
guerying and wrapping mechani sm, and dynami c adj ustmentsupon changes.
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A COTSEII productisusedinour approachtoconduct |ow-leve distributed query
process ng, by which our approach assumesthat many typesof |ow-level hetero-
geneity areabletoberesol ved. Two piecesof majorimprovement aremadeontop
of theCOTSEI|I products, for thepurposeof increas ng thesemanti cunderstand-
ability of information, aswell assystemreliability androbustness.

With aunique mappi ng mechanismintroduced between ontol ogy and local
metadata, usersare ableto query theintegrated system by semanticsonly,
without having to understand how thedataisactually organized physically.
Moreover, theretrievedinformationisdirectly delivered asaninstantiation of
theontol ogy, withacommon set of both conceptsand rel ationshipsbetween
them. Thisgreatly improvesthe semantic understandability of retrievedinfor-
mation, and may eliminatetheneedtofurther classify instancesasit may be
required by many advanced applications. Asaresult of thiseffort, wehave
foundthat evenarelatively sparse semanti c representation cangivesignificant
improvementinthetimeittakestofindinformation.

A mechanismisintroduced to adjust thequery dynamically. Upon detecting
environmental changes, for exampl e, theaccessibility of somespecificdata
elements, the query processor will make appropriate adjustments on the
underlying execution plantoensurethat semantically- relevantinformationcan
beretrieved fromavailabledatasources, instead of throwing an exceptionas
most of the COTS EIll products do. In practice, failure to make such
appropriateand dynamic adjustments, inresponseto changes, may resultin
performanceshortfallsinall operationa missions.
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Abstract

This chapter presents the Web Service architecture and proposes Web
Service integration and management strategies for large-scale datasets.
The main part of this chapter presents the elements of Web Service
architecture, the challenges in implementing Web Services whenever
large-scale data are involved and the design decisions and business

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



218 Panagis, Sakkopoulos, Sioutas, and Tsakalidis

process re-engineering steps to integrate Web Services in an enterprise
information system. The latter are presented in the context of a case study
involving the largest private-sector telephony provider in Greece, where
the provider’s billing system datasets are utilized. Moreover, scientific work
on Web Service discovery is presented along with experiments on
implementing an elaborate discovery strategy over real-world, large-scale
data. Thereby, this chapter aims to illustrate the necessary actions to
implement Web Services in a corporate environment, stress the associated
benefits, to present the necessary business process re-engineering procedures
and to highlight the need for more efficient Web Service discovery.

Introduction

Web Services (WS) isone of thefew architecturesthat were unanimously
adopted by theinformationtechnology (I T) industry. Fromthefirst draftsof
W Sspecifications, theWSarchitecture hasbeen established asthedominating
distributed softwaredevel opment paradigm.

Inanutshell, Web Services are collections of operations— parts of larger
applications—that areremotely available through common Web protocols,
without posing any restrictionsontheplatformsat both communicationends.

TheWeb Servicesframework consistsof essentially threebasi c components:
TheWeb Service Description Language (WSDL ), alanguagetoallow formal
functional characterization of theprovided functionalities, the Simple Object
Access Protocol (SOAP), aprotocol that definestheformat of theinformation
interchange, and the Universal Description, Discovery, and Integration
(UDDI), whichisacatal og of Web Servicedescriptions.

All threeof thecomponentsjust menti oned arespecified using extensionstothe
common XML language. Every W Stransactionistaking placeover established
Web protocols such as HTTP and FTP. The adoption of cross-platform
implemented protocolsiswhat hasfacilitated the wide acceptance of Web
Servicesasaplatformfor implementing awidegamut of applications. These
rangefrommajor servicessuchasbusinessinteractionand customer rel ation-
ship management, tomuch morelimited servicessuch aschecking thepriceof
stock quotesand checkinginfor aflight.

Despitethewideacclaim of theWSarchitecture, somevery important issues
arisewhenimplementing Web Servicesinthecontext of enterpriseapplication
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development, especially with large-scal e datasetsinvolved. L arge dataset
processing entailslong responsetimeseven beforethefirstresultsarereturned
totheinterested end user. Thisisbecause Web Service execution duration
variesdepending onthecurrent statusof theinfrastructuresupportingit, and
accordingtotheavailableresourcesexecuting theWeb Service. Consequently,
thecustomer may havetowait extremely longfor theWeb Servicetorespond
and thus experience frustration. In the latter case, he may even decide to
request resultsfromanother sourcewith, presumably, higher avail ability. Web
Service availability is also an important issue. More concretely, a mere
advertisement of aWeb Service doesnot provide any guarantees about its
availability or absencefromitsexpected point of presence. Theseareonly two
examplesof someshortcomingsof thecurrent Web Serviceframework, which
highlight thedifficultiesof implementing taskswiththeuseof Web Services.

This chapter aims at presenting the main elements of the Web Service
framework as well as to propose a methodology for implementing Web
Servicesincorporateenvironmentsthat utilizevery large, time-sensitive, and
resource-intensivedata. Firstly, themotivationthat |ed to thedevel opment of
WSarchitectureal ong with ashort presentation of theWSframework will be
presented. Consequently, thereasonsthat dictatethe use of WSin business
environmentswill bediscussed, together withrel ated experienceinimplement-
ing business applications and important steps-forward in the area of WS
discovery. Separate sectionsaredevoted to discussion of therequired archi-
tectural designfor theincorporationof Web Servicestoabusi nessenvironment
aswell astherequired businessprocessre-engineering stepsthat haveto be
taken. Furthermore, areal-world exampleispresented, whereaWeb Service
framework wasdesigned to support therequirementsof thebilling system of
alarge private-sector telephony corporation. Measurements are al so pre-
sented that highlight thebehavior of Web Service-drivenarchitecture, when
carryingout tasksinthepresenceof largeamountsof processed data. Finally,
the chapter is concluded with summary of the approach and directionsfor
further research.

Web Services Background

In thissection we will provide someintroductory information on the Web
Services and what |led to their development, along with key elements and
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related standards. Animportant concept in modern softwaredevelopmentis
that of Service Oriented Architecture or SOA (World Wide Web Consor-
tium [W3C], 2004a). A SOA is an architecture where the implemented
distributed system hasthefollowingtraits: (1) It providesoperation transpar-
ency; (2) It operateson message-driven communication; (3) Itsservicesare
accompanied by servicedescriptions; and (4) Itisplatformindependent.

Quite a few well-known architectures besides WS also deal with some
elementsof distributed application devel opment. Thelist of WS precursors
includes, UNIX RPC, Microsoft'sCOM/DCOM, CORBA and JavaRMI.
Each hasfailed to succeed dueto several reasonsincluding: very complex
implementation andinfrastructurerequirements; complex and/or proprietary
communication protocols; lack of support of large softwarecompanies; and
platformrestrictions.

The Web Service Framework

The WSframework hasbeen devel oped as an answer to most of theissues
mentioned previously. First of all, a Web Service is a set of software
functionalities— stand-aloneor part of alarger softwaremodule—that allow
theinteracti on between distant processesover anetworked environment, by
meansof aflexibleand cross-platform, XML -basedinfrastructure.

TheWeb Servicealternativeto distributed software devel opment hasbeen
adopted by the community duetoitsflexibility, ease of development, and
platformindependency, characteristicsof thecore protocol sof WSs, namely
XML, HTTP, andrelated WWW protocols.

As discussed, the protocols that comprise Web Service architecture are
HTTP, XML, SOAP,WSDL,andUDDI.HTTPand XML 1.0(W3C, 2000)
aredefacto accepted standardsfor theversatileand platform-neutral exchange
of information. HTTPand similar informationtransfer protocolsarejust the
mediatorsfor thedatatransfer among distant Web Services(TCP/IPhasthe
samerole, forexample, for HTTPdatatransfer). XML, duetoitsextensibility,
providesawrapper totherequiredfunctionalitiesof theWeb Servicearchitec-
ture. Therest of the protocolsbasetheir specificationsontop of XML and
HTTP.

Simple Object Access Protocol, SOAPfor short, (W3C, 2003), isaprotocol
that definestheformat of messageinterchange. Thisinterchangetakesplace
whendiscovering, binding, or consuming aWeb Service.
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Web Service Definition Language, WSDL for short (W3C, 2004c), isa
language to describe the functionalities of a Web Service and to provide
additional details about the ways it can be accessed, the pointsit can be
reached, and soforth.

Universal Data, Discovery, and Integration, UDDI for short (OASIS,
2004), definesaseparateentity (aregistry) that mediatesinthedevel opment
processby hosting descriptionsof Web Services.

Thenext sub-sectionsrefer totheorgani zation of theWeb Servicearchitecture
withmoredetail.

The Web Services Functional Model

Thetypical model under which Web Servicesoperateistheso-called* publish-
find-bind” model (Ran, 2003, p. 1). Thismodel consistsof threeentities: the
provider, the consumer,andthe registry. Theprovider registersitsservices
totheUDDI registry using SOAP/WSDL and waitsfor servicerequests. A
consumer process, queries the registry for a Web Service, using SOAP
messages. Notethat thequeriesprovided by thestandardized UDDI querying
APIsaddressonly functional requirements. Effortstoadd moreintelligenceare
discussed in aseparate section. After retrieving the results, the consumer
processdeterminesthebinding procedureand fromthispoint onit requests,
with SOAP messages, service provision from the provider. The provider
ideally responds, executesand returnsresultsin SOA Pmessages. Theprocess
isillustratedinFigurel.

Figure 1. The Web Services model
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Using Web Services
in a Business Environment

Asargued, Web Services have gained wide usefor distributed application
development. Nevertheless, it might still not bethat clear whether theWeb
Servicesarchitectureissuitablefor application devel opment in businessand
industrial environments. Thissection providesargumentsfor theuseof Web
Servicesand pointsout someof their drawbacks.

Contemporary enterpriseinformation systemsarebecomingincreasingly com-
plex and hardto maintain. A way for large corporation networkstoreducethe
amount of theoverall complexity isto distribute computation effort among
physically-separated computational nodes. Consequently, theneedtoexecute
remotely-located computational processesoccurs. Quiteafew examplesof
such practicesexist, fromInternet banking and e-commercesol utionsto phone
billing proceduresor performing statistical analysesat acompany’ ssubsidiary
fromthecentral branchandviceversa.

Another ubiquitous need isto coordinate procedure execution, often among
differententities. A typical example(K oshutanski & Massacci, 2003)is: A buyer
processinitiatesarequest onaseller servicewithnecessary creditsprovided; the
agentontheseller sdeneedstovalidatethebuyer’ screditsby initiatingacall toa
third-party procedure. Thisillustratesacasewheremany partiesareinvol ved.
Coordinationof processesmay a sotakepl acewithinthesameorgani zation. For
instance, supposethat alocal airlineoperator needstocheck aclient’ seligibility for
afrequent-flyer bonusprogram prior tothereservation. Theoperator then needs
tocall aremoteproceduretocollect datafor thespecificclient beforeinvokingthe
appropriatecall tothereservation procedure.

A furtherimportant factor isflexibility. Theterm*“flexibility” canhavemultiple
interpretati onsincluding theeaseof incorporation of new businessprocesses,
introduction of new external collaborators, or evenindependenceof individual
machine platformsat thecommunicationends.

TheWeb Servicesframework, insharp contrast tothepreviously appeared,
similar distributed protocols, providessatisfying answersto all theearlier
requirements. Web Servicesprovideaflexible, conceptually easy, and plat-
form-independent way for process sharing and remote procedure execution.
Web Servicesareeasier to consumeand do not requirealonglist of apriori
agreementson thecommunication methods. Furthermore, integration of new
processesor partnersand extensionsto standardsarestill possiblesincethey
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aredl builtontheversatility of XML-flavored specifications. Thisvery attribute
iswhat enabl esplatformindependencebetween endpoints, allowingfor extra
degrees of freedom. As for the coordination of remote processes, thisis
natively supportedintherecent specificationsof Web Servicearchitecturein
what iscalled“Web Service Choreography” (W3C, 2004b, 12.3.2.3).

AlbeittheWeb Serviceframework, initsinitial specifications(W3C, 2004a),
exhibitssomeseriousdrawbacks. First of all, evenif themodel isdistributed,
the discovery part ismostly centralized. UDDI catalogues receive all the
requestsfor WS consumption, which may lead to single point failuresand
bottlenecks. Furthermore, the entities stored in the registry provide only
technically-oriented descriptionsof WSs. Therefore, aconsumer processmay
haveto*trial and error” whilelocating which server processto bind. Another
drawback isthat Quality of Service(QoS) characteristicsarenot by any means
includedintheWSDL descriptions. Thiscan create problematicinstancesin
many situationssincethereisnothingtoindicatethat, for instance, alink toa
tModel isnot obsol eteor simply aserviceisnot running anymore. Orth (2002)
alsomentions*“accountability” (p. 115) asaloopholeof theinitial specification,
inthesensethat enforcing an accounting schemetotheuseof aWSisnot an
easy task. Heal so arguesthat W Sslack what would bevaluablein enterprise
environment, namely “asynchrony” (p. 116).

Security and authentication issues, although of paramount importancein
busi nessapplicationdevel opment, arenot explicitly treatedintheWeb Service
specification. Neverthel ess, recent proposal sseemto circumvent thelack of
security specifications. A short treatment isgiven by Salz (2003) and amore
comprehensiveanalysisby Siddiqui (2003a, 2003b, 2003c, 2003d). Siddiqui
(2003a) presentsthemotivationandtypical deployment scenariosfor security
inWeb Services. Siddiqui (2003b) arguesthat themain underlying concept for
secureWSprovisionistoprovideXML-enabledfirewalls, thatis, firewallsthat
canauthenticate, certify, and decrypt SOA P messages, which containextra
informationintheir headers. Theintroductionof thisconceptisfacilitated by the
existence of standards such as XML Digital Signature (XMLDS) (W3C,
2002a), astandard to cater for theintegration of signaturesto XML docu-
ments, and XML Encryption (W3C, 2002b). Inthisvein, XMLDSand XML
Encryption can also be included in SOAP messages to provide message
integrity, authentication, and content encryption. Actually, thisisproposedin
the WS-Security Specification by IBM (IBM, 2002). Security Assertion
Markup Language (SAML) (OASIS, n.d.) canalso beusedto allow authen-
ti cation sharing betweeninteracting applications.
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Related Work

TheWSstandardsarerapidly maturing dueto thewideacceptanceof theWS
framework asastandardfor remoteexecution of processesandinter-business
collaboration. Thecurrent standardsthat comprisetheWSarchitectureonthe
XML partare: XML 1.0(W3C, 2000), XML Namespaces(W3C, 1999), and
XML schema(W3C, 2001a; W3C, 2001b). Asfor thelayerscomprisingthe
WSframework, the SOAPformatiscurrentlyinversion1.2 (W3C, 2003), the
new version of WSDL, version 2.0, was very recently published (W3C,
2004c), and UDDI hasreached version 3.0.2 (OASI S, 2004).

Theneedfor: (1) expressing businessworkflowsintermsof Web Services, and
(2) interoperability among different corporateworkflows, wasrecognized
relatively early. Inthisrespect, vendor- specificimplementationsexist, suchas
Microsoft’s XLANG (Microsoft, 2001), Java Enterprise Java Beans, and
NET C#, whereas|anguagesto control business processes have al so been
developed, including Business Process Execution Language for WS
(BPEL4AWYS) (Curbera, Goland, Klein, Leymann, Roller, Thatte, etal., 2002),
WS Flow Language (WSFL) (IBM, 2001), and WS Business Process
Execution Language Version 2.0 (WS-BPEL) (OASIS, 2004). A very
important recent devel opment onthechoreography fieldistheannouncement
of the Web Services Choreography Description Language Version 1.0
(W3C, 2004b). Thisinitiativeaimsto serveasan additional |ayer ontop of the
corporateworkflowsinorder toorchestratetheir interactions.

TheWSDiscovery procedure hasal so received much attention from major
softwareplatforms. Windows2003 hasaUDDI server preinstalled with the
OS, whereasmany J2EE vendorsbuild UDDI instancesintotheir application
servers(Lacey, 2004). Sun MicrosystemshasalsoincludeditsJavaAPI for
XML Registries(JAXR) asasingle, general purposeAPI for interoperating
withmultipleregistry types. JAXRallowsitsclientsto accesstheWeb Services
provided by aWeb Servicesimplementer, by exposing Web Servicesbuilt
uponanimplementation of the JAXR specification. TheUDDI specifications
donotdirectly defineaJava-based API for accessingaUDDI registry. The
Programmer’ sAPI specificationonly definesaseriesof SOAPmessagesthat
aUDDI registry can accept. Thus, aJavadevel oper who wishesto accessa
UDDI registry canutilizeanumber of ways:
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1. ThroughaJava-based SOAPAPI,
2. ThroughacustomJava-based UDDI client API, or
3. ThroughJAXR.

Microsoft had originally devel opeditsown standard for WSdiscovery, with
DISCO, intheform of adiscovery (DISCO) file. A published DISCOfileis
an XML document withlinksto other resourcesdescribingtheWeb Service.
Since the widespread adoption of UDDI, however, Microsoft has been
supportingitinstead of DISCO, inorder to maximizeinteroperability.

Handling Large Datasets:
Motivation and Architecture

Thissectiondiscussesthechallengesof largeand“ online” datamanagement,
especially inthesector of telecommunication serviceproviders. Beforepre-
senting detail sof the proposed approach, acoupleof paradigmsof traditional
largedatasetsmanagement will bepresentedtoillustratethat existing solutions
can be inadequate. In particular, the case of large data set management is
usually handled using performancetuning and orchestration at the back-end
enterprise DBM Ss. Thissolution might beeffectivein configurationswhere
departmentsof asingleenterpriseareparticipatingintheprocessof handling
thelargedatasets. Thisusually involvesauniquetypeof EnterpriseResource
Panning (ERP) system.

Actually, thisistheway that bank branchescommunicateandinterchangedata
with other branchesof the same bank, sincethey shareacommon semantic
representati onin businessand exact database schemaof their data. Inthiscase,
thenotionof “online” dataavailability exists. Itisalsocommonplacefor the
customer todemand full analysisof hisbank-account transactionswithout
havingtowaitat all. Theexchangeof |argedatasetsbecomesquitecomplicated
whendifferent banksareinvolved. Additionally, it turnsout to beeven harder
to interchange data between banks and enterprises of other commercial
industries/serviceproviders. Inthat event, WStechnol ogy providesanon-
transparent solutionfor datasets communicationandinterchange. The*onling”
notionlosesitsactual meaninginthesecasesand acustomer may evenhaveto
waitfor awholeday toreceivetheanalysisof hisaccount (e.g., whenever his
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transactionswereperformedinforeign country banksor even at branchesof
different banks).

However, Web Servicespenetrationin enterpriseshasreached several more
industrial and businessenvironments. Inthelatter, time-sensitiveand data-
intensivetransactionsusing Web Servicesarerequired betweenthecustomers
andtheprovided services/products. Web Servicetechnol ogy doesnot include
astandardized mechanismtodeal withsuch* online” cases. Web Serviceshave
been designed to serve aloosely-coupled interconnection of enterprises
without dealingwithquality of service(QoS) parameterssuchasexecutiontime
andresponseduration.

Thisinadequacy becomesan obstacl einbusi nessessuch astel ecommunication
service providers. A common exampleisthe delivery and management of
customers' detailedbill recordsof telephonecalls. Therearecarriersthat have
tohandlemillionsof billsand billionsof transactionsper hour. IntheDBM S
world, thesenumbersof recordscan possibly behandl ed efficiently and even
“online” with advanced, well-known strategies and mechanisms such as
replication, clustering, and network sharing. Nevertheless, Web Servicesare
not DBM Ssbut only aninterconnectiontechnology, whichunfortunately lacks
QoS. Inthisexample, aWeb Servicewould haveto patiently searchfor all the
unbilled calls of awhole day’ s transactions to return detailed analysis of
customer callsof theday. SuchaWeb Servicewould havetowait even more
inorder toevaluateandrespondto*thecall-billing” service. Delay overheads
occur, becausethe back-end DBM Shasto deal with very large datasets of
gigabytesper hour. Thescenarioisgetting even morecomplicated when QoS
parametershaveto beincorporated such asavailability of theWeb Serviceand
I nternet-working performancebetween theconsumer of theWeb Serviceand
the WS provider. As aresult, QoS specifications have to be taken into
considerationwhen consumingaWeb Service. Inthiswork, theefficientand
effective QoS-enablingtechniquesproposedinMakris, Panagis, Sakkopoul os,
and Tsakalidis(2004) havebeenapplied. A high-level architectural view of this
approachisdisplayedinFigure2. Themost crucial componentintheintro-
duced architectureliesintheimplementation of the QoS-enabling selection
algorithm. A detailed analysisof the QoS-awareal gorithm of Makris, Panagis,
Sakkopoul os, and Tsakalidis(2004) goesbeyond thescopeof thischapter. In
the paragraphstofollow, wehighlight thebasi c underlying concepts.

Two main QoS factors are taken into account: Network delay between
requester and provider, and thenumber of distinct functionsimplementedat a
potential WSprovider. First of all, the set of candidate WS provider nodesis
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Figure 2. General architecture of the proposed solution for the Telecom case
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identified. Thissetispruned by ruling out nodesthat aresub-optimal according
tothetwo QoScriteria, anindicationthat thereisat | east onenodewith better
QoS performance than them. The pruning step is carried out viaa simple
geometricobservation. Inthesequel , theauthorssel ect thenodewiththesmallest
“projected” executiontime; theactual executiontimecannot beforeseen, but
instead each node keeps an execution history, which theauthorsleverageto
calculateprojected executiontimes. Thecal cul ation processrequiresquerying
theremaining nodesfor their current state. A heuristicisal so presented, inorder
toavoidtoo many network traffic overhead, duringthecal culations.

Apartfromefficient sel ection, asynthesisof all applicationsthat theenterprise
needshasto bedesigned, using Web Service management and performance
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tuningtechniques. Inthisway, theresulting systemwill boost productivity and
responsetime, andtherefore, increase customer satisfactionwhilereducing
administrativecosts. K ey featuresof thesol ution proposed are: (1) theobject-
oriented method followed for smooth and swift incorporation of the re-
engineered processeswiththealready existinginfrastructure; (2) theadaptive
Web-based environment utilizedinbothintranet and extranet users; and (3) the
Web-unificationof all theenterpriseapplicationsunder thecommonumbrella
of asinglearchitectureusing Web Services.

Functional and Operational Desiderata

Thefunctional and operational requirementsof the proposed sol ution of the
casestudy arediscussed inthissection. Inthe sequel, we present thelist of
primekey requirementsincludedinthedesignof thetechnol ogical environment.
After aseriesof interviewswithtelecommunication carrier top I T executives
andthedistribution of atwo-page-long questionnaireto thetelecommunication
I T department (12 computer and tel ecom engineers), thefollowing functional
specificationswereoutlined:

» Handling of Web Servicesfor datainterchangewith awideenterprise
collaborators' national network of 13,000 pointsof presence (PoP).

* Implementation and orchestration of Web Services that manage and
deliver sensitive datadirectly into the infrastructure of the provided
telecomservices.

*  Onlinecustomer document management, nationwide, for any PoPof the
enterprise.

»  Enablingcommunicationandbusinesswithfour different hardwaresup-
plierstofacilitatesingle-day request, delivery, andinstallation of end-user
Vol Pgatewaysand DSL routers.

»  Establishingatechnical knowledgebasefor Web Servicesupport.

From an operational perspective, the previousspecificationsimply several
important detail sthat affect Web Servicesproviding the corresponding ser-
vices-operations:
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*  Management of Services. |ntheoperationsconcerning themanagement
of theprovided customer servicesand the creation of new ones, wehave
designed aframework that coversanumber of different configuration
options. Each processcoverscompletely thecreation, activation, inter-
connection and de-activation or del etion of the corresponding service.
Management of servicesinfluencesdirectly theinterconnectionwiththe
identification codeof each customer.

The reader should take into consideration that the majority of both
switched and Vol P telephony hardware supports mainly text-based
database interfaces and scarcely partial database interfaces. Conse-
quently, databasecommunication and processi ng performanceisseverely
degraded and the corresponding Web Serviceshavetowait for several
minutestoreceivearesult.

*  Administration of the Detailed, Bill-Issuing Procedure. Producing
detailedbill recordsfor atelecommunication carrier isaquitecomplicated
task. In high level it includestheissuing and the distribution of bills.
Detailedbillsareissued and distributed either using apre-defined time
scheduleor inan ad-hoc sense, whenever acustomer requestsadetailed
bill snapshot (for call transactionsthat arenotincludedin previoushbil
ISsues).

*  Document Management. Thedocument management systemincludes
tensof millionsof scanned documents. Thesedocumentsincludecustomer
applications, previoushill issues, and other sensitivedocuments, suchas
ID, customer passport, and soforth. They haveto bedeliveredthrough
Web Servicessupporting high security standardsfor authorizationand
authentication. Itisfurther requiredtousealimited number of central
points, aswell asefficient|oad-bal ancing techniques.

Business Rules
Re-Engineering and Integration

Thissection describesthebusi nessdatamanagement processesthat havetobe
followedfor theorganization and execution of legacy corporatetaskswiththe
useof Web Services. Teng, Grover, and Fiel der (1994) described Business
ProcessRe-engineering (BPR) asthe processduringwhichthoroughanalysis
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and completeredesign of current businessprocessesisperformedinorder to
reach major improvementsin performance. Inthiscase, theintroduction of
ServiceOriented Architectureinthelnformation Technology systemshas
followedall thediscretefeaturesof BPR asdescribedin Davenport (1993). All
involved processeshavebeenradically changed having asastarting point a
clean state. Overall, the design and implementation time required for the
processestransformation |asted | essthan asemester. However, the processes
that involvedall 13,000 national businesspartnershad beenlater revisited for
further enhancements. Thescopeof changeswasbroad and cross-functional .
Especialy, inthecaseof re-engineeringthe* management of services’ process,
thistask had practically had its effects across all productive sectors of the
enterprise. As a natural consequence, BPR was coupled with structural
changesintheenterprise. Beforetheintegration of Web Services, only the
positions of managing director and managers existed. The most important
structural “ side-effect” hasbeen theappointment of anew General Manager
(GM) intheenterprise. Inorder to ensureeffectiveimplementation of thel T-
based processes, theenterprisechoseanew GM withlong experienceinthe
implementation of | T-oriented servicesfromthe Department of Information
Technology and Servicel mplementation.

