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Preface

This book shows the history of traffic flow modelling from the perspective of
modern day applications. Traffic flow models describe how vehicles travel over
roads, at which speeds, what the distance is between them, how long they take to
travel over a certain road section, etc. Combining the models with other information
supports estimations about current and future traffic states. This allows answering
questions about the presence and duration of congestion, travel times and travel time
delays, emissions and safety assessment. In turn, the information can be used in a
variety of applications including transportation planning and traffic control.

This book shows the historical development of traffic flow theory by means of a
genealogical tree of traffic flow models. The tree, included on page 15, shows the
main developments in traffic flow modelling. The focus on the history of traffic flow
models gives the reader insight into the basics of traffic flow modelling all through
to the most advanced models that are currently under development. In addition, the
book discusses numerical methods which are applied to create computer simulations
based on the traffic flow models.

The history of traffic flow modelling starts in the 1930s. Bruce D. Greenshields
presented his findings about the relationship between vehicle speed and the distance
between vehicles at the Annual Meeting of the Highway Research Board (United
States). Even though he had some predecessors doing similar research, Greenshields
is often considered the founder of Traffic Flow Theory. The 1940s were a relatively
quiet time for traffic flow theory, but from the mid 1950s many new models
were introduced. Most of these new models include dynamics of traffic flow, i.e.
they describe how traffic flows change over time, due to for examples changes in
inflow of vehicles or traffic lights changing colour. Different types of models were
developed and applied for road design. However, research in this area mostly stalled
again in the 1980s. Faster and easier to use computers brought a new era of traffic
flow research from the mid-1990s, resulting in most of the models that are still
applied today. Many of today’s applications require efficient numerical methods
for fast and accurate predictions. Applications include transportation planning,
road design, safety assessment, environmental assessment, traffic management,
evacuation planning and route advice.
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viii Preface

Previous versions of this work were published as the state-of-the-art chapter in
the author’s PhD dissertation (2013) and as a review article in the EURO Journal
on Transportation and Logistics (2015). The book format gives more space to
provide more basics, to go more in depth into the most important aspects of traffic
flow modelling and simulation, and to include problem sets that will reinforce the
newly gained knowledge and insights of the reader. Furthermore, the most recent
developments in the field of traffic flow theory have been included.

The book aims at students (MSc and PhD), researchers and practitioners who
want to learn more about the background of the models they are applying. No
preliminary knowledge about traffic is assumed. Some background in calculus
and differential equations is required, but references will be given for those who
need to refresh their knowledge. Problem sets are included at the end of each
chapter, with answers to selected problems in Chap. 8. Some of the exercises
require the reader to perform simulations, for which software is provided online, at
the publisher’s website (http://extras.springer.com). Some previous experience with
Octave (or Matlab) is useful for these exercises.

After reading the book and exploring some of the problems, readers will
understand the main concepts in traffic flow modelling and simulation in such a way
that they can (1) choose an appropriate model for their research or other application
and build a simple but useful simulation tool based on this model; (2) understand
a newly published scientific article that builds on traffic flow theory, modelling and
simulation presented in this book, review that article and apply the models/methods
that are presented; (3) start developing their own models and numerical methods to
create new branches of the model tree.

Delft, The Netherlands Femke Kessels
June 2018

http://extras.springer.com
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Chapter 1
Introduction to Traffic Flow Modelling

Population growth and economic growth come with an increase in traffic demand
and—more often than not—increased levels of congestion and accompanying
delays, pollution and decrease in safety. There are several strategies to reduce
congestion, keep cities liveable, clean and safe and limit travel time increase.
Examples are encouraging people to travel using modes of transport that put less
strain on the transportation network, to encourage people to travel at different times
or on different routes, to apply traffic management to use roads in a more efficient
way or to expand the road network. For all these measures, it is important to know
how traffic flow will actually look: where and when will there be congestion, what
are the bottlenecks and where is the road capacity already sufficient? Traffic flow
models support this assessment by describing and predicting traffic on roads. For
example, they model the number of vehicles on the road and their speeds. Using the
models, travel times and congestion can be predicted.

To describe and predict traffic appropriately, real world observations are used to
build theories, models and discretized models of traffic flow. By doing simulations
based on these models the performance of roads or traffic networks can be assessed.
In turn, this information is used for traffic management or the (re)design of roads
and road networks.

This process is called the traffic flow modelling cycle, which is shown in Fig. 1.1
and is discussed in more detail in the next section. The rest of this chapter discusses
some of its elements in more detail and the scope of this book is detailed in the last
section.

The reader of this chapter will understand the importance and context of traffic
flow modelling, they will have an understanding of the different types of traffic flow
data and some important phenomena that can be identified in them. Furthermore, the
reader will be able to work with the key variables of traffic flow modelling, which
forms in important ingredient of the models that are discussed in the following
chapters. Finally, the reader becomes familiar with classifications of traffic flow
models and the genealogy of traffic flow modelling, including the four families.

© Springer International Publishing AG, part of Springer Nature 2019
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Fig. 1.1 Traffic flow
modelling cycle. The
genealogical tree focusses on
the models. This book
discusses the models more in
depth, also including theories
behind models and
discretization methods

Observation

Theory

Model

Discretized model

Simulation & Application

1.1 Traffic Flow Modelling Cycle

Traffic flow modelling is a largely inductive process: traffic observations are used
to build a theory about the behaviour of individual drivers and vehicles or about
traffic flow in general. Subsequently, that theory is used to build a model, discretize
it and apply it in simulations. A simple example is the observations by Greenshields
(1934) of vehicles passing his camera in the 1930s, see Fig. 1.2. Plotting the
distance between the vehicles (spacing) and their change in position in consecutive
photographs leads to a theory that spacing and speed are related. Subsequently, this
leads to a model with a linear relationship between spacing and speed.

In more general terms, the development and application of traffic flow models
is schematized in Fig. 1.1. As a first step, data is collected using, for example,
loop detectors, cameras or GPS devices that many vehicles have on-board, such
as navigation systems or mobile phones. Alternatively, data is collected using lab
experiments for example with a driving simulator. These observations are analyzed
and phenomena that characterize traffic flow are recognized.

In the second step, observations are used to build a theoretical framework. The
theoretical framework consists of (mainly qualitative) statements and (behavioural)
assumptions. For example, it is assumed that drivers perceive short space headways
as more dangerous at high velocities than at low velocities. This is assumed to be the
reason why at low velocities shorter headways are maintained. Another assumption
is that drivers only react to their leaders and not to their followers.

In the third step, the theoretical framework is used to build a traffic flow model.
The model consists of a set of equations, sometimes supplemented with a set of
(behavioral) rules. For example, the theory about short headways at low velocities
and long headways at high velocities is quantified in a fundamental diagram.
It expresses the average vehicle velocity as a function of the average headway.
Alternatively, a car-following model is developed that describes how a following
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Fig. 1.2 Greenshields making field observations and turning this into a simple traffic flow model.
Pictures reproduced with permission from Greenshields (1934). (a) Making field observations.
(b) Resulting photographs. (c) Plotting data: speed against spacing. (d) Determining a linear
relationship between spacing and speed

vehicle reacts to its leader(s), at which distance the leading vehicle is followed, and
how the distance depends on the speeds of both leading and following vehicle.

The models can not be used directly in applications using computer simulation.
Therefore, discretization is applied in the fourth step. In most simulation tools, time
is divided into discrete time steps. Furthermore, depending on the model, also space
or other continuous variables are discretized. Numerical methods are applied to
approximate the new traffic state each time step. This results in a discrete traffic
flow model.

Finally, the discrete traffic flow model is implemented in a computer program,
resulting in a simulation tool. By applying this tool, and combining it with input such
as data from traffic sensors, traffic state estimation and predictions can be made.
Simulation results are compared to observations to calibrate the parameters and to
validate the simulation tool.
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Traffic flow models have many applications, for different purposes. They
include:

• State estimation & short term predictions to inform travellers
• State estimation & short term predictions for traffic management
• Decision support for (semi-)autonomous vehicles
• Long term assessment of development plans, e.g. the (re)design of a transporta-

tion network
• Assessment of the impact of traffic on safety and emissions
• Design of evacuation plans

Naturally, different applications, call for different type of models. For example,
when the goal is to inform commuters about the expected traffic situation if
they’d decide to go home within 30 min, or to decide about activating traffic
management measures in the next few minutes, it is most important to have almost
instantaneous access to state estimation or prediction. In the more extreme case of
decision support for autonomous vehicles, there is an even more urgent need of
immediate information about, for example, driving into congestion. On the other
end of the spectrum, when redesigning a network, it may be less important to get
results quickly. However, in this application, many different scenarios may need
to be calculated, for example using different socio-economic scenarios as input.
Furthermore, besides computational speed, accuracy also plays a role. For example,
when making long term plans, it may not be very interesting to know exactly what
time of the day congestion will occur, but when informing travellers about the travel
time if they would leave now, it is very important to know exact time and location
of congestion.

Because of the difference in applications, different types of models have been
developed, each of them more suited for certain applications than for others. Those
interested in more detailed discussions of applications are referred to e.g. Treiber
and Kesting (2013); Elefteriadou (2013).

1.2 Observations and Phenomena

While this book focusses on the central part of the traffic flow modelling cycle,
this section introduces some of the other elements, in order to place the content in
context and to support the reader in applying the materials covered in this book.

1.2.1 Observing Traffic

Traffic can be observed in many different ways. Most data comes from ‘real
world’ observations where there is no intervention by researchers. Usually, the main
purpose for collecting this data is not research or traffic model development but
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traffic management and information. Data is collected to get insights about actual
traffic and then manage traffic accordingly or to inform road users. Typically, data
collection is done using loop detectors which count the number of passing vehicles,
sometimes also including information on their speed or the vehicle length. Other
ways to collect data for traffic management and information include the use of
camera’s and systems to collect trajectory data from GPS or other in-car devices.

Observations are also collected using lab experiments where drivers are
instructed to drive on a certain closed off road (network) or with driving simulators.
Lab experiments have proven useful for qualitative model development, but are
only limited applicable for quantitative observations, for example because safety
perception in a driving simulator can be different from when driving on a real
road. Driving simulators have seen a rapid development over the last years and the
interested reader is referred to Auberlet et al. (2014) for more details. An other
interesting data source are camera recordings from helicopters, which are gathered
with the special purpose of research.

Summarizing, traffic can be observed from three perspectives, which are illus-
trated in Fig. 1.3:

• Local (fixed position): a loop detector, camera or other sensor that observes traffic
passing at a certain point along the road.

• Instantaneous (fixed in time): a camera or other sensor that captures the traffic on
a longer road stretch at a certain time (e.g. a picture taken from a helicopter)

• Trajectory (moving with vehicle): an in-car device or other sensor that collects
data about the position of the vehicle over a certain time period.

A fourth perspective combines the first and second: observing traffic over a limited
space and time period. For example, this type of observations combines a series of
local observations over a few minutes to an hour and over a few hundred meter to
a few kilometer. These observations can be obtained using for example camera’s
placed on a high building or bridge. The perspectives are compared in Table 1.1.
How exactly to derive the variables introduced in the table is subject of Sect. 1.3.

Finally, different types of observations are combined to get a more complete
image of traffic flow. In many applications, such as traffic state estimation and traffic

Fig. 1.3 Three ways to
observe traffic
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Table 1.1 Comparison of different types of traffic data

Type Principle data Derived variables

Local Vehicle counts Time headways, flows

Instantaneous Vehicle positions Space headways, densities

Trajectory Location, time Trajectories

Local and instantaneous Counts at series of positions Headways, flows, densities

state prediction, data from different types of sensors is fused to give a consistent
image of the (current or future) traffic state. The applied techniques, including
Kalman filtering, are beyond the scope of this book, the interested reader is referred
to van Lint and Djukic (2012); Sun and Work (2017).

1.2.2 Phenomena in Traffic

Special patterns can be observed in traffic flow data, they are usually referred to as
phenomena. Traffic flow models are designed to reproduce or predict these patterns.
The simplest of those—which we would usually not call ‘phenomena’—are low
speeds at high densities (i.e. short headways) and long headways (i.e. low densities)
at high speeds. Related to this is the observation that flow (or throughput) is highest
at an intermediate density level, also known as critical density. If densities are well
below the critical value, there are so few vehicles, that the flow (density × speed)
is low, if densities are well above the critical value, the vehicle speed is so low
that again the flow is low. Other patterns—or traffic flow phenomena—that can be
observed include hysteresis and stop-and-go-waves.

1.2.2.1 Hysteresis and Capacity Drop

In general, hysteresis can be defined as follows. Consider a system where some
variable (e.g. speed) changes when an other variable (e.g. space headway) changes.
The system shows hysteresis when the change of dependent variable (speed in the
example) lags behind the change in the other variable. Observations often show
that accelerating takes longer than decelerating: when headways become larger, as
is the case when leaving a queue, it takes longer for vehicles to adapt their speed
to these new headways then when they enter a queue and slow down. An other
example is the capacity drop observed at bottlenecks. Just before congestion sets
in, the flow (capacity) through the bottleneck is high. Vehicles don’t slow down in
the bottleneck. However, slightly later, when the bottleneck has become active and
a jam has developed upstream of the bottleneck, the flow (capacity) through the
bottleneck is lower, see for example Fig. 1.4.
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Fig. 1.4 Example of capacity drop: initially (on the left), the bottleneck is inactive and flow
is high, at the ‘free flow capacity’. When the bottleneck is activated (e.g. through a random
event, a slight disturbance), congestion starts developing upstream of the bottleneck and—most
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Fig. 1.5 Example of stop-and-go waves: upstream of a bottleneck is congestion. Within the
congested area, stop-and-go waves are created: the waves travel upstream, vehicles encounter
alternating relatively light congestion (high speed, low density) and heavy congestion (low speed,
high density)

1.2.2.2 Stop-and-Go Waves

Stop-and-go-waves (also known as wide moving jams) are sometimes observed by
drivers in congestion: alternatingly a driver has to slow down and can speed up
again, see Fig. 1.5. This typical pattern can be very persistent, but poses a challenge
to modelling. Again, delayed reactions (hysteresis) are proposed as a possible cause
for their existence.
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1.3 Traffic Flow Models

Traffic flow models have been developed and used since the beginning of the
twentieth century. Traffic flow models are part of a long history of mathematical
modelling of physical and other systems. Scientists and engineers use mathematical
models as simplified representations of real-world systems. They are applied to
explain and predict weather or chemical reactions, behaviour of materials or
humans, fluid or traffic flow, etc. In this section we present a short overview of
the traffic flow modelling efforts up to date.

Since the introduction of the first traffic flow model in the 1930s the number
of models has increased. We only focus on the ones that are still most relevant
in practical and scientific applications, but we can still identify about 50 different
models, many of which have been developed over the last two decades.

To gain some basic insight into traffic flow modelling and the principle variables
involved, we shortly discuss the main concepts of agent based and continuum traffic
flow modelling. They are discussed in much more detail in the following chapters.
Furthermore, we introduce other classifications of models and make a link between
traffic flow models and models of other complex systems.

1.3.1 Agent-Based Models and Their Variables

Microscopic (or agent-based) traffic flow models are often considered the most
intuitive, as they describe the behaviour of individual vehicles and trace their
trajectories through space. They describe the longitudinal and lateral behaviour of
individual vehicles, often based on assumptions regarding human factors and driving
behaviour. Only longitudinal behaviour is discussed here. Vehicles are numbered to
indicate their order: n is the vehicle under consideration, n − 1 its leader, n + 1
its follower, etc., see Fig. 1.6. The behaviour of each individual vehicle is typically
modelled in terms of the position of the front of the vehicle xn, speed vn = dxn/dt

and acceleration an = dvn/dt = dx2
n/dt2. The speed typically depends on a few of

the following factors:

driving direction
n+1 n n−1 n−2

space headway

gap

Fig. 1.6 Vehicle numbering in microscopic traffic flow models (and macroscopic models in
Lagrangian formulation)
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current speed of the vehicle under consideration
current speed of the leading vehicle or possibly multiple leading vehicles
space headway distance of the vehicle to its leader
individual properties of driver and vehicle e.g. desired speed, reaction time, max-

imum acceleration, braking power

In this book, ‘space headway’ (or spacing) is defined as in Fig. 1.6: the distance
between the front of the leader and the front of the vehicle under consideration.
Furthermore, the ‘gap’ is the distance between the two vehicles. It should be noted
that some authors, exclude the vehicle length from the space headway and define it
as the distance between the vehicles, or they include the vehicle length of the vehicle
under consideration instead of the vehicle length of the leader.

1.3.2 Continuum Models and Edie’s Definitions

Most traffic flow models are based on the assumption that there is some relation
between the distance between vehicles and their speed: if headways are short, drivers
tend to lower their speed. This relation can be described, or modelled through, the
fundamental diagram.

Originally Greenshields studied the relation between the variables spacing and
velocity. However, the fundamental diagram can also be expressed in other variables
such as density (average number of vehicles per unit length of road) and flow
(average number of vehicles per time unit), see Fig. 1.7. These variables were first
defined rigorously by Edie (1965). Figure 1.8 illustrates the definitions. Flow is
defined as the flow in an area A with length dx and duration dt which is determined
by the number of vehicles N(A) that travel through the area and the distance yn they

Fig. 1.7 Fundamental
diagrams in different planes.
(a) Density-flow plane. (b)
Density-velocity plane. (c)
Flow-velocity plane. (d)
Spacing-velocity plane
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Fig. 1.8 Time-space region
with some vehicle trajectories
to illustrate Edie’s definitions
of flow and density. N(A) is
the number of vehicles that
travel through the area A
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travel through the area:

qarea =
∑N

n=1 yn

dx dt
(1.1)

Similarly, density is defined as the density in an area using the time rn vehicle n is
present in the area:

ρarea =
∑N

n=1 rn

dx dt
(1.2)

Finally, this leads to the intuitive definition of velocity in an area by dividing the
total distance traveled by the total time spent:

varea = qarea

ρarea
=

∑N
n=1 yn

∑N
n=1 rn

(1.3)

These are workable definitions to extract flow, density and velocity from obser-
vations of a large area A with many vehicles N . They can even be applied to
long road sections observed over a short period of time or, vice versa, short road
sections observed over a long period of time. However, for other applications such
as macroscopic traffic flow models, flows, densities and velocities at points in (x, t)

are considered. Therefore, we have to assume that traffic is a continuum flow. In
Sect. 1.3.4 we argue why this is a reasonable assumption. The assumption implies
that N becomes continuous (instead of discrete). Furthermore, N is assumed to be
continuously differentiable in x and t . Edie’s definitions are then not applicable
directly. However, by decreasing the area A such that it becomes a point, the
definitions of flow, density and velocity become meaningful at points.

The local and instantaneous flow, density and velocity are found using the
procedure described by Leutzbach (1988). To find the local and instantaneous flow
(the flow at a point in (x, t)) we decrease the length of the road section: dx → 0.
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This yields the local flow through a cross section x. Afterwards, we decrease the
time dt → 0 and find:

Definition 1.1 ((Local and Instantaneous) Flow)

q(x, t) = lim
dt→0

lim
dx→0

∑N
n=1 yn

dx dt
= lim

dt→0

N(x, [t, t + dt])
dt︸ ︷︷ ︸

=qlocal(x)

(1.4)

To find the local and instantaneous density we decrease the time: dt → 0. This
yields the instantaneous density through a cross section t . Afterwards, we decrease
the length dx → 0 and find:

Definition 1.2 ((Local and Instantaneous) Density)

ρ(x, t) = lim
dx→0

lim
dt→0

∑N
n=1 rn

dx dt
= lim

dx→0

N([x, x + dx], t)
dx︸ ︷︷ ︸

=ρinstant(x)

(1.5)

Finally, similar to Edie’s definition of velocity (1.3), we define the local and
instantaneous velocity:

Definition 1.3 ((Local and Instantaneous) Vehicle Velocity)

v(x, t) = q(x, t)

ρ(x, t)
(1.6)

In addition, we define local and instantaneous spacing:

Definition 1.4 ((Local and Instantaneous) Vehicle Spacing)

s(x, t) = 1

ρ(x, t)
(1.7)

The above definitions of flow, density, speed, and spacing are used throughout
this book. They form an essential ingredient for mesoscopic and macroscopic
models.

1.3.3 Classifications of Models

To get better insight in traffic flow models and their usefulness to certain applica-
tions, they can be classified into groups with similar properties. Many classifications
of traffic flow models have been proposed, including classifications based on the
type of variables and equations that are used to describe the processes:
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Scale of independent variables continuous, discrete, semi-discrete (independent
variables are usually time and space, or sometimes vehicle count);

Stochasticity deterministic or stochastic variables and processes;
Type of model equations (partial) differential equations, discrete or static models;
Operationalization analytical or simulation, where simulation often involves

discretization of the model equations;
Number of variables and parameters to distinguish between ‘efficient’ models

with few variables and parameters but still able to reproduce and predict traffic
realistically and ‘inefficient’ models.

Other classifications are based on how detailed traffic and driver behavior is
described and potential applications:

Level of detail of representation sub-microscopic, microscopic (agent-based),
mesoscopic, macroscopic (continuum), network-wide or hybrid models
combining different levels of detail;

Level of detail of underlying behavioral rules individual, collective
Scale and type of application networks, links, intersections, urban roads, free-

ways;
Number of phases described by the model mainly to distinguish between models

that show states such as free flow, congestion, stop-and-go traffic differently.
Phenomena that can be explained or reproduced by the model

Throughout the book, some categories listed above are used for sub-classification of
models. Furthermore, the concepts have been used as criteria to assess traffic flow
models, with properties that are often considered to be desirable such as:

1. The model only has few parameters.
2. Parameters are (easily) observable and have realistic values.
3. Relevant phenomena are reproduced and predicted by the model.
4. The model allows fast computations for state estimation or prediction.

To establish the genealogy of traffic flow models, we mainly use the classifi-
cations based on the type of model equations (static vs dynamic, with discrete or
continuous flow) and the level of detail, as discussed further below. The interested
reader is referred to e.g. Hoogendoorn and Bovy (2001b); Lesort et al. (2003); van
Wageningen-Kessels et al. (2011); Bellomo and Dogbe (2011); van Wageningen-
Kessels et al. (2015) for a more detailed discussion of classifications and reviews of
traffic flow models.

1.3.4 Traffic Flow, Fluid Flow and Other Complex Systems

Traffic flow models are often related to and derived in analogy with models for
fluid flow. For example, the seminal paper on macroscopic traffic flow modelling
(Lighthill and Whitham 1955b), was published as ‘On Kinematic Waves Part 2’
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together with Part 1 discussing flood movement in rivers (Lighthill and Whitham
1955a). In turn, traffic flow models have recently inspired researchers to model
pedestrian crowds and animal swarms in a similar way, cf. Bellomo and Brezzi
(2008), other articles in that special issue of Mathematical Models and Methods in
Applied Sciences on Traffic, Crowd, and Swarms, and Bellomo and Dogbe (2011).
Furthermore, similarities between vehicular traffic, pedestrian and granular flow
have been recognized and conferences on Traffic and Granular Flow are organized
bi-annually, the most recent ones being held in Delft (The Netherlands) in 2015 and
in Washington D.C. in 2017 (Knoop and Daamen 2016; Transportation Engineering
Group at the George Washington University 2017). Finally, Helbing (2008) relates
traffic flow to systems that might even seem more diverse such as those related
to collective decision making, risk management, supply systems and management
strategies.

