
W
he

th
er

 y
o

u’
re

 a
 b

eg
in

ne
r

o
r

b
ri

ng
in

g
 y

o
ur

 s
ki

lls
 u

p
 t

o
 d

a
te

, t
hi

s
b

o
o

k
g

iv
es

 y
o

u
a

 s
o

lid
 f

o
ot

in
g

 in

m
o

d
er

n
w

eb
 p

ro
d

uc
ti

o
n.

 I
te

a
ch

 e
a

ch
 t

o
p

ic
 v

is
ua

lly
 a

t
a

 p
le

a
sa

nt
 p

a
ce

, w
it

h
fr

eq
ue

nt
 e

xe
rc

is
es

to

 le
t

yo
u

tr
y

o
ut

 n
ew

 s
ki

lls
. R

ea
d

in
g

 it
 f

ee
ls

 li
ke

 s
it

ti
ng

 in
 m

y
cl

a
ss

ro
o

m
!

—
J

en
ni

fe
r

R
o

b
b

in
s

Learning
Web Design
A BEGINNER'S GUIDE TO HTML, CSS,
JAVASCRIPT, AND WEB GRAPHICS

Jennifer Niederst Robbins

“Unlike all the other books that start at the beginning, this one
will get you to the good stuff, fast. Jennifer will explain every
step you need, including some very advanced concepts.”

—JEN SIMMONS, MOZILLA AND W3C CSS WORKING GROUP

5TH EDITION

Fifth Edition

LEARNING WEB DESIGN
A BEGINNER’S GUIDE TO HTML, CSS,

JAVASCRIPT, AND WEB GRAPHICS

Jennifer Niederst Robbins

Beijing • Boston • Farnham • Sebastopol • Tokyo

Learning Web Design, Fifth Edition
A Beginner’s Guide to HTML, CSS, JavaScript, and Web Graphics

by Jennifer Niederst Robbins

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also avail-
able for most titles (oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com.

EDITORS:  Meg Foley and Jeff Bleiel

PRODUCTION EDITOR:  Kristen Brown

COVER DESIGNER:  Edie Freedman

INTERIOR DESIGNER:  Jennifer Robbins

PRINT HISTORY:

March 2001:	 First edition.

June 2003: 	 Second edition.

June 2007:	 Third edition.

August 2012:	 Fourth edition.

May 2018: 	 Fifth edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. “O’Reilly Digital Studio” and related trade dress are
trademarks of O’ReillyMedia, Inc. Photoshop, Illustrator, Dreamweaver, Elements, HomeSite, and Fireworks are either regis-
tered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Microsoft and
Expression Web are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and O’ReillyMedia, Inc. was aware of a trademark claim, the designa-
tions have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-491-96020-2
[TI] [2018-04-16]	

CONTENTS

FOREWORD...... xi

PREFACE..... xiii

Part I.  GETTING STARTED

1.	 Getting Started in Web Design... 3
Where Do I Start?.. 4

It Takes a Village (Website Creation Roles)... 4

Gearing Up for Web Design... 14

What You’ve Learned... 20

Test Yourself.. 20

2.	 How the Web Works... 21
The Internet Versus the Web.. 21

Serving Up Your Information... 22

A Word About Browsers... 23

Web Page Addresses (URLs)... 24

The Anatomy of a Web Page... 27

Putting It All Together.. 32

Test Yourself.. 34

3.	 Some Big Concepts You Need to Know............................. 35
A Multitude of Devices .. 36

Sticking with the Standards.. 38

Progressive Enhancement... 38

iii

Responsive Web Design... 40

One Web for All (Accessibility).. 42

The Need for Speed (Site Performance)... 44

Test Yourself.. 46

Part II.  HTML FOR STRUCTURE

4.	 Creating a Simple Page.. 49
A Web Page, Step-By-Step.. 49

Launch a Text Editor.. 50

Step 1: Start with Content.. 53

Step 2: Give the HTML Document Structure.................................... 55

Step 3: Identify Text Elements.. 59

Step 4: Add an Image... 62

Step 5: Change the Look with a Style Sheet...................................... 66

When Good Pages Go Bad... 67

Validating Your Documents.. 68

Test Yourself.. 70

Element Review: HTML Document Setup 70

5.	 Marking Up Text... 71
Paragraphs... 71

Headings.. 72

Thematic Breaks (Horizontal Rule)... 74

Lists... 74

More Content Elements.. 78

Organizing Page Content.. 82

The Inline Element Roundup.. 88

Generic Elements (div and span)... 98

Improving Accessibility with ARIA.. 102

Character Escapes.. 105

Putting It All Together.. 108

Test Yourself...111

Element Review: Text Elements.. 112

Contents

﻿

iv

6.	 Adding Links.. 113
The href Attribute...114

Linking to Pages on the Web.. 115

Linking Within Your Own Site ...116

Targeting a New Browser Window... 126

Mail Links... 127

Telephone Links... 128

Test Yourself.. 128

Element Review: Links... 130

7.	 Adding Images... 131
First, a Word on Image Formats... 132

The img Element.. 134

Adding SVG Images... 139

Responsive Image Markup... 146

Whew! We’re Finished... 159

Test Yourself.. 159

Element Review: Images ...162

8.	 Table Markup... 163
How to Use Tables... 163

Minimal Table Structure.. 165

Table Headers.. 167

Spanning Cells... 168

Table Accessibility ..169

Row and Column Groups..171

Wrapping Up Tables... 173

Test Yourself...175

Element Review: Tables...176

9.	 Forms.. 177
How Forms Work.. 177

The form Element..179

Variables and Content.. 182

The Great Form Control Roundup... 183

Form Accessibility Features.. 203

Contents

﻿

v

Form Layout and Design.. 206

Test Yourself.. 208

Element Review: Forms.. 209

10.	Embedded Media... 215
Window-In-A-Window (iframe)... 215

Multipurpose Embedder (object)...218

Video and Audio.. 219

Canvas... 228

Test Yourself.. 233

Element Review: Embedded Media... 234

Part III.  CSS FOR PRESENTATION

11.	Introducing Cascading Style Sheets............................... 239
The Benefits of CSS.. 239

How Style Sheets Work.. 240

The Big Concepts... 246

CSS Units of Measurement... 253

Developer Tools Right in Your Browser.. 256

Moving Forward with CSS... 258

Test Yourself.. 259

12.	Formatting Text... 261
Basic Font Properties.. 261

Advanced Typography with CSS3... 277

Changing Text Color.. 280

A Few More Selector Types.. 281

Text Line Adjustments... 287

Underlines and Other “Decorations”.. 290

Changing Capitalization... 291

Spaced Out.. 292

Text Shadow.. 293

Changing List Bullets and Numbers... 296

Test Yourself.. 299

CSS Review: Font and Text Properties.. 301

Contents

﻿

vi

13.	Colors and Backgrounds.. 303
Specifying Color Values.. 303

Foreground Color..311

Background Color.. 312

Clipping the Background...314

Playing with Opacity.. 315

Pseudo-Class Selectors..316

Pseudo-Element Selectors... 320

Attribute Selectors.. 323

Background Images...324

The Shorthand background Property.. 338

Like a Rainbow (Gradients).. 340

Finally, External Style Sheets.. 348

Wrapping It Up.. 351

Test Yourself.. 352

CSS Review: Color and Background Properties............................... 354

14.	Thinking Inside the Box... 355
The Element Box.. 355

Specifying Box Dimensions.. 356

Padding ... 361

Borders.. 366

Margins..376

Assigning Display Types... 380

Box Drop Shadows... 382

Test Yourself.. 384

CSS Review: Box Properties... 384

15.	Floating and Positioning.. 387
Normal Flow.. 387

Floating ... 388

Fancy Text Wrap with CSS Shapes .. 399

Positioning Basics... 405

Relative Positioning.. 407

Absolute Positioning... 408

Fixed Positioning...416

Contents

﻿

vii

Test Yourself...417

CSS Review: Floating and Positioning Properties.............................418

16.	CSS Layout with Flexbox and Grid.................................. 419
Flexible Boxes with CSS Flexbox...419

CSS Grid Layout.. 447

Test Yourself.. 478

CSS Review: Layout Properties... 482

17.	Responsive Web Design... 485
Why RWD?.. 485

The Responsive Recipe... 486

Choosing Breakpoints.. 495

Designing Responsively.. 499

A Few Words About Testing... 512

More RWD Resources...514

Test Yourself...516

18.	Transitions, Transforms, and Animation........................ 517
Ease-y Does It (CSS Transitions)..517

CSS Transforms... 527

Keyframe Animation.. 536

Wrapping Up... 542

Test Yourself.. 542

CSS Review: Transitions, Transforms, and Animation.................... 545

19.	More CSS Techniques... 547
Styling Forms... 547

Styling Tables... 551

A Clean Slate (Reset and Normalize.css)... 554

Image Replacement Techniques.. 556

CSS Sprites... 557

CSS Feature Detection... 559

Wrapping Up Style Sheets.. 564

Test Yourself.. 564

CSS Review: Table Properties... 566

Contents

﻿

viii

20.	Modern Web Development Tools.................................... 567
Getting Cozy with the Command Line... 567

CSS Power Tools (Processors)... 572

Build Tools (Grunt and Gulp)... 578

Version Control with Git and GitHub... 581

Conclusion... 588

Test Yourself.. 589

Part IV.  JAVASCRIPT FOR BEHAVIOR

21.	Introduction to JavaScript... 593
What Is JavaScript?.. 593

Adding JavaScript to a Page.. 597

The Anatomy of a Script... 598

The Browser Object.. 612

Events.. 613

Putting It All Together...616

Learning More About JavaScript...617

Test Yourself.. 619

22.	Using JavaScript.. 621
Meet the DOM... 621

Polyfills.. 630

JavaScript Libraries.. 632

Big Finish... 637

Test Yourself.. 637

Part V.  WEB IMAGES

23.	Web Image Basics.. 641
Image Sources.. 641

Meet the Formats... 644

Image Size and Resolution.. 657

Image Asset Strategy.. 660

Favicons... 665

Contents

﻿

ix

Summing Up Images.. 668

Test Yourself ... 668

24.	Image Asset Production... 671
Saving Images in Web Formats... 671

Working with Transparency... 676

Responsive Image Production Tips... 680

Image Optimization... 691

Test Yourself...701

25.	SVG ... 703
Drawing with XML.. 705

Features of SVG as XML.. 713

SVG Tools.. 718

SVG Production Tips.. 721

Responsive SVGs.. 724

Further SVG Exploration.. 731

Test Yourself ... 731

And...We’re Done!.. 733

Part VI.  APPENDICES

A.	 Answers... 737

B.	 HTML5 Global Attributes.. 753

C.	 CSS Selectors, Levels 3 and 4... 755

D.	 From HTML+ to HTML5... 759

INDEX..... 767

Contents

﻿

x

FOREWORD
BY JEN SIMMONS

If you travel to Silicon Valley and navigate between the global headquarters
of some of the world’s most famous internet companies, you can head to
the Computer History Museum. Wander through the museum, past the
ancient mainframes and the story of the punch card, and you’ll eventually
find yourself at the beginning of the Wide World Web. There’s a copy of the
Mosaic browser on a floppy disk tucked in a book of the same name, a copy
of Netscape Navigator that was sold in a box, and something called “Internet
in a Box,” the #1 best-selling internet solution for Windows. Then there are
the websites. Some of the earliest, most notable, and most important websites
are on permanent display, including something called the “Global Network
Navigator,” from 1993. It was designed by none other than the author of this
book, Jennifer Robbins. Long before most of us had any idea the web existed,
or even before many of you were born, Jen was busy designing the first com-
mercial website. She’s been there from the very beginning, and has watched,
taught, and written about every stage of evolution of the web.

Learning Web Design is now in its 5th edition, with a gazillion new pages and
updates from those early days.

I am constantly asked, “What are the best resources for learning web technol-
ogy?” I learned by reading books. Blog posts are great, but you also need an
in-depth comprehensive look at the subject. In the beginning, all books were
beginner books, teaching HTML, URLs, and how to use a browser. When
CSS came along, the books assumed you’d already been using HTML, and
taught you how to change to the new techniques. Then CSS3 came along,
and all the books taught us how to add new CSS properties to our preexist-
ing understanding of CSS2. Of course there were always books for beginners,
but they were super basic. They never touched on professional techniques for
aspiring professionals. Each new generation of books assumed that you had
prior knowledge. Great for those of us in the industry. Tough for anyone new.

xi

But how in the world are you supposed to read about two decades of tech-
niques, discarding what is outdated, and remembering what is still correct?
How are you supposed to build a career from knowledge that’s so basic that
you have no idea what real pros code in their everyday jobs?

You can’t. That’s why today when people ask me for a book recommendation,
I have only one answer. This book.

This book you are reading now doesn’t require any prior knowledge. You
don’t need to have made a web page before, or to have any idea where to get a
code editor. It starts at the very beginning. And yet, unlike all the other books
that start at the beginning, this one will get you to the good stuff, fast. Jen will
explain every step you need, including some very advanced concepts. She’s
packed this book full of cutting edge, insider knowledge from top experts.

I honestly don’t know how she does it. How can someone teach the basics
and the advanced stuff at the same time? Usually you’ll learn those things
years apart, with lots of struggling in the dark in the meantime. Here, Jen
will lift you up from wherever you are in your journey, and take you farther.
Every one of us—myself included, and I’m on the CSS Working Group (the
group of people who invent new CSS)—can learn a lot from this book. I do
every time I pick it up.

Pay attention to the notes in the margins. Read the websites she recommends,
watch the videos. Jen is giving you a shortcut to a professional network.
Follow the people she mentions. Read the links they suggest. These might
be your future colleagues. Dare to dream that you will meet them. They are,
after all, only a tweet away. It is a small world, full of real people, and you can
become part of it all. This book will get you started.

—Jen Simmons
Designer and Developer Advocate at Mozilla

Member of the CSS Working Group
April 2018

Learning Web Designxii

Foreword

PREFACE

Hello and welcome to the fifth edition of Learning Web Design!

I’ve been documenting web design and development in books like this one
for decades, and it continues to fascinate me how the web landscape changes
from edition to edition. This fifth edition is no exception! Not only is this
version nearly 200 pages longer than the last one, but there are also some
significant updates and additions worth noting.

First, some technologies and techniques that were brand new or even experi-
mental in the last edition have become nicely settled in. HTML5 is the new
normal, and CSS is moving ahead with its modular approach, allowing new
technologies to emerge and be adopted one at a time. We’ve largely gotten our
heads around designing for a seemingly infinite range of devices. Responsive
Web Design is now the de facto approach to building sites. As a result, RWD
has earned its own chapter in this edition (Chapter 17, Responsive Web
Design). Where in the last edition we pondered and argued how to handle
responsive image markup, in this edition, the new responsive image elements
are standardized and well supported (Chapter 7, Adding Images). I think we’re
getting the hang of this mobile thing!

I’ve seen a lot of seismic shifts in web design over the years, and this time,
Flexbox and Grid are fundamentally changing the way we approach design.
Just as we saw CSS put table-based layouts and 1-pixel spacer GIFs out of
their misery, Flexbox and Grid are finally poised to kick our old float-based
layout hacks to the curb. It is nothing short of a revolution, and after 25 years,
it’s refreshing to have an honest-to-goodness solution for layout. This edition
sports a new (and hefty!) chapter on proper page layout with Flexbox and
Grid (Chapter 16, CSS Layout with Flexbox and Grid).

Although knowledge of HTML, CSS, and JavaScript is at the heart of web
development, the discipline has been evolving, and frankly, becoming more

O N L I N E R E S O U RC E

The Companion Website
Be sure to visit the companion
website for this book at
learningwebdesign.com.

It features materials for the
exercises, downloadable articles,
lists of links from the book, contact
information, and more.

xiii

complicated. I would be shirking my duty if I didn’t at least introduce you
to some of the new tools of the trade—CSS processors, feature detection, the
command line, task runners, and Git—in a new chapter on the modern web
developer toolkit (Chapter 20, Modern Web Development Tools). Sure, it’s more
stuff to learn, but the benefit is a streamlined and more efficient workflow.

The biggest surprise to me personally was how much web image production
has changed since the fourth edition. Other than the introduction of the
PNG format, my graphics chapters have remained essentially unchanged for
20 years. Not so this time around! Our old standby, GIF, is on the brink of
retirement, and PNG is the default thanks to its performance advantages and
new tools that let even smaller 8-bit PNGs include multiple levels of transpar-
ency. But PNG will have to keep its eye on WebP, mentioned in this edition for
the first time, which may give it a run for its money in terms of file size and
capabilities. The biggest web graphics story, however, is the emergence of SVG
(Scalable Vector Graphics). Thanks to widespread browser support (finally!),
SVG went from a small “some day” section in the previous edition to an entire
“go for it!” chapter in this one (Chapter 25, SVG).

As in the first four editions, this book addresses the specific needs and con-
cerns of beginners of all backgrounds, including seasoned graphic designers,
programmers looking to expand their skills, and anyone else wanting to learn
how to make websites. I’ve done my best to put the experience of sitting in my
beginner web design class into a book, with exercises and tests along the way,
so you get hands-on experience and can check your progress.

Whether you are reading this book on your own or using it as a companion
to a web design course, I hope it gives you a good head start and that you
have fun in the process.

HOW THIS BOOK IS ORGANIZED

Learning Web Design, Fifth Edition, is divided into five parts, each dealing with
an important aspect of web development.

Part I: Getting Started

Part I lays a foundation for everything that follows in the book. I start off
with some important general information about the web design environ-
ment, including the various roles you might play, the technologies you
might learn, and tools that are available to you. You’ll get your feet wet
right away with HTML and CSS and learn how the web and web pages
generally work. I’ll also introduce you to some Big Concepts that get you
thinking in the same way that modern web designers think about their craft.

Part II: HTML for Structure

The chapters in Part II cover the nitty-gritty of every element and attri-
bute available to give content semantic structure. We’ll cover the markup
for text, links, images, tables, forms, and embedded media.

Learning Web Designxiv

Preface

Part III: CSS for Presentation

In the course of Part III, you’ll go from learning the basics of Cascading
Style Sheets for changing the presentation of text to creating multicolumn
layouts and even adding time-based animation and interactivity to the
page. It provides an introduction to Responsive Web Design, as well as the
tools and techniques that are part of the modern developer’s workflow.

Part IV: JavaScript for Behavior

Mat Marquis starts Part IV out with a rundown of JavaScript syntax so
that you can tell a variable from a function. You’ll get to know some ways
that JavaScript is used (including DOM scripting) and existing JavaScript
tools such as polyfills and libraries that let you put JavaScript to use
quickly, even if you aren’t quite ready to write your own code from scratch.

Part V: Web Images

Part V introduces the various image file formats that are appropriate for
the web, provides strategies for choosing them as part of a responsive
workflow, and describes how to optimize them to make their file size as
small as possible. It also includes a chapter on SVG graphics, which offer
great advantages for responsive and interaction design.

Part VI: Appendices

Part VI holds reference material such as test answers, lists of HTML global
attributes and CSS Selectors, and a look at HTML5 and its history.

TYPOGRAPHICAL CONVENTIONS

Italic

Used to indicate filenames and directory names, as well as for emphasis.

Colored italic

Used to indicate URLs and email addresses.

Colored roman text

Used for special terms that are being defined.

Constant width

Used to indicate code examples and keyboard commands.

Colored constant width

Used for emphasis in code examples.

Constant width italic

Used to indicate placeholders for attribute and style sheet property values.

→
Indicates that a line of code was broken in the text but should remain
together on one line in use.

Preface xv

Preface

ACKNOWLEDGMENTS

Once again, many smart and lovely people had my back on this edition.

I want to say a special thanks to my two amazing tech reviewers. I am quite
indebted to Elika J. Etemad (fantasai), who, as a member of the W3C CSS
Working Group, helped me make this edition more accurate and up-to-date
with standards than ever before. She was tough, but the results are worth it.
Petter Dessne brought his computer science expertise as well as valuable per-
spective as a professor and a reader for whom English is a second language.
His good humor and photos of his home in Sweden were appreciated as well!

I am also grateful for this roster of web design superstars who reviewed
particular chapters and passages in their areas of expertise (in alphabetical
order): Amelia Bellamy-Royds (SVG), Brent Beer (developer tools), Chris
Coyier (SVG), Terence Eden (audio/video), Brad Frost (Responsive Web
Design), Lyza Danger Gardner (developer tools), Jason Grigsby (images), Val
Head (animation), Daniel Hengeveld (developer tools), Mat Marquis (respon-
sive images), Eric Meyer (CSS layout), Jason Pamental (web fonts), Dan Rose
(images), Arsenio Santos (embedded media), Jen Simmons (CSS layout),
Adam Simpson (developer tools), and James Williamson (structured data).

Thanks also to Mat Marquis for his contribution of two lively JavaScript
chapters that I could never have written myself, and to Jen Simmons for writ-
ing the Foreword and for her ongoing support of Learning Web Design.

I want to thank my terrific team of folks at O’Reilly Media: Meg Foley
(Acquisitions Editor), Jeff Bleiel (Developmental Editor), Kristen Brown
(Production Editor), Rachel Monaghan (Copyeditor), Sharon Wilkey
(Proofreader), and Lucie Haskins (Indexer). Special thanks go to InDesign
and book production expert Ron Bilodeau, who turned my design into a tem-
plate and a set of tools that made book production an absolute joy. Special
thanks also go to Edie Freedman for the beautiful cover design and half a
lifetime of friendship and guidance.

Finally, no Acknowledgments would be complete without profound apprecia-
tion for the love and support of my dearest ones, Jeff and Arlo.

ABOUT THE AUTHOR

Jennifer Robbins began designing for the web in 1993 as the graphic designer
for Global Network Navigator, the first commercial website. In addition to
this book, she has written multiple editions of Web Design in a Nutshell and
HTML5 Pocket Reference, published by O’Reilly. She is a founder and orga-
nizer of the Artifact Conference, which addresses issues related to mobile web
design. Jennifer has spoken at many conferences and has taught beginning
web design at Johnson and Wales University in Providence, Rhode Island.
When not on the clock, Jennifer enjoys making things, indie rock, cooking,
travel, and raising a cool kid.

Learning Web Designxvi

Preface

HOW TO CONTACT US
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at bit.ly/
learningWebDesign_5e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at www.oreilly.com.

Find us on Facebook: facebook.com/oreilly

Follow us on Twitter: twitter.com/oreillymedia

Watch us on YouTube: www.youtube.com/oreillymedia

Preface xvii

Preface

mailto:bookquestions@oreilly.com

 I
GETTING STARTED

﻿

IN THIS CHAPTER

Content-related disciplines

Design specialties

Frontend development

Backend development

Recommended equipment

Web-related software

The web has been around for more than 25 years now, experiencing euphoric
early expansion, an economic-driven bust, an innovation-driven rebirth, and
constant evolution along the way. One thing is certain: the web as a commu-
nication and commercial medium is here to stay. Not only that, it has found
its way onto devices such as smartphones, tablets, TVs, and more. There have
never been more opportunities to put web design know-how to use.

Through my experience teaching web design courses and workshops, I’ve
had the opportunity to meet people of all backgrounds who are interested
in learning how to build web pages. Allow me to introduce you to just a few:

“I’ve been a print designer for 17 years, and now I am feeling pressure to pro-
vide web design services.”

“I’ve been a programmer for years, but I want shift my skills to web develop-
ment because there are good job opportunities in my area.”

“I tinkered with web pages in high school and I think it might be something
I’d like to do for a living.”

“I’ve made a few sites using themes in WordPress, but I’d like to expand my
skills and create custom sites for small businesses.”

Whatever the motivation, the first question is always the same: “Where do I
start?” It may seem like there is a mountain of stuff to learn, and it’s not easy
to know where to jump in. But you have to start somewhere.

This chapter provides an overview of the profession before we leap into
building sites. It begins with an introduction to the roles and responsibilities
associated with creating websites, so you can consider which role is right for
you. I will also give you a heads-up on the equipment and software you will
be likely to use—in other words, the tools of the trade.

GETTING STARTED
IN WEB DESIGN

1
CHAPTER

3

WHERE DO I START?

Maybe you are reading this book as part of a full course on web design and
development. Maybe you bought it to expand your current skill set on your
own. Maybe you just picked it up out of curiosity. Whatever the case, this
book is a good place to start learning what makes the web tick.

There are many levels of involvement in web design, from building a small
site for yourself to making it a full-blown career. You may enjoy being a “full-
stack” web developer or just specializing in one skill. There are a lot of ways
you can go.

If you are interested in pursuing web design or production as a career, you’ll
need to bring your skills up to a professional level. Employers may not
require a web design degree, but they will expect to see working sample sites
that demonstrate your skills and experience. These sites can be the result of
class assignments, personal projects, or a site for a small business or organiza-
tion. What’s important is that they look professional and have well-written,
clean HTML; style sheets; and scripts behind the scenes.

If your involvement is at a smaller scale—say you just have a site or two
you’d like to publish—you may find using a template on an online website
service is a great head start (see the sidebar “I Just Want My Own Site”). Most
allow you to tweak the underlying code, so what you learn in this book will
help you customize the template to your liking.

IT TAKES A VILLAGE
(WEBSITE CREATION ROLES)

When I look at a site, I see the multitude of decisions and areas of expertise
that went into building it. Sites are more than just code and pictures. They
often begin with a business plan or other defined mission. Before they launch,
the content must be created and organized, research is performed, design
from the broadest goals to finest details must happen, code gets written, and
everything must be coordinated with what’s happening on the server to bring
it to fruition.

Big, well-known sites are created by teams of dozens, hundreds, or even thou-
sands of contributors. There are also sites that are created and maintained by
a team with only a handful of members. It is also absolutely possible to create
a respectable site with a team of only yourself. That’s the beauty of the web.

In this section, I’ll introduce you to the various disciplines that contribute
to the creation of a site, including roles related to content, design, and code.
You may end up specializing in just one area of expertise, working as part of
a team of specialists. If you are designing sites on your own, you will need
to wear many hats. Consider that the day-to-day upkeep of your household

I Just Want My Own Site
You don’t necessarily need to become
a web designer or developer to start
publishing on the web. There are
many website hosting services that
provide templates and drag-and-drop
interfaces that make it easy to build
a site without any code know-how.
They can be used for anything from
full-service ecommerce solutions to
small, personal sites (although some
services are better suited to one more
than the other).

Here are a few of the most popular
site building services as of this
writing:

•	 WordPress (www.wordpress.com)

•	 Squarespace (squarespace.com)

•	 Wix (wix.com)

•	 SiteBuilder (sitebuilder.com)

•	 Weebly (weebly.com)

There are many similar services
available, so it’s worth searching the
web to find one that’s right for you.

Part I. Getting Started

Where Do I Start?

4

http://www.wordpress.com

requires you to be part-time chef, housecleaner, accountant, diplomat, gar-
dener, and construction worker—but to you it’s just the stuff you do around
the house. As a solo designer, you’ll handle many web-related disciplines, but
it will just feel like the stuff you do to make a website.

Content Wrangling
Anyone who uses the title “web designer” needs to be aware that everything
we do supports the process of getting the content, message, or functionality
to our users. Furthermore, good writing can help the user interfaces we create
be more effective, from button labels to error messages.

Of course, someone needs to create all that content and maintain it—don’t
underestimate the resources required to do this successfully. Good writers
and editors are an important part of the team. In addition, I want to call your
attention to two content-related specialists in modern web development: the
Information Architect (IA) and the Content Strategist.

Information architecture
An Information Architect (also called an Information Designer) organizes
the content logically and for ease of findability. They may be responsible
for search functionality, site diagrams, and how the content and data are
organized on the server. Information architecture is inevitably entwined with
UX and UI design (defined shortly) as well as content management. If you
like organizing or are gaga for taxonomies, information architecture may be
the job for you. The definitive text for this field as it relates to the web is
Information Architecture: For the Web and Beyond, by Louis Rosenfeld and
Peter Morville (O’Reilly).

Content strategy
When the content isn’t right, the site can’t be fully effective. A Content
Strategist makes sure that every bit of text on a site, from long explanatory
text down to the labels on buttons, supports the brand identity and mar-
keting goals of the organization. Content strategy may also extend to data
modeling and content management on a large and ongoing scale, such as
planning for content reuse and update schedules. Their responsibilities may
also include how the organization’s voice is represented on social media. A
good place to learn more is the book Content Strategy for the Web, 2nd Edition,
by Kristina Halvorson and Melissa Rich (New Riders).

All Manner of Design
Ah, design! It sounds fairly straightforward, but even this simple requirement
has been divided into a number of specializations when it comes to creating
sites. Here are a few of the job descriptions related to designing a site, but

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

5

bear in mind that the disciplines often overlap and that the person calling
herself the “designer” often is responsible for more than one (if not all) of
these responsibilities.

User Experience, Interaction, and User Interface design
Often, when we think of design, we think about how something looks. On
the web, the first matter of business is designing how the site works. Before
you pick colors and fonts, it is important to identify the site’s goals, how it
will be used, and how visitors move through it. These tasks fall under the dis-
ciplines of User Experience (UX) design, Interaction Design (IxD), and User
Interface (UI) design. There is a lot of overlap between these responsibilities,
and it is not uncommon for one person or team to handle all three.

The User Experience designer takes a holistic view of the design process—
ensuring the entire experience with the site is favorable. UX design is based
on a solid understanding of users and their needs based on observations and
interviews. According to Donald Norman (who coined the term), UX design
includes “all aspects of the user’s interaction with the product: how it is
perceived, learned, and used.” For a website or application, that includes the
visual design, the user interface, the quality and message of the content, and
even the overall site performance. The experience must be in line with the
organization’s brand and business goals in order to be successful.

The goal of the Interaction Designer is to make the site as easy, efficient, and
delightful to use as possible. Closely related to interaction design is User
Interface design, which tends to be more narrowly focused on the functional
organization of the page as well as the specific tools (buttons, links, menus,
and so on) that users use to navigate content or accomplish tasks.

The following are deliverables that UX, UI, or interaction designers produce:

User research and testing reports

Understanding the needs, desires, and limitations of users is central to
the success of the design of the site or web application. The approach of
designing around the user’s needs is referred to as User-Centered Design
(UCD), and it is central to contemporary web design. Site designs often
begin with user research, including interviews and observations, in order
to gain a better understanding of how the site can solve problems or how
it will be used. It is typical for designers to do a round of user testing at
each phase of the design process to ensure the usability of their designs.
If users are having a hard time figuring out where to find content or how
to move to the next step in a process, then it’s back to the drawing board.

Wireframe diagrams

A wireframe diagram shows the structure of a web page using only out-
lines for each content type and widget (FIGURE 1-1). The purpose of a
wireframe diagram is to indicate how the screen real estate is divided and
where functionality and content such as navigation, search boxes, form

Part I. Getting Started

It Takes a Village (Website Creation Roles)

6

elements, and so on, are placed. Colors, fonts, and other visual identity
elements are deliberately omitted so as not to distract from the structure
of the page. These diagrams are usually annotated with instructions for
how things should work so the development team knows what to build.

Site diagram

A site diagram indicates the structure of the site as a whole and how indi-
vidual pages relate to one another. FIGURE 1-2 shows a very simple site
diagram. Some site diagrams fill entire walls!

SEARCH

LOGO

[PROMOTIONAL IMAGES ROTATE HERE]

Today’s Specials

Log in or Create Account

ABOUT US
Company
News
Jobs
Policies
Contact

SOCIAL
Facebook
Twitter
Try our app

SERVICE
FAQ
Live support
Site map

Product 1 Product 2 Product 4Product 3 Product 6Product 5

Category

All categories

Category1

Category2

Category3

Category4

Category5

Category6

contact | store locator | support | CART

1 2 3 4

copyright statement

FIGURE 1-1.   Wireframe diagram.

Home page

Email
form

FAQ

Text

Book Web design
services

Resume

Samples

External links

Contact

FIGURE 1-2. A simple site diagram.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

7

Storyboards and user flow charts

A storyboard traces the path through a site or application from the point
of view of a typical user (a persona in UX lingo). It usually includes a
script and “scenes” consisting of screen views or the user interacting
with the screen. The storyboard aims to demonstrate the steps it takes
to accomplish tasks, outlines possible options, and also introduces some
standard page types. FIGURE 1-3 shows a simple storyboard. A user flow
chart is another method for showing how the parts of a site or application
are connected, but it tends to focus on technical details rather than telling
a story. For example, “when the user does this, it triggers that function on
the server.” It is common for designers to create a user flow chart for the
steps in a process such as member registration or online payments.

FIGURE 1-3. A typical storyboard (courtesy of Adaptive Path and Brandon Schauer).

There are many books on UX, interaction, and UI design, but these are a few
of the classics to get you started:

•	 The Elements of User Experience: User-Centered Design for the Web and
Beyond by Jesse James Garrett (New Riders)

•	 Don’t Make Me Think, Revisited: A Common Sense Approach to Web
Usability by Steve Krug (New Riders)

•	 The Design of Everyday Things by Don Norman (Basic Books)

•	 About Face: The Essentials of Interaction Design, 4th Edition by Alan Cooper,
Robert Reimann, David Cronin, and Christopher Noessel (Wiley)

•	 Designing Interfaces, 2nd Edition by Jenifer Tidwell (O’Reilly)

Part I. Getting Started

It Takes a Village (Website Creation Roles)

8

•	 100 Things Every Designer Needs to Know about People by Susan
Weinschenk (New Riders)

•	 Designing User Experience: A Guide to HCI, UX and Interaction Design by
David Benyon (Pearson)

Visual (graphic) design
Because the web is a visual medium, web pages require attention to their
visual presentation. First impressions are everything. A graphic designer cre-
ates the “look and feel” of the site—logos, graphics, type, colors, layout, and
so on—to ensure that the site makes a good first impression and is consistent
with the brand and message of the organization it represents.

There are many methods and deliverables that can be used to present a visual
design to clients and stakeholders. The most traditional are sketches or mock-
ups (created in Photoshop or a similar tool) of the way the site might look,
such as the home page mockups shown in FIGURE 1-4.

Now that sites appear on screens of all sizes, many designers prefer to discuss
the visual identity (colors, fonts, image style, etc.) in a way that isn’t tied to a
specific layout like the typical desktop view shown in FIGURE 1-4. The idea is
to agree upon a visual language for the site before production begins.

One option for separating style from screen size is to use style tiles, a tech-
nique introduced by Samantha Warren (see Note). Style tiles include examples
of color schemes, branding elements, UI treatments, text treatment, and mood
(FIGURE 1-5). Once the details are decided upon, they can be implemented
into working prototypes and the final site. For more on this technique, visit
Samantha’s excellent site, styletil.es, where you can download a template.

Graphic designers may also be responsible for producing the image assets
for the site. They will need to know how to optimize images for the fastest
delivery and how to address the requirements of varying screen sizes. It is
also common for the development team to handle image optimization, but I
think it is a skill every visual designer should have. We’ll discuss image opti-
mization in Chapter 24, Image Asset Production.

FIGURE 1-4. Look-and-feel sketches
(mockups) for a simple site.

FIGURE 1-5. Style tile technique introduced by Samantha Warren.

NOTE

Designer Dan Mall uses a similar
approach that he calls “element collag-
es.” An element collage is a collection
of design elements that give the site its
unique look and feel, but like style tiles,
is not tied to a particular screen layout.
Read his article at v3.danielmall.com/
articles/rif-element-collages/.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

9

Designers may also be responsible for creating a style guide that documents
style choices, such as fonts, colors, and other style embellishments, in order
to keep the site consistent over time. For a list of examples, articles, books, and
podcasts about web style guides, visit the “Website Style Guide Resources”
page at styleguides.io.

Do Designers Need to Learn to Code?
In short, yes. A basic familiarity with HTML and CSS is now a requirement of
anybody joining a web design team. You may not be responsible for creating the
final production code for the site, but as HTML and CSS are the native languages
of your medium, you need to know your way around them. Some designers also
learn JavaScript, but others draw the line there and let a developer handle the
programming.

Code is becoming more central to the visual designer’s workflow. Where once
Photoshop was all you needed to mock up web page designs to send them to
production, mockups fixed to a particular size fall short of describing a page that
needs to flex to a wide range of screen sizes. For that reason, designers are building
their own working prototypes as deliverables that communicate how the design will
look and behave in users’ hands.

Code Slinging
A large share of the website building process involves creating and trouble-
shooting the documents, style sheets, scripts, and images that make up a site.
At web design firms, the team that handles the creation of the files that make
up the site (or templates for pages that get assembled dynamically) is usually
called the development or production department.

Development falls under two broad categories: frontend development and
backend development. Once again, these tasks may fall to specialists, but it is
just as common for one person or team to handle both responsibilities.

Frontend development
Frontend refers to any aspect of the design process that appears in or relates
directly to the browser. That includes HTML, CSS, and JavaScript, all of
which you will need to have intricate knowledge of if you want a job as a web
developer. Let’s take a quick look at each.

Authoring/markup (HTML)

Authoring is the process of preparing content for delivery on the web, or more
specifically, marking up the content with HTML tags that describe its content
and function.

HTML (HyperText Markup Language) is the authoring language used to cre-
ate web page documents. The current version (and the version documented

AT A G L A N C E

Frontend Development
Frontend development includes the
following web technologies:

•	 HyperText Markup Language
(HTML)

•	 Cascading Style Sheets (CSS)

•	 JavaScript and DOM scripting,
including AJAX and JavaScript-
based frameworks

Part I. Getting Started

It Takes a Village (Website Creation Roles)

10

in this book) is HTML 5.2. Appendix D, From HTML+ to HTML5, tells the his-
tory of HTML and lists what makes HTML5 unique.

HTML is not a programming language; it is a markup language, which means
it is a system for identifying and describing the various components of a
document such as headings, paragraphs, and lists. The markup indicates the
document’s underlying structure (you can think of it as a detailed, machine-
readable outline). You don’t need programming skills—only patience and
common sense—to write HTML.

The best way to learn HTML is to write out some pages by hand, as we will
be doing in the exercises in Part II of this book.

Styling (CSS)

While HTML is used to describe the content in a web page, Cascading Style
Sheets (CSS) describe how that content should look (see Note). The way the
page looks is referred to as its presentation. Fonts, colors, background images,
line spacing, page layout, and so on, are all controlled with CSS. You can even
add special effects and basic animation to your page.

The CSS specification also provides methods for controlling how documents
will be presented in contexts other than a browser, such as in print or read
aloud by a screen reader; however, we won’t be covering them much here.

Although it is possible to publish web pages using HTML alone, you’ll prob-
ably want to take on style sheets so you’re not stuck with the browser’s default
styles. If you’re looking into designing websites professionally, either as a
designer or as a developer, proficiency at style sheets is mandatory.

JavaScript and DOM scripting

JavaScript is a scripting language that adds interactivity and behaviors to web
pages, including these (to name just a few):

•	 Checking form entries for valid entries

•	 Swapping out styles for an element or an entire site

•	 Loading scrolling feeds with more content automatically

•	 Making the browser remember information about users

•	 Building interface widgets, such as embedded video players or special
form inputs

You may also hear the term DOM scripting used in relation to JavaScript.
DOM stands for Document Object Model, and it refers to the standard-
ized list of web page elements that can be accessed and manipulated using
JavaScript (or another scripting language).

Frontend developers may also be required to be familiar with JavaScript
frameworks (such as React, Bootstrap, Angular, and others) that automate a
lot of the production process. They’ll likely also need to be handy with AJAX

NOTE

When this book uses the term “style
sheets,” it always refers to Cascading
Style Sheets, the standard style sheet
language for the World Wide Web. Style
sheets (including what “cascading”
means!) are discussed further in Part III.

The World Wide Web
Consortium
The World Wide Web Consortium
(called the W3C for short) is the
organization that oversees the
development of web technologies
such as HTML, CSS, and JavaScript.
The group was founded in 1994 by
Tim Berners-Lee, the inventor of the
web, at the Massachusetts Institute of
Technology (MIT).

In the beginning, the W3C concerned
itself mainly with the HTTP protocol
and the development of HTML. Now,
the W3C is laying a foundation for
the future of the web by developing
dozens of technologies and protocols
that must work together in a solid
infrastructure.

For the definitive answer to any web
technology question, the W3C site is
the place to go: www.w3.org.

For more information on the W3C and
what it does, see this useful page:
www.w3.org/Consortium/.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

11

http://www.w3.org/Consortium/

(which stands for “Asynchronous JavaScript And XML”), a technique used to
load content in the background, allowing the page to update smoothly with-
out reloading (like those automatically refreshing feeds).

Web scripting definitely requires some traditional computer programming
prowess. While many web developers have degrees in computer science, it is
also common for developers to be self-taught. A few developers I know start-
ed by copying and adapting existing scripts, then gradually added to their
programming skills with each new project. Still, if you have no experience
with programming languages, the initial learning curve may be a bit steep.

If you want to be a web developer for a living, JavaScript is a basic require-
ment. Designers will benefit from understanding what JavaScript can do, but
may not need to learn to write it if they are working with a development
team. Chapter 21, Introduction to JavaScript, will get you started understand-
ing how it works, and I recommend Learning JavaScript by Ethan Brown
(O’Reilly) to learn more.

Backend development
Backend developers focus on the server, including the applications and data-
bases that run on it. They may be responsible for installing and configuring
the server software (we’ll be looking more at servers in Chapter 2, How the
Web Works). They will certainly be required to know at least one, and prob-
ably more, server-side programming languages, such as PHP, Ruby, .NET (or
ASP.NET), Python, or JSP, in order to create applications that provide the
functionality required by the site. Applications handle tasks and features like
forms processing, content management systems (CMSs), and online shop-
ping, just to name a few.