To successfully deliver Web Services, the following three-layer logic is
assumed, followingthebusi nessprocessre-engineering roadmap of Figure 3.

Initially, integration of there-engineered busi nessprocessesisachieved. Next,
the connection poi nts between Web Servicesand businessaction pointsare
identified andinterconnected. Finally, publishing, testing, and adj ustment of
thoseWeb Servicesisperformedto puttheminbusiness. Thethreedifferent
layers are depicted in Figure 4. A piece of asimplified business process

Figure 3. Business process re-engineering roadmap
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flowchartispresented withacorresponding outlineof thefinal implementation.
Furthermore, theinternal connection pointsarelocated asthepotential access
pointsfor auser coming fromtheexternal hyperspace (indicated onthesame
figureas*”layer 2”). Ultimately, the infrastructure presented as*“layer 3",

Figure4. Integration procedure using BPR for problem-solving Web Services
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supportsthe Web Servicethat would enableall customersand associatesto
takeadvantage of thecompany’ sbusinessservices.

Selecting and Consuming Web Services

Sinceanimportant subtask preceding theconsumption or invocation of Web
Servicesistheir selection, thissectionwill deal withthe sel ection components
of theWeb Servicearchitecture. TheUDDI approachwill bepresented, and
themain problemsarising by itsusewill bepointed out. Moreelaborateand
efficientintermsof search quality approacheswill al so be presented. For a
more comprehensivetreatment see Garofal akis, Panagis, Sakkopoul os, and
Tsakalidis(2004).

Architectural Issues: UDDI, Its Flavors, and Alternatives

Thestandard UDDI discovery approach requiresthepotential user to make
useof theavailableUDDI query API or query interfaceto providedescription
keywordsor part of thefunction nametotheregistry. Consequently, theuser
isfaced withalist of results, related or unrel ated, which can be browsed to
check their avail ability and functional requirements. Several shortcomings
occur fromthissimplisticviewpoint mainly dueto severa kindsof heterogene-
itiesthat wearefaced with: (1) technol ogical heterogeneities(different plat-
formsor different dataformats), (2) ontological heterogeneities (domain-
specifictermsand conceptswithin servicesthat candiffer from oneanother,
especially when devel oped by different vendors), and (3) pragmatic heteroge-
neities (different devel opment of domain-specific processesand different
conceptionsregarding thesupport of domain-specifictasks).

Moreimportantly perhaps, thecurrent registry-discovery approach doesnot
takeany quality of serviceparametersinto account. A very commonexample
hasitsanalogueinthecase of abrokenlink inthereturned resultsof aWeb
search engine; nothing can guaranteethat an advertised WStruly exists.

InLacey (2004) an approachtoincludequality information (e.g., expected
meantimebetweenfail ures, maximum responsetime, maximumdatathrough-
put, etc.) towhiteandyellow UDDI pagesisproposed. Overhageand Thomas
(2003) proposed asimilar kind of changesapplied to green pages. Somework
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hasal so been conductedintheareaof dynamicbindingwiththeintroduction of
the Active UDDI (Jeckle & Zengler, 2003). Moreau, Avila-Rosas, Dialani,
Miles, and Liu (2002) give an alternative approach to the discovery of Web
Servicesinthecontext of grid-based agent system; theUDDI isextendedtoallow
agent descriptionstofitinandto support ontol ogy-based pattern matching.

Several papersdea withdecentralizingor distributingtheUDDI registry. These
effortsfall intotwo categories: construction of UDDI federations, and Peer-to-
Peer (P2P) sol utions. Theconcept of federationistohaveseveral UDDI nodes
connected together, forming aservicethat, whileappearingtobevirtually a
single component, is composed of an arbitrary number of operator nodes
(Rompothong & Senivongse, 2003). Anoperator nodeisresponsiblefor the
datapublished at aparticular node; inUDDI terms, itisthe* custodian” of that
part of the data.

TheP2P approach hasgained moreattention. Themajority of relatedwork is
based on awell-known, dynamic, |oad-balanced P2P protocol, the Chord
(Stoica, Morris, Karger, Kaashoek, & Balakrishnan, 2003). Thekey concept
inP2Psolutionsistoallow all thepartici pantsto enter thediscovery gameby
hosting somepart of the servicedescriptions.

Retrieval Models for Web Services

This section reviews proposed methodol ogies for modeling Web Service
description in order to enhance theretrieval process. Two approachesare
discussed: thisof informationretrieval approach and that of Semantic Web.

Information Retrieval Based Representations

Thesimplest datamodel isthe Keyword-Based. Thismodel isfollowed by the
legacy UDDI standard and thedi scovery mechanismit supports. Theprovider
suppliestextual descriptionsrecordedinthebusinessentitiessection. More-
over, tModels are used as texts representing Web Services. The query
keywordsarethen matched agai nst the stored descriptions. Thisapproachis
theWeb Servicesequivalent of theclassicBooleaninformationretrieval model;
see, for exampleBaeza-Y atesand Ribeiro-Neto (1999, chap. 2).

A direct extensionistoexploit different IR model ssuch asthevector-space
model; seeagain Baeza-Y atesand Ribeiro-Neto (1999, chap. 2). That was
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exactly theapproach of Sajjanhar, Hou, and Zhang (2004). They represent
W Stextual descriptionsasdocument column-vectors. A descriptiontext, thus,
correspondstoavector 4 inthevector spacespanned by all thetermsusedin
all Servicedescriptiontexts. Thesevectorsarecollectively representedina
term-document matrix. Latent Semantic Indexing (Berry, Dumais, & O’ Brien,
1995) isusedinthesequel, toreducethedimensionality of thevector spaceand
map query vectorsmoreclosely to WSvectors.

A Web Servicemodelled asad-dimensional vector, canal so bethought of as
apointind-dimensions. Inthisrespect, ageometric datastructurefor indexing
multi-dimensional datacan bedeployedinindexingand querying Web Ser-
vices. Multi-dimensional datastructuresarerather hardtoimplementina
distributed or aP2Penvironment. Therefore, Schmidt and Parashar (2004) use
atransformation, which injectively maps pointsin higher dimensions, to
numbers. Thistransformationiscalled space-filling curve. Inthe system of
Schmidt and Parashar (2004), auniquel D isgenerated for each Web Service,
throughtheHilbert curvemapping. Thel Dsarethen storedinaChord (Stoica
etal.,2003) of Web Servicepeers. Aninteresting merit of thegiven approach
isthat it canefficiently support partial match queries, dueto Hilbert mapping.
Other work on P2PWeb Servicediscovery effortsincludesthat of Li, Zou,
Wu, and Ma (2004).

Semantic Web Approaches

Thesemanticscommunity hasdevoted great effortinenrichingWSdescription
standardswith semantic descriptions so that ontol ogy-based matching can be
performed. Thisapproach hasresultedin specialized, ontol ogy-description
languages for Web Services, such as DAML-S (The DAML-S Coalition,
2002) anditssuccessor OWL-S(TheOWL ServicesCoalition, 2003). Inthis
vein, Paolucci, Kawamura, Payne, and Sycara(2002) present aframework to
allow WSDL and UDDI to perform semantic matching. Web Servicesare
modelled as ontol ogies, ontol ogies are described by other non-functional
attributes, and aspecialized ontology, the DAML-SMatchmaker, undertakes
thebinding procedure. Thematchmaker doesnot extend any of theUDDI page
categories; itistreated asan add-on, which undertakes semantic matchingand
themapping of ontologiesto UDDI descriptions.

A recent devel opment wastheintroduction of anew language, namely OWL -
S, to combine semanti c annotation of Web Serviceswiththeir discovery and
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invocationwithWSDL and SOAP (Sycara, 2004). Thisapproach hasledto
the OWL-SMatchmaker module. Implementation frameworksfor semantic
WS annotations are provided by Hu (2003) and Overhage and Thomas
(2003). Hu describes a semantic implementation of WS in an industrial
environment, wheredataare modell ed by domain ontol ogiesand operateson
themwith operation ontol ogies. Ontol ogy representation, rel ationship encod-
ing, and binding are coded in XML, which allowsincorporation to UDDI
entities. Overhageand Thomas(2003), providean extensionto UDDI, the E-
UDDI, by introducing* bluepages,” pagesthat contai n semantic descriptions
inDAML-S.

Case Study
Implementations and Evaluation

Thearchitectural approach outlinedin Figure2 hasbeen based ontheneeds
of the largest private-sector telecom carrier in Greece. It supports Web
Servicesfor processing large-scal e datasetswith domain-specific enhance-
mentsinthediscovery strategiesaccordingtoMakris, Panagis, Sakkopoul os,
and Tsakalidis(2004). Thetechnol ogiesutilized for theimplementation of the
mechanisms, theWeb Services, and theeval uation proceduresincludetheM S
NET framework version1.1 (Microsoft“Microsoft. NET framework”, n.d.)
andthe C#language(Microsoft, “Microsoft C#’, n.d.). The.NET framework
has been chosen by the end-user enterprise asastrategic devel opment and
solutionplatform. Without losingitsgenerality, theproposed approach canbe
implemented utilizing any Web Servicedevel opment platform.

Evaluation results are examined to determine the quality of the proposed
architecture. Twomain phasesarefollowed: verificationandvalidation of the
outcomes. Verificationrefersto building theenvironment correctly that is
substantiating that asystem correctly implementsitsspecifications. Validation
referstobuildingtheright systemthat issubstantiating that thesystem performs
with an acceptable level of accuracy. During verification phase, software
architectstestedthe proposed environmentinthelaboratory. For thispurpose,
test cases were performed. As the goal of these tests was to achieve a
representativecross-sectional test of thesystem, test scenariosweredesigned
to cover abroad rangeof potential user inputs(includingcommonaswell as
rare-usecases). Among thevalidation methodol ogiesavailable, weopted for
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Table 1. Experimental sets utilized

Execution Time Network Time
(se) (se0)
WS Group 1 10 up to 60 lupto15
WS Group 2 30 up to 320 lupto30
WS Group 3 60 up to 600 lupto30
WS Group 4 180 up to 3600 10 up to 60

guantitativevalidation. Four setsof experimentsweredesignedinthelabora-
tory inorder to measuretheefficiency of the proposed solution. Theexperi-
mentstreated theinvolved Web Servicesingroupswithsimilar characteristics
tofacilitatecomparison of theresulting measurements. Thedifferent groupsof
WS formed aredepicted in Table 1, together with their characteristics. In
particular, the setsweredifferentiated intermsof thedatavolumeinvolved
(expressedindirectly intermsof executiontimeto processthedata) and the
network latency to deliver thedatatotherequester (cf. Table1).

Inthecorporate environment, themean network latency isfar lessthanthe
mean executiontime. Thisistrueduetothefact that Web Servicesdealingwith
telecommunication call-log datasetsneed to perform several seriesof cross-
checksand operations. Despitethat, thenumber of call transactionsislimited
only to some hundreds of calls per phone number and, therefore, it takes
relatively shorter timefor theservicetobedelivered. Experimentsincludeal so
ascenariowhereexecutiondurationisclosetonetwork latency. Thepresented
comparison depictsthe execution time of the WS sel ected by the proposed
algorithmin Makris, Panagis, Sakkopoul os, and Tsakalidis (2004) vs. the
WS’ sexecutiontimebased on common andtypical Web Servicetechnologies,
suchasUDDI-based sel ection. Thesemeasurementsonly highlight thedefault
behavior when carrying out tasksin the presence of largeamount of processed
data, in contrast to the proposed Web Service-driven architecture. When
adopting the proposed architecture, we can observe an average of 48.09%
gaininresponsetime, asillustratedin Figure5. However, intheoperational
environment, even higher gainisexpected asthe Web Servicesused canbe
mainly classifiedtogroups3and4 of Table 1, whichindicatethe presenceof
very largedatasets.
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Figure 5. Response time gain with intelligent selection and execution of Web
Services: The larger the data set handled, the greater the percentage gain is
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Future Steps

Futurework includesincorporation of quality of Web Servicemetricsinto
processesthat involveWeb Serviceand databaseinterconnection. Thiswould
enable I T solution providers to perform tuning of Web Service-oriented
environmentsjust likethey dointhecaseof DBMS. Thiscanradically change
the performanceand allow further penetration of theWeb Servicesstandard-
izationframework. Additionally, dealing with performancetuning of Web
Serviceworkflowsand non-composite Web Servicesisal so an openissue.
Thereisalongroadmap towardsstandardizing andinterconnecting seriesof
Web Servicesthat depend on each other’ sresults. Attheenditwill allow the
enterprisestotakebest advantageof virtual serviceprovidersand efficiently
outsourcepartsof their operational processes. Outsourcingwill alow themto
cut downon softwareand hardware expenses. Infact, such outsourcingwould
upgrade service response time, especially for large, database-dependant
processes. Processes of this sort require very expensive hardware and
softwarethat only avirtual serviceprovider canofferincost-effectivesolutions.
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Conclusion

Throughout thischapter, Web Services, anemerging architecturefor building
distributed corporate applications, was presented. Web Servicesoffer the
chanceto buildrobust, loosely-coupled and platf orm-independent applica-
tions, boosting thus the adoption of the Web Services framework by the
softwareengineeringcommunity. Web Servicedesignand deploymentinreal -
life scenarioswasal so presented, providing both the design decisionsthat
allowed incorporation of legacy corporate processesand the outline of the
adopted architectural design. Inthecasepresented, Web Servicesprovided
the needed cross-platform solution. Web Services provided the necessary
framework for inter-operation and non-transparent data exchange with a
number of suppliers(procurement) and collaborating serviceproviders. Addi-
tionally, theneed for compatibility andinterconnectionwith different ERP
systemsand other billing systemsof thousandsof businesspartnershasbeen
fulfilledusingthe XM L-based Web ServiceArchitecture.

Moreover, the presence of data-intensive tasks, as those carried out in a
telecom businessenvironment, highlightsseveral weaknessesof thestandard-
ized WSframework; most notably thelack of QoS guaranteesaswell asthe
lack of trueW Sretrieval rather than amerematching of servicespecifications.
Some of theapproachestotackletheretrieval problemwerepresented. We
haveal so presented experimental resultsonlargedatasetsthat merely indicate
themarginforimprovementintheenforcement of aQoSpolicy uponthe WS
framework.

TheW Sframework hashel ped to untanglethecomplex processof devel oping
distributed, large-scal e, inter-corporateapplications. However, thereisstill
need for the standardization to follow the surge for QoS provisioning and
improvedretrieval capabilities.
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Abstract

The retailing giant Wal-Mart owes its success to the efficient use of
information technology in its operations. One of the noteworthy advances
made by Wal-Mart is the development of the data warehouse which gives
the company a strategic advantage over its competitors. In this chapter,
the planning and implementation of the Wal-Mart data warehouse is
described and its integration with the operational systems is discussed.
The chapter also highlights some of the problems encountered in the
developmental process of the data warehouse. The implications of the
recent advances in technologies such as RFID, which is likely to play an
important role in the Wal-Mart data warehouse in future, is also detailed
in this chapter.
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Introduction

Data warehousing has become an important technology to integrate data
sourcesin recent decades which enables knowledge workers (executives,
managers, and analysts) to makebetter andfaster decisions(SCN Education,
2001). Fromatechnol ogical perspective, Wal-Mart, asapioneer inadopting
datawarehousi ng technol ogy, hasal waysadopted new technol ogy quickly and
successfully. A study of theapplicationsandissuesof datawarehousinginthe
retailingindustry based on Wal-Martislaunched. By investigatingtheWal -
Mart datawarehousefrom variousperspectives, wereview someof thecritical
areaswhich are crucial to the implementation of adatawarehouse. Inthis
chapter, thedevel opment, implementation, and eval uation of theWal-Mart
data warehouse is described, together with an assessment of the factors
responsiblefor deployment of asuccessful datawarehouse.

Data Warehousing

Datawarehouseisasubject-oriented, integrated, time-variant, non-updatable
collectionof datausedin support of management decision-making (Agosta,
2000). Accordingto Anahory and Murray (1997), “adatawarehouseisthe
data(meta/fact/dimensi on/aggregation) and the processmanagers(load/ware-
house/query) that makeinformation available, enabling peopleto makein-
formeddecisions’. Beforetheuseof datawarehouse, companiesusedtostore
datain separate databases, each of whichweremeant for different functions.
Thesedatabasesextracted useful information, but noanalyseswerecarried out
withthedata. Sincecompany databasesheldlargevolumesof data, theoutput
of queriesoftenlisted out alot of data, making manual dataanalyseshardto
carry out. Toresolvethisproblem, the technique of datawarehousing was
invented. Theconcept of datawarehousingissimple. Datafromseveral existing
systemsisextractedat periodicintervals, transatedintotheformat required by
the datawarehouse, and |oaded into the datawarehouse. Datain the ware-
housemay beof threeforms— detailedinformation (fact tables), summarized
information, and metadata (i.e., description of thedata). Dataisconstantly
transformed from one form to another in the data warehouse. Dedicated
decision support system is connected with the data warehouse, and it can
retrieverequired datafor analysis. Summarized dataare presented to manag-
ers, hel ping them to make strategi c decisions. For exampl e, graphsshowing
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Figure 1. Process diagram of a data warehouse (adapted from Anahory
and Murray [1997])

Data transformation and movement

Source Detailed information Users
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v

Summary information
Extract y Query

and load

Metadata

salesvolumesof different productsover aparticul ar period can begenerated
by the decision support system. Based on those graphs, managers may ask
several questions. Toanswer thesequestions, it may benecessary to query the
datawarehouse and obtain supporting detailed information. Based on the
summarized and detailed i nformation, themanagerscan takeadecisionon
altering the production volume of different productsto meet expected de-
mands. Themajor processesthat control thedataflow andthetypesof data
inthedatawarehousearedepictedin Figure 1. For amoredetail ed description
of thearchitectureandfunctionalitiesof adatawarehouse, theinterested reader
may refer to Inmon and Inmon (2002) and Kimball and Ross (2002).

Background

Wal-Mart is one of the most effective users of technology (Kalakota &
Robinson, 2003). Wal-Mart wasa waysamong thefront-runnersinemploying
informationtechnology (IT) tomanageitssupply chain processes(Prashanth,
2004). Wal-Mart started using I T tofacilitate crossdockinginthe1970s. The
company later installed bar codesfor inventory tracking, and satellitecommu-
nicationsystem (SCS) for coordinating theactivitiesof itssupply chain. Wal -
Mart al so set-up el ectronic datainterchange (EDI1) and acomputer terminal
network (CTN), whichenabledittoplaceorderselectronically toitssuppliers
and allowed thecompany to plan thedispatch of goodsto thestoresappropri-
ately. Advanced conveyor systemwasinstalled in 1978. The point of sale
(POS) scanning system madeitsappearancein 1983, when Wal-Mart’ skey
suppliersplaced bar-codesonevery item, and Universal Product Code (UPC)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Business Data Warehouse: The Case of Wal-Mart 247

scannerswereinstalledin Wal-Mart stores. L ater on, theel ectronic purchase
order management system wasintroduced when associ ateswere equipped
with handheld terminal sto scantheshelf labels. Asaresult of theadoption of
thesetechnol ogies, inventory management becamemuch moreefficient for
Wal-Mart. In the early 1990s, Wal-Mart information was kept in many
different databases. As its competitors, such as Kmart, started building
integrated databases, which could keep sal esinformation downtothearticle
level, Wal-Mart’ sIT department felt that a datawarehouse was needed to
maintai nitscompetitiveedgeintheretailingindustry.

Sincetheideaof datawarehousewasstill new tothel T staff, Wal-Mart needed
atechnology partner. Regarding datawarehouse selection, therearethree
important criteria: compatibility, maintenance, andlinear growth. Intheearly
1990s, TeradataCorporation, now adivisionof NCR, wastheonly choicefor
Wal-Mart, asTeradatawastheonly merchant databasethat fulfilled thesethree
important criteria. Datawarehouse compatibility ensured that thedataware-
houseworkedwiththefront-end application, and that datacoul d betransferred
fromtheold systems. Thefirst task for TeradataCorporationwastobuild a
prototype of the datawarehouse system. Based on thisprototype system, a
businesscasestudy rel ated to thecommunication betweenthel T department
and themerchandising organi zationswasconstructed. Thecasestudy andthe
prototypesystemwereusedinconjunctionto convinceWal-Mart executives
toinvestinthetechnol ogy of datawarehouse.

Once approved, the IT department began the task of building the data
warehouse. First, information-based analyseswerecarried out onall of the
historical merchandisingdata. Sincethel T department did not understand what
neededto bedoneat first, timewaswasted. About amonthlater, therewasa
shakedown. The I T department focused on the point-of-sales (POS) data.
Four teamswereformed: adatabaseteam, an applicationteam, aGUI team,
and aTeradatateam. The Teradatateam provided training and overlooked
everything. Theremainingteamsheld different responsibilities: thedatabase
team designed, created, and maintai ned the datawarehouse, theapplication
teamwasresponsi blefor oading, maintai ning, and extracting thedata, andthe
GUI team concentrated on building theinterfacefor thedatawarehouse. While
working on different parts of the datawarehouse, the teams supported the
operationsof each other.

Hardwarewasalimitationinthedatawarehouseimplementationat Wal-Mart.
Since all dataneeded tofit in a600 GB machine, data modeling had to be
carried out. To save up storage space, atechnique called “ compressing on
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zero” was used (Westerman, 2001). This technique was created by the
prototype teams. The technique assumed that the default value in the data
warehousewaszero, and when thiswasthe case, therewasno need to store
thisdataor allocatephysical spaceonthedisk drivefor thevalueof zero. This
wasquiteimportant sinceit required equal spaceto storezero or any large
value. Thisresulted in great disk space savingsin theinitial stages of the
database design. Data modeling was an important step in Wal-Mart data
warehouseimplementation. Not only didit saveup storagebut wasresponsible
for efficient maintenanceof thedatawarehouseinthefuture. Hence, itisstated
by Westerman (2001), “If youlogically designthedatabasefirst, the physical
implementationwill bemuch easier tomaintaininthelonger term.”

Afterthefirstimplementation, Wal -Mart datawarehouse consi sted of the POS
structure (Figure 2). The structure wasformed with alarge fact-basetable
(POS) surrounded by anumber of support tables.

Theinitial schemawasastar schemawiththecentral fact table (POS) being
linked to the other six support tables. However, the star schemawas soon
modified to a snowflake schema where the large fact-table (POS) was
surrounded by several smaller support tables(likestore, article, date, etc.)
whichinturnwereal so surrounded by yet smaller support tables(likeregion,
district, supplier, week, etc.). Animportant element of the POStablewasthe
activity sequencenumber which acted asaforeignkey totheselling activity
table. Theselling activity tableled to performanceproblemsafter twoyears,
andWal-Mart decided to mergethistablewiththe POStable. Thenext major
changethat took placeseveral yearslater wastheaddition of thesellingtime

Figure 2. Star schema for Wal-Mart data warehouse (Source: Westerman,
2001)
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attributetothe POStable. Thedetail ed description of the summary and fact
tablescan beobtained from Westerman (2001).

Main Thrust

Approximately oneyear after implementation of thedatawarehousein Wal-
Mart, areturnoninvestment (ROI) analysiswasconducted. InWal-Mart, the
executivesviewedinvestmentintheadvanced datawarehousing technology as
astrategic advantageover their competitors, andthisresultedinafavorable
ROl analysis. However, theimplementation of thedatawarehousewasmarked
by several problems.

Problems in Using the Buyer Decision Support Systems
(BDSS)

Thefirst graphical userinterface(GUI) applicationbased ontheWal-Mart data
warehouse was called the BDSS. Thiswas a Windows-based application
createdtoallow buyersto run queriesbased on stores, articles, and specific
weeks. The queries were run and results were generated in a spreadsheet
format. It allowed usersto conduct storeprofitability analysisfor aspecific
articleby running queries. A major problemassociated withtheBD SSwasthat
thequeriesrunusingthiswould not alwaysexecuteproperly. Thesuccessrate
of query execution was quite low at the beginning (i.e., 60%). BDSS was
rewrittenseveral timesandwasinaprocessof continual improvement. Initially,
thesystem could only access POSdata, butinashort period of time, access
wasalso provided to datarel ated to warehouse shipments, purchaseorders,
and storerecei pts. BDSSproved to beaphenomenal successfor Wal-Mart,
and it gave the buyers tremendous power in their negotiations with the
suppliers, sincethey could check theinventory inthestoresvery easily and
order accordingly.

Problems in Tracking Users with Query Statistics

Query Statisticswasauseful applicationfor Wal-Martwhichdefined critical
factorsinthequery execution processand built asystemtotrack thequeries.
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Tracking under thisquery statisticsapplicationreveal ed someproblemswith
thewarehouse. All userswereusing thesameuser-1D and passwordtolog on
andrunqueries, and therewasnoway totrack whowasactually runningthe
specifiedquery. Wal-Mart did managetofix theproblem by launching different
user-1Dswiththesamepassword “walmart”. But thisinturnledto security
problemsasWal-Mart’ sbuyers, merchandisers, | ogistics, and forecasting
associates, as well as 3,500 of Wal-Mart’ s vendor partners, were able to
accessthesamedatainthedatawarehouse. However, thisproblemwasl| ater
solvedinthesecond year of operation of thedatawarehouseby requiring all
usersto changetheir passwords.