1.4 Approach and Scope of This Book

In this book, we discuss the traffic flow models and some of its underlying theories
and numerical methods for computer simulation. The main modelling approaches
are introduced and positioned in the genealogical tree of traffic flow models, which
shows the historical development of traffic flow modelling, see page 15. For most
models, this book also introduces the reader to useful approaches for computer
simulations.

1.4.1 The Genealogical Model Tree

The main part of this book follows the historical lines of the development of traffic
flow models since they were first studied in the 1930s. This approach shows better
how traffic flow models have developed and how different types of models are
related to each other. To show the historical development of traffic flow models
we introduce a genealogical tree of traffic flow models, see page 15.

The historical development of traffic flow models shows the emergence of four
families. All models in the tree have one common ancestor: the fundamental relation
(or fundamental diagram). The other three families consist of micro-, meso- and
macroscopic models. After the introduction of the fundamental diagram in the
1930s, microscopic and macroscopic models were introduced simultaneously in
the 1950s. Mesoscopic models are about a decade younger. Particularly over the
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last two decades, the fundamental diagram and all three types of models have been
developed further and many offshoots can be recognized.

The fundamental diagram family is the only one with static models. The
fundamental diagram, which constitutes a family of its own, does not describe
any changes in traffic state, but only links how ‘busy’ the road is (usually in
terms of number of vehicles per kilometer) to how fast the vehicles are driving.
In other words: the fundamental diagram relates the vehicle headway (front-to-front
following distance) to vehicle speed, in a static way. How headways and speeds
change is described by micro-, meso- and macroscopic models. These models are
dynamic: they describe how traffic states change over time, for example when con-
gestion is created and how it dissolves. Those three types of models are categorised
further according to their level of aggregation of the variables. Microscopic models
describe vehicles as individual agents, each with their own headway and speed,
they distinguish and trace the behaviour of each individual vehicle. Macroscopic
models aggregate the vehicles into a continuum flow approximation, with variables
averaged over multiple vehicles, e.g. average speed of vehicles on a certain section,
or average number of vehicles passing that section per time unit. Mesoscopic
models have an aggregation level in between those of microscopic and macroscopic
models or combine both approaches. Classical mesoscopic models describe vehicle
behaviour in aggregate terms such as in probability distributions, while behaviour
rules are defined as individual vehicles. Hybrid models are a much younger branch
of mesoscopic models. They model traffic at different scales: adapting the scale
according to the needs for accuracy and computational speed in that area.

1.4.2 Numerical Methods for Computer Simulation

To apply a traffic flow model, it is often included in a computer simulation.
Therefore, the dynamic model is discretised in time. The traffic state is not computed
for every moment in time, but instead only at discrete instances, with time steps of
usually 0.5–2 s. In microscopic models, the traffic state consists of the position of
the vehicles, usually in combination with their speed and possibly other variables.
In macroscopic models, the traffic state consists of variables like density and speed.
Mesoscopic models use combinations of those variables or even other variables.
When doing a time step, the current state (at time t) is used to approximate the state
at the next time step (at time t + Δt). This way, when the initial state is known,
subsequent time stepping can predict future traffic states.
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How exactly the discretisation in time and—where applicable in space or an other
independent variable—is approached and how the new state is computed for each
time step, is discussed for some of the most widely used models.

1.4.3 Other Aspects of Traffic Flow Modelling

We focus on models that include a clear set of rules describing the behaviour of
drivers, vehicles and/or traffic flows. These models are usually relatively easy to
understand and are shaped by a set of mathematical equations, that can often be
solved analytically for (very) simple problems. However, the human behaviour
in traffic is often much more complex than can be described by these models.
Therefore, artificial intelligence models have been developed (Aghabayk et al.
2015). They describe traffic flow using for example fuzzy logic or neural networks.
Artificial intelligence models are not discussed in detail in this book.

Furthermore, this book focusses on models and simulation methods for longitudi-
nal traffic flow on homogenous roads. We aim to provide the reader with knowledge
and tools to be able to build their own model and simulation of a heterogeneous
road with no entries, exits or intersection. Aspects of traffic modelling that are not
discussed in detail in this book are:

• models for lateral behavior (lane changing) that can be included in microscopic
models

• node models to include intersections, merges and diverges in traffic flow models
• demand and origin destination modelling: we assume that in the applications the

number of vehicles that want to travel over a certain road is given.
• calibration and validation of models and simulation tools: we focus on the

qualitative aspects of the models and refer the reader to other publications for
details on how to properly estimate parameter values.

• details of applications: there is a broad variety of applications of traffic flow
model and we suggest the reader—where applicable—to refer to other publi-
cations specifically dealing with their application.

• network flows: there is a steady growth in the literature about how to model flows
in networks, without modelling each road individually, but instead using network
(or macroscopic) fundamental diagrams. We consider this scale too course for the
scope of this book.

• psychology and decision making of the driver, technology of the vehicle and their
interaction: again, these topics are gaining more and more research interest but
we consider this scale to detailed for the scope of this book.
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Fig. 1.9 Example of observed trajectories

Problem Set

Calculating Traffic Variables

Consider the trajectories in Fig. 1.9.

1.1 Use Edie’s definitions to calculate the average density, speed and flow in the
grey area from t = 20 s to t = 60 s and from x = 200 m to x = 400 m.

1.2 Use Edie’s definitions to calculate the instantaneous density at the boundaries
of the grey area, i.e. at t = 20 s and at t = 60 s.

1.3 Use Edie’s definitions to calculate the local flow at the boundaries of the grey
area, i.e. at x = 200 m and at x = 400 m.

Wardrop User Equilibrium and Braess Paradox

This problem set is based on the ideas on user equilibrium introduced by Wardrop
(1952) and the Braess paradox (Braess 1968). Consider a simple road network
consisting of 4 roads, as in Fig. 1.10a. The travel times on the links from A to C and
from B to D are always 15 min. The travel times on the other links (from A to B and
from C to D) are longer when the number of vehicles on those links (qAB and qCD,
respectively) are higher. To be precise, the travel time in minutes is TAB = qAB/10
and TCD = qCD/10, respectively. 100 vehicles and their drivers want to travel from
A to B. Finally, assume a user equilibrium (Wardrop’s first principle): there is no
driver for which the travel time would decrease if they would chose a different route.
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Fig. 1.10 Networks illustrating Wardrop’s principle and the Braess paradox. (a) Initial network
(b) Network with extra link added

1.4 (Advanced) In a user equilibrium, how many of the 100 drivers travel via B

and how many travel via C? What is their travel time?

Now consider a fifth road being build, as in Fig. 1.10b. It connects B with C, only
taking one minute to travel.

1.5 (Advanced) In a user equilibrium, how many of the 100 drivers travel stay on
the original routes via B and C, respectively (i.e. not making use of the new route)
and how many take the new route and travel A → B → C → D? What are their
travel times?

The ‘traffic flow models’, relating the travel time with the number of vehicles on
the road, or even using a constant travel time, are very simplistic. Using more
advanced and realistic models—as introduced in the next chapters—will also give
more realistic travel times and it will be harder to find an example of the Braess
paradox.

Identifying Phenomena in Data

There are many online tools to view current or previous traffic states, such as
Google Maps (maps.google.com) or the collection of traffic states at http//traffic-
flow-dynamics.org/traffic-states.

1.6 (Advanced) Go to any of these websites and identify instances of congestion,
free flow, capacity drop and stop-and-go-waves.

Further Reading

Aghabayk K, Sarvi M, Young W (2015) A state-of-the-art review of car-following models with
particular considerations of heavy vehicles. Transp Rev 35(1):82–105
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Chapter 2
The Fundamental Diagram

In the previous chapter, the main variables in traffic flow modelling were introduced.
In this chapter, we discuss how they are related: obviously, high speeds seldom occur
together with short headways, similarly, low densities create room for high speeds.
Traffic flow models are based on the assumption that there is some relation between
these variables. The relation between distance and velocity was first studied by
Greenshields (1934) and called the fundamental relation (or fundamental diagram)
later. Therefore, Greenshields is often regarded as the founder of traffic flow theory,
and the fundamental diagram is the first model in the genealogical tree of traffic flow
models (see Page 15).

The reader of this chapter is introduced to the concept of the fundamental
diagram. After reading this chapter, they will be able to explain the typical shape of
a fundamental diagram and why and how the basic shape can be adapted to reflect
observations, such as scattered data. Furthermore, the reader will be able to link
characteristics of microscopic driving behaviour (e.g. low speed at small headway
and vice versa, (non)-equilibrium, hysteresis, capacity drop and heterogeneity in
driving behaviour) to the shape of a fundamental diagram. Finally, they will be able
to reflect on the desired properties of a fundamental diagram and assess whether a
given diagram satisfies the requirements.

2.1 High Densities, Low Speeds and Vice Versa

Common observations of traffic show that at high densities, such as in (heavy)
congestion, speeds are low. Conversely, when there are few vehicles on the road,
headways are large and speeds are high. This is partially due to simple human
behaviour: drivers tend to chose a speed that is as high as possible, while still
safe. Therefore, traffic flow models commonly use a decreasing—or at least non-
increasing—relationship between density and speed.

© Springer International Publishing AG, part of Springer Nature 2019
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Because of this decreasing density-speed relationship, the maximum flow (den-
sity × speed) occurs at some intermediate density and speed values. This gives rise
to one of the main challenges in traffic flow modelling: when densities are low,
flows increase with increasing densities, however, at high densities, an increased
density leads to a reduction in flow. See Fig. 2.1 for an example. This is different
from, for example water flow (in the same figure), which is incompressible and the
speed of the flow (i.e. the flow rate) does not depend on the density (Fig. 2.2). The
precise relationship between variables such as density, headway, speed and flow, is
an important subarea of traffic flow research. The main insights developed over the
decades are discussed in the following sections of this chapter.

Fig. 2.1 Traffic vs. water
flow: increasing and
decreasing flow vs.
nondecreasing flow
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inflows versus outflows. (a)
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2.2 Shapes of the Fundamental Diagram

The original fundamental diagram proposed by Greenshields (1934), is linear in the
spacing-velocity plane. However, his name has now been linked to the fundamental
diagram that he proposed one year later (Greenshields 1935). This fundamental
diagram is linear in the density-velocity plane and thus parabolic in the density-flow
plane (see Fig. 2.3):

V (ρ) = vmax − vmax

ρjam
ρ, (2.1)

with vmax the maximum speed and ρjam the jam density. Note the use of capital V

to indicate that the speed is expressed as a function of density ρ. Therefore, V (ρ)

is the density-speed fundamental diagram and later we will also encounter Q(ρ)

as the density-flow diagram, V (s) as the spacing-speed diagram and S(v) as the
speed-spacing diagram.

2.2.1 Fundamental Diagrams in Macroscopic Models

The model tree shows that since the 1930s, many other shapes of fundamental
diagrams have been proposed, mostly for use in combination with macroscopic
models. The Daganzo (1994) fundamental diagram is probably the most widespread
due to its simplicity. It is bi-linear (triangular) in the density-flow plane (see
Fig. 2.4):
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Fig. 2.3 The Greenshields fundamental diagram. (a) Density-speed. (b) Density-flow
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Fig. 2.4 The Daganzo fundamental diagram. (a) Density-speed. (b) Density-flow
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Fig. 2.5 The Smulders fundamental diagram. (a) Density-speed. (b) Density-flow

Q(ρ) =
{

vmaxρ if ρ < ρcrit
ρcritvmax
ρjam−ρcrit

(
ρjam − ρ

)
if ρ ≥ ρcrit

(2.2)

with vmax, vcrit the maximum and critical speed, respectively, ρjam, ρcrit, the jam and
critical density, respectively. A single parameter w = ρcritvmax

ρjam−ρcrit
is sometimes used

to denote the congestion wave speed. Figure 2.5 shows the Smulders fundamental
diagram (Smulders 1990), which is a combination of the previous two: it is parabolic
for low densities and linear for high densities (parabolic-linear):

Q(ρ) =
⎧
⎨

⎩

vmaxρ − vmax−vcrit
ρcrit

ρ2 if ρ < ρcrit
ρcritvmax
ρjam−ρcrit

(
ρjam − ρ

)
if ρ ≥ ρcrit

(2.3)

It still debated what is the best shape for a fundamental diagram, and how that
relates to the applications. This has led to the development of even more shapes
such as the exponential and power fundamental diagrams, named after their shape
(del Castillo 2012). These are further generalized into a generic model, which also
includes the bilinear fundamental diagram for certain parameter choices. The main
advantage of the generic model (and also the exponential and power models), lies
in the fact that it can be expressed in a single formula, i.e. not consisting of two
branches that need to be defined separately such as in the bi-linear or parabolic-
linear fundamental diagram. Furthermore, by restricting the choice of the invertible
function φ and the model parameters, the models satisfy the requirements that will
be discussed later (Sect. 2.3). The generic model is as follows:

q̂(ρ̂) = b + (a − b)ρ̂ − φ−1(φ(aρ̂) + φ(b(1 − ρ̂)) − φ(0)) (2.4)

with parameters a > 0, b > 0. ρ̂ = ρ/ρjam and q̂ = q/q0 are introduced to make the
variables dimensionless. q0 is a reference flow and not directly related to a certain
traffic flow property.

If the function φ is chosen appropriately, then the generic model leads to a
realistic and useful fundamental diagram. Examples for ‘sound’ functions φ and
parameters are the power function (see Fig. 2.6):



2.2 Shapes of the Fundamental Diagram 25

Fig. 2.6 The Power function
fundamental diagram, with
shape parameter θ = 5. (a)
Density-speed. (b)
Density-flow
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Fig. 2.7 The Exponential
fundamental diagram, with
shape parameter α = 2. (a)
Density-speed. (b)
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φ(ρ) = ρθ (2.5)

with θ > 1, a = vfree/w, b = 1 and q0 = wρjam, and exponential function (see
Fig. 2.7):

φ(ρ) = eαρ − 1 (2.6)

with α > 0, a = vfree
w(1−e−αb)

, b = 1
1−e−αa and q0 = wρjam.

2.2.2 Fundamental Diagrams in Microscopic Models

The fundamental diagrams discussed above, are mostly applied in macroscopic
traffic flow models. However, many microscopic traffic flow models also include
a fundamental diagram. In this case, it is usually ‘hidden’ in the formulation of
the car-following model. Furthermore, in microscopic models, spacing and speed
are often used as main variables, and therefore it is more natural to express the
fundamental diagram in these terms. As an example, the Optimal Velocity Model
(OVM, Sect. 3.2.1, (Bando et al. 1995)) includes a fundamental diagram with a
hyperbolic tangent function in the spacing-speed plane:

V (s) = c1
(

tanh[c2(s − c3)] + c4
)

(2.7)

c1, c2, c3 and c4 all nonnegative scaling parameters, see Fig. 2.8. The parameters
are not straightforward to interpret, but Fig. 2.9 gives some indications of their
relevance.
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Fig. 2.8 The fundamental diagram of the Optimal Velocity Model (OVM). (a) Spacing-speed. (b)
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Fig. 2.10 The fundamental diagram of the Intelligent Driver Model (IDM). (a) Spacing-speed. (b)
Density-speed. (c) Density-flow

The Intelligent Driver Model (IDM, Sect. 3.2.1, (Treiber et al. 2000)) includes a
fundamental diagram that expresses the (equilibrium) headway as a function of the
speed:

S(v) = (
sjam + T v

)
[

1 −
(

v

vfree

)δ
]−1/2

(2.8)

with sjam the jam spacing and T the minimum time headway, vfree the free flow
velocity (desired maximum speed) and δ the acceleration exponent, see Fig. 2.10.
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2.3 Properties and Requirements

The previous section suggests that there are many different possible shapes of
fundamental diagrams, and a few more will be introduced in the next section.
Some are more popular than others, however, there is some agreement on basic
requirements for the fundamental diagrams.

2.3.1 Requirements

We refer to Fig. 2.11 for an illustration of some of the properties of and requirements
for fundamental diagrams. The three most important requirements for their shape
are as follows:

1. A finite maximum speed exists and it is reached when density approaches zero:
V (ρ)lim ρ→0 = vmax, with vmax finite.

2. A finite maximum density exists and at this density the speed is zero: V (ρjam) =
0, with ρjam finite.

3. When density increases, speed does not increase, and when density decreases
speed does not decrease: dV

dρ
≤ 0 for all feasible densities ρ ∈ (0, ρjam].
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Fig. 2.11 Example of a fundamental diagram and its properties
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2.3.2 Properties: Capacity, Free Flow and Congestion

When the requirements are combined with the definition of flow (q = ρv), we also
find that the flow is zero at the density extremes ρ = 0 and ρ = ρjam. Furthermore,
there is a maximum flow, known as the capacity flow, at some density between both
extremes. The corresponding density and speed are called the critical density (ρcrit)
and the critical speed (vcrit), respectively. This also splits the fundamental diagram
into two branches: (1) a free flow branch with densities below critical, velocities
above critical and increasing flow for increasing density and (2) a congestion branch
with densities above critical, velocities below critical and a decreasing flow for
increasing density.

2.3.3 Additional Requirements

In some cases, additional requirements are proposed:

1. The fundamental diagram must define speed as a unique function of density.
2. The fundamental diagram must be continuous.
3. The Q(ρ) fundamental diagram must be concave, or even strictly concave.

The first additional requirement excludes fundamental diagrams that allow dif-
ferent speeds for the same density, such as those used to model hysteresis (see
Sect. 2.4). The second additional requirement excludes fundamental diagrams with
a discontinuity around capacity, such as those used to model a capacity drop (see
Sect. 2.4). The third additional requirement excludes Q(ρ) fundamental diagrams
that are linear for a certain portion of the density domain (they are not strictly
concave) and those that are convex for a certain portion of the density domain.
This includes some of the fundamental diagrams in the next section, but the strict
concavity requirement also excludes widespread ones such as the bi-linear and the
linear-parabolic fundamental diagrams.

The main argument behind all these requirements originates from the possibility
of non-unique solutions to simple problems. More specifically, when a fundamental
diagram that does not satisfy the requirements is applied in a simple macroscopic
model to calculate traffic states, the solution could be non-unique, i.e. multiple
solutions to the same problem exist. For example, it is possible that a simple problem
describing the growth of the queue upstream from a traffic light, does not have a
unique solution. This issue will be explored deeper in Sect. 4.1.2.

Furthermore, the slope of a realistic Q(ρ) fundamental diagram corresponds with
the propagation speed of information at the corresponding density. In particular: the
slope at zero density Q′(0) equals the maximum vehicle speed and the slope at
jam density Q′(ρ) equals the congestion wave propagation velocity −w. This is,
for example, the speed at which the front of the queue propagates upstream after a
traffic light turns green. This all relates to the characteristic speed, which will also
be discussed in more detail in Sect. 4.1.2.
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2.4 Scatter in the Fundamental Diagram

Observed density-flow plots usually show a wide scatter, see Fig. 2.12. Much of the
scatter can be explained by non-equilibrium traffic conditions (Zhang 1999; Laval
2011; Schnetzler and Louis 2013). When vehicles accelerate or decelerate, or when
their headways change, their (and their drivers’) behavior may be different from
what may be observed when all of these variables are constant. E.g. when headways
increase, a relatively high speed may still be perceived as ‘safe’ and thus acceptable.
Zhang defines traffic to be in equilibrium if over a sufficiently long time (t) and
road length (space x), velocity and density do not change: ∂v/∂t = 0, ∂ρ/∂t = 0,
∂v/∂x = 0 and ∂ρ/∂x = 0. Only points in the scatter plot that satisfy these criteria
can be used to fit the fundamental diagram. Furthermore, lane changes also influence
speeds and densities, and traffic can be considered to be out of equilibrium when
vehicles are moving from one lane to the other. Certain branches of the family of
fundamental diagrams in the model tree try to explain scatter in different ways,
regardless of biased observations.

Scatter is mostly explained through vehicle properties and driver behaviour:

Capacity drop and hysteresis Scatter can be (partially) explained by a capacity
drop: just before the onset of congestion, the outflow out of a bottleneck is known
to be higher than in congestion, see Figs. 1.4 and 2.13a. The capacity drop has
been explained by a low acceleration rate of vehicles leaving congestion, while
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Fig. 2.12 Scatter in an observed density-flow plot, also showing a capacity drop (picture adapted
from Calvert et al. (2016))
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capacity drop. (b) Fundamental diagram with hysteresis. (c) 3-phase fundamental ‘relation’: lines
and gray area are admissible traffic states. (d) 3-dimensional fundamental diagram with multi-
class approach. (e) Fundamental diagram with capacity drop explained through difference in net
time headway τ

vehicles decelerate at a higher rate when entering congestion (Edie 1961; Cassidy
and Bertini 1999). Similar explanations including differences in acceleration
and deceleration lead to fundamental diagrams with hysteresis (Newell 1965;
Treiterer and Myers 1974; Zhang 1999), see Fig. 2.13b.

Heterogeneity An other approach to varying capacities is introduced in multi-
class models. The fundamental diagram takes into account heterogeneity among
vehicles and drivers. For example, trucks may be slower than cars, but occupy
more space, leading to a lower jam density when there are many trucks.
Therefore, the flow is a function of both the density of cars and the density of
trucks. For example, Chanut and Buisson (2003) propose a three-dimensional
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fundamental diagram, see Fig. 2.13d. The figure shows that if truck densities are
relatively high, capacity is low.

From a different perspective, it has been argued that observations show too much
scatter to derive a unique fundamental diagram from (Kerner and Rehborn 1996;
Kerner 2009). It is proposed to use a three-phase approach characterized by the
existence of three phases, one of them featuring wide scatter in the density-flow
plane, see Fig. 2.13c. As a result, the maximum flow (capacity) of a road may
vary over time. The idea of stochastic capacity is also explored by Srivastava
and Geroliminis (2013); Calvert et al. (2016). The fundamental diagram including
capacity drop and hysteresis are non-unique: in a region around capacity the flow
is not uniquely defined by the density, but also depends on previous traffic states.
Therefore, for a unique solution of the model when it is applied in a dynamic setting,
additional assumptions on the transitions between the branches are needed (Zhang
2001).

The approach to including heterogeneity in the fundamental diagram by Chanut
and Buisson (2003) makes very clear how the traffic throughput not only depends
on density, but also depends on the composition of traffic. It is found that a large
fraction of trucks, which—at least in Europe—drive at low speeds results in a lower
flow. While, if there are only fewer trucks, cars and possibly also trucks drive at
higher speeds. This approach leads to a unique flow, when densities of each type
of vehicle are given. The core ideas have been implemented in many multi-class
macroscopic traffic flow models, which are discussed in Chap. 4.

Schnetzler and Louis (2013) take a similar approach: explaining scatter through
differences between cars and trucks. However, they also include a capacity drop,
explaining this through differences in net time headway. This results in a fundamen-
tal diagram with a congestion branch (and congestion capacity) dependent on the
net time headway, see Fig. 2.13e.

Problem Set

Assessment of the Fundamental Diagrams

Consider the fundamental diagrams discussed in this chapter, in particular:

1. The Greenshields fundamental diagram (parabolic in Q(ρ))
2. The Daganzo fundamental diagram (bi-linear in Q(ρ))
3. The Smulders fundamental diagram (parabolic-linear in Q(ρ))
4. The OVM fundamental diagram (hyperbolic tangent in V (s))
5. The IDM fundamental diagram
6. The power function fundamental diagram
7. The exponential fundamental diagram
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2.1 Do the fundamental diagrams satisfy the requirements in Sect. 2.3.1? Does this
depend on the parameter values, and if so, how?