Additionally, backend developers need to be familiar with configuring and
maintaining databases that store all of the data for a site, such as the content
that gets poured into templates, user accounts, product inventories, and more.
Some common database languages include MySQL, Oracle, and SQL Server.

Backend development is well beyond the scope of this book, but it is impor-
tant to know the sorts of tasks that get taken care of at the server level. You
should be aware that it is possible to get functionality like shopping carts,
mailing lists, and so on as prepackaged solutions from your hosting company
without having to program it from scratch.

AT A G L A N C E

Backend Development
The following technologies are
typically in the domain of the
backend developer:

•	 Server software (Apache, Microsoft
IIS)

•	 Web application languages (PHP,
Ruby, Python, JSP, ASP.NET)

•	 Database software (MySQL, Oracle,
SQL Server)

Full-Stack Developers and Unicorns
When looking for a job in web development, you will frequently see posts looking for
“full-stack” developers. That means a person who is fluent in both frontend (HTML,
CSS, JavaScript) and backend (server applications, databases) languages.

There is a rare breed of web designer who can handle all of the tasks mentioned
earlier—from content strategy to UX to frontend development to what happens on
the server. These folks are known in the biz as “unicorns.” I’ve met a few!

Part I. Getting Started

It Takes a Village (Website Creation Roles)

12

Other Roles
Not surprisingly, there are a myriad of other roles that contribute to the cre-
ation and maintenance of a site. Here are a few common roles that fall just
outside the moniker “web design.”

Product manager

The product manager of a website or application guides its design and
development in a way that meets business goals. This member of the
team must have a thorough understanding of the target market as well
as the processes involved in the creation of the site itself. Product manag-
ers develop the overall strategy for the site from a marketing perspective,
including how and when it gets released.

Project manager

The project manager coordinates the designers, developers, and everyone
else who is working on the site. They manage things like timelines, devel-
opment approaches, deliverables, and so on. The project manager works
with the product manager and other product owners to make sure that
the project gets done on time and on budget.

SEO specialist

A website or application isn’t much good if nobody knows it exists, so
it is crucial that a site be easily found by search engines. Search Engine
Optimization (SEO) is a discipline focused on tweaking the site structure
and code in a way that increases the chances it will be highly ranked in
search results. There may be an SEO specialist on the in-house team, or
a company may choose to hire an outside SEO firm. SEO is sometimes
perceived as a dark art, but there are many ways to improve findability
that are not underhanded. In fact, the number one technique for improv-
ing SEO is simply having good content with savvy HTML markup.

Multimedia producers

One of the cool things about the web is that you can add multimedia ele-
ments to a site, including sound, video, animation, and even interactive
games. Creating multimedia elements is generally best left to artists and
technicians in those fields, although they may be part of the web team if
video, animation, or interactivity are core to the site’s mission.

That concludes our stroll through the virtual village of workers involved
in the creation of a website. The larger the site, the more likely each team
member will have a narrow specialization and job titles like “UX Lead for
Error Messages.” More likely, everybody on the team will possess a spec-
trum of skills, and the lines between disciplines will blur. For example, I do
Interaction and User Interface design, graphic design, HTML, and CSS, but
I do not write JavaScript, work on the server, or get involved with content
organization. In this book, I aim to give you a foundation in the frontend
technologies that will prepare you for a number of roles.

1. Getting Started in Web Design

It Takes a Village (Website Creation Roles)

13

GEARING UP FOR WEB DESIGN

It should come as no surprise that professional web designers require a fair
amount of gear, both hardware and software. One question I’m frequently
asked is, “What do I need to buy?” I can’t tell you specifically what to buy, but
I will provide an overview of the typical tools of the trade.

Equipment
For a comfortable web development environment, I recommend the follow-
ing equipment:

A solid, up-to-date computer

Macintosh, Windows, or Linux is fine, so use whatever you have and are
comfortable with. Creative departments in professional web development
companies tend to be Mac-based. For backend work, Linux and Windows
are popular. Although it is nice to have a super-fast machine, the files that
make up web pages are very small and tend not to be too taxing on com-
puters. Unless you’re getting into sound and video editing, don’t worry if
your current setup is not the very latest and greatest.

A large monitor

Although not a requirement, a large monitor makes life easier. The more
monitor real estate you have, the more windows and control panels you
can have open at the same time. You can also see more of your page to
make design decisions. If you’re using a large monitor, just make sure you
design for users with smaller monitors and devices in mind.

(Soft) Skills Every Web Designer Needs
We’ve focused on quite a few technical skills that will be helpful
in building websites. I would like to mention a few more—often
overlooked—skills that are just as critical to your success.

Excellent communication skills
In your work, you will need to communicate in person,
on the phone, in email, and in text messaging tools with
clients, team members, and superiors. Be clear, proactive,
and straightforward with what you have to say. Good
communication requires not only that you express yourself
clearly, but also that you be a good listener. Make sure that
you understand issues being discussed, and don’t be afraid
to ask for clarification if you don’t.

Flexibility
Be able to change direction quickly because not only does
web technology change quickly, but you will no doubt
be thrown curveballs in your day-to-day work as well. For

example, you may arrive at work one day to find that the
client has changed your priorities completely. You might
find that they’ve cancelled your project entirely. You might
be asked to learn new skills and shift positions in the team.
Staying adaptable is the key to survival.

Critical thinking and good judgment
Problem-solving is central to all of the disciplines related to
web design, so you need to be able to use critical thinking
skills to come up with solutions and always employ basic
common sense.

A good attitude
Creating sites means being part of a team, even if you work
at home as a freelancer. Be mindful that the attitude with
which you approach your work is contagious, so strive to be a
positive and friendly team member.

Part I. Getting Started

Gearing Up for Web Design

14

A second computer for testing 

Many designers and developers find it useful to have a test computer run-
ning a different platform than the computer they use for development (i.e.,
if you design on a Mac, test on a PC). Because browsers work differently
on Macs than on Windows machines, it’s critical to test your pages in as
many environments as possible, and particularly on the current Windows
operating system. If you are a hobbyist web designer working at home,
you could check your pages on a friend’s machine. Mac users should
check out the “Run Windows on Your Mac” sidebar.

Mobile devices for testing

The web has gone mobile! That means it is absolutely critical that you
test the appearance and performance of your site on browsers on smart-
phones and tablet devices. Device testing is discussed in Chapter 17,
Responsive Web Design.

A scanner and/or camera

If you anticipate making your own images and textures, you’ll need some
tools for creating them.

Web Production Software
There’s no shortage of software available for creating web pages. In the early
days, we just made do with tools originally designed for print. Today, there are
wonderful tools created specifically with web design in mind that make the
process more efficient. It is a delicate business listing software in a book such
as this because a) there are so many programs, b) everyone has their personal
favorite, and c) new tools come along so rapidly that there are surely newer,
cooler options that you have access to that didn’t exist as I wrote this.

Run Windows on Your Mac
If you have a Macintosh computer with an Intel chip running macOS (Leopard or
later), you don’t need a separate computer to test in a Windows environment.
It is now possible to run Windows right on your Mac using the free Boot Camp
application, which allows you to switch to Windows on reboot.

There are several other VM (Virtual Machine) products for macOS that allow you to
toggle between Mac and Windows, including these:

•	 VMFusion (www.vmware.com/fusion) is a commercial product with a free trial you
can download.

•	 Parallels Desktop for Mac (www.parallels.com) is also a commercial product with
a free trial.

•	 Oracle VirtualBox (virtualbox.org) is a free program that allows you to run a
number of guest operating systems, including Windows and several flavors of Unix.

All VM products require that you purchase a copy of Microsoft Windows, but it sure
beats buying a whole machine.

NOTE

To do the exercises in this book, all you’ll
need is the text editor that came with
your operating system and free image
creation software. There is no need to
purchase anything to follow along.

1. Getting Started in Web Design

Gearing Up for Web Design

15

http://www.vmware.com/fusion
http://www.parallels.com

That said, here is a general overview of the types of software that comprise
the tools of our trade, along with a few specific mentions of the most popular
in each class.

Coding tools
Although you can get by with the simple text editors that come with your
computer, a dedicated code editor makes the task of writing HTML, CSS, and
JavaScript much easier. Code editors understand the syntax of the code you
write, so they can do things for you like color coding, error detection, and
automatically finishing simple tasks like closing HTML tags. Some provide
page previews so you can view the results of your code as you work.

FIGURE 1-6 shows how an HTML document looks in the Sublime Text editor.
Here are just a few of the better-known code editors for web production that
are worth exploring:

•	 Sublime Text (sublimetext.com)

•	 Atom (free from GitHub; atom.io)

•	 Brackets (free from Adobe; brackets.io)

•	 CodeKit (codekitapp.com; Mac only)

•	 Adobe Dreamweaver (www.adobe.com/products/dreamweaver.html)

•	 Coda (panic.com/coda/)

•	 Microsoft Visual Studio (visualstudio.com)

FIGURE 1-6. Sublime Text is one example of a dedicated code editor.

Part I. Getting Started

Gearing Up for Web Design

16

http://www.adobe.com/products/dreamweaver.html

User interface and layout tools
There is a new breed of interface design tools made specifically for websites
and other applications. Because they have been designed from scratch with
interface design in mind, they seem to anticipate a web designer’s every
need. Interface design tools make it easy to design multiple layouts (such as
layouts at various screen sizes) as well as export images and code for use in
production. Some allow basic interactivity such as clicks and swipes, so your
mockups can be shared online and used for basic interface testing.

Sketch (sketchapp.com, Mac only), shown in FIGURE 1-7, is extremely popular
at the time of this writing. Other options include the following:

•	 Affinity Designer (affinity.serif.com/en-us/designer/)

•	 Adobe XD (www.adobe.com/products/xd.html)

•	 Figma (figma.com)

•	 UXPin (uxpin.com)

FIGURE 1-7. Sketch (Mac only) is an example of an interface design tool.

Web graphic creation tools
It is certainly possible to create all of the images you need for a site by using
one of the interface design tools just listed. There are also programs that
focus solely on image creation that can export files in web-appropriate for-
mats. For professional designers, the Adobe Creative Cloud (adobe.com) suite
of tools, which includes Photoshop (FIGURE 1-8), Illustrator, and other high-
end design tools, is worth the investment.

If the Adobe monthly subscription fee is out of reach, you can try lower-cost
alternatives that provide many of the same features. The number of graphics
tools out there is dizzying, so I’m gathering just a few here:

1. Getting Started in Web Design

Gearing Up for Web Design

17

•	 GIMP (free, open source; gimp.org)

•	 Corel PaintShop Pro (for photo editing; paintshoppro.com; Windows only)

•	 Corel Draw (for vector drawing; coreldraw.com; Windows only)

•	 Pixelmator (pixelmator.com; Mac only)

The following image editors work right in your browser, without the need to
download a program, although you do need to pay for an account:

•	 SumoPaint (sumopaint.com)

•	 Pixlr (pixlr.com)

FIGURE 1-8. Adobe Photoshop is the professional standard for image editing.

A variety of browsers
One of the biggest challenges for web designers is that our sites may look and
behave differently from browser to browser. For this reason, it is critical that
we test our designs early and often on the widest range of browsers possible.
These are the browsers designers and developers keep around for testing:

•	 Chrome (google.com/chrome)

•	 Firefox (www.mozilla.org)

•	 MS Edge (www.microsoft.com/en-us/windows/microsoft-edge; Windows only)

•	 Internet Explorer 9–11 (www.microsoft.com; search “Internet Explorer”;
Windows only)

•	 Safari (support.apple.com/downloads/#safari; Mac only)

•	 Opera (opera.com)

Part I. Getting Started

Gearing Up for Web Design

18

http://www.microsoft.com/en-us/windows/microsoft-edge
http://www.microsoft.com

You will also need to test on a variety of smartphone browsers including iOS
Safari, Android browsers, and third-party mobile browsers. We will discuss
mobile testing further in Chapter 17.

File management and transfer tools
Web design and development involves a lot of moving files around, particu-
larly from the computer where you do your work to the server computer that
hosts the site. To move files across the internet, you use an FTP (short for File
Transfer Protocol) program. You will find that many hosting services offer
their own FTP tools for uploading your files to their servers. Many of the
code editors listed earlier also include built-in FTP functionality. Or, you can
use a standalone FTP program, such as one of these:

•	 Filezilla (filezilla-project.org; free, all platforms)

•	 Cyberduck (cyberduck.io; Mac and Windows)

•	 WinSCP (winscp.net/eng/index.php; free, Windows only)

•	 Transmit (panic.com/transmit/; Mac only)

You may also find it useful to have a terminal application (command-line
tool) that allows you to type Unix commands for setting file permissions,
moving or copying files and directories, or managing the server software.
Command-line tools, which have a number of uses in web design and devel-
opment workflow, are discussed in more detail in Chapter 20, Modern Web
Development Tools:

•	 Terminal (installed with macOS; shown in FIGURE 1-9)

•	 Cygwin (cygwin.com; Linux emulator for Windows that includes a
command-line tool)

FIGURE 1-9. The Terminal command-line tool for macOS.

1. Getting Started in Web Design

Gearing Up for Web Design

19

https://winscp.net/eng/index.php

WHAT YOU’VE LEARNED

I hope that this chapter has given you an overview of the many roles and
responsibilities that fall under the umbrella of “web design.” I also hope that
you come away realizing that you don’t need to learn everything. And even if
you want to learn everything eventually, you don’t need to learn it all at once.
So relax, and don’t worry. The other good news is that, while many profes-
sional tools exist, it is possible to create a basic website and get it up and run-
ning without spending much money by using freely available or inexpensive
tools and your existing computer setup.

As you’ll soon see, it’s easy to get started making web pages—you will be able
to create simple pages by the time you’re done reading this book. From there,
you can continue adding to your bag of tricks and find your particular niche
in web design. In the meantime, try answering the questions in EXERCISE 1-1.

TEST YOURSELF

Each chapter in this book ends with a few questions that you can answer to
see if you picked up the important bits of information. Answers appear in
Appendix A.

1.	 Match these web professionals with the final product they might be
responsible for producing:

a. Graphic designer _____ HTML and CSS documents

b. Production department _____ PHP scripts

c. User experience designer _____ “Look and feel” deliverables

d. Backend programmer _____ Storyboards

2.	 What does the W3C do?

3.	 Match the web technology with its appropriate task:

a. HTML _____ Checks a form field for a valid entry

b. CSS _____ Creates a custom server-side web application

c. JavaScript _____ Identifies text as a second-level heading

d. Ruby _____ Makes all second-level headings blue

4.	 What is the difference between frontend and backend web development?

5.	 What does an FTP tool do and how do you get one?

EXERCISE 1-1.
Taking stock

Now that you’re taking that first step in
learning web design, it might be a good
time to take stock of your assets and
goals. Using the lists in this chapter as a
general guide, try jotting down answers
to the following questions:

•	 What are your web design goals? To
become a professional web designer?
To make personal websites only?

•	 Which aspects of web design interest
you the most?

•	 What current skills do you have that
will be useful in creating web pages?

•	 Which skills will you need to brush
up on?

•	 Which hardware and software tools
do you already have for web design?

•	 Which tools do you need to buy?
Which tools would you like to buy
eventually?

Part I. Getting Started

What You’ve Learned

20

IN THIS CHAPTER

An explanation of the web as it
relates to the internet

The role of the server

The role of the browser

URLs and their components

The anatomy of a web page

I got started in web design in early 1993—pretty close to the start of the web
itself. That’s a quarter of a century ago (gasp!), but I still distinctly remember
the first time I looked at a web page. It was difficult to tell where the informa-
tion was coming from and how it all worked.

This chapter sorts out the pieces and introduces some basic terminology.
We’ll start with the big picture and work down to specifics.

THE INTERNET VERSUS THE WEB

No, it’s not a battle to the death, just an opportunity to point out the distinction
between two words that are increasingly being used interchangeably.

The internet is an international network of connected computers. No com-
pany owns the internet; it is a cooperative effort governed by a system of
standards and rules. The purpose of connecting computers together, of
course, is to share information. There are many ways information can be
passed between computers, including email (POP3/IMAP/SMTP), file trans-
fer (FTP), secure shell (SSH), and many more specialized modes upon which
the internet is built. These standardized methods for transferring data or
documents over a network are known as protocols.

The web (originally called the World Wide Web, thus the “www” in site
addresses) is just one of the ways information can be shared over the internet.
It is unique in that it allows documents to be linked to one another via hyper-
text links—thus forming a huge “web” of connected information. The web
uses a protocol called HTTP (HyperText Transfer Protocol). That acronym
should look familiar because it is the first four letters of nearly all website
addresses, as we’ll discuss in an upcoming section.

HOW THE WEB
WORKS

2
CHAPTER

The web is a subset of
the internet. It is just one
of many ways information
can be transferred over
networked computers.

21

A Brief History of the Web
The web was born in a particle physics laboratory (CERN) in Geneva, Switzerland, in
1989. There a computer specialist named Tim Berners-Lee first proposed a system of
information management that used a “hypertext” process to link related documents
over a network. He and his partner, Robert Cailliau, created a prototype and released
it for review. For the first several years, web pages were text-only. It’s difficult to
believe that in 1992, the world had only about 50 web servers, total.

The real boost to the web’s popularity came in 1992 when the first graphical browser
(NCSA Mosaic) was introduced, and the web broke out of the realm of scientific
research into mass media. The ongoing development of web technologies is overseen
by the World Wide Web Consortium (W3C).

If you want to dig deeper into the web’s history, check out the W3C’s History Archives
at www.w3.org/History.html.
FUN FACT: If you look at that page, you’ll see a July 1993 entry for the first “WWW
Wizards Workshop.” Although I did not attend that meeting, I did design the
commemorative t-shirt!

SERVING UP YOUR INFORMATION

Let’s talk more about the computers that make up the internet. Because they
“serve up” documents upon request, these computers are known as servers.
More accurately, the server is the software (not the computer itself) that
allows the computer to communicate with other computers; however, it is
common to use the word “server” to refer to the computer as well. The role of
server software is to wait for a request for information, and then retrieve and
send that information back as quickly as possible.

There’s nothing special about the computers themselves…picture anything
from a high-powered Unix machine to a humble personal computer. It’s the
server software that makes it all happen. In order for a computer to be part
of the web, it must be running special web server software that allows it to
handle HyperText Transfer Protocol transactions. Web servers are also called
HTTP servers.

There are many server software options out there, but the two most popu-
lar are Apache (open source software) and Microsoft Internet Information
Services (IIS). Apache is freely available for Unix-based computers and comes
installed on Macs running macOS. There is a Windows version as well.
Microsoft IIS is part of Microsoft’s family of server solutions.

Every computer and device (router, smartphone, car, etc.) connected to the
internet is assigned a unique numeric IP address (“IP” stands for “Internet
Protocol”). For example, as I write this, the computer that hosts oreilly.com has
the IP address 199.27.145.64. All those numbers can be dizzying, so fortu-
nately, the Domain Name System (DNS) was developed to allow us to refer to

T E R M I N O LO GY

Open Source
Open source software is developed
as a collaborative effort with the
intent to make its source code
available to other programmers for
use and modification. Open source
programs are usually free to use.

Part I. Getting Started

Serving Up Your Information

22

http://www.w3.org/History.html

that server by its domain name, “oreilly.com”, as well. The numeric IP address
is useful for computer software, while the domain name is more accessible
to humans. Matching the text domain names to their respective numeric IP
addresses is the job of a separate DNS server. If you think of an IP address as
a telephone number, the DNS server would be the phonebook.

It is possible to configure your web server so that more than one domain
name is mapped to a single IP address, allowing several sites to share a single
server.

A WORD ABOUT BROWSERS

We now know that the server does the servin’, but what about the other half
of the equation? The software that does the requesting is called the client.
People use desktop browsers, mobile browsers, and other assistive technolo-
gies (such as screen readers) as clients to access documents on the web. The
server returns the documents for the browser (also referred to as the user
agent in technical circles) to display.

The requests and responses are handled via the HTTP protocol, mentioned
earlier. Although we’ve been talking about “documents,” HTTP can be used
to transfer images, movies, audio files, data, scripts, and all the other web
resources that commonly make up websites and applications.

It is common to think of a browser as a window on a computer monitor
with a web page displayed in it. These are known as graphical browsers or
desktop browsers and for a long time, they were the only web-viewing game
in town. The most popular desktop browsers as of this writing include Edge
and Internet Explorer for Windows, Chrome, Firefox, and Safari, with Opera
and Vivaldi bringing up the rear.

These days, however, more than half of web traffic comes from mobile brows-
ers on smartphones and tablets such as Safari on iOS, Android and Chrome
browsers on Android devices, Opera Mini, and a myriad of other default and
installable mobile browsers (see en.wikipedia.org/wiki/Mobile_browser for a
complete list). Navigating the web on a touch screen is the new normal.

It is also important to keep alternative web experiences in mind. Users with
impaired sight may be listening to a web page read by a screen reader (or
simply make their text extremely large). Users with limited mobility may use
assistive technology such as joysticks or voice commands to access links and
enter content. The sites we build must be accessible and usable for all users,
regardless of their browsing experiences.

The web is also finding its way onto smart TVs and gaming systems, where
users access our pages with TV remotes or Xbox controllers. You never know
where the web will pop up next!

T E R M I N O LO GY

Server-Side and
Client-Side
Often in web design, you’ll hear
references to “client-side” or
“server-side” applications. These
terms are used to indicate which
machine is doing the processing.
Client-side applications run on the
user’s machine (also referred to
as the frontend), while server-side
applications and functions use
the processing power of the server
computer (the backend).

T E R M I N O LO GY

Intranets and Extranets
When you think of a website, you
generally assume that it is accessible
to anyone surfing the web. However,
many organizations take advantage
of the awesome information sharing
and gathering power of websites to
exchange information just within
their own network. These special
web-based networks are called
intranets. They are created and
function like ordinary websites, but
they use special security devices
(called firewalls) that prevent the
outside world from seeing them.
Intranets have lots of uses, such as
sharing human resource information
or providing access to inventory
databases.

An extranet is like an intranet, but it
allows access to select users outside
of the organization. For example, a
manufacturing company may provide
its customers with passwords that
allow them to check the status of
their orders in the company’s orders
database. Passwords determine
which slice of the company’s
information is accessible.

2. How the Web Works

A Word About Browsers

23

https://en.wikipedia.org/wiki/Mobile_browser

The reality is that pages may look and perform differently from browser to
browser. This is due to varying support for web technologies, varying device
capabilities, and the users’ ability to set their own browsing preferences. It is
the most challenging aspect of designing and developing for our medium.

WEB PAGE ADDRESSES (URLS)

Every page and resource on the web has its own special address called a URL,
which stands for Uniform Resource Locator. It’s nearly impossible to get
through a day without seeing a URL (pronounced “U-R-L,” not “erl”) plas-
tered on the side of a bus, printed on a business card, or broadcast on a televi-
sion commercial. Web addresses are fully integrated into modern vernacular.

Some URLs are short and sweet. Others may look like crazy strings of char-
acters separated by dots (periods) and slashes, but each part has a specific
purpose. Let’s pick one apart.

The Parts of a URL
A complete URL is generally made up of three components: the protocol, the
site name, and the absolute path to the document or resource, as shown in
FIGURE 2-1.

Browser Rendering Engines
The program that is responsible for converting HTML and CSS
into what you see rendered on the screen is called a rendering
engine (also browser engine or layout engine). Browsers that
you use on desktop computers and mobile devices are made
up of rendering engines as well as other code used for their
own user interfaces and functionality. Although I talk a lot about
which browsers support particular functions in this book, I’m

technically referring to the browser’s rendering engine. Various
browsers often share a rendering engine; for example, the
Blink engine powers Chrome, Opera, and a variety of Android
browsers. TABLE 2-1 lists the rendering engines used by the
most popular web browsers today. For more information,
search Wikipedia.com for “Comparison of web browser engines”
and “Comparison of web browsers.”

TABLE 2-1.   Current browsers and their rendering engines

Browser Rendering engine

Chrome 28+ Blink (forked from WebKit)

Firefox (all) Gecko (except Firefox for iOS, which uses WebKit)

Safari and Safari iOS (all) WebKit

Internet Explorer 4–11 Trident

MS Edge (all) EdgeHTML (forked from Trident)

Opera 15+ Blink (forked from WebKit)

Part I. Getting Started

Web Page Addresses (URLs)

24

http:// www.example.com /2018/samples/first.html

Hostname Domain name

Protocol1 Name of site2 Absolute path3

Directory path Document

 FIGURE 2-1.   The parts of a URL.

1 http://

The first thing the URL does is to define the protocol that will be used for
that particular transaction. The letters “HTTP” let the server know to use
HyperText Transfer Protocol, or get into “web mode.” You may also see a
URL begin with https://, which I explain in the “HTTPS, The Secure Web
Protocol” sidebar.

2 www.example.com

The next portion of the URL identifies the website by its domain name.
In this example, the domain name is “example.com.” The “www.” part at
the beginning is the particular hostname at that domain. The hostname
“www” has become a convention, but is not a rule. In fact, sometimes
the hostname may be omitted. There can be more than one website at a
domain (called subdomains). For example, there might also be “develop-
ment.example.com,” “clients.example.com,” and so on.

3 /2018/samples/first.html

This is the absolute path through directories on the server to the request-
ed HTML document, first.html. The words separated by slashes are the
directory names, starting with the root directory of the host (as indicated
by the initial /). Because the internet originally comprised computers run-
ning the Unix operating system, our current way of doing things still fol-
lows Unix rules and conventions, hence the / separating directory names.

To sum it up, the URL in FIGURE 2-1 says it would like to use the HTTP proto-
col to connect to a web server on the internet called “www.example.com” and
to request the document first.html, located in the samples directory, which is
in the 2018 directory.

Simplified URLs
Obviously, not every URL you see is so lengthy. To get to O’Reilly’s site, you’d
expect to type oreilly.com instead of http://www.oreilly.com/index.html.
Here’s why that works.

URL Versus URI
The W3C and the development
community are moving away from
the term URL (Uniform Resource
Locator) and toward the more generic
and technically accurate URI (Uniform
Resource Identifier). On the street and
even on the job, however, you’re still
likely to hear URL.

Here’s the skinny on URL versus
URI: a URL is one type of a URI that
identifies the resource by its location
(the L in URL) on the network. The
other type of URI is a URN that
identifies the resource by name or
namespace (the N in URN).

Because it is more familiar, I will be
sticking with URL throughout this
book. Just know that URLs are a
subset of URIs, and the terms are
often used interchangeably.

If you like to geek out on this kind of
thing, I refer you to the URI Wikipedia
entry: en.wikipedia.org/wiki/
Uniform_Resource_Identifier.

2. How the Web Works

Web Page Addresses (URLs)

25

Skipping the protocol
Because nearly all web pages use the HyperText Transfer Protocol, the http://
part is often just implied. This is the case when site names are advertised in
print or on TV, as a way to keep the URL easy to remember.

Additionally, browsers are programmed to add http:// automatically as a
convenience to save you some keystrokes. It may seem like you’re leaving it
out, but it is being sent to the server behind the scenes.

When we begin using URLs to create hyperlinks in HTML documents in
Chapter 6, Adding Links, you’ll learn that it is necessary to include the protocol
when making a link to a web page on another server.

Pointing to default files
Many addresses do not include a filename, but simply point to a directory,
like these:

http://www.oreilly.com
http://www.jendesign.com/resume/

When a server receives a request for a directory name rather than a specific
file, it looks in that directory for a default document, typically named index.
html. So when someone types the previous URLs into his browser, what he’ll
actually see is this:

http://www.oreilly.com/index.html
http://www.jendesign.com/resume/index.html

The name of the default file (also referred to as the index file) may vary, and
depends on how the server is configured. In these examples, it is named index.
html, but some servers use the filename default.htm. If your site uses server-
side programming to generate pages, the index file might be named index.php
or Default.aspx. Just check with your server administrator or the tech support
department at your hosting service to make sure you give your default file
the proper name.

Another thing to notice is that in the first example, the original URL did not
have a trailing slash to indicate it was a directory. If the slash is omitted, the
server checks to see if the request is a file or a directory. If it is a directory,
the server asks the browser to send the request again with a slash. In the end,
the slash is included for directories, even if it isn’t included the first time it is
entered (see Performance Tip).

The index file is also useful for security. Some servers (depending on their
configuration) display the contents of the directory if the default file is not
found. FIGURE 2-2 shows how the documents in the housepics directory are
exposed as the result of a missing default file. One way to prevent people
from snooping around in your files is to be sure there is an index file in every
directory. Your server administrator may also add other protections to prevent
your directories from displaying in the browser.

HTTPS, the Secure
Web Protocol
If you look at the address bar while
shopping online or using a banking
site, you’ll notice that they use the
HTTPS protocol. HTTPS, where “S”
stands for “secure,” is a modification
of HTTP that encrypts form
information when it is sent between
the user’s client and the server. Any
web page that has form fields that
accept text (such as a search bar or a
login) should use HTTPS.

As of this writing, around 60% of
pages (and growing!) use HTTPS, and
for good reason. Not only is it a good
idea to keep your user’s data secure
in transit, but Google is pushing along
the transition to HTTPS with some
serious incentives as well. If you have
a site that accepts text input and you
don’t use HTTPS, your site won’t rise
as high in the Google search results.
In addition, in Chrome, these sites are
marked with “Not Secure” in the top
bar of the browser.

HTTPS works in tandem with another
protocol, SSL (for Secure Socket
Layer), which needs to be enabled
on the server for secure transactions
to work. Hosting companies have
options for enabling SSL, often for free.

Keep in mind that HTTPS protects
form data as it is sent to the server,
but doesn’t do anything to make your
site “secure” and safe from hackers.

P E R FO R M A N C E T I P

If you want to minimize round-trips
to the server, include slashes at the
end of directory names in URLs in
your links.

Part I. Getting Started

Web Page Addresses (URLs)

26

THE ANATOMY OF A WEB PAGE

We’re all familiar with what web pages look like in the browser window, but
what’s happening “under the hood”?

At the top of FIGURE 2-3, you see a minimal web page as it appears in a
graphical browser. Although you see it as one coherent page, it is actually
assembled from four separate files: an HTML document (index.html), a style
sheet (kitchen.css), and two graphics (foods.png and spoon.png). The HTML
document is running the show.

HTML Documents
You may be as surprised as I was to learn that the graphically rich and inter-
active pages we see on the web are generated by simple, text-only documents.
The text file behind the scenes is referred to as the source document.

Take a look at index.html, the source document for the Jen’s Kitchen web
page. You can see that it contains the text content of the page plus special
tags (indicated with angle brackets, < and >) that describe each element on
the page.

Providing the URL for a directory (rather
than a specific filename) prompts the server to
look for a default file, typically called index.html.

index.html

Some servers are configured to return a listing of the
contents of that directory if the default file is not found.

FIGURE 2-2.   Some servers display the contents of the directory if an index file is not
found.

2. How the Web Works

The Anatomy of a Web Page

27

The web page shown in this
browser window consists of four
separate files:

• An HTML text document

• A style sheet

• Two images

Tags in the HTML source
document give the browsers
instructions for how the text is
structured and where the images
should be placed.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Jen's Kitchen</title>
 <link rel="stylesheet" href="kitchen.css" type="text/css">
</head>

<body>
<h1> Jen’s Kitchen</h1>

<p>If you love to read about cooking and eating, would like to learn about some of the best
restaurants in the world, or just want a few choice recipes to add to your collection, this is the site
for you!</p>

<p> Your pal, Jen at Jen's Kitchen</p>

<hr>
<small>Copyright 2018, Jennifer Robbins</small>
</body>
</html>

body { font: normal 1em Verdana; width: 80%; margin: 1em auto; }

h1 { font: italic 3em Georgia; color: rgb(23, 109, 109);
 margin: 1em 0 1em; }

img { margin: 0 20px 0 0; }

h1 img { margin-bottom: -20px; }

small { color: #666666; }

index.html

kitchen.css
foods.png

spoon.png

FIGURE 2-3.   The source file, style sheet, and images that make up a simple web page.

Part I. Getting Started

The Anatomy of a Web Page

28

Adding descriptive tags to a text document is known as “marking up” the
document. Web pages use a markup language called HyperText Markup
Language, or HTML for short, which was created especially for documents
with hypertext links. HTML defines dozens of text elements that make up
documents such as headings, paragraphs, emphasized text, and of course,
links. There are also elements that add information about the document
(such as its title), media such as images and videos, and widgets for form
inputs, just to name a few.

You can view the source for any web page. EXERCISE 2-1 gives you some
prompts and pointers.

The version of HTML we use today is HTML5. There have been several ver-
sions of HTML since its birth in 1989, and a few that are still in use today.
There is a complete history of HTML, all its versions, and an overview of
what makes HTML5 unique in Appendix D, From HTML+ to HTML5.

EXERCISE 2-1.  View source

You can see the HTML file for any web page by viewing its source in a desktop browser.
Most modern browsers keep the View Source function with the developer tools and
typically open the source document in a separate window or in a developer’s panel at the
bottom of the current window.

Here’s where to find the View Source function on the major desktop browsers:

Safari: 	 Develop → Show → Page Source
Chrome: 	 View → Developer → View Source
Firefox:	 Tools → Web Developer → Page Source
MS Edge: 	Right-click on the page and select View Source. If you do not see that option

in the context menu, you may need to turn it on in the Developer Settings.
Open a new browser window and type about:flags in the address bar.
Under “Developer settings,” check “Show View source” and “Inspect element”
in the context menu. Now when you go to a web page, you can right-click on
the page and access the View Source function. You may also use the Ctrl+U
keyboard shortcut or F12 key.

1.	 With the browser of your choice, enter this URL into your browser:

www.learningwebdesign.com/5e/kitchen.html

You should see the Jen’s Kitchen web page from FIGURE 2-3.

2.	 Follow the directions for your browser listed above to view the source HTML document
for the Jen’s Kitchen page. It should be the same as shown in the figure.

3.	 To view a page that is a little more complicated, take a look at the source for the
learningwebdesign.com home page.

4.	 The source for most sites is considerably more complicated. View the source of
oreilly.com. It’s got style sheets, scripts, inline SVG graphics…the works! Don’t worry
if you don’t understand what’s going on. Much of it will look more familiar by the time
you are done with this book.

WARNING

Keep in mind that while learning from
others’ work is fine, stealing other peo-
ple’s code is poor form (or even illegal).
If you want to use code as you see it, ask
for permission and always give credit to
those who did the work.

2. How the Web Works

The Anatomy of a Web Page

29

http://www.learningwebdesign.com

A Quick Introduction to HTML Markup
You’ll be learning the nitty-gritty of markup in Part II, so I don’t want to bog
you down with too much detail right now, but there are a few things I’d like
to point out about how HTML works and how browsers interpret it.

Read through the HTML document in FIGURE 2-3 and compare it to the
browser results. It’s easy to see how the elements marked up with HTML tags
in the source document correspond to what displays in the browser window.

First, you’ll notice that the text within brackets (for example, <body> and
) does not display in the final page. The browser displays only what’s
between the tags—the content of the element. The markup is hidden. The tag
provides the name of the HTML element—usually an abbreviation such as
“h1” for “heading level 1,” or “em” for “emphasized text.”

Second, you’ll see that most of the HTML tags appear in pairs surrounding
the content of the element. In our HTML document, <h1> indicates that the
following text should be a first-level heading; </h1> indicates the end of the
heading. Some elements, called empty elements, do not have content. In our
sample, the <hr> tag indicates an empty element that tells the browser to
“insert a horizontal rule here” as a thematic divider.

Because I was unfamiliar with computer programming when I first began
writing HTML, it helped me to think of the tags and text as “beads on a
string” that the browser interprets one by one, in sequence. For example,
when the browser encounters an open bracket (<), it assumes all of the fol-
lowing characters are part of the markup until it finds the closing bracket
(>). Similarly, it assumes all of the content following an opening <h1> tag
is a heading until it encounters the closing </h1> tag. This is the manner
in which the browser parses the HTML document. Understanding the
browser’s method can be helpful when troubleshooting a misbehaving
HTML document.

Where Are the Pictures?
Obviously, there are no pictures in the HTML file itself, so how do they get
there when you view the final page? You can see in FIGURE 2-3 that each
image is a separate file. The images are placed in the flow of the text with the
HTML image element (img), which tells the browser where to find the graphic
(its URL). When the browser sees the img element, it makes another request to
the server for the image file, and then places it in the content flow.

The browser also sends requests to the server for style sheets (like kitchen.
css), JavaScript files (.js), and other embedded media like audio and videos.
The browser software (or more specifically, its rendering engine) brings the
separate pieces together into the final page.

Part I. Getting Started

The Anatomy of a Web Page

30

The assembly of the page generally happens in an instant, so it appears as
though the whole page loads all at once. Over slow connections or if the
page includes huge graphics or media files, the assembly process may be
more apparent as images lag behind the text. The page may even need to be
redrawn as new images, fonts, and style sheets arrive (although you can con-
struct your pages in such a way that prevents this from happening).

Adding a Little Style
I want to direct your attention to one last key ingredient of our minimal page.
Near the top of the HTML document there is a link element that points to
the style sheet document kitchen.css. That style sheet includes a few lines
of instructions for how the page should look in the browser. These are style
instructions written according to the rules of Cascading Style Sheets (CSS).
CSS allows designers to add visual style instructions (known as the docu-
ment’s presentation) to the marked-up text (the document’s structure, in web
design terminology). In Part III, you’ll get to know the power of Cascading
Style Sheets.

FIGURE 2-4 shows the Jen’s Kitchen page without (top) and with (bottom)
the style instructions. Browsers come equipped with default styles for every
HTML element they support, so if an HTML document lacks custom style
instructions, the browser will use its own. That’s what you see in the screen-
shot on the top. Even just a few style rules can make big improvements to the
appearance of a page.

Adding Behaviors with JavaScript
To make elements on the page do something, you use a scripting language
called JavaScript (see Note). There are no scripts on the Jen’s Kitchen page
because I thought it best to keep things simple this early in the book, but
know that JavaScript is an essential ingredient in modern websites.

Whereas HTML provides the structure and the CSS style sheet alters how
things look, JavaScript adds a behavior component that controls how things
work. Scripts may be standalone files on the server (with the .js suffix) or be
written out right in the document. They may be triggered to run immediately
when the page loads or be triggered by something the user does, like click or
hover on an element or enter something in a form field.

You’ll get a basic introduction to JavaScript in Part IV of this book.

NOT E

JavaScript is not required for the interactivity of links and web forms, which work using
HTML alone.

FIGURE 2-4.   The Jen’s Kitchen
page without (top) and with (bottom)
custom style rules.

2. How the Web Works

The Anatomy of a Web Page

31

PUTTING IT ALL TOGETHER

1.	To wrap up our introduction to how the web works, let’s trace a typical
stream of events that occurs with every web page that appears on your
screen (FIGURE 2-5). Request a web page by either typing its URL (for
example, http://jenskitchensite.com) directly in the browser or by clicking
a link on a page. The URL contains the information needed to target a
specific document on a specific web server on the internet. In this case, it
points to the default file (index.html) in the top directory.

2.	Your browser sends an HTTP request to the server named in the URL
and asks for the specific file. The request also includes information about
what languages the user can read and what types of files the browser
can accept. If the URL specifies a directory (not a file), it is the same as
requesting the default file in that directory.

3.	The server looks for the requested file and issues an HTTP response in
the form of an HTTP header. The header includes information about the
file, like the last modified date, the length of the file, and its Content-Type
(for example, an .html file has the content type “text/html”).

a.	 If the page cannot be found, the server returns an error message. The
message typically says “404 Not Found,” although more hospitable
error messages may be provided. Other error types are possible as
well (see the sidebar “HTTP Status Codes”).

b.	 If the document is found, the server retrieves the requested file and
returns it to the browser. If the site is dynamic, the server assembles
the page from stored data before returning it to the browser.

4.	The browser parses the HTML document. If the page contains images
(indicated by the HTML img element) or other external resources like
scripts or style sheets, the browser contacts the server again to request
each resource specified in the markup.

5.	The browser inserts each image in the document flow where indicated by
the img element, applies styles, and runs scripts. And voilà! The assembled
web page is displayed for your viewing pleasure.

I should note that I’ve depicted a traditional and simplified scenario here to
tell you how web pages are put together. These days, it is common for web
pages to be generated from content management systems (CMSs) that keep
content in databases and use templates to assemble the data into pages on the
fly. In that case, in Step 3b, there is a more complicated process of assembling
the file from various parts rather than just handing off an existing file.

Static vs. Dynamic Sites
Static websites consist of HTML files
with fixed content that display the
same information to every visitor. In
other words, each page you see in the
browser is a view of a single HTML file
on the server. This book focuses on
the creation of static web pages as
they are straightforward and the best
starting place for beginners.

By contrast, dynamic websites
are generated with backend
programming such as PHP or ASP.
Each page is generated by the
application on the fly. Dynamic sites
access content and data from a
database, and the final pages may
be customized for each user. For
extremely large sites with hundreds
or thousands of pages, setting up
and maintaining a dynamic site is
considerably less work than creating
and storing every page as a static
HTML document individually.

HTTP Status Codes
Servers issue status codes in
response to browser requests. The
full list of status codes is quite long
(you can read about them all at
en.wikipedia.org/wiki/List_of_
HTTP_status_codes), but here are a
few common responses:

200	 OK

301	 Moved Permanently

302	 Moved Temporarily

404	 Not Found

410	 Gone (no longer available)

500 	 Internal Server Error

Part I. Getting Started

Putting It All Together

32

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

4 The browser parses
the document. If it has images, style
sheets, and scripts, the browser
contacts the server again for each
resource.