Performance Problems of Queries

Usershadto stay connected to Wal-Mart’ sbouncing network and database,
throughout itsentire4,000-plusstorechainand thiswascost-ineffectiveand
time-consumingwhenrunning queries. Theusersreportedahighfailurerate
when the usersstayed connected to the network for theduration of thequery
runtime. Thesolutiontothisproblemwasdeferred queries, whichwereadded
toenableamorestableenvironmentfor users. Thedeferred queriesapplication
ranthequery and saved theresultsinthedatabaseinanoff-linemode. Theusers
wereallowedto seethestatusof thequery and couldretrievetheresultsafter
completion of thequery. With theintroduction of thedeferred queries, the
performance problemswere solved with satisfactory performance, and user
confidencewasrestored aswell. However, theusersweregiventhechoiceto
defer thequeries. If they did not faceany network-rel ated problemsthey could
still runthequeriesonline, whileremaining connectedtoWal-Mart’ sdatabase.

Problems in Supporting Wal-Mart’s Suppliers

Wal-Mart’ ssuppliersoften remained dissatisfied becausethey did not have
accesstotheWal-Mart datawarehouse. Wal-Mart barreditssuppliersfrom
viewingitsdatawarehousesincethey did not want supplierstolook intothe
Wal-Martinventory warehouse. Theexecutivesfeared, if givenaccesstothe
inventory warehouse, supplierswouldlower thepriceof goodsasmuch asthey
could, and thisin turn would force Wal-Mart to purchase at alow price,
resultinginoverstockedinventory. Later on, Wal-Mart realized that sincethe
goalsof thesupplier andthebuyer arethesame(i.e., tosell moremerchandise),
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itisnot beneficial tokeepthisinformationaway fromthesuppliers. Infact, the
information should be shared so that the supplierscould come prepared. In
order to sustai nitsbargai ning power over itssuppliersand yet satisfy them,
Wal-Mart built Retail Link, adecision support systemthat served asabridge
between Wal-Mart anditssuppliers. It wasessentially the samedataware-
house applicationlikethe BDSSbut without the competitors’ product cost
information. Withthisthesupplierswereabletoview almost everythinginthe
datawarehouse, could perform the same analyses, and exchangeideasfor
improvingtheir business. Previously, thesuppliersusedtofeel quitedisheart-
enedwhenthebuyerssurprisedthemwiththeir up-to-dateanalysesusingthe
BDSS. Thesuppliersoften complained that they coul d not seewhat thebuyers
wereseeing. Withtheavailability of theRetail Link, thesuppliersal sobeganto
feel that Wal-Mart cared about their partners, and thisimproved therel ation-
ship between the suppliersandthebuyers.

Oncetheinitial problemswereovercome, emphasi swasplaced onintegration
of thedatawarehousewith several of theexisting operational applications.

Integration of the Data Warehouse
with Operational Applications

Whenitcomestointegration, themaindrivingforcefor Wal-Martwastheability
toget theinformationintothehandsof decisionmakers. Therefore, many of the
applicationswereintegrated into the datawarehouse (Whiting, 2004). Asa
result, thesystemswereabletofeed datainto thedatawarehouse seamlessly.
Therewerea sotechnical reasonsfor drivingintegration. [twaseas er toget data
out of theintegrated datawarehouse, thusmakingit atransportationvehiclefor
dataintothedifferent computersthroughout thecompany. Thiswasespecially
important becausethisallowed each storeto pull new informationfromthedata
warehousethroughtheir replenishment system. Itwasa sovery effectivesincethe
warehousewasdes gnedtoruninparale, thusallowing hundredsof storestopull
data at the same time. The following is a brief description of Wal-Mart’s
applicationsand how they wereintegratedinto theenterprisedatawarehouse.

Replenishment System

Theprocessof automaticreplenishment wascritically important for Wal-Mart
sinceitwasabletodeliver thebiggest ROI after theimplementation of thedata
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warehouse. Sincetherepl enishment application wasal ready established, the
system was quite mature for integration. The replenishment system was
responsiblefor onlinetransaction processing (OL TP) and onlineanal ytical
processing (OLAP). Itreviewed articlesfor orders. Thesystemthen deter-
mined whether an order was needed and suggested an order record for the
article. Next these order records were loaded into the datawarehouse and
transmittedfromthehomeofficetothestore. Thestoremanager thenreviewed
thesuggested orders, changed prices, countedinventory, and soon. Beforethe
order was placed, the store managers also reviewed the flow of goods by
inquiring about articlesalestrends, order trends, article profiles, corporate
information, and soon. Thesewereexamplesof OLAPactivities. Thismeant
that theorder wasnot automatically placed for any item. Only after thestore
manager had achancetoreview theorder and performsomeanalysesusingthe
datawarehousewasit decided whether the order was going to be placed or
not. Theorder could either beplacedif theorder could befilled from oneof
theWal-Mart warehouses, or theorder could bedirected to thesupplier via
electronicdatainterchange(EDI). Ineither of thetwo cases, theorder would
beplacedintheorder systemsandinto thedatawarehouse.

Distribution via Traits

Thetraiting concept wasdevel oped asan essential el ement of therepl enishment
system. Themainideawasto determinethedistribution of an articletothe
stores. Traitswereused to classify storesinto manageable unitsand could
includeany characteristics, aslong asit wassomewhat permanent. Further-
more, thesetraitscould only havetwovalues: TRUEand FALSE. Tablelis
anexampleof what astoretrait tablemightlook like.

Traitscould alsobeappliedtoarticlesinastorewhereadifferent tablecould
be created for it. These different trait tables were used as part of the
repleni shment system. Themost powerful aspect of thistraiting concept wasthe
use of areplenishment formula based on these traits. The formulawas a
Booleanformulawheretheoutcomeconsi sted of oneof twovalues. If theresult

Table 1. An example store trait table

Store Fresh <60K |>120K |[Kmart Target |Real

ID Pharmacy Deli Bakery Beach [Retirement |University |Sgft |Sgft |Comp Comp [Comp |etc.
2105 |N N N N Y N N Y Y N N

2106 |Y Y Y N N Y N Y N Y N
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wastrue, thestorewould receivean articleandviceversa. Thisconcept was
very important for alargecentrally-managedretail company likeWal-Mart,
sincetheright distribution of goodstotheright storesaffected salesand hence
theimageof thecompany. A distributionformulamightlook likethis:

Store distribution for Article X = (pharmacy * fresh deli * bakery * — <
60K sq. ft.).

Thisformulaindicatedthat astorewhichhad apharmacy, afreshdeli, abakery,
and had asizeof morethan 60,000 sg. ft., shouldreceivetheorder. From Table
1, wecan seethat store 2106 satisfiesal | these conditionsand hence should
receivethearticleX. Inthismanner, eacharticlehaditsown uniqueformula,
helpingWal-Mart distributeitsarticlesmost effectively amongstitsstores.

All thisinformationwasvery valuablefor determining theall ocation of mer-
chandiseto stores. A datawarehouse would provide agood estimatefor a
product based onanother, similar product that had thesamedi stribution. A new
product would bedistributed to atest market using thetraiting concept, and
thentheentire performancetracking would bedoneby thedatawarehouse.
Depending onthesuccessor failureof theinitial trial run, thetraitswould be
adj usted based on performancetrackinginthedatawarehouse, and thiswould
be continued until the distribution formulawas perfected. These traiting
methodswere replicated throughout Wal-Mart using the data warehouse,
hel ping Wal-Mart instituteacomprehensi vedistributiontechnique.

Perpetual Inventory (PI) System

ThePI systemwasused for maintenanceof inventory of all articles, notjust the
articlesappearing in the automatic replenishment. Likethe repl enishment
system, it wasal so an exampleof an OLAPand OL TP system. It could help
managersseetheentireflow of goodsfor al articles, including repl enishment
articles. Thisdatawasavailableinthestoreand at thehomeoffice. Thus, with
the use of the replenishment and Pl systems, managers could maintain all
informationrelatedtotheinventory intheir storeelectronically. Withall this
informationinthedatawarehouse, therewerenumerousinformationanalyses
that could beconducted. Theseincluded:
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» Theanalysisof the sequence of eventsrelated to the movement of an
article;

»  Determination of operational cost; and

»  Creation of “plan-o-grams” for each store for making planning more
precise. Thiscould allow buyersand supplierstomeasurethebest selling
locationswithout physically goingtothestore.

ThePI systemusing theenterprisedatawarehouse could al so providebenefits
tothecustomer servicedepartment. Managerscould hel p customerslocate
certain productswith certain characteristics. Thesystem could allocatethe
productinthestore, or identify if therewereany instorage, or if the product
wasintransitandwhenit couldarriveor evenif the product wasavailablein
any nearby stores. Thiscould befeasibleduetothedataprovided by the PI
systemand theinformation generated by thedatawarehouse.

Future Trends

Today, Wal-Mart continuesto employ themost advanced I T inall itssupply
chainfunctions. Onecurrent technology adoptioninWal-Martisvery tightly
linkedwithWal-Mart’ sdatawarehouse, that i s, theimplementation of Radio
Frequency Identification (RFID). Initseffortstoimplement new technol ogies
toreducecostsand enhancetheefficiency of supply chain, inJuly 2003, Wal-
Mart asked all itssuppliersto place RFI D tagsonthegoods, packedin pallets
and cratesshippedtoWal-Mart (Prashanth, 2004). Wal-Mart announced that
itstop 100 suppliers must be equipped with RFID tagson their palletsand
cratesby January, 2005. Thedeadlineisnow 2006 and thelist now includes
all suppliers, notjust thetop 100 (Hardfield, 2004). Eventhoughitisexpensive
andimpractical (Greenburg, 2004), thesuppliershaveno choicebut to adopt
thistechnology.

TheRFID technology consistsof RFID tagsandreaders. Inlogistical planning
and operation of supply chain processes, RFID tags, each consisting of a
microchipand anantenna, would beattached ontheproducts. Throughout the
distribution centers, RFI D readerswoul d beplaced at different dock doors. As
aproduct passed areader at aparticular location, asignal would betriggered
and the computer systemwould updatethelocation status of theassociated
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Figure 3. RFID label for Wal-Mart (Source: E-Technology Institution
(ETI) of the University of Hong Kong [HKU])

Loftware RF

Walmart com
TUh i Hlved

mies 207 363 3195
il vl i ol e caim

HESCRIPTON: SMART 1 ABELS
ART NG A30TIANTOZ SN (1 1 G 8168 T
RODUCT: ENTERPRISE EDITION

PG 800036AE23000166

product. Accordingto Peak Technologies(http://www.peaktech.com), Wal -
Martisapplying SAM SysMP9320 UHF portal readerswithMooreWallance
RFID labels using Alien Class 1 passive tags. Each tag would store an
Electronic Product Code (EPC) whichwasabar code successor that would
beusedtotrack productsasthey entered Wal-Mart’ sdistribution centersand
shippedtoindividual stores(Williams, 2004). Figure3isanexampleof the
label. Thedatastoredinthe RFID chipandabar codeare printed onthelabel,
soweknow what isstored inthechip and al so thebar code could be scanned
whenit becameimpossibletoread the RFID tag. Accordingto Sullivan (2004,
2005), RFID isalready installedin 104 Wal-Mart stores, 36 Sam’ sClubs, and
threedistribution centers, and Wal-Mart plansto have RFID in 600 storesand
12 distribution centersby theend of 2005.

Theimplementationof RFID at Wal-Martishighly relatedtoWal-Mart’ sdata
warehouse, asthe volume of dataavailablewill increase sufficiently. The
industry hasbeen surprised by estimatesof greater than 7 terabytesof item-
level dataper day at Wal-Mart stores(Alvarez, 2004). Thelargeamount of
datacan severely reducethelong-termsuccessof acompany’ sRFID initiative.
Hence, thereisanincreasing needtointegratetheavailableRFID datawiththe
Wal-Mart datawarehouse. Fortunately, Wal-Mart’ sdatawarehouseteamis
awareof thesituation andthey are standing by to enhancethedatawarehouse
if required.
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Conclusion

Inthischapter wehaveoutlined thehistorical development of abusinessdata
warehouseby theretailinggiant Wal-Mart. Asaleader of adopting cuttingedge
IT, Wal-Mart demonstrated great strategicvision by investinginthedesign,
devel opment andimplementati on of abusinessdatawarehouse. Sincethiswas
anextremely challenging project, it encountered numerousproblemsfromthe
beginning. Theseproblemsaroseduetotheinexperienceof thedevel opment
team, instability of networks, and alsoinability of Wal-Mart management to
forecast possibleusesand limitationsof systems. However, Wal-Mart was
abletoaddressall these problemssuccessfully andwasableto createadata
warehouse systemthat gavethem phenomenal strategi c advantage compared
totheir competitors. They createdtheBDSSandtheRetail Link whichallowed
easy exchange of information between the buyersand the suppliersand was
abletoinvolveboth partiestoimprovesal esof items. Another key achievement
of the Wal-Mart data warehouse was the Replenishment system and the
Perpetual | nventory system, whichacted asefficient decision support systems
and hel ped store managersthroughout theworld toreduceinventory, order
itemsappropriately, and al so to perform ad-hoc queries about the status of
orders. Using novel conceptssuch astraiting, Wal-Mart wasableto devel op
asuccessful strategy for efficient distribution of productsto stores. Ascanbe
expected, Wal-Mart is also a first mover in the adoption of the RFID
technology whichislikely tochangetheretailingindustry inthenext few years.
Theuseof thistechnol ogy will leadto thegeneration of enormousamountsof
datafor tracking of itemsintheWal-Mart system. It remainsto be seen how
Wal-Mart effectively integratesthe RFI D technol ogy withitsstate-of-the-art
businessdatawarehousetoitsown advantage.
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Abstract

Content-based image retrieval (CBIR) makes use of image features, such
as color and texture, to index images with minimal human intervention.
Content-based image retrieval can be used to locate medical images in
large databases. This chapter introduces a content-based approach to
medical image retrieval. Fundamentals of the key components of content-
based image retrieval systems are introduced first to give an overview of
this area. A case study, which describes the methodology of a CBIR system
for retrieving digital mammogram database, is then presented. This
chapter is intended to disseminate the knowledge of the CBIR approach
to the applications of medical image management and to attract greater
interest from various research communities to rapidly advance research
in this field.
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Introduction

JohnDoe, aradiologistinauniversity hospital, takesX -raysand MRI scansfor
patientsproducing hundredsof digital imageseachday. Inorder tofacilitate
easy accessinthefuture, heregisterseachimageinamedical imagedatabase
based onthe modality, region, and orientation of theimage. Oneday Alice
Smith, asurgeon, comesto discussacasewith John Doeasshesuspectsthere
isatumor on the patient’ sbrain according tothebrain MRI. However, she
cannot easily judgeif itisabenign or maligntumor fromtheMRI scan, and
wouldliketocomparewith previouscasestodecideif thispatient requiresa
dangerous operation. Understanding Alice’ sneeds, John helpsAlicefind
similar-looking tumorsfromthepreviousMRI images. Heusesthequery-by-
examplemodeof themedical imagedatabase, delineatesthetumor areainthe
MRI image, and then requeststhe databaseto returnthebrain MRI images
most similar tothisone. Alicefindseleven similarimagesandtheir accompa-
nyingreportsafter reviewing thesearchresults. Alicecomparesthose cases
andverifiesthepattern of thetumor. Later on, shetellsher patientthatitisa
benigntumor and the operationisunnecessary unlessthetumor grows.

Thisscenariobriefly describesthecreation of medical images, categorization
of medical images, and acontent-based accessapproach. Althoughamature
content-based accesstechnol ogy hasnot appearedyet, thisfieldisdevel oping
actively. Inthelast decade, alargenumber of digital medical imageshavebeen
producedinhospitals. L arge-scal eimage databasescol | ect variousimages,
including X-ray, computed tomography (CT), magnetic resonanceimaging
(MRI), ultrasound (US), nuclear medical imaging, endoscopy, microscopy,
and scanning laser ophtalmoscopy (SL O). Themostimportant aspect of image
database managementishow to effectively retrievethedesiredimagesusinga
description of image content. Thisapproach of searchingimagesisknownas
content-basedimageretrieval (CBIR), whichreferstotheretrieval of images
fromadatabaseusinginformationdirectly derived fromthecontent of images
themsel ves, rather thanfrom accompanyingtext or annotation (El-Naga, Y ang,
Galatsanos, Nishikawa, & Wernick , 2004; Wei & Li, inpress).

Themain purposeof thischapter istodisseminatetheknowledgeof the CBIR
approachtotheapplicationsof medical imageretrieval andto attract greater
interest fromvariousresearch communitiestorapidly advanceresearchinthis
field. Therest of the chapter is organized as follows: The second section
addressesthe problems and challenges of medical imageretrieval and de-
scribespotential applicationsof medical CBIR. Thethird sectionreviewsthe
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existingmedical CBIR systems. Thefourth section providesgreater detailson
the key components of content-based imageretrieval systemsfor medical
imaging applications. Thefifth section presentsacasestudy, which describes
themethodol ogy of CBIR systemsfor digital mammograms. Thesixthsection
discusses potential research issuesin the future research agenda. Thelast
section concludesthischapter.

Medical Image Database Retrieval

Thissectionwill discusstheproblemsof imageretrieval usingtheconventional
text-based method and addresses the challenges of the CBIR approach.
Potential applicationsof the CBIR approachwill al so bediscussed.

Challenges in Medical Image Retrieval

Beforetheemergenceof content-basedretrieval, medical imageswereanno-
tated withtext, allowing theimagesto be accessed by text-based searching
(Feng, Siu, & Zhang, 2003). Throughtextual description, medical imagescan
be managed based on theclassification of imaging modalities, regions, and
orientation. Thishierarchical structureallowsusersto easily navigateand
browsethedatabase. Searchingismainly carried out through standard Boolean
queries.

However, withtheemergenceof massiveimagedatabases, thetraditional text-
based search suffersfromthefollowinglimitations(Shahetal ., 2004; Wel &
Li, 2005):

*  Manual annotationsrequiretoo muchtimeand areexpensivetoimple-
ment. Asthenumber of imagesinadatabasegrows, thedifficulty infinding
desiredimagesincreases. Muller, Michous, Bandon, and Geissbuhler
(2004a) reported that the University Hospital of Geneva produced
approximately 12,000 medical images per day. It is not feasible to
manually annotateall attributesof theimage content for thisnumber of
images.

*  Manual annotationsfail todeal withthediscrepancy of subjectivepercep-
tion. Thephrase, “ animagesaysmorethanathousandwords,” implies
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that the textual description is not sufficient for depicting subjective
perception. Typically, amedical imageusually containsseveral objects,
whichconvey specificinformation. Nevertheless, differentinterpretations
for apathol ogical areacan bemadeby different radiol ogists. To capture
all knowledge, concepts, thoughts, and feelingsfor the content of any
imagesisamostimpossible.

*  Thecontentsof medical imagesaredifficulttobeconcretely describedin
words. For example, irregular organi c shapescannot easily beexpressed
intextual form, but peoplemay expect to searchfor imageswith similar
contentsbased ontheexamplesthey provide.

These problemslimit thefeasibility of text-based search for medical image
retrieval . Inan attempt to overcomethesedifficulties, content-basedretrieval
has been proposed to automatically access images with minimal human
intervention (Eakins, 2002; Fenget al., 2003). However, dueto the nature of
medi cal images, content-based retrieval for medical imagesisstill facedwith
chdlenges.

*  Lowresolutionand strong noisearetwo common characteristicsin most
medical images (Glatard, Montagnat, & Magnin, 2004). With these
characteristics, medical imagescannot be precisely segmented and ex-
tractedfor thevisual content of their features. Inaddition, medical images
obtained fromdifferent scanning devicesmay display different features,
though someapproachestoimagecorrectionand normalizationhavebeen
proposed (Buhler, Just, Will, Kotzerke, & van denHoff, 2004);

*  Medical imagesaredigitally representedinamultitudeof formatsbasedon
their modality and thescanning deviceused (Wong & Hoo, 2002). Another
characteristicof medical imagesisthat many imagesarerepresentedingray
level rather than col or. Evenwiththechangeof intensity, monochromemay
fail toclearly display theactual circumstanceof lesionarea.

Medical Applications of Content-Based Image Retrieval

Content-based image retrieval has frequently been proposed for various
applications. Thissectionwill discussthreepotential applicationsof medical
CBIR.
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PACS/Health Database Management

Content-basedimageretrieval hasbeen proposed by themedical community for
inclusionintopicturearchivingand communicationsystems(PACS) (Lehmann,
Wein, & Greenspan, 2003). Theideaof PACSistointegrateimagingmodalities
andinterfaceswith hospital and departmental information systemsinorder to
managethestorageand distribution of imagestoradiol ogists, physi cians, special-
ists, clinics, andimaging centers(Huang, 2003). A crucial pointin PACSisto
provideanefficient searchfunctiontoaccessdesiredimages. Imagesearchinthe
digital imagingand communicationinmedicine(DICOM) protocol iscurrently
carried out accordingtothea phanumerical order of textual attributesof images.
However, theinformationwhichusersareinterestedinisthevisual content of
medical imagesrather thanthat residingina phanumerica format (Lehmannetal.,
2003). Thecontent of imagesisapowerful and direct query which canbeusedto
searchfor other imagescontai ning similar content. Hence, content-based access
approaches are expected to have agreat impact on PACS and heal th database
management. Inadditionto PACS, medical imaging databasesthat areuncon-
nectedtothePA CScanal soobtainbenefitsfrom CBIR technol ogy.

Computer-Aided Diagnosis

Computer-aided diagnosis has been proposed to support clinical decision
making. Oneclinical decision-making techniqueiscase-based reasoning,
which searchesfor previous, already- solved problemssimilar tothecurrent
oneandtriesto apply thosesol utionstothecurrent problem (Hsu & Ho, 2004,
Schmidt, Montani, Bellazzi, Portinale, & Gierl, 2001). Thistechniquehasa
strong need to search for previousmedical imageswith similar pathol ogical
areas, scrutinizethehistoriesof thesecaseswhichareval uablefor supporting
certain diagnoses, and then reason the current case (Changet al ., 2004).

Medical Research, Education, and Training

CBIR technology can benefit any work that requiresthefinding of images or
collectionsof imageswithsimilar contents. Inmedical research, researcherscanuse
CBIRtofindimageswithsmilar pathol ogica areasandinvestigatetheir association.
Inmedical education, lecturerscaneasily findimageswith particul ar pathol ogical
attributes, asthoseattributescanimply particular diseases. Inaddition, CBIR can
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be used to collect images for medical books, reports, papers, and CD-ROMs
based on the educational atlas of medical cells, wheretypical specimensare
collectedaccordingtothesimilarity of their features, andthemost typical onesare
selectedfromeach groupto composeaset of practical calibrators.

Existing Medical CBIR Systems

Although content-basedimageretrieval hasfrequently been proposedfor use
inmedical imagemanagement, only afew content-basedretrieval systemshave
been devel oped specifically for medical images. These research-oriented
systems are usually constructed in research institutes and continue to be
improved, devel oped, and eval uated over time. Thissectionwill introduce
several major medical content-basedretrieval systems.

ASSERT (Automatic Search and
Selection Engine with Retrieval Tools)

Developers: PurdueUniversity, IndianaUniversity, and University of Wis-
consinHospital, USA.

Image Database: High-Resol ution Computed Tomography (HRCT) of lung.

Selected References: Shyu, Brodley, Kak, Kosaka, Aisen, and Broderick
(1999), and Brodley, Kak, Dy, Shyu, Aisen, and Broderick, (1999).

Website: http://rvl2.ecn.purdue.edu/~cbirdev/ WWW/CBIRmain.html

MainCharacteristics:

*  TheASSERT systemusesaphysician-in-the-loop approachtoretrieving
imagesof HRCT of thelung. Thisapproachrequiresuserstodelineatethe
pathol ogy-bearing regionsandidentify certain anatomical |landmarksfor
eachimage;

*  Thissystemextracts255featuresof texture, shape, edges, andgray-scale
propertiesin pathology-bearingregions,

*  Amulti-dimensional hashtableisconstructedtoindex theHRCT images.
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CasImage

Developer: University Hospital of Geneva, Switzerland.

ImageDatabase: A variety of imagesfromCT, MRI, and radiographs, to col or
photos.

Selected References: Muller, Rosset, Vall ee, and Geissbuhler (2004b), and
Rosset, Ratib, Geissbuhler, and Vallee (2002).

Website: http://www.casimage.com/

MainCharacteristics:

»  TheCaslmagesystem, whichhasbeenintegratedintoaPA CSenvironment,
contains ateaching and reference database, and the medGIFT retrieval
system, whichisadapted fromtheopen-source GIFT (GNU ImageFinding
Tool) (Squire, Muller, Muller, Marchand-Maillet, & Pun, 2001);

*  ThemedGIFT retrieval system extractsglobal and regional color and
texturefeatures, including 166 colorsintheHSV color space, and Gabor
filter responsesinfour directionseach at threedifferent scal es;

. Combinationsof textual |abel sand visual featuresareused for medical
imageretrieval.

IRMA (Image Retrieval in Medical Applications)

Developer: AachenUniversity of Technology, Germany.
ImageDatabase: V ariousimagingmodalities.

Sel ected References: Lehmann, Guld, Keysers, Desel aers, Schubert, Wein,
and Spitzer (2004a), and Lehmann, Guld, Thies, Plodowski, Keysers,
Ott, and Schubert (2004b).

Website: http://libra.imib.rwth-aachen.defirmal

MainCharacteristics:

»  ThelRMA systemisimplemented asaplatformfor content-basedimage
retrieval inmedical applications;
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»  Thissystem splitstheimageretrieval processinto seven consecutive
steps, including categorization, registration, featureextraction, feature
selection, indexing, identification, andretrieval .

NHANES II (The Second National Health
And Nutrition Examination Survey)

Developer: National Library of Medicine, USA.
ImageDatabase: 17,000 cervical andlumbar spineX-ray images.

Selected References: Antani, Lee, Long, and Thoma(20044a), and Antani, Xu,
Long, and Thoma(2004b).

Website: http://archive.nlm.nih.gov/proj/dxpnet/nhanes/nhanes.php
MainCharacteristics:

*  ThissystemcontainstheA ctiveContour Segmentation (ACS) tool, which
allows the users to create a template by marking points around the
vertebra. If thesegmentation of atemplateisaccepted, the ACStool will
estimatethel ocation of thenext vertebra, placethetemplateontheimage,
andthensegmentit;

* Indatarepresentation, apolygon approximation processisappliedfor
eliminatinginsignificant shapefeaturesand reducing thenumber of data
points. Thedataobtai nedinthepol ygon approximation processrepresent
the shape of vertebra. Then, the approximated curve of vertebrais
convertedtotangent spacefor similarity measurement.