2.2 For which fundamental diagrams are the critical density and critical speed
explicitly defined as parameters? For the other models: what are the critical density,
critical speed and capacity? How do they depend on other parameters?

2.3 Do the first five fundamental diagrams satisfy the additional requirements in
Sect. 2.3.1? Does this depend on the parameter values, and if so, how?

Power and Exponential Fundamental Diagram

Consider the power and exponential fundamental diagram as discussed in Sect. 2.2.

2.4 Choose either of these fundamental diagrams and:

1. Draw the fundamental diagram using your method of choice (by hand or using a
computer program like Octave or Matlab).

2. Change the parameters and see how the fundamental diagram changes.
3. Which parameter settings recover the bi-linear (Daganzo) fundamental diagram?

For better insight into the interpretation of the parameters, it can be useful to rewrite
the fundamental diagram (2.4) such that it again expresses the flow as a function
of the density (instead of the dimensionless flow as a function of the dimensionless
density).

2.5 (Advanced) Rewrite (2.4) expressing flow as a function of density, i.e. find
Q(ρ).

del Castillo (2012) proves that when the following conditions all hold, then the
generic model (2.4) is strictly concave:

• φ(0) ≥ 0
• φ′ ≥ 0
• φ′′ ≥ 0

We encourage the interested reader to study this proof.

2.6 (Advanced) Proof that the power and exponential fundamental diagrams are
strictly concave.

Heterogeneity in the Fundamental Diagram

Consider the multi-class fundamental diagram as introduced in Chanut and Buisson
(2003). It applies a Smulders fundamental diagram, with maximum speed parameter
vmax unequal for cars (vmax,car) and trucks (vmax,truck). Furthermore, the other
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parameters of the fundamental diagram depend on the car density ρcar (the average
number of cars per unit length) and the truck density ρtruck (the average number of
trucks per unit length):

ρcrit = βρjam and ρjam = ρcar + ρtruck

Lcarρcar + Ltruckρtruck
(2.9)

with Lcar and Ltruck the gross vehicle lengths of cars and trucks, respectively. I.e.
Lcar is the front to front distance between 2 cars in a queue (at standstill). Note that
the critical speed vcrit is equal for both classes and independent of the traffic state.

2.7 Use these parameter values vmax,car = 30 m/s, vmax,truck = 25 m/s, vcrit = 20
m/s, β = 0.2, Lcar = 6 m, Ltruck = 18 m to calculate jam density ρjam and critical
density ρcrit in the following situations:

(a) only cars on the road
(b) only trucks on the road
(c) 10% trucks, 90% cars
(d) 50% trucks, 50% cars

2.8 Draw the axes for a density-speed fundamental diagram with on the horizontal
axis the total density (cars and trucks), on the vertical axis speed.

• Draw the fundamental diagrams of cases (a) and (b).
• Add the fundamental diagrams for both cars and trucks for cases (c) and (d).
• Under which conditions do the car and truck fundamental diagrams overlap? I.e.,

when are the speeds of the cars equal to those of trucks?

2.9 Answer the questions below using the graph from the previous problem.

• Under which traffic conditions do the car and truck fundamental diagrams
overlap? I.e., when are the speeds of the cars equal to those of trucks?

• Is this realistic? Why (not)?

Fundamental Diagrams Explaining Scatter

Consider the fundamental diagrams that explain scatter in Sect. 2.4.

2.10 (Advanced) Reflect on whether these models satisfy the requirements in
Sect. 2.3.1.
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Chapter 3
Microscopic Models

The earliest family in the model tree incorporating dynamics are microscopic
models. They are based on the assumption that drivers adjust their behaviour to
that of the leading vehicle. Microscopic modelling has shown to be a fruitful line
of thought, which is illustrated by the large part of the model tree taken up by
this family (see the model tree on page 15). Microscopic models describe the
longitudinal (car-following) and lateral (lane-changing) behaviour of individual
vehicles. We focus on longitudinal behaviour.

Most microscopic models are car-following models: they describe the movement
of each vehicle based on the behavior (movements) of the vehicle(s) in front of it.
This chapters also discusses the most recent branch of microscopic models, namely
cellular-automata and numerical methods for microscopic models.

After reading this chapter, the reader will understand the basics of the most
popular microscopic models, including their main features. They understand how
extensions of microscopic models to include heterogeneity, multi-anticipation and
time delay will improve them and being able to adapt a simple model in these
directions. They can reflect on the desired properties of such models, including
stability, and are able to assess simple models. Finally, the reader learns about the
application of numerical methods applied to microscopic models, understand the
impact of the choice of numerical method on stability and accuracy and they will be
able to apply simple methods themselves.

3.1 Safe-Distance Models

In microscopic models, vehicles are numbered to indicate their order: n is the vehicle
under consideration, n − 1 its leader, n + 1 its follower, etc., see Fig. 1.6. The state
of each individual vehicle n is modelled in terms of the position of the front of
the vehicle xn at time t . Different types of models have different ways to describe or

© Springer International Publishing AG, part of Springer Nature 2019
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predict the movement of the vehicles, and thus how their position changes over time.
Most models reflect human factors and behaviour, and are built using assumptions
on how humans react and drive (Saifuzzaman and Zheng 2014).

The earliest car-following models include a car-following rule based on safe
following distance. Pipes (1953) proposes to express the position of the leader as
a function of the position of its follower:

xn−1 = xn + T vn + sn,jam (3.1)

with sn,jam = ln+d the minimum rear-to-rear headway, i.e. the distance between the
rear of the leader n − 1 and the vehicle under consideration n in a jam. This is also
illustrated in Fig. 3.1. T vn is interpreted as the ‘legal distance’ between vehicle n−1
and n: the extra distance that—together with the minimum rear-to-rear headway
sn,jam—makes up the actual rear-to-rear headway.

Assuming sn,jam = sjam equal for all vehicles n, the model can be reformulated
expressing the speed vn as a function of the position xn and the leaders’ position
xn−1, or of the space headway (spacing) sn = xn−1 − xn:

vn = xn−1 − xn − sjam

T
= sn − sjam

T
(3.2)

which then leads to the following spacing-speed and density-speed relation:

V ∗(s) = 1

T
(s − sjam) or V (ρ) = 1

Tρjam

(
ρjam

ρ
− 1

)

(3.3)

The ‘fundamental diagrams’ are shown in Fig. 3.2. Note that for low densities, the
fundamental diagram is not realistic as the speed goes to infinity.

Fig. 3.1 Parameters of
Pipes’ safe-distance model

n n−1

xn xn−1

ln d Tvn ln−1

driving direction
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Fig. 3.2 The fundamental diagram of Pipes’ safe-distance model. (a) Spacing-speed. (b) Density-
speed. (c) Density-flow

3.1.1 Safe-Distance Models with Delay

Safety is closely related with delay: car-following behaviour is only safe when the
delayed response to a change is taken into account. The first models including
delay were introduced around 1960 (Kometani and Sasaki 1961; Newell 1961).
Kometani and Sasaki’s model is derived from basic Newtonian equations of motion.
It is assumed that a drivers act such that they can avoid a collision even if their
leader would act ‘unpredictable’. Effectively, jam spacing sjam in Pipes’s model is
replaced with a velocity-dependent term. Furthermore, their formulation includes a
time delay τ . A positive τ represents that it takes some time between a change in
the behaviour of a vehicle and the actual reaction of its follower to this change. The
time delay τ includes the reaction time of the driver, but it can also depend on their
perception and the time it takes between noticing that action is needed/desired and
actual braking or accelerating due to limitations of the vehicle.

Several decades after the introduction of Newell’s 1961 model, it was simplified
(Newell 2002):

xn(t + τn) = xn−1(t) − sjam,n (3.4)

In this model, a vehicle follows the trajectory of its leader, translated by delay time
τn and jam spacing sjam,n. Delay time τn and jam spacing sjam,n may differ for each
vehicle and driver. This model was later extended to include differences between
‘timid’ and ‘aggressive’ drivers (Laval and Leclercq 2010). Timid drivers would
keep a longer distance when the leader decelerates into congestion, while aggressive
drivers tend to keep shorter following distances, see Fig. 3.3. The formulation clearly
shows that delay leads to hysteresis: the current behaviour of a vehicle/current traffic
state depends on previous behaviours/states. With the correct parameter settings, the
timid/aggressive car-following models gives simulation results showing stop-and-go
waves.
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Fig. 3.3 Trajectories in the timid/aggressive model. Timid drivers decelerate and accelerate fast
and therefore keep longer headways throughout a congestion wave. Aggressive drivers keep shorter
headways. (a) Long wave. (b) Short wave

3.1.2 High Speeds Versus Safety

Gipps (1981) refines safe-distance car-following models with delay by assuming
that ‘the driver travels as fast as safety and the limitations of the vehicle permit’:

vn(t + τ ) = min

{

limited by self
︷ ︸︸ ︷

vn(t) + 2.5amaxτ

(

1 − vn(t)

vmax

)√

0.025 − vn(t)

vmax
,

aminτ +
√

a2
minτ

2 − amin

(
2
(
sn(t) − sjam

) − vn(t)τ − vn−1(t)
2

amin

)

︸ ︷︷ ︸
limited by safe distance

}

(3.5)

with amax maximum acceleration, amin maximum deceleration (minimum accelera-
tion), vmax the desired (maximum) velocity and sjam jam spacing. Jam spacing is the
front-to-front distance between two vehicles at standstill. Effectively, this approach
introduces two regimes: one in which the vehicle itself limits its velocity (the upper
part in Eq. (3.5)), and one in which the safe distance to the leader limits velocity (the
lower part in the equation).

An other approach to model ‘safe’ behaviour is to include the collision prob-
ability in a model for acceleration (Hamdar et al. 2008). The authors propose to
model the probability of a collision and adjust the acceleration (or deceleration)
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accordingly. The main idea is as follows: Driver behaviour is influenced by

1. the predicted velocity distribution of the leading vehicle
2. the speed of the leading vehicle relative to the own speed
3. the gap between the rear bumper of the leading vehicle and the own front bumper.

These three factors determine the probability of a collision, for any given accelera-
tion. However, accelerating also gives a certain utility: e.g. driving at a speed close to
the maximum speed. A combined utility function is proposed to weigh the collision
probability against the utility of accelerating. Finally, the utility is maximized and
the vehicle is modelled to accelerate or decelerate with the corresponding optimal
acceleration/deceleration.

3.2 Stimulus-Response Models

The second branch of car-following models consists of stimulus-response models.
It is assumed that drivers accelerate (or decelerate) as a reaction to three stimuli:

1. own current velocity vn = dxn

dt

2. spacing with respect to leader sn = xn−1 − xn

3. relative velocity with respect to leader (receding rate) ṡn = dsn
dt

= vn−1 − vn

In the late 1950s and early 1960s there was a rapid development of stimulus-
response models and the efforts consolidated in the now famous GHR-model, named
after Gazis et al. (1961):

an(t)︸ ︷︷ ︸
response

= γ

(
vn−1(t)

)c1

(
sn(t − τ )

)c2

︸ ︷︷ ︸
sensitivity

ṡn(t − τ )
︸ ︷︷ ︸
stimulus

(3.6)

γ
(vn−1(t))

c1

(sn(t−τ ))c2 is considered as the sensitivity of vehicle/driver n. γ is the sensitivity
parameter and c1 and c2 are parameters that are used to fit the model to data. The
receding rate ṡn(t − τ ) is observed at delay time τ ago and is considered as the
stimulus, the acceleration an(t) as the response, hence the name ‘stimulus-response’
model.

Since those early developments, a lot of work has been done in calibrating
and validating this and other similar models. However, in 1999, Brackstone and
McDonald concluded that stimulus-response models are being used less frequently,
mainly because of contradictory findings on parameter values. Nevertheless, since
the mid 1990s many new models have been developed and stimulus-response
models are popular again.
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3.2.1 More Recent Stimulus-Response Models: OVM and IDM

Bando et al. (1995) introduce the optimal velocity model assuming that drivers
accelerate (or decelerate) to their optimal velocity, which is a function of the
headway:

an(t) = γ
(
V
(
sn(t)

) − vn(t)
)

(3.7a)

V (s) = c1
(

tanh[c2(s − c3)] + c4
)

(3.7b)

with γ the sensitivity parameter and c1, c2, c3 and c4 parameters of the optimal
velocity function V (s). As discussed in more detail in Sect. 2.2.2, the optimal
velocity function can be interpreted as the fundamental diagram of the model: it
represents the spacing-speed relationship at equilibrium.

In the intelligent driver model by Treiber et al. (2000) the acceleration function
includes two important components:

1. acceleration towards the maximum speed vmax
2. acceleration/deceleration to obtain the space gap that is desired at the current

speed and current change in gap (e.g. deceleration/lower acceleration when
approaching the leader).

The acceleration function is described by:

a = amax

(

1 −
(

v

vmax

)δ

−
(

S(v, ṡ)

s

)2
)

(3.8)

with amax the maximum acceleration, vfree the free flow velocity (desired maximum
speed) and δ the acceleration exponent. S(v, ṡ) denotes the space gap function,
describing the desired spacing as a function of the speed and the change in spacing
(i.e. difference in speed with leader):

S(v, ṡ) = sjam + T v − vṡ

2
√

amaxamin
(3.9)

with amin the maximum deceleration (minimum acceleration), sjam the jam spacing
and T the minimum time headway.

The fundamental diagram (2.8) can be derived using the acceleration equation
(3.8) and the space gap function (3.9). At equilibrium both the acceleration a and
the change in spacing ṡ are zero. Substituting this into (3.8) and subsequently
substituting (3.9) gives:

a = amax

(

1 −
(

v

vmax

)δ

−
(

sjam + T v

s

)2
)

= 0 (3.10)
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Table 3.1 Typical parameter
values of the IDM

Maximum speed vmax 30 m/s

Jam spacing sjam 7 m

Reaction time T 1.5 s

Maximum acceleration amax 1 m/s2

Maximum deceleration amin 1.5 m/s2

FD shape parameter δ 1

Rewriting gives the fundamental diagram (2.8):

S(v) = (
sjam + T v

)
[

1 −
(

v

vmax

)δ
]−1/2

(3.11)

with sjam the jam spacing and T the minimum time headway, vfree the free flow
velocity (desired maximum speed) and δ the acceleration exponent, see Fig. 2.10.

Typical values for parameters in the IDM are given in Table 3.1. They are used
in the simulations to produce the figures in this chapter. Readers are encouraged to
play around with the parameter settings in the Problem Set at the end of this chapter.

3.2.2 Simulation Results with a Stimulus Response Model

The results of a simple simulation using IDM are shown in Fig. 3.4. It shows 15
vehicles on a 800 m long ring road. They are waiting in a queue until the first one
starts driving at t = 0. Because they drive on a ring road, the first vehicle catches
up with the last one and after about 1 min, the spacing and speeds are almost equal
for all vehicles. The parameters of the model are given in Table 3.1. Furthermore,
for the numerical method, an explicit Euler scheme with time step size Δt = 0.5 s
were used. The relevance of the numerical method is discussed in Sect. 3.6.

3.2.3 Generic Model and Stability

Already in the earliest days of stimulus-response models Chandler et al. (1958)
introduced a generic formulation:

a(t) = f
(
v(t), s(t), ṡ(t)

)
(3.12)

In this formulation, it clear to see that the acceleration a is a response to the stimuli
speed v, spacing s and change in spacing ṡ. It is interesting to note that, after
reformulation, most safe-distance models also fit in this framework.
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Fig. 3.4 Simulation results with IDM on a ring road, with an initial queue that dissolves, as
described in Sect. 3.2.2. The same results are presented in different ways. (a) Trajectories: thick
red trajectory is that of the first vehicle that starts driving at t = 0. The other trajectories (black)
are of vehicles that were waiting in a queue behind the first one. (b) Densities. (c) Speeds

3.2.3.1 Requirements for Car-Following Models

More recently, Wilson (2008), Wilson and Ward (2011) use the generic formulation
(3.12) to qualitatively asses stimulus-response models. They perform stability anal-
yses and put forward constraints on the function f and its parameters. Firstly, for
any car-following model, it should be possible to derive an equilibrium fundamental
relation from the steady state solution of f :

∀ s > 0, ∃ v = V (s) > 0 such that f (v, s, 0) = 0 (3.13)
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Secondly, driving behaviour should be ‘rational’:

1. If velocity increases, the vehicle accelerates less (or decelerates more):
df/dv < 0.

2. If headway increases, the vehicle accelerates more (or decelerates less):
df/ds ≥ 0.

3. If relative velocity increases, the vehicle accelerates more (or decelerates less):
df/dṡ ≥ 0.

If these conditions are satisfied, the model satisfies certain desirable stability
conditions, as discussed in more detail below.

3.2.3.2 Stability of Car-Following Models

When looking at the dynamics of a system, it is important to know whether it is
stable. In general, a system is stable if, when it is brought out of its current state,
it will go back to that state (see Fig. 3.5a). In a traffic flow context, this means that
when there is a perturbation (e.g. one driver suddenly brakes), traffic is stable when
all vehicles will return to their initial speed. There are three types of questions to
ask about the stability:

1. Does the fluctuation grow over time, will it stay within certain limits, or will it
‘die out’?

2. Does the fluctuation stay at the same position or does it move, does it also affect
other vehicles?

3. If the fluctuation moves, does it move with the vehicle that initially experienced
the perturbation or does it move with a different speed, maybe even in the other
direction?

These kind of questions are addressed by defining two types of stability that are
of special interest in traffic flow: local stability and string stability. Local stability is
about a perturbation growing both in amplitude and number of affected vehicles and
becoming permanent, see Fig. 3.5b. If the flow is locally unstable, it will not return
to its original, unperturbed state, and this type of instability is undesired. Wilson and
Ward (2011) show that if the rational driving behaviour conditions are satisfied, then
the car-following model is local stable. It is important to note, however, that, for a
given model, the rational driving conditions may be satisfied for certain parameter
values, but not for others.

The second type of stability is string stability , which is about a perturbation
that might grow but each vehicle themselves will eventually return to the original
unperturbed state Fig. 3.5c. This type of stability is linked to stop-and-go waves.
The idea is that if a model is string unstable, then the fluctuation will grow and
after it has passed tens or hundreds of cars, nonlinear effects will take over and
trigger stop-and-go waves. The key difference with local stability is that the frame of
reference is permitted to move: the fluctuation will remain, but it is allowed to move
upstream, leading to recovery from the perturbation by vehicles that were affected
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Fig. 3.5 Stability in car-following. The top line indicates the development of the speed (v0) of the
leading vehicle, which has a small perturbation. The other lines indicate the development of the
speed of the following vehicles. (a) Stability. (b) Local instability (c) String instability

before. Wilson and Ward (2011) show that it largely depends on its parameter values
whether the model will exhibit string instability. The problem set at the end of
this chapter will explore this further and challenge the reader to do some stability
analysis themselves.

Except for the type of stability, also its propagation direction is important. Will
any propagation move downstream, in the driving direction of the vehicles, at the
same speed, faster or slower? Or will it stay at the same location or move upstream,
and at which speed? To model stop-and-go waves realistically, the string instability
should propagate upstream, at the same speed as an observed stop-and-go wave,
which is more or less equal to the slope of the congestion branch of the fundamental
diagram. This could be checked by simulation, but a more rigorous approach is,
again, based on analysis of the acceleration function f in (3.12). However, the
analysis is beyond the scope of this book. The interested reader is referred to Wilson
and Ward (2011), Ward and Wilson (2011) for more details.
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3.3 Action Point Models

The third, and last, branch of car-following models consists of action point models,
first introduced by Wiedemann (1974). However, a decade earlier, Michaels (1965)
discussed the underlying concept that drivers would only react if they perceive that
they approach a vehicle. Therefore, the approach rate or the headway must reach
some perception threshold before a driver reacts. The main advantage of action point
models is that they incorporate, in contrast to other car-following models, that:

1. at large headways driving behaviour is not influenced by that of other vehicles,
and

2. at small headways driving behaviour is only influenced by that of other vehicles
if changes in relative velocity and headway are large enough to be perceived.

If driving behaviour is influenced by that of others, any of the previously introduced
safe-distance or stimulus-response models can be used to describe the influence
quantitatively.

3.4 Cellular-Automata Models

Cellular-automata models are usually categorized as microscopic models, even
though they are a different, and much younger, branch of the model tree. Just as
in car-following models, the movement of individual vehicles is modelled. The
main difference with car-following models is that space, and sometimes time, is
discretized. Moreover, the velocity is discretized. Therefore, they are in general
computationally more efficient.

In a cellular-automata model, the road is partitioned into cells of usually 7.5 m
long. In a cell either a vehicle might be present or not. The model consists of a set of
rules, that determine when the vehicle will move to the next (downstream) cell. The
rules may be stochastic or deterministic. The model by Nagel and Schreckenberg
(1992) is regarded as the prototype cellular-automata model. In this model, each
time step each vehicle is advanced a few (or zero) cells according to the following
algorithm:

1. If velocity is below maximum velocity, then accelerate: ṽ → min(ṽ + 1, vmax).
2. If headway is too small, then decelerate: ṽ → min(ṽ, s̃jam − 1).
3. Decelerate at random: ṽ → max(ṽ − 1, 0) with probability π .
4. Move: x̃ → x̃ + ṽ.

In the algorithm, ṽ denotes the normalized vehicle velocity in number of cells
per time step, ṽmax denotes the normalized maximum vehicle velocity and s̃jam
the normalized jam spacing in number of cells. x̃ is the cell number and π is the
deceleration probability.
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More recent developments combine cellular-automata models with the optimal
velocity car-following model (Helbing and Schreckenberg 1999) or three phase
theory (Kerner et al. 2002). Some of the most popular cellular-automata models
are compared by Knospe et al. (2004).

3.5 Extensions

Microscopic models can relatively easily be adopted to other (assumed) behaviours
of vehicles and drivers. Extra variables or parameters are added to reflect differences
between types of vehicles, to reflect look-ahead behaviour, to reflect reaction-time
delays or to include lane changes and lateral behaviour.

3.5.1 Heterogeneity

Most car-following models described and analysed in literature assume homo-
geneous vehicle-driver units, that is: vehicles and drivers all behave identically.
However, since each vehicle is modelled and simulated individually, it is relatively
straightforward to take into account heterogeneity. In that case model parameters
such as desired (maximum) velocity, sensitivity and reaction time may vary over
vehicles and drivers. In fact, most simulation tools based on car-following models
are multi-class, that is: they do take into account heterogeneity.

3.5.2 Multi-Anticipation

Simple car-following models only take into account reaction to the immediate
leader. However, in multi-anticipation models more than one leading vehicle
influences the behaviour of a driver. For example, the generic model (3.12) with
multi-anticipation would then be:

an(t) = f
(
vn(t), sn(t), ṡn(t), sn−1(t), ṡn−1(t), . . . , sn−N(t), ṡn−N (t),

)
(3.14)

The index n is used to denote the vehicle under consideration, n − 1 is its leader,
etc. N is the number of leaders that may influence the behaviour.



3.5 Extensions 47

3.5.3 Time Delay

Time delay is introduced to reflect that drivers do not instantaneously react to any
changes, but instead take a while to change their behavior (Bando et al. 1998;
Treiber et al. 2006; Yu et al. 2014). For example, the generic model (3.12) with
delay would then be:

an(t) = f
(
v(t − τ ), s(t − τ ), ṡ(t − τ )

)
(3.15)

with τ ≥ 0 the delay time. This is a commonly used extension of the models.
However, including delay has a big impact on the mathematical properties of the
model, and especially on the stability. However, this is beyond the scope of this
book. The interested reader is referred to Wilson and Ward (2011), Ward and Wilson
(2011) for more details about the theory. They are also encouraged to explore the
issues using simulations, described in the Problem Set at the end of this chapter.