5 The page is assembled in the
browser window.

HTTP request

2 The browser sends an HTTP request.

HTTP response

Server

Oops, no file
If the file is not on the

server, it returns an error
message.

Files on Server

index.html

Browser (Client)

1 Type in a URL or click a link
in the browser.

3 The server looks for or
assembles the file and
responds with an HTTP
response.

“I see that you
requested a
directory, so
I’m sending

you the
default file,
index.html.

Here you go.”

foods.png

spoon.png

index.html

kitchen.css

kitchen.css

foods.png

spoon.png

FIGURE 2-5.   How browsers display web pages.

Getting Your Pages on the Web
If you would like more information about registering domain names and finding a server to host your site, download the article
titled “Getting Your Pages on the Web” (PDF) at learningwebdesign.com/articles/.

2. How the Web Works

Putting It All Together

33

TEST YOURSELF

Let’s play a round of “Identify That Acronym!” The following are a few basic
web terms mentioned in this chapter. Answers are in Appendix A.

1. HTML ______ a. Home of Mosaic, the first graphical browser

2. W3C ______ b. The location of a web document or resource

3. CERN ______ c. The markup language used to describe web content

4. CSS ______ d. Matches domain names with numeric IP addresses

5. HTTP ______ e. A protocol for file transfer

6. IP ______ f. Protocol for transferring web documents on the internet

7. URL ______ g. The language used to instruct how web content looks

8. NCSA ______ h. Particle physics lab where the web was born

9. DNS ______ i. Internet Protocol

10. FTP ______ j. The organization that monitors web technologies

Part I. Getting Started

Test Yourself

34

35

IN THIS CHAPTER

The web on mobile devices

The benefits of web standards

Progressive enhancement

Responsive Web Design

Accessibility

Site performance

As the web matures and the number of devices we access it from increases
exponentially, our jobs as web designers and developers get significantly
more complicated. Frankly, there’s a lot more going on out there than I can
fit in this book. In the chapters that follow, I will focus on the basic building
blocks of web design—HTML elements, CSS styles, a taste of JavaScript, and
web image production—that will give you a solid foundation for the further
development of your skills.

Before we get to the nuts and bolts, I want to introduce some Big Concepts
that every web designer needs to know. We’ll look at ideas and concerns that
inform our decisions and contribute to the contemporary web environment.
I’ll be referring back to the terminology introduced here frequently.

The heart of the matter is that as web designers, we never know exactly
how the pages we create will be viewed. We don’t know which of the dozens
of browsers might be used, whether it is on a desktop computer or some-
thing more portable, how large the browser window will be, what fonts are
installed, whether functionality such as JavaScript is enabled, how fast the
internet connection is, whether the pages are being read by a screen reader,
and so on. The Big Concepts in this chapter are primarily reactions to and
methods for coping with the inescapable element of the Unknown in our
medium. They include the following:

•	 The multitude of devices

•	 Web standards

•	 Progressive enhancement

•	 Responsive Web Design

•	 Accessibility

•	 Site performance

SOME BIG
CONCEPTS YOU
NEED TO KNOW

3
CHAPTER

Part I. Getting Started

A Multitude of Devices

36

Because we’re just getting started, I will keep the descriptions brief and fairly
non-technical. My goal is that you have a basic understanding of what I
mean by terms like “progressive enhancement” when you encounter them in
lessons later. Many excellent articles and books have been written on each of
these topics and their related production techniques, and I’ll provide pointers
to resources for further reading.

A MULTITUDE OF DEVICES

Until 2007, we could be relatively certain that our users were visiting our
sites while sitting at their desks, looking at a large monitor, using a speedy
internet connection. We had all more or less settled on 960 pixels as a good
width for a web page based on the most common monitor size. Back then,
our biggest concern was dealing with the dozen or so desktop browsers and
jumping through a few extra hoops to support quirky old versions of Internet
Explorer. And we thought we had it rough!

Although you could access web pages and web content on mobile phones
prior to 2007, the introduction of the iPhone and Android smartphones as
well as faster networks heralded a huge shift in how, when, and where we do
our web surfing (particularly in the United States, which lagged behind Asia
and the EU in mobile technology). Since then, we’ve seen the introduction of
phones and tablets of all different dimensions, as well as web browsers on
TVs, gaming systems, and other devices. And the diversity is only going to
increase. I think mobile web design expert Brad Frost sums it up nicely in his
illustrations in FIGURE 3-1.

The challenge of designing for all of these devices goes beyond addressing dif-
fering screen sizes. There is a world of difference between using a site over a
broadband connection and over a slow cell network. Designers need to resist
making assumptions about network speed and context based on the screen
size. Just because it is a small screen doesn’t mean it’s a slow connection or

 FIGURE 3-1.   Brad Frost sums up the reality of device diversity nicely (bradfrostweb.com).

3. Some Big Concepts You Need to Know

A Multitude of Devices

37

that the person is in a hurry. It’s not uncommon to leisurely browse the web
on a smartphone while sitting on the couch at home with a solid WiFi con-
nection. And iPads with larger, high-resolution displays may be accessing the
internet on pokey 3G connections. In other words, it’s complicated!

For a lot of sites today, more people access the web via their mobile devices
than on a desktop computer. Already, a significant portion of Americans use
their mobile phones as their only access to the internet. That means it is criti-
cal to get the design and functionality right. We’ve made huge strides in serv-
ing a pleasing experience to users with handheld devices, and the technology
for targeting their needs continues to head in the right direction.

What I want you to learn here is that the way you see your design as you’re
working on it on your nice desktop machine is not how it will be experienced
by everyone. Some will see it much smaller. Some will see it load painfully
slowly. Some may be looking at it on a TV across the room. All web design
professionals should keep this fact in mind.

For Further Reading
•	 Mobile First by Luke Wroblewski (A Book Apart). Luke was way ahead of

the curve in insisting that sites work well on mobile devices, and he shares
his perspective in this little book, which is jam-packed with ideas.

Mobile Web?
You may hear people use the term “mobile web,” but the truth is (as Stephen Hay
put it in a tweet in 2011; see FIGURE 3-2), there is no Mobile Web any more than
there is a Desktop Web, or a Tablet Web, or so on. There is just The Web, and it can
be accessed from all manner of devices. As of this writing, “mobile web” is used as
sort of a catchall term to describe our efforts to adapt our desktop design skills to
accommodate a much wider variety of use cases. And, as we are finding out, there is
more than one way to crack that nut.

FIGURE 3-2.   Stephen Hay’s tweet from January 2011. Read his follow-up article
at www.the-haystack.com/2011/01/07/there-is-no-mobile-web.

Resist making
assumptions about
network speed and
context based on the
screen size.

Part I. Getting Started

Sticking with the Standards

38

STICKING WITH THE STANDARDS

So how do we deal with this diversity? A good start is to follow the standards
documented by the World Wide Web Consortium (W3C). Sticking with web
standards is your primary tool for ensuring your site is consistent on all stan-
dards-compliant browsers (that’s approximately 99% of browsers in current
use). It also helps make your content forward-compatible as web technologies
and browser capabilities evolve. Another benefit is that you can tell your cli-
ents that you create “standards-compliant” sites, and they will like you more.

The notion of standards compliance may seem like a no-brainer, but it used
to be that everyone, including the browser makers, played fast and loose
with HTML and scripting. The price we paid was incompatible browser
implementations and the need to create sites twice to make them work for
everyone. I talk more about web standards throughout this book, so I won’t
go into too much detail here. Suffice it to say that the web standards are your
friends. Everything you learn in this book will start you off on the right foot.

For Further Reading
•	 The W3C site (w3.org/standards) is the primary resource for all web stan-

dards documents.

•	 The bible for standards compliance and how it makes good business
sense is Designing with Web Standards, 3rd Edition, by Jeffrey Zeldman
(New Riders). It’s getting on in years, but the fundamentals are still solid.

PROGRESSIVE ENHANCEMENT

With a multitude of browsers comes a multitude of levels of support for
the web standards. In fact, no browser has implemented all the standards
100%, and there are always new technologies that are slowly gaining steam.
Furthermore, users can set their own browser preferences, so they may have
a browser that supports JavaScript but have chosen to turn it off. The point
here is that we are faced with a wide range of browser capabilities—from only
basic HTML support to all the bells and whistles.

Progressive enhancement is one strategy for dealing with unknown browser
capabilities (see Note). When designing with progressive enhancement, you
start with a baseline experience that makes the content or core functionality
available to even the most rudimentary browsers or assistive devices. From
there, you layer on more advanced features for the browsers that can handle
them. You might finish with some “nice to have” effects, like animation or
wrapping text around images in interesting shapes, that enhance the experi-
ence for users with the most advanced browsers, but aren’t really critical to
the brand or message.

Sticking with web
standards is your primary
tool for ensuring your
site is as consistent as
possible.

NOTE

Progressive enhancement is the flip side
of an approach to browser diversity
called graceful degradation, in which
you design the fully enhanced experience
first, then create a series of fallbacks for
non-supporting browsers. Both methods
have their place in modern development.
You will find many fallback techniques
suggested in this book to be sure less
capable browsers are accommodated.

3. Some Big Concepts You Need to Know

Progressive Enhancement

39

Progressive enhancement is an approach that informs all aspects of page
design and production, including HTML, CSS, and JavaScript:

Authoring strategy

When an HTML document is written in logical order and its elements
are marked up in a meaningful way, it will be usable on the widest range
of browsing environments, including the oldest browsers, future brows-
ers, and mobile and assistive devices. It may not look exactly the same,
but the important thing is that your content is available. It also ensures
that search engines like Google will catalog the content correctly. A clean
HTML document with its elements accurately and thoroughly described
is the foundation for accessibility.

Styling strategy

You can create layers of experience simply by taking advantage of the way
browsers parse style sheet rules. Without going into too much technical
detail, you can write a style rule that makes an element background red,
but also include a style that gives it a cool gradient (a blend from one
color to another) for browsers that know how to render gradients. Or
you can use a cutting-edge CSS selector to deliver certain styles only to
cutting-edge browsers. The knowledge that browsers simply ignore prop-
erties and rules they don’t understand gives you license to innovate with-
out bringing older browsers to their knees. You just have to be mindful of
styling the baseline experience first, then adding improvements once the
minimum requirements are met.

Scripting strategy

As with other web technologies, there are discrepancies in how browsers
handle JavaScript (particularly on non-desktop devices), and some users
opt to turn it off entirely. The first rule in progressive enhancement is
to make sure basic functionality—such as linking from page to page or
accomplishing essential tasks like data submission via forms—is intact
even when JavaScript is off. In this way, you ensure the baseline experi-
ence, and enhance it when JavaScript is available.

For Further Reading
•	 There is no better introduction to the progressive enhancement approach

than the book Adaptive Web Design: Crafting Rich Experiences with
Progressive Enhancement, 2nd Edition, by Aaron Gustafson (New Riders).

•	 The Uncertain Web: Web Development in a Changing Landscape by Rob
Larson (O’Reilly).

•	 Once you have more chops, the book Designing with Progressive
Enhancement by Todd Parker, Patty Toland, Scott Jehl, and Maggie
Costello Wachs (New Riders) is an excellent deep-dive into techniques
and best practices. Read more about it at filamentgroup.com/dwpe/.

Progressive enhancement
is a strategy for coping
with unknown browser
capabilities.

Part I. Getting Started

Responsive Web Design

40

RESPONSIVE WEB DESIGN

By default, most browsers on small devices such as smartphones and tablets
shrink a web page down to fit the screen and provide mechanisms for zoom-
ing and moving around the page. Although it technically works, it is not a
great experience. The text is too small to read, the links are too small to tap,
and all that zooming and panning around is distracting.

Responsive Web Design (RWD) is a strategy for providing appropriate layouts
to devices based on the size of the viewport (browser window). The key to
Responsive Web Design is serving a single HTML document (with one URL)
to all devices, but applying different style sheets based on the screen size
in order to provide the most optimized layout for that device. For example,
when the page is viewed on a smartphone, it appears in one column with
large links for easy tapping. But when that same page is viewed on a large
desktop browser, the content rearranges into multiple columns with tradi-
tional navigation elements. It’s like magic! (Except that it’s actually just CSS.)

The web design community has been abuzz about responsive design since
Ethan Marcotte first wrote about it and coined the phrase in his article
“Responsive Web Design” on A List Apart in 2010 (www.alistapart.com/
articles/responsive-web-design/). It’s become one of the primary tools we use
to cope with unknown viewport size.

FIGURE 3-3 shows some examples of responsive sites at the typical dimensions
for a desktop monitor, tablet, and smartphone. You can see many more inspira-
tional examples at the Media Queries gallery site (mediaqueri.es). Try opening
one of the responsive sites in your browser and then resizing the window nar-
row and wide. Watch as the layout changes based on window size. Très cool.

Responsive Web Design helps with matters of layout, but it is not a solution
to all mobile web design challenges. The fact is that providing the best experi-
ences for your users and their chosen device may require optimizations that
go beyond adjusting the look and feel. You can better address some problems
by using the server to detect the device and its capabilities and then making
decisions on what to send back.

For some sites and services, it may be preferable to build a separate mobile
site (see the “M-dot Sites” sidebar) with a customized interface and feature
set that takes advantage of phone capabilities like geolocation. That said,
although responsive design won’t fix everything, it is an important part of the
solution for delivering satisfactory experiences on a wide variety of browsers.

For Further Reading
I’ll cover Responsive Web Design in more detail in Chapter 17, Responsive
Web Design, once you have more code experience under your belt. There you
will find plenty of resources to continue your responsive design education.

Ethan Marcotte personal site
ethanmarcotte.com

NASA
nasa.gov

FIGURE 3-3.   A responsive site’s
layout changes based on the size of the
browser window.

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

3. Some Big Concepts You Need to Know

Responsive Web Design

41

Responsive Web Design
is a strategy for dealing
with unknown screen size.

M-dot Sites
Some companies and services choose to build an entirely separate site, with
a unique URL, just for mobile devices. M-dot sites (named because their URLs
typically begin with “m.” or “mobile.”) offer a reduced set of options and may also
include mobile-specific features such as geolocation. A lot of the “extra” stuff (like
promotions) from the desktop site is simply stripped away. (It makes you wonder
what value it adds on the desktop.) A dedicated mobile site may be the best solution
if you know that your mobile users have very different usage patterns than folks
seated at a desk.

FIGURE 3-4 compares CVS’s primary and m-dot sites as they appeared in early 2018.
You can see that phone users are offered a more streamlined set of options. Other
notable sites with dedicated mobile versions are Twitter and Facebook.

The point here is that Responsive Web Design is not a universal solution. For sites
that feature mainly text content, a little layout adjustment may be all that is needed
to deliver a good reading experience on all devices. For complex sites and web
applications, a very different experience may be preferred.

The downside of a dedicated mobile site is that it is more than twice the work.
It requires additional content planning, design templates, production time, and
ongoing maintenance. But if it means giving your visitors the functionality they need,
it is worth the investment.

It is possible that you have a business for which mobile use is so distinct from
desktop use that a separate mobile site makes sense, but in general, m-dot sites
are fading away in favor of RWD. Google is helping to speed this process along by
encouraging all m-dot sites to migrate to RWD before the launch of their “mobile-
first index” in 2018 (webmasters.googleblog.com/2016/11/mobile-first-indexing.
html). If search result rankings are a concern, you may get more mileage from going
responsive.

FIGURE 3-4.   A comparison of the desktop site and the dedicated mobile site
for the same business.

Part I. Getting Started

One Web for All (Accessibility)

42

ONE WEB FOR ALL (ACCESSIBILITY)

We’ve been talking about the daunting number of browsers in use today, but
so far, we’ve only addressed visual browsers controlled with mouse pointers
or fingertips. It is critical, however, to keep in mind that people access the web
in many different ways—with a keyboard, mouse, voice commands, screen
readers, Braille output, magnifiers, joysticks, foot pedals, and so on. Web
designers must build pages in a manner that creates as few barriers as pos-
sible to getting to information, regardless of the user’s ability and the device
used to access the web. In other words, you must design for accessibility.

Although intended for users with disabilities such as poor vision or limited
mobility, the techniques and strategies developed for accessibility also benefit
other users with less-than-optimum browsing experiences. Accessible sites are
also more effectively indexed by search engines such as Google. Making your
site accessible is well worth the extra effort.

There are four broad categories of disabilities that affect how people interact
with their computers and the information on them:

Vision impairment

People with low or no vision may use an assistive device such as a screen
reader, Braille display, or a screen magnifier to get content from the screen.
They may also simply use the browser’s text zoom function to make the
text large enough to read.

Mobility impairment

Users with limited or no use of their hands may use special devices such
as modified mice and keyboards, foot pedals, voice commands, or joy-
sticks to navigate the web and enter information.

Auditory impairment

Users with limited or no hearing will miss out on audio aspects of mul-
timedia, so it is necessary to provide alternatives, such as transcripts for
audio tracks or captions for video.

Cognitive impairment

Users with memory, reading comprehension, problem solving, and atten-
tion limitations benefit when sites are designed simply and clearly. These
qualities are helpful to anyone using your site.

The W3C started the Web Accessibility Initiative (WAI) to address the need
to make the web usable for everyone. The WAI site (www.w3.org/WAI) is an
excellent starting point for learning more about web accessibility. One of the
documents produced by the WAI to help developers create accessible sites is
the Web Content Accessibility Guidelines (WCAG and WCAG 2.0). You can
read them all at www.w3.org/WAI/intro/wcag.php. The US government based
its Section 508 accessibility guidelines on the Priority 1 points of the WCAG
(see the sidebar “Government Accessibility Requirements: Section 508”). All

3. Some Big Concepts You Need to Know

One Web for All (Accessibility)

43

sites benefit from these guidelines, but if you are designing a government site,
adherence is a requirement.

Another W3C effort is the WAI-ARIA (Accessible Rich Internet Applications)
spec, which addresses the accessibility of web applications that include
dynamically generated content, scripting, and advanced interface ele-
ments that are particularly confounding to assistive devices. The ARIA
Recommendation defines a number of roles for content and widgets that
authors can explicitly apply using the role attribute. Roles include menubar,
progressbar, slider, timer, and tooltip, to name just a few. For the complete
list of roles, go to www.w3.org/TR/wai-aria/roles#role_definitions.

For Further Reading
The following resources are good starting points for further exploration of
web accessibility:

•	 The Web Accessibility Initiative (WAI), www.w3.org/WAI

•	 WebAIM: Web Accessibility in Mind, www.webaim.org

•	 Accessibility Handbook: Making 508 Compliant Websites by Katie
Cunningham (O’Reilly)

•	 Universal Design for Web Applications: Web Applications That Reach
Everyone by Wendy Chisholm and Matt May (O’Reilly)

US Government Accessibility Requirements: Section 508
If you create a site receiving federal funding from the US
government, you are required by law to comply with the Section
508 guidelines, which ensure that electronic information and
technology are available to people with disabilities. State and
other publicly funded sites may also be required to comply.

The following guidelines, excerpted from the Section 508
Standards at www.section508.gov, provide a good checklist for
basic accessibility for all websites:

1.	 A text equivalent for non-text elements shall be provided
(e.g., via the “alt” attribute or in element content).

2.	 Equivalent alternatives for any multimedia presentation shall
be synchronized with the presentation.

3.	 Web pages shall be designed so that all information
conveyed with color is also available without color—for
example, from context or markup.

4.	 Documents shall be organized so they are readable without
requiring an associated style sheet.

5.	 Row and column headers shall be identified for data tables.

6.	 Markup shall be used to associate data and header cells for
tables with two or more levels of row or column headers.

7.	 Pages shall be designed to avoid causing the screen to
flicker with a frequency greater than 2 Hz and lower than
55 Hz.

8.	 When pages utilize scripting languages to display content,
or to create interface elements, the information provided by
the script shall be identified with functional text that can be
read by assistive technology.

9.	 When a web page requires that an applet, plug-in, or other
application be present on the client system to interpret page
content, the page must provide a link to a plug-in or applet
that complies with §1194.21(a) through (l).

10.	When electronic forms are designed to be completed online,
the form shall allow people using assistive technology to
access the information, field elements, and functionality
required for completion and submission of the form,
including all directions and cues.

11.	A method shall be provided that permits users to skip
repetitive navigation links.

12.	When a timed response is required, the user shall be alerted
and given sufficient time to indicate more time is required.

http://www.webaim.org

Part I. Getting Started

The Need for Speed (Site Performance)

44

THE NEED FOR SPEED
(SITE PERFORMANCE)

Although the number of users accessing the internet on slow dial-up connec-
tions is shrinking (3–5% in the US as of this writing), the percentage of folks
using mobile phones to access the web is increasing dramatically; and for
some sectors, such as social media and search, mobile has already exceeded
desktop usage. If you have a smartphone, then you know how frustrating it is
to wait for a web page to fully display over a cellular data connection.

Site performance is critical regardless of how your users access your site. A
study by Google in 20091 showed that the addition of just 100 to 400 milli
seconds to their search results page resulted in reduced searches (–0.2 to
–0.6%). Amazon.com showed that reducing page load times by just 100ms
resulted in a 1% increase in revenue.2 Other studies show that users expect a
site to load in under 2 seconds, and nearly a third of your audience will leave
your site for another if it doesn’t. Furthermore, those people aren’t likely to
come back. Google has added site speed to its search algorithm, so if your site
is a slowpoke, it’s not likely to show up in that coveted first screen of results.
The takeaway here is that site performance (down to the millisecond!) mat-
ters a lot.

There are many things you can do to improve the performance of your site,
and they fall under two broad categories: limiting file sizes and reducing the
number of requests to the server. The following list only scratches the surface
for site optimization, but it gives you a general idea of what can be done:

•	 Optimize images so they are the smallest file size possible without sacri-
ficing quality. You’ll learn image optimization techniques in Chapter 24,
Image Asset Production.

•	 Streamline HTML markup, avoiding unnecessary levels of nested elements.

•	 Minimize HTML and CSS documents by removing extra character spaces
and line returns.

•	 Keep JavaScript to a minimum.

•	 Add scripts in such a way that they load in parallel with other page assets
and don’t block rendering.

•	 Don’t load unnecessary assets (such as images, scripts, or JavaScript
libraries).

•	 Reduce the number of times the browser makes requests of the server
(known as HTTP requests).

1	 “Speed Matters,” googleresearch.blogspot.com/2009/06/speed-matters.html.
2	 Statistic from “Make Data Matter,” PowerPoint presentation by Greg Linden of Stanford

University (2006).

3. Some Big Concepts You Need to Know

The Need for Speed (Site Performance)

45

Every trip to the server in the form of an HTTP request takes a few milli
seconds, and those milliseconds can add up. All those little Twitter widgets,
Facebook Like buttons, and advertisements can make dozens of server
requests each. You may be surprised to see how many server requests even a
simple site makes.

If you’d like to see for yourself, you can use the Network tool available with
the Developer tools in Chrome, Safari, or Firefox. The Network tool displays
each request to the server and how many milliseconds it took. Here’s how you
use it in Chrome (but all the browsers work similarly):

1.	 Launch the Chrome browser and go to any web page.

2.	 Go to the View menu and select Developer → Developer Tools. A panel will
open at the bottom of the browser.

3.	 Select the Network tab in the tools view and load a web page. The chart
(commonly referred to as a waterfall chart) shows you all the requests
made and assets downloaded. The columns on the right show the
amount of time each request took in milliseconds. At the bottom of the
chart, you can see a summary of the number of requests made and the
total amount of data transferred.

FIGURE 3-5 shows a portion of the performance waterfall chart for oreilly.com.
You can poke around any site on the web this way. It can be very educational.

I won’t address site performance in deep technical detail in this book, but I do
want you to remember the importance of keeping file sizes as small as pos-
sible and eliminating unnecessary server requests in your web design work.

FIGURE 3-5.   Waterfall charts such as this one created by the Chrome Network
developer tool show the individual server requests made by a web page and the
amount of time each request takes.

Part I. Getting Started

Test Yourself

46

For Further Reading
There are other techniques that are too technical for this book (and frankly,
for me), and I figure if you are reading this book, you are probably not quite
ready to become a site performance wizard. But when you are ready to take
it on, here are some resources that should help:

•	 Lara Hogan has assembled a list of performance-related studies, tools,
and resources at larahogan.me/design. You can also read her book,
Designing for Performance (O’Reilly), there for free.

•	 High Performance Mobile Web: Best Practices for Optimizing Mobile Web
Apps by Maximiliano Firtman (O’Reilly) covers optimization methods
and tools to check your progress.

•	 Google’s site Make the Web Faster (code.google.com/speed/) is an excellent
first stop for learning about site optimization. It compiles a number of
excellent tutorials and articles as well as tools for measuring site speed.

TEST YOURSELF

Here are a few questions that check your knowledge of the Big Concepts. If
you are stumped, you can find the answers in Appendix A.

1.	 List at least two unknown factors you need to consider when designing
and developing a site.

2.	 Match the technology or practice on the left with the problem it best
addresses:

1. ____ Progressive enhancement a. Assistive reading and input devices

2. ____ Server-side detection b. Slow connection speeds

3. ____ Responsive design c. All levels of browser capabilities

4. ____ WAI-ARIA d. �Determining which device is being used

5. ____ �Site performance
optimization

e. A variety of screen sizes

3.	 Web accessibility strategies take into account four broad categories of
disabilities. Name at least three, and provide a measure you might take to
ensure content is accessible for each.

4.	 When would you use a waterfall chart?

More Site Performance
Tools
Try some of these tools for testing site
performance:

•	 WebPageTest (webpagetest.org) is a
tool that was originally developed
for AOL, but is now available for
all to use for free under an open
source license. Just type in a
URL, and WebPagetest returns a
waterfall diagram, screenshot, and
other statistics.

•	 Google’s PageSpeed Insights
(developers.google.com/
speed/pagespeed/insights/) is
another service that analyzes the
performance of any site you point
it to. It also generates suggestions
for making your page load faster.

•	 Yahoo!’s freely available YSlow
tool (yslow.org) analyzes a site
according to 23 rules of web
performance, and then gives the
site a grade and suggestions for
improvement.

II
HTML FOR STRUCTURE

IN THIS CHAPTER

An introduction to elements
and attributes

Marking up a simple web page

The elements that provide
document structure

Troubleshooting broken
web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start creat-
ing a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step-by-step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

•	 Get a feel for how markup works, including an understanding of elements
and attributes.

•	 See how browsers interpret HTML documents.

•	 Learn how HTML documents are structured.

•	 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A WEB PAGE, STEP-BY-STEP

You got a look at an HTML document in Chapter 2, How the Web Works, but
now you’ll get to create one yourself and play around with it in the browser.
The demonstration in this chapter has five steps that cover the basics of page
production:

CREATING A
SIMPLE PAGE
(HTML OVERVIEW)

4
CHAPTER

49

Step 1: Start with content. As a starting point, we’ll write up raw text content
and see what browsers do with it.

Step 2: Give the document structure. You’ll learn about HTML element syn-
tax and the elements that set up areas for content and metadata.

Step 3: Identify text elements. You’ll describe the content using the appropri-
ate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change how the text looks with a style sheet. This exercise gives you
a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you’ll have written the document for the page
shown in FIGURE 4-1. It’s not very fancy, but you have to start somewhere.

FIGURE 4-1.   In this chapter, we’ll write the HTML document for this page in five steps.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it’s helpful to see the cause and effect of each small
change to the source file along the way.

LAUNCH A TEXT EDITOR

In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain-text files with the .html exten-
sion. If you have a visual web-authoring tool such as Dreamweaver, set it
aside for now. I want you to get a feel for marking up a document manually
(see the sidebar “HTML the Hard Way”).

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, and
then opening your page in a browser.
It doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use
a visual or drag-and-drop web-
authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually for better control
over the code and the ability to
make deliberate decisions about
what elements to use.

Part II. HTML for Structure

Launch a Text Editor

50

This section shows how to open new documents in Notepad and TextEdit.
Even if you’ve used these programs before, skim through for some special set-
tings that will make the exercises go more smoothly. We’ll start with Notepad;
Mac users can jump ahead.

Creating a New Document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 10
(FIGURE 4-2):

1.	 Search for “Notepad” to access it quickly. Click on Notepad to open a new
document window, and you’re ready to start typing. 1

2.	 Next, make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Open the File Explorer, select the View tab, and then select the Options
button on the right. In the Folder Options panel, select the View tab
again. 2

3.	 Find “Hide extensions for known file types” and uncheck that option. 3

4.	 Click OK to save the preference 4, and the file extensions will now be
visible.

1 Click on Notepad to open a new
document.

4 Click OK to save the preference, and
the file extensions will now be visible.

3 Uncheck “Hide extensions for known
file types.”

2 Open the File Explorer, select the View
tab, and then select the Options
button on the right (not shown).
Select the View tab.

FIGURE 4-2.   Creating a new document in Notepad.

4. Creating a Simple Page

Launch a Text Editor

51

Creating a New Document in TextEdit
(macOS)
By default, TextEdit creates rich-text documents—that
is, documents that have hidden style-formatting instruc-
tions for making text bold, setting font size, and so on.
You can tell that TextEdit is in rich-text mode when it has
a formatting toolbar at the top of the window (plain-text
mode does not). HTML documents need to be plain-text
documents, so we’ll need to change the format, as shown
in this example (FIGURE 4-3):

1.	 Use the Finder to look in the Applications folder for
TextEdit. When you’ve found it, double-click the
name or icon to launch the application.

2.	 In the initial TextEdit dialog box, click the New
Document button in the bottom-left corner. If you
see the text formatting menu and tab ruler at the top
of the Untitled document, you are in rich-text mode
1. If you don’t, you are in plain-text mode 2. Either
way, there are some preferences you need to set.

3.	 Close that document, and open the Preferences dia-
log box from the TextEdit menu.

4.	 Change these preferences:

On the New Document tab, select Plain text 3.
Under Options, deselect all of the automatic format-
ting options 4.

On the Open and Save tab, select Display HTML files
as HTML Code 5 and deselect “Add ‘.txt’ extensions
to plain text files” 6. The rest of the defaults should
be fine.

5.	 When you are done, click the red button in the top-
left corner.

6.	 Now create a new document by selecting File → New.
The formatting menu will no longer be there, and
you can save your text as an HTML document. You
can always convert a document back to rich text by
selecting Format → Make Rich Text when you are not
using TextEdit for HTML.

Formatting menu indicates rich text. Plain text documents have no menu.1 2

3

4

5

6

FIGURE 4-3.   Launching TextEdit and choosing “Plain text” settings in the Preferences.

Part II. HTML for Structure

Launch a Text Editor

52

STEP 1: START WITH CONTENT

Now that we have our new document, it’s time to get typing. A web page is
all about content, so that’s where we begin our demonstration. EXERCISE 4-1
walks you through entering the raw text content and saving the document
in a new folder.

EXERCISE 4-1.  Entering content

7.	 Type the home page content below into the new document in your text
editor. Copy it exactly as you see it here, keeping the line breaks the
same for the sake of playing along. The raw text for this exercise is also
available online at learningwebdesign.com/5e/materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner
fare in a relaxed atmosphere. The menu changes regularly
to highlight the freshest local ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to
elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and Saturday,
11am to midnight

8.	 Select “Save” or “Save as” from the File menu to get the Save As dialog
box (FIGURE 4-4). The first thing you need to do is create a new folder
(click the New Folder button on both Windows and Mac) that will contain
all of the files for the site. The technical name for the folder that contains
everything is the local root directory.

Windows 10 MacOS 10

FIGURE 4-4.   Saving index.html in a new folder called bistro.

Name the new folder bistro, and save the text file as index.html in it. The
filename needs to end in .html to be recognized by the browser as a web
document. See the sidebar “Naming Conventions” for more tips on
naming files.

9.	 Just for kicks, let’s take a look at index.html in a browser.

Windows users: Double-click the filename in the File Explorer to launch
your default browser, or right-click the file for the option to open it in the
browser of your choice.

Mac users: Launch your favorite browser (I’m using Google Chrome) and
choose Open or Open File from the File menu. Navigate to index.html,
and then select the document to open it in the browser.

10.	You should see something like the page shown in FIGURE 4-5. We’ll
talk about the results in the following section.

FIGURE 4-5.   A first look at the content in a browser.

EXERCISE 4-1.  Entering content

1.	 Type the home page content below into the new document in your text editor. Copy it
exactly as you see it here, keeping the line breaks the same for the sake of playing along.
The raw text for this exercise is also available online at learningwebdesign.com/5e/
materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in a relaxed
atmosphere. The menu changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black Goose Catering can handle
events from snacks for a meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and Saturday, 11am to
midnight

2.	 Select “Save” or “Save as” from the File menu to get the Save As dialog box (FIGURE 4-4).
The first thing you need to do is create a new folder (click the New Folder button on both
Windows and Mac) that will contain all of the files for the site. The technical name for the
folder that contains everything is the local root directory.

Windows 10 MacOS 10

FIGURE 4-4.   Saving index.html in a new folder called bistro.

→

4. Creating a Simple Page

Step 1: Start with Content

53

FIGURE 4-5.   A first look at the content in a browser.

Name the new folder bistro, and save the text file as index.html in it. The filename needs
to end in .html to be recognized by the browser as a web document. See the sidebar
“Naming Conventions” for more tips on naming files.

3.	 Just for kicks, let’s take a look at index.html in a browser.

Windows users: Double-click the filename in the File Explorer to launch your default
browser, or right-click the file for the option to open it in the browser of your choice.

Mac users: Launch your favorite browser (I’m using Google Chrome) and choose Open or
Open File from the File menu. Navigate to index.html, and then select the document to
open it in the browser.

4.	 You should see something like the page shown in FIGURE 4-5. We’ll talk about the
results in the following section.

Naming Conventions
It is important that you follow these rules and conventions when
naming your files:

Use proper suffixes for your files. HTML files must end with
.html or .htm. Web graphics must be labeled according to
their file format: .gif, .png, .jpg (.jpeg is also acceptable,
although less common), or .svg.

Never use character spaces within filenames. It is common
to use an underline character or hyphen to visually separate
words within filenames, such as robbins_bio.html or robbins-
bio.html.

Avoid special characters such as ?, %, #, /, :, ;, •, etc. Limit
filenames to letters, numbers, underscores, hyphens, and
periods. It is also best to avoid international characters, such
as the Swedish å.

Filenames may be case-sensitive, depending on your server
configuration. Consistently using all lowercase letters in
filenames, although not required, is one way to make your
filenames easier to manage.

Keep filenames short. Long names are more likely to be
misspelled, and short names shave a few extra bytes off the
file size. If you really must give the file a long, multiword
name, you can separate words with hyphens, such as
a-long-document-title.html, to improve readability.

Self-imposed conventions.  It is helpful to develop a
consistent naming scheme for huge sites—for instance,
always using lowercase with hyphens between words. This
takes some of the guesswork out of remembering what
you named a file when you go to link to it later.

Part II. HTML for Structure

Step 1: Start with Content

54

Learning from Step 1
Our page isn’t looking so good (FIGURE 4-5). The text is all run together into
one block—that’s not how it looked when we typed it into the original docu-
ment. There are a couple of lessons to be learned here. The first thing that is
apparent is that the browser ignores line breaks in the source document. The
sidebar “What Browsers Ignore” lists other types of information in the source
document that are not displayed in the browser window.

Second, we see that simply typing in some content and naming the document
.html is not enough. While the browser can display the text from the file, we
haven’t indicated the structure of the content. That’s where HTML comes in.
We’ll use markup to add structure: first to the HTML document itself (com-
ing up in Step 2), then to the page’s content (Step 3). Once the browser knows
the structure of the content, it can display the page in a more meaningful way.

STEP 2: GIVE THE HTML DOCUMENT
STRUCTURE

We have our content saved in an HTML document—now we’re ready to start
marking it up.

The Anatomy of an HTML Element
Back in Chapter 2 you saw examples of elements with an opening tag (<p> for
a paragraph, for example) and a closing tag (</p>). Before we start adding tags
to our document, let’s look at the anatomy of an HTML element (its syntax)
and firm up some important terminology. A generic container element is
labeled in FIGURE 4-6.

What Browsers Ignore
The following information in the
source document will be ignored
when it is viewed in a browser:

Multiple-character (white) spaces
When a browser encounters
more than one consecutive blank
character space, it displays a single
space. So if the document contains

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following the
earlier “ignore multiple white
spaces” rule, line breaks have no
effect on formatting the page.

Tabs
Tabs are also converted to
character spaces, so guess what?
They’re useless for indenting
text on the web page (although
they may make your code more
readable).

Unrecognized markup
Browsers are instructed to ignore
any tag they don’t understand
or that was specified incorrectly.
Depending on the element and
the browser, this can have varied
results. The browser may display
nothing at all, or it may display the
contents of the tag as though it
were normal text.

Text in comments
Browsers do not display text
between the special <!-- and -->
tags used to denote a comment.
See the upcoming “Adding
Hidden Comments” sidebar.

Opening tag

Element

<elementname> Content here </elementname>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>Example:

FIGURE 4-6.   The parts of an HTML container element.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

55

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is hid-
den and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use the
similar backslash character in end tags (see the tip “Slash Versus Backslash”).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing: capitalization. In HTML, the capitalization of element names
is not important (it is not case-sensitive). So , , and are all
the same as far as the browser is concerned. However, most developers prefer
the consistency of writing element names in all lowercase (see Note), as I will
be doing throughout this book.

Basic Document Structure
FIGURE 4-8 shows the recommended minimal skeleton of an HTML docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to explic-
itly organize documents into metadata (head) and content (body) areas. Let’s
take a look at what’s going on in this minimal markup example.

<!DOCTYPE html>

<html>

 <head>
 <meta charset="utf-8">
 <title>Title here</title>
 </head>

 <body>
 Page content goes here.
 </body>

</html>

1

2

3
4

5

6

FIGURE 4-8.   The minimal structure of an HTML document includes head and body
contained within the html root element.

NOTE

There is a stricter version of HTML called
XHTML that requires all element and
attribute names to appear in lowercase.
HTML5 has made XHTML all but obsolete
except for certain use cases when it is
combined with other XML languages, but
the preference for all lowercase element
names has persisted.

M AR KU P T I P

Slash Versus Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the English QWERTY keyboard (key
placement on keyboards in other
countries may vary).

It is easy to confuse the slash with
the backslash character (\), which
is found under the bar character (|);
see FIGURE 4-7. The backslash key
will not work in tags or URLs, so be
careful not to use it.

FIGURE 4-7.   Slash versus
backslash keys.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

56

1.	I don’t want to confuse things, but the first line in the example isn’t an
element at all. It is a document type declaration (also called DOCTYPE
declaration) that lets modern browsers know which HTML specification
to use to interpret the document. This DOCTYPE identifies the docu-
ment as written in HTML5.

2.	The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element.

3.	Within the html element, the document is divided into a head and a
body. The head element contains elements that pertain to the document
that are not rendered as part of the content, such as its title, style sheets,
scripts, and metadata.

4.	meta elements provide document metadata, information about the docu-
ment. In this case, it specifies the character encoding (a standardized
collection of letters, numbers, and symbols) used in the document as
Unicode version UTF-8 (see the sidebar “Introducing Unicode”). I don’t
want to go into too much detail on this right now, but know that there
are many good reasons for specifying the charset in every document, so I
have included it as part of the minimal document markup. Other types of
metadata provided by the meta element are the author, keywords, publish-
ing status, and a description that can be used by search engines.

5.	Also in the head is the mandatory title element. According to the HTML
specification, every document must contain a descriptive title.

6.	Finally, the body element contains everything that we want to show up in
the browser window.

Are you ready to start marking up the Black Goose Bistro home page? Open
the index.html document in your text editor and move on to EXERCISE 4-2.

Introducing Unicode
All the characters that make up languages are stored in
computers as numbers. A standardized collection of characters
with their reference numbers (code points) is called a coded
character set, and the way in which those characters are
converted to bytes for use by computers is the character
encoding. In the early days of computing, computers used
limited character sets such as ASCII that contained 128
characters (letters from Latin languages, numbers, and common
symbols). The early web used the Latin-1 (ISO 8859-1) character
encoding that included 256 Latin characters from most Western
languages. But given the web was “worldwide,” it was clearly not
sufficient.

Enter Unicode. Unicode (also called the Universal Character
Set) is a super-character set that contains over 136,000

characters (letters, numbers, symbols, ideograms, logograms,
etc.) from all active modern languages. You can read all about it
at unicode.org. Unicode has three standard encodings—UTF-8,
UTF-16, and UTF-32—that differ in the number of bytes used to
represent the characters (1, 2, or 3, respectively).

HTML5 uses the UTF-8 encoding by default, which allows wide-
ranging languages to be mixed within a single document. It
is always a good idea to declare the character encoding for a
document with the meta element, as shown in the previous
example. Your server also needs to be configured to identify
HTML documents as UTF-8 in the HTTP header (information
about the document that the server sends to the user agent).
You can ask your server administrator to confirm the encoding
of the HTML documents.

4. Creating a Simple Page

Step 2: Give the HTML Document Structure

57

FIGURE 4-9.   The page in a browser after the document structure elements have
been defined.

EXERCISE 4-2. Adding minimal structure

1.	 Open the new index.html document if it isn’t open already and
add the DOCTYPE declaration:

<!DOCTYPE html>

2.	 Put the entire document in an HTML root element by adding an
<html> start tag after the DOCTYPE and an </html> end tag at
the very end of the text.

3.	 Next, create the document head that contains the title for the
page. Insert <head> and </head> tags before the content.
Within the head element, add information about the character
encoding <meta charset="utf-8">, and the title, “Black
Goose Bistro”, surrounded by opening and closing <title> tags.