Content-Based Retrieval Systems

Content-basedretrieval usesthecontentsof imagesto represent and accessthe
images(Wel & Li,inpress). A typical content-basedretrieval systemisdivided
into off-line feature extraction and online image retrieval. A conceptual
framework for content-basedimageretrieval isillustratedin Figure 1. In off-
linefeatureextraction, thecontentsof theimagesinthedatabaseareextracted
and described withamulti-dimensional featurevector, also called descriptor.
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Figure 1. A conceptual framework for content-based image retrieval
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The feature vectors of theimage constitute afeature dataset stored in the
database. Inonlineimageretrieval, theuser can submit aquery exampletothe
retrieval system in search of desired images. The system represents this
examplewithafeaturevector. Thedistances(i.e., similarities) betweenthe
feature vectors of the query example and those of the mediain the feature
dataset arethen computed and ranked. Retrieval isconducted by applying an
indexing schemeto providean efficient way of searchingtheimagedatabase.
Finally, thesystemranksthesearchresultsandthenreturnstheresultsthat are
most similar tothequery examples. I f theuser isnot satisfied withthesearch
results, theuser can providerel evancefeedback totheretrieval system, which
containsamechanismtolearntheuser’ sinformation needs. Thefollowing
sectionswill clearly introduce each component inthesystem.

Feature Extraction

Representation of imagesneedsto consider whichfeaturesaremost useful for
representing thecontentsof imagesand which approachescan effectively code
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theattributesof theimages. Featureextraction of theimageinthedatabaseis
typically conducted of f-lineso computation complexity isnot asignificantissue.
Thissectionwill introducetwo features— textureand color—whichareused
most oftento extract thefeaturesof animage.

Color

Colorisapowerful descriptor that simplifiesobjectidentification (Gonzalez &
Woods, 2002) and is one of the most frequently used visual features for
content-basedimageretrieval . To extract thecol or featuresfrom the content
of animage, aproper color spaceand an effectivecol or descriptor havetobe
determined.

Thepurposeof acolor spaceistofacilitatethe specification of colors. Each
color inthecolor spaceisasinglepoint representedinacoordinate system.
Several color spaces, suchasRGB, HSV, CIE L*a*b, and CIE L*u*v, have
been developed for different purposes. Although thereisno agreement on
whichcolor spaceisthebest for CBIR, anappropriatecol or systemisrequired
toensureperceptua uniformity. Therefore, the RGB col or space, awidely used
systemfor representing color images, isnot suitablefor CBIR becauseitisa
perceptually non-uniform and device-dependent system (Gevers, 2001).

Themost frequently used techniqueisto convert col or representationsfromthe
RGB color spaceto the HSV, CIE L*u*v, or CIE L*a*b color spaceswith
perceptual uniformity (Li & Y uen, 2000). The HSV color spaceisanintuitive
system, which describesaspecific color by itshue, saturation and brightness
value. This color system is very useful in interactive color selection and
manipulation; The CIE L *u*v and CIE L *a *b col or spacesareboth percep-
tual ly uniformsystems, which provideeasy useof similar metricsfor comparing
color (Haeghen, Naeyaert, Lemahieu, & Philips, 2000).

After selectingacol or space, an effectivecol or descriptor should bedevel oped
inorder torepresent the color of theglobal or regional areas. Several color
descriptorshavebeen devel oped fromvariousrepresentation schemes, such as
color histograms (Quyang & Tan, 2002), color moments(Yuet al., 2002),
color edge(Gevers& Stokman, 2003), color texture (Guan & Wada, 2002),
and color correlograms (M oghaddam, Khajoie, & Rouhi, 2003). For ex-
ampl e, color histogram, which representsthedistribution of the number of
pixelsfor each quantized color bin, isan effectiverepresentation of thecolor
content of animage. Thecol or histogram cannot only easily characterizethe
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global andregional distribution of colorsinanimage, but alsobeinvariant to
rotation about theview axis.

For the retrieval of medical images, color allows images to reveal many
pathological characteristics(Tamai, 1999). Color alsoplaysanimportantrole
inmorphological diagnosis(Nishibori, Tsumura, & Miyake, 2004). Color
medical imagesareusually producedindifferent departmentsand by various
devices. For example, color endoscopicimagesaretaken by acamerathatis
putintothehollow organsof thebody such asstomachsandlungs. A common
characteristicin such kind of imagesisthat most colorsaremade of various
stains, though fine variations of natural colors are crucial for diagnosis.
Nishibori (2000) pointed out that problemsin col or medical imagesinclude
inaccurate color reproduction, rough gradations of color, and insufficient
density of pixels. Therefore, effectiveuseof thevariouscolor informationin
imagesincludesabsol utecol or values, ratiosof eachtristimuluscolor, differ-
encesin colorsagainst adjacent areas, and estimated illumination data. In
addition, many medical imagesarerepresentedingray level. For thiskind of
gray level images, CBIR canonly regard col or assecondary featuresbecause
gray levelsprovidelimited information about the content of animage. For
specific purposes, some gray level images have pseudo-color added to
enhance specific areasinstead of gray level presentation. Such processing
increasesdifficultiesinretrieval.

Texture

Texturein CBIR canbeusedfor at | east two purposes (Sebe & Lew, 2002).
First, an image can be considered to be amosaic that consists of different
textureregions. Theseregionscan beused asexamplesto searchandretrieve
similar areas. Second, texturecanbeempl oyedfor automatically annotatingthe
content of animage. For exampl e, thetextureof aninfected skinregioncanbe
used for annotating regionswiththesameinfection.

Textural representati on approachescanbeclassifiedinto statistical approaches
andstructural approaches(Li, 1998). Statistical approachesanalyzetextural
characteristicsaccording to the statistical distribution of image intensity.
Approachesinthiscategory includegray level co-occurrencematrix, fractal
model, Tamurafeature, Wold decomposition, and soon (Fenget al ., 2003).
Structural approachescharacterizetextureby identifying aset of structural
primitivesand certain placementrules.
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If medical imagesarerepresented in gray level, texture becomesacrucial
feature, which providesindicationsabout scenic depth, thespatial distribution
of tonal variations, and surfaceorientation (Tourassi, 1999). For example,
abnormal symptomson female breastsinclude calcification, architectural
distortion, asymmetry, masses, and soforth. All of thosereveal specifictextural
patterns on the mammograms. However, selection of texture features for
specifying textural structure should take account of theinfluencefromthe
modul ationtransfer functionontexture(Veenland, Grashuis, Weinans, Ding, &
Vrooman, 2002). Astheintensifying screensareused to enhancetheradio-
graphs, the blurring effect also changes texture features, that is, spatial
resol ution, contrast, and sharpnessareall reducedintheoutput. L ow resolution
and contrast resultindifficultiesin measuring the pattern of tissueand structure
of organs(Majumdar, Kothari, Augat, Newitt, Link, Lin, & Lang, 1998).

Dimension Reduction

Inan attempt to capture useful contentsof animageandtofacilitateeffective
guerying of animagedatabase, aCBIR systemmay extract alargenumber of
featuresfromthecontent of animage. Featureset of highdimensionality causes
the" curseof dimension” probleminwhichthecomplexity and computational
cost of the query increase exponentially with the number of dimensions
(Egecioglu, Ferhatosmanoglu, & Ogras, 2004).

To reducethe dimensionality of alarge feature set, the most widely-used
techniqueinimageretrieval isprincipa component analysis(PCA). Thegoal of
principal component analysisisto specify asmuchvarianceaspossiblewiththe
smallest number of variables(Partridge& Calvo, 1998). Principa component
analysisinvolvestransformingtheoriginal datainto anew coordinatesystem
withlow dimension, thuscreating anew set of data. Thenew coordinatesystem
removestheredundant data, and the new set of datamay better represent the
essential information. However, thereisatrade-off between theefficiency
obtai ned through dimensi on reducti on andthecompl etenessof theinformation
extracted. Asdataisrepresented lower dimensions, thespeed of retrieval is
increased, but someimportant information may belostintheprocessof data
transformation. Intheresearch of medical CBIR, Sinhaand Kangarloo (2002)
demonstrated the PCA applicationtotheimageclassificationof 100axial brain
images.
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Similarity Measure

Selection of similarity metrics has a direct impact on the performance of
content-basedimageretrieval . Thekind of featurevectorssel ected determines
thekind of measurement that will beusedto comparetheir similarity (Smeulders,
Worring, Santini, Gupta, & Jain, 2000). If the features extracted from the
images are presented as multi-dimensional points, the distances between
corresponding multi-dimensional pointscan becal cul ated. Euclideandistance
isthe most common metric used to measurethedistance between two points
inmulti-dimensional space(Qian, Sural, Gu, & Pramanik, 2004). For other
kindsof featuressuch ascolor histogram, Euclidean distance may not bean
ideal similarity metric or may not becompatiblewith the human-perceived
similarity. Histogramintersectionwasproposed by Swainand Ballard (1991)
tofindknown objectswithinimagesusing col or histograms. A number of other
metrics, such asM ahal anobisDistance, Minkowski-Form Distance, Earth
Mover’s Distance, and Proportional Transportation Distance, have been
proposed for specific purposes. Antani, Long, Thoma, and L ee (2003) used
several approachesto codetheshapefeaturesfor different classesof spineX-
rays. Each class used a specific similarity metric to compare the distance
betweentwo featurevectors.

Multi-Dimensional Indexing

Retrieval of animageisusually based not only ontheval ueof certainfeatures,
but al so on thelocation of afeature vector in the multi-dimensional space
(Fonseca& Jorge, 2003). A retrieval query onadatabase of multimediawith
multi-dimensional featurevectorsusually requiresfast execution of search
operations. To support such search operations, an appropriate multi-dimen-
sional access method hasto be used for indexing the reduced but still high
dimensional featureset. Popul ar multi-dimensional indexing methodsinclude
theR-tree(Guttman, 1984) and the R* -tree (Beckmann, Kriegel, Schneider,
& Seeger, 1990).

TheR-tree, whichisatree-likedatastructure, ismainly usedfor indexingmulti-
dimensional data. Each nodeof an R-treehasavariablenumber of entries. Each
entry withinanon-leaf node can havetwo piecesof data. Thegoal of the R-
treeistoorganizethespatial datainsuchaway that asearchwill visit asfew
Spatial objectsaspossible. Thedecisiononwhichnodestovisitismadebased
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ontheeval uation of spatial predicates. Hence, the R-treemust beabletohold
somesort of spatial dataonall nodes. TheR* -tree, animproved version of the
R-tree, appliesmorecomplex criteriafor thedistribution of minimal- bounding
rectanglesthrough the nodes of thetree, such as: The overlap between the
minimal - bounding rectanglesof theinner nodes shoul d be minimized; the
perimeter of adirectory rectanglesshoul d beminimized; and storageutilization
should bemaximized. Bothtechniquesperformwell inlow-dimensional fea-
tures-spacewithalimit of upto 20 dimensions. For high-dimensional features-
space, itisnecessary toreducethedimensionality using statistic multi-variate
analysi stechniquessuch astheaforementioned principal component analysis.

Withregardtomedical CBIRresearch, Shyuetal. (1999) successfully applied
multi-dimensional indexinginthe ASSERT system. Inthissystem, lobular
featuresets(LFS) onHRCT imagesaretranslatedintoanindex for archiving
andretrieval. A multi-dimensional hashtablefor theL FSclassesisconstructed
for the system. A decision tree algorithm isused to construct a minimum-
entropy partition of the feature space wherethe LFS classesreside. After
tranglating adecisiontreetoahashtable, thesystem prunestheset of retrieved
L FSclassesand candidateimages.

Relevance Feedback

Relevancefeedback wasoriginally devel opedfor improving theeffectiveness
of informationretrieval systems. Themainideaof relevancefeedbackisfor the
retrieval systemtounderstand theuser’ sinformation needs. For agivenquery,
theretrieval system returnsinitial results based on pre-defined similarity
metrics. Then, theuserisrequiredtoidentify thepositiveexamplesby labeling
thosethat arerelevant to the query. The system subsequently analyzesthe
user’ sfeedback using alearning algorithmandreturnsrefined results.

A typical relevancefeedback mechanism containsalearningcomponentanda
dispensing component. Thelearning component usesthefeedback datato
estimatethetarget of theuser. Theapproach takentolearnfeedback datais
key totherelevancefeedback mechanism. InadditiontoRocchio’ s(1971) and
Rui and Huang' s(2002) learning al gorithms, recent work hasreported that
support vector machine (SVM) isauseful learning approach in relevance
feedback (Ferecatu, Crucianu, & Boujemaa, 2004a; Hoi, Chan, Huang, Lyu,
& King, 2004; Tao & Tang, 2004). Thedispensing component should provide
themost appropriateimagesafter obtai ning feedback fromtheuser. However,
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the dispensing component has two conflicting goal sduring each feedback
round. On the one hand, the di spensing component hasto provide as many
relevantimagesaspossible. Onthe other hand, the dispensing component,
based on theinformation needsof theuser, hastoinvestigatetheimages of
unknownrelevancetothetarget (Ferecatu, Crucianu, & Boujemaa, 2004b).
Asthedispensing component returnsmorerelevantimagestotheuser, it has
fewer imagesto minethe needsof the user at each round, and viceversa. A
sensiblestrategy al so playsanimportant roleinrelevancefeedback. Hence,
approachestolearning user feedbacksand dispensing strategiesfor returning
theresultsboth determinetheperformanceof rel evancefeedback mechanisms.

M edical imageshaveauniquecharacteristicinthat their contentsalways
reflect pathological attributes or symptomsfor specific diseases. Image
classification is often used to group the similar features based on their
contents. Withthischaracteristic, relevancefeedback isexpectedtoassistin
mining thecommon featuresof relevant imagesand finding aspecific class
wherethequery exampleshouldreside. Thoseimagesgroupedinthesame
classhavethe samesemanticsand arelikely to betargetimages. EI-Naga,
Y ang, Galatsanos, and Wernick (2003) proposed a relevance feedback
approach based onincremental learning for mammogramretrieval. They
adapted support vector machines (SVM) to develop an online learning
procedurefor similarity learning. Theapproach they proposed wasimple-
mented using clustered micro-calcificationsimages. They reported that the
approach significantly improvestheretrieval effectiveness. Inaddition, El-
Naga et al. (2004) also demonstrated a hierarchical two-stage learning
network, which consistsof acascadeof abinary classifier and aregression
module. Relevancefeedback isincorporated into thisframework to effec-
tively improve precision based on onlineinteractionwith users.

Case Study

Thissectionwill proposeageneral CBIR framework and itsapplicationto
mammaogramretrieval, and demonstrateitsmethod. Breast cancer continuesto
beaseriousdiseaseacrosstheworld. Mammography isareliablemethod for
detection of breast cancer. Thereare an enormousnumber of mammograms
generated in hospitals. How to effectively retrieve a desired image from
mammaogram databasesisachallenging problem. Thisstudy concentrateson
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textural analysisbased ongray level co-occurrence matricesfor the content-
basedretrieval of mammograms. Theobjectivesof thisstudy areasfollows:

1. Toanalyzeandexaminethetextural featurespresentintheROI (Region
of Interest) of abnormal breast tissueascomparedtothesameinformation
presentedinnormal tissue;

2. Todeveloptheoptimal mammographic descriptor generated fromgray
level co-occurrencematrices; and

3. Toevaluatetheeffectivenessof the CBIR system using descriptorswith
differentunit pixel distances.

Themethod in thiswork containstwo major stages— image analysis and
image retrieval. Theobjective of theimageanalysisstageisto examinethe
textural featuresof mammograms, and thentest thestati stical significanceof the
differencesbetweennormal andabnormal mammograms. Thesediscriminating
featuresare selected to construct atextural descriptor of mammograms. The
descriptor constructedintheimageanalysisstageisembeddedintothe CBIR
system. Thefeaturedescriptor isextracted fromthequery imageinorder to
retrievethemammogramsrel evant tothequery image. Theperformanceof the
CBIR systemisthen evaluated. The detailed steps and components of the
experiment aredescribedinthefollowing sections.

Mammogram Dataset

Mammaogramswereobtai ned from thedatabase of theM ammographiclmages
AnalysisSociety (MIAS) (Suckling, Parker, Dance, Astley, Hutt, Boggis,
Ricketts, Stamatakis, Cerneaz, Kok, Taylor, Betal, & Savage, 1994). Thesize
of eachimagewas 1024 x 1024 pixels. All of theimageshave been annotated
for class, severity andlocation of abnormality, character of backgroundtissue,
andradiusof circleenclosingtheabnormality. Abnormalitiesareclassifiedinto
calcificationsarchitectural distortions, asymmetries, circumscribed masses,
specul ated masses, and ill-defined masses. Sub-images of size 200 x 200
pixels were cropped as ROIs from each mammogram. One hundred and
twenty-two sample ROI s (including 29 imagesin calcification class, 19in
architectural distortion class, 15 in asymmetry class, 25 in circumscribed
masses class, 19 in speculated masses class, and 15 in other or ill-defined
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Figure 2. Abnormal mammograms are classified into calcification,
architectural distortion, asymmetry, circumscribed masses, speculated
masses, and ill-defined masses

(Q) Archifecturd ® Asymmetry (o Cddfication

@ Circums cribed Mcs s ©) lll-cefined Mas s ® Spiculated

massesclass) were sel ected deliberatel y from abnormal tissues. Another 207
ROIswereobtained arbitrarily fromnormal tissues. These 329 ROIswere
used to analyze their textural features based on gray level co-occurrence
matrices.

Feature Analysis

Thepresenceof abreast |esion may causeadisturbanceinthehomogeneity of
tissues, andresultinarchitectura distortionsinthesurroundingparenchyma(Cheng
& Cui, 2004). Therefore, thetexturesof digital imagescontainalot of valuable
informationfor further researchandapplication. Thisstudy appliesgray level co-
occurrencematrices, astatistical textural method, toanalyzethetextura featuresof
mammogramsand devel op descriptorsfor content-basedimageretrieval . Gray
level co-occurrencematriceswill beintroducedinthefollowing section.

Gray Level Co-Occurrence Matrices

Gray level co-occurrencematrix (GLCM) isastatistical methodfor computing
theco-occurrenceprobability of textural features(Haralick, 1979). Givenan
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imagef(x, y) of sizeL x L withasetof N _gray levels, definethematrix p(i,
j,d, 0)as:

P(i,j, d, 6) = card{((x,, y,), (x,, ,)) € (L, x L) (L,xL)]
(x,, ¥,) = (x,,»,) + (dcosb, dsing),
Sy, y) =i flx, v,) =/, 0<i, j<N} (1)

whered denotesthedistance between pixels(x,, y,) and (x,, y,) intheimage,
O denotestheorientationaligning (x,,y,) and(x,, y,), andcard{ -} denotesthe
number of elementsintheset. Texturefeaturesthat can beextractedfromgray
level co-occurrencematrices(Haralick, Shanmugan, & Dinstein, 1973) are:

Angular Second Moment (ASM) = ZZ{P(Z'J)}Z (2)
Contrast = 2" %Z PG 1)} 3)
(e
)G ) s
Correlation= 77 (4)
0.0,
Variance= ZZ(i—j)zp(i,j) 5)
InverseDifferenceMoment (ID_Mom) = szp( J) (6)
SumAverage(Sum_Aver) = iipm () (7)
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2Ng

Sum Variance(Sum_Var) = 2;, (i~ Sum _Entro)°p,. (i) (8)
ong

Sum Entropy (Sum_Entro) =- 22, Py ()0g{ p..,, (1)} (9)

Entropy = 22 pli, Nog p(i, /) (10)

Different Variance(Diff_Vari) =varianceof P, (11)

Different Entropy (Diff _Entro)= -Nl_gg‘lpx_y )lod p,_, (1)} (12)

Mammogram Analysis Using GLCM

Inorder todevelopthetail ored descriptorsdescribedinthenext section, itis
necessary toanalyzethefeaturesof themammogram. Inthisstudy, 12 GLCMs
are constructed in order to compute each ROI inthe 0°, 45°, 90°, and 135°
directions, eachwithunit pixel distancesof 1, 3, and 5, respectively. Thell
featuresdescribed earlier arecomputedfor the 12 GLCMs, thusresultingina
total of 132texturefeaturesfor each ROI.

Feature Selection for Image Retrieval

Atthestageof featureanalysis, 132 texturefeaturesare generated for each
ROI. Weobtain5,148texturefeature sampleimagesfrom 20 normal and 19
abnormal images. To sel ect themost di scriminant features, astatistical multi-
variater-testisusedto assessthesignificanceof thedifferencebetweenthe
meansof two sampleset 4 and B, which areindependent of each other inthe
obvioussense, thatis, theindividual measuresinset 4 areinnoway relatedto
any of theindividual measuresinset B. Thevalueof thez-testisobtained as
follows(Serdobol skii, 2000):
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D, =Y (4-1) (13)
D,=Y(8-u,) (14)
V= Da +Db (15)

(n, =) +(n, =1)

14
ey L (16)

n, n

a

— ALl’a _lLl’b
r=fe S 17

where4_ and B,inequations(13) and (14) aretheith element of theset 4 and
B,whileu andyu, arethemeansof theset 4 and B, respectively. D and D, in
theequations(13) and (14) arethe sum of squared deviatesof tie set A and
B. Vinequation (15) istheestimated variance of the sourcepopulation. gin
equation (16) isthestandard deviation of the sampling distribution of sample-
mean differences. zin equation (17) isthevalue of the ¢-test. The degree of
freedom (d.f.) is(n,—1) + (n, —1).

Inour casestudy with 20 normal images(set 4) and 19 abnormal images(set
B),thedegreeof freedom(d.f.) is37. AccordingtotheTableof Critical Values
of # (Rencher, 1998), thet value for 37 degrees of freedom (d.f.) is 1.305.
Whenthevaluer obtainedinthisexperimentisgreater than 1.305, it meansthat
thereisas gnificant meandifferencebetweennormal andabnormal mammograms
withregardtothegivenfeature.

Thedescriptor iscomposed of featureswith significant differencesinthet
statistic. Individual descriptorsweredevel opedfor threedistances(d=1, 3,
and5) inthegray level co-occurrence matrices.

Data Normalization

The purpose of normalizationinthisexperimentistoassignaweighttoall
featuresinorder to measuretheir similarity onthesamebasis. Thetechnique
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Figure 3. Process of normalization

(a) The original distribution (b) The trimmed distribution  (c) The normalized distribution

used was to project each feature onto a unit sphere. However, a potential
problemexists—if afew elementsinafeaturespaceareextremely large, other
elementsmay bedominated by theselargeonesafter normalization.

To solvethis problem, the valuelocated at the point of the top 95% of the
distributionistakenasthenominal maximum. All featuresgreater thanthe
nominal minimuminthefeaturespacewereclippedtothenominal maximal
value, thatis, thetop 5% of distributionaretrimmed. Thenall valuesaredivided
by themaximal values. Anexampleisgiventoillustratetheuseof thisapproach
tonormalization. Figure 3ashowstheoriginal distribution of featurevaluesin
afeaturevector. Theresultsof trimming thetop 5% and normalization are
illustratedin Figures3band 3c.

Similarity Measure

Thesimilarity measureof twoimages/ and/, isthedistance betweentheir
descriptors f and /. In this work, L, norm was adopted to measure the
similarity betweenthequery imageandeach ROI. L jisdefined asfollows:

Vo =11, = £y P= S £ = 1 F, (18)

whered , isthesimilarity distancebetween descriptorsf, andf,.f, .andf, .are
theithelement of £ andf,, respectively, andn isthenumber of elementsof the
descriptors. Thesmaller thedistanceis, themoresimilar thetwoimagesare. After
calculatingthedistance, our CBIR systemrankssimilarity indescending order
andthenreturnsthetopfiveimagesthat aremost similar tothequery image.
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Performance Evaluation

Relevancejudgmentisavital part of performanceeval uation. Therelevance
criteria described in Table 1 were developed and used in this work. For
example, suppose the query image belongs to the calcification class, the
retrievedimagewouldscore0.5if it belongsto any of thefollowing abnormal
classes: ill-defined masses, circumscribed masses, specul ated masses, archi-
tectural distortion, and asymmetry.

Precisionandrecall arebasic measuresusedin eval uating the eff ectivenessof
aninformationretrieval system. Precisionistheratio of thenumber of relevant
records retrieved to the total number of irrelevant and relevant records
retrieved (Baeza-Y ates, & Ribeiro-Neto, 1999). It indicatesthe subject score
assigned to each of the top fiveimagesin thisexperiment. Theformulais
expressed asfollows:

_&” (19)

whereS isthescoreassignedtotheithhit, Nisthenumber of top hitsretrieved.

Recall istheratioof thenumber of rel evant recordsretrieved tothetotal number
of relevant recordsinthedatabase (Baeza-Y ates& Ribeiro-Neto, 1999). Itis
definedasfollows;

Table 1. Criteria for measurement of performance evaluation of CBIR

Score Criteria
1.0 The retrieved image belongs to the class of query image.
05 The retrieved image belongs to one of the abnormal classes, but not the

class of query image.

0 The retrieved image does not belong to any abnormal class.
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R== (20)

whereR isthenumber of retrievedrelevant hits,and T isthetotal number of
relevantimagesinthedatabase.

Results of 7-Test

Table 2 presents the results of the ¢ statistic for d = 1 of gray level co-
occurrence matrices. From the results, it can be seen that the differences
betweenthemeanvaluesof ASM, Correlation, Sum_Var (sumvariance), and
Diff_Entro(differenceentropy) of thenormal and abnormal ROIsaresignifi-
cant (z>1.305). Asaresult, thesefour featuresare sel ected to construct the
descriptor. Table 3 shows that ASM is the only feature with significant
discriminating power for two groupsof ROIswhen d = 3. Thedescriptor with
d =3 containsonly ASM.