3.5.4 Lateral Movements

Until now, we have only discussed longitudinal (car-following) behaviour. However,
an agent based traffic flow simulation for multi-lane roads is not complete without
a model for lateral movements (lane changes). There are many models for lane
changing, most of them making a distinction between:

mandatory lane change occurs when a driver moves to a different lane because
of their route choice, e.g. from on ramp to main road to enter the freeway, from
main road to off ramp to leave the freeway, from one lane to the next because the
first lane will end or is blocked.

discretionary lane change occurs when a driver seeks a speed advantage, this
often includes overtaking.

Other types of lane change in models can include random lane change (without
apparent reason) or forced merging (when a driver creates a gap to enter a congested
lane). Most lane change models consist of the following three steps:

1. Decide about necessity of lane change
2. Choose target lane
3. Decide whether to accept gap

Gap acceptance models include choices about whether the gap (distance between
new leader and new follower) is big enough, but also about whether the necessary
deceleration or acceleration are acceptable. A more detailed review of lane change
models can be found in Rahman et al. (2013), Treiber and Kesting (2013).
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3.6 Numerical Methods for Car-Following Models

The previously introduced car-following models are continuous in time and space.
Therefore, for any case or simulation that is not very simple or even trivial,
numerical integration needs to be used. Time is sliced into discrete time steps and
the positions, and possibly states like velocity, acceleration and lane of all vehicles
are computed.

One of the most simple and widely applied schemes is the Euler method:

xk+1
n = xk

n + Δtvk
n (3.16a)

vk+1
n = vk

n + Δtak
n (3.16b)

Where k indicates the previous time step and k + 1 the new time step: xk
n, vk

n and
ak
n are the position, speed and acceleration, respectively, of the n-th vehicle at time

t = t0 + kΔt . ak
n is calculated according to the car-following model, e.g.

ak
n = f

(
vk
n, xk

n−1 − xk
n, vk

n−1 − vk
n

)
(3.17)

with function f as the generic model as in (3.12). Furthermore, vn−1 − vn

approximates the change in spacing because ṡ = ds
dt

≈ d
dt

(xn−1 − xn) = vn−1 − vn.
This method is, for example, applied in the traffic simulators SUMO (Krajzewicz
et al. 2012) and AIMSUN (Casas et al. 2010).

3.6.1 Advanced Numerical Methods

Other, more advance methods have been proposed and compared by Treiber and
Kanagaraj (2015). The most promising of them is the ballistic update scheme which
uses the same Euler update for the velocity (3.16b). The position is updated using
the average of the velocity at the old time and that of the new time:

xk+1
n = xk

n + Δt
vk
n + vk+1

n

2

= xk
n + Δtvk

n + (Δt)2

2
ak
n (3.18)

The ballistic method outperforms the Euler method in terms of accuracy and
computational complexity. Furthermore, they show that other methods (such as
Runge Kutta) that are often used for ordinary differential equations resulting from
other types of systems, perform worse because of the lack of ‘smoothness’ in traffic
flow. Traffic is not ‘smooth’ in the sense that oftentimes there are sudden changes in
traffic state such as a decrease in speed and increase in density at the upstream front
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of congestion. In fact, the non-smoothness can even in the most simple numerical
methods lead to negative velocities. Therefore, in simulations, heuristics are applied
to ensure that vehicles stop behind their leader without driving backward.

3.6.2 Numerical Methods and Delay

Many car-following models include a delay term, such as in (3.15). Therefore, the
time step Δt needs to be taken such that the delay τ is a multiple thereof: τ = rΔt ,
with r integer. When including delay, the acceleration function f is not considered
at current time t , but at the earlier time t −τ = t −rΔt , which leads to the following
formula for the acceleration:

ak
n = F

(
vk−r
n , xk−r

n−1 − xk−r
n , vk−r

n−1 − vk−r
n

)
(3.19)

The difference between time delay τ and time step size Δt is important. Even though
they have the same dimension (time) and can be of similar size (≈0.1–1.5 s), they
have a different interpretation and changing them should affect simulation results in
a different way. τ is a model parameter—reflecting a time delay that is present in real
car-following behaviour. τ should be small (or zero) when one wants to model that
drivers (and vehicles) react quickly (or instantaneously) to a change in their leaders’
behaviour, it should be large when the reaction takes longer. Δt is a parameter of
the numerical method: indicating the size of the time steps in the simulation. A
very small time step (approaching zero) gives a very accurate approximation of the
time-continuous model. A somewhat larger time step size will give less accurate
approximation but in many cases also shorter computation times. This difference is
explored further in the Problem Set.

Problem Set

Microscopic Model and Fundamental Diagram

Consider Gipps’ Safe-Distance model with delay as in Sect. 3.1.2. We modify the
equation slightly to allow speed to become zero:

vn(t + τ ) = min

{

vn(t) + 2.5amaxτ

(

1 − vn(t)

vmax

)

,

aminτ +
√

a2
minτ

2 − amin

(
2
(
sn(t) − sjam

) − vn(t)τ − vn−1(t)
2

amin

)}

(3.20)
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This adaptation may lead to unrealistic acceleration/deceleration behaviour at very
low speeds, but that does not interfere with our current goal of deriving and
understanding the fundamental diagram.

3.1 Consider only the safe distance branch of (3.20) (that is the lower part of the
equation). Derive the spacing-speed fundamental diagram and draw it.

The other (‘free’) branch introduces more realistic behaviour at high spacings.

3.2 What is the speed at very high spacings, according to (3.20)? Note: consider
the free branch (the upper part).

3.3 Add the free flow branch to the previously drawn fundamental diagram
(Problem 3.1).

Simulations

Simulations can give better insights into models. Sample code can be found on the
website (http://extras.springer.com) of this book.

3.4 Run a simulation to reproduce the results in Fig. 3.4.

3.5 Adapt the provided code in one or more of these directions:

• make the initial queue longer
• change parameter values of the model parameters (maximum speed, jam spacing,

reaction time, maximum and minimum acceleration shape parameter δ)
• replace the IDM with the OVM
• include delay
• change the time step size
• replace the Euler explicit time stepping method with the ballistic update scheme.

Compare the results of different setups and reflect on your insights: is this more (or
less) realistic? Do you see other phenomena? Compare your results with those in
literature.

Stability in IDM

As a base case, we consider the Intelligent Driver Models as introduced in
Sect. 3.2.1, with the parameters as in Table 3.1. Again, we refer to the sample code
available on the website.

3.6 Assess the platoon stability of the model by determining the sign of the
derivatives of the acceleration function.

http://extras.springer.com
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3.7 (Advanced) Asses the string stability of the model using simulations:

• Simulate vehicles driving over a ring road, using the default parameters.
• Vary the initial state of the vehicles to find when the model is string stable and

when it is string unstable.
• When the results show instability, does the instability propagate upstream and/or

downstream? Is this realistic?

Stability in Other Models

3.8 (Advanced) Use the adaptations in Problem 3.5 to explore (string) stability
of:

• IDM with different parameter values
• OVM
• IDM or OVM with delay

and the interplay between the time step size or the numerical method and stability.

Simulations of Other Models

Problem 3.1 (Advanced) Adapt the simulation of IDM for a simple cellular
automata model (see Sect. 3.4). Use the same queue test case and compare the results
with those of other simulations that you have done.

Further Reading

Aghabayk K, Sarvi M, Young W (2015) A state-of-the-art review of car-following models with
particular considerations of heavy vehicles. Transp Rev 35(1):82–105
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Rahman M, Chowdhury M, Xie Y, He Y (2013) Review of microscopic lane-changing models and
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Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review
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car-following models. Phys A Stat Mech Appl 419:183–195
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Chapter 4
Macroscopic Models

Macroscopic traffic flow models forms arguably the largest family in the model tree,
see page 15. They describe traffic flow as if it were a continuum flow and are often
compared to, or derived in analogy with, continuum models for fluids. Individual
vehicles are not modeled, however aggregated variables such as (average) density
and (average) flow are used.

After reading this chapter, the reader will understand the basics of the most
popular macroscopic models, including their main features. They understand why
and how extensions of macroscopic models such as higher order models, multi-class
models and extensions using bounded acceleration or capacity drop, will improve
them. The reader will also be able to adapt a simple model in these directions. They
can reflect on desired properties of such models, including anisotropy. Finally, the
reader will become familiar with the Eulerian and Lagrangian coordinate systems
and will be able to reflect on their (dis)advantages.

4.1 Kinematic Wave Models

Macroscopic traffic flow models were first introduced by Lighthill and Whitham
(1955b) and, independently (Richards 1956). Their model is the prototype kinematic
wave model and was named the LWR model later. The dynamics of traffic is
described by a partial differential equation, which models the conservation of
vehicles:

∂ρ

∂t
+ ∂q

∂x
= 0 (4.1)

and a fundamental relation q = Q(ρ). The system of equations is closed with the
relation between flow q , density ρ and speed v: q = ρv. This model is closely
related to other models for fluid flow, which often look very similar, with just an

© Springer International Publishing AG, part of Springer Nature 2019
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Fig. 4.1 Graphical derivation
of the conservation equation
in the kinematic wave model
using vehicle trajectories and
a control volume
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other type of density-flow relation. The LWR model, was even introduced as Part 2
(Lighthill and Whitham 1955b) of a pair of articles, the first one titled ‘On kinematic
waves I: Flood movement in long rivers’ (Lighthill and Whitham 1955a).

4.1.1 Graphical Derivation

The vehicle conservation equation (4.1) can be derived using vehicle trajectories
in a control volume as illustrated in Fig. 4.1. The number of vehicles entering the
control volume (inflow) equals the number of vehicles leaving it (outflow). This can
be written as:

∫ x2

x1

ρ(t1, x) dx

︸ ︷︷ ︸
inflow from left

+
∫ t2

t1

q(t, x1) dt

︸ ︷︷ ︸
inflow from below

=
∫ x2

x1

ρ(t2, x) dx

︸ ︷︷ ︸
outflow to right

+
∫ t2

t1

q(t, x2) dt

︸ ︷︷ ︸
outflow to above

(4.2)

We decrease the control volume to an infinitesimal volume: x2 = x1+Δx → x1 and
t2 = t1 +Δt → t1. Because the volume is small, we may assume density ρ and flow
q are constant.1 Consequently,

∫ x2
x1

ρ(t, x)dx → ρ(t, x1)Δx and
∫ t2
t1

q(t, x)dt →
q(t1, x)Δt . Furthermore, rewriting (4.2) yields:

ρ(t1 + Δt, x) − ρ(t1, x)

Δt
+ q(t, x1 + Δx) − q(t, x1)

Δx
= 0 (4.3)

1This assumption is related to the continuum assumption, stating that the flow can be described as
if it were a continuum instead of individual particles. The validity of this assumption is discussed
in more detail in Sect. 7.1.1.
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We now recall the definition of the partial derivatives of f = f (y, z):

∂

∂y
f (y, z) = lim

Δy→0

f (y + Δy, z) − f (y, z)

Δy
,

∂

∂z
f (y, z) = lim

Δz→0

f (y, z + Δz) − f (y, z)

Δz
(4.4)

We apply this definition (4.4) to the infinitesimal control volume and find the
conservation equation (4.1).

4.1.2 Method of Characteristics

To solve the equations of the kinematic wave model, different methods can be
applied. We introduce the method of characteristics because it gives a good insight
into the behaviour of the model and into how the model can be extended for more
realistic results. Furthermore, Chap. 5 will discuss numerical methods that can be
applied in computer simulations.

4.1.2.1 Characteristics

An important property of any traffic flow model is the speed and direction of
information: if there is a discontinuity or a disturbance, at which speed does it travel
to influence other vehicles, and in which direction? Sometimes, it travels with the
vehicles, in other cases information will travel upstream, against the travel direction
of the vehicles.

In the kinematic wave model, it is relatively easy to analyse the characteristic
velocity. In this context, characteristics are lines of constant density. In general, in
partial differential equations, characteristics, or characteristic waves, or character-
istic curves, are curves in the (t, x) plane along which the equation simplifies in a
certain way. This touches upon an important difference between the kinematic wave
model and other non-linear hyperbolic partial differential equations, on one hand,
and linear constant-coefficient hyperbolic partial differential equations such as the
advection equation on the other hand:

∂ρ

∂t
+ v

∂ρ

∂x
= 0 (4.5)

In the advection equation (4.5), the characteristic velocity equals the flow velocity v

and characteristic curves are straight lines at which density is constant. However, in
the kinematic wave model (4.1), characteristic velocity depends on the actual traffic
state. To see this, we rewrite the conservation equation (4.1) in quasilinear form:

∂ρ

∂t
+ ∂q

∂x
= ∂ρ

∂t
+ dQ

dρ

∂ρ

∂x
= 0 (4.6)
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ρ

q

Q (ρ) = V = vfree

Q (ρ) > 0 V ≤ vfree

Qmax

vcrit

Q (ρ) < 0
V ≤ vcrit

V=0
ρcrit ρjam

free flow congestion

Fig. 4.2 Fundamental diagram with indication of characteristic velocities: in free flow, character-
istic velocities are positive, in the congestion branch, they are negative

Again, at the characteristic curves, density is constant. However, the characteristic
velocity does not always equal the flow velocity, instead it is:

dQ

dρ
= Q′(ρ) = V (ρ) + ρV ′(ρ) (4.7)

We note that the characteristic velocity thus equates to the slope of the Q(ρ)

fundamental diagram. Assuming a traditionally shaped continuous and concave
fundamental diagram (see Fig. 4.2) with an increasing free flow branch and a
decreasing congestion branch the following holds:

• At zero density (ρ = 0), vehicle velocity equals characteristic velocity:
dQ
dρ

∣
∣
∣
ρ=0

= V (0) = vmax.

• If traffic is in free flow (ρ ≤ ρcrit), then the slope of the characteristic curve is
positive and information moves in the same direction as the vehicles.

• If traffic is in congestion (ρ > ρcrit), then the slope of the characteristic curve is
negative and information moves in the direction opposite of the direction of the
vehicles.

4.1.2.2 Shock Waves

Characteristics, as described in the previous paragraph, can move in either direction:
upstream or downstream—backward or forward and at various speeds. Therefore,
if the above is applied in a naive way to an initial value problem with increasing
densities, characteristics may also intersect, see e.g. Fig. 4.3. An other way of
looking at this is shown in Fig. 4.4. The initial densities propagate at different
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Fig. 4.3 Example of intersecting characteristics and the creation of a shock wave. (a) Intersecting
characteristics (gray area). (b) Characteristics and shock wave (thick blue line). (c) Characteristics,
shock wave and vehicle trajectories (thick lines)
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Fig. 4.4 Example of focussing of a deceleration wave, resulting in (unrealistic) triple valued
solutions and a (realistic) shock. (a) Triple valued solution at t = t2 and t = t3. (b) Shock

speeds, leading to triple valued solutions. This is where shock wave theory comes
into play. Shock waves—also known as kinematic waves—are formed at the
boundary between characteristics that would otherwise intersect or lead to triple
valued solutions.

To calculate the velocity of a shock wave, we first observe that vehicles may—
and often do—travel at a velocity unequal to the shock wave velocity vshock.
Furthermore, the flux into the shock ρupstream(vupstream − vshock), must equal the
flux leaving the shock ρdownstream(vdownstream − vshock). Therefore, the velocity of
the shock wave is:

vshock = ρupstreamvupstream − ρdownstreamvdownstream

ρupstream − ρdownstream

= qupstream − qdownstream

ρupstream − ρdownstream
(4.8)
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Fig. 4.5 Example of ‘missing’ characteristics and the creation of a rarefaction wave. (a) Char-
acteristics (lines) and area with unknown characteristics (gray). (b) Characteristics, also in the
rarefaction wave area. (c) Characteristics and trajectories (thick lines)
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Fig. 4.6 Example of a rarefaction wave

4.1.2.3 Rarefaction Waves

Finally, it can also occur that characteristics move away from each other, yielding no
solution at all in certain areas, see e.g. Figs. 4.5 and 4.6. It occurs at a discontinuity
with a decreasing density in x-direction. This is where the concept of entropy
maximisation comes into play. In these areas, entropy maximisation yields that
vehicles drive as fast as possible, given the traffic state. This is also called the
‘drive impulse’ (Ansorge 1990). The traffic state at (t, x)—any point between the
characteristics emanating from either the downstream or the upstream region—can
now be determined by solving:

x − x0

t − t0
= Q′(ρ) (4.9)

with an initial discontinuity at (t0, x0). This equation has a unique solution if and
only if the Q(ρ) fundamental relation is strictly concave. If, however, it is concave,
but not strictly concave, the entropy condition states that the solution with the
highest flux is chosen, i.e. the state that corresponds to the state on the fundamental
diagram closest to capacity.
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Fig. 4.7 Example a rarefaction wave constructed using a smooth approximation of the initial
conditions (on the left) and of the fundamental diagram (on the right)

An other way to approach the issue with the lack of characteristics emanating
from the initial conditions, is to use a smooth approximation, see Fig. 4.7. A
discontinuity in the initial density at location x = 0 is approximated as:

ρ(0, x) =

⎧
⎪⎪⎨

⎪⎪⎩

ρupstream if x ≤ −ε
ρupstream+ρupstream

2ε
x if − ε < x < ε

ρdownstream if x ≥ ε

(4.10)

With small ε > 0. Note that if ε → 0, we get back a discontinuity, with on
one side ρ = ρupstream and on the other side ρ = ρdownstream. Furthermore, any
discontinuity in the differentiability of the fundamental relation, is approximated
as being continuously differentiable. For example, the bilinear fundamental relation
would be approximated as:

Q(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρvfree if ρ ≤ ρcrit − δ

Q̃(ρ) if ρcrit − δ < ρ < ρcrit + δ
ρcritvfree

ρjam−ρcrit
(ρjam − ρ) if ρ ≥ ρcrit + δ

(4.11)

With small δ > 0. Q̃(ρ) is chosen such that Q(ρ) is continuous and continuously
differentiable. If we now apply the method of characteristics, we find characteristics
with all slopes between vfree and − ρcritvfree

ρjam−ρcrit
emanating from the (now smoothened)

discontinuity at x = 0. And the expansion wave becomes apparent.
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4.1.2.4 Constructing Solutions

The method of characteristics as described above is applied to the typical test case
of a traffic light problem. It is formulated as an initial value on an infinitely long
road:

ρ(0, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x > 0

ρjam if − L < x ≤ 0

ρupstream if x ≤ −L

(4.12)

with L the length of the queue of vehicles waiting for the traffic light to turn green at
t = 0 and ρupstream < ρcrit the density upstream of the queue. See also Fig. 4.8a. To
simplify calculations, a bilinear fundamental diagram is applied. The solution—as
shown in Fig. 4.8—is constructed with the following steps:

1. Determine characteristic velocities at time t = 0.
2. Identify initial locations of shock and expansion waves.
3. Determine the shock wave velocity.
4. Find whether and where the shock wave and the expansion wave meet and the

behaviour after this.
5. Fill in all traffic states between the boundaries that were just determined.

Other typical problems that can be solved using the method of characteristics are
Riemann initial value problems and certain boundary value problems. The interested
reader is encouraged to practice with these cases in the problem set (Problems 4.1
and 4.2).

4.1.3 Simulation Results with the Kinematic Wave Model

The results of a simple simulation are shown in Fig. 4.9. The test case is the same
as used for microscopic models in the previous chapter, most notably Sect. 3.2.2.
It shows vehicles on a 800 meter long ring road. They are waiting in a queue of
length 200 meters until the first one starts driving at t = 0. They drive on a ring
road and thus the first vehicle essentially follows the last one. A linear-parabolic
fundamental diagram is applied, with parameters as in Table 4.1. Furthermore,
the table also shows the parameter values of the numerical method, an explicit
Lagrangian scheme. The relevance of the numerical method is discussed in Chap. 5.
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Fig. 4.8 Example of the application of the method of characteristics to a traffic light problem. (a)
Step 1: initial conditions (left), fundamental diagram (right) and characteristics (center). (b) Step
2: locations of shock and expansion wave. (c) Step 3: shock wave velocity and expansion wave. (d)
Step 4: after shock and expansion wave meet (X). (e) Step 5: solution in the form of traffic state
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Fig. 4.9 Simulation results with the kinematic wave model with parabolic-linear fundamental
diagram. The test case is a ring road, with an initial queue that dissolves, as described in Sect. 4.1.3.
The same results are presented in different ways. (a) Trajectories of ‘vehicle groups’: they are not
actual vehicle trajectories, but of groups of Δn ≈ 1.79 vehicles. The thick red trajectory is that of
the first vehicle group that starts driving at t = 0. The other trajectories (black) are of groups that
were waiting in a queue behind the first one. (b) Densities. (c) Speeds

Table 4.1 Parameter values
of the linear-parabolic
fundamental diagram and
numerical scheme applied to
the kinematic wave model

Maximum speed vmax 30 m/s

Critical speed vcrit
4
5vmax = 24 m/s

Jam density ρjam
1
7 ≈ 0.14 veh/m

Critical density ρjam
1
5ρjam ≈ 0.029 veh/m

Time step size Δt 1.5 s

Vehicle group size Δn ≈ 1.79

CFL number ν 0.9
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4.1.4 Critique and Adaptations of the Kinematic Wave Model

Because of its simplicity the LWR model has received both much attention and
critique. The model tree shows that this resulted in many offshoots. The main
drawback is that vehicles are assumed to attain the new equilibrium velocity
immediately after a change in the traffic state, which implies infinite acceleration.
This problem is addressed by:

higher order models with an added speed equation, see Sect. 4.3
bounded acceleration and hysteresis as extension to LWR, sometimes modelled

as a capacity drop, see Sect. 4.5

An other drawback of the LWR model is that breakdown (the transition from the
free flow regime to the congestion regime) always occurs at the same density and
leads to the same outflow after breakdown. This is addressed by:

heterogeneity by introducing different types of vehicles or drivers, driving accord-
ing to different fundamental diagrams, see Sect. 4.2

stochasticity using breakdown probabilities (Hoogendoorn et al. 2009) or via
other probability distributions (Jabari and Liu 2012, 2013) (not discussed in
detail in this book).

multi-lane kinematic wave models in which vehicle flow is separated into flows
on each lane and between the lanes—as opposed to a ‘single pipe flow’. The
multi-class model (Daganzo et al. 1997) is an example. Other multi-lane models
(Laval and Daganzo 2006; Jin 2010) are not discussed in detail in this book.

Finally, the approaches can be combined, for example by multi-class or higher order
models with capacity drop. We will not discuss these models in detail because
combining multiple extensions is usually rather straightforward and does not add
much extra theoretical insights. However, combining approaches can be useful to
obtain realistic simulation results for a wider range of applications and scenarios.

4.2 Multi-Class Kinematic Wave Models

In the last one to two decades, the branch of multi-class kinematic wave models has
developed quickly. This follows the earlier development of other types of multi-class
models (micro- and mesoscopic, higher-order macroscopic).

Multi-class kinematic wave models all consist of a system of conservation
equations. There is one conservation equation for each of the U classes:

∂ρu

∂t
+ ∂qu

∂x
= 0 (4.13)

with ρu the class specific density of class u, qu = ρuvu the class specific flow and
vu the class specific velocity. The class specific velocity is defined differently for
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each model, but they can all be cast into the following form:

vu = Vu(ρ1, ρ2, . . . , ρU ) (4.14)

This implies that the class specific velocity only depends on the current class specific
densities, and not on any previous state. Therefore, these models are classified as
kinematic wave models.