4.	 Finally, define the body of the document by wrapping the text
content in <body> and </body> tags. When you are done, the
source document should look like this (the markup is shown in
color to make it stand out):

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and
dinner fare in a relaxed atmosphere. The menu
changes regularly to highlight the freshest local
ingredients.

Catering
You have fun. We'll handle the cooking. Black
Goose Catering can handle events from snacks for a
meetup to elegant corporate fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm; Friday and
Saturday, 11am to midnight
</body>
</html>

5.	 Save the document in the bistro directory, so that it overwrites
the old version. Open the file in the browser or hit Refresh or
Reload if it is open already. FIGURE 4-9 shows how it should
look now.

Part II. HTML for Structure

Step 2: Give the HTML Document Structure

58

Not much has changed in the bistro page after setting up the document,
except that the browser now displays the title of the document in the top bar
or tab (FIGURE 4-9). If someone were to bookmark this page, that title would
be added to their Bookmarks or Favorites list as well (see the sidebar “Don’t
Forget a Good Title”). But the content still runs together because we haven’t
given the browser any indication of how it should be structured. We’ll take
care of that next.

STEP 3: IDENTIFY TEXT ELEMENTS

With a little markup experience under your belt, it should be a no-brainer to
add the markup for headings and subheads (h1 and h2), paragraphs (p), and
emphasized text (em) to our content, as we’ll do in EXERCISE 4-3. However,
before we begin, I want to take a moment to talk about what we’re doing and
not doing when marking up content with HTML.

Mark It Up Semantically
The purpose of HTML is to add meaning and structure to the content. It is
not intended to describe how the content should look (its presentation).

Your job when marking up content is to choose the HTML element that pro-
vides the most meaningful description of the content at hand. In the biz, we
call this semantic markup. For example, the most important heading at the
beginning of the document should be marked up as an h1 because it is the
most important heading on the page. Don’t worry about what it looks like…
you can easily change that with a style sheet. The important thing is that you
choose elements based on what makes the most sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another cre-
ates relationships between them. You can think of this structure as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy gives browsers cues on how to handle the content.
It is also the foundation upon which we add presentation instructions with
style sheets and behaviors with JavaScript.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.
In this book, however, I’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in EXERCISE 4-3.

Don’t Forget a Good Title
A title element is not only required
for every document, but it is also
quite useful. The title is what is
displayed in a user’s Bookmarks or
Favorites list and on tabs in desktop
browsers. Descriptive titles are also
a key tool for improving accessibility,
as they are the first things a person
hears when using a screen reader
(an assistive device that reads the
content of a page aloud for users with
impaired sight). Search engines rely
heavily on document titles as well.

For these reasons, it’s important to
provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Knowing that
users typically have a number of tabs
open or a long list of Bookmarks,
put your most uniquely identifying
information in the first 20 or so
characters.

The purpose of HTML
is to add meaning and
structure to the content.

4. Creating a Simple Page

Step 3: Identify Text Elements

59

EXERCISE 4-3. Defining text elements

1.	 Open the document index.html in your text editor, if it isn’t open already.

2.	 The first line of text, “Black Goose Bistro,” is the main heading for the page, so we’ll mark
it up as a Heading Level 1 (h1) element. Put the opening tag, <h1>, at the beginning of
the line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3.	 Our page also has three subheads. Mark them up as Heading Level 2 (h2) elements in a
similar manner. I’ll do the first one here; you do the same for “Catering” and “Location
and Hours.”

<h2>The Restaurant</h2>

4.	 Each h2 element is followed by a brief paragraph of text, so let’s mark those up as
paragraph (p) elements in a similar manner. Here’s the first one; you do the rest:

<p>The Black Goose Bistro offers casual lunch and dinner fare in
a relaxed atmosphere. The menu changes regularly to highlight the
freshest local ingredients.</p>

5.	 Finally, in the Catering section, I want to emphasize that visitors should just leave
the cooking to us. To make text emphasized, mark it up in an emphasis element (em)
element, as shown here:

<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

6.	 Now that we’ve marked up the document, let’s save it as we did before, and open (or
reload) the page in the browser. You should see a page that looks much like the one in
FIGURE 4-10. If it doesn’t, check your markup to be sure that you aren’t missing any
angle brackets or a slash in a closing tag.

FIGURE 4-10.   The home page after the content has been marked up with HTML
elements.

Part II. HTML for Structure

Step 3: Identify Text Elements

60

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in FIGURE 4-10.

Block and Inline Elements
Although it may seem like stating the obvious, it’s worth pointing out that the
heading and paragraph elements start on new lines and do not run together
as they did before. That is because by default, headings and paragraphs dis-
play as block elements. Browsers treat block elements as though they are in
little rectangular boxes, stacked up in the page. Each block element begins
on a new line, and some space is also usually added above and below the
entire element by default. In FIGURE 4-11, the edges of the block elements are
outlined in red.

FIGURE 4-11.   The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em, outlined in
blue in FIGURE 4-11). It does not start a new line, but rather stays in the flow
of the paragraph. That is because the em element is an inline element (also
called a text-level semantic element or phrasing element). Inline elements do
not start new lines; they just go with the flow.

Default Styles
The other thing that you will notice about the marked-up page in FIGURES

4-10 and 4-11 is that the browser makes an attempt to give the page some

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in
the browser and will not have any
effect on the rest of the source:

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared
by a team of developers. In this
example, comments are used to
point out the section of the source
that contains the navigation:

<!-- start global nav -->

 …

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone.

4. Creating a Simple Page

Step 3: Identify Text Elements

61

visual hierarchy by making the first-level heading the biggest and boldest
thing on the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (the blockquote element
for long quotes may or may not be indented).

If you think the h1 is too big and clunky as the browser renders it, just change
it with your own style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better—for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. You should always choose elements
based on how accurately they describe the content, and don’t worry about
the browser’s default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

STEP 4: ADD AN IMAGE

What fun is a web page with no images? In EXERCISE 4-4, we’ll add an image
to the page with the img element. Images will be discussed in more detail in
Chapter 7, Adding Images, but for now, they give us an opportunity to intro-
duce two more basic markup concepts: empty elements and attributes.

Empty Elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in FIGURE 4-6: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have content because they are used
to provide a simple directive. These elements are said to be empty. The image
element (img) is an example of an empty element. It tells the browser to get
an image file from the server and insert it at that spot in the flow of the text.
Other empty elements include the line break (br), thematic breaks (hr, a.k.a.
“horizontal rules”), and elements that provide information about a document
but don’t affect its displayed content, such as the meta element that we used
earlier.

FIGURE 4-12 shows the very simple syntax of an empty element (compare it
to FIGURE 4-6).

Part II. HTML for Structure

Step 4: Add an Image

62

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

FIGURE 4-12.   Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—it doesn’t indicate which image to use.
That’s where attributes come in. Attributes are instructions that clarify or
modify an element. For the img element, the src (short for “source”) attribute
is required, and specifies the location (URL) of the image file.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty ele-
ments, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces:

<element attribute1="value" attribute2="value">

FIGURE 4-13 shows an img element with its required attributes labeled.

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

FIGURE 4-13.   An img element with two attributes.

What Is That Extra Slash?
If you poke around in source
documents for existing web pages,
you may see empty elements
with extra slashes at the end, like
so: ,
, <meta />,
and <hr />. That indicates the
document was written according
to the stricter rules of XHTML. In
XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
You terminate empty elements by
adding a trailing slash before the
closing bracket. The preceding
character space is not required but
was used for backward compatibility
with browsers that did not have
XHTML parsers, so ,
,
and so on are valid.

Attributes are
instructions that clarify
or modify an element.

4. Creating a Simple Page

Step 4: Add an Image

63

Here’s what you need to know about attributes:

•	 Attributes go after the element name in the opening tag only, never in the
closing tag.

•	 There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

•	 Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values are single descriptive words. For example, the
checked attribute, which makes a form checkbox checked when the form
loads, is equivalent to checked="checked". You may hear this type of
attribute called a Boolean attribute because it describes a feature that is
either on or off.

•	 A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.

•	 Wrapping attribute values in double quotation marks is a strong conven-
tion, but note that quotation marks are not required and may be omitted.
In addition, either single or double quotation marks are acceptable as
long as the opening and closing marks match. Note that quotation marks
in HTML files need to be straight ("), not curly (”).

•	 The attribute names and values available for each element are defined in
the HTML specifications; in other words, you can’t make up an attribute
for an element.

•	 Some attributes are required, such as the src and alt attributes in the
img element. The HTML specification also defines which attributes are
required in order for the document to be valid.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in EXERCISE 4-4. We’ll
throw a few line breaks in there as well.

EXERCISE 4-4. Adding an image

1.	 If you’re working along, the first thing you’ll need to do is get a copy of the image file on
your hard drive so you can see it in place when you open the file locally. The image file
is provided in the materials for this chapter (learningwebdesign.com/5e/materials).
You can also get the image file by saving it right from the sample web page online at
learningwebdesign.com/5e/materials/ch04/bistro. Right-click (or Control-click on a
Mac) the goose image and select “Save to disk” (or similar) from the pop-up menu, as
shown in FIGURE 4-14. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2.	 Once you have the image, insert it at the beginning of the first-level heading by typing in
the img element and its attributes as shown here:

<h1>Black Goose Bistro</h1>

Part II. HTML for Structure

Step 4: Add an Image

64

Windows: Right-click
on the image to access
the pop-up menu.

Mac: Control-click on
the image to access the
pop-up menu. The
options may vary by
browser.

FIGURE 4-14.   Saving an image file from a page on the web.

FIGURE 4-15.  The Black Goose Bistro page with the logo image.

The src attribute provides the name of the image file that should be inserted, and the
alt attribute provides text that should be displayed if the image is not available. Both of
these attributes are required in every img element.

3.	 I’d like the image to appear above the title, so add a line break (br) after the img
element to start the headline text on a new line.

<h1>
Black Goose Bistro</h1>

4.	 Let’s break up the last paragraph into three lines for better clarity. Drop a
 tag at the
spots you’d like the line breaks to occur. Try to match the screenshot in FIGURE 4-15.

5.	 Now save index.html and open or refresh it in the browser window. The page should
look like the one shown in FIGURE 4-15. If it doesn’t, check to make sure that the
image file, blackgoose.png, is in the same directory as index.html. If it is, then check to
make sure that you aren’t missing any characters, such as a closing quote or bracket, in
the img element markup.

4. Creating a Simple Page

Step 4: Add an Image

65

STEP 5: CHANGE THE LOOK WITH A
STYLE SHEET

Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In EXERCISE 4-5, we’ll change the appearance of the text elements and the
page background by using some simple style sheet rules. Don’t worry about
understanding them all right now. We’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

EXERCISE 4-5.  Adding a style sheet

1.	 Open index.html if it isn’t open already. We’re going to use the
style element to apply a very simple embedded style sheet to
the page. This is just one of the ways to add a style sheet; the
others are covered in Chapter 11, Introducing Cascading
Style Sheets.

2.	 The style element is placed inside the document head. Start
by adding the style element to the document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

3.	 Next, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know exactly
what’s going on (although it’s fairly intuitive). You’ll learn all
about style rules in Part III.

<style>
body {
 background-color: #faf2e4;
 margin: 0 10%;
 font-family: sans-serif;
 }
h1 {
 text-align: center;
 font-family: serif;
 font-weight: normal;
 text-transform: uppercase;
 border-bottom: 1px solid #57b1dc;
 margin-top: 30px;
}

h2 {
 color: #d1633c;
 font-size: 1em;
}
</style>

4.	 Now it’s time to save the file and take a look at it in the browser.
It should look like the page in FIGURE 4-16. If it doesn’t, go
over the style sheet to make sure you didn’t miss a semicolon or
a curly bracket. Look at the way the page looks with our styles
compared to the browser’s default styles (FIGURE 4-15).

FIGURE 4-16.  The Black Goose Bistro page after CSS style
rules have been applied.

Part II. HTML for Structure

Step 5: Change the Look with a Style Sheet

66

We’re finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you’ve also learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

WHEN GOOD PAGES GO BAD

The previous demonstration went smoothly, but it’s easy for small things to
go wrong when you’re typing out HTML markup by hand. Unfortunately,
one missed character can break a whole page. I’m going to break my page on
purpose so we can see what happens.

What if I had neglected to type the slash in the closing emphasis tag ()?
With just one character out of place (FIGURE 4-17), the remainder of the
document displays in emphasized (italic) text. That’s because without that
slash, there’s nothing telling the browser to turn “off” the emphasized format-
ting, so it just keeps going (see Note).

<h2>Catering</h2>
<p>You have fun. We'll handle the cooking. Black Goose
Catering can handle events from snacks for a meetup to elegant
corporate fundraisers.</p>

g.

FIGURE 4-17.   When a slash is omitted, the browser doesn’t know when the element
ends, as is the case in this example.

I’ve fixed the slash, but this time, let’s see what would have happened if I had
accidentally omitted a bracket from the end of the first <h2> tag (FIGURE 4-18).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up to
the next closing bracket (>) it finds—is part of the <h2> opening tag. Browsers
don’t display any text within a tag, so my heading disappeared. The browser
just ignored the foreign-looking element name and moved on to the next
element.

NOTE

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

4. Creating a Simple Page

When Good Pages Go Bad

67

Making mistakes in your first HTML documents and fixing them is a great
way to learn. If you write your first pages perfectly, I’d recommend fiddling with
the code to see how the browser reacts to various changes. This can be extreme-
ly useful in troubleshooting pages later. I’ve listed some common problems in
the sidebar “Having Problems?” Note that these problems are not specific to
beginners. Little stuff like this goes wrong all the time, even for the pros.

VALIDATING YOUR DOCUMENTS

One way that professional web developers catch errors in their markup is to
validate their documents. What does that mean? To validate a document is
to check your markup to make sure that you have abided by all the rules of
whatever version of HTML you are using. Documents that are error-free are
said to be valid. It is strongly recommended that you validate your documents,
especially for professional sites. Valid documents are more consistent on a variety
of browsers, they display more quickly, and they are more accessible.

Right now, browsers don’t require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but anytime you stray
from the standard, you introduce unpredictability in the way the page is
handled by browsers or alternative devices.

So how do you make sure your document is valid? You could check it yourself
or ask a friend, but humans make mistakes, and you aren’t expected to memo-
rize every minute rule in the specifications. Instead, use a validator, software
that checks your source against the HTML version you specify. These are
some of the things validators check for:

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a relaxed atmosphere. The menu changes regularly to highlight
the freshest local ingredients.</p>

<h2The
Missing subhead

Without the bracket, all the
following characters are

interpreted as part of the tag,
and “The Restaurant”

disappears from the page.

FIGURE 4-18.  A missing end bracket makes the browser think the following
characters are part of the tag, and therefore the headline text doesn’t display.

Having Problems?
The following are some typical
problems that crop up when you are
creating web pages and viewing them
in a browser:

I’ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading, or you
may have saved it in a different
directory.

Half my page disappeared.
This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when you’re
writing HTML by hand.

I put in a graphic by using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure that
the URL to the image file is correct.
(We’ll discuss URLs further in
Chapter 6, Adding LInks.) Make
sure that the image file is actually
in the directory you’ve specified.
If the file is there, make sure it is
in one of the formats that web
browsers can display (PNG, JPEG,
GIF, or SVG) and that it is named
with the proper suffix (.png, .jpeg
or .jpg, .gif, or .svg, respectively).

Part II. HTML for Structure

Validating Your Documents

68

•	 The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML to validate against:

•	 An indication of the character encoding for the document.

•	 The inclusion of required rules and attributes.

•	 Non-standard elements.

•	 Mismatched tags.

•	 Nesting errors (incorrectly putting elements inside other elements).

•	 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The best web-based validator is at html5.validator.nu.
There you can upload a file or provide a link to a page that is already online.
FIGURE 4-19 shows the report the validator generates when I upload the ver-
sion of the Bistro index.html file that doesn’t have any markup. For this docu-
ment, there are a number of missing elements that keep this document from
being valid. It also shows the problem source code and provides an explana-
tion of how the code should appear. Pretty darned handy!

Built-in browser developer tools for Safari and Chrome also have validators
so you can check your work on the fly. Some code editors have validators
built in as well.

FIGURE 4-19.  The (X)HTML5 Validator (Living Validator) for checking errors in HTML
documents (html5.validator.nu).

4. Creating a Simple Page

Validating Your Documents

69

TEST YOURSELF

Now is a good time to make sure you understand the basics of markup.
Use what you’ve learned in this chapter to answer the following questions.
Answers are in Appendix A.

1.	 What is the difference between a tag and an element?

2.	 Write out the recommended minimal markup for an HTML5 document.

3.	 Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason:

a. Sunflower.html Yes No

b. index.doc Yes No

c. cooking home page.html Yes No

d. Song_Lyrics.html Yes No

e. games/rubix.html Yes No

f. %whatever.html Yes No

4.	 All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.	

b.	 Congratulations!

c.	 linked text</a href="file.html">

d.	 <p>This is a new paragraph<\p>

5.	 How would you mark up this comment in an HTML document so that it
doesn’t display in the browser window?

 product list begins here

ELEMENT
REVIEW: HTML
DOCUMENT
SETUP

This chapter introduced the ele-
ments that establish metada-
ta and content portions of an
HTML document. The remain-
ing elements introduced in the
exercises will be treated in more
depth in the following chapters.

Element Description
body Identifies the body of the

document that holds the
content

head Identifies the head of the
document that contains
information about the
document itself

html Is the root element that
contains all the other
elements

meta Provides information
about the document

title Gives the page a title

Part II. HTML for Structure

Test Yourself

70

IN THIS CHAPTER

Choosing the best element for
your content

Paragraphs and headings

Three types of lists

Organizing content into
sections

Text-level (inline) elements

Generic elements, div and span

Special characters

Once your content is ready to go (you’ve proofread it, right?) and you’ve
added the markup to structure the document (<!DOCTYPE>, html, head, title,
meta charset, and body), you are ready to identify the elements in the content.
This chapter introduces the elements you have to choose from for marking
up text. There probably aren’t as many of them as you might think, and really
just a handful that you’ll use with regularity. That said, this chapter is a big
one and covers a lot of ground.

As we begin our tour of elements, I want to reiterate how important it is
to choose elements semantically—that is, in a way that most accurately
describes the content’s meaning. If you don’t like how it looks, change it with
a style sheet. A semantically marked-up document ensures your content is
available and accessible in the widest range of browsing environments, from
desktop computers and mobile devices to assistive screen readers. It also
allows non-human readers, such as search engine indexing programs, to cor-
rectly parse your content and make decisions about the relative importance
of elements on the page.

With these principles in mind, it is time to meet the HTML text elements,
starting with the most basic element of them all, the humble paragraph.

PARAGRAPHS
<p>…</p>
Paragraph element

Paragraphs are the most rudimentary elements of a text document. Indicate
a paragraph with the p element by inserting an opening <p> tag at the begin-
ning of the paragraph and a closing </p> tag after it, as shown in this example:

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to
read.</p>

MARKING UP TEXT 5
CHAPTER

NOTE

I will be teaching markup according to
the HTML5 standard maintained by the
W3C (www.w3.org/TR/html5/). As of this
writing, the latest version is the HTML
5.2 Proposed Recommendation (www.
w3.org/TR/html52/).

71

http://www.w3.org/TR/html5/

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts.
In general, sans-serif fonts appear sleeker and more modern.</p>

Visual browsers nearly always display paragraphs on new lines with a bit of
space between them by default (to use a term from CSS, they are displayed
as a block). Paragraphs may contain text, images, and other inline elements
(called phrasing content), but they may not contain headings, lists, sectioning
elements, or any elements that typically display as blocks by default.

Technically, it is OK to omit the closing </p> tag because it is not required in
order for the document to be valid. A browser just assumes it is closed when
it encounters the next block element. Many web developers, including myself,
prefer to close paragraphs and all elements for the sake of consistency and
clarity. I recommend folks who are just learning markup do the same.

HEADINGS

In the last chapter, we used the h1 and h2 elements to indicate headings for
the Black Goose Bistro page. There are actually six levels of headings, from
h1 to h6. When you add headings to content, the browser uses them to cre-
ate a document outline for the page. Assistive reading devices such as screen
readers use the document outline to help users quickly scan and navigate
through a page. In addition, search engines look at heading levels as part of
their algorithms (information in higher heading levels may be given more
weight). For these reasons, it is a best practice to start with the Level 1 head-
ing (h1) and work down in numerical order, creating a logical document
structure and outline.

This example shows the markup for four heading levels. Additional heading
levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif Typefaces</h2>
<p>Serif typefaces have small slabs at the ends of letter strokes.
In general, serif fonts can make large amounts of text easier to
read.</p>

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

<h2>Sans-serif Typefaces</h2>
<p>Sans-serif typefaces do not have slabs at the ends of strokes.</p>

<h1>…</h1>
<h2>…</h2>
<h3>…</h3>
<h4>…</h4>
<h5>…</h5>
<h6>…</h6>

Heading elements

No Naked Text!
You must assign an element to all
the text in a document. In other
words, all text must be enclosed in
some sort of element. Text that is not
contained within tags is called naked
or anonymous text, and it will cause a
document to be invalid.

Part II. HTML for Structure

Headings

72

The markup in this example would create the following document outline:

1. Type Design

	 1.	 Serif Typefaces
		 + text paragraph

		 1.	 Baskerville

			 1.	 Description
				 + text paragraph

			 2.	 History
				 + text paragraph

		 2.	 Georgia
			 + text paragraph	

	 2.	 Sans-serif Typefaces
		 + text paragraph

By default, the headings in our example display in bold text, starting in very
large type for h1s, with each consecutive level in smaller text, as shown in
FIGURE 5-1. You can use a style sheet to change their appearance.

h1

h2

h3

h4

h4

h3

h2

FIGURE 5-1.   The default rendering of four heading levels.

5. Marking Up Text

Headings

73

THEMATIC BREAKS (HORIZONTAL RULE)

If you want to indicate that one topic has completed and another one is
beginning, you can insert what the spec calls a “paragraph-level thematic
break” with the hr element. The hr element adds a logical divider between
sections of a page or paragraphs without introducing a new heading level.

In older HTML versions, hr was defined as a “horizontal rule” because it
inserts a horizontal line on the page. Browsers still render hr as a 3-D shaded
rule and put it on a line by itself with some space above and below by default;
but in the HTML5 spec, it has a new semantic name and definition. If a deco-
rative line is all you’re after, it is better to create a rule by specifying a colored
border before or after an element with CSS.

hr is an empty element—you just drop it into place where you want the the-
matic break to occur, as shown in this example and FIGURE 5-2:

<h3>Times</h3>
<p>Description and history of the Times typeface.</p>
<hr>
<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

FIGURE 5-2.  The default rendering of a thematic break (horizontal rule).

LISTS

Humans are natural list makers, and HTML provides elements for marking
up three types of lists:

Unordered lists

Collections of items that appear in no particular order

Ordered lists

Lists in which the sequence of the items is important

Description lists

Lists that consist of name and value pairs, including but not limited to
terms and definitions

<hr>
A horizontal rule

Part II. HTML for Structure

Thematic Breaks (Horizontal Rule)

74

All list elements—the lists themselves and the items that go in them—are
displayed as block elements by default, which means that they start on a new
line and have some space above and below, but that may be altered with CSS.
In this section, we’ll look at each list type in detail.

Unordered Lists
Just about any list of examples, names, components, thoughts, or options
qualifies as an unordered list. In fact, most lists fall into this category. By
default, unordered lists display with a bullet before each list item, but you
can change that with a style sheet, as you’ll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening
tag goes before the first list item, and the closing tag goes after the last
item. Then, to mark up each item in the list as a list item (li), enclose it in
opening and closing li tags, as shown in this example. Notice that there are
no bullets in the source document. The browser adds them automatically
(FIGURE 5-3).

The only thing that is permitted within an unordered list (that is, between the
start and end ul tags) is one or more list items. You can’t put other elements
in there, and there may not be any untagged text. However, you can put any
type of content element within a list item (li):

 Serif
 Sans-serif
 Script
 Display
 Dingbats

FIGURE 5-3.   The default rendering of the sample unordered list. The browser adds
the bullets automatically.

But here’s the cool part. We can take that same unordered list markup and
radically change its appearance by applying different style sheets, as shown in
FIGURE 5-4. In the figure, I’ve turned off the bullets, added bullets of my own,
made the items line up horizontally, and even made them look like graphical
buttons. The markup stays exactly the same.

…
Unordered list

…
List item within an unordered list

5. Marking Up Text

Lists

75

FIGURE 5-4.  With style sheets, you can give the same unordered list many looks.

Ordered Lists
Ordered lists are for items that occur in a particular order, such as step-by-
step instructions or driving directions. They work just like the unordered
lists described earlier, but they are defined with the ol element (for “ordered
list,” of course). Instead of bullets, the browser automatically inserts numbers
before ordered list items (see Note), so you don’t need to number them in the
source document. This makes it easy to rearrange list items without renum-
bering them.

Ordered list elements must contain one or more list item elements, as shown
in this example and in FIGURE 5-5:

 Gutenberg develops moveable type (1450s)
 Linotype is introduced (1890s)
 Photocomposition catches on (1950s)
 Type goes digital (1980s)

FIGURE 5-5.   The default rendering of an ordered list. The browser adds the numbers
automatically.

…
Ordered list

…
List item within an ordered list

NOTE

If something is logically an ordered list,
but you don’t want numbers to display,
remember that you can always remove
the numbering with style sheets. So go
ahead and mark up the list semantically
as an ol and adjust how it displays with
a style rule.

Part II. HTML for Structure

Lists

76

If you want a numbered list to start at a number other than 1, you can use
the start attribute in the ol element to specify another starting number, as
shown here:

<ol start="17">
 Highlight the text with the text tool.
 Select the Character tab.
 Choose a typeface from the pop-up menu.

The resulting list items would be numbered 17, 18, and 19, consecutively.

Description Lists

<dl>…</dl>
A description list

<dt>…</dt>
A name, such as a term or label

<dd>…</dd>
A value, such as a description or definition

Description lists are used for any type of name/value pairs, such as terms and
their definitions, questions and answers, or other types of terms and their
associated information. Their structure is a bit different from the other two
lists that we just discussed. The whole description list is marked up as a dl
element. The content of a dl is some number of dt elements indicating the
names, and dd elements for their respective values. I find it helpful to think of
them as “terms” (to remember the “t” in dt) and “definitions” (for the “d” in
dd), even though that is only one use of description lists.

Here is an example of a list that associates forms of typesetting with their
descriptions (FIGURE 5-6):

<dl>
 <dt>Linotype</dt>
 <dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

 <dt>Photocomposition</dt>
 <dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

 <dt>Digital type</dt>
 <dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>
	 <p>Postscript emerged as a standard due to its support of
graphics and its early support on the Macintosh computer and Apple
laser printer.</p>
 </dd>
</dl>

Nesting Lists
Any list can be nested within another
list; it just has to be placed within
a list item. This example shows the
structure of an unordered list nested
in the second item of an ordered list:

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set
the numbering styles yourself with
CSS rules.

Changing Bullets and
Numbering
You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you can
change the shape from the default
dot to a square or an open circle,
substitute your own image, or remove
the bullet altogether. For ordered
lists, you can change the numbers
to Roman numerals (I, II, III, or i, ii,
iii), letters (A, B, C, or a, b, c), and
several other numbering schemes.
In fact, as long as the list is marked
up semantically, it doesn’t need to
display with bullets or numbering
at all. Changing the style of lists
with CSS is covered in Chapter 12,
Formatting Text.

5. Marking Up Text

Lists

77

FIGURE 5-6.   The default rendering of a definition list. Definitions are set off from the
terms by an indent.

The dl element is allowed to contain only dt and dd elements. You cannot
put headings or content-grouping elements (like paragraphs) in names (dt),
but the value (dd) can contain any type of flow content. For example, the last
dd element in the previous example contains two paragraph elements (the
awkward default spacing could be cleaned up with a style sheet).

It is permitted to have multiple definitions with one term and vice versa. Here,
each term-description group has one term and multiple definitions:

<dl>
 <dt>Serif examples</dt>
 <dd>Baskerville</dd>
 <dd>Goudy</dd>

 <dt>Sans-serif examples</dt>
 <dd>Helvetica</dd>
 <dd>Futura</dd>
 <dd>Avenir</dd>
</dl>

MORE CONTENT ELEMENTS

We’ve covered paragraphs, headings, and lists, but there are a few more
special text elements to add to your HTML toolbox that don’t fit into a neat
category: long quotations (blockquote), preformatted text (pre), and figures
(figure and figcaption). One thing these elements do have in common is
that they are considered “grouping content” in the HTML5 spec (along with
p, hr, the list elements, main, and the generic div, covered later in this chapter).
The other thing they share is that browsers typically display them as block
elements by default. The one exception is the newer main element, which is
not recognized by any version of Internet Explorer (although it is supported
in the Edge browser); see the sidebar “HTML5 Support in Internet Explorer,”
later in this chapter, for a workaround.

Part II. HTML for Structure

More Content Elements

78

Long Quotations
If you have a long quotation, a testimonial, or a section of copy from another
source, mark it up as a blockquote element. It is recommended that content
within blockquote elements be contained in other elements, such as para-
graphs, headings, or lists, as shown in this example:

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
 <p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

 <p>Much like a piece of classical music, the score is written
down. It's not something that is tampered with, and yet, each
conductor interprets that score differently. There is tension in
the interpretation.</p>
</blockquote>

FIGURE 5-7 shows the default rendering of the blockquote example. This can
be altered with CSS.

FIGURE 5-7.   The default rendering of a blockquote element.

Preformatted Text
In the previous chapter, you learned that browsers ignore whitespace such as
line returns and character spaces in the source document. But in some types
of information, such as code examples or certain poems, the whitespace is
important for conveying meaning. For content in which whitespace is seman-
tically significant, use the preformatted text (pre) element. It is a unique ele-
ment in that it is displayed exactly as it is typed—including all the carriage
returns and multiple character spaces. By default, preformatted text is also
displayed in a constant-width font (one in which all the characters are the
same width, also called monospace), such as Courier; however, you can easily
change the font with a style sheet rule.

<blockquote>…</blockquote>
A lengthy, block-level quotation

<pre>…</pre>
Preformatted text

NOTE

There is also the inline element q for
short quotations in the flow of text. We’ll
talk about it later in this chapter.

NOTE

The white-space:pre CSS property can
also be used to preserve spaces and
returns in the source.

5. Marking Up Text

More Content Elements

79

The pre element in this example displays as shown in FIGURE 5-8. The sec-
ond part of the figure shows the same content marked up as a paragraph (p)
element for comparison.

<pre>
This is an example of
 text with a lot of
 curious
 whitespace.
</pre>

<p>
This is an example of
 text with a lot of
 curious
 whitespace.
</p>

FIGURE 5-8.   Preformatted text is unique in that the browser displays the whitespace
exactly as it is typed into the source document. Compare it to the paragraph element, in
which multiple line returns and character spaces are reduced to a single space.

Figures

The figure element identifies content that illustrates or supports some point
in the text. A figure may contain an image, a video, a code snippet, text, or
even a table—pretty much anything that can go in the flow of web content.
Content in a figure element should be treated and referenced as a self-
contained unit. That means if a figure is removed from its original placement
in the main flow (to a sidebar or appendix, for example), both the figure and
the main flow should continue to make sense.

Although you can simply add an image to a page, wrapping it in figure tags
makes its purpose explicitly clear semantically. It also works as a hook for
applying special styles to figures but not to other images on the page:

<figure>

</figure>

If you want to provide a text caption for the figure, use the figcaption ele-
ment above or below the content inside the figure element. It is a more
semantically rich way to mark up the caption than using a simple p element.

<figure>…</figure>
Related image or resource

<figcaption>…</figcaption>
Text description of a figure

Part II. HTML for Structure

More Content Elements

80

<figure>
 <pre>
 <code>
	 body {
	 background-color: #000;
	 color: red;
	 }
 </code>
 </pre>
 <figcaption>Sample CSS rule.</figcaption>
</figure>

In EXERCISE 5-1, you’ll get a chance to mark up a document yourself and try
out the basic text elements we’ve covered so far.

BROWSER SUPPORT NOTE

The figure and figcaption elements are
not supported in Internet Explorer versions
8 and earlier (see the sidebar “HTML5
Support in Internet Explorer,” later in
this chapter, for a workaround).

EXERCISE 5-1.  Marking up a recipe

The owners of the Black Goose Bistro have decided to share recipes and news on their
site. In the exercises in this chapter, we’ll assist them with content markup.

In this exercise, you will find the raw text of a recipe. It’s up to you to decide which
element is the best semantic match for each chunk of content. You’ll use paragraphs,
headings, lists, and at least one special content element.

You can write the tags right on this page. Or, if you want to use a text editor and see the
results in a browser, this text file, as well as the final version with markup, is available at
learningwebdesign.com/5e/materials.

Tapenade (Olive Spread)

This is a really simple dish to prepare and it’s always a big hit at
parties. My father recommends:

"Make this the night before so that the flavors have time to blend. Just
bring it up to room temperature before you serve it. In the winter, try
serving it warm."

Ingredients

1 8oz. jar sundried tomatoes
2 large garlic cloves
2/3 c. kalamata olives
1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth
as possible.

Add capers and olives. Pulse the motor a few times until they are
incorporated, but still retain some
texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish
(optional).

5. Marking Up Text

More Content Elements

81

ORGANIZING PAGE CONTENT

So far, the elements we’ve covered handle very specific tidbits of content: a
paragraph, a heading, a figure, and so on. Prior to HTML5, there was no way
to group these bits into larger parts other than wrapping them in a generic
division (div) element (I’ll cover div in more detail later). HTML5 introduced
new elements that give semantic meaning to sections of a typical web page or
application (see Note), including main content (main), headers (header), foot-
ers (footer), sections (section), articles (article), navigation (nav), and tan-
gentially related or complementary content (aside). Curiously, the spec lists
the old address element as a section as well, so we’ll look at that one here too.

HTML5 Support in Internet Explorer
Nearly all browsers today support the HTML5 semantic elements, and for those that
don’t, creating a style sheet rule that tells browsers to format each one as a block-
level element is all you need to make them behave correctly:

section, article, nav, aside, header, footer, main {
 display: block;
}

Unfortunately, that fix won’t work for the small fraction of users who are still using
Internet Explorer versions 8 and earlier (less than 1.5% of browser traffic as of 2017).
IE8 has been hanging around well past its prime because it is tied to the popular
Windows Vista operating system. If you work on a large site for which 1% of users
represents thousands of people, you may want to be familiar with workarounds and
fallbacks for IE8. Most likely, you won’t need to support it. Still, at the risk of looking
outdated, I will provide notes about IE8 support throughout this book.

For example, the following is a workaround that applies only to IE8 and earlier. Not
only do those browsers not recognize the HTML5 elements, but they also ignore any
styles applied to them. The solution is to use JavaScript to create each element
so IE knows it exists and will allow nesting and styling. Here’s what a JavaScript
command creating the section element looks like:

documencreateElement("section");

Fortunately, Remy Sharp wrote a script that creates all of the HTML5 elements for IE8
and earlier in one fell swoop. It is called “HTML5 Shiv” (or Shim) and it is available on
a server that you can point to in your documents. Just copy this code in the head of
your document and use a style sheet to style the new elements as blocks:

<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/
html5shiv.min.js">
</script >
<![endif]-->

The HTML5 Shiv is also part of the Modernizr polyfill script that adds HTML5 and CSS3
functionality to older non-supporting browsers. Read more about Modernizr online at
modernizr.com. It is also covered in Chapter 20, Modern Web Development Tools.

NOTE

The new element names are based on
a Google study that looked at the top
20 names that developers assigned to
generic division elements (code.google.
com/webstats/2005-12/classes.html).

→

Part II. HTML for Structure

Organizing Page Content

82

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html

Main Content
Web pages these days are loaded with different types of content: mastheads,
sidebars, ads, footers, more ads, even more ads, and so on. It is helpful to cut
to the chase and explicitly point out the main content on the page. Use the
main element to identify the primary content of a page or application. It helps
screen readers and other assistive technologies know where the main content
of the page begins and replaces the “Skip to main content” links that have
been utilized in the past. The content of a main element should be unique to
that page. In other words, headers, sidebars, and other elements that appear
across multiple pages in a site should not be included in the main section:

<body>
<header>…</header>
<main>
 <h1>Humanist Sans Serif</h1>
 <!-- code continues -->
</main>
</body>

The W3C HTML5 specification states that pages should have only one main
section and that it should not be nested within an article, aside, header,
footer, or nav. Doing so will cause the document to be invalid.

The main element is the most recent addition to the roster of HTML5 group-
ing elements. You can use it and style it in most browsers, but for Internet
Explorer (including version 11, the most current as of this writing), you’ll need
to create the element with JavaScript and set its display to block with a style
sheet, as discussed in the “HTML5 Support in Internet Explorer” sidebar. Note
that main is supported in MS Edge.

Headers and Footers
Because web authors have been labeling header and footer sections in their
documents for years, it was kind of a no-brainer that full-fledged header and
footer elements would come in handy. Let’s start with headers.

Headers
The header element is used for introductory material that typically appears
at the beginning of a web page or at the top of a section or article (we’ll get
to those elements next). There is no specified list of what a header must or
should contain; anything that makes sense as the introduction to a page or
section is acceptable. In the following example, the document header includes
a logo image, the site title, and navigation:

<body>
<header>

 <h1>Nuts about Web Fonts</h1>

<header>…</header>
Introductory material for page, section,
or article

<footer>…</footer>
Footer for page, section, or article

<main>…</main>
Primary content area of page or app

5. Marking Up Text

Organizing Page Content

83

 <nav>

 Home
 Blog
 Shop

 </nav>
</header>
<!--page content-->
</body>

When used in an individual article, the header might include the article title,
author, and the publication date, as shown here:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
 </header>
 <!-- article content here -->
</article>

NOTE

Neither header nor footer elements are permitted to contain nested header or footer
elements.

Footers
The footer element is used to indicate the type of information that typi-
cally comes at the end of a page or an article, such as its author, copyright
information, related documents, or navigation. The footer element may
apply to the entire document, or it could be associated with a particular
section or article. If the footer is contained directly within the body element,
either before or after all the other body content, then it applies to the entire
page or application. If it is contained in a sectioning element (section,
article, nav, or aside), it is parsed as the footer for just that section. Note
that although it is called “footer,” there is no requirement that it appear last
in the document or sectioning element. It could also appear at or near the
beginning if that makes sense.

In this simple example, we see the typical information listed at the bottom of
an article marked up as a footer:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="2017-11-11">November 11,
2017</time></p>
 </header>
 <!-- article content here -->
 <footer>
 <p><small>Copyright ©2017 Jennifer Robbins.</small></p>

NOTE

The code in the
examples is the markup for adding links
to other web pages. We’ll take on links
in Chapter 6, Adding Links. Normally
the value would be the URL to the page,
but I’ve used a simple slash as a space-
saving measure.

NOTE

The time element will be discussed in
the section “Dates and times” later in
this chapter.

Part II. HTML for Structure

Organizing Page Content

84

 <nav>

 Previous
 Next

 </nav>
 </footer>
</article>

Sections and Articles
Long documents are easier to use when they are divided into smaller parts.
For example, books are divided into chapters, and newspapers have sections
for local news, sports, comics, and so on. To divide long web documents into
thematic sections, use the aptly named section element. Sections typically
include a heading (inside the section element) plus content that has a mean-
ingful reason to be grouped together.

The section element has a broad range of uses, from dividing a whole page
into major sections or identifying thematic sections within a single article.
In the following example, a document with information about typography
resources has been divided into two sections based on resource type:

<section>
 <h2>Typography Books</h2>

 …

</section>

<section>
 <h2>Online Tutorials</h2>
 <p>These are the best tutorials on the web.</p>

 …

</section>

Use the article element for self-contained works that could stand alone or
be reused in a different context (such as syndication). It is useful for maga-
zine or newspaper articles, blog posts, comments, or other items that could
be extracted for external use. You can think of it as a specialized section ele-
ment that answers “yes” to the question “Could this appear on another site
and make sense?”

A long article could be broken into a number of sections, as shown here:

<article>
 <h1>Get to Know Helvetica</h1>
 <section>
 <h2>History of Helvetica</h2>
 <p>…</p>
 </section>

<section>…</section>
Thematic group of content

<article>…</article>
Self-contained, reusable composition

NOTE

The HTML5 spec recommends that if the
purpose for grouping the elements is
simply to provide a hook for styling, use
the generic div element instead.

5. Marking Up Text

Organizing Page Content

85

 <section>
 <h2>Helvetica Today</h2>
 <p>…</p>
 </section>
</article>

Conversely, a section in a web document might be composed of a number
of articles:

<section id="essays">
 <article>
 <h1>A Fresh Look at Futura</h1>
 <p>…</p>
 </article>

 <article>
 <h1>Getting Personal with Humanist</h1>
 <p>…</p>
 </article>
</section>

The section and article elements are easily confused, particularly because
it is possible to nest one in the other and vice versa. Keep in mind that if the
content is self-contained and could appear outside the current context, it is
best marked up as an article.

Aside (Sidebars)
The aside element identifies content that is separate from, but tangentially
related to, the surrounding content. In print, its equivalent is a sidebar, but
it couldn’t be called “sidebar” because putting something on the “side” is a
presentational description, not semantic. Nonetheless, a sidebar is a good
mental model for using the aside element. aside can be used for pull quotes,
background information, lists of links, callouts, or anything else that might
be associated with (but not critical to) a document.

In this example, an aside element is used for a list of links related to the main
article:

<h1>Web Typography</h1>
<p>Back in 1997, there were competing font formats and tools for
making them…</p>
<p>We now have a number of methods for using beautiful fonts on web
pages…</p>
<aside>
 <h2>Web Font Resources</h2>

 Typekit
 Google Fonts

</aside>

The aside element has no default rendering, so you will need to make it a
block element and adjust its appearance and layout with style sheet rules.