Table4 showsthat Sum_Var (sum-variance) istheonly featurewith significant
discriminating power for two groupsof ROIswhend =5. Thedescriptor with
d=5containsonly Sum_Var.

Table 2. Comparison of mean values obtained by co-occurrence matrices
with the distance of 1

Normal Abnormal
Feature Uy D, Ly D, t(37.df)
ASM 17721  0.6127 1.3890 0.5542 1.6042
Contrast 58209 22742 5.6187 3.7038 0.3755
Correlation -0.3392  0.0742 -0.6135 0.5345 1.6071
Variance 0.2413  0.0768 1.5446 1.9193 -4.2257
ID_Mom 29460  0.0671 3.0654  0.1442 -1.1812
Sum_Aver 21943  0.3391 2.6984 1.2137 -1.8444
Sum_Var 32636  2.2970 0.7699 1.3261 5.9097
Sum_Entro -6.7253  2.7305 -0.7922 0.1327 -15.6895
Entropy -4.0729  0.1476 -3.8611  0.3262 -1.3995
Diff_Vari 52007  2.3020 6.7532 1.4977 -3.5953
Diff_Entro -1.7865  0.0332 -1.9603  0.0141 3.5986
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Table 3. Comparison of mean values obtained by co-occurrence matrices

with the distance of 3

Normal Abnormal
Feature Uy D, Uy D, t(37.d.f)
ASM 12846  0.3212 1.0075 0.2905 1.6046
Contrast 13822  0.2398 1.6247 0.4604 -1.3191
Correlation 0.8311  0.0402 3.6871 152704 -3.3534
Variance 15943  3.4598 1.1012 0.9300 1.0584
ID_Mom 1465 0.0518 1.5281 0.1695 -0.6123
Sum_Aver 16135 0.1835 1.9774 0.6539 -1.8161
Sum_Entro -4.9365 14720 -0.5789 0.0708 -15.7084
Entropy -2.6801  0.1052 -2.4949 0.4599 -1.1262
Diff_Vari 41858  1.2969 5.3510 0.8446 -3.5984
Diff_Entro -16118  0.0184 1.7424 0.0088 -91.7379

Table 4. Comparison of mean values obtained by co-occurrence matrices

with the distance of 5

Normal Abnormal
Feature U D, U D, t(37.df)
ASM 12466  0.3019 0.9784 0.2730 0.7924
Contrast 21675  0.8227 2.9725 2.0665 -1.5708
Correlation 0.8822  0.0387 4.6453  14.6955 -7.1316
Variance 14357  2.8461 1.0654 0.8467 1.0316
ID_Mom 12008  0.0497 1.227 0.1625 -0.0742
Sum_Aver 15855  0.1775 1.9376 0.6293 -0.8292
Sum_Var 23006  2.6245 0.5359 0.6438 4.5870
Sum_Entro -4.8432 14197 -0.5657 0.0677 -8.0337
Entropy -2.5128 0.1179 -2.3037 0.2179 -0.4203
Diff_Vari 41858  1.2969 5.3510 0.8446 -1.6684
Diff_Entro -1.6118  0.0184 -1.7424 0.0088 0.3150
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Results of Performance Evaluation

Precision can beused to describetheaccuracy of theproposed CBIR system
infindingonly relevantimagesonasearchfor query images. Table5showsthat
precisionratesfor thethreedescriptors(d =1, 3, and 5) are 47%, 50%, and
51%, respectively. The descriptor with d = 5 obtained the highest valuein
precisionandthesmallest valuesinstandard deviation. Thisindicatesthat the
performanceof thedescriptor (¢ =5) ismorestable. Onthewhol e, about hal f
of theresultsretrieved by these three descriptorsarerelevant to the query
images.

Recall measureshow well theCBIR systemfindsall relevantimagesinasearch
for aquery image. Table6indicatesthat thedescriptor withd =5 outperforms
theother two. However, therecall valuesarevery close. Thelargest difference
isonly 1.5%. Thethree descriptorscanretrieve, on average, about 18% of
relevant imagesinthedatabase. Intheory, asprecision goesup, recall goes
down. Therelationship explainswhy thethreerecall valuesarelow.

Theexperimental resultsal so show that thedescriptor withthelargest distance
(d=5) hasthebest performancein both precision and recall. Thedescriptor
withd =3 outperformsthedescriptor withd = 1in both measures. Although
thelarger distance hasbetter performanceinthisexperiment, itisstill tooearly
tomakeany conclusions.

Table 5. Precision for the 3 descriptors

CALC CIRC SPIC MISC ARCH ASYM Mean  Std

d=1 42% 44% 54% 44% 46% 54% 47% 5.32%
d=3 57% 43% 54% 42% 54% 51% 50% 6.24%
d=5 48% 53% 54% 50% S50% 48% 51% 2.51%

Table 6. Recall for the 3 descriptors

CALC CIRC SPIC MISC ARCH ASYM Mean  Std
d=1 10.69% 12.80% 20.53% 18.67% 16.84% 26.00% 17.59% 5.51%
d=3  13.45% 11.60% 20.00% 20.00% 18.42% 25.33% 18.13% 4.97%
d=5 12.07% 15.20% 21.05% 24.00% 20.00% 22.00% 19.05% 4.51%

(Notes: CALC = calcification; CIRC = circumscribed masses, SPIC =
speculated masses; ARCH = architectural distortion; ASYM = asymmetry,
MISC = other or ill-defined masses.)
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Themaincontributionof thiswork isto present asound CBI R methodol ogy for
mammograms. Themethodology isdividedintoimageanalysisandimage
retrieval stages. Thepurposeof theimageanalysisisto collect samplesfrom
the database, obtain the image signature, and then apply it for the feature
extractionintheimageretrieval stage. A complete CBIR systembased ongray
level co-occurrence matriceswasimplemented. A techniquewasal so pro-
posedtoimprovetheeffectivenessof normalization. Threedescriptorswere
evaluated by query imagestoretrievethe ROl sfor themammogram dataset
consisting of 122 images of six sub-classesfrom abnormal class, and 207
imagesfromnormal class. Thebest precisionrateof 51%andrecall rateof 19%
wereachievedwiththedescriptor usinggray level co-occurrencematriceswith
thepixel distanceof 5.

Research Issues

Content-basedretrieval for medical imagesisstill initsinfancy. Therearemany
challenging researchissues. Thissectionidentifiesand addressessomeissues
inthefutureresearch agenda.

Bridging the Semantic Gap

Anideal medical CBIR systemfromauser perspectivewouldinvolvesemantic
retrieval, inwhichtheuser submitsaquery like®find MRIsof brainwithtumor”.
Thiskind of open-ended query isvery difficult for thecurrent CBIR systemsto
distinguishbrainMRI’ sfrom spineMRIseventhoughthetwotypesof images
arevisually different. Current medical CBIR systemsmainly rely onlow-level
featuresliketexture, color, and shape.

Systems Integration

Most medical retrieval systemsaredesignedfor oneparticul ar typeof medical
image, such as mammogram or MRIs of spine. Specific techniques and
modalitiesaredevel oped based onthecharacteristicsof thesehighly homoge-
neousimagesintheir databases. However, medical image databasesacross
different medical institutionshave been expected to connect through PACS.
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With PACS, auser may makearequest to search for medical imagesamong
different databases, whereimagesdisplay different characteristicssuchas
degreeof resolution, degreeof noise, useof color, shapeof object, andtexture
of background. Inother words, PACScanbeseenasasingleretrieval system
with distributedimagedatabases, which collect medical imageswith various
modalities. Therefore, systemscapabl eof findingimagesacrossheterogeneous
imagedatabasesaredesirable.

Human-Computer Interaction and Usability

Current research on medical CBIR concentrates on the effectiveness of the
system, rarely evolvingtherel ationshi p between CBIR and user interfacedesign.
However, innovativeretrieval systemsal onemay not obtai nuser acceptanceas
usersof medical CBIR systemsmay includeradiol ogists, surgeons, nurses, or
other userswithout specificknowledgeof thesesystems. Theuser’ sexperience,
or how the user experiencesthe system, isthe key to acceptance. Good user
interfacedesignisusually requiredfor theenduser toeasily learnand usethe
system. Al so, empirical usability testing permitsnaiveusersto provideinforma-
tionabout theusability of individua systemfunctionsand components.

Performance Evaluation

TheNational Institute of Standardsand Technology (NIST) hasdevel oped
TREC (Text REtrieval Conference) asthe standard test-bed and eval uation
paradigmfor theinformationretrieval community (Smeaton, 2003). Theimage
retrieval community still awaitsthe construction and implementation of a
scientifically-valid evaluationframework and standard test bed. To construct
atest bedfor medical CBIR, imaging modalities, regions, and orientati onsof
imagesshouldbetakeninto account. Duetothecomplexity of medical images,
how to construct acommon test bed for medical CBIRisaresearchissue.

Conclusion

Thegoal of medical image databasesisto provide an effective meansfor
organizing, searching, andindexinglargecollectionsof medical images. This
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requiresintelligent systemsthat havetheability torecognize, capture, and
understand thecomplex content of medical images. Content-basedretrieval
isapromising approachto achievethesetasksand hasdevel oped anumber
of techniquesusedin medical images. Despiterecent devel opments, medical
content-basedimageretrieval still hasalongway togoand moreeffortsare
expected to be devoted to thisarea. Ultimately, awell-organized image
database, accompanied by anintelligent retrieval mechanism, can support
clinical treatment, and provide a basis for better medical research and
education.
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Chapter X

Conceptual Modeling

for XML.:
A Myth or a Reality

Sriram Mohan, Indiana University, USA
Arijit Sengupta, Wright State University, USA

Abstract

The process of conceptual design is independent of the final platform and
the medium of implementation, and is usually in a form that is
understandable and usable by managers and other personnel who may not
be familiar with the low-level implementation details, but have a major
influence in the development process. Although a strong design phase is
involved in most current application development processes (e.g., Entity
Relationship design for relational databases), conceptual design for XML
has not been explored significantly in literature or in practice. Most XML
design processes start by directly marking up data in XML, and the
metadata is typically designed at the time of encoding the documents. In
this chapter, the reader is introduced to existing methodologies for
modeling XML. A discussion is then presented comparing and contrasting
their capabilities and deficiencies, and delineating the future trend in
conceptual design for XML applications.
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Introduction

Withadvancesinthestructural andfunctional complexity of XML, astandard-
izedmethodfor designingandvisually presenting XML structuresisbecoming
necessary.

XML modeling techniquescan begenerally classified based on thechosen
approachintooneof thefollowingthreemajor categories: (1) Entity Relation-
ship(ER), (2) Unified M odeling Language (UML), and (3) Structured Hierar-
chical Model. Literaturereveal stheexistence of several methodol ogiesfor
modeling XML that arederived fromthesethreecategories. Several propri-
etary commercial tools that can be adapted to design and model XML
structureshavebeenintroducedinrecent years. Inthischapter, wepresent six
such academictool sandfour commercial methodol ogiesrelevantinmodeling
XML structuresand provided an overview of thesameisprovided by making
useof appropriateexamples. Inorder for thesurvey to bemorecomparative,
acommonworking exampleischosen and equival ent conceptual modelsare
developed to illustrate a model’ s capabilities. To conclude, a discussion
summarizing thecapabilitiesof each of themethodsand their suitability asa
conceptual model for XML isanalysedto hel p answer the question posed by
thechapter: Is developing a conceptual model for XML a Myth or a Reality?

Severa businesssituationsarisewhereaconceptual model isnecessary. A good
conceptual model can hel p plannersby providing aframework for devel oping
architectures, assigning project responsibilities, and sel ectingtechnol ogy (M ohr,
2001). For XML in particular, the verbose and syntax-heavy nature of the
schemalanguagesmakesthem unsuitablefor providingthistypeof framework.
Asanillustration, consider thetypical businessproblem of datainterchange
between different organi zations. Thesetypeof applications, oftenusedwiththe
term EDI (Electronic Datal nterchange), isalready beingmovedto XML (Kay,
2000; Ogbuji, 1999). Thenon-proprietary natureof XML anditsdescriptive
markup makeit suitablefor exchangeof information between organizations.
Oghbuji (1999) usesapurchaseorder exampletoillustrate how theinterchange
processcanbefacilitated with XML . However, aquick ook at theillustration
revealsthat XML dataand structuresyntax, althoughmoregeneralizedand more
descriptivethantheEDI notationused by thearticle(ANSI X12 Transactionset),
itisnot goingto besuitablefor useinthepresentation of thedatatoitspotential
users. A conceptual model of thispurchaseorder, showninFigurel, revea sthe
internal structureof theorder anditems, andismoresuitedfor understandingthe
conceptual structureof theapplication, andthisisexactly theaim of thischapter.
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Figure 1. A conceptual model for the purchase order application
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Intherest of thischapter, weintendto demonstrate how conceptual modelscan
infact handlethe complexitiesof XML, and the advancesof such modelsin
current literatureaswell ascommercial applications. Towardthat goal, wefirst
further motivatetheprobleminthesecond section, andthendiscusstheinteresting
problemsthat arise when creating aconceptual model for XML in thethird
section. We then discuss six research-based methodsin the fourth section,
followed by four commercial toolsinthefifthsection. Finally, wecomparethese
varioustool sinthesixth sectionand draw conclusionsonthestateof thecurrent
devel opmentinconceptual modelingfor XML intheseventh section.

Motivation

Sinceitsintroductionin 1996, theuseof XML hasbeensteadily increasing, and
it can be considered asthe“format of choice” for datawith mostly textual
content. XML iswidely used asthedataformat for avariety of applications,
encompassi ng datafromfinancial businesstransactionsto satelliteand scientific
information. Inaddition, XML isal so used to represent datacommunication
between disparate applications. Thetwo leading Web application devel op-
ment platforms.NET (Microsoft, 2003) and J2EE (Sun, 2004) bothuse XML
Web Services(astandard mechanism for communication between applica-
tions, wheretheformat for theexchange of data, and the specification of the
servicesaremodeledusing XML).

Literatureshowsdifferent areasof application of design principlesthat apply
toXML. XML hasbeenaroundfor awhile, but only recently hasthere been
an effort towardsformalizing and conceptuali zing themodel behind XML.
Thesemodelingtechniquesarestill playing“ catch-up” withthe XML standard.
TheWorld WideWeb Consortium (W3C) hasdevel oped aformal model for
XML — DOM (Document Object Model), agraph-based formal model for
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XML documents (Apparao, Champion, Hors, & Pixley, 1999). For the
purposeof querying, W3C hasal so proposed another datamodel called X Path
data model, recently re-termed as the XQuery 1.0/XPath 2.0 data model
(Fernandez, Malhotra, Marsh, Nagy, et al., 2003). However, both of these
modelsarelowlevel models, representing thetreestructureof XML, andare
not designedto serveconceptual modeling purposes. The Obj ect M anagement
Group (OMG) hasdevel opedthe XML Metadatal nterchange (XMI) Speci-
fication! which comprises XML vocabulary and permits ASCI I -based ex-
change of metadatabetween UML modelingtools(OMG, 2003). The XMI
specificationincludesproductionrulesfor obtaining aschema(actually aDTD)
from an XMI-encoded UML meta-model. SOAP (Simple Object Access
Protocol) isanother XM L -based method that allowsrepresentation, serializa-
tion, andinterchangeof objectsusing XML . Although several of thelessons
learned from such protocol sprovideval uableinsight to devel opingamodel for
XML objects, thefocusof thischapter ison moreconceptual model sthat have
adistinct user view and arenot compl etely textual .

Datamodelingisnot anew topicinthefield of databases. Themost common
is the relational model, which is aforma model, based on set-theoretic
propertiesof tuples(Codd, 1970). Theentity-relationship model (Chen, 1976)
isawidely accepted conceptual model in relational databases. Similarly,
object-oriented databaseshavetheobject-oriented model (Nguyen& Hailpern,
1982) at theunderlyingformal layer, and unified modeling language (UML)
(Booch, Rumbaugh, & Jacobson, 1998) at the conceptual layer. Although
XML hasbeeninexistencefor over sevenyears, itisnot based onaformal or
conceptual model. XML hasagrammar-based model of describing docu-
ments, carried over from its predecessor SGML (Standard Generalized
Markup Language). Althoughfairly suitablefor describing and validating
document structures, grammar isnot ideally suited for formal or conceptual
descriptionof data. Thepopularity of XML, however, necessitatesaconve-
nient method for modeling that woul d beuseful for understandingandformal -
izing XML documents.

Conceptual Model

Beforegettingintothedetailsof potential conceptual modelsfor XML, the
guestionthat should beansweredis, “What doestheterm Conceptual Model
mean?’ Batini, Ceri,and Navathe (1992, p. 6) defineaconceptual model as:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Conceptual Modeling for XML 297

A conceptual schema is a high-level description of the structure of the
database, independent of the particular system that is used to implement
the database. A conceptual modelis a language that is used to describe the
conceptual schema.

Typically aconceptual model should havethefollowing properties:

* A conceptua model should maptherequirements, and not thestructure.
Althoughitmay bepossibletogeneratethelogical designof asystemfrom
itsconceptual model, aconceptual design primarily needsto capturethe
abstract conceptsandtheir rel ationships.

* A conceptual model shouldlenditself tobeusedfor thegeneration of the
logical design, such asthedatabase schema. Thisallowstheconceptual
model to bechanged | ateinthedesign phase, and avoidsmoreexpensive
changestothedatabaseitself.

*  Conceptual modelsarefor devel opersand non-devel opersalike. Non-
devel opersshould beableto understand the conceptswithout needingto
know thedetailsof theunderlying database concepts.

*  Theconceptua designshouldnot beconsidered asanintermediatedesign
document and disregarded after thel ogical and physical design, but should
remainasanintegral part of the specification of theapplicationitself.

Surprisingly littleresearch hasbeen doneonvisual modeling of XML docu-
ments. Six different directionsof XML modelingwereidentifiedinliterature.
Each of themethodssurveyed hereisscrutinized to determineif they couldbe
considered asaconceptual model, and not just asavisual representation of the
structure.

Modeling Issues in XML

Modeling of XML document structuresisnot atrivial task. Unlikerel ational
structureswhichareinherently flat, XML structuresarehierarchical, andthe
datain XML documentsispresentedinaspecificorder, andthisorder isoften
asignificant property of thedatathat needsto bepreserved. Inaddition, there
aremany consi derationsoneneedsto makewhiledesigning XML structures.
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In fact, the object-oriented model, because of its generalized structural
constructs, comescloser to XML thantheRel ational and Entity Relationship
models. Beforepresentingthemainissueswith XML modeling, wefirst discuss
thetwo main approachesfor metadatarepresentationwith XML.

Metadata Representation with XML

Asistypical with XML, thetwo primary structurerepresentationformatsfor
XML arehighly textual. TheDTD (Document TypeDefinition) isaconcept
inherited in XML from its predecessor SGML. However, the increasing
complexity of requirementshaveledtothecreation of thenew XML schema
construct, whichisthe W3C-recommended format for representing XML
metadata. Some moredetailsof thesetwo languagesaregivenin subsequent

paragraphs.

XML DTD

TheDTD or theDocument TypeDefinitionisaconcept that wasinherited from
SGML (1SO, 1986). The DTD has been the de facto standard for XML
schemalanguagessincetheintroductionof XML. It haslimited capabilities
comparedtotheother schemalanguagesand useselementsand attributesas
itsmainbuilding blocks. Thesehierarchical structureshavetobeusedtomodel
thereal world. Thebasicrepresentation of aDTD resemblesagrammatical
representation suchasBNF (Backus-Naur Form) (Naur, 1963). DTDsdo not
havesupport for any datatyping, andaDTD initscurrent textual format lacks
clarity and readability; thereforeerroneousdesign and usageareinevitable.
Often DTDs are tricky to design because of the limitations of the DTD
constructs. Table 1 showsthe DTD for a structured paper with citations.
(Exampleadapted from Psaila[2000]).

XML Schema

XML schema(Malhotra& Maloney, 1999) ispart of anongoing effort by the
W3Ctoadandeventualy replaceDTD intheXML world. XML schemaismore
expressivethan DTDsand can beusedinawidevariety of applications. XML
schemahassupport for datatypes, structures, andlimitedinheritance, whichcan
beusedtomodel XML structuresappropriately. ButliketheDTD, XML schema
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Table 1. The DTD for structured papers

<IELEMEN T PAPER (TITLE, SECTION* BIBLIOGRAPHY?)>
<IATTLIST PAPER name ID #REQUIRED>

<IELEMENT TITLE (#PCDATA) >

<IELEMENT SECTION (#PCDATA | CITE| PARA| EMPH)*>
<IATTLIST SECTION title CDATA #REQUIRED >

<IELEMEN T BIBLIOGRAPHY (BIBITEM +) >

<IELEMEN T BIBITEM (#PCDATA)>

<IATTLIST BIBITEM label ID #IMPLIED>
<IELEMENTCITEEM PTY >

<IATTLIST CITE label IDREF #REQUIRED >

<IELEMEN T EM PH (#PCDATA) >

<IELEMENT PARA (#PCDATA)>

suffersfromthefact that itstextual format lacksclarity andreadability. Typically
anXML schema, likeaDTD, consistsof aseriesof definitionsof el ementsand
their contents. Themost significant aspect of XML schemaisthat it usesXML
asitsunderlying language. Because of this, for even simple structures, the
corresponding XML schemacanbehighly verbose. Thisisdemonstrated by the
fact that theequival ent schemafor thestructured paper DTD generatedusinga
DTD to SchemaTranslator — DTD2X stranslator (Rieger, 2003), shownin
Table2,isoverfivetimeslarger thantheDTD showninTablel.

XML Modeling Issues

Several issuesarisewhen attempting to conceptual ly represent thestructure of
XML data. Someof theseissuesareasfollows:

1.  Order: XML objectsareinherently ordered— thereisaspecificordering
between elementsand different instancesof the sameelement.

2. Hierarchy: XML doesnot haveadirect way to support many-to-many
relationships, sincethestructureisessentially hierarchical.

3. Heterogeneous types: XML structures often involve heterogeneous
types, aconcept by which different instances of an element may have
different structures.

4.  Complex content: Individual element structurescanbecomplex. XML
structuresallow an el ement to contai nacombination of multiplegroupsof
el ementscombined using sequence, optional, and required constraints.
Sub-elements can also repeat in many different ways. Structure of
elementscouldbedirectly orindirectly recursiveaswell.

5.  Mixed content: An element in XML may have mixed content — with
atomicvaluesaswell asnon-atomicvaluesat thesametime.
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Table 2. XML schema for structured paper

<?xm version="1.0"?>
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >
<xs: el ement nanme="PAPER"'>
<xs: conpl exType>
<Xs: sequence>
<xs:element ref="TITLE" /> <xs:element m nCccurs="0"
maxQccur s="unbounded" ref="SECTI ON' />
<xs: el ement m nCccurs="0" ref="BlIBLI OGRAPHY" />
</ xs: sequence>
<xs:attribute nane="nanme" type="xs:|ID' use="required" />
</ xs: conpl exType>
</ xs: el ement >

<xs:el ement nane="TI TLE" type="xs:string" />

<xs: el enent name="SECTI ON'>
<xs:conpl exType m xed="true">
<xs: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xs:elenment ref="CITE" />
<xs: el enent ref="PARA" />
<xs: el enent ref="EMPH' />
</ xs: choi ce>
<xs:attribute name="title" type="xs:string"
use="required"/ >
</ xs: conpl exType>
</ xs: el enent >

<xs: el ement nane="Bl BLI OGRAPHY" >
<xs:conpl exType>
<XS: sequence>
<xs: el ement maxCccur s="unbounded" ref="BIBI TEM' />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs:el erent nanme="Bl Bl TEM >
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: extension base="xs:string">
<xs:attribute name="label" type="xs:1D" />
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<xs:el ement nanme="Cl TE">
<xs:conpl exType>
<xs:attribute nanme="|abel" type="xs:|DREF" use="required"
/>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement name="EMPH' type="xs:string" />
<xs: el ement name="PARA" type="xs:string" />
</ xs: schema>
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6. Namespaces: Last but not the least, XML supports many related
conceptssuch asnamespacesthat would makeastrai ghtforward concep-
tual designdifficulttoattain.

Theissueswith XML needtoberesolvedfor any conceptual model tofaithfully
incorporateall thestructural nuancesof XML. Literaturereveal sanumber of
highly capabl e methodol ogieswhich coul d be considered aspotentialsfor a
widely accepted model for XM L. Wepresent six suchmethodsfromacademic
literatureinthischapter. Inorder todemonstratethecurrent state of toolsfor
XML structure design, we also include the modeling capabilities of four
different commercial tools. To make the comparisons more intuitive, we
chooseastructurethat weconsi stently useto createthediagramsfor all of the
surveyed models. Wehaveused theDTD for structured papersfrom (Psaila,
2000) for this purpose. Table 1 shows the document type definition for
structured papers.

Research Systems

Most of themethodol ogiesexploredinliteraturearebased oncurrently existing
modelingtechniques. Two popular modeling methodol ogiesthat areinvogue
currently arethe Entity Relationship (ER) model and UML (Unified Modeling
Language). Both of thesehavebeen used for modeling XML. Theresearchon
modeling methodol ogiesfor XML canbebroadly classifiedinthreecategories:

1. ER-based methods: Methodsinthiscategory usethe Entity Relationship
model as a basis. Typically these methods extend the ER model to
incorporatethecomplexitiesof XML.

2.  UML-based methods: The Unified Modeling Language (UML) isa
highly powerful model for object-oriented concepts. UML ismuchmore
powerful than XML structures, and hasto be adapted by toning down
someof itscomplexitiesfor usewith XML.

3. Othermodeling methods: Thereareother methodssuch asthesemantic
network model which haveal so beenusedfor modeling XML.
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Therest of thissection providesdetail son six academicarticleswhichaddress

issuesrel ated to these methods, and show how thenuancesof XML structures
canbeappropriately represented intheserespectivemodels.

ER-Based Models

M ethodsbased ontheEntity-Rel ationshipmodel facethechallengeof extending
theERmodel toamorecomplex structure. Twomainchallengesfaced hereare:

1. TheERmodel isdesignedfor flat and unorderedrel ational structures, and
theproblemisinextendingittoanordered and morecomplex hierarchical
structure.