In the simplest—and oldest—multi-class kinematic wave models the speed
depends on the total density:

vu = Vu (ρ1, ρ2, . . . , ρU ) = Vu

(
U∑

u=1

ρu

)

(4.15)

Furthermore, the fundamental relation is scaled differently for each class, see
Fig. 4.10a:

vu = Vu

(
U∑

u=1

ρu

)

= vu,max

v1,max
V1

(
U∑

u=1

ρu

)

(4.16)
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Fig. 4.10 Typical density-speed fundamental diagrams of multi-class macroscopic models. The
precise definition of ‘density’ differs per model: it could be the total density

∑
u ρu, the weighted

sum of the class specific densities,
∑

u ηuρu , or even some other increasing density function
ρ(ρ1, ..., ρU ). (a) Basic multi-class model with scaled fundamental diagram. (b) Fastlane or cross
section of multi-dimensional fundamental diagram. (c) Three regime model. (d) Porous flow model
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The model tree shows that Wong and Wong (2002) were the first to introduce such
a multi-class kinematic wave model.

4.2.1 Multi-Dimensional Fundamental Diagram

Later models apply a multi-dimensional fundamental diagram, to include the
difference in length between the classes. Effectively, these models scale both axes
of the fundamental relation differently for each class. In the case of two classes,
this leads to a three dimensional fundamental relation (see Figs. 2.13(d), 4.10b). For
example, the fundamental diagram introduced by Chanut and Buisson (2003) is a
scaled version of the linear-parabolic fundamental diagram (2.3):

vu=Vu(ρ1, ρ2)

⎧
⎨

⎩

vu,max − vu,max−vcrit
ρcrit(ρ1,ρ2)

if ρ1+ρ2<ρcrit(ρ1, ρ2)

ρcrit(ρ1,ρ2)vcrit
ρjam(ρ1,ρ2)ρcrit(ρ1,ρ2)

(
ρjam(ρ1,ρ2)

ρ1+ρ2
− 1

)
if ρ1+ρ2≥ρcrit(ρ1, ρ2)

(4.17)

with state dependent (scaled) critical density and jam density, respectively:

ρcrit(ρ1, ρ2) = βρjam(ρ1, ρ2) and ρjam(ρ1, ρ2) = ρ1 + ρ2

L1ρ1 + L2ρ2
(4.18)

with β < 0.5 and L1 and L2 the gross vehicle lengths of class 1 and 2, respectively.
Therefore, when there are no vehicles of class 2 present (i.e. ρ2 = 0), then the jam
density parameter is the inverse of the vehicle length of class 1: ρjam(ρ1, 0) = 1/L1.
Similarly, when there are no vehicles of class 1, then ρjam(0, ρ2) = 1/L2.

4.2.2 Fastlane

Fastlane is an other offshoot in the branch of multi-class kinematic wave models
(van Lint et al. 2008; van Wageningen-Kessels et al. 2014). An ‘effective density’
is computed and this is used as input for the fundamental relation. The fundamental
relation now expresses the class specific velocity as a function of the effective
density, see Fig. 4.10b. The effective density is a weighted summation of all class
specific densities:

ρ =
∑

u

ηu(ρ)ρu (4.19)
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40 m
50 m

(a)

8 m 20 m

(b)

Fig. 4.11 Example illustrations of pce-values. Vehicles drive to the right, cars (short) and trucks
(long) are present. In both examples, the truck is longer than the car and the gap (distance between
two vehicles) is similar for cars and trucks. (a) Few vehicles with large spacings: free flow. The
space occupancy of a truck (50 m) is a bit higher than that of a car (40 m). This is because the gap
is much higher than the vehicle length and thus the vehicle length contributes relatively little to the
space occupancy. In this example, the pce value of a truck is ηtruck = 50/40 = 1.25. (b) Many
vehicles, with small spacings: congestion. The space occupancy of a truck (20 m) is much higher
than that of a car (8 m). This is because the truck is longer, but the gap is very similar for both cars
and trucks. In this example, the pce value of a truck is be ηtruck = 20/8 = 2.5

with ηu the state-dependent passenger car equivalent (pce) value:

ηu(ρ) = Lu + Tuvu(ρ)

L1 + T1v1(ρ)
(4.20)

The idea behind the pce value is as follows: Passenger cars have a pce value of 1.
Other pce values in Fastlane depend on the actual traffic state. The approach takes
into account that adding one truck into the mix, will have a larger effect on the flow
than adding one car. Furthermore, and this is unique for Fastlane, a truck takes up
more space than a car, but this effect is much larger at high densities and low speeds
than it is at low densities and high speeds. This is illustrated in Fig. 4.11.

We note that the presented formulation of Fastlane includes an implicit density
function (4.19): to calculate the density, the pce values need to be known, for
which the densities are needed (4.20). An alternative formulation of Fastlane that is
more practical to apply and more theoretically sound (because it does not have this
implicit self-reference)—albeit much more complicated at first sight—is presented
by van Wageningen-Kessels et al. (2014).
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4.2.3 Models with Three Regimes

A different approach to modelling the behaviour of classes that share a (multi-lane)
road is by assuming that the flow is always in a ‘lane distribution equilibrium’. In
this equilibrium, the vehicles distribute themselves over the lanes in such a way that
any other distribution would lead to lower speeds for at least one of the classes.
Furthermore, all vehicles drive as fast as possible, on the fraction of the road that is
available to them. The most simple of this type of models is the two-class and two-
lane model by Daganzo (2002). The terminology of ‘slugs’ (slow cars) and ‘rabbits’
(fast cars) is used. Slugs always stay on the outer lane. Rabbits can use both lanes
and chose among them based on a user equilibrium. This gives rise to 3 possible
‘regimes’, see also Fig. 4.10c:

free flow If there are few cars, fast cars will remain on the inner lane and drive at
their maximum speed.

semi-congestion If the number of fast cars increases slightly above the density
threshold for their maximum speed (critical density), then their speed decreases,
but they will stay in the inner lane.

congestion If the number of fast cars increases even more and their speed drops
below the maximum speed of the slow cars, there is no advantage anymore in
only staying in the inner lane. In fact, the fastest cars will start sharing the outer
lane with the slow cars. In this situation, both types of cars will drive at the same
speed.

This leads to the following density speed relationships:

v1 = v1,max, v2 = v2,max free flow, 2 pipe

v1 = w1

(
ρjam
ρ1

− 1
)

, v2 = v2,max semi-congestion, 2 pipe

v1 = v2 = w1w2
w1+w2

((
1
ρ1

+ 1
ρ2

)
ρjam − 1

)
congestion, 1 pipe

(4.21a)

with congestion wave speed:

wu = ρcritvu,max

ρjam − ρcrit
(4.22)

and ρjam and ρcrit per lane jam density and critical density, respectively. Traffic is
in 2 pipe free flow regime when ρ1 < ρcrit. It is in 2 pipe semi-congestion regime
when ρcrit ≤ ρ1 <

w1ρjam
v2,max+w1

. It is in 1 pipe congestion regime when ρ1 ≥ w1ρjam
v2,max+w1

.
Furthermore, it is assumed that ρ2 < ρcrit in the 2 pipe regimes and ρ2 < ρjam in the
1 pipe regime. Therefore, the slow cars will always stay in the outer lane and never
enter the inner lane.
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4.2.4 Porous Flow Models

The most recent multi-class kinematic wave model are the porous flow models. They
consider heterogeneous traffic on a two dimensional roadway. Small vehicles can
drive (‘creep’) through openings (‘pores’) between other vehicles. It is developed to
model disordered traffic flow with different types of vehicles such as cars, scooters
and bikes and without lanes. The main idea that if overall densities are low, large
vehicles with high maximum velocities (e.g. cars) are faster than smaller vehicles
with low maximum velocities (e.g. two-wheelers). However, when the road gets
busier, cars are less able to manoeuvre between the other vehicles and two-wheelers
are better able to maintain their velocity. The resulting 2-class model by Fan and
Work (2015) is very similar to previously developed models with a fundamental
diagram that is linear in the density-velocity plane:

vu =
(

1 − ρ

ρu,jam

)

vu,max (4.23)

However, class 1 (cars) has a speed in low densities, class 2 (scooters) has a higher
velocity in high densities: v1,max > v2,max and ρ1,jam < ρ2,jam, see also Fig. 4.10d.
Other examples of porous flow models (Nair et al. 2011; Gashaw et al. 2017) use
the same principles but their approach leads to fundamental diagrams with different
shapes. However, all porous flow models share the property that at low density one
class is faster, while at high density, an other class is faster.

4.2.5 Requirements of Multi-Class Models

Along the same lines of the requirements for fundamental diagrams (Sect. 2.3)
and microscopic models (Sect. 3.2.3), requirements for multi-class kinematic wave
models are proposed:

1. When the density reaches a certain threshold (which may depend on the traffic
composition), all class specific vehicle speeds are zero.

2. When a single vehicle of any class is added to the flow, neither of the class
specific speeds will increase.

3. Information travels at finite speed.
4. Information travels at a velocity not larger than that of vehicles.

The first two requirements are similar to the requirements put forward for fundamen-
tal diagrams in Sect. 2.3. Especially, the second requirements may seem obvious:
when there are more vehicles on the road, they drive slower (or certainly not faster).
However, it has been shown that not all multi-class models satisfy this requirements
(Van Wageningen-Kessels 2016). Furthermore, the last two requirements relate to
hyperbolicity and anisotropy, and ‘plausible driver behaviour’, like the requirements
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in Sect. 3.2.3. A traffic flow model is hyperbolic when it takes time for traffic at some
distance to an event, to react to that event: i.e. drivers do not react instantaneously,
but after a nonzero reaction time. Along the same lines, drivers only react to their
leaders and not to their followers. This is also called anisotropy, as discussed in more
detail in Sect. 4.3.1. Some of these requirements are not straightforward to check.
However, a step-by-step plan (Van Wageningen-Kessels 2016) can be followed.
Application of the plan shows that most models satisfy the requirements, but some
only conditionally.

4.3 Higher-Order Models

Higher-order models form the last branch of macroscopic traffic flow models. They
include an equation describing the acceleration (‘velocity dynamics’) towards the
equilibrium velocity described by a fundamental relation. In 1971, Payne derived
a macroscopic traffic flow model from a simple stimulus-response car-following
model. It yields a model consisting of a fundamental relation and two coupled partial
differential equations, hence the name higher-order model. The partial differential
equations are the conservation of vehicles equation (4.1) and an equation describing
the velocity dynamics:

∂v

∂t
+ v

∂v

∂x
= V (ρ) − v

τ
− c2

ρ

∂ρ

∂x
(4.24)

with V (ρ) the equilibrium velocity described by the fundamental relation and τ can
be interpreted as reaction or relaxation time, because of its relation with the reaction
time in the car-following model. c2 is a diffusion parameter and can for example be
chosen to be c2 = μ/τ μ the anticipation coefficient.

4.3.1 Critique on Higher Order Models

Daganzo (1995) has argued that higher-order models are flawed because they are
not anisotropic. The main implication of non-anisotropic models is that vehicles
may drive backward. To understand this, we note that the term ‘anisotropy’ in traffic
flow theory is used in a slightly different way than usual in fluid dynamics:

Isotropy The fluid flow has no directional preference, e.g. in a water flow, water
molecules react the same to their neighbouring molecules independent of in
which direction the other molecules are located.

Anisotropy in fluid flows There is a directional preference, e.g. a gravitational
force only acts in one direction.
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Anisotropy in traffic flows There is a directional preference and vehicles only
react on what is happening in front of them, not on what is behind them.

Non-anisotropy in traffic flows There may be a directional preference but vehicles
both react to changes in front and behind.

We use the definitions common to traffic flow. In an anisotropic traffic flow, vehicles
do not react to what happens behind them. This implies that if a vehicle is in a queue,
it does not matter whether there is an other vehicle behind them or not, it will just
stay in the queue and only start moving once the vehicles in front start moving. In
a non-anisotropic traffic flow, however, this same vehicle in a queue may behave
differently depending on what happens behind them. If there is no vehicle behind
them, in a non-anisotropic model, the vehicle may start to drive backward. This

is usually due to the diffusion term − c2

ρ
∂ρ
∂x

. An other property of non-anisotropic
traffic flow models is related to the characteristic velocity at low densities and high

vehicle speeds. In a non-anisotropic model, again the diffusion term − c2

ρ
∂ρ
∂x

causes
behaviour that is considered unrealistic, namely characteristics travelling faster than
the average vehicle speed. This is explored further in Problems 4.6 and 4.8.

The introduction of the concept of anisotropy in traffic flow by Daganzo (1995)
sparked a long debate on whether or not traffic flow models should be anisotropic, in
which Helbing (2009) gave the final contribution. Some authors (e.g. Zhang (2003))
argue that in multi-lane traffic, the average vehicle speed can be below the speed
of the fastest vehicles and therefore, those fastest vehicles can carry information
with them at a speed higher than the average vehicle speed. This would make
characteristics travelling faster than the average speed realistic on multi-lane roads,
as long as the characteristics are not faster than the fastest vehicles.

4.3.2 Anisotropic Higher Order Models

In the time Daganzo’s article was written, existing higher-order models were indeed
not anisotropic. The publication has lead to rapid developments of new higher order
models that resolve the problems by including an other speed equation. Probably
the most well-known of them is the ARZ model by Aw and Rascle (2000); Zhang
(2002) with:

∂v

∂t
+ v

∂v

∂x
= −c(ρ)

∂v

∂x
(4.25)

with c(ρ) = ρV ′(ρ) the ‘sound speed’: the speed at which a small perturbation
travels. In this and similar models, when parameters have been chosen reasonably,
characteristic waves can not be faster than vehicles. This is explored further in
Problems 4.6, 4.7 and 4.8. Extended versions of this model have been proposed
to include multiple classes or multiple lanes.
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4.3.3 Generic Higher Order Model

Lebacque et al. (2007) develop a generalized higher-order model (GSOM) that
includes the models such as those by Aw and Rascle (2000); Zhang (2002) as special
cases. It includes a ‘generic invariant’ I , which is attached to the vehicle stream and
could thus be seen as a property of a vehicle or driver: every vehicle may have a
different function Ĩ (t, x). The main idea is that Ĩ may depend on the actual traffic
state Ĩ (t, x) = I (ρ(t, x), v(t, x)), but this function I travels with the vehicles. For
example, I could model slow acceleration for some vehicles and fast acceleration
for others, and thus changing the fundamental diagram.

The generalized model is as follows:

∂ρ

∂t
+ ∂q

∂x
= 0 (4.26a)

∂

∂t
(ρI) + ∂

∂x
(qI) = −ρg(I) (4.26b)

I = I (ρ, v) (4.26c)

Note that only if f (I) = 0, the invariant is actually conserved over vehicle
trajectories. If the relaxation function f (I) is nonzero, than I is not conserved
but, depending on the choice of the relaxation function, it changes slowly. A slight
adaptation of the ARZ model is presented as a typical example within the GSOM
with the invariant the distance to the equilibrium fundamental relation:

I = v − V (ρ) (4.27)

and the relaxation term models acceleration/deceleration towards the equilibrium
fundamental relation:

g(I) = I

τ
(4.28)

For later reference, we note that the generic model (4.26) can be reformulated as
a system of conservation equations:

∂u
∂t

+ J(u)
∂u
∂x

= s(u) (4.29)

with state vector, Jacobian and source function, respectively:

u =
(

ρ

I

)

, J(u) =
(

dq
dρ

0

0 v

)

=
(

v + ρ dv
dρ

0

0 v

)

and s(u) =
(

0
−g(I)

)

(4.30)
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To see the equivalence between (4.26) and (4.29), we rewrite (4.26b):

ρ
∂I

∂t
+ I

∂ρ

∂t
+ q

∂I

∂x
+ I

∂q

∂x
= −ρg(I) (4.31)

Substitution (4.26) and dividing by ρ gives:

∂I

∂t
+ v

∂I

∂x
= −g(I) (4.32)

Combining (4.26) and (4.32) yields (4.29).
Furthermore, in certain cases, it is useful to rewrite the second term of (4.29) as

a partial derivative of the flux function f (u):

∂f (u)

∂x
= J(u)

∂u
∂x

=
(

dq
dρ

0

0 v

)
∂u
∂x

=
(

dq
dρ

∂ρ
∂x

v ∂I
∂x

)

(4.33)

This then yields the conservative form of (4.26):

∂u
∂t

+ ∂f (u)

∂x
= s(u) (4.34)

4.4 Moving Coordinates

Traditionally, macroscopic traffic flow models are formulated in the Eulerian—
fixed—coordinate system. This is also the approach that has been taken in this
chapter until now. In the fixed coordinate system, the independent variables are time
t and position x, see Fig. 4.12a. Traffic state variables, such as density, flow and
speed, are expressed as function of time and location. Discretizations are used in
simulations (more details in Chap. 5) and involve calculating the state variables on
fixed times and at fixed locations. However, this is not the only possible approach
and other approaches have some advantages.

4.4.1 The Lagrangian Coordinate System

Since the early 2000s several authors have developed macroscopic models formu-
lated in the Lagrangian—moving—coordinate system (Aw et al. 2002; Leclercq
et al. 2007; van Wageningen-Kessels et al. 2010). In the moving coordinate system,
the independent variables are time t and vehicle number n, see Fig. 4.12b. Traffic
state variables are expressed as function of time and vehicle number. This results in
the following conservation equation:

Ds

Dt
+ ∂v

∂n
= 0 (4.35)
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Fig. 4.12 Trajectories in Eulerian and Lagrangian coordinate system. (a) Eulerian coordinate
system with vehicle trajectories: vehicle number n increases over time t for a fixed position x.
(b) Lagrangian coordinate system with vehicle trajectories: position x increases over time t for a
fixed vehicle number n

Table 4.2 Comparison of
different formulations of the
kinematic wave model

Euler Lagrange

Coordinates (x, t) (n, t)

Main state variable ρ = −∂n/∂x s = −∂x/∂n

Fundamental relation q = Q(ρ) v = V (s)

Conservation equation ∂ρ
∂t

+ ∂q
∂x

= 0 Ds
Dt

+ ∂v
∂n

= 0

The conservation equation in Lagrangian formulation (4.35) can be understood
qualitatively by considering two vehicles: a leader and a follower. If the follower has
a higher velocity than the leader, the distance between the two vehicles decreases,
i.e. if ∂v/∂n > 0 then Ds/Dt < 0. The reverse is also true: if the follower is slower
than the leader the distance will increase.

For easy reference, the Eulerian and Lagrangian formulation of the kinematic
wave model are summarized in Table 4.2. The advantages of this moving coordinate
system include simpler extensions of the model in certain directions (e.g. including
bounded acceleration, see Sect. 4.5) faster and more accurate calculations (see
Sect. 5.4) and easier analysis of the models (Van Wageningen-Kessels 2016).
However, there is a third formulation of the kinematic wave model—the ‘T-
model’—that uses space and vehicle number as independent variables (Laval and
Leclercq 2013).
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4.4.2 Graphical Derivation

The Lagrangian conservation equation can be derived using a similar procedure as
the derivation of the kinematic wave model in Eulerian coordinates (Sect. 4.1.1).
Alternatively, the model can be derived analytically from the Eulerian formulation.
We focus on the graphical approach, which may be more intuitive and easy to
understand. In Problem 4.14, we encourage the interested reader to also study the
analytical approach, which is mathematically more rigorous.

In the Lagrangian case, the control volume is not rectangular as in Fig. 4.1 but it
is a platoon of Δn vehicles that is followed over a time Δt , as in Fig. 4.13. However,
the platoon is rectangular in the (t, n)-plane. The road length taken by this platoon
changes over time as it travels forward. On one hand, the original length at time t1
is increased by the distance traveled by the first vehicle n1. On the other hand, it is
decreased by the distance traveled by the last vehicle n2 = n1 + Δn. (Note again
the order of vehicles: vehicle n2 is behind vehicle n1.) This can be written as:

∫ n2

n1

s(t2, n)dn

︸ ︷︷ ︸
final length

=
∫ n2

n1

s(t1, n)dn

︸ ︷︷ ︸
initial length

+
∫ t2

t1

v(t, n1)dt

︸ ︷︷ ︸
distance first veh

−
∫ t2

t1

v(t, n2)dt .

︸ ︷︷ ︸
distance last veh

(4.36)

Again, by decreasing the control volume to an infinitesimal volume we may
assume spacing s and velocity v are constant within this volume. Consequently,

Fig. 4.13 Graphical
derivation of the conservation
equation in the kinematic
wave model in Lagrangian
coordinates, using vehicle
trajectories and a control
volume
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∫ n2
n1

s(t, n)dn → s(t, n)Δn and
∫ t2
t1

v(t, n)dt → v(t, n)Δt . Furthermore, rewriting
(4.36) yields:

s(t2, n1) − s(t1, n1)

Δt
+ v(t2, n2) − v(t2, n1)

Δn
= 0. (4.37)

We take an infinitesimal volume, that is: we let Δn → 0 and Δt → 0 in
(4.37). Furthermore, we use the definition of the partial derivative (4.4) to find the
Lagrangian conservation equation (4.35).

4.4.3 Generic Higher Order Model in Lagrangian Coordinates

The generic higher order model (4.26) lends itself well for reformulation in the
Lagrangian coordinate system. This is because the driver attribute I travels with the
vehicles and thus the model becomes:

Ds

Dt
+ ∂v

∂n
= 0, (4.38a)

DI

Dt
= −g(I), (4.38b)

v = V (s, I) (4.38c)

4.5 Bounded Acceleration, Hysteresis and Capacity Drop

One of the most common critiques on the LWR model is the underlying assumption
of instantaneous acceleration and deceleration. This implies, for example, that when
a vehicle leaves congestion and enters a free flow region, according to the LWR
model it would accelerate instantaneously to its free flow speed. This problem is
fixed in higher order models, however, also more direct ways to address it have been
introduced. These adaptations to the LWR model include bounded accelerations.
Usually, only acceleration is bounded because instantaneous deceleration proves to
be less of in issue in practise. However, the same techniques could be applied the
also limit deceleration.

4.5.1 Bounded Acceleration

It is most natural to introduce bounded acceleration in the Lagrangian coordinate
system. This is because the coordinates move with the vehicles and one can just
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limit their change in speed. This idea was introduced by Leclercq (2009) and
further developed by others including Calvert et al. (2015), Calvert et al. (2018).
The simplest version of a bounded acceleration model limits the acceleration by
explicitly requiring the speed to be as large as possible under the constraints of the
fundamental diagram and the bounded acceleration. I.e. speed v is maximised such
that both:

v ≤ V (1/s) and
∂v

∂t
≤ amax (4.39)

with amax > 0 the maximum acceleration.
The main advantage of doing this in the Lagrangian coordinate system lies in the

discretisation. This is because, very much like in a car-following model, trajectories
are calculated and the bounded acceleration condition makes them more smooth, as
in Fig. 4.14. The discretisation will be discussed in more detail in Chap. 5.

Alternatively, bounded acceleration can be introduced in the Eulerian coordinate
system, even though that is a bit more complicated. In such cases, the numerical
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Fig. 4.14 Simulation results with bounded acceleration and comparison of trajectories (zoomed)
with and without bounded acceleration. (a) Trajectories. (b) Densities. (c) Trajectories with
bounded acceleration (zoom of (a). (d) Trajectories without bounded acceleration (zoom of
Fig. 4.9a)
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Fig. 4.15 Fundamental relation with hysteresis: the black line is the original fundamental diagram,
that is active during deceleration. When traffic accelerates, however, one of the other branches—
with reduced flow and speed—is followed. (a) Density-flow: for model in Eulerian formulation.
(b) Speed-spacing: for model in Lagrangian formulation

solution method is altered to account for the capacity drop (Lebacque 2003;
Srivastava and Geroliminis 2013).