<aside>…</aside>
Tangentially related material

Part II. HTML for Structure

Organizing Page Content

86

Navigation
The nav element gives developers a semantic way to identify navigation for a
site. Earlier in this chapter, we saw an unordered list that might be used as the
top-level navigation for a font catalog site. Wrapping that list in a nav element
makes its purpose explicitly clear:

<nav>

 Serif
 Sans-serif
 Script
 Display
 Dingbats

</nav>

Not all lists of links should be wrapped in nav tags, however. The spec makes
it clear that nav should be used for links that provide primary navigation
around a site or a lengthy section or article. The nav element may be espe-
cially helpful from an accessibility perspective.

Addresses
Last, and well, least, is the address element that is used to create an area for
contact information for the author or maintainer of the document. It is gener-
ally placed at the end of the document or in a section or article within a docu-
ment. An address would be right at home in a footer element. It is important
to note that the address element should not be used for any old address on a
page, such as mailing addresses. It is intended specifically for author contact
information (although that could potentially be a mailing address). Following
is an example of its intended use:

<address>
Contributed by Jennifer Robbins,
O'Reilly Media
</address>

<nav>…</nav>
Primary navigation links

<address>…</address>
Contact information

Document Outlines
Behind the scenes, browsers look at the markup in a document
and generate a hierarchical outline based on the headings in
the content. A new section gets added to the outline whenever
the browser encounters a new heading level.

In past versions of HTML, that was the only way the outline
was created. HTML5 introduced a new outline algorithm that
enables authors to explicitly add a new section to the outline
by inserting a sectioning element: article, section, aside,
and nav. In addition to the four sectioning elements, the spec
defines some elements (blockquote, fieldset, figure,

dialog, details, and td) as sectioning roots, which means
headings in those elements do not become part of the overall
document outline.

It’s a nice idea because it allows content to be repurposed and
merged without breaking the outline, but unfortunately, no
browsers to date have implemented it and they are unlikely
to do so. The W3C has kept the sectioning elements and their
intended behavior in the spec (which is why I mention this at
all), but now precede it with a banner recommending sticking
with the old hierarchical heading method.

5. Marking Up Text

Organizing Page Content

87

THE INLINE ELEMENT ROUNDUP

Now that we’ve identified the larger chunks of content, we can provide
semantic meaning to phrases within the chunks by using what the HTML5
specification calls text-level semantic elements. On the street, you are likely to
hear them called inline elements because they display in the flow of text by
default and do not cause any line breaks. That’s also how they were referred
to in HTML versions prior to HTML5.

Text-Level (Inline) Elements
Despite all the types of information you could add to a document, there are
only a couple dozen text-level semantic elements. TABLE 5-1 lists all of them.

Although it may be handy seeing all of the text-level elements listed together
in a table, they certainly deserve more detailed explanations.

Emphasized text
Use the em element to indicate which part of a sentence should be stressed or
emphasized. The placement of em elements affects how a sentence’s meaning
is interpreted. Consider the following sentences that are identical, except for
which words are stressed:

<p>Arlo is very smart.</p>
<p>Arlo is very smart.</p>

The first sentence indicates who is very smart. The second example is about
how smart he is. Notice that the em element has an effect on the meaning of
the sentence.

Emphasized text (em) elements nearly always display in italics by default
(FIGURE 5-9), but of course you can make them display any way you like
with a style sheet. Screen readers may use a different tone of voice to convey
stressed content, which is why you should use an em element only when it
makes sense semantically, not just to achieve italic text.

Important text
The strong element indicates that a word or phrase is important, serious,
or urgent. In the following example, the strong element identifies the por-
tion of instructions that requires extra attention. The strong element does
not change the meaning of the sentence; it merely draws attention to the
important parts:

<p>When returning the car, drop the keys in the red box by the
front desk.</p>

Visual browsers typically display strong text elements in bold text by default.
Screen readers may use a distinct tone of voice for important content, so

…
Stressed emphasis

…
Strong importance

Part II. HTML for Structure

The Inline Element Roundup

88

TABLE 5-1.   Text-level semantic elements

Element Description

a An anchor or hypertext link (see Chapter 6 for details)

abbr Abbreviation

b Added visual attention, such as keywords (bold)

bdi Indicates text that may have directional requirements

bdo Bidirectional override; explicitly indicates text direction (left to
right, ltr, or right to left, rtl)

br Line break

cite Citation; a reference to the title of a work, such as a book title

code Computer code sample

data Machine-readable equivalent dates, time, weights, and other
measurable values

del Deleted text; indicates an edit made to a document

dfn The defining instance or first occurrence of a term

em Emphasized text

i Alternative voice (italic) or alternate language

ins Inserted text; indicates an insertion in a document

kbd Keyboard; text entered by a user (for technical documents)

mark Contextually relevant text

q Short, inline quotation

ruby, rt, rp Provides annotations or pronunciation guides under East Asian
typography and ideographs

s Incorrect text (strike-through)

samp Sample output from programs

small Small print, such as a copyright or legal notice (displayed in a
smaller type size)

span Generic phrase content

strong Content of strong importance

sub Subscript

sup Superscript

time Machine-readable time data

u Indicates a formal name, misspelled word, or text that would
be underlined

var A variable or program argument (for technical documents)

wbr Word break

The Inline Elements
Backstory
Many of the inline elements that have
been around since the dawn of the
web were introduced to change the
visual formatting of text selections
because of the lack of a style sheet
system. If you wanted bolded text,
you marked it as b. Italics? Use the
i element. In fact, there was once a
font element used solely to change
the font, color, and size of text (the
horror!). Not surprisingly, HTML5
kicked the purely presentational font
element to the curb. However, many
of the old-school presentational
inline elements (for example, u for
underline and s for strike-through)
have been kept in HTML5 and given
new semantic definitions (b is now for
“keywords,” s for “inaccurate text”).

Many inline elements have the
expected style rendering (bold for the
b element, for example). Other inline
elements are purely semantic (such
as abbr or time) and don’t have
default renderings. For any inline
elements, you can use CSS rules if
you want to change the way they
display.

Obsolete HTML 4.01
Text Elements
Here are some old text elements
that were made obsolete in HTML5:
acronym, applet, basefont, big,
center, dir (directory), font,
isindex (search box), menu, strike,
tt (teletype). I mention them here in
case you run across them in an old
document when viewing its source
or if you are using an older web
authoring tool. There is no reason to
use them today.

5. Marking Up Text

The Inline Element Roundup

89

mark text as strong only when it makes sense semantically, not just to make
text bold.

The following is a brief example of our em and strong text examples. FIGURE

5-9 should hold no surprises.

FIGURE 5-9.   The default rendering of emphasized and strong text.

Elements originally named for their presentational properties
As long as we’re talking about bold and italic text, let’s see what the old b
and i elements are up to now. The elements b, i, u, s, and small were intro-
duced in the old days of the web as a way to provide typesetting instructions
(bold, italic, underline, strike-through, and smaller text, respectively). Despite
their original presentational purposes, these elements have been included
in HTML5 and given updated, semantic definitions based on patterns of
how they’ve been used. Browsers still render them by default as you’d expect
(FIGURE 5-10). However, if a type style change is all you’re after, using a style
sheet rule is the appropriate solution. Save these for when they are semanti-
cally appropriate.

Let’s look at these elements and their correct usage, as well as the style sheet
alternatives.

b

Keywords, product names, and other phrases that need to stand out from
the surrounding text without conveying added importance or emphasis (see
Note). [Old definition: Bold]

CSS Property: For bold text, use font-weight. Example: font-weight: bold;

Example: <p>The slabs at the ends of letter strokes are called
serifs.</p>

i

Indicates text that is in a different voice or mood than the surrounding text,
such as a phrase from another language, a technical term, or a thought. [Old
definition: Italic]

CSS Property: For italic text, use font-style. Example: font-style: italic;

…
Keywords or visually

emphasized text (bold)

<i>…</i>
Alternative voice (italic)

<s>…</s>
Incorrect text (strike-through)

<u>…</u>
Annotated text (underline)

<small>…</small>
Legal text; small print (smaller type size)

NOTE

It helps me to think about how a screen
reader would read the text. If I don’t want
the word read in a loud, emphatic tone of
voice, but it really should be bold, then b
may be more appropriate than strong.

Part II. HTML for Structure

The Inline Element Roundup

90

Example: <p>Simply change the font and <i>Voila!</i>, a new
personality!</p>

s

Indicates text that is incorrect. [Old definition: Strike-through text]

CSS Property: To draw a line through a selection of text, use text-decoration.
Example: text-decoration: line-through

Example: <p>Scala Sans was designed by <s>Eric Gill</s> Martin
Majoor.</p>

u

There are a few instances when underlining has semantic significance,
such as underlining a formal name in Chinese or indicating a misspelled
word after a spell check, such as the misspelled “Helvitica” in the following
example. Note that underlined text is easily confused with a link and should
generally be avoided except for a few niche cases. [Old definition: Underline]

CSS Property: For underlined text, use text-decoration. Example: text-
decoration: underline

Example: <p>New York subway signage is set in <u>Helviteca</u>.</p>

small

Indicates an addendum or side note to the main text, such as the legal “small
print” at the bottom of a document. [Old definition: Renders in font smaller
than the surrounding text]

CSS Property: To make text smaller, use font-size. Example: font-size: 80%

Example: <p><small>(This font is free for personal and commercial
use.)</small></p>

b

i

s

u

small

FIGURE 5-10.   The default rendering of b, i, s, u, and small elements.

5. Marking Up Text

The Inline Element Roundup

91

Short quotations
Use the quotation (q) element to mark up short quotations, such as “To be or
not to be,” in the flow of text, as shown in this example (FIGURE 5-11):

Matthew Carter says, <q>Our alphabet hasn't changed in eons.</q>

According to the HTML spec, browsers should add quotation marks around
q elements automatically, so you don’t need to include them in the source
document. Some browsers, like Firefox, render curly quotes, which is prefer-
able. Others (Safari and Chrome, which I used for my examples) render them
as straight quotes as shown in the figure.

FIGURE 5-11.   Browsers add quotation marks automatically around q elements.

Abbreviations and acronyms
Marking up acronyms and abbreviations with the abbr element provides
useful information for search engines, screen readers, and other devices.
Abbreviations are shortened versions of a word ending in a period (“Conn.”
for “Connecticut,” for example). Acronyms are abbreviations formed by the
first letters of the words in a phrase (such as NASA or USA). The title
attribute provides the long version of the shortened term, as shown in this
example:

<abbr title="Points">pts.</abbr>
<abbr title="American Type Founders">ATF</abbr>

<q>…</q>
Short inline quotation

<abbr>…</abbr>
Abbreviation or acronym

Nesting Elements
You can apply two elements to a string of text (for example, a phrase that is both a
quote and in another language), but be sure they are nested properly. That means
the inner element, including its closing tag, must be completely contained within
the outer element, and not overlap:

<q><i>Je ne sais pas.</i></q>

Here is an example of elements that are nested incorrectly. Notice that the inner i
element is not closed within the containing q element:

<q><i>Je ne sais pas.</q></i>

It is easy to spot the nesting error in an example that is this short, but when you’re
nesting long passages or nesting multiple levels deep, it is easy to end up with
overlaps. One advantage to using an HTML code editor is that it can automatically
close elements for you correctly or point out when you’ve made a mistake.

NOTE

In HTML 4.01, there was an acronym ele-
ment especially for acronyms, but HTML5
has made it obsolete in favor of using the
abbr for both.

Part II. HTML for Structure

The Inline Element Roundup

92

Citations
The cite element is used to identify a reference to another document, such
as a book, magazine, article title, and so on. Citations are typically rendered
in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms
It is common to point out the first and defining instance of a word in a docu-
ment in some fashion. In this book, defining terms are set in blue text. In
HTML, you can identify them with the dfn element and format them visually
using style sheets.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements
A number of inline elements are used for describing the parts of technical
documents, such as code (code), variables (var), program samples (samp), and
user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of HTML’s
origins in the scientific world (Tim Berners-Lee developed HTML to share
documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width
(also called monospace) font such as Courier by default. Variables usually
render in italics.

Subscript and superscript
The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size, positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

FIGURE 5-12 shows how these examples of subscript and superscript typi-
cally render in a browser.

 <p>H₂0</p>

 <p>E=MC²</p>

FIGURE 5-12.   Subscript and superscript

<cite>…</cite>
Citation

<dfn>…</dfn>
Defining term

<code>…</code>
Code

<var>…</var>
Variable

<samp>…</samp>
Program sample

<kbd>…</kbd>
User-entered keyboard strokes

_…
Subscript

[…]
Superscript

5. Marking Up Text

The Inline Element Roundup

93

Highlighted text
The mark element indicates a word that may be considered especially relevant
to the reader. One might use it to dynamically highlight a search term in a
page of results, to manually call attention to a passage of text, or to indicate
the current page in a series. Some designers (and browsers) give marked text
a light colored background as though it were marked with a highlighter
marker, as shown in FIGURE 5-13.

<p> ... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.
TAXATION. CHAPTER 65C. MASS. <mark>ESTATE TAX</mark>. Chapter 65C:
Sect. 2. Computation of <mark>estate tax</mark>.</p>

FIGURE 5-13.   In this example, search terms are identified with mark elements and
given a yellow background with a style sheet so they are easier for the reader to find.

Dates and times
When we look at the phrase “noon on November 4,” we know that it is a
date and a time. But the context might not be so obvious to a computer pro-
gram. The time element allows us to mark up dates and times in a way that
is comfortable for a human to read, but also encoded in a standardized way
that computers can use. The content of the element presents the information
to people, and the datetime attribute presents the same information in a
machine-readable way.

The time element indicates dates, times, or date-time combos. It might be
used to pass the date and time information to an application, such as saving
an event to a personal calendar. It might be used by search engines to find the
most recently published articles. Or it could be used to restyle time informa-
tion into an alternate format (e.g., changing 18:00 to 6 p.m.).

The datetime attribute specifies the date and/or time information in a stan-
dardized time format illustrated in FIGURE 5-14. The full time format begins
with the date (year–month–day). The time section begins with a letter “T”
and lists hours (on the 24-hour clock), minutes, seconds (optional), and mil-
liseconds (also optional). Finally, the time zone is indicated by the number of
hours behind (-) or ahead (+) of Greenwich Mean Time (GMT). For example,
“-05:00” indicates the Eastern Standard time zone, which is five hours behind
GMT. When identifying dates and times alone, you can omit the other sections.

<mark>…</mark>
Contextually relevant text

<time>…</time>
Time data

NOTE

The time element is not intended for
marking up times for which a precise
time or date cannot be established, such
as “the end of last year” or “the turn of
the century.”

F U RT H E R R E A D I N G

For more information on the intricate
ins and outs of specifying dates and
times, with examples, check out the
time element entry in the HTML5
specification: www.w3.org/TR/2014/
REC-html5-20141028/text-level-
semantics.html#the-time-element.

Part II. HTML for Structure

The Inline Element Roundup

94

Year Month Day Hour Minute Hour MinuteSecond
(optional)

Fraction of second
(optional)

A “T” always precedes
time information

+ or – hours ahead or behind
Greenwich Mean Time

YYYY-MM-DDThh:mm:ss.ddd±hh:mm
TIMEDATE TIME ZONE

Example:
3pm PST on December 25, 2016 2016-12-25T15:00-8:00

FIGURE 5-14.   Standardized date and time syntax.

Here are a few examples of valid values for datetime:

•	 Time only: 9:30 p.m.

<time datetime="21:30">9:30p.m.</time>

•	 Date only: June 19, 2016

<time datetime="2016-06-19">June 19, 2016</time>

•	 Date and time: Sept. 5, 1970, 1:11a.m.

<time datetime="1970-09-05T01:11:00">Sept. 5, 1970, 1:11a.m.</time>

•	 Date and time, with time zone information: 8:00am on July 19, 2015, in
Providence, RI	

<time datetime="2015-07-19T08:00:00-05:00">July 19, 2015, 8am,
Providence RI</time>

Machine-readable information
The data element is another tool for helping computers make sense of con-
tent. It can be used for all sorts of data, including dates, times, measurements,
weights, microdata, and so on. The required value attribute provides the
machine-readable information. Here are a couple of examples:

<data value="12">Twelve</data>
<data value="978-1-449-39319-9">CSS: The Definitive Guide</data>

I’m not going to go into more detail on the data element, because as a begin-
ner, you are unlikely to be dealing with machine-readable data quite yet. But
it is interesting to see how markup can be used to provide usable information
to computer programs and scripts as well as to your fellow humans.

<data>…</data>
Machine-readable data

NOTE

You can also use the time element with-
out the datetime attribute, but its con-
tent must be a valid date/time string:

<time>2016-06-19</time>

5. Marking Up Text

The Inline Element Roundup

95

Inserted and deleted text
The ins and del elements are used to mark up edits indicating parts of a doc-
ument that have been inserted or deleted (respectively). These elements rely
on style rules for presentation (i.e., there is no dependable browser default).
Both the ins and del elements can contain either inline or block elements,
depending on what type of content they contain:

Chief Executive Officer: <del title="retired">Peter Pan<ins>Pippi
Longstocking</ins>

Adding Breaks

Line breaks
Occasionally, you may need to add a line break within the flow of text. We’ve
seen how browsers ignore line breaks in the source document, so we need a
specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The br element could be
used to break up lines of addresses or poetry. It is an empty element, which
means it does not have content. Just add the br element in the flow of text
where you want a break to occur, as shown here and in FIGURE 5-15:

<p>So much depends
upon

a red wheel
barrow</p>

FIGURE 5-15.   Line breaks are inserted at each br element. (Example extracted from
“The Red Wheelbarrow” by William Carlos Williams.)

Unfortunately, the br element is easily abused. Be careful that you aren’t using
br elements to force breaks into text that really ought to be a list. For example,
don’t do this:

<p>Times

Georgia

Garamond
</p>

If it’s a list, use the semantically correct unordered list element instead, and
turn off the bullets with style sheets:

 Times
 Georgia
 Garamond

<ins>…</ins>
Inserted text

…
Deleted text

Line break

Part II. HTML for Structure

The Inline Element Roundup

96

Word breaks
The word break (wbr) element lets you mark the place where a word should
break (a “line break opportunity” according to the spec) should there not be
enough room for the whole word (FIGURE 5-16). It takes some of the guess-
work away from the browser and allows authors to control the best spot for
the word to be split over two lines. If there is enough room, the word stays in
one piece. Without word breaks, the word stays together, and if there is not
enough room, the whole word wraps to the next line. Note that the browser
does not add a hyphen when the word breaks over two lines. The wbr behaves
as though it were a character space in the middle of the word:

<p>The biggest word you've ever heard and this is how it goes:
supercali<wbr>fragilistic<wbr>expialidocious!</p>

FIGURE 5-16.   When there is not enough room for a word to fit on a line, it will break
at the location of the wbr element.

You’ve been introduced to 32 new elements since your last exercise. I’d say it’s
time to give some of the inline elements a try in EXERCISE 5-2.

<wbr>
Word break

BROWSER SUPPORT NOTE

The wbr element is not supported by any
version of Internet Explorer as of this writ-
ing. It is supported in MS Edge.

Accommodating Non-Western Languages
If the web is to reach a truly worldwide audience, it needs
to be able to support the display of all the languages of the
world, with all their unique alphabets, symbols, directionality,
and specialized punctuation. The W3C’s efforts for
internationalization (often referred to as “i18n” —an i, then 18
letters, then an n) ensure that the formats and protocols defined
in web technologies are usable worldwide.

Internationalization efforts include the following:

•	 Using the Unicode character encoding that contains the
characters, glyph, symbols, ideographs, and the like from all
active, modern languages. Unicode is discussed in Chapter
4, Creating a Simple Page.

•	 Declaring the primary language of a document by using a two-
letter language code from the ISO 639-1 standard (available
at www.loc.gov/standards/iso639-2/php/code_list.php). For
example, English is “EN,” Czech is “CS, “and German is “DE.”
Use the lang attribute in the html element to declare the
language for the whole document, or in individual elements
that require clarification.

•	 Accommodating the various writing directions of languages.
In HTML, the dir attribute explicitly sets the direction for the

document or an element to ltr (left-to-right) or rtl (right-to-
left). On phrase-level elements, it also creates a bidirectional
isolation, preventing text within the element from influencing
the ordering of text outside it. (This can be an important
consideration when you are embedding user-generated text.)

For example, to include a passage of Hebrew in an English
document, use the dir attribute to indicate that the phrase
should be displayed right-to-left:

<p>This is how you write Shalom:
םולש</p>

•	 Providing a system that allows for ruby annotation, notes
that typically appear above ideographs from East Asian
languages to give pronunciation clues or translations (ruby,
rt, and rp elements). See the spec for details if this is
something you need to do.

The W3C Internationalization Activity site provides a
thorough collection of HTML and CSS authoring techniques
and resources to help with your internationalization efforts:
www.w3.org/International/techniques/authoring-html.

5. Marking Up Text

The Inline Element Roundup

97

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.w3.org/International/techniques/authoring-html

GENERIC ELEMENTS (DIV AND SPAN)

What if none of the elements we’ve talked about so far accurately describes
your content? After all, there are endless types of information in the world,
but as you’ve seen, not all that many semantic elements. Fortunately, HTML
provides two generic elements that can be customized to describe your
content perfectly. The div element indicates a division of content, and span
indicates a word or phrase for which no text-level element currently exists.
The generic elements are given meaning and context with the id and class
attributes, which we’ll discuss in a moment.

The div and span elements have no inherent presentation qualities of their
own, but you can use style sheets to format them however you like. In fact,
generic elements are a primary tool in standards-based web design because
they enable authors to accurately describe content and offer plenty of
“hooks” for adding style rules. They also allow elements on the page to be
accessed and manipulated by JavaScript.

We’re going to spend a little time on div and span elements, as well as the
id and class attributes, to learn how authors use them to structure content.

<div>…</div>
Generic block-level element

…
Generic inline element

EXERCISE 5-2. Identifying inline elements

This little post for the Black Goose Bistro News page will give
you an opportunity to identify and mark up a variety of inline
elements. See if you can find phrases to mark up accurately with
the following elements:

b br cite dfn em

i q small time

Because markup is always somewhat subjective, your resulting
markup may not look exactly like my final markup, but there
is an opportunity to use all of the preceding elements in the
article. For extra credit, there is a phrase that could have two
elements applied to it. (Hint: look for a term in another language.)
Remember to nest them properly by closing the inner element
before you close the outer one. Also, be sure that all text-level
elements are contained within block elements.

You can write the tags right on this page. Or, if you want to use a
text editor and see the results in a browser, this text file is available
online at learningwebdesign.com/5e/materials along with the
resulting code.

<article>

<header>
<p>posted by BGB, November 15, 2016</p>
</header>

<h2>Low and Slow</h2>
<p>This week I am extremely excited about a new
cooking technique called sous vide. In sous vide
cooking, you submerge the food (usually vacuum-sealed
in plastic) into a water bath that is precisely
set to the target temperature you want the food
to be cooked to. In his book, Cooking for Geeks,
Jeff Potter describes it as ultra-low-temperature
poaching.</p>
<p>Next month, we will be serving Sous Vide Salmon
with Dill Hollandaise. To reserve a seat at the chef
table, contact us before November 30.</p>

<p>blackgoose@example.com
555-336-1800</p>

<p>Warning: Sous vide cooked salmon is not
pasteurized. Avoid it if you are pregnant or have
immunity issues.</p>
</article>

Part II. HTML for Structure

Generic Elements (div and span)

98

mailto:blackgoose@example.com

Divide It Up with a div
Use the div element to create a logical grouping of content or elements on the
page. It indicates that they belong together in a conceptual unit or should be
treated as a unit by CSS or JavaScript. By marking related content as a div and
giving it a unique id or indicating that it is part of a class, you give context
to the elements in the grouping. Let’s look at a few examples of div elements.

In this example, a div element is used as a container to group an image and
two paragraphs into a product “listing”:

<div class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type
design.</p>
</div>

By putting those elements in a div, I’ve made it clear that they are conceptu-
ally related. It also allows me to style p elements within listings differently
than other p elements in the document.

Here is another common use of a div used to break a page into sections
for layout purposes. In this example, a heading and several paragraphs are
enclosed in a div and identified as the “news” division:

<div id="news">
 <h1>New This Week</h1>
 <p>We've been working on...</p>
 <p>And last but not least,... </p>
</div>

Now I have a custom element that I’ve given the name “news.” You might be
thinking, “Hey Jen, couldn’t you use a section element for that?” You could!
In fact, authors may turn to generic divs less often now that we have better
semantic sectioning elements in HTML5.

Define a Phrase with span
A span offers the same benefits as the div element, except it is used for phrase
elements and does not introduce line breaks. Because spans are inline ele-
ments, they may contain only text and other inline elements (in other words,
you cannot put headings, lists, content-grouping elements, and so on, in a
span). Let’s get right to some examples.

There is no telephone element, but we can use a span to give meaning to
telephone numbers. In this example, each telephone number is marked up as
a span and classified as “tel”:

 John: 999.8282
 Paul: 888.4889
 George: 888.1628
 Ringo: 999.3220

M AR KU P T I P

It is possible to nest div elements
within other div elements, but don’t
go overboard. You should always
strive to keep your markup as simple
as possible, so add a div element
only if it is necessary for logical
structure, styling, or scripting.

5. Marking Up Text

Generic Elements (div and span)

99

You can see how the classified spans add meaning to what otherwise might
be a random string of digits. As a bonus, the span element enables us to apply
the same style to phone numbers throughout the site (for example, ensuring
line breaks never happen within them, using a CSS white-space: nowrap dec-
laration). It makes the information recognizable not only to humans but also
to computer programs that know that “tel” is telephone number information.
In fact, some values—including “tel”—have been standardized in a markup
system known as Microformats that makes web content more useful to soft-
ware (see the upcoming sidebar “Structured Data in a Nutshell”).

id and class Attributes
In the previous examples, we saw the id and class attributes used to provide
context to generic div and span elements. id and class have different pur-
poses, however, and it’s important to know the difference.

Identification with id
The id attribute is used to assign a unique identifier to an element in the
document. In other words, the value of id must be used only once in the
document. This makes it useful for assigning a name to a particular element,
as though it were a piece of data. See the sidebar “id and class Values” for
information on providing values for the id attribute.

This example uses the books’ ISBNs (International Standard Book Numbers)
to uniquely identify each listing. No two book listings may share the same id.

<div id="ISBN0321127307">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.
 </p>
</div>

<div id="ISBN0881792063">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p>This lovely, well-written book is concerned foremost with creating
beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page. In
the following example, there may not be more than one element with the id
of “links” or “news” in the document:

<section id="news">
 <!-- news items here -->
</section>

<aside id="links">
 <!-- list of links here -->
</aside>

id and class Values
In HTML5, the values for id and
class attributes must contain one
character (that is, they may not be
empty) and may not contain any
character spaces. You can use pretty
much any character in the value.

Earlier versions of HTML had
restrictions on id values (for example,
they needed to start with a letter),
but those restrictions were removed
in HTML5.

Part II. HTML for Structure

Generic Elements (div and span)

100

Classification with class
The class attribute classifies elements into conceptual groups; therefore,
unlike the id attribute, a class name may be shared by multiple elements.
By making elements part of the same class, you can apply styles to all of the
labeled elements at once with a single style rule or manipulate them all with a
script. Let’s start by classifying some elements in the earlier book example. In
this first example, I’ve added class attributes to classify each div as a “listing”
and to classify paragraphs as “descriptions”:

<div id="ISBN0321127307" class="listing">
 <header>

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 </header>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">
 <header>

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 </header>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

Notice how the same element may have both a class and an id. It is also
possible for elements to belong to multiple classes. When there is a list of
class values, simply separate them with character spaces. In this example, I’ve
classified each div as a “book” to set them apart from possible “cd” or “dvd”
listings elsewhere in the document:

<div id="ISBN0321127307" class="listing book">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p class="description">This lovely, well-written book is concerned
 foremost with creating beautiful typography.</p>
</div>

Identify and Classify All Elements
The id and class attributes are not limited to just div and span—they are
two of the global attributes (see the “Global Attributes” sidebar) in HTML,

M AR KU P T I P

Use the id attribute to identify.

Use the class attribute to classify.

Global Attributes
HTML5 defines a set of attributes
that can be used with every HTML
element. They are called the global
attributes:

accesskey

class

contenteditable

dir

draggable

hidden

id

lang

spellcheck

style

tabindex

title

translate

Appendix B lists all of the global
attributes, their values, and
definitions.

5. Marking Up Text

Generic Elements (div and span)

101

which means you may use them with all HTML elements. For example, you
could identify an ordered list as “directions” instead of wrapping it in a div:

<ol id="directions">
 ...
 ...
 ...

This should have given you a good introduction to how to use the class and
id attributes to add meaning and organization to documents. We’ll work with
them even more in the style sheet chapters in Part III. The sidebar “Structured
Data in a Nutshell” discusses more advanced ways of adding meaning and
machine-readable data to documents.

IMPROVING ACCESSIBILITY WITH ARIA

As web designers, we must always consider the experience of users with assis-
tive technologies for navigating pages and interacting with web applications.
Your users may be listening to the content on the page read aloud by a screen
reader and using keyboards, joysticks, voice commands, or other non-mouse
input devices to navigate through the page.

Many HTML elements are plainly understood when you look at (or read)
only the HTML source. Elements like the title, headings, lists, images, and
tables have implicit meanings in the context of a page, but generic elements
like div and span lack the semantics necessary to be interpreted by an assis-
tive device. In rich web applications, especially those that rely heavily on
JavaScript and AJAX (see Note), the markup alone does not provide enough
clues as to how elements are being used or whether a form control is cur-
rently selected, required, or in some other state.

Fortunately, we have ARIA (Accessible Rich Internet Applications), a stan-
dardized set of attributes for making pages easier to navigate and interactive
features easier to use. The specification was created and is maintained by a
Working Group of the Web Accessibility Initiative (WAI), which is why you
also hear it referred to as WAI-ARIA. ARIA defines roles, states, and proper-
ties that developers can add to markup and scripts to provide richer semantic
information.

Roles
Roles describe an element’s function or purpose in the context of the docu-
ment. Some roles include alert, button, dialog, slider, and menubar, to name
only a few. For example, as we saw earlier, you can turn an unordered list into
a tabbed menu of options using style sheets, but what if you can’t see that it
is styled that way? Adding role="toolbar" to the list makes its purpose clear:

NOTE

AJAX (Asynchronous JavaScript and XML)
is explained in a sidebar in Chapter 22,
Using JavaScript.

Part II. HTML for Structure

Improving Accessibility with ARIA

102

Structured Data in a Nutshell
It is pretty easy for us humans to tell the difference between
a recipe and a movie review. For search engines and other
computer programs, however, it’s not so obvious. When we
use HTML alone, all browsers see is paragraphs, headings,
and other semantic elements of a document. Enter structured
data! Structured data allows content to be machine-readable
as well, which helps search engines provide smarter, user-
friendly results and can provide a better user experience—for
example, by extracting event information from a page and
adding it to the user’s calendar app.

There are several standards for structured data, but they share
a similar approach. First, they identify and name the “thing”
being presented. Then they point out the properties of that
thing. The “thing” might be a person, an event, a product,
a movie…pretty much anything you can imagine seeing
on a web page. Properties consist of name/value pairs. For
example, “actor,” “director,” and “duration” are properties of a
movie. The values of those properties appear as the content
of an HTML element. A collection of the standardized terms
assigned to “things,” as well as their respective properties,
form what is called a vocabulary.

The most popular standards for adding structured data are
Microformats, Microdata, RDFa (and RDFa Lite), and JSON-LD.
They differ in the syntax they use to add information about
objects and their properties.

Microformats
microformats.org
This early effort to make web content more useful created
standardized values for the existing id, class, and rel
HTML attributes. It is not a documented standard, but
it is a convention that is in widespread use because it
is very simple to implement. There are about a dozen
stable Microformat vocabularies for defining people,
organizations, events, products, and more. Here is a short
example of how a person might be marked up using
Microformats:

<div class="h-card">
 <p class="p-name">Cindy Sherman</p>
 <p class="p-tel">555.999-2456</p>
</div>

Microdata
html.spec.whatwg.org/multipage/microdata.html
Microdata is a WHATWG (Web Hypertext Application
Technology Working Group) HTML standard that uses
microdata-specific attributes (itemscope, itemtype,
itemprop, itemid, and itemref) to define objects and
their properties. Here is an example of a person defined
using Microdata.

<div itemscope itemtype="http://schema.org/Person">
 <p itemprop="name">Cindy Sherman</p>
 <p itemprop="telephone">555.999-2456</p>
</div>

For more information on the WHATWG, see Appendix D,
From HTML+ to HTML5.

RDFa and RDFa Lite
www.w3.org/TR/xhtml-rdfa-primer/
The W3C dropped Microdata from the HTML5 spec in
2013, putting all of its structured data efforts behind RDFa
(Resource Description Framework in Attributes) and its
simplified subset, RDFa Lite. It uses specified attributes
(vocab, typeof, property, resource, and prefix) to
enhance HTML content. Here is that same person marked
up with RDFa:

<div vocab="http://schema.org" typeof="Person">
 <p property="name">Cindy Sherman</p>
 <p property="telephone">555.999-2456</p>
</div>

JSON-LD
json-ld.org
JSON-LD (JavaScript Object Notation to serialize Linked
Data) is a different animal in that it puts the object types
and their properties in a script removed from the HTML
markup. Here is the JSON-LD version of the same person:

<script type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@type": "Person",
 "name": "Cindy Sherman"
 "telephone": "555.999-2456"
}
</script>

It is possible to make up your own vocabulary for use on
your sites, but it is more powerful to use a standardized
vocabulary. The big search engines have created Schema.org,
a mega-vocabulary that includes standardized properties for
hundreds of “things” like blog posts, movies, books, products,
reviews, people, organizations, and so on. Schema.org
vocabularies may be used with Microdata, RDFa, and JSON-LD
(Microformats maintain their own separate vocabularies). You
can see pointers to the Schema.org “Person” vocabulary in the
preceding examples. For more information, the Schema.org
“Getting Started” page provides an easy-to-read introduction:
schema.org/docs/gs.html.
There is a lot more to say about structured data than I can fit
in this book, but once you get the basic semantics of HTML
down, it is definitely a topic worthy of further exploration.

5. Marking Up Text

Improving Accessibility with ARIA

103

http://schema.org/Person

<ul id="tabs" role="toolbar">
 A-G
 H-O
 P-T
 U-Z

Here’s another example that reveals that the “status” div is used as an alert
message:

<div id="status" role="alert">You are no longer connected to the
server.</div>

Some roles describe “landmarks” that help readers find their way through
the document, such as navigation, banner, contentinfo, complementary, and
main. You may notice that some of these sound similar to the page-structuring
elements that were added in HTML5, and that’s no coincidence. One of the
benefits of having improved semantic section elements is that they can be
used as landmarks, replacing <div id="main" role="main"> with main.

Most current browsers already recognize the implicit roles of the new ele-
ments, but some developers explicitly add ARIA roles until all browsers
comply. The sectioning elements pair with the ARIA landmark roles in the
following way:

<nav role="navigation">

<header role="banner"> (see Note)

<main role="main">

<aside role="complementary">

<footer role="contentinfo">

States and Properties
ARIA also defines a long list of states and properties that apply to interactive
elements such as form widgets and dynamic content. States and properties
are indicated with attributes prefixed with aria-, such as aria-disabled,
aria-describedby, and many more.

The difference between a state and property is subtle. For properties, the
value of the attribute is more likely to be stable, such as aria-labelledby,
which associates labels with their respective form controls, or aria-haspopup,
which indicates the element has a related pop-up menu. States have values
that are more likely to be changed as the user interacts with the element, such
as aria-selected.

For Further Reading
Obviously, this is not enough ARIA coaching to allow you to start confi-
dently using it today, but it should give you a good feel for how it works and

NOTE

The banner role is used when the header
applies to only the whole page, not just a
section or article.

Part II. HTML for Structure

Improving Accessibility with ARIA

104

its potential value. When you are ready to dig in and take your skills to a
professional level, here is some recommended reading:

The WAI-ARIA Working Draft (www.w3.org/TR/wai-aria-1.1/)

This is the current Working Draft of the specification as of this writing.

ARIA in HTML (www.w3.org/TR/html-aria/)

This W3C Working Draft helps developers use ARIA attributes with
HTML correctly. It features a great list of every HTML element, whether
it has an implicit role (in which ARIA should not be used), and what roles,
states, and properties apply.

ARIA Resources at MDN Web Docs
(developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA)

This site features lots of links to ARIA-related and up-to-date resources. It
is a good starting point for exploration.

HTML5 Accessibility (www.html5accessibility.com)

This site tests which new HTML5 features are accessibly supported by
major browsers.

CHARACTER ESCAPES

There’s just one more text-related topic before we close out this chapter. The
section title makes it sound like someone left the gate open and all the char-
acters got out. The real meaning is more mundane, albeit useful to know.

You already know that as a browser parses an HTML document, when it
runs into a < symbol, it interprets it as the beginning of a tag. But what if you
just need a less-than symbol in your text? Characters that might be misinter-
preted as code need to be escaped in the source document. Escaping means
that instead of typing in the character itself, you represent it by its numeric
or named character entity reference. When the browser sees the character
reference, it substitutes the proper character in that spot when the page is
displayed.

There are two ways of referring to (escaping) a specific character:

•	 Using a predefined abbreviated name for the character (called a named
entity; see Note).

•	 Using an assigned numeric value that corresponds to its position in a
coded character set (numeric entity). Numeric values may be in decimal
or hexadecimal format.

All character references begin with an & (ampersand) and end with a ; (semi-
colon).

S P EC T I P

The W3C HTML specification now
lists which ARIA roles and properties
apply in the descriptions of every
HTML element (www.w3.org/TR/
html52/).

NOTE

HTML defines hundreds of named enti-
ties as part of the markup language,
which is to say you can’t make up your
own entity.

5. Marking Up Text

Character Escapes

105

https://www.w3.org/TR/wai-aria-1.1/
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
http://www.html5accessibility.com

An example should make this clear. I’d like to use a less-than symbol in my
text, so I must use the named entity (<) or its numeric equivalent (<)
where I want the symbol to appear (FIGURE 5-17):

<p>3 tsp. < 3 Tsp.</p>

or:

<p>3 tsp. < 3 Tsp.</p>

FIGURE 5-17.   The special character is substituted for the character reference when
the document is displayed in the browser.

When to Escape Characters
There are a few instances in which you may need or want to use a character
reference.

HTML syntax characters
The <, >, &, ", and ' characters have special syntax meaning in HTML, and
may be misinterpreted as code. Therefore, the W3C recommends that you
escape <, >, and & characters in content. If attribute values contain single or
double quotes, escaping the quote characters in the values is advised. Quote
marks are fine in the content and do not need to be escaped. (See TABLE 5-2.)

TABLE 5-2.   Syntax characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

< Less-than symbol < < <

> Greater-than symbol > > >

" Quotation mark " " "

' Apostrophe ' ' '

& Ampersand & & &

M AR KU P T I P

These character entities are
useful when you need to show an
example of HTML markup on a
web page.

Part II. HTML for Structure

Character Escapes

106

Invisible or ambiguous characters
Some characters have no graphic display and are difficult to see in the
markup (TABLE 5-3). These include the non-breaking space (), which
is used to ensure that a line doesn’t break between two words. So, for instance,
if I mark up my name like this:

Jennifer Robbins

I can be sure that my first and last names will always stay together on a line.
Another use for non-breaking spaces is to separate digits in a long number,
such as 32 000 000.

Zero-width space can be placed in languages that do not use spaces between
words to indicate where the line should break. A zero-width joiner is a
non-printing space that causes neighboring characters to display in their
connected forms (common in Arabic and Indic languages). Zero-width non-
joiners prevent neighboring characters from joining to form ligatures or other
connected forms.

TABLE 5-3.   Invisible characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

(non-printing) Non-breaking space

(non-printing) En space      

(non-printing) Em space      

(non-printing) Zero-width space (none) ​ ​

(non-printing) Zero-width non-joiner ‌ ‌ ‌

(non-printing) Zero-width joiner ‍ ‍ ‍

Input limitations
If your keyboard or editing software does not include the character you need
(or if you simply can’t find it), you can use a character entity to make sure you
get the character you want. The W3C doesn’t endorse this practice, so use the
proper character in your source if you are able. TABLE 5-4 lists some special
characters that may be less straightforward to type into the source.

5. Marking Up Text

Character Escapes

107

TABLE 5-4.   Special characters and their character references

Character Description Entity name Decimal no. Hexadecimal no.

‘ Left curly single quote ‘ ‘ ‘

’ Right curly single quote ’ ’ ’

“ Left curly double quote “ “ “

” Right curly double quote ” ” ”

... Horizontal ellipsis … … …

© Copyright © © ©

® Registered trademark ® ® ®

™ Trademark ™ ™ …

£ Pound £ £ £

¥ Yen ¥ ¥ ¥

€ Euro € € €

– En dash – – –

— Em dash — — —

A complete list of HTML named entities and their Unicode code-points can
be found as part of the HTML5 specification at www.w3.org/TR/html5/syntax.
html#named-character-references. For a more user-friendly listing of named
and numerical entities, I recommend this archived page at the Web Standards
Project: www.webstandards.org/learn/reference/charts/entities.