2. Oneof thedifferencesbetweentheER model andtheintrinsic XML model
isthat theER model isanetwork-based model, whileXML ishierarchical.
Theproblem comesfromthefact that anetwork diagram hascycles, and
potential many-to-many relationships, whicharenot directly representable
inXML, althoughthey can beimplementedusing XML IDsand | DREFs.

Typically, methodsbased onthe Entity Rel ationship method extend the ER
model to handlethetwo problems. We present two techniquesthat usethe ER
model asabasis.

Entity Relationship for XML (ERX)

Psaila(2000) introducesERX (Entity Relationshipfor XML) asaconceptual
model based onthe Entity Rel ationshipmodel (Chen, 1976). ERX isdesigned
primarily to providesupport for thedevel opment of complex XML structures.
It providesaconceptual model to hel p better represent thevariousdocument
classesthat areused andtheir interrel ationships. ERX isnot nested, but rather
exploitsaflat representationto explain XML conceptsandtheir relationships.

Thismodel hassome of the necessary modificationsto copewiththefeatures
that arepeculiar to XML. Thebasic building blocksof an ER model such as
Entities, Relationships, and Attributes, have been modified or extended to
support XML -specificfeaturessuch asorder, complex structures, and docu-
ment classes. An ERX Entity describes a complex concept in a source
document. Anentity istypically represented by using asolidrectanglewiththe
nameof theentity mentionedinsidetherectangle. Entitiescan haveattributes
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which describe elementary concepts associated with an entity. In ERX,
attributesarerepresented by using small oval circleswhichareconnectedtothe
Entity. Attributesin ERX can beextended by making useof qualifierssuchas
(R) and (I) —required andimplied attributes, respectively.

ERX Relationshipsdenotean association betweentwo entitiesand isrepre-
sented by arhombusconnected to thetwo associated entities. Thecardinality
constraintsare mentioned inamanner similar tothat of ER. ERX supports
different kindsof relationshipsand a so supportsspecialization hierarchiesto
denote various XM L -specific concepts such as the “Choice” tag in XML
schema. ERX supportstheconcept of “interface” which canbeusedtodivide
two partsof theconceptual model that arederived fromtwo distinct classesof
sourcedocuments. Hierarchiesand generali zationsareal sosupportedin ERX.
Psaila demonstratesin detail the capabilities of the ERX system and also
providesadetailed explanationfor thevariouselementsthat constitute ERX
andtheir graphical notations. Order ispartially supportedin ERX by modeling
itasthequalifier (O) for the attribute which determineswherethe specific
instanceof theentity appearsinthedocument.

ERX, however, doesnot support some X ML -specificfeaturessuchasmixed
content, and doesnot describehow complex typeswiththeir variousnuances
can bemodel ed into the system. ERX doesnot provide support for ordered
and unordered attributes. Thequalified attributed“ Order” supportedin ERX
servesto establish the order between the variousinstances of acomplex
conceptin XML ; however, thereisno mechanismto determinetheorder of
attributeswithinan XML concept. ERX isnot constrained by the syntactic
structureof XML andisspecifically focused onthedatamanagement i ssues.
ERX, however, establishesthereasoning that aconventional ER model can
beusedto describeaconceptual model for XML structuresand servesasan
effective support for the development of complex XML structures for
advanced applications. In another related article, Psaila (2003) also de-
scribesalgorithmstotranslate XML DTDsintoacorresponding ERX model.

Figure2showstheERX for thestructured paper DTD from Table1. TheERX
diagramisobtained from Psaila(2000) andincludesonly therelevant part of
thediagramwithout the stylesheet components.

Extensible Entity Relationship Model (XER)

XER (Sengupta, Mohan, & Doshi, 2003) isaconceptual modeling approach
that can beusedto describe XML document structuresinasimplevisual form
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Figure 2. The ERX model for the structured DTD
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reminiscent of the ER model. The XER approach has the capability to
automatically generate XM L document typedefinitionsand schemafromthe
XER diagrams and vice-versa. XER introduces acanonical view of XML
documents called Element Normal Form (ENF) (Layman, 1999), which
smplifiessomeof themodelingissuesby removing thenotionof attributesfrom
thedocument. Instead, all XML attributesareconvertedto simpleelements.
Moredetailsareavailablein Senguptaet al. (2003).

The XER model includes all the basic constructs of the ER model, and
introducessomenew constructsof itsown. Thebasi cbuilding blocksof theER
model — Entities, Attributes, and Rel ationshi ps— arepreserved with similar
semanticsin XER. The XER entity isthebasic conceptual objectin XER. A
XER entity i srepresented using arectanglewith atitleareashowingthename
of theentity and thebody showingtheattributes. X ER attributesareproperties
of entitiesthat are usually atomic, but can al so be optional or multi-val ued.
Attributesareshowninthemodel by placingthenamesof theattributesinthe
body of theentity. Attributesareordered by default, and theorderinginthe
diagramistop-to-bottom. Multi-valued attributesareall owed asmentioned
beforewiththemultiplicity shownin parentheses. Depending onthetypeof the
schematic el ement being model ed, thereare subtlechangesintherepresenta-
tionof theX ER entity. A XER entity canbeof thefollowingtypes: (1) ordered,
(2) unordered, and (3) mixed. Each of these types has a unique graphical
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representationto enabl eeasy designand comprehension. Rel ationships, which
denoteaconnection betweentwo or moreentities, areintroducedin XERwhen
acomplex entity contains a complex element as one of its sub-elements.
Relationshi pscan be one-to-one, one-to-many, or many-to-many. Thecardi-
nality of arelationshipisequivalent to theminOccursand maxOccurstags
presentinthe XML schema.

XER also supports other XM L-specific features such as order, aswell as
advanced ER conceptssuch asweak entities, ternary rel ationships, aggrega-
tions, and generalizations. XM L-specific features such as complex type
structures, schematic restrictions, group-order, and choice indicators are
supportedinahighly presentableand easy-to-understand graphical form.

TheXERdiagramthat isconstructed bearsal ot of resemblancetoan ER diagram
and supportsmoreor lessevery facet availableinthe XML schema. XER does
not fully incorporateintricate XML featuressuch asnamespaces. XER alsofails
tohandlethe® Any” construct, whichtheauthorsargueresultsinbaddesign. The
authorsalsoprovidedetaileda gorithmsto convertaX ERdiagramtoaDTD and
XML schemaandviceversa. A prototype hasbeenimplemented using Dia(a
GTK+drawingprogram) (Dia, 2004) and X SL T that canbeusedtocreate XER
modelsand convert themto XML schemaand vice-versa.

Figure 3 presentsthe XER diagram for the structured paper DTD shownin
Tablel. Thediagramwasgenerated by first convertingtheDTD toitsSENF
representation, andthen convertingtheresultingDTD intoanequivalent XML
schemausing DTD2Xs(Rieger, 2003). Theresulting schemawasimportedinto
the XER Creator which generated themodel in Figure3.

UML-Based Models

TheUnifiedModeling Language(UML) (Boochetal ., 1998) isoneof themost
popular model sfor object-oriented design. UML, however, ismismatched
with XML becauseitisdesignedfor fully object-oriented systemsandisbased
onobjectinheritance, unlike XML. However, UML hassupport for someof
theproblemsinmodeling XML suchascomplex hierarchiesand order, andis
henceagood choicefor devel opingaconceptual model for XML documents.
Tomodel XML properly withUML, someof thecomplexitiesinUML (such
asmethods, usecases) needtobetrimmedtofitthe XML domain. Twoarticles
that useUML tomodel XML arediscussed here.
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Figure 3. XER model of the structured paper DTD

Unified Modeling Language (UML) and DTD

Anapproach to model DTDsconceptually using UML (Unified Modeling
L anguage) hasbeen studiedin Conrad, Scheffner, and Freytag (2000). This
paper incorporatesrelevant UML constructssuch asthestatic view and the
model management view to performtransformations. Thestatic view consists
of classes and their relationships such as association, generalization, and
variouskindsof dependencies, whilethemodel management view describes
theorganization of themodel. UML enabl estheapplication of object-oriented
conceptsinthedesign of XML and helpsimproveredesign and alsoreveal
possiblestructural weaknesses.

Conrad, et al. describevariousUML constructssuch asclasses, aggregation,
composition, generalization, and packages, and explainstheir transformation
intoappropriateDTD fragments. It alsoextendsUML totakeadvantageof all
facetsthat DTDsoffer. UML classesareusedtorepresent XML element type
notations. The element name is represented using the class name, and the
element content isdescribed by using theattributesof theclass. SinceUML
classesdo not directly support order, theauthorsintroduceanimplicit top-
bottom order in amanner similar to that seenin XER. DTD constructsfor
element types which express an element — sub-element relationship are
model ed by using aggregations. Theauthorsarguethat themultiplicity specifi-
cationfor UML aggregationsissemantically asrich ascardinality constraints
and usethe sameto expressrel ationship cardinalities. Generalizationsare
supported by using UML generalizations.

The conceptual model as proposed by the authors can handle most of the
constructs that are commonly used in aDTD. Further, some of the UML
constructssuchasUML attributesfor classesdo not havean equivalent XML
representationand aresuitably modified to adapt UML torepresent most of the
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XML specificfeatures. Thismethodisfairly successful intheconversion of
DTD fragmentsinto corresponding conceptual models. But sincetheauthor’s
work restrictsthemodel toDTDs, theexpressivepower of themodel islimited.
TheUM L-based method al so entail sthe user designingan XML conceptual
model tolearntheconceptsof UML.

The authors project UML as the link between software engineering and
document design asit providesamechani smto design object-oriented sof t-
ware together with the necessary XML structures. The main goal behind
conceptual modelingisto separatethedesigner’ sintentionfromtheimplemen-
tationdetails. Theauthorsuse UML to hel p achievethisby combining object-
oriented designwith XML document structures.

Figure4 showstheUML for thestructured paper DTD showninTable1using
themethodology in Conrad et al. (2000). Thisdiagram wascreated manually
by followingthestructural modeling examplesshownintheConrad article.

Unified Modeling Language (UML) and XML Schema

Routledge, Bird, and Goodchild (2002) attempt to defineamapping betweenthe
UML classdiagramsand XML schemausingthetraditional three-level database
designapproach, whichmakesuseof theconceptual, |ogical andphysical design
levels. The conceptual and logical levelsare represented using UML class
diagramsandthey makeuseof the XML schemato specify thephysical level.

Thefirst stepinthismethodol ogy isto model thedomain using aconceptual
level UML class diagram and to use this diagram to describe the various
entities. Thisstagemakesuseof standard UML notations, and al so extendsthe
notation to represent attribute, relationships, and can al so represent some
conceptual constraints. Someof thecommon ER conceptsarerepresented by
modifying standard UML notations. For example, elementsarerepresented as
UML classesby making useof rectangles, and attributesarelisted withinthe
associ ated rectangl es. Rel ationshipsarerepresented by lineslinking two or
moreclasses. Attributesand Rel ationshi pscanhavemultiplicity constraintsand
arerepresented using standard UML notations. However, other conceptual
constraintslike Primary Key cannot be directly represented in UML, and
instead somenon-standard notations(suchasaffixing{ P} toindicateaprimary
key attribute) areused.

Oncetheconceptual model hasbeenvalidated (whichrequiresadomainexpert),

the processinvolvestheautomatic conversion of themodel toalogical level
diagram, whichdescribesthe XML schemainagraphical and abstract manner.
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Figure 4. Conrad UML for the structured paper DTD

Thelogical level model, inmost cases, servesasadirect representation of the
XML schemadata structures. Thelogical level model uses standard XML
stereotypessuchas” SimpleElement” and“ Complex Element” and“ Sequence’
that aredefinedintheUML profileforthe XML schema. Thepreviousdefinitions
enableadirect representation of the XML schemacomponentsinUML. More
detailsof theUML profilecanbefoundin (Routledgeet al., 2002). The paper
describesindetail the stepsneeded to obtain aconceptual model and thento
converttheconceptual model intoalogical moddl . Thethirdandfinal stageisthe
physical level, andinvolvestherepresentation of thel ogical level diagraminthe
implementationlanguage, namely XML schema. Theauthorshavenotincluded
algorithmstodirectly convert thelogical model toaschemaandviceversa. This
model entail stheuseof theconceptual andthelogical view todefinethe XML
schema. SinceUML isaimed at softwaredesignrather than datamodeling, new
notationshavetobeaddedtofully describethe XML schema. Further mixed
contentin XML cannot beeasily definedinUML, andthesyntax tobeusedis
differentfromthenormal XML schemaregular expression.

Figure5 showsthe UML for the structured paper DTD showninTablelas
obtai ned using themethodol ogy in Routledge, et al. (2002). Thediagramwas
generated by first convertingtheDTD intoan equivalent XML schemausing
DTD2Xs(Rieger, 2003). Theresulting schemawasthen converted manually
using themapping rulesused by Routledgeet al.
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Figure 5. Routledge UML representation of structured paper DTD

Other Modeling Methods

Semantic Modeling Networks

XML schema does not concentrate on the semantics that underlie these
documents, but instead depictsalogical datamodel. A conceptual model
takinginto account thesemantics of adocument hasbeen proposed by Feng,
Chang, and Dillon (2002). Themethodol ogy described by Feng, et al. canbe
brokenintotwolevels: (1) semanticlevel and (2) schemalevel.

Thefirstlevel isbased onasemantic network, which providesasemantic model
of theX ML document through four major components:

1. Setof atomicand complex nodesrepresenting real-world objects;

2. Setof directed edgesrepresenting the semantic rel ationshi ps between
objects,

3. Setof labelsdenotingthedifferent typesof semanticrelationshipssuchas
aggregation, generalization, andsoforth; and

4. Set of constraints defined over nodes and edges to constrain these
relationships.

A semantic network diagram (see Figure 6) consists of a series of nodes
interconnected using direct-label ed edges. Itispossibleto defineconstraints
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over these nodes and edges. Nodes can be either basic or complex, corre-
spondingtosimpleor complex content respectively. Edgesareused to connect
nodes, thereby indicating asemantic rel ationship between them. Thisbinary
relationshipisusedtorepresent thestructural aspect of real-world objects.
Using edges, one can represent generalizations, associ ations, aggregations,
andthe* of-property” . Constraints can be specified over nodesand edgesto
support variousrequirementssuchasdomain, cardinality, strong/weak adhe-
sion, order, homogeneity/heterogeneity, exclusion, andsoforth. Cyclesare
possiblein semantic diagrams, and to transform these diagramsinto XML
schema, itisnecessary to convert thecyclic structuresintoanacyclic-directed
graph.

Thesecondlevel isbased onadetailed XML schemadesign, including element/
attributedecl arationsand s mple/complex typedefinitions. Themainideaisthat
the mapping between these two level s can be used to transform the XML
semanticmodel intoaX ML schematicmodel, which canthenbeusedtocreste,
modify, manage, and validatedocuments.

Figure6 showsthe Semantic M odel representation for thestructured paper
DTD showninTablel. Thediagramwasgenerated by first convertingtheDTD
intoanegquivalent XML schemausingDTD2Xs(Rieger, 2003). Theresulting
schemawasthen converted using the semantic model -mapping rulesmentioned
by Fengetal.

XGrammar and the EER Model

Semantic datamodeling capabilitiesof XML schemasareunder utilized and
XGrammar (Mani, Lee, & Muntz, 2001) makesan attempt to understand the

Figure 6. Semantic network model for the structured paper DTD
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mapping betweenfeaturesof XML schemaand existingmodels.Mani, eta. use
asystematic approachtodatadescriptionusing XML schemaand compareitto
theERmodel. Thestudy formalizesacoreset of featuresfoundinvariousXML
schema languagesinto X Grammar — acommonly used notation in formal
languagetheory. X Grammar isanextens onof theregul ar treegrammear definition
in(Murata, Lee, & Mani, 2001) which provided asix-tuplenotationtodescribe
aformal model for XML schemalanguages. X Grammar has extended this
notationtoincludetheability torepresent attributedefinitionsand datatypes.

XGrammar hasthreefeatures, namely: (1) ordered binary relationships, (2)
union and Bool ean operations, and (3) recursiverelationships. Mani, et al.
comparethemtothestandard ER model and, based onthecomparison, extend
the ER model to better support XML. Thisextension, called the Extended
Entity RelationshipModel (EER) hastwomaindifferencesfromtheERmodel :
(1) modification of the ER constructs to better support order, and (2)
introduction of adummy “has” relationship to describethe el ement — sub-
elementrelationshipthatisprevalentin XML.

TheEER model (atypical EER model isshowninFigure7) proposed by this
study dependsimplicitly onthepower of XGrammar. X Grammar introduces
theability torepresent ordered binary rel ationships, recursiverel ationships,
and alsotorepresent aset of semantically equivalent but structurally different
types as one. XGrammar also supports the ability to represent composite
attributes, generalization hierarchy, and n-ary rel ationships. X Grammar, how-
ever, suffersinitsrepresentation because its grammar isloosely based on
several existing schemalanguagesrather than ageneralized representation.

Thearticleprovidesdetailed rulesnecessary to convert X Grammar to EER and
vice-versa. However, conversionrulesfor themorepredominantly-used XML
schemaand DTD arenot explored. Althoughtheintermediate conversionto
XGrammar isnecessary to check for compl eteness, standard modeling prac-
ticecan potentially generatethe EER model directly without theintermediate
step. Asinthecaseof ERX, the EER model presented by (Mani et al., 2001)
doesnot support X M L-specificfeaturessuch asmixed content, groupindica-
tors, and complex typeentities. EER a solackssupport for generalizations, and
itsmainthrustisjust onordered binary relationshipsand | DREFs.

Figure7 showsthe X Grammar representationfor thestructured paper DTD
shown in Table 1. This diagram was generated manually by creating an
equivalent X Grammar first, and consequently mappingitinto EERfollowingthe
mapping methodol ogiesdescribed by Mani et al.
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Figure 7. The XGrammar visualization for the structured paper DTD

Commercial Systems

Although XML hasbeeninuseasastandardfor over fiveyears, thetask of
designing XML structureshastraditionally beenanon-standard process. As
theprevioussectionsdemonstrate, theresearch support inthisareahasbeen
lessthan satisfactory. Tool support for thedesignof XML structuresisalsonot
well defined. Different toolshavetheir own proprietary methodsfor graphically
designing XML Structures. Most of theseeditorsrely onthetree-based nature
of XML schemaand just provideamethod for editing XML schemas. The
underlying technology of thesetool sdoesnot permit theability to construct
schemasor toenforceconstraints. Tool support for providinginteractive XML
structuredesignisal so not adequate asastandard mechanismfor conceptual
design of XML documents. Many companies have come up with several
variantsof XML -schemaeditorsthat will graphically present themain con-
structsof aschemato the user, including the onesmentioned inthechapter.

Asbefore, wecategorizethecommercial toolsintothreebroad categories: (1)
ER-likemodels, (2) UML-based models, and (3) other models. M ost com-
mercial XML toolsincludegraphical XML schemaeditorswhichresemble
hierarchy editors. Thevisual structuresof theseeditorsareessentially thesame,
and in this section, we will hence refer to the third category as “tree-like
models’.
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ER-Like Models

Visual Studio NET

Microsoft’ sVisual Studio.NET (Microsoft, 2003) includesXML Designer,
whichisagraphical XML schemaeditor. .NET usesconnected rectangul ar
blocksto present an overview of aschemawith most of thestructural details
being hiddenindialogboxes. XML Designer providesaset of visual tool sfor
workingwith XML schema, ADO.NET datasets, XML documents, andtheir
supporting DTDs. TheXML Designer providesthefollowingthreeviews(or
modes) towork on XML files, XML schema, and XML datasets:

1. SchemaView,
2. XML View, and
3. DataView.

Theschemaview providesavisual representation of theel ements, attributes,
types, and other constructs that make up XML schema and ADO.NET
datasets. In the schema view, one can construct schema and datasets by
dropping elementsonthedesignsurfacefromeither theX ML schematab of the
Toolbox or from Server Explorer. Additionally, onecan al so add el ementsto
thedesigner by right-clicking thedesign surfaceand selecting Addfromthe
shortcut menu. Theschemaview showsall complex typesintable-likestructures,
andrelated typesareconnectedthroughthetypethat rel atesthem. Unfortunately,
whenthe“ref” structureisusedin XML schema, theconnectionisnot shown,
resultinginmultipleseparatedisconnected structures(seeFigure8).

TheDataview providesadatagridthat canbeusedtomodify “.xml” files. Only
theactual contentinan XML filecanbeeditedin Dataview (asopposedto
actual tagsand structure). Therearetwo separate areasin Dataview: Data
Tablesand Data. TheDataTablesareaisalist of relationsdefinedinthe XML

file, intheorder of their nesting (fromtheoutermosttotheinnermost). TheData
areaisadata-gridthat displaysdatabased ontheselectioninthe DataTables
area. The XML view providesan editor for editing raw XML and provides
Intelli Senseand col or coding. Statement completionisalso availablewhen
working on schema (.xsd) filesand on XML files that have an associated
schema. Specificdetailsof XML Designer can beobtained fromtheVisual

studio help page.
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Figure8showstheVisual representation of thestructured paper DTD shown
inTablelusingVisua Studio.NET. Thisdiagramwasgenerated by converting
theDTD intoitsequivalent XML schemausing DTD2Xs(Rieger, 2003) and
importingtheresulting schemaintoVisua Studio.

UML-Based Models

HyperModel

HyperModel (Ontogenics, 2003) by Ontogenicsisanew approach to model -
ing XML applications. Itintroducesan agiledesi gn methodol ogy and combines
itwithapowerful integrationtool to aidinthe softwaredevel opment process.
HyperM odel attemptsto build abridgebetween UML and XML devel opment
silos. Thepowerful model transformation capability of HyperModel allows
different softwareintegration technologiestointersectinacommonvisual
language. HyperM odel isdifferent from other UML toolsand hastheability to
seamlessly integratehundredsof industry standard XML schemaswithvarious
UML models. HyperM odel supportsthefollowingfeatures:

Figure 8. Visual Studio .Net visualization of the structured paper DTD
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1. Importsany XML schemaintoacommon UM L-based presentation;

2. Facilitatesintegration between new XML designtoolsand widely de-
ployed UML modelingtools;

3. Reverse engineers any W3C XML schema and produces an XML
document that may beimportedinto other UML tools,

4. GeneratesX ML schemadefinitionsfromany UML model, andissup-
ported by acomprehensiveUML extension profilefor customization; and

5. Enablesobject-oriented analysisand design of XML schemas.

Figure9showstheHyperM odel of thestructured paper DTD showninTable
1using Ontogenics1.2. Thisdiagramwasgenerated by convertingtheDTD
intoitsequivalent XML schemausing DTD2Xs(Rieger, 2003) andimporting
theresulting schemaintoHyperModel.

Tree-Like Models

XML Authority

XML Authority (Tibco, 2003) providesavisual representationof aDTD or a
XML schema. It supportstwodifferent views, atreerepresentationandatabul ar
representationlistingthevariousel ementsand attributesof theschemaoraDTD
intheElementsPane. TheElementspanecontai nstheel ement typedecl arations
withinagivenschema. Thepaneisdividedintothreeparts: agraphical view of
thecontent model (the Content Model pane), apanethat listsel ement typesthat
may contain the currently active elements (the Usage Context pane), and an
editablelist of element typesand content model s(the Element List pane).

TheContent Model paneislocatedintheupper left hand areaof the Elements
paneand providesagraphical display of the Content Model for thecurrently
activeelement type. Elementsarerepresented asrectangles, and rel ationships
between elementsare displayed aslines connecting elements. Occurrence
indicatorsand sequenceindicatorsarea sorepresentedgraphically. TheUsage
Context pane, located in the upper right hand area of the Elements pane,
displaysthepossibleparent elementsof thecurrently sel ected element type.
Element typedeclarationsaredefined andlistedintheElement List paneat the
bottom of the ElementsPane.
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Figure 9. Visualization of the structured paper DTD using HyperModel
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The Content Model pane uses a visual vocabulary to represent complex
element content model s. Theboxes, contai ning element typenames, datatype
indicators, and occurrenceindicators, arethefirst part of thisvocabulary, and
the sequences aswell asthe choices between them are presented visually.
Element typesaredisplayed asobjects (in boxes) within the Content M odel
pane. Thecontent model may be composed of text, other elements, text and
elements, data, or noneof these (asdefinedintheelement typedefinition). Each
element type object may containiconstoindicateitscontents, alongwiththe
element name. If anelement type’ scontent model includesother elements(that
is, the[-] iconisdisplayed next totheelement name), thenthechild elements
may al so bedisplayedinthecontent model pane.

Figure10showstheVisual representation of thestructured paper DTD shown
inTablelusing XML Authority. Thisdiagramwasgenerated by importingthe
DTDintoXML Authority.

XMLSPY

XMLSPY (Altova, 2004), isone of themost commonly used XML editors
andfeaturesavisualization schemetohelpmanage XML. XMLSPY presents
aconsistent and hel pful interface quite similar to that of the Visual Studio
dockingenvironment. XML SPY supportsthefollowing different viewsfor
schemaediting.
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Figure 10. XML Authority - Visualization of structured paper DTD

1. TheTextViewincludescodecompletion, syntax coloring, andvalidation
aswell asacheck for well-formedness.

2. TheEnhanced Grid View isatabular view and helps perform XML
editing operationsonthedocument asawhol e, instead of aline-by-line
technique.