4.5.2 Hysteresis

An other way to model the hysteresis effect, is to include multiple branches in the
fundamental diagram: one congestion branch for deceleration and one (or even
more) for acceleration. Instead of using the speed in the original fundamental
diagram, in the acceleration phase, the speed is reduced to a lower branch, as
indicated in Fig. 4.15. It is recommended that the Lagrangian coordinate system
is applied for simulation (Yuan et al. 2017).

Problem Set

Method of Characteristics

Consider the following initial value problem. Initially, traffic state is as follows:

ρ(x, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x > 0

ρjam if − 200 ≤ x ≤ 0

0 if x < 200

(4.40)
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Furthermore, the LWR model is applied, in combination with a bilinear fundamental
diagram, with parameters as in Table 4.1, except for critical speed vcrit = vmax = 30
m/s.

4.1 Apply the method of characteristics to solve the initial value problem. Draw the
traffic states in the (t, x)-plane and answer the following questions:

1. At any t > 0, what is the velocity of the first vehicle that starts driving?
2. What is the velocity of the downstream front of the queue?
3. What is the velocity of the upstream front of the queue?
4. How long does it take for the queue to solve?

Consider the same problem as above, but now with – in addition to the prescribed
initial densities as in (4.40) – the following upstream boundary conditions:

q(400, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 < t < 6.67

ρcritvmax if 6.67 ≤ t ≤ 20

0 if t > 20

and

ρ(400, t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 < t < 6.67

ρcrit if 6.67 ≤ t ≤ 20

0 if t > 20

(4.41)

This can be interpreted as a platoon of vehicles that approaches the queue, for
example from a traffic light further upstream.

4.2 Apply the method of characteristics to solve the combined initial and boundary
value problem. Draw the traffic states in the (t, x)-plane.

Simulations

Simulations can give better insights into models. Sample code can be found on the
website (http://extras.springer.com) of this book.

4.3 Run a simulation to reproduce the results in Fig. 4.9.

4.4 Adapt the code to apply the bilinear fundamental diagram instead of the
parabolic linear one. Reflect on the results and comment on whether they are in
correspondence with the solution of problem 4.1.

4.5 Adapt the provided code in one or more of these directions:

• make the initial queue longer
• change parameter values of the model parameters (maximum speed, critical

speed, jam density, critical density)
• change to yet an other fundamental diagram

http://extras.springer.com
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Compare the results of different setups and write about your insights: is this more
(or less) realistic? Do you see other phenomena? Compare your results with those
in literature.

The reader is further encouraged to run different simulations in the problem set of
the next chapter, after introducing the numerical methods.

Higher Order Models

As discussed in Sect. 4.3, the Payne model ((4.1) and (4.24)) is not anisotropic,
while the ARZ ((4.1) and (4.25)) is. To calculate the characteristic velocities, the
models are reformulated into a system of equations (4.42):

∂u
∂t

+ J(u)
∂u
∂x

= f(u) (4.42)

with the state vector u =
(

ρ

y

)

, J (u) the jacobian matrix and f (u) the source term.

The variable y and the Jacobian matrix are different for each model. The eigenvalues
of the Jacobian matrix are the characteristic values.

4.6 Calculate the characteristic velocities of the Payne model by:

1. Define variable y, the Jacobian matrix J(u) and the source term f (u) such that
(4.42) defines the Payne model.

2. Determine the eigenvalues of the Jacobian matrix.

4.7 Calculate the characteristic velocities of the ARZ model.

4.8 Reflect on the difference between the Payne model and the ARZ model and on
why the first one is not anisotropic and the second one is.

An other popular model is the Aw-Rascle model (Aw and Rascle 2000) with the
following speed equation:

∂

∂t
(v + p(ρ)) + v

∂

∂x
(v + p(ρ)) = 0 (4.43)

with p(ρ) a ‘pressure term’. The (increasing) function p(ρ) can have different
forms, but p(ρ) = ρc with some constant c > 0 is considered as the prototype.

4.9 (Advanced) Calculate the characteristic velocities of the Aw-Rascle model.

4.10 (Advanced) Define the invariant I and the source function g(I) for the Aw-
Rascle model, i.e.: for which functions I (ρ, v) and g(I) in the generic higher order
model, is the Aw-Rascle model retrieved?
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4.11 (Advanced) Run a simulation to reproduce the results in Fig. 4.14.

4.12 (Advanced) Adapt the code to use the bilinear fundamental diagram and
reflect on how the results differ from the ones with the linear-parabolic fundamental
diagram, and from the ones without bounded acceleration.

4.13 (Advanced) Adapt the code to apply other maximum accelerations and reflect
on how the simulation results change.

The Lagrangian Coordinate System

The Lagrangian formulation of the LWR model (4.35) can be derived from its
Eulerian formulation (4.1). Therefore, the definition of spacing and the Lagrangian
time derivative are needed. The definition of spacing expresses spacing as the partial
derivative of the position x to vehicle number n:

s = 1

ρ
= −∂x

∂n
(4.44)

The minus sign results from the fact that vehicles are numbered opposite to the
driving direction. Furthermore, the Lagrangian time derivative is:

D

Dt
= ∂

∂t
+ v

∂

∂x
(4.45)

D/Dt is the partial derivative with respect to time in Lagrangian coordinates,
that is: the derivative with respect to time t with the other coordinate (vehicle
number n) fixed. As n-coordinates move with vehicle velocity, Dr/Dt is the rate
of change of some variable r as it is observed by a driver moving with velocity
v(n, t) = v(x(n), t) = ∂x/∂t . This implies that D/Dt is a directional derivative
in Eulerian coordinates: it is the derivative in the direction of the moving observer
(the driver). Both coordinates t and x change in this direction. Conversely, ∂/∂t is a
partial derivative in Eulerian coordinates and a directional derivative in Lagrangian
coordinates.

4.14 (Advanced) Derive the Lagrangian formulation of the LWR model from its
Eulerian formulation. Hint: Use (4.44) to redefine density as a partial derivative
and substitute it into the Eulerian conservation equation. After reordering the result,
substitute the Lagrangian time derivative (4.45) and apply the definition of spacing
once again.

The Lagrangian formulation can also be applied to higher order models and
multi-class kinematic wave models (van Wageningen-Kessels et al. 2010).
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4.15 (Advanced) Derive the Lagrangian formulation (4.38) of the generic higher
order model (4.26) or of a multi-class model.

Further Reading

Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from
microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

Lebacque JP, Mammar S, Haj Salem H (2007) Generic second order traffic flow modelling. In:
Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and traffic theory 2007. Elsevier,
Oxford, pp 755–776

Leclercq L, Laval J, Chevallier E (2007) The Lagrangian coordinates and what it means for first
order traffic flow models. In: Allsop RE, Bell MGH, Heydecker BG (eds) Transportation and
traffic theory 2007. Elsevier, Oxford, pp 735–753

Van Wageningen-Kessels FLM (2016) Framework to assess multi-class continuum traffic flow
models. Transp Res Rec J Transp Res Board 2553:150–160



Chapter 5
Numerical Methods for Continuum
Models

Numerical methods are used to approximate the solution of traffic flow models.
This is needed because in most realistic cases it is impossible to solve the problems
analytically. When a macroscopic model is applied, usually the space and time
domains are divided into intervals: road segments (grid cells) and time steps. For
each time step and at each grid cell the model equations are solved approximately
using numerical methods. The result is the density in each grid cell, at each
time step. Alternative methods are based on moving coordinates and will also be
discussed. In this chapter, the focus is on the numerical methods themselves, with
the main purpose that the reader should be able to apply the methods.

After reading this chapter the reader will understand the basics of applying
numerical methods to macroscopic traffic flow models. They can apply those
methods to the models and can argue about the impact of choices such as a fixed
vs. moving coordinate system and grid cell and time step size.

5.1 Finite Difference Methods and Time Stepping

To build efficient numerical methods for traffic flow simulations, it is often useful to
write the model in conservative shape, as in (4.34):

∂u
∂t

+ ∂f (u)

∂x
= s(u) (5.1)

Most—if not all—models from the previous chapter fit into this framework.
Finite difference methods (FDM’s) are often applied to solve such partial differ-

ential equations. In their most basic form, they approximate the spatial derivatives
by dividing the difference in value by the distance, as illustrated in Fig. 5.1.
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Fig. 5.1 Examples of FDM approximation of the slope of u at location xi . (a) Upwind method
u′(xi ) ≈ u(xi )−u(xi−1)

xi−xi−1
. (b) Downwind method u′(xi ) ≈ u(xi+1)−u(xi )

xi+1−xi
. (c) Central method: u′(xi ) ≈

u(xi+1)−u(xi−1)

xi+1−xi−1

5.1.1 Explicit Time Stepping

Usually, an explicit time stepping scheme is applied. The basic idea is that it is
assumed that the current state determines the flow for the duration of the whole time
step. Applying the explicit time stepping method to the generic continuum traffic
flow model (5.1) gives:

uk+1 − uk

Δt
+
(

∂f (u)

∂x

)k

≈ (s(u))k (5.2)

with superscript k a time indicator: uk is the vector u at time t and uk+1 is the vector
u at time t + Δt . Rewriting gives:

uk+1 ≈ uk + Δt

[

−
(

∂f (u)

∂x

)k

+ (s(u))k

]

(5.3)

In contrast, an implicit scheme would solve (5.2) but with the terms ∂f (u)
∂x

and
s(u) approximated at time step k + 1 instead of k. This approach leads to more
complicated equations to be solved each time step, but the time steps themselves
can be larger. Especially when combined with moving coordinates, this approach
seems useful, but very little research has been done (van Wageningen-Kessels et al.
2009).

5.1.2 First Order Finite Difference Methods

Combining the above, the generic continuum traffic flow model (5.1) is discretised
with uk

i the numerical approximation of the state vector u(xi, t
k) at location xi
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and time tk and with fki = f (uk
i ) and sk

i = s(uk
i ) the approximated flow and

sink/source, respectively, at this location and time. Applying the first order finite
difference methods with explicit time stepping gives:

Upwind method

uk+1
i = uk

i − Δt

Δx

(
fki − fki−1

)
+ Δtsk

i (5.4)

Downwind method

uk+1
i = uk

i − Δt

Δx

(
fki+1 − fki

)
+ Δtsk

i (5.5)

Central method

uk+1
i = uk

i − Δt

2Δx

(
fki+1 − fki−1

)
+ Δtsk

i (5.6)

As can be seen from the equations and Figs. 5.1 and 5.2, information from either
upwind, downwind, or both is used to update the state vector u. However, as dis-
cussed in Sect. 4.1.2, characteristics can move in both directions. Therefore, in some
cases—when information travels downstream—an upwind method is appropriate,
while in other cases—when information travels upstream—a downwind method is
appropriate. And in yet other cases, when some characteristics move downstream
and others upstream, it may be best to use information from both directions and
apply a central method. However, it is difficult—if not impossible—to determine
beforehand which method would be best. Therefore, other methods that swap
directions whenever needed have been developed. Such a method, the minimum
supply method, is discussed later.
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Fig. 5.2 Illustration of application of the finite difference methods in traffic flow models. (a)
Upwind. (b) Downwind. (c) Central
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5.1.3 Stability of Numerical Methods

Explicit time stepping methods are known to pose rather strict stability conditions.
Time step sizes can not be too large, or the numerical method becomes unstable and
results very unrealistic. There are different types of instability, that are relevant to
different types of models and numerical methods. The most important one—that is
relevant for any macroscopic traffic flow model in Eulerian formulation with explicit
time stepping—is prevented by setting the time step size and grid cell size such that
the Courant-Friedrichs-Lewy (CFL) number (Courant et al. 1967) ν satisfies:

ν := Δt

Δx
max

∣
∣
∣
∣
dQ

dρ

∣
∣
∣
∣ ≤ 1 (5.7)

Most (realistic) density-flow fundamental relations are steepest at zero density and
thus the maximum slope in absolute terms is equal to the maximum velocity:
max ‖dQ/dρ‖ = vmax. Consequently, the CFL-condition can be interpreted as
follows: within a time step, a vehicle can not cross more than the length of one
cell.

5.2 Minimum Supply Demand Method for Kinematic Wave
Models

The minimum supply demand method is widely used as a numerical method for
the kinematic wave model. In 1994 Daganzo introduces the cell transmission model
as a spatially and temporally discrete version of the LWR model. Lebacque (1996)
describes the cell transmission model as a minimum supply demand method. The
method is illustrated in Fig. 5.3a. This method applies explicit time stepping: within
a cell and during a time step the density, flow and velocity are assumed to be
constant. Each time step k, a fraction of the vehicles in the cell is transmitted to
the adjacent downstream cell. The new density ρk+1

j = ρ(jΔx, (k + 1)Δt) of each
cell j is calculated as follows:

ρk+1
j = ρk

j + Δt

Δx

(

qk

j− 1
2

− qk

j+ 1
2

)

(5.8a)

with qk

j− 1
2

the inflow into and qk

j+ 1
2

the outflow out of cell j :

qk

j− 1
2

= min
(
δk
j−1, σ

k
j

)
(5.8b)
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Fig. 5.3 Discretization of the LWR model in Eulerian and Lagrangian formulation. (a) Eulerian
formulation: the minimum supply demand method leads to upwind and downwind discretization.
The discretization uses the number of vehicles in each cell (ρΔx) and the number of vehicles
travelling from one cell to the next (min(δΔt, σΔt)). (b) Lagrangian formulation: upwind
discretization. The discretization uses the road length taken by each vehicle group (sΔn) and the
distance travelled by each group (vΔt)

δk
j the demand:

δk
j =

{
qk
j if ρk

j ≤ ρcrit

qmax if ρk
j > ρcrit

(5.8c)

σk
j the supply:

σk
j =

{
qmax if ρk

j ≤ ρcrit

qk
j if ρk

j > ρcrit
(5.8d)

and qk
j = Q(ρk

j ) the flow from the fundamental relation. Demand δk
j can be

interpreted as the number of vehicles per time unit that want to flow from cell j

to cell j + 1 during the time step k. Supply σk
j can be interpreted as the number of

vehicles per time unit that can be fitted in the j -th cell during time step k. Demand
and supply are plotted in Fig. 5.4 together with the fundamental relation. Figure 5.5
shows simulation results for the simple test problem as described in Sect. 4.1.3. The
model parameters, as well as the numerical settings are presented in Table 5.1. We
note that these settings are equal to the ones applied in Chap. 4 (see Table 4.1).
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Fig. 5.4 Example of a fundamental relation (flow, solid line) with demand (broken line) and
supply (broken line) as function of density. (a) Demand. (b) Supply

5.3 Methods for Higher Order Models

The basic methods in Sect. 5.1 and the minimum supply demand scheme (Sect. 5.2)
can be applied to higher order models as well. However, the flux functions or supply
and demand functions have to be adapted differently for each type of higher order
model. Therefore, other methods are usually preferred.

The MacCormack method is one of the most popular. It consists of a predictor
and a corrector step, which look as follows when applied to the generic continuum
traffic flow model (5.1):

ũk+1
i = uk

i − Δt

Δx

(
fki − fki−1

)
+ Δtsk

i (predictor) (5.9)

uk+1
i = 1

2

[

ũk+1
i + uk

i − Δt

Δx

(
f̃
k+1
i+1 − f̃

k+1
i

)
+ Δt s̃k+1

i

]

(corrector) (5.10)

The basic idea behind the MacCormack method is that in the predictor step the
upwind method with explicit time stepping is applied. But then after that, its result
is averaged in the corrector step with the new state as if it was calculated using an
implicit time stepping method. Furthermore, in the ‘implicit’ time step (corrector),
a downwind FDM is used.

The MacCormack method is convectively stable if the CFL condition (5.7) is
satisfied. This is a sufficient stability condition if the sink/source term s(u) is
nonzero because it dampens out numerical oscillations. When applied to a model
with zero sink/source term, there is no damping and the method easily becomes
unstable. In that case, the CFL number must be reduced, e.g. by reducing the
time step size (Helbing and Treiber 1999). An other way to overcome this issue
is to add an artificial variable w that suppresses oscillations (Delis et al. 2014),
Mohammadian and van Wageningen-Kessels FLM (2018).
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Fig. 5.5 Simulation results with the kinematic wave model with parabolic-linear fundamental
diagram. The test case is a ring road, with an initial queue that dissolves, as described in Sect. 4.1.3.
The Godunov and the Lagrangian numerical method are applied. (a) Densities, minimum supply
demand method. (b) Speeds, minimum supply demand method. (c) Densities, minimum supply
demand method (small time step). (d) Speeds, minimum supply demand method (small time step).
(e) Densities, Lagrangian method. (f) Speeds, Lagrangian method
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Table 5.1 Parameter values
of the linear-parabolic
fundamental diagram and
numerical scheme applied to
the kinematic wave model

Model parameters

Maximum speed vmax 30 m/s

Critical speed vcrit
4
5 vmax = 24 m/s

Jam density ρjam
1
7 ≈ 0.14 veh/m

Critical density ρjam
1
5 ρjam ≈ 0.029 veh/m

Minimum supply demand method

Time step size Δt 1.5 s

Grid cell size Δx ≈ 44.4

CFL number ν ≈ 0.988

Minimum supply demand method with small time steps

Time step size Δt 0.3 s

Grid cell size Δx ≈ 8.99

CFL number ν ≈ 0.999

Lagrangian method

Time step size Δt 1.5 s

Vehicle group size Δn ≈ 1.79

CFL number ν 0.9

5.4 Lagrangian Simulation Methods

The Lagrangian formulation of macroscopic traffic flow models can be used to
create efficient simulation methods, based on an upwind finite difference scheme.
Recall that, in the Lagrangian formulation vehicle number n is an independent
variable. Consequently, in the discretization, vehicles are partitioned into groups of
Δn vehicles, instead of dividing the road into cells (Fig. 5.3b). Just as n, Δn is not
necessarily integer, it can take any real, positive value. Again, time is partitioned into
time steps of size Δt . Each time step k, each vehicle group i is moved downstream.
(Or, if traffic is in complete stop, the vehicle group remains at its position.)

5.4.1 Lagrangian Method for the LWR Model

When applied to the LWR model, the following upwind discretization calculates the
new position of vehicle group i:

sk+1
i = sk

i + Δt

Δn

(
vk
i−1 − vk

i

)
(5.11)

with vk
i = V (sk

i ) the velocity obtained from the fundamental relation.
The CFL-number is ν and the condition for stability and convergence is:

ν := Δt

Δn
max

∣
∣
∣
∣
dV

ds

∣
∣
∣
∣ ≤ 1 (5.12)
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Most (realistic) spacing-velocity fundamental relations are steepest at jam spacing.
For example, in the linear-parabolic fundamental relation (2.3) and Fig. 2.5:

max

∣
∣
∣
∣
dV

ds

∣
∣
∣
∣ = vcrit

scrit − sjam
= wρjam = w

sjam
(5.13)

Consequently, the CFL-condition can be interpreted as follows. It limits the distance
a vehicle groups can travel downstream within one time step. In fact, the distance
between its new position (xk+1

i ) and the old position of the leading vehicle group
(xk

i−1) is at least the characteristic velocity in jam times the time step size: wΔt . To

put it precisely: xk
i−1−xk+1

i ≥ wΔt . This implies that even the fastest characteristics
in the (t, n) plane, namely the characteristics related to jam, are traced with the
upwind method.

Simulation results using this method were already presented in the previous
chapter (Fig. 4.9). For easy comparison, they are also included in this chapter
(Fig. 5.5).

5.4.2 Simplified Lagrangian Simulation and Car-Following
Models

Finally, the discretised model can be simplified to:

xk+1
i = xk

i + Δtvk
i = xk

i + ΔtV (sk
i ) (5.14)

The velocity during the k-th time step vk
i is determined using the fundamental

relation and an upwind discretisation of the spacing:

sk
i = xi−1 − xi

Δn
(5.15)

This simplified method can be interpreted as follows: the new position of group i is
its old position plus the distance it travels during the k-th time step: Δtvk

i . This
formulation also shows the close relation between the Lagrangian discretisation
of macroscopic traffic flow models and simple car-following models, which also
calculate the new position using the old position and the speed as input. This
formulation is applied by Leclercq et al. (2007) to show the equivalence between
the LWR model and the simplified car-following model by Newell (2002) under the
following conditions:

• the fundamental relation q(ρ) is triangular
• the CFL-condition (5.12) is satisfied as an equality
• the vehicle group size Δn = 1
• time parameter τ (which may be interpreted as reaction time) equals time step

size τ = Δt
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Therefore, the Lagrangian coordinate system does not only lead to more efficient
numerical methods, it also makes the coupling between macroscopic and micro-
scopic regions in a hybrid model easier, as we will discuss in more detail in the next
chapter (Sect. 6.3).

5.4.3 Characteristics and Numerical Methods

When comparing the minimum supply demand method (5.8) with the Lagrangian
method (5.14) the difference is striking: the latter looks much less complicated. This
is related to the characteristic speeds. To clarify this, let us recall the characteristic
speed in the Eulerian formulation of the LWR model:

dq

dρ
= Q′(ρ) (5.16)

The characteristic speed (5.16) was derived using a reformulation of the conser-
vation equation in Eulerian coordinates (4.6). The same type of reformulation in
Lagrangian coordinates gives:

Ds

Dt
+ ∂v

∂n
= 0 ⇒ Ds

Dt
+ dv

ds

∂s

∂n
= 0 (5.17)

In the Lagrangian formulation, the characteristic speed is thus:

ds

dv
= V ′(s) (5.18)

We now note that the characteristic speed in the Eulerian formulation (5.16) can be
both positive (in free flow) or negative (in congestion). The characteristic speed
in the Lagrangian formulation (5.18), however, is always nonnegative (for any
reasonable fundamental diagram). Therefore, characteristics move in the direction
of increasing vehicle number. This fact is used in the Lagrangian simulation method:
it is simply an upwind method and there is no need to switch between upwind and
downwind as in the minimum supply demand method.

The Lagrangian formulation yields similar benefits for numerical methods for
anisotropic higher order models. However, it must be noted that for non-anisotropic
models, some characteristics may be faster than vehicles and the Lagrangian
simulation method will thus not be able to reproduce the fastest characteristics.
Furthermore, road inhomogeneities such as intersections and ramps are more
straightforward to implement in the Eulerian coordinate system, even though
Lagrangian methods have been developed as well (van Wageningen-Kessels et al.
2013).
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5.4.4 Lagrangian Methods for Higher Order Models

The Lagrangian coordinate system can also yield more efficient numerical methods
for higher order models. We recall the GSOM in the Lagrangian coordinate system
(4.38)

Ds

Dt
+ ∂v

∂n
= 0,

DI

Dt
= −g(I), v = V (s, I) (5.19a)

with spacing s = 1/ρ and driver attribute I . Using the same discretisation approach
as for the LWR model, we find:

Ik+1
j = Ik

j − Δtg(Ik
j ), xk+1

j = xk
j + Δtvk

j (5.20a)

vk
j = V

(
sk
j , I k

j

)
, sk

j = xk
j−1 − xk

j

Δn
(5.20b)

For stability, the CFL condition has to be satisfied:

ν = Δt

Δn
max
s,I

∣
∣
∣
∣
dV (s, I)

ds

∣
∣
∣
∣ ≤ 1 (5.21)

Note that the CFL number thus depends on the maximum slope of the fundamental
relation, for density (or spacing s) and value of the attribute I . For more details we
refer the interested reader to Khelifi et al. (2016).