PUTTING IT ALL TOGETHER

So far, you’ve learned how to mark up elements, and you’ve met all of the
HTML elements for adding structure and meaning to text content. Now
it’s just a matter of practice. EXERCISE 5-3 gives you an opportunity to try
out everything we’ve covered so far: document structure elements, grouping
(block) elements, phrasing (inline) elements, sectioning elements, and char-
acter entities. Have fun!

Part II. HTML for Structure

Putting It All Together

108

EXERCISE 5-3. The Black Goose Bistro News page

Now that you’ve been introduced to all of the text elements, you can put them to work
by marking up the News page for the Black Goose Bistro site. Get the starter text and
finished markup files at learningwebdesign.com/5e/materials. Once you have the text,
follow the instructions listed after it. The resulting page is shown in FIGURE 5-18.

The Black Goose Bistro News

Home
Menu
News
Contact

Summer Menu Items
posted by BGB, June 18, 2017
Our chef has been busy putting together the perfect menu for the summer
months. Stop by to try these appetizers and main courses while the days
are still long.

Appetizers
Black bean purses
Spicy black bean and a blend of Mexican cheeses wrapped in sheets of
phyllo and baked until golden. $3.95

Southwestern napoleons with lump crab -- new item!
Layers of light lump crab meat, bean and corn salsa, and our handmade
flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic, and fish sauce then
grilled to perfection. Served with spicy peanut sauce and jasmine rice.
$12.95

Jerk rotisserie chicken with fried plantains -- new item!
Tender chicken slow-roasted on the rotisserie, flavored with spicy and
fragrant jerk sauce and served with fried plantains and fresh mango.
$12.95

Low and Slow
posted by BGB, November 15, 2016
<p>This week I am extremely excited about a new cooking
technique called <dfn><i>sous vide</i></dfn>. In <i>sous vide</i>
cooking, you submerge the food (usually vacuum-sealed in plastic) into a
water bath that is precisely set to the target temperature you want the
food to be cooked to. In his book, <cite>Cooking for Geeks</cite>, Jeff
Potter describes it as <q>ultra-low-temperature poaching.</q></p>

<p>Next month, we will be serving <i>Sous Vide</i> Salmon with Dill
Hollandaise. To reserve a seat at the chef table, contact us before
<time datetime="20161130">November 30</time>.</p>

Location: Baker’s Corner, Seekonk, MA
Hours: Tuesday to Saturday, 11am to 11pm

All content copyright 2017, Black Goose Bistro and Jennifer Robbins

M AR KU P T I P

Remember that indenting each
hierarchical level in your HTML
source consistently makes the
document easier to scan and
update later.

→

NOTE

The “Low and Slow” paragraph is
already marked up with the inline
elements from EXERCISE 5-2).

5. Marking Up Text

Putting It All Together

109

M AR KU P T I PS

•	 Choose the element that best fits the meaning of the
selected text.

•	 Don’t forget to close elements with closing tags.

•	 Put all attribute values in quotation marks for clarity.

•	 “Copy and paste” is your friend when adding the same
markup to multiple elements. Just be sure what you
copied is correct before you paste it throughout the
document.

FIGURE 5-18.   The finished menu page.

1.	 Start by adding the DOCTYPE declaration to tell browsers this is
an HTML5 document.

2.	 Add all the document structure elements first (html, head,
meta, title, and body). Give the document the title “The Black
Goose Bistro News.”

3.	 The first thing we’ll do is identify the top-level heading and
the list of links as the header for the document by wrapping
them in a header element (don’t forget the closing tag). Within
the header, the headline should be an h1 and the list of links
should be an unordered list (ul). Don’t worry about making the
list items links; we’ll get to linking in the next chapter. Give the
list more meaning by identifying it as the primary navigation for
the site (nav).

4.	 The News page has two posts titled “Summer Menu Items” and
“Low and Slow.” Mark up each one as an article.

5.	 Now we’ll get the first article into shape. Let’s create a header
for this article that contains the heading (h2 this time because
we’ve moved down in the document hierarchy) and the
publication information (p). Identify the publication date for the
article with the time element, just as in EXERCISE 5-2.

6.	 The content after the header is a simple paragraph. However,
the menu has some interesting things going on. It is divided
into two conceptual sections (Appetizers and Main Courses),
so mark those up as section elements. Be careful that the final
closing section tag (</section>) appears before the closing
article tag (</article>) so the elements are nested correctly

and don’t overlap. Finally, let’s identify the sections with id
attributes. Name the first one “appetizers” and the second
“maincourses.”

7.	 With our sections in place, now we can mark up the content.
We’re down to h3 for the headings in each section. Choose
the most appropriate list elements to describe the menu item
names and their descriptions. Mark up the lists and each item
within the lists.

8.	 Now we can add a few fine details. Classify each price as “price”
using span elements.

9.	 Two of the dishes are new items. Change the double hyphens
to an em dash character and mark up “new item!” as “strongly
important.” Classify the title of each new dish as “newitem” (use
the existing dt element; there is no need to add a span this
time). This allows us to target menu titles with the “newitem”
class and style them differently than other menu items.

10.	That takes care of the first article. The second article is
already mostly marked up from the previous exercise, but you
should mark up the header with the appropriate heading and
publication date information.

11.	So far, so good, right? Now make the remaining content that
applies to the whole page a footer. Mark each line of content
within the footer as a paragraph.

12.	Let’s give the location and hours information some context
by putting them in a div named “about.” Make the labels
“Location” and “Hours” appear on a line by themselves by
adding line breaks after them. Mark up the hours with the time
element (you don’t need the date or time zone portions).

13.	Finally, copyright information is typically “small print” on a
document, so mark it up accordingly. As the final touch, add a
copyright symbol after the word “copyright” using the keyboard
or the © character entity.

Save the as bistro_news.html, and check your page in a modern
browser. You can also upload it to validator.nu and make sure it is
valid (it’s a great way to spot mistakes). How did you do?

EXERCISE 5-3. Continued

Part II. HTML for Structure

Putting It All Together

110

http://validator.nu

TEST YOURSELF

Were you paying attention? Here is a rapid-fire set of questions to find out.
Find the answers in Appendix A.

1.	 Add the markup to insert a thematic break between these paragraphs:

	 <p>People who know me know that I love to cook.</p>

	 <p>I've created this site to share some of my favorite recipes.</p>

2.	 What’s the difference between a blockquote and a q element?

3.	 Which element displays whitespace exactly as it is typed into the source
document?

4.	 What is the difference between a ul and an ol element?

5.	 How do you remove the bullets from an unordered list? (Be general, not
specific.)

6.	 What element would you use to mark up “W3C” and provide its full
name (World Wide Web Consortium)? Can you write out the complete
markup?

7.	 What is the difference between dl and dt?

8.	 What is the difference between id and class?

9.	 What is the difference between an article and a section?

Want More Practice?
Try marking up your own résumé.
Start with the raw text and add
document structure elements,
content grouping elements, and
inline elements as we’ve done in
EXERCISE 5-3. If you don’t see
an element that matches your
information just right, try creating
one using a div or a span.

5. Marking Up Text

Test Yourself

111

ELEMENT REVIEW: TEXT ELEMENTS

The global attributes apply to all text elements. Additional attributes are listed under their respective elements.

Page sections

address Author contact information

article Self-contained content

aside Tangential content (sidebar)

footer Related content
header Introductory content
nav Primary navigation

section Conceptually related group of content

Heading content

h1...h6 Headings, levels 1 through 6

Grouping content elements and attributes

blockquote Blockquote

cite The URL of the cited content

div Generic division

figure Related image or resource

figcaption Text description of a figure

hr Paragraph-level thematic break
(horizontal rule)

main Primary content area of page or app

p Paragraph

pre Preformatted text

List elements and attributes

dd Definition

dl Definition list

dt Term

li List item (for ul and ol)

value Provides a number for an li in an ol

ol Ordered list

reversed Numbers the list in reverse order

start Provides the starting number for the
list

ul Unordered list

Breaks

br Line break

wbr Word break

Phrasing elements and attributes
abbr Abbreviation

b Added visual attention (bold)

bdi Bidirectional isolation
bdo Bidirectional override
cite Citation
code Code sample
data Machine-readable equivalent

del Deleted text

cite The URL of cited content.

datetime Specifies the date and time of a change
dfn Defining term
em Stress emphasis
i Alternate voice (italic)

ins Inserted text

cite The URL of cited content

datetime Specifies the date and time of a change
kbd Keyboard input

mark Highlighted text
q Short inline quotation

cite The URL of the cited content

ruby Section containing ruby text

rp Parentheses in ruby text

rt Ruby annotation
s Strike-through; incorrect text
samp Sample output
small Annotation; “small print”
span Generic phrase of text
strong Strong importance
sub Subscript
sup Superscript

time Machine-readable time data

datetime Provides machine readable date/time

pubdate Indicates the time refers to publication
u Added attention (underline)

Part II. HTML for Structure

Element Review: Text Elements

112

IN THIS CHAPTER

Linking to external pages

Linking to documents on
your own server

Linking to a specific point
in a page

Targeting new windows

If you’re creating a page for the web, chances are you’ll want to link to other
web pages and resources, whether on your own site or someone else’s. Linking,
after all, is what the web is all about. In this chapter, we’ll look at the markup
that makes links work—links to other sites, to your own site, and within a
page. There is one element that makes linking possible: the anchor (a).

<a>…
Anchor element (hypertext link)

To make a selection of text a link, simply wrap it in opening and closing
<a>... tags and use the href attribute to provide the URL of the target
page. The content of the anchor element becomes the hypertext link. Here is
an example that creates a link to the O’Reilly Media site:

Go to the O'Reilly Media site

To make an image a link, simply put the img element in the anchor element:

<img src="tarsierlogo.gif"
alt="O'Reilly Media site">

By the way, you can put any HTML content element in an anchor to make it
a link, not just images.

Nearly all graphical browsers display linked text as blue and underlined by
default. Some older browsers put a blue border around linked images, but
most current ones do not. Visited links generally display in purple. Users
can change these colors in their browser preferences, and, of course, you can
change the appearance of links for your sites using style sheets. I’ll show you
how in Chapter 13, Colors and Backgrounds.

When a user clicks or taps the linked text or image, the page you specify in
the anchor element loads in the browser window. The linked image markup
sample shown previously might look like FIGURE 6-1.

ADDING LINKS 6
CHAPTER

USA B I L I T Y T I P

One word of caution: if you choose to
change your link colors, keep them
consistent throughout your site so as
not to confuse your users.

113

THE HREF ATTRIBUTE

You’ll need to tell the browser which document to link to, right? The href
(hypertext reference) attribute provides the address of the page or resource
(its URL) to the browser. The URL must always appear in quotation marks.
Most of the time you’ll point to other HTML documents; however, you can
also point to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the
real trick to linking comes in getting the URL correct. There are two ways to
specify the URL:

Absolute URLs

Absolute URLs provide the full URL for the document, including the
protocol (http:// or https://), the domain name, and the pathname as
necessary. You need to use an absolute URL when pointing to a document
out on the web (i.e., not on your own server):

href="http://www.oreilly.com/"

Sometimes, when the page you’re linking to has a long URL pathname, the
link can end up looking pretty confusing (FIGURE 6-2). Just keep in mind
that the structure is still a simple container element with one attribute.
Don’t let the long pathname intimidate you.

Relative URLs

Relative URLs describe the pathname to a file relative to the current
document. Relative URLs can be used when you are linking to another
document on your own site (i.e., on the same server). It doesn’t require the
protocol or domain name—just the pathname:

href="recipes/index.html"

In this chapter, we’ll add links using absolute and relative URLs to my cook-
ing website, Jen’s Kitchen (see FIGURE 6-3). Absolute URLs are easy, so let’s
get them out of the way first.

AT A G L A N C E

Anchor Structure
The simplified structure of the anchor
element is as follows:

linked content

M AR KU P T I P

URL Wrangling
If you’re linking to a page with a long
URL, it’s helpful to copy the URL from
the location toolbar in your browser
and paste it into your document. That
way, you avoid mistyping a single
character and breaking the whole
link.

FIGURE 6-1.   When a user clicks or taps the linked text or image, the page specified in
the anchor element loads in the browser window.

Part II. HTML for Structure

The href Attribute

114

LINKING TO PAGES ON THE WEB

Many times, you’ll want to create a link to a page that you’ve found on the
web. This is known as an external link because it is going to a page outside of
your own server or site. To make an external link, provide the absolute URL,
beginning with http:// (the protocol). This tells the browser, “Go out on the
web and get the following document.”

I want to add some external links to the Jen’s Kitchen home page (FIGURE 6-3).
First, I’ll link the list item “The Food Network” to the www.foodnetwork.com
site. I marked up the link text in an anchor element by adding opening and
closing anchor tags. Notice that I’ve added the anchor tags inside the list item
(li) element. That’s because only li elements are permitted to be children of
a ul element; placing an a element directly inside the ul element would be
invalid HTML.

<a>The Food Network

Next, I add the href attribute with the complete URL for the site:

The Food Network

And voilà! Now “The Food Network” appears as a link and takes my visitors
to that site when they click or tap it. Give it a try in EXERCISE 6-1.

Linked textURL

Opening anchor tag

Closing anchor tag

<a href="https://www.amazon.com/Bequet-Gourmet-Caramel-24oz
-Celtic/dp/B00GZEU10Y/ref=sr_1_1_a_it?ie=UTF8&qid=1467055107&s
r=8-1&keywords=bequet">Bequet Caramels

FIGURE 6-2.   An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

TR Y I T

Working Along with
Jen’s Kitchen

FIGURE 6-3.  The Jen’s Kitchen
page.

All the files for the Jen’s Kitchen
website are available online at
learningwebdesign.com/5e/
materials. Download the entire
directory, making sure not to change
the way its contents are organized.
The pages aren’t much to look at, but
they will give you a chance to develop
your linking skills.

The resulting markup for all of the
exercises is also provided.

EXERCISE 6-1.  Make an external link

Open the file index.html from the jenskitchen folder. Make the list item “Epicurious” link to
its web page at www.epicurious.com, following my Food Network link example:

 The Food Network
 Epicurious

When you are done, save index.html and open it in a browser. If you have an internet
connection, you can click your new link and go to the Epicurious site. If the link doesn’t
take you there, go back and make sure that you didn’t miss anything in the markup.

6. Adding Links

Linking to Pages on the Web

115

LINKING WITHIN YOUR OWN SITE

A large portion of the linking you do is between pages of your own site: from
the home page to section pages, from section pages to content pages, and so
on. In these cases, you can use a relative URL—one that calls for a page on
your own server.

Without “http://”, the browser looks on the current server for the linked docu-
ment. A pathname, the notation used to point to a particular file or directory,
(see Note) tells the browser where to find the file. Web pathnames follow the
Unix convention of separating directory and filenames with forward slashes
(/). A relative pathname describes how to get to the linked document starting
from the location of the current document.

Relative pathnames can get a bit tricky. In my teaching experience, nothing
stumps beginners like writing relative pathnames, so we’ll take it one step
at a time. I recommend you do EXERCISES 6-2 through 6-8 as we go along.

All of the pathname examples in this section are based on the structure of
the Jen’s Kitchen site shown in FIGURE 6-4. When you diagram the structure
of the directories for a site, it generally ends up looking like an inverted tree
with the root directory at the top of the hierarchy. For the Jen’s Kitchen site,
the root directory is named jenskitchen. For another way to look at it, there
is also a view of the directory and subdirectories as they appear in the Finder
on my Mac.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

/
(jenskitchen)

FIGURE 6-4.   A diagram of the jenskitchen site structure.

NOTE

On PCs and Macs, files are organized into
“folders,” but in the web development
world, it is more common to refer to
the equivalent and more technical term
“directory.” A folder is just a directory with
a cute icon.

Important Pathname
Don’ts
When writing relative pathnames,
follow these rules to avoid common
errors:

•	 Don’t use backslashes (\). Web URL
pathnames use forward slashes (/)
only.	

•	 Don’t start with the drive name
(D:, C:, etc.). Although your pages
will link to each other successfully
while they are on your own
computer, once they are uploaded
to the web server, the drive name
is irrelevant and will break your
links.

•	 Don’t start with file://. This also
indicates that the file is local and
causes the link to break when it is
on the server.

Part II. HTML for Structure

Linking Within Your Own Site

116

Linking Within a Directory

The most straightforward relative URL points to another file within the same
directory. When linking to a file in the same directory, you need to provide
only the name of the file (its filename). When the URL is just a filename, the
server looks in the current directory (that is, the directory that contains the
document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to
a general information page (about.html). Both files are in the same directory
(jenskitchen). So, from my home page, I can make a link to the information
page by simply providing its filename in the URL (FIGURE 6-5):

About the site...

EXERCISE 6-2 gives you a chance to mark up a simple link yourself.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

The documents index.html
and about.html are in the
same directory.

From index.html:
About this page...

The server looks in the same directory for the file.

/
(jenskitchen)

FIGURE 6-5.   Writing a relative URL to another document in the same directory.

A link to a filename
indicates the linked file is
in the same directory as
the current document.

EXERCISE 6-2. Link in the same directory

Open the file about.html from the jenskitchen folder. Make the paragraph “Back to the
home page” at the bottom of the page link back to index.html. The anchor element should
be contained in the p element:

<p>Back to the home page</p>

When you are done, save about.html and open it in a browser. You don’t need an internet
connection to test links locally (that is, on your own computer). Clicking the link should
take you back to the home page.

6. Adding Links

Linking Within Your Own Site

117

EXERCISE 6-3. Link to a file in a directory

Open the file index.html from the jenskitchen folder. Make the list item “Tapenade (Olive
Spread)” link to the file tapenade.html in the recipes directory. Remember to nest the
elements correctly:

Tapenade (Olive Spread)

When you are done, save index.html and open it in a browser. You should be able to click
your new link and see the recipe page for tapenade. If not, make sure that your markup is
correct and that the directory structure for jenskitchen matches the examples.

Linking to a Lower Directory

But what if the files aren’t in the same directory? You have to give the browser
directions by including the pathname in the URL. Let’s see how this works.

Getting back to our example, my recipe files are stored in a subdirectory
called recipes. I want to make a link from index.html to a file in the recipes
directory called salmon.html. The pathname in the URL tells the browser to
look in the current directory for a directory called recipes, and then look for
the file salmon.html (FIGURE 6-6):

Garlic Salmon

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

salmon.html is one
directory lower than
index.html.

From index.html:
Garlic Salmon

The server looks in the same directory as the current
document for the recipes directory. There it finds salmon.html.

/
(jenskitchen)

FIGURE 6-6.   Writing a relative URL to a document that is one directory level lower
than the current document.

Have a try at linking to a file in a directory in EXERCISE 6-3.

Part II. HTML for Structure

Linking Within Your Own Site

118

Now let’s link down to the file called couscous.html, which is located in the
pasta subdirectory. All we need to do is provide the directions through two
subdirectories (recipes, then pasta) to couscous.html (FIGURE 6-7):

Couscous...

Directories are separated by forward slashes. The resulting anchor tag tells the
browser, “Look in the current directory for a directory called recipes. There
you’ll find a directory called pasta, and in there is the file couscous.html.”

Now that we’ve done two directory levels, you should get the idea of how
pathnames are assembled. This same method applies for relative pathnames
that drill down through any number of directories. Just start with the name
of the directory that is in the same location as the current file, and follow each
directory name with a slash until you get to the linked filename.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

couscous.html is two directories
lower than index.html.

From index.html:
Couscous

The server looks in the same directory as the current
document for the recipes directory, then looks for the
pasta directory.

/
(jenskitchen)

FIGURE 6-7.   Writing a relative URL to a document that is two directory levels lower
than the current document. You can try it yourself in EXERCISE 6-4.

When you link to a file
in a lower directory,
the pathname contains
the names of each
subdirectory you go
through to get to the file.

EXERCISE 6-4. Link two directories down

Open the file index.html from the jenskitchen folder. Make the list item “Linguine with Clam
Sauce” link to the file linguine.html in the pasta directory:

Linguine with Clam Sauce

When you are done, save index.html and open it in a browser. Click the new link to get the
delicious recipe.

6. Adding Links

Linking Within Your Own Site

119

Linking to a Higher Directory
So far, so good, right? Now it gets more interesting. This time we’re going to
go in the other direction and make a link from the salmon recipe page back
to the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-
slash” (../). When you begin a pathname with ../, it’s the same as telling the
browser “back up one directory level” and then follow the path to the speci-
fied file. If you are familiar with browsing files on your desktop, it is helpful to
know that a “../” has the same effect as clicking the Up button in Windows
Explorer or the left-arrow button in the Finder on macOS.

Let’s start by making a link from salmon.html back to the home page (index.
html). Because salmon.html is in the recipes subdirectory, we need to go back
up to the jenskitchen directory to find index.html. This pathname tells the
browser to “back up one level,” then look in that directory for index.html
(FIGURE 6-8):

<p>[Back to home page]</p>

Note that the ../ stands in for the name of the higher directory, and we don’t
need to write out jenskitchen in the pathname.

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

index.html is one directory
higher than salmon.html.

From salmon.html:
[Back to the home page]

The ../ tells the server to back up one level (to the jenskitchen
directory) to look for the document index.html.

jenskitchen

recipes

pasta

../

/
(jenskitchen)

FIGURE 6-8.   Writing a relative URL to a document that is one directory level higher
than the current document.

Try adding a dot-dot-slash pathname to a higher directory in EXERCISE 6-5.

But how about linking back to the home page from couscous.html? Can you
guess how you’d back your way out of two directory levels? Simple: just use
the dot-dot-slash twice (FIGURE 6-9).

Each ../ at the beginning
of the pathname tells
the browser to go up one
directory level to look for
the file.

Part II. HTML for Structure

Linking Within Your Own Site

120

EXERCISE 6-6. Link up two directory levels

OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link back to the home page by using ../../ as I have done:

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link to the
home page.

A link on the couscous.html page back to the home page (index.html) would
look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the
top-level directory (jenskitchen), where index.html can be found. Again, there
is no need to write out the directory names; the ../ does it all.

Now you try (EXERCISE 6-6).

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

salmon.html

about.html

recipes/

pasta/

index.html is two directories
higher than couscous.html.

From couscous.html:
[Back to the home page]

The ../../ tells the server to back up two levels (to recipes
then jenskitchen) to look for the document index.html.

jenskitchen

recipes

pasta

../

../

/
(jenskitchen)

FIGURE 6-9.   Writing a relative URL to a document that is two directory levels higher
than the current document.

NOTE

I confess to still sometimes silently chant-
ing “go-up-a-level, go-up-a-level” for
each ../ when trying to decipher a com-
plicated relative URL. It helps me sort
things out.

EXERCISE 6-5. Link to a higher directory

Open the file tapenade.html from the recipes directory. At the bottom of the page, you’ll
find this paragraph:

<p>[Back to the home page]</p>

Using the notation described in this section, make this text link back to the home page
(index.html), located one directory level up.

6. Adding Links

Linking Within Your Own Site

121

Linking with Site Root Relative Pathnames
All sites have a root directory, the directory that contains all the directories
and files for the site. So far, all of the pathnames we’ve looked at are relative
to the document with the link. Another way to write a relative pathname is to
start at the root directory and list the subdirectory names to the file you want
to link to. This type of pathname is known as site root relative.

In the Unix pathname convention, a forward slash (/) at the start of the
pathname indicates that the path begins at the root directory. The site root
relative pathname in the following link reads, “Go to the very top-level direc-
tory for this site, open the recipes directory, and then find the salmon.html
file” (FIGURE 6-10):

Garlic Salmon

/
(jenskitchen)

images/

index.html

jenskitchen.gif spoon.gif

couscous.html linguine.html

tapenade.htmlsalmon.html

about.html

recipes/

pasta/

In pathnames, the root directory
is always identified by a slash (/),
not its directory name.

From any document on the site:
Garlic Salmon

The / at the beginning of the pathname tells the browser
to start at the root directory (jenskitchen).

FIGURE 6-10.   Writing a relative URL starting at the root directory.

Note that you don’t need to (and you shouldn’t) write the name of the root
directory (jenskitchen) in the path—the forward slash (/) at the beginning
represents the top-level directory in the pathname. From there, just specify
the directories the browser should look in.

Because this type of link starts at the root to describe the pathname, it works
from any document on the server, regardless of which subdirectory it may be
located in. Site root relative links are useful for content that might not always
be in the same directory, or for dynamically generated material. They also
make it easy to copy and paste links between documents.

On the downside, however, the links won’t work on your local machine,
because they will be relative to your hard drive. You’ll have to wait until the
site is on the final server to check that links are working.

Site root relative links
are generally preferred
because of their flexibility.

WARNIN G

Site root relative pathnames won’t work
on your local computer unless it is set up
as a server.

Part II. HTML for Structure

Linking Within Your Own Site

122

Writing Pathnames to Images
The src attribute in the img element works the same as the href attribute in
anchors. Because you’ll most likely be using images from your own server, the
src attributes within your image elements will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an image
to the index.html page, you’d use the following markup:

The URL says, “Look in the current directory (jenskitchen) for the images
directory; in there you will find jenskitchen.gif.”

Now for the pièce de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname
tells the browser to go up two directory levels to the top-level directory and,
once there, look in the images directory for an image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route, in
which case the pathname to spoon.gif (and any other file in the images direc-
tory) could be accessed like this:

The trade-off is that you won’t see the image in place until the site is uploaded
to the server, but it does make maintenance easier once it’s there.

EXERCISE 6-7. Try a few more

Before we move on, you may want to try your hand at writing a few more relative URLs
to make sure you’ve really gotten it. You can write your answers here in the book, or if
you want to test your markup to see whether it works, make changes in the actual files.
Note that the text shown here isn’t included on the exercise pages—you’ll need to add it
before you can create the link (for example, type in “Go to the Tapenade recipe” for the
first question). The final code is in the finished exercise files in the materials folder for this
chapter. I also included them in Appendix A.

1.	 Create a link on salmon.html to tapenade.html:

Go to the Tapenade recipe

2.	 Create a link on couscous.html to salmon.html:

Try this with Garlic Salmon.

3.	 Create a link on tapenade.html to linguine.html:

Try the Linguine with Clam Sauce

4.	 Create a link on linguine.html to about.html:

About Jen's Kitchen

5.	 Create a link on tapenade.html to www.allrecipes.com:

Go to Allrecipes.com

NOTE

Most of the pathnames in EXERCISE

6-7 could be site root relative, but write
them relative to the listed document for
the practice.

6. Adding Links

Linking Within Your Own Site

123

Linking to a Specific Point in a Page
Did you know you can link to a specific point in a web page? This is useful
for providing shortcuts to information at the bottom of a long, scrolling page
or for getting back to the top of a page with just one click or tap. Linking to a
specific point in the page is also known as linking to a document fragment.

Linking to a particular spot within a page is a two-part process. First, identify
the destination, and then make a link to it. In the following example, I create
an alphabetical index at the top of the page that links down to each alpha-
betical section of a glossary page (FIGURE 6-11). When users click the letter H,
they’ll jump to the “H” heading lower on the page.

Step 1: Identifying the destination
I like to think of this step as planting a flag in the document so I can get back
to it easily. To create a destination, use the id attribute to give the target ele-
ment in the document a unique name (that’s “unique” as in the name may
appear only once in the document, not “unique” as in funky and interesting).
In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text, where
we used it to name generic div and span elements. Here, we’re going to use it
to name an element so that it can serve as a fragment identifier—that is, the
destination of a link.

Here is a sample of the source for the glossary page. Because I want users to
be able to link directly to the “H” heading, I’ll add the id attribute to it and
give it the value “startH” (FIGURE 6-11 1):

<h2 id="startH">H</h2>

Step 2: Linking to the destination
With the identifier in place, now I can make a link to it.

At the top of the page, I’ll create a link down to the “startH” fragment 2. As for
any link, I use the a element with the href attribute to provide the location of
the link. To indicate that I’m linking to a fragment, I use the octothorpe symbol
(#), also called a hash, pound, or number symbol, before the fragment name:

<p>... F | G | H | I | J ...</p>

And that’s it. Now when someone clicks the H from the listing at the top of
the page, the browser will jump down and display the section starting with
the “H” heading 3.

NOTE

Linking to another spot on the same
page works well for long, scrolling pages,
but the effect may be lost on a short web
page.

Fragment names
are preceded by an
octothorpe symbol (#).

Part II. HTML for Structure

Linking Within Your Own Site

124

Linking to a Fragment in Another Document
You can link to a fragment in another document by adding the fragment
name to the end of the URL (absolute or relative). For example, to make a
link to the “H” heading of the glossary page from another document in that
directory, the URL would look like this:

See the Glossary, letter H

You can even link to specific destinations in pages on other sites by putting
the fragment identifier at the end of an absolute URL, like so:

See the Glossary,
letter H

USA B I L I T Y T I P

To the Top!
It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need for users to scroll
back after every link.

Identify the destination by using the id attribute.

<h2 id="startH">H</h2>
<dl>
<dt>hexadecimal</dt>
...

Create a link to the destination. The # before the name is necessary to
identify this as a fragment and not a filename.

<p>... | F | G | H | I | J ...</p>

1

2

3

FIGURE 6-11.   Linking to a specific destination (a fragment) within a single web page.

NOTE

Some developers help their brothers and
sisters out by proactively adding ids as
anchors at the beginning of any thematic
section of content (within a reasonable
level, and depending on the site). That
way, other people can link back to any
section in their content.

6. Adding Links

Linking Within Your Own Site

125

Of course, you don’t have any control over the named fragments in other
people’s web pages. The destination points must be inserted by the author of
those documents in order for them to be available to you. The only way to
know whether they are there and where they are is to “View Source” for the
page and look for them in the markup. If the fragments in external documents
move or go away, the page will still load; the browser will just go to the top of
the page as it does for regular links.

EXERCISE 6-8 gives you an opportunity to add links to fragments in the
example glossary page.

TARGETING A NEW BROWSER WINDOW

One problem with putting links on your page is that when people click them,
they may never come back to your content. The traditional solution to this
dilemma has been to make the linked page open in a new browser window.
That way, your visitors can check out the link and still have your content
available where they left it.

Be aware that opening new browser windows can cause hiccups in the user
experience of your site. Opening new windows is problematic for accessibil-
ity, and may be confusing to some users. They might not be able to tell that a
new window has opened or they may never find their way back to the origi-
nal page. At the very least, new windows may be perceived as an annoyance
rather than a convenience. So consider carefully whether you need a new
window and whether the benefits outweigh the potential drawbacks.

The method you use to open a link in a new browser window depends on
whether you want to control its size. If the size of the window doesn’t matter,
you can use HTML markup alone. However, if you want to open the new
window with particular pixel dimensions, then you need to use JavaScript
(see the “Pop-up Windows” sidebar).

Pop-up Windows
It is possible to open a browser window to specific dimensions and with parts of the
browser chrome (toolbars, scrollbars, etc.) turned on or off, but you know what…I’m
not going to go into that here. First of all, it requires JavaScript. Second, in the era
of mobile devices, opening a new browser window at a particular pixel size is an
antiquated technique. People often turn off pop-up windows anyway.

For what it’s worth, the little interstitial panels you see popping up on every web page
asking you to sign up for a mailing list or showing you an ad are done with HTML
elements and JavaScript, not a whole new browser window, so that is an entirely
different beast.

That said, if you have a legitimate reason for opening a browser window to a
specific size, I will refer you to this tutorial by Peter-Paul Koch at Quirksmode:
www.quirksmode.org/js/popup.html.

EXERCISE 6-8.
Linking to a fragment

Want some practice linking to specific
destinations? Open glossary.html in
the materials folder for this chapter.
It looks just like the document in
FIGURE 6-11.

1.	 Identify the h2 “A” as a destination for
a link by naming it “startA” with an id
attribute:

<h2 id="startA">A</h2>

2.	 Make the letter A at the top of the
page a link to the identified fragment.
Don’t forget the #:

A

Repeat Steps 1 and 2 for every letter
across the top of the page until you
really know what you’re doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

3.	 Make the heading “Glossary” a
destination named “top”:

<h1 id="top">Glossary</h1>

4.	 Add a paragraph element containing
“TOP” at the end of each lettered
section. Make “TOP” a link to the
identifier that you just made at the
top of the page:

<p>TOP</p>

Copy and paste this code to the end of
every letter section. Now your readers
can get back to the top of the page
easily throughout the document.

Part II. HTML for Structure

Targeting a New Browser Window

126

To open a new window with markup, use the target attribute in the anchor
(a) element to tell the browser the name of the window in which you want
the linked document to open. Set the value of target to _blank or to any name
of your choosing. Remember that with this method, you have no control
over the size of the window, but it will generally open as a new tab or in a
new window the same size as the most recently opened window in the user’s
browser. The new window may or may not be brought to the front depending
on the browser and device used.

Setting target="_blank" always causes the browser to open a fresh window.
For example:

O'Reilly

If you include target="_blank" for every link, every link will launch a new
window, potentially leaving your user with a mess of open windows. There’s
nothing wrong with it, per se, as long as it is not overused.

Another method is to give the target window a specific name, which can then
be used by subsequent links. You can give the window any name you like
(“new,” “sample,” whatever), as long as it doesn’t start with an underscore. The
following link will open a new window called “display”:

O'Reilly

If you target the “display” window from every link on the page, each linked
document will open in the same second window. Unfortunately, if that sec-
ond window stays hidden behind the user’s current window, it may look as
though the link simply didn’t work.

You can decide which method (a new window for every link or reusing
named windows) is most appropriate for your content and interface.

MAIL LINKS

Here’s a nifty little linking trick: the mailto link. By using the mailto protocol
in a link, you can link to an email address. When the user clicks a mailto
link, the browser opens a new mail message preaddressed to that address in
a designated mail program (see the “Spam-Bots” sidebar).

A sample mailto link is shown here:

Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But the
value is set to mailto:name@address.com.

The browser has to be configured to launch a mail program, so the effect
won’t work for 100% of your audience. If you use the email address itself as
the linked text, nobody will be left out if the mailto function does not work
(a nice little example of progressive enhancement).

Spam-Bots
Be aware that putting an email
address in your document source
makes it susceptible to receiving
unsolicited junk email (known as
spam). People who generate spam
lists sometimes use automated
search programs (called bots) to
scour the web for email addresses.

If you want your email address to
display on the page so that humans
can figure it out but robots can’t,
you can deconstruct the address in
a way that is still understandable
to people—for example, “you [-at-]
example [dot] com.”

That trick won’t work in a mailto
link, because the accurate email
address must be provided as an
attribute value. One solution is to
encrypt the email address by using
JavaScript. The Enkoder Form at
Hivelogic (hivelogic.com/enkoder/)
does this for you. Simply enter the
link text and the email address, and
Enkoder generates code that you can
copy and paste into your document.

Otherwise, if you don’t want to risk
getting spammed, keep your email
address out of your HTML document.
Using a contact form is a good
alternative (web forms are coming up
in Chapter 9, Forms).

6. Adding Links

Mail Links

127

TELEPHONE LINKS

Keep in mind that the smartphones people are using to access your site can
also be used to make phone calls! Why not save your visitors a step by letting
them dial a phone number on your site simply by tapping on it on the page?
The syntax uses the tel: protocol and is very simple:

Call us free at (800) 555-1212

When mobile users tap the link, what happens depends on the device:
Android launches the phone app; BlackBerry and IE11 Mobile initiate the
call immediately; and iOS launches a dialog box giving the option to call,
message, or add the number to Contacts. Desktop browsers may launch a
dialog box to switch apps (for example, to FaceTime on Safari) or they may
ignore the link.

If you don’t want any interruption on desktop browsers, you could use a CSS
rule that hides the link for non-mobile devices (unfortunately, that is beyond
the scope of this discussion).

There are a few best practices for using telephone links:

•	 It is recommended that you include the full international dialing number,
including the country code, for the tel: value because there is no way of
knowing where the user will be accessing your site.

•	 Also include the telephone number in the content of the link so that if the
link doesn’t work, the telephone number is still available.

•	 Android and iPhone have a feature that detects phone numbers and
automatically turns them into links. Unfortunately, some 10-digit num-
bers that are not telephone numbers might get turned into links, too. If
your document has strings of numbers that might get confused as phone
numbers, you can turn auto-detection off by including the following meta
element in the head of your document. This will also prevent them from
overriding any styles you’ve applied to telephone links.

<meta name="format-detection" content="telephone=no">

TEST YOURSELF

The most important lesson in this chapter is how to write URLs for links and
images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in FIGURE 6-12, write out the markup
for the following links and graphics.

This diagram should provide you with enough information to answer the
questions. If you need hands-on work to figure them out, the directory struc-
ture is available in the test directory in the materials for this chapter. The

Part II. HTML for Structure

Telephone Links

128

documents are just dummy files and contain no content. I filled in the first
one for you as an example. The answers are located in Appendix A.

1.	 In index.html (the site’s home page), write the markup for a link to the
tutorial.html page.

 ...

2.	 In index.html, write the anchor element for a link to instructions.html.

3.	 Create a link to family.html from the page tutorial.html.

4.	 Create a link to boot.html from the family.html page, but this time, start
with the root directory.

5.	 Create a link back to the home page (index.html) from instructions.html.

images/

tutorial.html

arrow.gif bullet.gif

canada.html usa.html

instructions.html intro.html

index.html

examples/

people/ places/ things/

root directory (/)

examplesimages

places

acorn.html boot.html coatrack.html

things

friends.html family.html

people

/
(somesite)

FIGURE 6-12.   The directory structure for the “Test Yourself” questions.

M AR KU P T I P

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

6. Adding Links

Test Yourself

129

6.	 Create a link to the website for this book (learningwebdesign.com) in the
file intro.html.

7.	 Create a link to instructions.html from the page usa.html.

8.	 Create a link back to the home page (index.html) from acorn.html.

We haven’t covered the image (img) element in detail yet, but you should be
able to fill in the relative URLs after the src attribute to specify the location
of the image files for these examples.

9.	 To place the graphic arrow.gif on the page index.html, use this URL:

10.	 To place the graphic arrow.gif on the page intro.html, use this URL:

11.	 To place the graphic bullet.gif on the friends.html page, use this URL:

ELEMENT REVIEW: LINKS

There’s really only one element relevant to creating hypertext links.

Element and attributes Description

a Anchor (hypertext link) element

href="URL" Location of the target file

target="text string" Targets a browser window by name

Part II. HTML for Structure

Element Review: Links

130

http://www.learningwebdesign.com

IN THIS CHAPTER

Adding images with the
img element

Image accessibility

Adding SVG images

Responsive images

The web’s explosion into mass popularity was due in part to the fact that
there were images on the page. Before images, the internet was a text-only tundra.

Images appear on web pages in two ways: embedded in the inline content or
as background images. If the image is part of the editorial content, such as
product shots, gallery images, ads, illustrations, and so on, then it should be
placed in the flow of the HTML document. If the image is purely decorative,
such as a stunning image in the background of the header or a patterned
border around an element, then it should be added through Cascading Style
Sheets. Not only does it make sense to put images that affect presentation
in a style sheet, but it makes the document cleaner and more accessible and
makes the design much easier to update later. I will talk about CSS back-
ground images at length in Chapter 13, Colors and Backgrounds.

This chapter focuses on embedding image content into the flow of the docu-
ment, and it is divided into three parts. First, we’ll look at the tried-and-true
img element for adding basic images to a page the way we’ve been doing it
since 1992. It has worked just fine for over 25 years, and as a beginner, you’ll
find it meets most of your needs as well.

The second part of this chapter introduces some of the methods available
for embedding SVG images (Scalable Vector Graphics) in HTML documents.
SVGs are a special case and demand special attention.

Finally, we’ll look at the way image markup has had to adapt to the wide
variety of mobile devices with an introduction to new responsive image ele-
ments (picture and source) and attributes (srcset and sizes). As the number
of types of devices used to view the web began to skyrocket, we realized that
a single image may not meet the needs of all viewing environments, from
palm-sized screens on slow cellular networks to high-density cinema dis-
plays. We needed a way to make images “responsive”—that is, to serve images

ADDING IMAGES 7
CHAPTER

131

appropriate for their browsing environments. After a few years of back and
forth between the W3C and the development community, responsive image
features were added to the HTML 5.1 specification and are beginning to see
widespread browser support.

I want to point out up front that responsive image markup is not as straight-
forward as the examples we’ve seen so far in this book. It’s based on more
advanced web development concepts, and the syntax may be tricky for
someone just getting started writing HTML (heck, it’s a challenge for sea-
soned professionals!). I’ve included it in this chapter because it is relevant to
adding inline images, but frankly, I wouldn’t blame you if you’d like to skip
the “Responsive Image Markup” section and come back to it after we’ve done
more work with Responsive Web Design and you have more HTML and CSS
experience under your belt.

FIRST, A WORD ON IMAGE FORMATS

We’ll get to the img element and other markup examples in a moment, but
first it’s important to know that you can’t put just any image on a web page;
it needs to be in one of the web-supported formats.

In general, images that are made up of a grid of colored pixels (called bit-
mapped or raster images, as shown in FIGURE 7-1, top) must be saved in the
PNG, JPEG, or GIF file formats in order to be placed inline in the content.
Newer, more optimized WebP and JPEG-XR bitmapped image formats are
slowly gaining in popularity, particularly now that we have markup to make
them available to browsers that support them.

For vector images (FIGURE 7-1, bottom), such as the kind of icons and illus-
trations you create with drawing tools such as Adobe Illustrator, we have the
SVG format. There is so much to say about SVGs and their features that I’ve
given them their own chapter (Chapter 25, SVG), but we’ll look at how to add
them to HTML documents later in this chapter.