3. TheBrowser View helpsprovidepreviewsfor HTML outputs.

4. AuthenticView providesdevel operswiththeability to createcustomized
viewsand datainput forms.

In addition to the previouslist, XMLSPY also supports a schema design/
WDSL view—anintuitivevisua editingview that providessupport for schema
modeling. By default, the schemadesign/WDSL view displaysasalist the
various elements, complex types, and attribute and element groups. The
Graphical view (thecontent model) can al so beobtained for specificel ements.
Thisprovidesaglobal view of thechosen element. Theelement canbefully
expanded by clickingonthe*+” symbol displayed next totheelementsname.
XMLSPY providesa“ SchemaNavigator” to edit theschemaindesignview.
Elementscan beeasily added to the content model by draggingthemfromthe
schemanavigator window onto thedesired position. Editing can bedone by
sel ecting thedes red el ement and making therequisitechangesintheproperties
window.
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Figure 11. XML SPY — Visualization of the structured paper DTD

by O FempH |
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Figure 11 showstheVisual representation of thestructured paper DTD shown
inTablelusing XML SPY . Thisdiagramwasgenerated by convertingtheDTD
intoitsequivalent XML schemausing DTD2X s(Rieger, 2003) andimporting
theresulting schemainto XML SPY .

Discussion

In this chapter, several research-based modeling approaches, as well as
commercial toolsfor modeling XML applicationswerepresented, all of which
aimtovisually represent XML structures, without thenecessity of hand-editing
the syntax-heavy DTD or XML schema. Table 3 summarizesthe content-
modeling capabilitiesof thesetechniques. Tool sthat supportthe XML schema
(XSD) canalsobeusedwith XML DTDs, sinceall DTDscanbetranslatedto
acorresponding XML schema(thereverseistypically nottrue, sincethereare
aspectsof XML schemathat cannot be modeled withDTDs). Based onthe
discussion of conceptual modelsearlier inthischapter, all of theresearch-
based methodscan be considered as potential conceptual modelsfor XML,
although among thecommercial toolsonly HyperM odel comesclosetobeing
a conceptual model. This chapter does not intend to provide an ordered
comparison onthemodels. Itisuptothe XML community and the usersto
choosean appropriatemodelingtool for their applications.

Table3ratesall of theten methodsandtool sdiscussedinthispaper against nine
different criteria. Thefirst criterionorderisoneof thecrucial elementsin XML,
and X Grammar istheonly model which doesnot addressthisissue. All the
model sfaithfully represent heterogeneity and complex XML content—two
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Table 3. Comparison of XML models (Legend: v"= full support, - = partial
support, X = no support, * = Supported but not visually)

Order | Hetero Complex Mixed
ERX - v v -
XER v v v v
UML DTD v 4 4 v
UML Schema v v v X
Semantic v v v -
XGrammar X v 4 X
VS.NET v v v v
HyperModel v v v *
XML Auth v v v v
XML Spy 4 v v v

propertiesof XML applicationswhichareuniformly representedinall the
models. Mixed contentisnot astructural property of XML, and someof the
models do not appropriately incorporate mixed content. Although all the
modelsdo not directly implement Document Type Definitions, thatisnot a
major drawback since several toolsexist that cantranslate DTDsinto sup-
ported XML schema. Some of the models do not incorporate all the extra
features of XML schema such as variations of mixed content, unordered
entities, datatypes, andrestrictions.

InTable4, werefer totheprocessof translating an existing application upto
the model as “up-translation” or reverse-translation, and the process of
generating alogical schemafrom the conceptual model asthe forward or
“down-trandation”. M ost model sinthissurvey describemethodsfor generat-
ing the models from existing XML applications (and hence support up-
tranglation), although not all themodel scan regenerate (or down-transl ateto)
theoriginal applications.

In summary, we believe that most of the models discussed here, with the
exception of someof thecommercial tool swhich simply represent agraphical
representation of thehierarchy of aschemastructure, canbesuccessfully used
for the purposeof designing conceptual model sfor XM L -based applications.

Conclusion

Inthetitleof thischapter, weasked the question—isconceptual modeling for
XML amythorareality? Althoughwe presented anumber of model sandtools
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Table 4. Comparison of XML models (Legend: v"= full support, - = partial
support, X = no support)

DTD Schema | Up-Tran | Down- | Conceptual
Tran
ERX v - v v v
XER v v v v v
UML DTD v - v v v
UML Schema v v v v v
Semantic v v v - v
XGrammar v - v - v
VS.NET v v v v -
HyperModel v v v v v
XML Auth v v v v X
XML Spy v v v v X

that succinctly visualizean XML structure, visualizationsof complex XML
document structurestypically arealmost more overwhel ming than thetext-
heavy schemaor DTD. From 1986 when SGM L wasstandardized, document
authorshavecreated DTDsmanually, anditistheauthors' viewpoint that for
complex document model designwith XML, manual input would continuetobe
the most frequently used method. However, XML is quickly becoming a
method for datarepresentationinInternet applications, and thisisthedomain
where conceptual modelingtoolswouldimmensely assistin creatingagood
design. It is often debated whether data modeling is an art or a science.
Although datamodel spresented here can beautomatically generated from
existing applications, and new applicationscan likewisebecreated fromthe
models, some of the component steps in modeling are often considered
subjective(and henceartistic). Visually appealing model sdefinitely aid this
concept of datamodeling. Therefore, visual conceptual model shavebeen, and
will remain, acrucial part of any project design. Itisuptothe XML community
to chooseonemodel that eventually getsaccepted asastandard.
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Chapter XI
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Abstract

This chapter deals with constraint-based multi-dimensional modelling.
The model we define integrates a constellation of facts and dimensions.
Along each dimension, various hierarchies are possibly defined and the
model supports multiple instantiations of dimensions. The main contribution
is the definition of intra-dimension constraints between hierarchies of a
same dimension as well as inter-dimension constraints of various
dimensions. To facilitate data querying, we define a multi-dimensional
query algebra, which integrates the main multi-dimensional operators
such as rotations, drill down, roll up... These operators support the
constraint-based multi-dimensional modelling. Finally, we present two
implementations of this algebra. First, OLAP-SQL is a textual language
integrating multi-dimensional concepts (fact, dimension, hierarchy), but
it is based on classical SQL syntax. This language is dedicated to
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specialists such as multi-dimensional database administrators. Second, a
graphical query language is presented. This language consists in a
graphical representation of multi-dimensional databases, and users specify
directly their queries over this graph. This approach is dedicated to non-
computer scientist users.

Introduction

OnLineAnalytical Processing (OL AP) hasemerged to support multi-dimen-
sional dataanalysisby providing manipulationsthrough aggregationsof data
drawnfromvarioustransactional databases. Thisapproachisoftenbased on
multi-dimens onal databases. Themulti-dimensional modelling (Kimball, 1996)
represents dataas pointsin multi-dimensional space. Dataareviewed asa
subject of analysis(fact) associated to axisof analysis(dimensions). Each
dimension containsoneor several viewpointsof analysis(hierarchies) repre-
senting data granularities. For example, sale amounts could be analysed
accordingtotime, stores, and customers. Alongstore dimension, ahierarchy
could group individual stores into cities, which are grouped into states or
regions, whicharegroupedinto countries.

Thisapproachinducestopicsof interestsfor thescientificcommunity (Rafanelli,
2003). Themainissuesfocusontechnol ogiesand tool sthat enabl ethebusiness
intelligencelifecyclefromdatamodelling and acquisitiontoknowledgeextrac-
tion. Theseproblemsarebased onresearches, which deal with design methods,
multi-dimensiona models, OLAPquery languages, andtool sthat facilitatedata
extractionand datawarehousing. Multi-dimensional dataarecrucial for the
decision-making. Neverthel ess, only afew researchesfocuson multi-dimen-
sional dataintegrity (Hurtado & Mendelzon, 2002).

Theconfidenceinamulti-dimensional databaseliesinitscapacity tosupply
relevantinformation. A multi-dimensional model integrating constrai ntsmust
provideanaccuratemodel of theorganisation activities, anditallowsvalid data
restitution (Hurtado & Mendelzon, 2002). Thischapter deal swith constraint-
based multi-dimensiona modellingand querying.

Thechapter outlineiscomposed of thefoll owing sections. Thesecond section
givesanoverview of related works. Thethird section definesaconstellation
model where dimensionssupport multipleinstantiationsaswell asmultiple
hierarchies. Thefourth section specifiesaquery algebra. We show theeffect
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of constraintsduring multi-dimensional manipulations. Thefifth sectionpre-
sentsatool named Graphic-OLAPSQL. It supportstwolanguages: aSQL -
likelanguagefor administrators, and agraphical language dedicated to casual
usersasdecision makers.

Background

Effortsto model multi-dimensional databaseshavefollowedtwodirections,
somemodel sextendrel ational approachestointegratemulti-dimensional data,
and othersapproachesmodel directly and morenaturally multi-dimensional
data. M ulti-dimensional databasesare manipul ated through datacubes.

* Inthe relational context, the data cube operator (Gray, Bosworth,
Layman, & Pirahesh, 1996) wasintroducedto expandrelational tablesby
computingtheaggregationsover all theattributecombinations. Kimball
(1996) introducesmulti-dimensional model sbased on dimensiontables
and fact tables, whereasLi and Wang (1996) represent cubesthrough
dimension relations and functions, which map measures to grouping
relations. Barralis, Paraboschi, and Teniente (1997) consider multi-
dimensional databases as a set of tables forming de-normalised star
schemata.

*  Tointegratemorenaturally multi-dimensional data, Agrawal, Gupta, and
Sarawagi (1997) introduceamodel, which supportsasymmetrictreat-
ment of dimensions and measures, and it provides a set of operators
(manipulation of cubes). Several approacheswerepresented that support
cubes with n-dimensions (Gyssen & Lakshmanan, 1997) and cubes
integratingexplicitly multiplehierarchies(Agrawal, Gupta, & Sarawagi,
1997; Lehner, 1998; Mendelzon & Vaisman, 2000; Vassiliadis& Sellis,
1999). Cabbiboand Torlone(1997) defineamulti-dimensional database
through dimensions, whichareconstructed from hierarchiesof dimension
levels, and f-tables, which storefactual data. L ehner (1998) presentsa
model based on primary multi-dimensional objects, which represent
cubes, and secondary multi-dimensional objects, which consist of all
dimensionlevels.InVassiliadisand Sellis(1999), cubesintegrateexplic-
itly multiplehierarchies.
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Wealsofindscientificliteraturedevoted to OL APquery manipulations. The
first dedicated operator wasthe datacube operator intherelational context
(Gray etal., 1996). Animportant contributionisthedefinition of roll-up and
drill-down operators (Agrawal et al., 1997; Lehner, 1998). Agrawal, et al.
(1997) introduce pull for transforming measures into parameters and its
reciprocal operation, named push, whereas Gyssen and L akshmanan (1997)
extend thisideathrough morecomplex operationssuchasfoldfor transforming
dimensionsintofactsand unfoldfor converting factsintodimensions. Lehner
(1998) definesrotations between dimensions. Cabbibo and Torlone (1998)
extend Cabbibo and Torlone(1997) by defining agraphical |languagebased on
aquery algebra, whichintegratesroll-up operator. Abello, Samos, and Saltor
(2003) implement an algebraic set of operators on top of an R-OLAP
database.

Althoughmany databasetechniqueshavebeenrevisited or newly developedin
thecontext of multi-dimensional databases, littleattentionhasbeenpaidtothe
dataintegrity. Thisproblemiscrucial becausedecision-makingsarebased on
multi-dimensional data. For example, geographic hierarchy which groups
cities intodepartments, regions, and countries isconsistent for Frenchcities,
whereasthishierarchy isirrelevant regarding to U.S. geography. Kimball
(1996) refersthis problem whereincompatibl e hierarchiessuch as French
geography and U.S. geography are modelled in a single heterogeneous
dimension. L ehner (1998) proposestransforming dimensionsintodimensional
normal form. Pedersen and Jensen (1999) providesclassdimensions, which
aretransformedinto homogeneousdimensionsby adding null information.
Theseapproachesdo notintegratetheseinconsi stenciesbetween hierarchies.
Hurtado and Mendelzon (2002) provide dimension constraints to reduce
hierarchy inconsistencies; thisapproachintroducesfrozen dimensions, which
are minimal homogeneous dimensionsrepresenting the structuresthat are
implicitly combinedin aheterogeneousdimension. Some problemsarenot
takeninto accountintheseapproaches. For example, weconsider theanalysis
of sale amounts according to products and stores. If aFrench taxonomy is
definedalongproduct dimension, it seemsto beinconsistent toanalysesale
amounts of theseproductsaccordingto U.S. stores, which aregroupedinto
theU.S. geography.
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Multi-Dimensional Modelling
Under Constraints

Thissectiondefinesaconceptua multi-dimensional model, whichisbasedon
facts, dimensions, and hierarchies. Thismodel facilitatescorrel ationsbetween
several subjectsof analysisthrough aconstellation of factsand dimensions.
Alongeachdimension, varioushierarchiesare possibly defined. Thismodel
supportsmultipleinstantiationsof dimensions; for example, each dimension
instancebelongsto oneor morehierarchies.

Thismodel al sointegratessemantic constraintspermittingthevalidation of data
extraction and multi-dimensional datamanipulation. Theseconstraintsare
defined over oneor severa dimensions.

Fact

Presentation: A fact reflectsinformationthat hasto beanalysed throughone
or several indicators, called measures; for example, afact datamay besale
amounts occurring in shops.

Definition: A factisdefined as(NF, MF, IF, | StarF).

. NFisaname of fact,

 MFisaset of measures associated with an aggregate function; M =
{f1(mF),f2(m")...},
* |Fisasetof factinstances,

* |StarFisafunction, whichrespectively associatesfact instancestotheir
linked dimensioninstances.

Formalism: A factisrepresented asshowninFigurel.

Figure 1. Fact graphical formalism

NF

F
mFl
m=,
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Figure 2. Example of facts

Registration Teaching

Amount NbStudents
NbHours

Example: Thecasewestudy istakenfromtheeducationdomain. Wedefine
amulti-dimensional database, whichallowsusersto analysestudent registra-
tions as well as teachings in French and American universities. Student
registrationsareanal ysed through theamount whereasteachingsareanal ysed
through anumber of studentsand anumber of hours.

Accordingtotheprevioustextual definition, werepresent these needsthrough
twofactsdefined asfollows:

+  F=(Regigtration,{ avg(Amount)}, ™, I Star™),
»  F,=(Teaching, { sum(NbStudents), sum(NbHours)}, 17, | Star™),
o |FIStar™, 17, | Stararedepicted inthefoll owing sections.

Thegraphical representationof F, andF, isdescribedin Figure2.

Dimension

Presentation: A dimensionreflectsinformationaccordingtowhichmeasures
will beanalysed. A dimensioniscomposed of parameters, which areorgani sed
through oneor several hierarchies; for example, dimensionsmay bestore,
product, date...

Definition: A dimensionisdefinedas(NP, AP, HP, IP).

* NPisanameof dimension,

e APisasetof attributes,

e HPisasetof hierarchies,

e |Pisasetof dimensioninstances.

Formalism: A dimensionisrepresented asshowninFigure3.
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Figure 3. Dimension graphical formalism

NP

Example: Wewant to analysethemeasuresof “ Teaching” throughfour axes
of analysisrespectively, representing:

*  Universitieswhereteachingsaredone(theanalysisintegratesboth French
UniversitiesandU.S. Universities),

»  Professorswhoinsureteachings(each professorisclassifiedaccordingto
onestatus),

»  Dates(thisdimensionregroupstemporal information),

*  Course descriptions (the French courses are classified according to
modulesand degree, whereastheU.S. coursesbelong to areas).

Inthesameway, the measure of “ Registration” isanal ysed through course
descriptions, dates, and students.

Thedimension, called* University”, model sgeographicinformation. Each
university belongs to a city, a zone (North, South,...), a country, and a
continent. French geography groupscitiesindepartmentsand regionswhereas
U.S. geography groupscitiesinstates. Thefollowing expressionrepresentsthe
dimensionD, named“University”.

D, =(*University”,{1dU, Uname, City, Department, Region, Country, Con-
tinent, |dZone, NameZone, State} , { FRGEO, USGEOQ, ZN}, |Universty)

Inthefollowing, wedescribesomeinstancesof thedimension* University”:

|unversty = {ij, i, i,...} suchas

* i,=["U1","Paul Sabatier University”,“ Toulouse”, 31, Midi-Pyrénées’,
“France”, “Europe’,“S_FR”,“Southof France”, NULL],

* i,=["U2","Toulousel University”,"“ Toulouse”, 31, Midi-Pyrenées’,
“France”, “Europe’,“S_FR”,“Southof France”, NULL],
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e i, =["U3", “Stanford University”, NULL, NULL, NULL, “USA”,
“America’,“SW_US’,“SouthWest of USA”, “California’],...

Hierarchy

Presentation: Inasamedimension, parametersareorganised accordingto
oneor several hierarchies. Withinadimension, valuesrepresent several data
granularities according to which measures could be analysed; along store
dimension, ahierarchy could group individual stores into cities, which are
groupedintostates or regions, which aregrouped into countries.

Definition: A hierarchy isdefined as(N", Param", Weak", Cond").

* N"isanameof ahierarchy,

*  Param"isanordered set of attributes, called parameters, which represent
alevel of granularity alongthedimension,

*  WeakH"isafunction associating each parameter to one or several weak
attributes, which compl etethe parameter semantic,

. Cond"isacondition, whichdeterminesavalid set of dimensioninstances
relatedtothehierarchy.

This element (Cond™) represents an important contribution of the model
becauseit allowsmultipleinstantiationsof dimensions; for example each
dimension instance belongsto one or more hierarchies. Thus, a sub-set of
dimensioninstancesisassociatedto onehierarchy. Thisproperty confersa
heterogeneousstructureintegrationinonedimension.

Formalism: A hierarchy isrepresented asshowninFigure4.

Example: Each dimension canbemani pul ated through variouscombinations
of parameters. Inthemodel, hierarchiesdescribethese parameter combina-
tions. For exampl e, thedimensioncalled” University” may bevisualised through
the French geography, theU.S. geography, and the zonedecomposition. So,
alongthisdimension, wedefinethreehierarchiesrespectively, called FRGEO,
USGEO, and ZN.
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Figure 4. Hierarchy graphical formalism

D .
a yl<7 weak attributes
D

y2

parameters

Thetextual definition of thethreehierarchiesof thedimensioncalled“ Univer-
sity” isdefined asfollows:

*  FRGEO = (French_GEO, <ldU, City, Department, Region, Country,
Continent>,{(IdU, Uname)} , Cond™R¢E©),

e USGEO=(US GEO,<ldU, City, State Country, Continent>, { (1dU,
Uname)}, CondVseE©),

e ZN=(Zone_GEO, <ldU, City, IdZone Country, Continent>, { (1dU,
Uname), (IdZone, NameZone)} , Cond?™).

Thegraphical representation of thedimensioncalled” University” isdefinedin
theschemashowninFigure5.

Themodel supportsmultipleinstantiationsof dimensions; for example, each
dimensoninstancebel ongstooneor morehierarchies. Thismultipleinstantiation
property isdefined through acondition associated to each hierarchy.

Figure 5. The dimension “University”

Zone

1dZone

Department Continent

UNIVERSITYO

A\
Country
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o Cond™CEO=dom(Country) e {“France’}
e CondYseE° = dom(Country) € {“US"}
e Cond™N=dom(ldZone) ISNOT NULL

Weapply this property to the set of instances V™Y = {i ,i,,i,...}.
. {i,,i,} e FRGEO
. {i,} € USGEO

. {i,i,i}eZN

Constellation

Presentation: A constellation extendsstar schemas(Kimball, 1996), which
arecommonly usedinthemulti-dimensional context. A constellationregroups
several subjectsof analysis(facts), whicharestudied accordingto severa axes
of analysis(dimensions) possi bly shared betweenfacts.

Definition: A constellationisdefinedas(N€¢, F¢, D€, Star©, Cons©).

* NCisanameof aconstellation,

 FCisasetof facts,

 DCisasetof dimensions,

e  Star®associateseachfacttoitslinked dimensions, and
»  Constisaset of constraintsbetweenthehierarchies.

Thiselement (Cons®) isthe second main contribution of the model. These
constraintsinsuretheconstel | ation consi stence, for example, topreventinvalid
analysesbased onincompatiblehierarchies.

Formalism: A constellationregroupsaset of factsand dimensionspossibly
shared. Its representation is composed of fact, dimension, and hierarchy
formalisms. Notethat thisformalismextendsnotationsof (Golfarelli, Maio, &
Rizzi,1998).
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Example: Inthepreviousexampl es, wedefined aconstell ation composed of
twofactsandfivedimensions:

*  Thefacts, called”Registration” and” Teaching” weredefined previoudly.
*  Thedimension,called“University”,isdetailedinthetop.

*  Thedimension, named* Course”, isshared by twofacts; itiscomposed
of three parameters(Degreeand modul e specificto French coursesand
areaspecifictoU.S. courses) and oneweak attributenamed * Descrip-
tion”, which compl etethe semantic of aparameter rel ated tothecourse
identification.

*  Thedimension, named* Date”, isal so shared by twofacts, and regroups
attributesrelated tothe Gregorian calendar.

*  Thedimension, called“professor”, model sprofessorsthroughitsname,
surname, and status.

*  Thedimension, called“student”, representsstudentsdefined by name,
surname, sex, andidentifier.

In the schema shown in Figure 6, we represent a constellation schema
responding to theneedsdefinedinthepreviousexamples.

Constraints

Tomaintaindatarel evance, theapproach wepresent inthischapter dealswith
constraints.

Weexpressinteractionsbetween hierarchies(perspectivesof analysis) inthe
samedimension. Wesolvethisproblemthroughintra-dimension constraints.

Another need concernstheassociation of fact instancesto dimensioninstances.
Wesolvethisproblemthroughinter-dimension constraints.

Intra-Dimension Constraints

Themodel wedefine supportsfiveintra-dimension constraints. Wedefine
exclusion,inclusion, simultaneity, totality, and partition between hierarchiesin
onedimension.
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Figure 6. Example of a constellation schema

PROFESSOR

Country
Continent

Firstname
UNIVERSITY

dimension

measures

fact

TEACHING
NbStudents
NbHours

S
=
s
)
S
=

weak attribute

O

MonthDesc
e
N 4 %
~._ Year Quarter Month D.-

parameters

REGISTRATION

Amount

hierarchy

Firstname

L et usconsidersonedimensiondenoted D, two hierarchiesal ongthedimension
denotedh, andh, (h, € H®, h, e HP), and several dimensioninstancessuchas
1I°={i,i,i,i0,i,...}.

Table1givesdefinitionsof theseconstraints.

Example: Weconsider thedimensionnamed“ University”. A FrenchUniver-
sity isnot located in the USA and vice versa. This semantic constraint is
modelled through oneexclusion constraint.
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Table 1. Definitions of intra-dimension constraints

Constraints Definitions Illustrations

The dimension instances belong to hy, donot | 1§~ h,
Excl usi on: belong to h, (and vice versa):
hl®h2 Vilehj_/\Vizehz:iliiz

Note that hyh, = hoshy L Iz

All the dimension instances belonging to hy

I ncl usi on: belong to hy:
hi@h, Viiehy = ieh;
Note that hyeh, # h,eh;

All the dimension instances belonging to h;
belong to h, (and vice versa):
Sinultaneity: |Viieh; & ieh,

h,chs, Note that

- hiohy = hohy

- lhsh, & hieh A heh

All the dimension instances belong to hy
Totality: and/or hy:

h1@h2 Vi1€|D, i1€ h1\/ i1€ h2

Note that h;©oh, = h,ohy

All the dimension instances belong to h; or
(exclusive) hy:

Partition: Vile |D, (ij_E hl/\ ij_E hz) \2 (i1E h1 A i1€ hz)
hoh, Note that

- hiohy = haohy

- hioh; & hish, A hioh,

« FRGEO ®USGEO

Each University (French or U.S.) belongs to a unique zone ({i,, i,, i} €
ZN).Thissemanticconstraintismodelled throughtwoinclusion constraints.

* FRGEO® ZN
« USGEO® ZN

In Figure 7, we represent the complete definition of the dimension called
“University”.

Figure8illustratesinstanceorganisation of thedimensionnamed*” University”.
Eachinstancebel ongsto varioussetsaccordingtothehierarchy conditions.
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Figure 7. Schema of the dimension “University”
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Figure 8. Instances of the dimension “University”
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Inter-Dimension Constraints

Themodel providesfiveinter-dimension constraintsrelated to hierarchies
belongingtodifferent dimens ons. Wedefineexclusion, inclusion, smultaneity,
totality, and partition betweeninter-dimension hierarchies.

L etusconsidersonefact denoted F, two dimensionsdenoted D, and D,,, which
areassociatedtoF (Star“(F)={ ...,D,...,D,,...}),twohierarchiesalong each
dimensiondenotedh, andh, (h, € H™, h,e HP?), and several instancessuch
aslf={j izl 3, 1P ={i, V7, 3, 1P2 =i, 17,17, }.
Table2givesdefinitionsof theseconstraints.

Example: Wecompl etethedefinition of our constellation schema. Wedefine
thedimension called “ Course” by (“ Course”, { 1dC, Description, Module,
Degree, Area},{ FRCRS, USCRS}, I¢r=), The hierarchiesare defined as
follows
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Table 2. Definitions of inter-dimension constraints

Constraints Definitions Illustrations

VjelF, Jiiehy |irc IStart() =

Excl usi on:
hooh —(Fiehy | ie I1Star(j))
L&N: Note that h.h, = hyehy
- Vjelf, Jixehy |ie 1Starf() =
I ncl usi on:
Jie h, | iz IStart(j
hyoh, 2€hy |ize ()]

Note that h;eh; = h,oh;

VjelF, Jiieh; | i1 IStart()
, i Jiehy | ie IStar™(j)
Sinultaneity: Note that

huoh, - yshy = hehy
- hioh, © hieh, A hehy

VielF, @iehy |ie1Star(j)) v

Totality: A . F .
hoh Fiehy |ielStar ()
Oy Note that hyoh, = hyoh,
vielF, @iehy |ieIStar() A
—Tie h, | i IStart(j)) v (=Jiehy |
Partition: i1 1Star(j) A Jie hy | iz 1Star(j))
hohy Note that

- hi@hy = hohy
- hoh, & heh, A heh,

» FRCRS=(“FR_COURSE”,<IdC,Module, Degree>, { (1dC, Descrip-
tion)}, ModuleISNOT NULL U Degree|SNOT NULL).