5.4.5 Discretisation of Bounded Acceleration

The Lagrangian formulation is well suited for simulation of bounded acceleration.
In this case, the speed is not only determined by the fundamental relation, but it
is also limited from above by the maximum acceleration. Extending the simplified
discretised model (5.14) yields:

xk+1
j = xk

j + Δt min
{
V
(
sk
j

)
, vk−1

j + Δtamax

}
(5.22)

Simulation results with this method are shown in the previous chapter (Fig. 4.14).

5.5 Variational Theory and Link Transmission Models

An alternative approach to numerically solve the kinematic wave model, is to use
variational theory. Assuming a bilinear fundamental diagram, it exploits the fact
that information can only travel at two velocities: either downstream at free flow
speed, or upstream at congestion wave speed. This is used to calculate the vehicle
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Fig. 5.6 Illustration of main
principle of variational theory
for traffic flow: NB can be
calculated from NA and the
number of trajectories
between A and B

time

po
si
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count number of trajectories

number n at the nodes connecting homogeneous sections of road. Just as in the
Lagrangian formulation of the kinematic wave model, the vehicle number n can
take any value—not necessarily integer. Furthermore, as discussed before, from the
vehicle number, other variables can be derived, e.g. using Edie’s definitions (see
Sect. 1.3.2).

For a more detailed discussion of variational theory, we refer to Newell (1993),
Daganzo (2006). Here, we restrict ourselves to its application in the Link Trans-
mission Model (LTM) (Yperman 2007; Gentile 2010). The application of LTM to
determining the vehicle number N(x, t) at a node at location x and at time t consists
of calculating the following:

1. The sending and receiving flows: δ and σ , respectively
2. The transition flow: f

3. The cumulative vehicle number: N

The interpretation of the sending and receiving flows are very similar to the demand
and supply in the minimum supply demand method (Sect. 5.2): the sending flow
is the number of vehicles in the upstream link that can reach the node (like the
demand), the receiving flow is the number of vehicles that the upstream link can
still accommodate (like the supply). Because of this similarity, we use the same
symbols. However, they are calculated differently.

The principal idea of variational theory for traffic flow is illustrated in Fig. 5.6.
The cumulative vehicle number at location B, NB = N(xB, tB) can be calculated
once two things are known:

1. the cumulative vehicle number at location A, NA = N(xA, tA), and
2. the number of trajectories between A and B.

This can also be used to calculate the sending and receiving flows. This is illustrated
in Fig. 5.7 and results in:

δ(xj−1/2, t) = min

[

N

(

xj−1, t + Δt − Li−1/2

vmax

)

− N
(
xj , t

)
,ΔtQi−1/2

]

(5.23)
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Fig. 5.7 Illustration of how the sending and receiving flows are calculated. Grey lines indicate
possible vehicle trajectories. (a) Sending flow can not be larger than the number of vehicles that
passes between (xj , t) and (xj , t + Δt). The maximum number of vehicles passes when they pass
at maximum speed. Therefore, the sending flow does not exceed the number of vehicles passing
between (xj , t) and (xj , t∗), with t∗ = t +Δt −Lj−1/2/vmax. (b) Receiving flow can not be larger
than the number of vehicles that passes between (xj , t) and (xj , t +Δt) if the area is in congestion.
Furthermore, the number of vehicles between (xj+1, t

∗) (with t∗ = t + Δt − Lj+1/2/w) and
(xj , t +Δt) is ρjamL. The proof is left as an exercise. Therefore, the receiving flow can not exceed
N
(
xj+1, t

∗) + ρjamL − N(xj , t)

σ (xj+1/2, t) = min

[

N

(

xj+1, t + Δt − Li+1/2

w

)

+ ρjamLi+1/2 − N
(
xj , t

)
,ΔtQi+1/2

]

(5.24)

In most cases, the cumulative vehicle numbers N
(
xj−1, t + Δt − Li−1/2

vmax

)
and

N
(
xj+1, t + Δt − Li+1/2

w

)
need to be interpolated. A straightforward way to do

this is to use a linear approximation at the location x∗ = xj−1 or x∗ = xj+1 at time
t∗ ∈ (t0, t0 + Δt):

N(x∗, t∗) = (1 − α)N(x∗, t0) + αN(x∗, t0 + Δt) (5.25)

with α = (t∗ − t0)/Δt .
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Subsequently, the transition flows are the minimum of sending and receiving
flows:

f (xj , t) = min[δ(xj−1/2, t), σ (xj+1/2, t)] (5.26)

And the new cumulative vehicle number is:

N(xj , t + Δt) = N(xj , t) + f (xj , t) (5.27)

Finally, this version of the LTM needs to satisfy a CFL condition for numerical
stability:

ν := Δt

minj (Lj+1/2)
vmax ≤ 1, (5.28)

In most cases the link length Lj+1/2 is relatively large (larger than Δx in the
minimum supply demand method) and therefore, time steps can also be large,
resulting in fast simulations. Moreover, more efficient, iterative methods have been
developed that can be applied with even larger time step sizes (Himpe et al. 2016).
They are similar to implicit time stepping methods as discussed in Sect. 5.1.

Problem Set

Godunov Method for LWR

Simulations can give better insights into numerical methods. Sample code can be
found on the website (http://extras.springer.com) of this book.

5.1 Run a simulation to reproduce the results in Fig. 5.5a, b.

5.2 Adapt the provided code in one or more of these directions:

• change the time step size: how do the results change for a smaller time step? And
what happens if you increase the time step size?

• change the CFL number: how do the results change for a smaller CFL number?
And what happens if you increase the CFL number?

Compare the results of different setups and write about your insights. Do the results
look more or less accurate? Compare your results with those in literature.

Lagrangian Method for LWR

5.3 Run a simulation to reproduce the results in Fig. 5.5e, f.

http://extras.springer.com
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5.4 Adapt the provided code in the same way as you did in Problem 5.2. Compare
the results of different setups and write about your insights. Also compare the results
with those obtained with the minimum supply demand method. Do the results look
more or less accurate? Compare your results with those in literature.

Lagrangian Method for Bounded Acceleration and Higher
Order Models

5.5 Run a simulation to reproduce the results in Fig. 4.14.

5.6 (Advanced) Adapt the provided code in one or more of these directions:

• apply a higher order model (e.g. the ARZ model)
• change parameter values of the model parameters (maximum speed, critical

speed, jam density, critical density, delay time)
• change the time step size or CFL number

Compare the results of different setups and write about your insights: is this more
(or less) realistic? Do you see other phenomena? Compare your results with those
in literature.

LTM

Refer to Fig. 5.7b.

5.7 Show that the number of vehicles between (xj+1, t
∗) and (xj , t + Δt) equals

ρjamLj+1/2.

Further Reading

Delis A, Nikolos I, Papageorgiou M (2014) High-resolution numerical relaxation approximations
to second-order macroscopic traffic flow models. Transport Res C Emerg Technol 44:318–349

Khelifi A, Haj-Salem H, Lebacque JP, Nabli L (2016) Lagrangian discretization of generic second
order models: Application to traffic control. Appl Math Inf Sci Int J 10(4):1243–1254

LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied
mathematics, Cambridge University Press, Cambridge

Mohammadian S, van Wageningen-Kessels FLM (2018) An improved numerical method for
simulation of Aw-Rascle type second-order continuum traffic flow models. Transp Res Rec
J Transp Res Board

Yperman I (2007) The link transmission model for dynamic network loading. PhD thesis,
Katholieke Universiteit Leuven



Chapter 6
Mesoscopic Models

Mesoscopic traffic flow models were developed to fill the gap between the family
of microscopic models that describe the behavior of individual vehicles and the
family of macroscopic models that describe traffic as a continuum flow. Traditional
mesoscopic models describe vehicle flow in aggregate terms such as in probability
distributions. However, behavioral rules are defined for individual vehicles. The
family includes headway distribution models, cluster models, gas-kinetic models
and macroscopic models derived from them. Most recently, hybrid mesoscopic
models have appeared as a new branch on the tree: they combine microscopic and
macroscopic models.

After reading this chapter, the reader will understand the basics of the traditional
mesoscopic models: headway distribution models, cluster models and gas-kinetic
models. Furthermore, they will understand the basics of hybrid modelling, including
interface modelling and the moving coordinate system applied to hybrid models, and
are able to argue about its advantages.

6.1 Headway Distribution Models and Cluster Models

Headway distribution models calculate traffic flows using time headways. The time
headways are identically distributed independent random variables. The models are
part of the mesoscopic family because they describe the distribution of headways of
individual vehicles, while they do not explicitly trace the individual vehicles. These
models are particularly well-suited to describe stochasticity (Li and Chen 2017).
Examples are Buckley’s semi-Poisson model (1968) and the generalized queueing
model (Branston 1976).

Cluster models describe traffic flow as a flow of clusters of vehicles. Each cluster
consists of multiple vehicles and within each cluster flow properties such as velocity
and headway are assumed to be homogeneous. Clusters can emerge, for example,

© Springer International Publishing AG, part of Springer Nature 2019
F. Kessels, Traffic Flow Modelling, EURO Advanced Tutorials
on Operational Research, https://doi.org/10.1007/978-3-319-78695-7_6
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as an accumulation of vehicles behind a slow vehicles when overtaking possibilities
are limited. Clusters can grow or decay. The most popular and famous cluster model
is the one by Mahnke and Kühne (2007).

Since both headway distribution models and cluster models do not seem popular
nowadays, we do not go into more detail here.

6.2 Gas-Kinetic Models

Gas-kinetic models were developed in analogy to models describing the motion of
large numbers of small particles (atoms or molecules) in a gas. When applied to
traffic flow, these models describe the dynamics of velocity distribution functions
of vehicles. Prigogine and Andrews (1960), Prigogine (1961) first introduce gas-
kinetic models describing traffic flow by the following partial differential equation:

∂ρ̃

∂t
+ v

∂ρ̃

∂x
=
(

∂ρ̃

∂t

)

acceleration
+
(

∂ρ̃

∂t

)

interaction
(6.1)

with ρ̃ the reduced phase-space density which can be interpreted as follows. At time
t , the expected number of vehicles between location x and x + dx that drive with
a velocity between v and v + dv is the integral of the reduced phase-space density
over this two-dimensional area:

expected # of veh’s in [x, x + dx) with velocity in [v, v + dv)

=
∫ x+dx

x

∫ v+dv

v

ρ̃(x, v, t) dx dv ≈ ρ̃(x, v, t) dx dv (6.2)

where the approximation holds in the limit for an infinitesimal area with dx → 0 and
dv → 0. Or, in other words, the reduced phase-space density is the expected number
of vehicles in a small interval around location x, that travel with speed close to v at
time t . The left-hand side of (6.1) consists of a time derivative and an advection term
describing the propagation of the phase-space density with the vehicle velocity. At
the right-hand side there is an acceleration term describing the acceleration towards
the equilibrium velocity. The other term at the right-hand side is an interaction term,
or collision term, describing the interaction between nearby vehicles.

6.2.1 Generic Gas-Kinetic Model

Paveri-Fontana (1975) improves this gas-kinetic model by relaxing the assumption
that the behavior of nearby vehicles is uncorrelated, which results in an adapted
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interaction term. In the mid 1990s a revival of gas-kinetic models started with the
development of multi-lane, multi-class and generic models (Helbing 1997; Hoogen-
doorn and Bovy 2001). The generic model includes a distinction between lanes,
user classes, state-of-driving (free flow or platooning), flow direction, destination,
desired speed, angle of movement and acceleration time). As such, the authors claim
that it can also be used to model other types of particle flow, including (multi-
dimensional) pedestrian flows.

We limit ourselves to the generic model as proposed by Tampère et al. (2003).
It includes the reduced phase-space density as in (6.2) but more variables are
considered. S = (s1, s2, . . . , sn) is the state vector and could include, not only
velocity and position, but also any of the other variables mentioned before such
as lane, user class, desired velocity, etc. The generic dynamical equation for the
reduced phase-space density is:

∂ρ̃

∂t
+ ∇S ·

(

ρ̃
dS

dt

)

=
(

dρ̃

dt

)

events
(6.3)

with the nabla operator on the state vector:

∇S =
(

∂

∂s1
,

∂

∂s2
, . . . ,

∂

∂sn

)

(6.4)

The reduced phase-space density ρ(t, S) ·dS can now be interpreted as the expected
number of vehicles in a state ‘close to’ S.

6.2.2 Continuum Gas-Kinetic Models

Gas-kinetic models are usually not applied in simulations as such because they are
computationally expensive. Instead, a continuum traffic flow model is derived and
simulations are based on this continuum model.

The method of moments uses integration of the gas-kinetic traffic flow model
(6.1) to find a continuum model. The reformulation in a continuum model, reduces
some of the accuracy of detail in the model. However, its main advantage is the
relative ease with which numerical simulations can be built, once the model is
reformulated as a continuum model. Methods for higher order models introduced in
the previous chapter can be applied to continuum models derived from gas-kinetic
models.

A detailed discussion of continuum gas kinetic models or of the method of
moments is out of the scope of this chapter, but we refer the interested reader to
Hoogendoorn (1999) for a derivation of a continuum traffic flow model from a
gas-kinetic model. Furthermore, Tampère et al. (2003, 2005) propose a continuum
gas-kinetic model that explicitly includes a simple car-following model.
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6.3 Hybrid Models

Hybrid models combine modelling approaches from different branches into a new
model. Most hybrid models combine a car-following model with a continuum
model, and are also referred to as multi-scale models. They typically apply a
microscopic model to get detail and accuracy in areas and at times where that
is required, e.g. the centre of an urban area. In the surrounding areas (e.g. on a
free way ring road around the urban area) less detailed results are obtained with a
macroscopic model, requiring much less computation time and memory. This way,
simulations take advantage of the qualities of both the microscopic model (detailed
results) and the macroscopic model (fast results).

6.3.1 Lagrangian Methods for Mesoscopic Models

The modelling within the micro- or macro-regions in space-time domain is done
with the models discussed before and (almost) any model could be applied. The
challenge lies in the modelling of the interfaces between the regions, see Fig. 6.1.
To be effective, hybrid models must have a coupling on the interface between
where/when traffic flow is modelled microscopically and where/when it is done
macroscopically. To simplify the coupling, the Lagrangian formulation of the
macroscopic model is often used. As we already saw in the previous chapter
(Sect. 5.4.2) the discretized Lagrangian model is closely related to a car-following
model. This makes the coupling of a discretized Lagrangian macroscopic model
with a car-following model relatively easy. The continuous formulation of the
macroscopic model or a discretised version of the Eulerian macroscopic model can
also be applied (Leclercq 2007).

time

po
si

tio
n

macro

micro

macro

interface macro to micro

interface micro to macro

Fig. 6.1 Example of hybrid modelling: trajectories in the microscopic region and densities in the
macroscopic regions
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Examples of hybrid models are those combining Newell’s earlier safe-distance
model (Sect. 3.1.1) with the LWR model (Bourrel and Lesort 2003) and the one
applying the Simplified Newell car-following model (3.4) to develop a hybrid model
that couples this microscopic model with the macroscopic LWR model (Leclercq
2007). In this section, we focus on a rather generic approach as it is proposed by
Moutari and Rascle (2007).

6.3.2 Interface Modelling

We discuss the coupling at the interface from a numerical perspective: considering
how the discretized models are coupled. Therefore, at the macro-to-micro interface,
groups of Δn vehicles are disaggregated into individual vehicles, while at the micro-
to-macro interface, individual vehicles are aggregated into groups of Δn vehicles.
For simplicity, we assume that Δn is integer, even though the method could be
adjusted to also work with vehicle groups that contain any non-integer number of
vehicles.

The main idea now is:

at the micro to macro interface vehicles leave the minimal microscopic region as
individual vehicles. When, at time step k, Δn vehicles have left the region, they
are aggregated in a vehicle group at the same location as the last vehicle in that
group. See Fig. 6.2a.

at the macro to micro interface vehicles approach the minimal microscopic
region as aggregated groups, but they are not allowed to enter as such.
Therefore, once the front of the groups has entered at time step k, the group
is disaggregated into individual vehicles, uniformly spaced over the road length
that was previously taken by the group. See Fig. 6.2a.

We note that this implies that microscopic trajectories are created before the macro
to micro interface and they are continued until after the micro to macro interface.

Depending on the applied microscopic and macroscopic models, the aggre-
gated groups and the disaggregated individual vehicles inherit properties from the
individual vehicles and vehicle groups, respectively. If the generic higher order
macroscopic model is applied, the invariant I is inherited. The variable I can simply
be averaged at the micro to macro interface: Ik

j = 1
Δn

∑
m=1 NIk

m. At the macro to

micro interface, the value of Ik
i for the individual vehicles equals Ik

j of the vehicle

group: Ik
i = Ik

j .
Finally, the time step size has to satisfy the CFL condition for Lagrangian

simulation (5.12). For a microscopic model with max
∣
∣
∣ dV

ds

∣
∣
∣ = vmax and Δn = 1,

the CFL condition reduces to:

ν := Δtvmax ≤ 1 (6.5)
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Fig. 6.2 Examples of interfaces in a hybrid model. Microscopic trajectories are indicated with
thin black lines, macroscopic Lagrangian trajectories are indicated with thick blue lines. Open
circles indicate the end of a trajectory, dots the start of a trajectory. The vehicle discretization
in the Lagrangian model is set to Δn = 3. (a) In this example, every third microscopic
trajectory is converted into a macroscopic Lagrangian trajectory. Whenever a new macroscopic
trajectory is created, all downstream microscopic trajectories are terminated. (b) In this example,
the macroscopic Lagrangian trajectories are converted into three microscopic trajectories. This is
done when the front of the group reaches the interface, i.e. when the most upstream microscopic
trajectory has left the macroscopic region. Two microscopic trajectories are created between this
microscopic trajectory and the Lagrangian trajectory. Furthermore, the Lagrangian trajectory is
converted into a microscopic trajectory

In most cases, this is a much stronger requirement than for the macroscopic model.
This leads to a low CFL number for the macroscopic part of the simulation,
which leads to added numerical diffusion and smaller times steps (and thus longer
computations) than strictly necessary. Therefore, it is possible to take a larger time
step only in the macroscopic region. For more details, we refer the interested reader
to Moutari and Rascle (2007).
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6.3.3 Moving Interfaces

In the examples, we have only shown interfaces fixed in space. However, the
interface may also move, or one may be interested in more (or less) detail during a
specific time interval. For example, it could be useful to apply a macroscopic model
nighttime traffic, while moving to microscopic modelling in the urban areas of a
network during peak hour. For more details about how to apply hybrid models in
such cases, we refer to Joueiai et al. (2015).

Problem Set

Gas Kinetic Models

Consider the continuum gas-kinetic model as proposed by Treiber et al. (1999).
(Refer to the original article for a detailed description.)

6.1 (Advanced) Reformulate the model in the Lagrangian coordinate system: i.e.
reformulate the model such that it fits into the framework in Sect. 4.4.3 and define
invariant I and source function g.

6.2 (Advanced) Adapt the code for a higher order model to simulate this model.
Reflect on the results and compare them with previous simulations.1

Hybrid Models

6.3 (Advanced) Combine the code for microscopic and macroscopic modelling to
build a hybrid simulation. Reflect on the results and compare them with previous
simulations.1

Further Reading

Hoogendoorn SP, Bovy PHL (2001) Generic gas-kinetic traffic systems modeling with applications
to vehicular traffic flow. Transp Res B Methodol 35(4):317–336

Joueiai M, Leclercq L, van Lint JWC, Hoogendoorn SP (2015) A multi-scale traffic flow model
based on the mesoscopic LWR model. Transp Res Rec J Transp Res Board 2491:98–106

1Gas-kinetic and hybrid modelling are advanced topics. Numerical methods are not yet well-
developed. The interested reader is encouraged to try to do some simulations, but it is not expected
that this can be done easily.
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Li L, Chen X (2017) Vehicle headway modeling and its inferences in macroscopic/microscopic
traffic flow theory: a survey. Transp Res C Emerg Technol 76:170–188

Moutari S, Rascle M (2007) A hybrid Lagrangian model based on the Aw-Rascle traffic flow
model. SIAM J Appl Math 68:413–436



Chapter 7
Conclusion: Convergence Versus
Branching Out

In the previous chapters, four different families of traffic flow models were
discussed. In this chapter we compare them, highlight their differences and discuss
their applications.

After reading this chapter, the reader will be able to compare the models
introduced in previous chapters with respect to important properties related to
parameters, modelling scale, reproduction of phenomena and simulation speed and
accuracy. They will also be able to argue about the (dis)advantages of modelling
and simulation choices and they are able to make an appropriate choice for a
given application. Furthermore, they are able to identify current trends in traffic
flow modelling. Finally, after finishing this book, readers are able to reflect on new
developments in traffic flow modelling, they are equipped with tools to grow and fill
gaps in the modelling tree and contribute to future trends themselves.

7.1 Modelling Scale: Microscopic vs. Macroscopic

One of the first things to notice in the tree is the tension between, on the one hand,
highly detailed models which are complex and (supposedly) describe reality very
accurately and, on the other hand, simple and traceable models that are applicable
in real time in applications such as traffic management. Comparisons between the
modeling families are often related to the appropriate modelling scale. In the rest
of this section we discuss some of the issues with microscopic and macroscopic
modelling.
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7.1.1 Macroscopic Modeling and the Continuum Assumption

It has been argued that the differences between fluid flow (including that of gasses)
and traffic flow are too large to justify a continuum approach. Papageorgiou (1998)
even argues that there is hardly any hope that traffic flow models will ever have the
same descriptive accuracy as models in other domains such as Newtonian physics
or thermodynamics. This is because:

1. vehicles and humans (drivers) all behave differently, and change there behaviour
over time, unlike molecules of which the behaviour follows (usually simple and
constant) physical laws, and

2. there are relatively few vehicles in the area of interest (at most a few hundred per
kilometer), unlike in for example thermodynamics with around 1023 particles per
cm3.

The second reason is also used to argue that aggregating vehicles to develop a
continuum traffic flow model is not justified (Darbha et al. 2008; Tyagi et al.
2008; Bellomo and Dogbe 2011). Furthermore, in fluid mechanics the Knudsen
number is often used to choose between a continuum (macroscopic) or a particle
(microscopic) approach. The Knudsen number is the ratio of the mean free path
over a representative physical length scale. Only if it is much smaller than 1, can
the fluid be approximated as a continuum. In vehicle flow the Knudsen number
would be the following distance over a section length. Tyagi et al. (2008) argue
that the Knudsen number is small enough (10−3). However, in free flow (e.g.,
100 m following distance) on short sections (e.g., of 100 m) the Knudsen number
is much larger than 10−3 and the continuum approach is not justified. Still, the first
observation (drivers do not behave like molecules) shows that fluid flow and traffic
flow are dissimilar in other aspects. Therefore, comparison of ratios such as the
Knudsen number or the number of particles per region of interest can not be the
only reason to justify (or falsify) a model approach. The authors approach to this
question is that the continuum assumption is reasonable for traffic flow, if one does
not seek too much descriptive detail.