If you have a source image that is in another popular format, such as TIFF,
BMP, or EPS, you’ll need to convert it to a web format before you can add it
to the page. If, for some reason, you must keep your graphic file in its original
format (for example, a file for a CAD program), you can make it available as
an external image by making a link directly to the image file, like this:

Get the drawing

You should name your image files with the proper suffixes—.png, .jpg (or
.jpeg), .gif, .webp, and .jxr, respectively. In addition, your server must be con-
figured to recognize and serve these various image types properly. All web
server software today is configured to handle PNG, JPEG, and GIF out of the
box, but if you are using SVG or one of the newer formats, you may need to
deliberately add that media type to the server’s official list.

Part II. HTML for Structure

First, a Word on Image Formats

132

A little background information may be useful here. Image files, and indeed
any media files that may reside on a server, have an official media type (also
called a MIME type) and suffixes. For example, SVG has the MIME type
image/svg+xml and the suffixes .svg and .svgz.

Server packages have different ways of handling MIME information. The
popular Apache server software uses a file in the root directory called htaccess
that contains a list of all the file types and their acceptable suffixes. Be sure to
add (or ask your server administrator to add) the MIME types of new image
formats so they may be served correctly. The server looks up the suffix (.webp,
for example) of requested files in the list and matches it with the Content-
Type (image/webp) that it includes in its HTTP response to the browser. That
tells the browser what kind of data is coming and how to parse it.

Browsers use helper applications to display media they can’t handle alone.
The browser matches the suffix of the file in the link to the appropriate
helper application. The external image may open in a separate application
window or within the browser window if the helper application is a browser
plug-in. The browser may also ask the user to save the file or open an appli-
cation manually. It is also possible that it won’t be able to be opened at all.

Without further ado, let’s take a look at the img element and its required and
recommended attributes.

Bitmapped images
are made up of a grid
of colored pixels.

Vector images
contain paths that
are de�ned
mathematically.

FIGURE 7-1.   A comparison of circles saved in bitmapped and vector formats.

7. Adding Images

First, a Word on Image Formats

133

THE IMG ELEMENT

The img element tells the browser, “Place an image here.” You’ve already got-
ten a glimpse of it used to place banner graphics in the examples in Chapter
4, Creating a Simple Page. You can also place an image element right in the
flow of the text at the point where you want the image to appear, as in the
following example. Images stay in the flow of text, aligned with the baseline
of the text, and do not cause any line breaks (HTML5 calls this a phrasing
element), as shown in FIGURE 7-2:

<p>This summer, try making pizza
 on your grill.</p>

FIGURE 7-2.   By default, images are aligned with the baseline of the surrounding text
and do not cause a line break.

When the browser sees the img element, it makes a request to the server and
retrieves the image file before displaying it on the page. On a fast network
with a fast computer or device, even though a separate request is made for
each image file, the page usually appears to arrive instantaneously. On mobile
devices with slow network connections, we may be well aware of the wait
for images to be fetched one at a time. The same is true for users using dial-
up internet connections or other slow networks, like the expensive WiFi at
luxury hotels.

The src and alt attributes shown in the sample are required. The src
(source) attribute provides the location of the image file (its URL). The alt
attribute provides alternative text that displays if the image is not available.
We’ll talk about src and alt a little more in upcoming sections.

There are a few other things of note about the img element:

•	 It is an empty element, which means it doesn’t have any content. You just
place it in the flow of text where the image should go.

•	 It is an inline element, so it behaves like any other inline element in the
text flow. FIGURE 7-3 demonstrates the inline nature of image elements.
When the browser window is resized, a line of images reflows to fill the
new width.

Adds an inline image

The src and alt attributes
are required in the img
element.

Part II. HTML for Structure

The img Element

134

•	 The img element is what’s known as a replaced element because it is
replaced by an external file when the page is displayed. This makes it dif-
ferent from text elements that have their content right there in the source
(and thus are non-replaced).

•	 By default, the bottom edge of an image aligns with the baseline of text, as
shown in FIGURE 7-2. Using CSS, you can float the image to the right or
left margin and allow text to flow around it, crop it to a shape, control the
space and borders around the image, and change its vertical alignment.
We’ll talk about those styles in Part III.

Providing the Location with src
The value of the src attribute is the URL of the image file. In most cases, the
images you use on your pages will reside on your own server, so you will use
relative URLs to point to them.

If you just read Chapter 6, Adding Links, you should be pretty handy with
writing relative URLs. In short, if the image is in the same directory as the
HTML document, you can refer to the image by name in the src attribute:

Developers usually organize the images for a site into a directory called
images or img (in fact, it helps search engines when you do it that way). There
may even be separate image directories for each section of the site. If an image
is not in the same directory as the document, you need to provide the path-
name to the image file:

Of course, you could place images from other websites by using a full URL,
like this, but it is not recommended (see Warning):

src="URL"
Source (location) of the image

FIGURE 7-3.  Inline images are part of the normal document flow. They reflow when
the browser window is resized.

WARNING

Before you use any image on your web
page, be sure that you own the image,
that you have explicit written permis-
sion by the copyright holder, or that it
is in the public domain. Linking to an
image on another server (called hotlink-
ing) is considered seriously uncool, so
don’t do it unless there is a specific use
case in which you have permission. Even
then, be aware that you cannot control
the image and risk having it moved or
renamed, which would break your link.

7. Adding Images

The img Element

135

Providing Alternative Text with alt

alt="text"
Alternative text

Every img element must also contain an alt attribute that provides a text
alternative to the image for those who are not able to see it. Alternative text
(also called alt text) should serve as a substitute for the image content—con-
veying the same information and function. Alternative text is used by screen
readers, search engines, and graphical browsers when the image doesn’t load
(FIGURE 7-4).

In this example, a PDF icon indicates that the linked text downloads a file in
PDF format. In this case, the image is conveying valuable content that would
be missing if the image cannot be seen. Providing the alt text “PDF file” rep-
licates the purpose of the image:

High school application <img src="images/
pdflogo.png alt="PDF file">

A screen reader might indicate the image by reading its alt value this way:

“High school application. Image: PDF file”

Sometimes images function as links, in which case providing alternative text
is critical because the screen reader needs something to read for the link. In
the next example, an image of a book cover is used as a link to the book’s
website. Its alt text does not describe the cover itself, but rather performs the
same function as the cover image on the page (indicating a link to the site):

<img src="/images/LWD_cover.png"
alt="Learning Web Design site">

If an image does not add anything meaningful to the text content of the page,
it is recommended that you leave the value of the alt attribute empty (null).
In the following example, a decorative floral accent is not contributing to the
content of the page, so its alt value is null. (You may also consider whether it
is more appropriately handled as a background image in CSS, but I digress.)
Note that there is no character space between the quotation marks:

P E R FO R M A N C E T I P

Take Advantage of Caching
When a browser downloads an image, it stores the file in the disk cache (a space for
temporarily storing files on the hard disk). That way, if it needs to redisplay the page,
it can just pull up a local copy of the image without making a new server request.

If you use the same image repeatedly, be sure that the src attribute for each img
element points to the same URL on the server. The image downloads once, then gets
called from cache for subsequent uses. That means less traffic for the server and
faster display for the user.

<p>If you're
and you know it clap your hands.</p>

With image displayed

Chrome (Mac & Windows)

Safari (Mac)

Safari (iOS)

Firefox

MS Edge (Windows)

FIGURE 7-4.  Most browsers display
alternative text in place of the image
if the image is not available. Safari for
macOS is a notable exception. Firefox’s
substitution is the most seamless.

→

Part II. HTML for Structure

The img Element

136

For each inline image on your page, consider what the alternative text would
sound like when read aloud and whether that enhances the experience or
might be obtrusive to a user with assistive technology.

Alternative text may benefit users with graphical browsers as well. If the user
has opted to turn images off in the browser preferences or if the image sim-
ply fails to load, the browser may display the alternative text to give the user
an idea of what is missing. The handling of alternative text is inconsistent
among modern browsers, however, as shown in FIGURE 7-4.

Providing the Dimensions with width and height
The width and height attributes indicate the dimensions of the image in
number of pixels. Browsers use the specified dimensions to hold the right
amount of space in the layout while the images are loading rather than
reconstructing the page each time a new image arrives, resulting in faster
page display. If only one dimension is set, the image will scale proportionally.

These attributes have become less useful in the age of modern web develop-
ment. They should never be used to resize an image (use your image-editing
program or CSS for that), and they should be omitted entirely when you’re
using one of the responsive image techniques introduced later in this chapter.
They may be used with images that will appear at the same fixed size across
all devices, such as a logo or an icon, to give the browser a layout hint.

Be sure that the pixel dimensions you specify are the actual dimensions of
the image. If the pixel values differ from the actual dimensions of your image,
the browser resizes the image to match the specified values (FIGURE 7-5). If
you are using width and height attributes and your image looks distorted or
even slightly blurry, check to make sure that the values are in sync.

width="144" height="72"

width="72" height="72"
(actual size of image)

FIGURE 7-5.   Browsers resize images to match the provided width and height
values, but you should not resize images this way.

Now that you know the basics of the img element, you should be ready to add
a few photos to the Black Goose Bistro Gallery site in EXERCISE 7-1.

width="number"
Image width in pixels

height="number"
Image height in pixels

F U RT H E R R E A D I N G

Image Accessibility
Some types of images, such as data
charts and diagrams, require long
descriptions that aren’t practical
as alt values. These cases require
alternate accessibility strategies,
which you will find in these resources:

•	 “Accessible Images” at WebAIM
(webaim.org/techniques/
images/)

•	 “Alternative Text” at WebAIM
(webaim.org/techniques/alttext/)

•	 The Web Content Accessibility
Guidelines (WCAG 2.0) at the
W3C (www.w3.org/TR/WCAG20-
TECHS/) include techniques for
improving accessibility across all
web content. Warning: this one is
pretty dense.

ACC E SS I B I L I T Y T I P

Avoid using “image of” or “graphic
of” in alt text values. It will be clear
that it is an image. If the medium
of the image, for example painting,
photograph, or illustration, is relevant
to the content, then it is fine to
include the descriptive term.

7. Adding Images

The img Element

137

http://webaim.org/techniques/alttext/
http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/WCAG20-TECHS/

FIGURE 7-6.   Photo gallery pages.

EXERCISE 7-1. Adding and linking images

In this exercise, you’ll add images to pages and use them as links. All of the full-size
photos and thumbnails (small versions of the images) you need have been created for you,
and I’ve given you a head start on the HTML files with basic styles as well. The starter files
and the resulting code are available at learningwebdesign.com/5e/materials. Put a copy
of the gallery folder on your hard drive, making sure to keep it organized as you find it.

This little site is made up of a main page (index.html) and three separate HTML documents
containing each of the larger image views (FIGURE 7-6). First, we’ll add the thumbnails,
and then we’ll add the full-size versions to their respective pages. Finally, we’ll make the
thumbnails link to those pages. Let’s get started.

Open the file index.html, and add the small thumbnail images to this page to accompany
the text. I’ve done the first one for you:

<p><img src="thumbnails/bread-200.jpg" alt="close-up of sliced rustic
bread" width="200" height="200">
We start our day at the…

I’ve put the image at the beginning of the paragraph, just after the opening <p> tag.
Because all of the thumbnail images are located in the thumbnails directory, I provided
the pathname in the URL. I added a description of the image with the alt attribute, and
because I know these thumbnails will appear at exactly 200 pixels wide and high on all
devices, I’ve included the width and height attributes as well to tell the browser how
much space to leave in the layout. Now it’s your turn.

1.	 Add the thumbnail images burgers-200.jpg and fish-200.jpg at the beginning of the
paragraphs in their respective sections, following my example. Be sure to include the
pathnames and thoughtful alternative text descriptions. Finally, add a line break (
)
after the img element.

When you are done, save the file and open it in the browser to be sure that the images
are visible and appear at the right size.

2.	 Next, add the images to the individual HTML documents. I’ve done bread.html for you:

<h1>Gallery: Baked Goods</h1>
<p><img src="photos/bread-800.jpg" alt="close-up of sliced rustic
bread" width="800" height="600"></p>

Notice that the full-size images are in a directory called photos, so that needs to be
reflected in the pathnames. Notice also that because this page is not designed to
be responsive, and the images will be a fixed size across devices, I went ahead and
included the width and height attributes here as well.

Add images to burgers.html and fish.html, following my example. Hint: all of the images
are 800 pixels wide and 600 pixels high.

Save each file, and check your work by opening them in the browser window.

3.	 Back in index.html, link the thumbnails to their respective files. I’ve done the first one:

<p><img src="thumbnails/bread-200.jpg" alt="close-
up of sliced rustic bread" width="200" height="200">
We start
our day at the crack of dawn…

Notice that the URL is relative to the current document (index.html), not to the location
of the image (the thumbnails directory).

Make the remaining thumbnail images link to each of the documents. If all the images
are visible and you are able to link to each page and back to the home page again, then
congratulations, you’re done!

Like more practice?
If you’d like more practice, you’ll find
three additional images (chicken-800.
jpg, fries-800.jpg, and tabouleh-800.
jpg) with their thumbnail versions
(chicken-200.jpg, fries-200.jpg, and
tabouleh-200.jpg) in their appropriate
directories. This time, you’ll need to
add your own descriptions to the
home page and create the HTML
documents for the full-size images
from scratch.

Part II. HTML for Structure

The img Element

138

http://www.learningwebdesign.com/

That takes care of the basics of adding images to a page. Next we’ll take on
adding SVG images, which are a special case, both in terms of the underlying
format and the ways they can be added to HTML.

ADDING SVG IMAGES

No lesson on adding images to web pages would be complete without an
introduction to adding SVGs (Scalable Vector Graphics). After all, the popu-
larity of SVG images has been gaining momentum thanks to nearly ubiqui-
tous browser support and the need for images that can resize without loss of
quality. For illustration-style images, they are a responsive dream come true.
I’m saving my deep-dive into all things SVG for Chapter 25, but for now I’ll
give you a quick peek at what they’re made of so that the embedding markup
makes sense.

As I mentioned at the beginning of this chapter, SVGs are an appropriate for-
mat for storing vector images (FIGURE 7-1). Instead of a grid of pixels, vectors
are made up of shapes and paths that are defined mathematically. And even
more interesting, in SVGs those shapes and paths are specified by instruc-
tions written out in a text file. Let that sink in: they are images that are written
out in text! All of the shapes and paths as well as their properties are written
out in the standardized SVG markup language (see Note). As HTML has ele-
ments for paragraphs (p) and tables (table), SVG has elements that define
shapes like rectangle (rect), circle (circle), and paths (path).

A simple example will give you the general idea. Here is the SVG code that
describes a rectangle (rect) with rounded corners (rx and ry, for x-radius
and y-radius) and the word “hello” set as text with attributes for the font
and color (FIGURE 7-7). Browsers that support SVG read the instructions and
draw the image exactly as I designed it:

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 300 180">
 <rect width="300" height="180" fill="purple" rx="20" ry="20"/>
 <text x="40" y="114" fill="yellow" font-family="'Verdana-Bold'"
font-size="72">
 hello!
 </text>
</svg>

FIGURE 7-7.   A simple SVG made up of a rectangle and text.

NOTE

SVG is an example, or application, of
XML (Extensible Markup Language),
which provides the rules and standards
for how markup languages should be
written and work together. As a result,
SVG plays well alongside HTML content.

7. Adding Images

Adding SVG Images

139

SVGs offer some significant advantages over their bitmapped counterparts
for certain image types:

•	 Because they save only instructions for what to draw, they generally
require less data than an image saved in a bitmapped format. That means
faster downloads and better performance.

•	 Because they are vectors, they can resize as needed in a responsive layout
without loss of quality. An SVG is always nice and crisp. No fuzzy edges.

•	 Because they are text, they integrate well with HTML/XML and can be
compressed with tools like Gzip and Brotli, just like HTML files.

•	 They can be animated.

•	 You can change how they look with Cascading Style Sheets.

•	 You can add interactivity with JavaScript so things happen when users
hover their mouse over or click the image.

Again, all of the ins and outs of creating SVGs, as well as their many features,
are discussed in detail in Chapter 25. For now, I’d like to focus on the HTML
required to place them in the flow of a web page. You have a few options:
embedded with the img element, written out in code as an inline svg element,
embedded with object, and used as a background image with CSS.

Embedded with the img Element
SVG text files saved with the .svg suffix (sometimes referred to as a stand-
alone SVG) can be treated as any other image, including placing it in the
document by using the img element. You’re an expert on the img element by
now, so the following example should be clear:

Pros and cons
The advantage to embedding an SVG with img is that it is universally sup-
ported in browsers that support SVG.

This approach works fine when you are using a standalone SVG as a simple
substitute for a GIF or a PNG, but there are a few disadvantages to embed-
ding SVGs with img:

•	 You cannot apply styles to the items within the SVG by using an external
style sheet, such as a .css file applied to the whole page. The .svg file may
include its own internal style sheet using the style element, however, for
styling the elements within it. You can also apply styles to the img element
itself.

•	 You cannot manipulate the elements within the SVG with JavaScript, so
you lose the option for interactivity. Scripts in your web document can’t

Part II. HTML for Structure

Adding SVG Images

140

see the content of the SVG, and scripts in the SVG file do not run at all.
Other interactive effects, like links or :hover styles, are never triggered
inside an SVG embedded with img as well.

•	 You can’t use any external files, such as embedded images or web fonts,
within the SVG.

In other words, standalone SVGs behave as though they are in their own little,
self-contained bubble. But for static illustrations, that is just fine.

Browser support for SVG with img
The good news is that all modern browsers support SVGs embedded with the
img element. The two notable exceptions are Internet Explorer versions 8 and
earlier, and the Android browser prior to version 3. As of this writing, users
with those browsers may still show up in small but significant numbers in
your user logs. If you see a reason for your site to support these older brows-
ers, there are workarounds, which I address briefly in the upcoming “SVG
Fallbacks” section.

Inline in the HTML Source
Another option for putting an SVG on a web page is to copy the content of
the SVG file and paste it directly into the HTML document. This is called
using the SVG inline. Here is an example that looks a lot like the inline img
example that we saw way back in FIGURE 7-2, only this time our pizza is a
vector image drawn with circles and inserted with the svg element (FIGURE

7-8). Each circle element has attributes that describe the fill color, the posi-
tion of its center point (cx and cy), and the length of its radius (r):

<p>This summer, try making pizza

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 72 72" width="100"
height="100">
 <circle fill="#D4AB00" cx="36" cy="36" r="36"/>
 <circle opacity=".7" fill="#FFF" stroke="#8A291C" cx="36.1" cy="35.9"
r="31.2"/>
 <circle fill="#A52C1B" cx="38.8" cy="13.5" r="4.8"/>
 <circle fill="#A52C1B" cx="22.4" cy="20.9" r="4.8"/>
 <circle fill="#A52C1B" cx="32" cy="37.2" r="4.8"/>
 <circle fill="#A52C1B" cx="16.6" cy="39.9" r="4.8"/>
 <circle fill="#A52C1B" cx="26.2" cy="53.3" r="4.8"/>
 <circle fill="#A52C1B" cx="42.5" cy="27.3" r="4.8"/>
 <circle fill="#A52C1B" cx="44.3" cy="55.2" r="4.8"/>
 <circle fill="#A52C1B" cx="54.7" cy="42.9" r="4.8"/>
 <circle fill="#A52C1B" cx="56" cy="28.3" r="4.8"/>
</svg>

 on your grill.</p>

SVG Server Configuration
If you are using SVGs and they are
not showing up correctly when your
site is uploaded, you may need to
configure the server to recognize
the SVG image type, as discussed at
the beginning of this chapter. Here’s
how to do it on the Apache server,
but similar configurations can be
done in other server languages:

AddType image/svg+xml .svg

7. Adding Images

Adding SVG Images

141

<svg>
An inline SVG image

FIGURE 7-8.   This pizza image is an SVG made up of 11 circle elements. Instead
of an img element, the SVG source code is placed right in the HTML document with an
svg element.

This code was generated by Adobe Illustrator, where I created the illustration
and saved it in SVG format. I also optimized it to strip out a lot of cruft that
Illustrator adds in there. We’ll discuss SVG optimization in Chapter 25.

Pros and cons
Inline SVGs allow developers to take full advantage of SVG features. When
the SVG markup is alongside the HTML markup, all of its elements are part
of the main DOM tree. That means you can access and manipulate SVG
objects with JavaScript, making them respond to user interaction or input.
There are similar benefits for style sheets because the elements in the SVG
can inherit styles from HTML elements. That makes it easy to apply the same
styles to elements on the page and within the SVG graphic.

On the downside, the code for SVG illustrations can get extremely long and
unwieldy, resulting in bloated HTML documents that are difficult to read.
Even that little pepperoni pizza requires a serious block of code. It also makes
the images for a site more difficult to maintain, since they are tucked away
in the HTML documents. Another disadvantage is that inline SVGs are not
cached by the browser separate from the HTML file, so avoid this method for
large images that are reused across many HTML pages.

Browser support
The good news is that all modern browsers support SVG images placed
inline with the svg element. The following older browser versions lack sup-
port: Internet Explorer versions 8 and earlier, Safari versions 5 and earlier,
Android mobile browser prior to version 3, and iOS prior to version 5.

Embedded with the object Element
HTML has an all-purpose media embedding element called object. We’ll
talk about it more in Chapter 10, Embedded Media, but for now, know that
object is another option for embedding an SVG in a web page. It is a good

Part II. HTML for Structure

Adding SVG Images

142

compromise between img and inline SVG, allowing a fully functional SVG
that is still encapsulated in a separate, cacheable file.

The opening object tag specifies the media type (an svg+xml image) and
points to the file to be used with the data attribute. The object element
comes with its own fallback mechanism—any content within the object gets
rendered if the media specified with data can’t be displayed. In this case, a
PNG version of the image will be placed with an img if the .svg is not sup-
ported or fails to load:

<object type="image/svg+xml" data="pizza.svg">

</object>

There is one catch, however. Some browsers download the fallback image
even if they support SVG and don’t need it. Useless downloads are not ideal.
The workaround is to make the fallback image a CSS background image in an
empty div container. Unfortunately, it is not as flexible for scaling and sizing,
but it does solve the extra download issue.

<object type="image/svg+xml" data="pizza.svg">
 <div style="background-image: url(pizza.png); width 100px; height:
100px;" role="img" aria-label="pizza">
</object>

Pros and cons
The main advantage to embedding SVGs with the object element is that they
can be scripted and load external files. They can also use scripts to access
the parent HTML document (with some security restrictions). However,
because they are separate files and not part of the DOM for the page, you
can’t use a style sheet in the HTML document to style elements within the
SVG. Embedded SVGs may also have some buggy behaviors in browsers, so
be sure to test thoroughly.

Used as a Background Image with CSS
I know that this is an HTML chapter, but I’d be remiss if I didn’t at least men-
tion that SVGs can be used as background images with CSS. This style rule
example puts a decorative image in the background of a header:

header {
 background-image: url(/images/decorative.svg);
}

SVG Fallbacks
As mentioned earlier, all modern browsers support SVGs either embedded as
an img, embedded as an object, or included inline, which is very good news.
However, if your server logs show significant traffic from Internet Explorer
8 and earlier, Android version 3 and earlier, or Safari 5 and earlier, or if your

Other Embedding
Options
Older techniques for adding SVGs
involve using two other HTML
elements for embedding media:
embed and iframe (we’ll talk about
them in Chapter 10). You may still
see these in use with SVGs out there,
and they work fine for browsers that
support SVG, but most developers
consider them to be outdated
methods. Stick with img, inline svg,
object, and CSS background-
image.

7. Adding Images

Adding SVG Images

143

client just requires support for those browsers, you may need to use a fallback
technique. One option is to use the object element to embed the SVG on the
page and take advantage of its fallback content feature shown earlier.

If you are using SVG as an image with the img element, another option is
to use the picture element (it’s discussed as part of the “Responsive Image
Markup” section later in this chapter). The picture element can be used to
provide several versions of an image in different formats. Each version is
suggested with the source element, which in the following example points to
the pizza.svg image and defines its media type. The picture element also has
a built-in fallback mechanism. If the browser doesn’t support the suggested
source files, or if it does not support the picture element, users will see the
PNG image provided with the good old img element instead:

<picture>
 <source type="image/svg+xml" srcset="pizza.svg">

</picture>

If you Google for “SVG fallbacks,” you’ll likely get quite a few hits, many
of which use JavaScript to detect support. For more detailed information
on SVG fallbacks, I recommend reading Amelia Bellamy-Royd’s article, “A
Complete Guide to SVG Fallbacks” (css-tricks.com/a-complete-guide-to-svg-
fallbacks/) or Chris Coyier’s book, Practical SVG (A Book Apart) when you
are ready. Ideally, you will be reading this in a world where old Internet
Explorer and Android versions are no longer an issue.

Are you ready to give SVGs a spin? Try out some of the embedding tech-
niques we discussed in EXERCISE 7-2.

EXERCISE 7-2.   Adding an SVG to a page

In this exercise, we’ll add some SVG images to the Black Goose Bistro page that we worked
on in Chapter 4. The materials for this exercise are available online at learningwebdesign.
com/5e/materials. You will find everything in a directory called svg. The resulting code is
provided with the materials.

This exercise has two parts: first, we’ll replace the logo with an SVG version, and second,
we’ll add a row of social media icons at the bottom of the page (FIGURE 7-9).

Part I: Replacing the logo
1.	 Open blackgoosebistro.html in a text editor. It should look just like we left it in Chapter 4.

2.	 Just for fun, let’s see what happens when you make the current PNG logo really large.
Add width="500" height="500" to the img tag. Save the file and open it in the
browser to see how blurry bitmapped images get when you size them larger. Yuck.

3.	 Let’s replace it with an SVG version of the same logo by using the inline SVG method.
In the svg folder, you will find a file called blackgoose-logo.svg. Open it in your text
editor and copy all of the text (from <svg> to </svg>).

Part II. HTML for Structure

Adding SVG Images

144

FIGURE 7-9.   The Black Goose Bistro page with SVG images.

4.	 Go back to the blackgoosebistro.html file and delete the entire
img element (be careful not to delete the surrounding markup).
Paste the SVG text in its place. If you look closely, you will see
that the SVG contains two circles, a gradient definition, and two
paths (one for the starburst shape and one for the goose).

5.	 Next, set the size the SVG should appear on the page. In the
opening svg tag, add width and height attributes set to
200px each.

<h1><svg width="200px" height="200px" …

Save the file and open the page in the browser. You should see
the SVG logo in place, looking a lot like the old one.

6.	 Try seeing what happens when you make the SVG logo really
big! Change the width and height to 500 pixels, save the file, and
reload the page in the browser. It should be big and sharp! No
blurry edges like the PNG. OK, now put the size back to 200 ×
200 or whatever looks good to you.

Part II: Adding icons
7.	 Next we’re going to create a footer at the bottom of the page for

social media icons. Below the Location & Hours section, add the
following (the empty paragraph is where we’ll add the logos):

<footer>
 <p>Please visit our social media pages</p>
 <p> </p>
</footer>

8.	 Use the img element to place three SVG icons: twitter.svg,
facebook.svg, and instagram.svg. Note that they are located in
the icons directory. There are also icons for Tumblr and GitHub if
you’d like extra practice. Here’s a head start on the first one:

<p></p>

9.	 Save the file and open it in the browser. The icons should be
there, but they are huge. Let’s write a couple of style rules to
make the footer look nice. We haven’t done much with style
rules yet, so just copy exactly what you see here inside the
style element in the head of the document:

footer { 	
 border-top: 1px solid #57b1dc;
 text-align: center;
 padding-top: 1em;
}
footer img {
 width: 40px;
 height: 40px;
 margin-left: .5em;
 margin-right: .5em;
}

10.	Save the file again and open it in the browser (you should see
a page that looks like FIGURE 7-9). Go ahead and play around
with the style settings, or even the code in the inline SVG, if
you’d like to get a feel for how they affect the appearance of the
images. It’s kinda fun.

7. Adding Images

Adding SVG Images

145

RESPONSIVE IMAGE MARKUP

Pretty quickly after smartphones, tablets, “phablets,” and other devices hit the
scene, it became clear that large images that look great on a large screen were
overkill on smaller screens. All that image data…downloaded and wasted.
Forcing huge images onto small devices slows down page display and may
cost real money too, depending on the user’s data plan (and your server
costs). Conversely, small images that download quickly may be blurry on
large, high-resolution screens. Just as we need a way to make whole web pages
respond and adapt to various screen sizes, we need a way to make images on
those page “responsive” as well. Our trusty img element with its single src
attribute just doesn’t cut it in most cases.

It took a couple of years of proposals, experimentation, and discussion
between browser makers and the web development community, but we now
have a way to suggest alternate images by using HTML markup alone. No
complicated JavaScript or server-side hacks. The resulting responsive image
features (srcset and sizes attributes as well as the picture element) have
been incorporated into the HTML 5.1 specification, and browser support is
growing steadily, led by the Chrome browser in September 2014.

Thanks to a foolproof fallback and scripts that add support to older browsers,
you can start using these techniques right away. That said, none of this is set
in stone. Responsive image solutions are likely to be tweaked and improved,
or perhaps one day even made obsolete. If you are going to include them
in your sites, a good starting place for getting up-to-speed is the Responsive
Images Community Group (responsiveimages.org). RICG is a group of devel-
opers who worked together to hammer out the current spec with the browser
creators. They are on top of this stuff. You should also look for recent articles
and perhaps even crack open the spec.

How It Works
When we say “responsive images,” we are talking about providing images that
are tailored to the user’s viewing environment. First and foremost, responsive
image techniques prevent browsers on small screens from downloading more
image data than they need. They also include a mechanism to give high-reso-
lution displays on fast networks images large enough to look extra-gorgeous.
In addition, they provide a way for developers to take advantage of new, more
efficient image formats.

In short, responsive images work this way: you provide multiple images,
sized or cropped for different screen sizes, and the browser picks the most
appropriate one based on what it knows about the current viewing environ-
ment. Screen dimensions are one factor, but resolution, network speed, what’s
already in its cache, user preferences, and other considerations may also be
involved.

You provide multiple
images, sized or cropped
for different screen sizes,
and the browser picks
the most appropriate one
based on what it knows
about the current viewing
environment.

Part II. HTML for Structure

Responsive Image Markup

146

The responsive image attributes and elements address the following four
basic scenarios:

•	 Providing extra-large images that look crisp on high-resolution screens

•	 Providing a set of images of various dimensions for use on different
screen sizes

•	 Providing versions of the image with varying amount of detail based on
the device size and orientation (known as the art direction use case)

•	 Providing alternative image formats that store the same image at much
smaller file sizes

Let’s take a look at each of these common use cases.

High-Density Displays (x-descriptor)
Everything that you see on a screen display is made up of little squares of
colored light called pixels. We call the pixels that make up the screen itself
device pixels (you’ll also sometimes see them referred to as hardware pixels
or physical pixels). Until recently, screens commonly fit 72 or 96 device pixels
in an inch (now 109 to 160 is the norm). The number of pixels per inch (ppi)
is the resolution of the screen.

Bitmapped images, like JPEG, PNG, and GIF, are made up of a grid of pixels
too. It used to be that the pixels in images as well as pixel dimensions speci-
fied in our style sheets mapped one-to-one with the device pixels. An image
or box element that was 100 pixels wide would be laid out across 100 device
pixels. Nice and straightforward.

Device-pixel-ratios
It should come as no surprise that it’s not so straightforward today.
Manufacturers have been pushing screen resolutions higher and higher in an
effort to improve image quality. The result is that device pixels have been get-
ting smaller and smaller, so small that our images and text would be illegibly
tiny if they were mapped one-to-one.

To compensate, devices use a measurement called a reference pixel for lay-
out purposes. Reference pixels are also known as points (PT) in iOS, Device
Independent Pixels (DP or DiP) in Android, or CSS pixels because they are
the unit of measurement we use in style sheets. The iPhone 8 has a screen
that is made up of 750 × 1334 device pixels, but it uses a layout grid of 375 ×
667 points or CSS pixels (a ratio of 2 device pixels to 1 layout pixel—2:1 or
2x). A box sized to 100 pixels wide in CSS would be laid out across 200 device
pixels on the iPhone8. The iPhone X has a screen that is made up of 1125 ×
2436 pixels, but it uses a layout grid of 375 × 812 points (a ratio of 3 device
pixels to one point—or 3x). A box sized to 100 pixels is laid out across 300
device pixels on the iPhone X.

Devices use a
measurement called a
reference pixel for layout
purposes.

7. Adding Images

Responsive Image Markup

147

The ratio of the number of device pixels to CSS pixels is called the device-
pixel-ratio (FIGURE 7-10). Common device-pixel-ratios on handheld devices
are 1.325x, 1.5x, 1.7x, 2x, 2.4x, 3x, and even 4x (the “x” is the convention for
indicating a device-pixel-ratio). Even large desktop displays are featuring
ratios of 2x, 3x, and 4x.

Image or object =
3 x 3 reference or CSS pixels

1:1 device-pixel-ratio (1x)
3 x 3 device pixels, indicated by grid

2:1 device-pixel-ratio (2x)
6 x 6 device pixels

3:1 device-pixel-ratio (3x)
9 x 9 device pixels

FIGURE 7-10.   Device pixels compared to CSS/reference pixels.

Let’s say you have an image that you want to appear 200 pixels wide on all
displays. You can make the image exactly 200px wide (px is short for pixels),
and it will look fine on standard-resolution displays, but it might be a little
blurry on high-resolution displays. To get that image to look sharp on a
display with a device-pixel-ratio of 2x, you’d need to make that same image
400 pixels wide. It would need to be 600 pixels wide to look sharp on a 3x
display. Unfortunately, the larger images may have file sizes that are four or
more times the size of the original. Who wants to send all that extra data to
a 1x device that really only needs the smaller image?

Introducing srcset
We now have a way to serve larger images just to the browsers on displays
that benefit from them. We do it using the new srcset attribute with our old
friend the img element. srcset allows developers to specify a list of image
source options for the browser to choose from.

The value of srcset is a comma-separated list of options. Each item in that
list has two parts: the URL of an image and an x-descriptor that specifies the
target device-pixel-ratio. Note that the whole list is the value of srcset and

Part II. HTML for Structure

Responsive Image Markup

148

goes inside a single set of quotation marks. This sample shows the structure
of a srcset value:

srcset="image-URL #x, image-URL #x"

The src attribute is still required, and is generally used to specify the default
1x image for browsers that don’t support srcset. Make sure there is an alt
attribute as well:

Let’s look at an example. I have an image of a turkey that I’d like to appear 200
pixels wide. For standard resolution, I created the image at 200 pixels wide
and named it turkey-200px.jpg. I’d also like it to look crisp in high-resolution
displays, so I have two more versions: turkey-400px.jpg (for 2x) and turkey-
600px.jpg (for 3x). Here is the markup for adding the image and indicating
its high-density equivalents with x-descriptors:

<img src="/images/turkey-200px.jpg" alt=""
srcset="/images/turkey-400px.jpg 2x, /images/turkey-600px.jpg 3x" >

Because browsers ignore line returns and spaces in the source document, I
can also write that same element stacked in this way to make it a little easier
to read, as I will be doing throughout this chapter:

<img
 src="/images/turkey-200px.jpg" alt=""
 srcset="/images/turkey-400px.jpg 2x,
 /images/turkey-600px.jpg 3x" >

That makes the options and structure more clear at a glance, don’t you think?

Browsers that recognize the srcset attribute check the screen resolution and
download what they believe to be the most appropriate image. If the browser
is on a Mac with a 2x Retina display, it may download image-400px.jpg. If the
device-pixel-ratio is 1.5x, 2.4x, or something else, it checks the overall viewing
environment and makes the best selection. It is important to know that when
we use srcset with the img element, we are handing the keys to the browser
to make the final image selection.

When to use x-descriptors
X-descriptors tell the browser to make a selection based on screen resolution
only, with no regard for the dimensions of the screen or viewport. For this
reason, x-selectors are best used for images that stay the same pixel dimen-
sions regardless of the screen size, such as logos, social media badges, or other
fixed-width images.

It is much more likely that you’ll want images to resize based on the size of
the screen and to be able to serve small images to small handheld devices,
and large images to desktops (that’s kind of the crux of this responsive image
thing, after all). Now that you are familiar with using the srcset attribute,
let’s see how it can be used to deliver images targeted to various screen sizes.
Here’s where srcset really shines.

When we use srcset with
the img element, we are
allowing the browser to
make the best image
selection.

The srcset attribute
specifies a list of image
options for the browser to
choose from.

7. Adding Images

Responsive Image Markup

149

Variable-Width Images (w-descriptor)
When you’re designing a responsive web page, chances are you’ll want image
sizes to change based on the size of the browser viewport (see Note). This is
known as a viewport-based selection. And because you are the type of web
developer who cares about how fast pages display, you’ll want to limit unnec-
essary data downloads by providing appropriately sized images.

To achieve this goal, use the srcset and sizes attributes with the img element.
As we saw in previous examples, the srcset gives the browser a set of image
file options, but this time, it uses a w-descriptor (width descriptor) that pro-
vides the actual pixel width of each image. Using srcset with a w-descriptor
is appropriate when the images are identical except for their dimensions (in
other words, they differ only in scale). Here’s an example of a srcset attribute
that provides four image options and specifies their respective pixel widths
via w-descriptors. Note again that the whole list is in a single set of quota-
tion marks:

srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"

Using the sizes attribute
That’s a good start, but whenever you use w-descriptors, you also need to use
the sizes attribute to tell the browser the approximate size that the image will
appear in the page’s layout. There is a very good reason (in addition to being
required in the spec), and it is worth understanding.

When a browser downloads the HTML document for a web page, the first
thing it does is look through the whole document and establish its outline
structure (its Document Object Model, or DOM). Then, almost immediately,
a preloader goes out to get all the images from the server so they are ready
to go. Finally, the CSS and the JavaScript are downloaded. It is likely that the
style sheet has instructions for layout and image sizes, but by the time the
browser sees the styles, the images are already downloaded. For that reason,
we have to give the browser a good hint with the sizes attribute whether the
image will fill the whole viewport width or only a portion of it. That allows
the preloader to pick the correct image file from the srcset list.

We’ll start with the simplest scenario in which the image is a banner and
always appears at 100% of the viewport width, regardless of the device
(FIGURE 7-11). Here’s the complete img element:

<img src="strawberries-640.jpg"
 alt="baskets of ripe strawberries"
 srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"
 sizes="100vw">

NOTE

On a mobile device, the viewport fills
the whole screen. On a desktop browser,
the viewport is the area where the page
displays, not including the scrollbars and
other browser “chrome.”

The sizes attribute is
required when you use
width descriptors.

Part II. HTML for Structure

Responsive Image Markup

150

FIGURE 7-11.   The image fills 100% of the viewport width, regardless of its size.

In this example, the sizes attribute tells the browser that the image fills the
full viewport by using viewport width units (vw), the most common unit for
the sizes attribute, so the browser can pick the best image for the job. For
example, 100vw translates to 100% of the viewport width, 50vw would be 50%,
and so on. You can also use em, px, and a few other CSS units, but you cannot
use percentages. Browsers that do not support srcset and sizes simply use
the image specified in the src attribute.

Sizing an image to fill the whole width of the browser is a pretty specific case.
More likely, your images will be one component in a responsive page layout
that resizes and rearranges to make best use of the available screen width.
FIGURE 7-12 shows a sidebar of food photos that take up the full width of the
screen on small devices, take up a portion of the width on larger devices, and
appear three across in a layout for large browser windows.

FIGURE 7-12.   The width of the images changes based on the width of the viewport.

7. Adding Images

Responsive Image Markup

151

Browsers that do not
support srcset and sizes
use the image specified in
the src attribute.

For cases like these, use the sizes attribute to tell the browser something
about how the image will be sized for each layout. The sizes value is a
comma-separated list in which each item has two parts. The first part in
parentheses is a media condition that describes a parameter such as the
width of the viewport. The second part is a length that indicates the width
that image will occupy in the layout if the media condition is met. Here’s how
that syntax looks:

sizes="(media-feature: condition) length,
  (media-feature: condition) length,
  (media-feature: condition) length"

I’ve added some media conditions to the previous example, and now we have
a complete valid img element for one of the photo images in FIGURE 7-12:

<img src="strawberries-640.jpg" alt="baskets of ripe strawberries"
 srcset="strawberries-240.jpg 240w,
  strawberries-480.jpg 480w,
  strawberries-672.jpg 672w"
 sizes="(max-width: 480px) 100vw,
	 (max-width: 960px) 70vw,
	 240px">

The sizes attribute tells the browser the following:

•	 If the viewport is 480 pixels wide or smaller (maximum width is 480
pixels), the image fills 100% of the viewport width.

•	 If the viewport is wider than 480 pixels but no larger than 960 pixels
(max-width: 960px), then the image will appear at 70% of the viewport.
(This layout has 15% margins on the left and the right of the images, or
30% total.)

•	 If the viewport is larger than 960 pixels and doesn’t meet any of the prior
media conditions, the image gets sized to exactly 240 pixels.

Now that the browser knows the width of the viewport and how big the
image will appear within it, it can select the most appropriate image from the
srcset list to download.

There’s a bit more to using sizes than shown here—other media conditions,
additional length units, even the ability to ask the browser to calculate widths
for you. If you plan on using viewport-width-based images in your designs, I
recommend reading the spec to take full advantage of the possibilities.

NOTE

Strategies and tools for producing the image sets for responsive layouts are introduced in
Chapter 24, Image Asset Production.

WARNIN G

The sizes attribute will resize an image
even if there is no CSS applied to it. If
there is a CSS rule specifying image size
that conflicts with the value of the sizes
attribute, the style rule wins (i.e., it over-
rides the sizes value).