* USCRS=(“US_COURSE",<IdC, Area>,{(1dC, Description)}, Area
ISNOT NULL).

Theinstancesof thedimension called“ Course” (A=={1dC, Description,

Module, Degree, Area} ) aredefined asfollows:
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|Course={i" ,1",,1,...} suchas
+ " =["Cl","BD-R",“Mod.BD","Licence”, NULL],
+ ",=["C2","BD-OR”,“Mod.BD",“Licence”, NULL],

+ I",=["C3","Relational DB”,NULL,NULL,“Computer Science"],

Thecoursesidentified by Cland C2arecoursesof FrenchUniversitiesUland
U2. Thissemantic constraintismodelled by thefollowing expression:

* FRCRS ®USGEO

Inthesameway, wecan definetheconstraint USCRS  FRGEO.

Figure9illustratesinstanceorgani sation of thedimensionsnamed“ University”
and*“ Course” aswell asthefact named“ Teaching”. Eachinstancebel ongsto
varioussetsaccordingtothehierarchy conditions.

Multi-Dimensional Query Algebra

Thissectionboth providesasimpleand el egant language cl oseto theconcep-
tual view rather thanitsformal definition; thisal gebrasupportscomplexanalysis
through combinationsof basic algebraoperators. Weal so describeamulti-
dimensional tablestructuretodisplay query results. Inthefollowing, westudy
effectsof theconstrai nt-based multi-dimensional model that wepresentedin
the second section.

Multi-Dimensional Table

A query resultisdisplayed through amulti-dimensional table. In order to
provideareasonably simpleway to querying multi-dimensional data, we
defineamulti-dimensional tableallowing usto clearly separatestructuresand
contents. Thistableismorecomplex thanarelational query result because
multi-dimensional tablesare organi sed accordingto anon-clear separation
between structural aspects and data contents (Gyssen & Lakshmanan,
1997).
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Figure 9. Example of instances under inter-dimension constraints

JCourse

T University

. ~

] Teaching

Definition: A multi-dimensional table T isdefined as(F, {fim,), /' (m,),...},
D,, HI, Att,D,, HIL, Att,, pred).

*  Frepresentsanameof fact,

*  {fim),f(m,),...} isaset of displayed measures, whichareassociated to
anaggregatefunctionf,

»  D,andD,arenamesof dimensions, whicharelinkedtothedisplayedfact,

 HI={h, ,h ...} andHI={h, ,h, ...} arenon-empty setsof hierar-
chiesalongrespectively D andD,,

«  Att andAtt arelistsof displayed parametersalong D, and D, according
toHI andHI,, and

» predisapredicatedefining valuedomainsof thetableelements(fact,
dimensions).

Definition: Thedisplay operator permitsthegeneration of afirst multi-dimen-
sional table from a constellation. It isdefined as DISPLAY (C, F, {f{im,),
f(m),...},D,,HI, D, HL)=T_where:

. Cisaconstellation,

»  Frepresentsthedisplayedfact, and{/(m,),/ (m,),...} isaset of these
measures, whicharedisplayed according to an aggregatefunction,

« D,andD,arenamesof dimensionsrespectively displayed onrowsand
columns, and
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* HI, and HI, represent current hierarchies of D, and D,. Note that the
displayed parameter of D, (respectively D) istheparameter representing
thehigher granularity of thecurrent hierarchies. Thisparameter must be
shared betweenall thehierarchiesof HI, (respectively HI.).

Example: In order to display atable showing the number of students by
European Universities and year, users can define the following algebraic
expression:

Display(School Constellation, TEACHING, { SUM(NbStudents) }, DATE,
HY,UNIVERSITY,FRGEO)=T,_,

Inthefollowing sub-sections, wedescribeaset of multi-dimensional operators.
Thesebasicoperatorsusean entry multi-dimensional table T, and they builda
multi-dimensional tableresult, denoted T_.. Thisclosureproperty allowsusers
to make complex queriesby acombination of basic operators.

Rotation of Hierarchies

Presentation: The rotation between hierarchies consistsin changing the
current set of hierarchiesal ong adimensioninamulti-dimensional table. By
default, theanalysisisbased onthe parameter of higher granul arity alongthe
new hierarchiesof thestudied dimension.

T

R’

Definition: A rotationisdefined by HRotate(T,D,, HI. )

i_new

Figure 10. Multi-dimensional table T,

TEACHING (NbStudent) [UNIVERSITY | FRGEO
Continent |EUROPE

DATE | HY |Year
2001 600000
2002 620000
2003 610000
2004 610500

PROFESSOR.AIl
COURSE.AIl
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«  T=(F{Am,),f(m,),...},D,HI Att,D,HI,Att,pred)isanentry table,
» D,isthedimensionalongtherotationisapplied, and

* HI, , isthenew setof hierarchiesrepresenting anew perspective of
analysis; all thesehierarchiesmust sharethe same parameter of higher
granularity.

Remarks: Theintra-dimension constraint specificationimpliesthefollowing
treatments:

* Ifanexclusionconstraint (and/or partition constraint) isdefined between
ahierarchy of HI, andahierarchy of HI, T representsanew analysis.

* Ifaninclusionconstraintisdefinedfromahierarchy of HI. toahierarchy
of HI; . Trrepresentsanextendedanalysis.

Example: Userscompletethepreviousanalysis(T,); now they only wantto
analyse the number of American studentsby year. They apply ahierarchy
rotationdefined asfollows:

HRotate(T,, UNIVERSITY,{USGEO}) =T,

R1’

Theresult of thisoperationisillustrated by Figure11. Notethat anexclusion
constraintisdefined betweenthehierarchiesnamed FRGEO andUSGEO. The
resulting multi-dimensional tableisanew analysisintegrating only measures
related to American students.

Users want to extend the analysis by integrating French students and
American studentsinthe same multi-dimensional table. Userscan define
several expressions.

*  Thefirstsolutioncons stsinchoosingahierarchy, whichgroupsdimension
instancesbelonging to USGEO and dimensioninstancesbel onging to
FRGEO.

HRotate(T.,, UNIVERSITY,{ZN})=T,,

R2’
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Figure 11. Multi-dimensional table T,

TEACHING (NbStudent) |UNIVERSITY | USGEO
Continent [AMERICA

DATE | HY |Year
2001 2000000
2002 2050000
2003 2200000
2004 2300000

PROFESSOR.AIl

COURSE.AIl

Figure 12. Multi-dimensional table T,

TEACHING (NbStudent) |UNIVERSITY | ZN
Continent |EUROPE AMERICA

DATE |HY [Year
2001 600000 2000000
2002 620000 2050000
2003 610000 2200000
2004 610500 2300000

PROFESSOR.AIl

COURSE.AIl

*  Thesecond solution consistsinspecifyingthetwo dimensions. Notethat
they must sharethe same parameter of higher granularity (Continent).

HRotate(T,, UNIVERSITY, { FRGEO, USGEO}) =T,

R2?

Rotation of Dimensions

Presentation: Therotation betweentwo dimensionsconsistsof changingthe
currentdimensioninamulti-dimensional table. By default, theanal ysisisbased
ontheparameter of higher granularity along thenew dimension.

Definition: A rotation of dimensionsisdefinedasDRotate(T,D,, D, HI ) =T_.

» D, isthedimensionof T whichisreplaced,
» D,isthenewdimensionof T,

»  Hl isasetof hierarchies; thesehierarchiesmust sharethesameparameter
of higher granularity.
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Remarks: Theinter-dimension constraint specificationimpliesthefollowing
treatments:

* Ifanexclusionconstraint (and/or partition constraint) isdefined between
ahierarchy of HI, andahierarchy of HI, T representsanew analysis.

* Ifaninclusionconstraintisdefinedfromahierarchy of HI. toahierarchy
of HI; . Trrepresentsanextendedanalysis.

Example: Decisionmakersusethemulti-dimensional tablecalledT_,. These
userswant tomodify theanalysis.

*  First, they analysethenumber of studentsby courseareasandyears. The
resulting tabledisplaysanew distribution of American studentsaccording
toyearsand courseareas. Usersapply thefollowing algebraic operation:

DRotate(T,,, UNIVERSITY, COURSE, {USCRS}) =T,

R2’

*  Second, they analysethenumber of studentsby coursedegreesandyears.
Notethat thisparameter belongsto ahierarchy (FRCRS), whichisan
exclusionbetweentheinitia hierarchy (FRCRS ©USGEOQ). Theresulting
tablerepresentsanew analysiscorresponding to anew distribution of
European studentsaccording to yearsand coursedegrees. Usersapply
thefollowingalgebraicoperation:

DRotate(T,,,, UNIVERSITY, COURSE, { FRCRS}) =T,

R2’

Rotation of Facts

Presentation: The rotation between two facts (also called drill across)
consistsof changingthecurrent factinamulti-dimensional table. Thetwofacts
must at | east sharethedisplayed dimensions.

Definition: A rotationof factisdefinedasFRotate(T, F ,{/(m,),/ (m,),...})=T..
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Figure 13. Multidimensional table T,,

TEACHING (NbStudent)

COURSE | USCRS

Area

Computer Science

Economy

DATE | HY |Year

2001

120000

80000

2002

125000

80000

2003

110000

110000

2004

120000

110000

PROFESSOR.AII
UNIVERSITY.AIll

Figure 14 Multi-dimensional table T

TEACHING (NbStudent)

COURSE | FRCRS

Degree

Licence

Master

DATE | HY |Year

2001

40000

20000

2002

42000

20000

2003

40000

21000

2004

40500

20000

PROFESSOR.AIl
UNIVERSITY.AIl

*  F isthenewfactanalysedwithdimensionspreviously definedinthetable

T,and

{flm),f(m,),...} isaset of measures, which aredisplayed accordingto

anaggregatefunction.

Example: DecisionmakersusetheprevioustableT

subject of analysis.

Thisoperationisvalidif andonly if displayed dimensionsintheinitial tableare
shared between theinitial fact and the new displayed fact. Usersapply the

followingalgebraicoperation:

FRotate(T

R5’

Drill Down

R5’

REGISTRATION, { Sum(Amount)})=T_,

Presentation: Thedrill down consistsin“disaggregating” databy moving
downabhierarchy. Thisoperation addsdetail ed parametersalong ahierarchy

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group Inc. is prohibited.

andthey changethe



Constraint-Based Multi-Dimensional Databases 345

Figure 15. Multi-dimensional table T,

REGISTRATION (Amount) |{COURSE | FRCRS
Degree Licence Master
DATE | HY Year
2001 2000000 1800000
2002 2100000 1800000
2003 2200000 1820000
2004 2300000 1840000
STUDENT.AIl

inamulti-dimensional table. Thisoperationallowsusersto analysemeasures
withmoredetailed parameters.

Definition: A drill downisdefined asDrillDown(T,D,[,HL],p, )=T..

» D, isthedimensionalongwhichthedrill down operationisapplied,

»  Hl isasetof hierarchies, defined by user. Thesehierarchiesshareall the
parametersbelongingtoAtt,of Tandp, ,, and

*  p,,isthenew parameter addedinthelist of displayedattributesinT.
Remarks:

*  WhenHlI. isspecified by users, the operationisvalidif the displayed
parametersareshared by all thehierarchiesof HI..

. When HI. isnot defined, theinitial set of hierarchiesin T isnot modified.
Theoperationisvaidif al thehierarchiessharethedisplayed parameters.

Example: Decisionmakerswant todisplay moredetailedinformationfromthe
tablecalled T ,. Thenew analysisdisplaysthenumber of French studentsby
continent, by country, by region, and by year.

DrillDown(DrillDown(T ., UNIVERSITY,{ FRGEO}, Country), UNIVER-
SITY,{FRGEO},Region)=T,,

Notethat theal gebrawepresent allowsthe combination of several operators
toexpresscomplex queries(closed algebra).
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Figure 16. Multi-dimensional table T,

TEACHING (NbStudent) |UNIVERSITY | FRGEO
Continent |EUROPE
Country France
Region Midi-Pyrénées |Aquitaine Languedoc-R.
DATE | HY |Year
2001 30000 20000 10000
2002 28000 25000 9000
2003 27500 24500 9000
2004 30000 21500 9000
PROFESSOR.AIl
COURSE.AIl
Roll Up

Presentation: Theroll up consistsof aggregating databy movingupalonga
hierarchy. Thisoperation deletesdetail ed parametersalongadimensionina
multi-dimensional table.

Definition: A roll upisdefinedasRollUp(T, D, [, HI. ], pi_x) =T..

» D, isthedimensionalongwhichtheroll up operationisapplied,

»  Hl isasetof hierarchies, defined by user. Thesehierarchiesshareall the
parametersbelongingtoAtt of T, whichrepresent higher granularities
thanp, ,,and

* p , isthe parameter representing the lowest granularity in the list of
displayedattributesinT...

Remarks:

*  WhenHI. isspecified by users, the operationisvalidif the displayed
parametersareshared by all thehierarchiesof HI..

*  WhenHlI isnot defined, theinitial set of hierarchiesin T isnot modified.
Theoperationisvaidif al thehierarchiessharethedisplayed parameters.

Example: Decisionmakersmodify thepreviousanalysis(T,..). They analyse
thenumber of studentsby continent, by country, and by year. So, they apply
thefollowingroll-up operation:
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Figure 17. Multi-dimensional table T,

TEACHING (NbStudent) |UNIVERSITY | FRGEO
Continent |EUROPE
Country France
DATE | HY |Year
2001 600000
2002 620000
2003 610000
2004 610500
PROFESSOR.AII
COURSE.AIl

RollUp(T .., UNIVERSITY ,{ FRGEO}, Country) =T

R7’

Nest

Presentation: Thenest operation consistsof changingthehierarchical order
of two parameters.

Definition: A nest isdefined asNest(T, D,, p, ,, p, ) = Tp.

» D, isthedimensionalongwhichthenest operationisapplied, and
A and P, arethe permuted parameters.

Example: Decisionmakers extend the previous analysis (T,;). They add
guarters along the temporal dimension, but they want to nest years into
quarters.

Nest(DrillDown(T .., DATE,{HY}, Quarter), DATE, Year, Quarter) =T .

R8’

Implementations

Inorder tovalidateour propositions, wehaveimplemented aprototype, called
Graphic OLAPSQL. Thistool isdeveloped using Javal.4, JavaCC and Java
JDBCover Oracle9i Application Server.
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Figure 18 Multi-dimensional table T,,

TEACHING (NbStudent) UNIVERSITY | FRGEO
Continent |EUROPE
Country France
DATE | HY [Quarter Year
Q1 2001 20000
2002 22000
2003 21000
2004 21000
Q2 2001 10000
2002 10000
2003 15000
2004 20000
Q3 2001 20000
2002 20000
2003 15000
2004 10000
Q4 2001 10000
2002 10000
2003 10000
2004 10500
PROFESSOR.AIl
COURSE.AIl

Graphic-OLAPSQL Tool

Figure 19 describesthe Graphic-OLAPSQL architecture.
Thistool iscomposed of several components:

*  Thetextual interface supportsatextual languagecalled OLAP-SQL.
Thislanguage all owsdecisional administratorsand computer science
userstomanipulate multi-dimensional databases. Thislanguageisbased
onthe SQL syntax using multi-dimensional concepts.

*  Thegraphicalinterface providesarepresentation of thedatabaseasa
graph of nodesand links. Expressing aquery consistsin sel ecting nodes
and performing operations. Thequery result (textual and/or graphical
gueries) iscomposed of two parts: adimensional tablerepresenting data
analysed, and anew set of nodesvisualised with specificcolors. Theuser
may also go on his query by selecting new nodes or performing new
operationsfromnodes.

*  Thegraphical query translator translateseach graphical query intoan
algebraicquery. Thisalgebraic query isrepresented by alist of operators
related tothealgebrathat we presentedinthethird section.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
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Figure 19. Graphic-OLAPSQL architecture
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*  Theanalyser components(lexical, syntactical, semantic) validateeach
textual query accordingtothe OLAP-SQL syntax. Thetextual queryis
alsotranslatedintothealgebraicformat.

*  TheOLAP-SQL Translator convertseachalgebraicquery into aset of
SQL queries. Thisset of queriesisapplied onan R-OL APdatabase, which
storestheconstel | ation elementsthroughrel ational tablesand meta-tables.

Themulti-dimensional query a gebrathat wepresentedisused asapivot format
for twokindsof languages; for example, thegraphic-OL APSQL tool supports
textual and graphical |anguages.

Textual Language

OLAP-SQL isan SQL -likelanguageintegrating multi-dimensional concepts.
We arguethat SQL syntax isvery simplefor administrators. OLAP-SQL
dlows
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*  Thedefinition(create, drop, alter) of facts, dimensions, hierarchies, and
constraints,

*  Themanipulation (insert, del ete, update) of multi-dimensional data, and
*  Thequeryingof datausing extended select orders.

TheAppendix describesthemain OLAP-SQL orders. Thefollowingexample
focusesonthe SELECT order.

Example: For example, userscandisplay thefirstmulti-dimensional table T,
by expressingthenext OLAP-SQL order.

select SUM(NbStudents)
according to rows Year of DATE with HY,

columns Continent of UNIVERSITY with FRGEO
from TEACHING;

Notethat the Graphic-OL APSQL textual order istranslatedintothefollowing
algebraicexpression. Figure10illustratestheresultingtable:

Display(School Constellation, TEACHING, { SUM(NbStudents) }, DATE,
HY,UNIVERSITY,FRGEO) =T,

From the algebraic expression, the OLAP-SQL translator sends a set of
gueriestotheR-OL AP, which storestheconstellation. OLAP-SQL facilitates
multi-dimensional manipulations. Itiscompleteregardingtoour algebra; all
algebraic operation canbedefined using OLAP-SQL.

Example: Therotation of hierarchies, correspondingtotheal gebraicexpres-
sion, HRotate(T ., UNIVERSITY,{ USGEO}) =T , iswrittenasfollows:

R1’ R2’

select SUM(NbStudents)
according to rows Year of DATE with HY,

columns Continent of UNIVERSITY With

from TEACHING;
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Figurellillustratestheresultingtable.

Graphical Query Language

Weprovideagraphical query languagededicated to managers. Thislanguage
isbased onagraphical multi-dimensional view of constellationsasshownin
Figure21, and decision- makerscan buildtheir queriesdirectly using graphical
facts, dimensions, and hierarchies.

Decisionmakerscanexpresstheir queriesusing thegraph, which describesthe
multi-dimensional database schema. Theoperations, which may betriggered
fromthenodes, permit auser to display subjectsof analysisaccordingtoone
row dimension and onecolumndimension. Theoperationsperformedfrom
graph nodesarerelated to thetype of thenodes:

* Ifthenodeisafact, possibleoperationsarerotation of fact, send query
(display), and sel ection of measures,

* Ifthenodeisadimension, possibleoperationsaresel ection of hierarchy,
drill-down, roll-up, rotation of dimensions, rotation of hierarchies, and
nest.

Example: We consider the previous example. To display the first multi-
dimensional tableT_, (Figure10), usersexpressthequery asthefollowing:

Astextual queries(OLAP-SQL queries), the Graphic-OLAPSQL tool trans-
lateseach graphical operationintoitscorresponding algebraicoperation. From
thisinternal format, the OLAP-SQL translator triggered aset of SQL queries
totheR-OL AP constellation.

Example: Figure22illustratesthegraphical operationusingfordisplaying T,

Future Trends

Weintendto extendtheseworksthroughtwoways. First, existing model smust
be extended in order to support complex and time-variant decisional data.
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Figure 20. Graphical multi-dimensional view

Figure 21. Example of graphical query
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Second, themulti-dimensional databasedesigningisacomplex task, which
must be based on awhol edesign method.

Existingmodel ssupport only factual datawhereasmorecomplex information
may beintegrated.

* Internetisasignificant sourceof informationand knowledge. Totake
advantage of the Web content in adecision support framework, multi-
dimensional model smust beabl etointegrate semi-structured datasuchas
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Figure 22. Example of graphical HRotate operation
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XML documents. Someresearchesprovidesystemsallowingthestorage
and interrogations of semi-structured and/or structured documentsin
database management systems (Abiteboul, Segoufin, & Vianu, 2001;
Faulstish, Spiliopoulou, & Linnemann, 1997; Gardarin, Mensch, &
Tomasic, 2002). These systems, called dataWeb, aremainly based on
data mining techniques, but they do not support amulti-dimensional
approach; few worksallow multi-dimensional mani pul ationsof docu-
ments by their structuresand their contents (Khrouf & Soulé-Dupuy,
2004). Theseworksmay becompl eted by supporting constraints.

*  Source data and decision maker needs are time-variant. To support
inefficiently dataevol utions, multi-dimensional model smust integrate
temporal aspectsastemporal databasesand/or versions(Body, Miquel,
Bédard, Tchounikine, 2003; Mendelzon & Vaisman, 2000) . Neverthe-
less, theseapproachesdo not integrateconstraint specificationsaswell as
constraint evolutions. Another futurework consistsof definingevol utions
of theextraction processasregardto dataevol utions; for exampl e, when
afactismodified, itsrel ated refresh processmust be updated.

Themulti-dimensional database designingisacomplex task but only afew
design methodsare providedinthemulti-dimensional modellingfield. Inthe
scientificliterature, wedistinguishthreecategories: (1) top-down methods,
whichdefinemulti-dimensional schemafromdecisionmaker needs(Kimball &
Ross, 2002), (2) bottom-up methods, which use the data sourcesto define
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decisional needsandto designthemulti-dimensional schema(List, Bruckner,
Machaczek, & Sciefer, 2002; Moody & Kortink, 2000) and (3) mixed
methods based on the data sources to define the decisional schema and
integrating needs of decision makers (Lujan-Mora, Trujillo, & Vassiliadis,
2004). Thedesign methodsarealwaysbased onalogical or conceptual multi-
dimensiona model. Noneof thesemodel sintegrate semanti c constraintsbetween
multi-dimensional data even when these constraints allow the definition of
consi stent multi-dimensional schemataby eliminatinginconsistenciesandthe
improvement of analysisby offeringreliableinformationtodecision-makers.

Concluding Remarks

This chapter presented a constrai nt-based multi-dimensional model. This
model describesmulti-dimensional dataasaconstellation of factsand dimen-
sions, whichareorgani sed through hierarchies. Each hierarchy isassociated to
asub-set of dimensioninstances; themodel i ntegratesheterogeneousdatain
onedimensionthroughthismultipleinstantiation property. Inorder toinsure
dataconsistency andreliabledatamanipul ation, themodel integratesseveral
kinds of semantic constraints; theintra-dimension constraints are defined
between hierarchiesof onedimension, whereastheinter-dimension constraints
arerelatedto hierarchiesof twodimensions.

Atool integratingtextua andvisua querylanguages, called Graphic-OLAPSQL,
isdescribed. Thetool isbased uponthe constraint-based model allowingthe
descriptionof constellations.

*  Theinterfacerepresentsthe data stored in an R-OLAP database as a
graph of nodes and links; the nodes correspond to multi-dimensional
conceptswhilethelinksassociatetheseconcepts. Thegraphical language
is dedicated to casual users because it provides aglobal view of the
constellation, anincremental querying process, and acontextual help
system by displaying operations, which are consistent in regard to
selected elements.

*  Thetextual language, called OLAPSQL, isdedicated to administrators
becauseit providesan SQL -like syntax integrating multi-dimensional
concepts, administratorscan define, manipul ate, and query constellations
without rel ational considerations.
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Our query algebraformalisestheselanguages; each graphical query operation
or textual query order istranslated into an algebraic operator. This well-
formalisedal gebraintegratesthemai n multi-dimensional operations, anditisa
closed algebra(to expresscomplex queries).
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Appendix: OLAP-SQL

DDL

TheDataDefinition Language consistsof creating factsand dimensionsof a
constellation. Thehierarchiesaredefined throughthedimensioncreation. The
language al so permitsthedel etion of theelementsof aconstellation. Dueto
spacelimitation, wedo not detail update orders.

Create orders

create fact < fact_name >
(<measurel> <formatl> [<optionl>],
< measure 2> <format2> [<option2>], ...)
[ connect to <dimensionl>, <dimension2>, ... ];

create dimension <dimension_name>
(<parameterl> <formatl> [<option1>],
<parameter2> <format2> [<option2>],...)
[ as (<select_query>) ]
[ with hierarchy <hierarchy _namel>
(level <parameterl>[(<weak_attributel 1>, <weak_attributel 2>,...)],
level <parameter2> [(<weak_attribute2_1>, <weak_attribute2_2>,...)],...),
with hierarchy < hierarchy_name 2> ... ];

Drop orders
drop dimension <dimension_name>;

drop fact <fact_name> [cascade];
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DML

TheDataManipulation L anguage consistsininserting, del eting, updating, or
guerying multi-dimensional databases.

Insert orders

insertinto dimension < dimension_name >
[(<parameterl>, <parameter2>,...)]
values { (<valuel>, <value2>,...) | (<select_query>) };

insertinto fact <fact_name>

[(<measurel>, <measure2>)]

values (<valuel>, <value2>,...)

according to ref(<dimension_name 1>, <predicatel>),
ref(<dimension_name 2>, <predicate2>),...;

Update orders

update dimension < dimension_name >
set <attributel> = <expressionl>,

[ set <attribute2> = <expression2>,...]

[ where <predicate> |;

update dimension < dimension_name >
set (<attributel>, <attribute2>,...) = (<select_query>)

[ where < predicate > ];

Delete orders

delete from dimension < dimension_name > where < predicate >;
delete from fact < dimension_name > where < predicate >;

Selectorder
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select<aggregate_function>(<measurel>), <aggregate_function>(<measure2>),

[according to [rows <parameterl_row>, <parameter2_row>,...,
of < dimension_name _row > with <hierarchy_name_ ow >, |
[ columns <parameterl_col>, <parameter2_col>,..., ]
of < dimension_name_col> with <hierarchie_name_col>]]
from <fact_name>
[ where <predicate> ]
[order by <parameterl>values(<valuel 1>, <valuel 2>,...)
[...[ ,<parameter2> values(<value2_1>, <value2_2>,...)],...]];
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