7.1.2 Microscopic Models and Parameters

Traffic flow models are often criticized for their parameters (Brackstone and
McDonald 1999; Bellomo and Dogbe 2011):

Too many Traffic flow models have many parameters. This holds true especially
for microscopic models and in particular those which include heterogeneity or
stochasticity. An extreme example is the Deterministic Acceleration Time Delay
Three-Phase Traffic Flow Model based on three phase theory with 19 parameters
(Kerner 2009), which does not even include heterogeneity or stochasticity.
Furthermore, some parameters can be different for each link of the network, for
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example those related to the maximum speed/speed limit and those related to
number of lanes/jam density.

Not observable Parameter values are difficult to estimate because of the dynamics
of the system (Brackstone and McDonald 1999; Orosz et al. 2010; Bellomo
and Dogbe 2011). Parameters are often not easily observable or even have no
physical interpretation at all. For example, the constants c1 and c2 in the GHR
model (Sect. 3.2) and the acceleration exponent δ in the IDM (Sect. 3.2.1) have
no physical interpretation and are only used to fit the simulation results to data.
Other parameters such as maximum and minimum acceleration amax and amin do
have a physical interpretation but are almost impossible to observe. To observe
those parameters one would need detailed trajectory data including observations
where this maximum (or minimum) acceleration is realized. Similar arguments
hold for models including a fundamental diagram. The critical and jam density
can only be observed if the data includes situations where traffic is in such as
state.

Unrealistic values Traffic flow models sometimes have unrealistic parameter
values. For example, Brackstone and McDonald (1999) concluded that contra-
dictory findings on parameter values c1 and c2 in the GHR model are the main
reason why they were being used less frequently.

In general macroscopic models have less parameters which are more easily observ-
able than microscopic models.

7.2 Model Choice Considerations

When one is choosing a traffic flow model, it is important to consider its application.
For example, descriptive and predictive accuracy have to be weighted against the
need for fast simulations.

7.2.1 Predictive Accuracy

Some authors argue that all experimentally observed features, including stop-and-
go waves should be reproduced by a traffic flow model (Helbing 2001; Kerner 2009;
Bellomo and Dogbe 2011). However, we believe that it largely depends on the
model application whether such more complex phenomena need to be reproduced
(Papageorgiou 1998; van Wageningen-Kessels et al. 2011).

Let us make a comparison with fluid models. In some applications, such as
the design of the propeller of a ship, it is very useful to know the details about
turbulence and a fluid flow model should include turbulence. In other applications,
such as weather predictions only large scale effects of turbulence need to be taken
into account. Similarly, predicting the emergence and propagation of stop-and-go
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waves can be useful in some situations, for example, if one wants to warn drivers of
approaching a stop-and-go wave. However, for relatively coarse predictions on large
networks to estimate the level of congestion during a given peak hour, it is probably
not useful to predict individual stop-and-go waves.

A macroscopic model is often a good choice for application when the model
needs to allow for fast simulations. If optimal control is applied, it is furthermore
desirable that the model has a simple mathematical formulation, for example
allowing linearisation. Moreover, though new computers will be faster than current
ones, the need for fast simulations will remain, e.g. for the comparison of many
scenarios on ever larger networks.

Microscopic models are often the more obvious choice for smaller networks and
when there is not such a strict limit on computation time. They also allow for the
predictive accuracy that can be useful for in-car information such as warnings for
stop-and-go waves ahead and for applications in (semi-)automated vehicles or driver
simulators.

7.2.2 Numerical Methods

There are many considerations for choosing an appropriate numerical method
and its settings (e.g. time step size) for a given application. Some of the main
considerations are:

Computational speed How fast will the simulation run? And which speed is
required by the application?

Memory usage How much computer memory is used? And how much memory is
available?

Accuracy How accurately do the simulation results reflect the analytical solution
to the problem? And what accuracy level is required?

Ease of implementation Can the method be implemented easily and quickly,
possibly building on previously developed simulation tools?

Availability of data Is there enough data available to build the simulation, includ-
ing calibration and validation of model parameters? And if not, can this data be
obtained?

Microscopic models are in general computationally more demanding than
macroscopic models, for two main reasons. First, the traffic state is calculated
more often because of smaller time steps and within each time step there are more
calculations—namely for every vehicle instead of for every group of vehicles or
in every cell. Table 7.1 shows that in a microscopic model the state is computed
up to several thousands times as often as in a macroscopic model. Note that this
does not necessarily mean that it is also thousands times as slow: the time it
takes to do one time step is not equal for all methods. Second, microscopic (and
mesoscopic) models are often stochastic and simulation results vary each run. This
is at least partly due to stochastic inflow at the inflow boundary. Therefore, many
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Table 7.1 Comparison of typical number of calculations needed for an example simulation of
30 min of 10 km of road with 200 vehicles

Macro

Micro Fixed coordinates Moving coordinates

Grid cell size (Δx) in meters 50 250

Number of cells 100 20

Vehicle group size (Δn) 2 10

Number of vehicle groups 100 20

Time step size (Δt) in seconds 0.5 1.5 7.5 1.5 7.5

Number of time steps 3600 1200 240 1200 240

Number of state calculations 720,000 12,000 480 12,000 480

Furthermore, CFL numbers are set to 1, maximum speed is 120 km/hr and maximum characteristic
speed in Lagrangian coordinates max | dV

ds
| = 1.33 per second

simulations are needed before conclusions can be drawn on the results. Furthermore,
stochastic models are not tractable and therefore filtering and optimal control is
much more difficult, if at all possible. Microscopic models do remain important
because it depends largely on the application whether fast numerical simulation
is necessary. Macroscopic models will remain the first choice when computational
speed is important, especially in combination with efficient numerical methods such
as those based on the moving coordinate system. Table 7.1 does not show any
difference between fixed and moving coordinates in number of state calculations.
However, with moving coordinates, the calculations are often simpler, resulting in
faster computations per time step.

Very little research has been done comparing the accuracy of numerical methods
for traffic flow models as such. Most studies compare simulation results varying both
the model and the numerical method. Some exceptions include Delis et al. (2014),
van Wageningen-Kessels (2013) and Treiber and Kanagaraj (2015). Furthermore, it
deserves to be noted that even though the Lagrangian (moving) coordinate system
is very beneficial for macroscopic simulation of homogeneous road stretches, the
numerical methods still needs further development to deal with inhomogeneities
such as changes ramps and intersections (van Wageningen-Kessels et al. 2013).
Finally, as has been discussed in Sect. 6.3, hybrid modelling combines the advan-
tages of microscopic and macroscopic traffic flow modelling and can improve the
computational efficiency by combining a car-following model with a macroscopic
model in Lagrangian formulation.

7.3 Current Trends and Outlook

In the model tree several trends can be identified: (1) Certain branches converge
towards a generalized model, (2) Existing models are extended and adapted to better
reproduce key phenomena such as capacity drop, hysteresis, (3) Hybrid models
combine microscopic and macroscopic models. (See Sect. 6.3)



112 7 Conclusion: Convergence Versus Branching Out

7.3.1 Generalized Models

Generic formulations of certain types of models allow for an easier comparison,
especially of qualitative properties. They can also be used to build efficient
numerical methods for simulations:

The generic fundamental relation (Sect. 2.2.1) generalises all fundamental rela-
tions with certain desirable properties. The generic model includes a function φ

and if that function satisfies certain criteria that can be checked relatively easily,
then the fundamental diagram has the desirable properties.

The generic car-following model (Sect. 3.2.3) takes a similar approach. If a car
following model fits into the generic model and if its acceleration function f

satisfies certain criteria, then the model has certain desirable properties.
The generic multi-class kinematic wave model (Sect. 4.2) is used to compare this

type of models for qualitative properties and to find the ranges of parameter
settings under which the models behave as desired.

The generic second-order traffic flow model (Sect. 4.3.3) combines several
higher order continuum models and the formulation is used to build an efficient
numerical method for simulation purposes.

The generic gas-kinetic model (Sect. 6.2.1) is used to build a macroscopic gas-
kinetic model that can then be applied for efficient numerical simulations.

The generic hybrid model (Sect. 6.3) provides a framework for hybrid models
combining car-following and macroscopic models, again for efficient simula-
tions.

7.3.2 Extensions and Adaptations of Existing Models

The earliest traffic flow models were simple and able to capture only few realistic
phenomena. Recent models, can capture many complex, non-linear and dynamic
phenomena. This is partly because the models have been extended to include, among
others, more realistic vehicle and driver behaviour. Many extensions are inspired
by a drive to better reproduce observed fundamental diagrams. Some of the most
fruitful approaches are:

• Applying a fundamental relation with a specific shape, such as one which
includes a capacity drop or multi-dimensional fundamental diagrams.

• Bounding acceleration (and possibly also deceleration) in microscopic models
and in macroscopic models.

• Assigning a different type of behaviour to different vehicles (e.g. cars vs. trucks)
and to drivers (e.g. timid vs. aggressive). This is a natural and relatively simple
adaptation in microscopic models, but has also been applied to macro- and
mesoscopic models.
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• Including lane choice, lane changes and different behavior on each lane. This is
commonly done in microscopic models, which often include advanced models
for lane choice and lane change. (This has not been discussed in detail in this
book.)

• Finally, stochasticity has been included to model variations in vehicle and
driver behavior, including intra-vehicle/driver variations over time and space.
This includes microscopic models and macroscopic models. (This has not been
discussed in detail in this book.)

All these extensions and adaptations have also received critique, mostly because
the resulting models lack parsimony: they may be more complex than necessary to
explain the observed phenomena. A good example of this is given by Treiber et al.
(2010). The authors show that the seemingly more advanced three phase model is
not any better at reproducing certain phenomena than a simpler higher order model.

7.3.3 Outlook

Almost a decade ago, Wilson (2008) wrote ‘we can expect over the next few years
to definitely resolve the conflict between the various traffic modelling schools’,
continuing to argue that this could be done using novel, more detailed data. We have
not reached this point yet, but the model tree can help in identifying future research
and model development directions. We identify the following main directions:

Multi-class modelling Most branches include multi-class models. However, the
development of multi-class models seems to lag behind for the branch of cellular
automata models and for hybrid models.

Hybrid and multi-scale models Future research is not limited to extending each
of the families and their branches further. More valuable results may be obtained
by combining ideas from different branches. For example, hybrid models have
been proposed but can be developed much further. They are able to combine
the advantages of different types of models. It would be interesting to combine,
for example, mesoscopic models with microscopic or macroscopic models.
Furthermore, a new branch of hybrid models can combine mixed-class and multi-
class models.

Generalized models Current generalized models include many models, but not
all. Further generalizations can be developed and used to efficiently compare
existing and new models.

Finally, computational methods can be improved further for faster and more
accurate simulations. The Lagrangian formulation of macroscopic traffic flow
models seems to be a good path to explore further. Moreover, comparison of
existing and new numerical methods can give new insights and directions for further
developments.
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Problem Set

Some parts of the genealogical model tree seem to develop in less fruitful ways and
may need ‘pruning’, other parts are expanding quickly.

7.1 Reflect on which parts of the tree you think can be pruned, and which parts can
be ‘fed’ to encourage them to branch out further. Where are the gaps that can be
filled and what would be the advantages of a model that fills such a gap.

7.2 Compare the simulations that you have done and reflect on the similarities and
differences: which models and methods were easy or difficult to implement, which
gave the best results. Which type of model and numerical method can be useful in
applications that you are currently working with. How should they be adapted to
become even more useful?
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Chapter 8
Answers to Selected Problems

Answers to Selected Problems in Chap. 1

1.1 Apply (1.1), (1.2) and (1.3).

1.2 Apply the definition of instantaneous density (Definition 1.2), without letting
Δx → 0.

1.3 Apply the definition of local flow (Definition 1.1), without letting Δt → 0.

1.4 The vehicles will distribute over both routes evenly (i.e. 50 on each route) and
their travel time will be 20 min.

1.5 All vehicles will travel over the new route A → B → C → D, which takes
them 21 min. Note that if an individual traveller would decide to take the original
route via B (i.e. A → B → D) or via C (i.e. A → C → D), that route would now
take 25 min and has become unattractive.

Answers to Selected Problems in Chap. 2

2.1 The requirements are satisfied when parameters are positive. The third
requirement can be checked by reformulating the fundamental relation in v(ρ) form
and then taking its derivative. The derivative should be nonpositive for almost all
densities ρ ∈ [0, ρ]. For densities ρ∗ at which the derivative does not exist (such as
at critical density in the Daganzo and Smulders fundamental diagrams), the change
should be nonpositive: lim ρ ↑ ρ∗ ≥ lim ρ ↓ ρ∗.

2.2 In the Daganzo fundamental diagram, the critical speed equals the maximum
speed. The Smulders diagram has the critical density and critical speed as parame-
ters of the model. For the other models, they can be computed by determining the
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density ρ ∈ (0, ρjam) at which Q′(ρ) = 0. From this, the critical speed and capacity
can be found.

2.3 The first 2 additional requirements are satisfied when parameters are positive.
The concavity of the fundamental relations can be checked by determining the
second derivative Q′′(ρ). Since the fundamental relations are all continuous, they
are strictly concave if and only if for all densities ρ ∈ [0, ρjam] for which the second
derivative exists, it is negative: Q′′(ρ) < 0. The fundamental relation is concave if
and only if for all densities ρ ∈ [0, ρjam] for which the second derivative exists, it
is nonpositive: Q′′(ρ) ≤ 0. Note that the concavity may depend on the parameter
values.

2.4 We refer the reader to the original paper (del Castillo 2012) for some plots of
fundamental diagrams and a reflection on how they change with parameter settings.
The bilinear fundamental diagram is recovered by the power function fundamental
relation when θ → ∞ and by the exponential fundamental relation when ω → ∞.

2.5 Substitute q̂ = q/q0, ρ̂ = ρ/ρjam and define new parameters a∗ = a
ρjam

and

b∗ = b
ρjam

to find:

Q(ρ) = q0

[
b∗

ρjam
+ (a∗ − b∗)ρ − φ−1 (φ(a∗ρ) + φ(b∗(ρjam − ρ)) − φ(0)

)
]

(8.1)

2.6 The proof consists of proving that the function φ satisfies the conditions
presented in the introduction of the problem.

2.7 Use (2.9) to calculate the parameters. Note that the parameter values only
depend on the fraction of cars and trucks, and not on their actual densities.

2.8 See Fig. 8.1.

2.9 Speeds are equal for densities above critical density, i.e. in congestion. This is
plausible when there are limited possibilities for overtaking in congestion. However,
in light congestion (densities close to critical density), this might not be so realistic
because then there are still opportunities for (faster) cars to overtake (slower) trucks.

2.10 The fundamental relations all have non-increasing speeds. Fundamental
relations with capacity drop or hysteresis imply a non-unique fundamental relation:
at a certain density (usually just above (outflow) capacity) the flow is not uniquely
determined by the density but also depends on previous traffic states. None of the
fundamental diagrams satisfies the strict concavity requirement. However, the three-
dimensional fundamental relation by Chanut and Buisson (2003) is weakly concave
in both ρcar and ρtruck.
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Fig. 8.1 Example heterogeneous fundamental diagram

Answers to Selected Problems in Chap. 3

3.1 For the speed to be in equilibrium we consider v := vn(t + τ ) = vn(t) =
vn−1(t). Furthermore, to simplify notation we do not use n-indices and time indices
and write:

v = aminτ +
√

a2
minτ

2 − amin

(
2
(
s − sjam

) − vτ − v2

amin

)
(8.2)

The first part of the right-hand side is brought to the left, and both sides are squared:

(v − aminτ )2 = a2
minτ

2 − amin

(
2
(
s − sjam

) − vτ − v2

amin

)
(8.3)

Again reordering and noting that many terms drop out gives:

v = 2
s − sjam

τ
(8.4)

The fundamental diagram is drawn in Fig. 8.2.

3.2 At high spacings, the free branch limits the speed to Vmax.

3.3 The fundamental diagram is drawn in Fig. 8.2.

3.4 Instructions on how to run this simulation are provided in the code.

3.6 The model is platoon stable for the default parameter values. This is proven by
showing that the derivatives of the acceleration function (3.8) have the appropriate
signs, as discussed in Sect. 3.2.3.
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Fig. 8.2 Fundamental
diagram of adapted Gipps’
model

spacing
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ee

d

Sjam

Vmax

3.7 The sample code lets the user set the initial speed and corresponding equilibrium
spacing on a ring road. After 30 s of simulation, there is a perturbation in the shape of
a sudden maximum deceleration of vehicle number 1. As the resulting trajectories
and speed plots in Fig. 8.3 show, with an initial equilibrium speed of 2 m/s, the
flow shows string instability, while it is stable with and initial equilibrium speed of
26 m/s. In the first case, the instability moves both upstream and downstream.

Answers to Selected Problems in Chap. 4

4.1 See Fig. 8.4.

1. The maximum speed vmax = 30 m/s.
2. Minus the congestion wave speed −w = − ρcritvmax

ρjam−ρcrit
= −7.5 m/s

3. 0 (because there is no inflow)
4. The time it takes for the downstream front of the queue to spill back to the

upstream front (which does not move), i.e. 200
w

= 26.67 s.

4.2 The method of characteristics is applied in the same way as in Problem 4.1:
characteristics are drawn from the initial values and boundary values, their intersec-
tions lead to shocks, of which the velocities can be determined using the slope of
the line between the corresponding points on the fundamental diagram. This leads
to the solution as in Fig. 8.5.

4.4 See Fig. 8.6 for the simulation results.

4.6

y = v, J(u) =
(

v ρ
c2

ρ
v

)

, f(u) =
(

0
V −v

tr

)

(8.5)

The eigenvalues of the Jacobian are: λ1 = v − c and λ2 = v + c.
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Fig. 8.3 Simulation results with IDM, testing for stability. The red line indicates the trajectory
(top) or speed (bottom) of vehicle number 1. With a low initial equilibrium speed (left), the
results show instabilities. In the trajectory plot, stop-and-go-waves seem to be created. After the
perturbation at t = 30 s, the speeds start to oscillate. With a high initial equilibrium speed (right),
the result shows stability. In the trajectory plot (top), the perturbation and its effect on the following
vehicles is almost invisible. The speeds (bottom) show the perturbation and how it effects some
of the leading vehicles, but also a quick recovery to equilibrium speed. (a) Trajectories, string
unstable (initial equilibrium speed 2 m/s). (b) Trajectories, string stable (initial equilibrium speed
26 m/s). (c) Speeds, string unstable (initial equilibrium speed 2 m/s). (d) Speeds, string stable
(initial equilibrium speed 26 m/s)

4.7

y = v, J(u) =
(

v ρ

0 v + ρV ′(ρ)

)

, f(u) =
(

0
0

)

(8.6)

The eigenvalues of the Jacobian are: λ1 = v + ρV ′(ρ) and λ2 = v.

4.8 In the Payne model, one of the eigenvalues is larger than the vehicle speed v

for any nonzero value of c, and thus the corresponding characteristic is faster than
the vehicles, i.e. the model is not anisotropic. (And if c = 0, then the Payne model
reduces to the LWR model.)
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Fig. 8.4 Solving the initial value problem in Problem 4.1. (a) Fundamental diagram with traffic
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Fig. 8.5 Solution to the combined initial and boundary value problem in Problem 4.2

In the ARZ model, the second eigenvalue equals vehicles speed. Whether the
first eigenvalue is not larger than the vehicle speed depends on the shape of
the fundamental diagram. If it is nonincreasing (which is realistic, see also the
discussion in Sect. 2.3), then V ′(ρ) < 0 and thus the first eigenvalue λ1 is not larger
than the vehicle speed v. This implies that the characteristic is not faster than the
vehicles and thus the model is anisotropic.
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4.9

y = v + p(ρ), J(u) =
(

v ρ

0 v − ρp′(ρ)

)

, f(u) = 0 (8.7)

The eigenvalues of the Jacobian are: λ1 = v − ρp′(ρ) and λ2 = v. With p(ρ) = ρc

as in the prototype model λ1 = v − cρc

4.14 The conservation equation in the Lagrangian coordinates is derived by substi-
tuting the definition of spacing (4.44) into the Eulerian conservation equation (4.1),
applying the quotient rule and rewriting the result:

∂

∂t
(1/s) + ∂

∂x
(v/s) = 0 ⇒ ∂s

∂t
− s

∂v

∂x
+ v

∂s

∂x
= 0 (8.8)

Subsequently substituting the Lagrangian time derivative (4.45) yields:

Ds

Dt
− s

∂v

∂x
= 0 (8.9)

Finally, the definition of spacing (4.44) is substituted to find the Lagrangian
conservation equation:

Ds

Dt
+ ∂v

∂n
= 0 (8.10)

4.15 For the derivation of a multi-class model in Lagrangian coordinates, we
refer to van Wageningen-Kessels et al. (2010). To derive the GSOM in Lagrangian
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formulation, rewrite Eq. (4.26b) as follows:

∂

∂t
(ρI) + ∂

∂x
(qI) = ρ

∂I

∂t
+ I

∂ρ

∂t
+ q

∂I

∂x
+ I

∂q

∂x
= −ρg(I) (8.11)

Apply the conservation equation (4.26a) and q = ρv to find:

ρ
∂I

∂t
+ q

∂I

∂x
= ρ

(
∂I

∂t
+ v

∂I

∂x

)

= −ρg(I) (8.12)

Divide both sides by ρ and note that the term between brackets is the Lagrangian
time derivative of the invariant:

(
∂I

∂t
+ v

∂I

∂x

)

= DI

Dt
= −g(I) (8.13)

Answers to Selected Problems in Chap. 5

5.2 We first note that with a change in time step size, the code automatically
adapts the grid cell size accordingly to keep the CFL number constant. With a larger
time step size, the results are more ‘block-like’ (the grid becomes better visible).
With a smaller time step size, the solution converges to the analytical solution.
When the CFL number is reduced, the results may show more diffusion. However,
when the CFL number increases to larger than one, the results may show numerical
instabilities.

5.3 Adapting time step size and CFL number has the same effect as with the
Godunov method (see solution to Problem 5.2).

5.7 The number of vehicles that we are trying to calculate equals the number of
vehicles between (xj+1, t

∗) and (xj , t
∗) plus those between (xj , t

∗) and (xj , t+Δt).
Noting that the density is constant gives the number of vehicles between (xj+1, t

∗)
and (xj , t

∗) as:

N(xj , t
∗) − N(xj+1, t

∗) = ρ(xj , t
∗)Lj+1/2 (8.14)

Furthermore, the flow is also constant and thus the number of vehicles (xj , t
∗) and

(xj , t+Δt) can be expressed as: N(xj , t+Δt)−N(xj , t
∗) = q(xj , t

∗)(t+Δt−t∗).
We note that t+Δt−t∗ = Lj+1/2/w and applying the bilinear fundamental diagram
gives:

N(xj , t + Δt) − N(xj , t∗) = w(ρjam − ρ(xj , t
∗))(t + Δt − t∗) = (ρjam − ρ(xj , t

∗))Lj+1/2

(8.15)
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Taking the sum of the number of vehicles (i.e. (8.14) plus (8.15)) yields:

N(xj , t + Δt) − N
(
xj+1, t∗

) = N(xj , t∗) − N(xj+1, t∗) + N(xj , t + Δt) − N(xj , t∗)

= ρ(xj , t∗)Lj+1/2 + (ρjam − ρ(xj , t∗))Lj+1/2

= ρjamLj+1/2 (8.16)

Answers to Selected Problems in Chap. 6

6.1 Refer to equation (27) and (28) in Treiber et al. (1999). (27) can be reformulated
as the Lagrangian conservation equation (4.38a). With I = v, the left-hand side of
(28) equals the left-hand side of (4.38b), and thus −g equals the right-hand side of
(28).
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