Part II. HTML for Structure

Responsive Image Markup

152

Art Direction (picture Element)
So far, we’ve looked at image selection based on the resolution of the screen
and the size of the viewport. In both of these scenarios, the content of the
image does not change but merely resizes.

But sometimes, resizing isn’t enough. You might want to crop into important
details of an image when it is displayed on a small screen. You may want to
change or remove text from the image if it gets too small to be legible. Or you
might want to provide both landscape (wide) and portrait (tall) versions of
the same image for different layouts.

For example, in FIGURE 7-13, the whole image of the table as well as the dish
reads fine on larger screens, but at smartphone size, it gets difficult to see the
delicious detail. It would be nice to provide alternate versions of the image
that make sense for the browsing conditions.

That dinner looks delicious on desktop browsers.
(1280px wide)

Detail is lost when the full image is
shrunk down on small devices.
(300px wide)

Cropping to the most important detail
may make better sense.
(300px wide)

FIGURE 7-13.   Some images are illegible when resized smaller for mobile devices.

This scenario is known as an art-direction-based selection and it is accom-
plished with the picture element. The picture element has no attributes; it
is just a wrapper for some number of source elements and an img element.
The img element is required and must be the last element in the list. If the img
is left out, no image will display at all because it is the piece that is actually

Use the picture element
when simply resizing the
image is not enough.

<picture>…</picture>
Specifies a number of image options

<source>…</source>
Specifies alternate image sources

7. Adding Images

Responsive Image Markup

153

placing the image on the page. Let’s look at a sample picture element and
then pick it apart:

<picture>
 <source media="(min-width: 1024px)" srcset="icecream-large.jpg">
 <source media="(min-width: 760px)" srcset="icecream-medium.jpg">
 <img src="icecream-small.jpg" alt="hand holding ice cream cone and
text that reads Savor the Summer">
</picture>

This example tells the browser that if the viewport is 1024 pixels wide or
larger, use the large version of the ice cream cone image. If it is wider than
760 pixels (but smaller than 1024, such as on a tablet), use the medium ver-
sion. Finally, for viewports that are smaller than 760 pixels and therefore
don’t match any of the media queries in the previous source elements, the
small version should be used (FIGURE 7-14). The small version, as specified
in the img element, will be used for browsers that do not recognize picture
and source.

Each source element includes a media attribute and a srcset attribute. It
can also use the sizes attribute, although that is not shown in the previous
example. The media attribute supplies a media query for checking the cur-
rent browsing conditions. It is similar to the media conditions we saw in the
earlier srcset example, but the media attribute specifies a full-featured CSS
media query (we’ll talk more about media queries in Chapter 17, Responsive
Web Design). The srcset attribute supplies the URL for the image to use if
the media query is a match. In the previous example, there is just one image
specified, but it could also be a comma-separated list if you wanted to pro-
vide several options using x- or w-descriptors.

Browsers download the image from the first source that matches the cur-
rent conditions, so the order of the source elements is important. The URL
provided in the srcset attribute gets passed to the src attribute in the img

iPhone iPad Chrome browser on desktop

FIGURE 7-14.   The picture element provides different image versions to be sourced
at various screen sizes.

Part II. HTML for Structure

Responsive Image Markup

154

element. Again, it’s the img that places the image on the page, so don’t omit
it. The alt attribute for the img element is required, but alt is not permitted
in the source element.

Art direction is the primary use of the picture element, but let’s look at one
more thing it can do to round out our discussion on responsive images.

Alternative Image Formats (type Attribute)
Once upon a time, in the early 1990s, the only image type you could put on a
web page was a GIF. JPEGs came along not long after, and we waited nearly
a decade for reliable browser support for the more feature-rich PNG format.
It takes a notoriously long time for new image formats to become universally
supported. In the past, that meant simply avoiding newer formats.

In an effort to reduce image file sizes, more efficient image formats have been
developed—such as WebP, JPEG 2000, and JPEG XR—that can compress
images significantly smaller than their JPEG and PNG counterparts (see
Note). And once again, some browsers support them and some don’t. The dif-
ference is that today we can use the picture element to serve the newer image
formats to browsers that can handle them, and a standard image format to
browsers that can’t. We no longer have to wait for universal browser support.

In the following example, the picture element specifies two image alterna-
tives before the fallback JPEG listed in the img element:

<picture>
 <source type="image/webp" srcset="pizza.webp">
 <source type="image/jxr" srcset="pizza.jxr">

</picture>

For image-format-based selections, each source element has two attributes:
the srcset attribute that we’ve seen before, and the type attribute for specify-
ing the type of file (also known as its MIME type, see the “File (MIME) Types”
sidebar). In this example, the first source points to an image that is in the
WebP format, and the second specifies a JPEG XR. Again, the browser uses
the image from the first source that matches the browser’s image support, so
it makes sense to put them in order from smallest to largest file size.

Browser Support
As I write this section, it seems like a new browser is adding support for pic-
ture, srcset, and sizes every day, but of course, old browser versions have
a bad habit of sticking around for years. This is not a reason to avoid using
responsive images, however. First of all, all of these features are designed to
include the img element as a built-in fallback for browsers that don’t recognize
the newer markup. In the worst case, the browser grabs the image specified
in the img element.

NOTE

The bitmapped image formats, includ-
ing WebP, JPEG 2000, and JPEG XR, are
discussed in more detail in Chapter 23,
Web Image Basics.

File (MIME) Types
The web uses a standardized
system to communicate the type
of media files being transferred
between the server and browser.
It is based on MIME (Multipurpose
Internet Mail Extension), which was
originally developed for sending
attachments via email. Every file
format has a standardized type
(such as image, application,
audio, or video), subtype that
identifies the specific format, and
one or more file extensions. In our
example, the type attribute specifies
the WebP option with its type/
subtype (image/webp) and uses the
proper file extension (.webp). Other
examples of media MIME types are
image/jpeg (extensions .jpg, .jpeg),
video/mpeg (extensions .mpg,
.mpe, .mpeg, .m1v, .mp2, .mp3, and
.mpa), and application/pdf (.pdf).
The complete listing of registered
MIME types is published by the
IANA (Internet Assigned Numbers
Authority) at www.iana.org/
assignments/media-types.

7. Adding Images

Responsive Image Markup

155

If that isn’t good enough, try including Picturefill with your web pages.
Picturefill is an example of a polyfill, a script that makes older browsers
behave as though they support a new technology—in this case, responsive
images. It was created by Scott Jehl of Filament Group, creators of many fine
responsive design and frontend development tools. Go to scottjehl.github.io/
picturefill/ to download the script and read the very thorough tutorial on how
it works and how to use it.

Responsive Images Summary
This has been a long discussion about responsive images, and we’ve really
only scratched the surface. We’ve looked at how to use the img element with
srcset and sizes to make pixel-ratio-based and viewport-size-based selections
(you can try them yourself in EXERCISE 7-3). We also saw how the picture
element can be used for art-direction-based and image-type-based selections.

I’ve kept my examples short and sweet, but know that it is possible to com-
bine techniques in different ways, often resulting in a tower of code for each
image. To see some examples of how these responsive image techniques
might be combined to target more than one condition, I recommend Andreas
Bovens’s article “Responsive Images: Use Cases and Documented Code
Snippets to Get You Started” on the Dev.Opera site (dev.opera.com/articles/
responsive-images/).

I also recommend the 10-part “Responsive Images 101” tutorial by Jason
Grigsby at Cloud Four. He goes into a bit more detail than I was able to here
and provides links to other good resources. Start with “Part 1: Definitions”
(cloudfour.com/thinks/responsive-images-101-definitions/).

B ROWS E R SU P PO RT
T I P

The site CanIUse.com is a great tool
for checking on the browser support
for HTML, CSS, and other frontend
web technologies. Type in picture,
srcset, or sizes to see where
browser support stands.

EXERCISE 7-3. Adding responsive images

Ready to try out some of this responsive image stuff? I recommend downloading the
latest version of Google Chrome (google.com/chrome/) or Firefox (firefox.com) so you are
certain it supports the responsive image HTML features. The materials for this exercise are
provided at learningwebdesign.com/5e/materials. Use the responsivegallery directory
that contains a starter HTML file and images directory.

We’re going to give the Black Goose Bistro Gallery page a makeover using responsive
images. Now, instead of the user clicking a thumbnail and going to a separate page, the
large images appear right on the page and resize to fill the available space. Small devices
and browsers that don’t support picture get a 400-pixel-square version of each image
(FIGURE 7-15).

1.	 Open the file index.html located in the responsivegallery directory in a text or HTML
editor. I’ve added a meta element that sets the viewport to the same size as the device
width, which is required to make this page responsive. I also added a style for img
elements that sets their maximum width to 100% of the available space. That is the bit
that makes the images scale down for smaller screen widths. We’ll talk a lot more about

Part II. HTML for Structure

Responsive Image Markup

156

Small devices like the iPhone show
the cropped 400-pixel-square image.

On viewports larger than 480
pixels, like the iPad shown here,
the full version of the image is
used. It resizes to fill the available
width of the page between the
margins.

On very large desktop displays, the full version of the
image resizes to fill the available width.

Browsers that do not support picture display the
400-pixel-square image specified by the img element.

FIGURE 7-15.   The Black Goose Bistro Gallery with responsive images in place.
Smaller devices see a square cropped version of the image. Larger browsers get the full
image that resizes to fill the content width.

responsive design in Chapter 17, so don’t worry about it too much now. I just wanted to
point out changes from our previous exercise.

2.	 Because we want to change between horizontal and square versions of the image on
this page, we’ll need to use the picture element. Start by adding the bare bones of a
picture element in the first paragraph after “Our Baked Goods,” including the picture
wrapper and its required img element. The img element points to the default square
version of the image (bread-400.jpg). Add a line break element after the picture
element to start the text on the next line: →

7. Adding Images

Responsive Image Markup

157

<p>
<picture>
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

3.	 That takes care of small devices and the fallback for non-supporting devices. Now add
a source element that tells browser to use a 1200-pixel-wide landscape version of the
image when the viewport is larger than 480 pixels:

<p>
<picture>
 <source media="(min-width: 480px)"
  srcset="images/bread-1200.jpg">
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

Note that because there is only one image specified in the source, we could have used
a simple src attribute here, but we have more work to do, so the srcset gets us ready
for the next step.

4.	 Because we don’t want to force such a large image on everyone, let’s give the browser
an 800-pixel-wide version as well. (Even more versions would be useful, but for the sake
of keeping this exercise manageable, we’ll stop at two.) Remember that the srcset
attribute specifies a comma-separated list of images and their respective pixel widths
with w-descriptors. I’ve added the 1200w descriptor to the original image and added
the 800-pixel option to the srcset. Finally, use the sizes attribute to let the browser
know that the image will occupy 80% of the viewport width (the style sheet adds a 10%
margin on the left and right sides, leaving 80% for the content). Now the browser can
choose the most appropriate size.

<p>
<picture>
 <source media="(min-width: 480px)"
 srcset="images/bread-1200.jpg 1200w,
  images/bread-800.jpg 800w"
 sizes="80vw">
 <img src="images/bread-400.jpg" alt="close-up of sliced rustic
bread">
</picture>

We start our day…

5.	 Save the file. Launch the Chrome or Firefox desktop browser and resize the window to
as narrow as it will go. Open index.html and you should see the square cropped version
of the bread photo. Slowly drag the corner of the browser window to make the window
wider. When it gets wider than 480 pixels, it should switch to the full version of the
photo. If you see a little “800” in the corner of the image, that means the browser has
downloaded bread-800.jpg for this task. Keep expanding the window, and the image
should keep getting larger. If you see “1200,” it means it is using bread-1200.jpg. Once
the larger image is in the browser’s cache, you won’t see the 800-pixel version again. Try
making the window narrow and wide again and watch what changes. Congratulations!
You are now an official responsive web designer! Making windows narrow and wide is
how we spend a good portion of our workday.

6.	 Add the remaining two images to the page, following my example. Try experimenting
with different min- and max-widths in the media attribute.

EXERCISE 7-3. Continued

NOTE

If you don’t see the images at all, it
could be that your pathnames are
incorrect or the images directory hasn’t
copied to your computer.

Part II. HTML for Structure

Responsive Image Markup

158

WHEW! WE’RE FINISHED

That wraps up our exploration of images. We’ve seen how to place images
with the img element and its required src and alt attributes. We’ve talked
about the importance of good alternative text for accessibility. We also looked
at a few ways to embed SVG images into a web page. Finally, we took on the
newly minted responsive image features, including srcset and sizes for the
img element to target high-density displays or to provide a variety of image
sizes for the browser to choose from, and the picture and source elements for
art direction and alternative image formats. Now try answering a few ques-
tions to test your knowledge.

TEST YOURSELF

Images are a big part of the web experience. Answer these questions to see
how well you’ve absorbed the key concepts of this chapter. The correct
answers can be found in Appendix A.

1.	 Which attributes must be included in every img element?

2.	 Write the markup for adding an image called furry.jpg that is in the same
directory as the current document.

3.	 Name two reasons to include alternative text for an img element.

4.	 What might be going wrong if your images don’t appear when you view
the page in a browser? There are three possible explanations.

5.	 What is the difference between an x-descriptor and a w-descriptor?

6.	 What is the difference between a device pixel and a CSS (reference) pixel?

Alternatives to
Responsive Images
Although it is terrific to have an HTML
solution for getting the right images
to the right browsers, the current
system is cumbersome with stacks
of code and the need to produce
multiple images. If you work on an
image-heavy site, it could prove to be
unmanageable. Image processing is a
task that begs to be automated. The
solution: let the server do it!

Fortunately, there are many tools
and services, both open source and
for pay, that let the server do the
work of creating appropriate image
versions on the fly. You upload the
largest available size of the image
and let the server handle the rest—no
need to create and store multiple
versions of every image. In general,
image-generation services address
only resizing, and not art direction or
alternative image types; however, at
least one service (Cloudinary.com)
uses face detection as a basis for
image cropping.

Some content management systems
(CMSs) have image resizing features
built in. Another option is to install
software on your own server. Bear
in mind, however, that requiring
JavaScript to be running is less than
ideal. There are also many third-party
solutions that provide image-resizing
services (like Cloudinary.com and
Kraken.io), usually for a fee. For large,
image-heavy sites, they are worth
looking into.

Jason Grigsby of Cloud Four has
compiled a spreadsheet of image-
resizing software and services that
serves as a good jumping-off point.
You can get to it from his article,
“Image Resizing Services” (cloudfour.
com/thinks/image-resizing-
services/) or at tinyurl.com/pmpbyzj.

7. Adding Images

Test Yourself

159

7.	 Match the responsive image scenarios with the HTML solutions:

a.	

b.	

c.	 <picture>
 <source type="…" srcset="">

</picture>

d.	 <picture>
 <source media="()" srcset="">

</picture>

____	 You want the image to always fill the width of the browser window.

____	 You want to take advantage of the file savings of the WebP image
format.

____	 You want to remove the text from an image when it is on small
screens.

____	 You want your product images to look as sharp as possible on
high-resolution screens.

____	 You want to show a close-up of the action in a news image on small
screens.

____	 You want the image to resize smaller when it is part of the layout
on a large screen.

8.	 Challenge question: Describe what this example tells the browser to do:

<picture>
 <source sizes="(min-width: 480px) 80vw,
 100vw"
 srcset="photo-200.webp 200w
 photo-400.webp 400w,
 photo-800.webp 800w,
 photo-1200.webp 1200w"
 type="image/webp">
 <img src=" photo-400.jpg" alt=""
 sizes="(min-width: 480px) 80vw,
 100vw"
 srcset="photo-200.jpg 200w,
 photo-400.jpg 400w,
 photo-800.jpg 800w,
 photo-1200.jpg 1200w">
</picture>

Part II. HTML for Structure

Test Yourself

160

9.	 What is cache and how does it affect web page performance?

10.	 Name one advantage and one disadvantage of adding an SVG to a page
with the img element.

11.	 Name one advantage and one disadvantage of inline SVG.

12.	 When would it be appropriate to add an SVG to a page as a background
image with CSS?

13.	 What is this bit of code describing, and when might you need to use it?

image/svg+xml

14.	 What is this bit of code describing, and where would you find it?

http://www.w3.org/2000/svg

P H OTO C R E D I TS

Many of the images in this chapter
are from the fabulous royalty-free
photo site, Unsplash.com: ravioli
by Davide Ragusa, burgers by
Niklas Rhöse, ice cream cone by
Alex Jones, dinner table by Jay
Wennington, strawberries by Priscilla
Fong. From Flickr’s “No Rights
Restrictions” collection: fish dish
by Renata Maia, muffins by Hasma
Kanouni. All others are uncredited
public domain images.

7. Adding Images

Test Yourself

161

ELEMENT REVIEW: IMAGES

Following are the elements you learned in your exploration of image markup.

Element and attributes Description

img Inserts an inline image

alt="text" Alternative text

src="url" The location of the image file

srcset="list of urls
with descriptors"

Images to use in different situations

sizes="list media
conditions and layout
sizes"

Image sizes for different layouts

width="number" Width of the graphic

height="number" Height of the graphic

usemap="usemap" Indicates the client-side image map to use

picture Container that provides multiple sources to its con-
tained img element

source Provides alternate sources for the img element

src="URL" Address of the image resource

srcset="URL" Images to use in different situations

sizes="source size
list"

Image sizes for different page layouts

media="media query" Query to determine applicable media

type="media type" Media (MIME) type of embedded image file

svg Adds an inline SVG image

Part II. HTML for Structure

Element Review: Images

162

IN THIS CHAPTER

How tables are used

Basic table structure

Spanning rows and columns

Row and column groups

Making tables accessible

Before we launch into the markup for tables, let’s check in with our progress
so far. We’ve covered a lot of territory: how to establish the basic structure of
an HTML document, how to mark up text to give it meaning and structure,
how to make links, and how to embed simple images on the page.

This chapter and the next two chapters, Chapter 9, Forms, and Chapter 10,
Embedded Media, describe the markup for specialized content that you might
not have a need for right away. If you’re getting antsy to make your pages look
good, skip right to Part III and start playing with Cascading Style Sheets. The
tables, forms, and media chapters will be here when you’re ready for them.

Are you still with me? Great. Let’s talk tables. We’ll start out by reviewing
how tables should be used, then learn the elements used to create them.
Remember, this is an HTML chapter, so we’re going to focus on the markup
that structures the content into tables, and we won’t be concerned with how
the tables look (that will be tackled in various CSS chapters in Part III).

HOW TO USE TABLES

HTML tables were created for instances when you need to add tabular mate-
rial (data arranged into rows and columns) to a web page. Tables may be
used to organize schedules, product comparisons, statistics, or other types
of information, as shown in FIGURE 8-1. Note that “data” doesn’t necessarily
mean numbers. A table cell may contain any sort of information, including
numbers, text elements, and even images and multimedia objects.

In visual browsers, the arrangement of data in rows and columns gives read-
ers an instant understanding of the relationships between data cells and their
respective header labels. Bear in mind when you are creating tables, however,

TABLE MARKUP 8
CHAPTER

163

that some readers will be hearing your data read aloud with a screen reader
or reading Braille output. Later in this chapter, we’ll discuss measures you
can take to make table content accessible to users who don’t have the benefit
of visual presentation.

In the days before style sheets, tables were the only option for creating mul-
ticolumn layouts or controlling alignment and whitespace. Layout tables,
particularly the complex nested table arrangements that were once standard
web design fare, have gone the way of the dodo. If you need rows and columns
for presentation purposes, there are alternatives that use CSS to achieve the
desired effect. In one approach known as CSS Tables, nested divs provide the
markup, and CSS Table properties make them behave like rows and cells in
the browser. You can also achieve many of the effects that previously required

w3c.org

wikipedia.org

mbta.org

FIGURE 8-1.  Examples of tables used for tabular information, such as charts,
calendars, and schedules.

Part II. HTML for Structure

How to Use Tables

164

table markup using Flexbox and Grid Layout techniques (see Chapter 16, CSS
Layout with Flexbox and Grid).

That said, this chapter focuses on HTML table elements used to semantically
mark up rows and columns of data as described in the HTML specification.

MINIMAL TABLE STRUCTURE

Let’s take a look at a simple table to see what it’s made of. Here is a small table
with three rows and three columns that lists nutritional information.

Menu item Calories Fat (g)

Chicken noodle soup 120 2

Caesar salad 400 26

FIGURE 8-2 reveals the structure of this table according to the HTML table
model. All of the table’s content goes into cells that are arranged into rows.
Cells contain either header information (titles for the columns, such as
“Calories”) or data, which may be any sort of content.

Menu item

Chicken noodle soup 120 2

400Caesar salad 26

Calories Fatrow

row

row

table

header cell header cell header cell

data cell

data cell

data cell

data cell

data cell

data cell

FIGURE 8-2.  Tables are made up of rows that contain cells. Cells are the containers
for content.

Simple enough, right? Now let’s look at how those parts translate into ele-
ments (FIGURE 8-3).

<th>Menu item</th>

<td>Chicken noodle
 soup</td> <td>120</td> <td>2</td>

<td>400</td><td>Caesar salad</td> <td>26</td>

<th>Calories</th> <th>Fat</th><tr>

<tr>

<tr>

<table>

</table>

</tr>

</tr>

</tr>

FIGURE 8-3.  The elements that make up the basic structure of a table.

<table>…</table>
Tabular content (rows and columns)

<tr>…</tr>
Table row

<th>…</th>
Table header

<td>…</td>
Table cell data

8. Table Markup

Minimal Table Structure

165

FIGURE 8-3 shows the elements that identify the table (table), rows (tr, for
“table row”), and cells (th, for “table headers,” and td, for “table data”). Cells
are the heart of the table, because that’s where the actual content goes. The
other elements just hold things together.

What we don’t see are column elements. The number of columns in a table
is implied by the number of cells in each row. This is one of the things that
make HTML tables potentially tricky. Rows are easy—if you want the table
to have three rows, just use three tr elements. Columns are different. For a
table with four columns, you need to make sure that every row has four td or
th elements. (There’s more to the column story, which I cover in the section
“Row and Column Groups” later in this chapter.)

Written out in a source document, the markup for the table in FIGURE 8-3
looks like the following sample. It is common to stack the th and td elements
in order to make them easier to find in the source. This does not affect how
the browser renders them.

<table>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</table>

Remember, all the content must go in cells—that is, within td or th elements.
You can put any content in a cell: text, a graphic, or even another table.

Start and end table tags identify the beginning and end of the tabular mate-
rial. The table element may directly contain only some number of tr (row)
elements, a caption and, optionally, the row and column group elements
listed in the “Row and Column Groups” section. The only thing that can go
in the tr element is some number of td or th elements. In other words, there
may be no text content within the table and tr elements that isn’t contained
within a td or th.

Finally, FIGURE 8-4 shows how the table would look in a simple web page,
as displayed by default in a browser. I know it’s not exciting. Excitement hap-
pens in the CSS. What is worth noting is that tables always start on new lines
by default in browsers.

F U N W I T H T H E S P EC

According to the HTML5 spec, a
table element may contain “in this
order: optionally a caption element,
followed by zero or more colgroup
elements, followed optionally by a
thead element, followed by either
zero or more tbody elements or
one or more tr elements, followed
optionally by a tfoot element (but
there can only be one tfoot element
child in total).”

Well, I’m glad we cleared that up!

Stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
to add a layer of style to customize its
appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all
the formatting tools you’ll need in the
following chapters:

Chapter 12, Formatting Text:

•	 Font settings for cell contents

•	 Text color in cells

Chapter 13, Colors and
Backgrounds:

•	 Background colors

•	 Tiling background images

Chapter 14, Thinking Inside the
Box:

•	 Table dimensions (width and
height)

•	 Borders

•	 Cell padding (space around cell
contents)

•	 Margins around the table

Chapter 19, More CSS Techniques:

•	 Special properties for controlling
borders and spacing between cells

Part II. HTML for Structure

Minimal Table Structure

166

FIGURE 8-4.  The default rendering of our sample table in a browser.

Here is the source for another table. Can you tell how many rows and col-
umns it will have when it is displayed in a browser?

<table>
 <tr>
 <th>Burgers</th>
 <td>Organic Grass-fed Beef</td>
 <td>Black Bean Veggie</td>
 </tr>
 <tr>
 <th>Fries</th>
 <td>Hand-cut Idaho potato</td>
 <td>Seasoned sweet potato</td>
 </tr>
</table>

If you guessed that it’s a table with two rows and three columns, you are cor-
rect! Two tr elements create two rows; one th and two td elements in each
row create three columns.

TABLE HEADERS

As you can see in FIGURE 8-4, the text marked up as headers (th elements) is
displayed differently from the other cells in the table (td elements). The dif-
ference, however, is not purely cosmetic. Table headers are important because
they provide information or context about the cells in the row or column they
precede. The th element may be handled differently than tds by alternative
browsing devices. For example, screen readers may read the header aloud
before each data cell (“Menu item: Caesar salad, Calories: 400, Fat-g: 26”).

In this way, headers are a key tool for making table content accessible. Don’t
try to fake them by formatting a row of td elements differently than the rest
of the table. Conversely, don’t avoid using th elements because of their default
rendering (bold and centered). Instead, mark up the headers semantically and
change the presentation later with a style rule.

That covers the basics. Before we get fancier, try your hand at EXERCISE 8-1.

EXERCISE 8-1. 
Making a simple table

Try writing the markup for the table
shown in FIGURE 8-5. You can open
a text editor or just write it down
on paper. The finished markup is
provided in the materials folder (www.
learningwebdesign.com/5e/materials).

Note that I’ve added a 1-pixel border
around cells with a style rule just to
make the structure clear. If you would
like borders on your tables, copy this
style element into the head of the
document(s) you create for the exercises
in this chapter:

<style>
td, th {
 border: 1px solid gray;
}
</style>

Be sure to close all table elements.
Technically, you are not required to close
tr, th, and td elements, but I want you
to get in the habit of writing tidy source
code for maximum predictability across
all browsing devices.

FIGURE 8-5.   Write the markup for
this table.

8. Table Markup

Table Headers

167

SPANNING CELLS

One fundamental feature of table structure is cell spanning, which is the
stretching of a cell to cover several rows or columns. Spanning cells allows
you to create complex table structures, but it has the side effect of making the
markup a little more difficult to keep track of. It can also make it potentially
more difficult for users with screen readers to follow.

You make a header or data cell span by adding the colspan or rowspan attri-
butes, as we’ll discuss next.

Column Spans
Column spans, created with the colspan attribute in the td or th element,
stretch a cell to the right to span over the subsequent columns (FIGURE 8-6).
Here a column span is used to make a header apply to two columns (I’ve
added a border around the cells to reveal the structure of the table in the
screenshot).

<table>
 <tr>
 <th colspan="2">Fat</th>
 </tr>
 <tr>
 <td>Saturated Fat (g)</td>
 <td>Unsaturated Fat (g)</td>
 </tr>
</table>

FIGURE 8-6.  The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the sec-
ond row has two td elements. The th for the column that was spanned over
is no longer in the source; the cell with the colspan stands in for it. Every
row should have the same number of cells or equivalent colspan values. For
example, there are two td elements and the colspan value is 2, so the implied
number of columns in each row is equal.

Try your hand at column spanning in EXERCISE 8-2.

EXERCISE 8-2. 
Column spans

Try writing the markup for the table
shown in FIGURE 8-7. You can open
a text editor or just write it down on
paper. I’ve added borders to reveal the
cell structure in the figure, but your table
won’t have them unless you add the
style sheet shown in EXERCISE 8-1.
Again, the final markup is provided in
the materials folder.

Some hints:

•	 The first and third rows show that the
table has a total of three columns.

•	 When a cell is spanned over, its td
element does not appear in the table.

FIGURE 8-7.   Practice column spans
by writing the markup for this table.

WARNIN G

Be careful with colspan values. If you
specify a number that exceeds the num-
ber of columns in the table, browsers
add columns to the existing table, which
typically screws things up.

Part II. HTML for Structure

Spanning Cells

168

Row Spans
Row spans, created with the rowspan attribute, work just like column spans,
but they cause the cell to span downward over several rows. In this example,
the first cell in the table spans down three rows (FIGURE 8-8).

<table>
 <tr>
 <th rowspan="3">Serving Size</th>
 <td>Small (8oz.)</td>
 </tr>
 <tr>
 <td>Medium (16oz.)</td>
 </tr>
 <tr>
 <td>Large (24oz.)</td>
 </tr>
</table>

Again, notice that the td elements for the cells that were spanned over (the first
cells in the remaining rows) do not appear in the source. The rowspan="3" implies
cells for the subsequent two rows, so no td elements are needed.

If you loved spanning columns, you’ll love spanning rows in EXERCISE 8-3.

FIGURE 8-8.   The rowspan attribute stretches a cell downward to span the specified
number of rows.

Space in and Between Cells
By default, tables expand just enough to fit the content of the cells, which
can look a little cramped. Old versions of HTML included cellpadding and
cellspacing attributes for adding space within and between cells, but they
have been kicked out of HTML5 as they are obsolete, presentational markup.
The proper way to adjust table cell spacing is with style sheets, of course.
The “Styling Tables” section in Chapter 19, More CSS Techniques addresses
cell spacing.

TABLE ACCESSIBILITY

As a web designer, it is important that you always keep in mind how your
site’s content is going to be used by visitors with impaired sight. It is especially
challenging to make sense of tabular material by using a screen reader, but
the HTML specification provides measures to improve the experience and
make your content more understandable.

EXERCISE 8-3. 
Row spans

Try writing the markup for the table
shown in FIGURE 8-9. Remember
that cells that are spanned over do not
appear in the table code.

Some hints:

•	 Rows always span downward, so the
“oranges” cell is part of the first row
even though its content is vertically
centered.

•	 Cells that are spanned over do not
appear in the code.

FIGURE 8-9.   Practice row spans by
writing the markup for this table.

8. Table Markup

Table Accessibility

169

Describing Table Content
The most effective way to give sight-impaired users an overview of your table
is to give it a title or description with the caption element. Captions display
next to the table (generally, above it) and can be used to describe the table’s
contents or provide hints on how it is structured.

When used, the caption element must be the first thing within the table ele-
ment, as shown in this example, which adds a caption to the nutritional chart
from earlier in the chapter:

<table>
 <caption>Nutritional Information</caption>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <!-- table continues -->
</table>

The caption is displayed above the table by default, as shown in FIGURE

8-10, although you can use a style sheet property to move it below the table
(caption-side: bottom).

FIGURE 8-10.   The table caption is displayed above the table by default.

For longer descriptions, you could consider putting the table in a figure
element and using the figcaption element for the description. The HTML5
specification has a number of suggestions for providing table descriptions
(www.w3.org/TR/html5/tabular-data.html#table-descriptions-techniques).

Connecting Cells and Headers
We discussed headers briefly as a straightforward method for improving
the accessibility of table content, but sometimes it may be difficult to know
which header applies to which cells. For example, headers may be at the left
or right edge of a row rather than at the top of a column. And although it
may be easy for sighted users to understand a table structure at a glance, for
users hearing the data as text, the overall organization is not as clear. The
scope and headers attributes allow authors to explicitly associate headers and
their respective content.

<caption>…</caption>
Title or description to be displayed

with the table

Part II. HTML for Structure

Table Accessibility

170

scope

The scope attribute associates a table header with the row, column, group
of rows (such as tbody), or column group in which it appears by using
the values row, col, rowgroup, or colgroup, respectively. This example uses
the scope attribute to declare that a header cell applies to the current row:

<tr>
 <th scope="row">Mars</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
</tr>

Accessibility experts recommend that every th element contain a scope
attribute to make its associated data explicitly clear.

headers

For really complicated tables in which scope is not sufficient to associ-
ate a table data cell with its respective header (such as when the table
contains multiple spanned cells), the headers attribute is used in the td
element to explicitly tie it to a header’s id value. In this example, the cell
content “.38” is tied to the header “Diameter measured in earths”:

<th id="diameter">Diameter measured in earths</th>
<!-- many other cells -->
<td headers="diameter">.38</td>
<!-- many other cells -->

Unfortunately, support of the id/headers feature is unreliable. The rec-
ommended best practice is to create tables in a way that a simple scope
attribute will do the job.

This section is obviously only the tip of the iceberg of table accessibility.
In-depth instruction on authoring accessible tables is beyond the scope of
this beginner book. If you’d like to learn more, I recommend “Creating
Accessible Tables” at WebAIM (webaim.org/techniques/tables/data) as an
excellent starting point.

There is one more important set of elements for helping make the semantic
structure of a table clear: row and column grouping elements.

ROW AND COLUMN GROUPS

The sample tables we’ve been looking at so far in this chapter have been
stripped down to their bare essentials to make the structure clear while
you’re learning how tables work. But tables in the real world are not always
so simple. Check out the beauty in FIGURE 8-11 from the CSS Writing Modes
Level 3 spec. You can identify three groups of columns (one with headers,
two with two columns each), and three groupings of rows (headers, data, and
a footnote).

BROWSER SUPPORT ALERT

Although the advanced table features
intended to improve accessibility have
been in the specs for many years, sup-
port by screen readers and other assis-
tive devices is unreliable at best. It is still
recommended that you mark up your
data semantically within table cells and
that they make sense when read in order
from the source, which is exactly how
some of your visitors may encounter them.

8. Table Markup

Row and Column Groups

171

Conceptual table groupings like these are marked up with row group and
column group elements that provide additional semantic structure and more
“hooks” for styling or scripting. For example, the row and column groups in
FIGURE 8-11 were styled with thicker borders to make them stand out visually.

FIGURE 8-11.  An example of a table with row and column groups (from the CSS
Writing Modes Level 3 specification).

Row Group Elements
You can describe rows or groups of rows as belonging to a header, footer, or
the body of a table by using the thead, tfoot, and tbody elements, respectively.
Some user agents (another word for a browser) may repeat the header and
footer rows on tables that span multiple pages. For example, the head and
foot rows may print on every page of a multipage table. Authors may also use
these elements to apply styles to various regions of a table.

Row group elements may only contain one or more tr elements. They con-
tain no direct text content. The thead element should appear first, followed
by any number of tbody elements, followed by an optional tfoot.

This is the row group markup for the table in FIGURE 8-11 (td and th ele-
ments are hidden to save space):

<table>
…
<thead>
 <!-- headers in these rows-->
 <tr></tr>
 <tr></tr>
 <tr></tr>
<thead>
<tbody>
 <!-- data -->
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
</tbody>

<thead>…</thead>
Table header row group

<tbody>…</tbody>
Table body row group

<tfoot>…</tfoot>
Table footer row group

V I E W S O U RC E

View the source of the table in
FIGURE 8-11 at www.w3.org/TR/
css-writing-modes-3/#unicode-bidi
(you need to scroll down a little).
The source is too long to print here,
but it is clearly marked up and
easy to follow. Note that it uses all
the row group elements, column
groups, and the scope attribute we
saw in the last section to associate
headers with rows. There are several
interesting tables on this page for
your source-viewing pleasure.

Part II. HTML for Structure

Row and Column Groups

172

<tfoot>
 <!-- footnote -->
 <tr></tr>
</tfoot>
</table>

Column Group Elements
As you’ve learned, columns are implied by the number of cells (td or th) in
each row. You can semantically group columns (and assign id and class val-
ues) using the colgroup element.

Column groups are identified at the start of the table, just after the caption
if there is one, and they give the browser a little heads-up as to the column
arrangement in the table. The number of columns a colgroup represents is
specified with the span attribute. Here is the column group section at the
beginning of the table in FIGURE 8-11:

<table>
 <caption>…</caption>
 <colgroup></colgroup>
 <colgroup span="2"></colgroup>
 <colgroup span="2"></colgroup>
 <!-- rest of table... -->

That’s all there is to it. If you need to access individual columns within a col-
group for scripting or styling, identify them with col elements. The previous
column group section could also have been written like this:

 <colgroup></colgroup>
 <colgroup>
 <col class="start">
 <col class="end">
 </colgroup>
 <colgroup>
 <col class="start">
 <col class="end">
 </colgroup>

Note that the colgroup elements contain no content—they only provide an
indication of semantically relevant column structure. The empty col ele-
ments are used as handles for scripts or styles, but are not required.

WRAPPING UP TABLES

This chapter gave you a good overview of the components of HTML tables.
EXERCISE 8-4 combines most of what we’ve covered to give you a little more
practice at authoring tables.

<colgroup>…</colgroup>
A semantically related group of columns

<col>…</col>
One column in a column group

NOTE

When colgroup elements contain col
elements, they must not have a span
attribute.

8. Table Markup

Wrapping Up Tables

173

EXERCISE 8-4.  The table challenge

Now it’s time to put together the table writing skills you’ve
acquired in this chapter. Your challenge is to write out the source
document for the table shown in FIGURE 8-12.

FIGURE 8-12.   The table challenge.

I’ll walk you through it one step at a time.

1.	 First, open a new document in your text editor and set up
its overall structure (DOCTYPE, html, head, title, and body
elements). Save the document as table.html in the directory of
your choice.

2.	 Next, in order to make the boundaries of the cells and table
clear when you check your work, I’m going to have you add
some simple style sheet rules to the document. Don’t worry
about understanding exactly what’s happening here (although
it’s fairly intuitive); just insert this style element in the head of
the document exactly as you see it here:

<head>
 <title>Table Challenge</title>
 <style>
 td, th { border: 1px solid #CCC; }
 table { border: 1px solid black; }
 </style>
</head>

3.	 Now it’s time to start building the table. I usually start by setting
up the table and adding as many empty row elements as I’ll
need for the final table as placeholders, as shown here. You can
tell from the figure that there are five rows in this table:

<body>
 <table>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 </table>
</body>

4.	 Start with the top row, and fill in the th and td elements from
left to right, including any row or column spans as necessary. I’ll
help with the first row.

The first cell (the one in the top-left corner) spans down the
height of two rows, so it gets a rowspan attribute. I’ll use a th
here to keep it consistent with the rest of the row. This cell has
no content:

<table>
 <tr>
 <th rowspan="2"></th>
 </tr>

The cell in the second column of the first row spans over the
width of two columns, so it gets a colspan attribute:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
subheads</th>
 </tr>

The cell in the third column has been spanned over by the
colspan we just added, so we don’t need to include it in the
markup. The cell in the fourth column also spans down two
rows:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two
subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>

5.	 Now it’s your turn. Continue filling in the th and td elements for
the remaining four rows of the table. Here’s a hint: the first and
last cells in the second row have been spanned over. Also, if it’s
bold in the example, make it a header.

6.	 To complete the content, add the title over the table by using
the caption element.

7.	 Use the scope attribute to make sure that the Thing A, Thing B,
and Thing C headers are associated with their respective rows.

8.	 Finally, give the table row and column groups for greater sematic
clarity. There is no tfoot in this table. There are two column
groups: one column for headers, the rest for data. Use the span
attribute (no need for individual column identification).

9.	 Save your work and open the file in a browser. The table should
look just like the one on this page. If not, go back and adjust
your markup. If you’re stumped, the final markup for this
exercise is provided in the materials folder.

Part II. HTML for Structure

Wrapping Up Tables

174

TEST YOURSELF

The answers to these questions appear in Appendix A.

1.	 What are the parts (elements) of a basic HTML table?

2.	 What elements can a table contain directly (i.e., first-level children)?

3.	 What elements can a tr contain?

4.	 When would you use the col (column) element?

5.	 Find five errors in this table markup:

<caption>Primetime Television 1965</caption>
<table>
 Thursday Night
 <tr></tr>
 <th>7:30</th>
 <th>8:00</th>
 <th>8:30</th>
 <tr>
 <td>Shindig</td>
 <td>Donna Reed Show</td>
 <td>Bewitched</td>
 <tr>
 <colspan="2">Laredo</colspan>
 <td>Daniel Boone</td>
 </tr>
</table>

8. Table Markup

Test Yourself

175

ELEMENT REVIEW: TABLES

The following is a summary of the elements we covered in this chapter.

Element and attributes Description

table Establishes a table element

tr Establishes a row within a table

td Establishes a cell within a table row

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates the data cell with a header

th Table header associated with a row or column

abbr="text" Alternative label for when the header cell is ref-
erenced in other contexts

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates a header with another header

scope="row|col|
rowgroup|colgroup"

Associates the header with a row, row group,
column, or column group

caption Gives the table a title that displays in the browser

colgroup Declares a group of columns

span="number" Number of columns the column group spans;
may not be used when the colgroup contains
col elements

col Declares a column

span="number" Number of columns the column spans

tbody Identifies a table body row group

thead Identifies a table header row group

tfoot Identifies a table footer row group

Part II. HTML for Structure

Element Review: Tables

176

IN THIS CHAPTER

How forms work

Elements for adding
form widgets

Making forms accessible

Form design basics

It didn’t take long for the web to shift from a network of pages to read to a
place where you go to get things done—making purchases, booking plane
tickets, signing petitions, searching a site, posting a tweet…the list goes on!
Web forms handle all of these interactions.

In fact, in response to this shift from page to application, HTML5 introduced
a bonanza of new form controls and attributes that make it easier for users to
fill out forms and for developers to create them. Tasks that have traditionally
relied on JavaScript may be handled by markup and native browser behavior
alone. HTML5 introduces a number of new form-related elements, 12 new
input types, and many new attributes (they are listed in TABLE 9-1 at the end
of this chapter). Some of these features are waiting for browser implementa-
tion to catch up, so I will be sure to note which controls may not be univer-
sally supported.

This chapter introduces web forms, how they work, and the markup used to
create them. I’ll also briefly discuss the importance of web form design.

HOW FORMS WORK

There are two parts to a working form. The first part is the form that you see
on the page itself that is created using HTML markup. Forms are made up
of buttons, input fields, and drop-down menus (collectively known as form
controls) used to collect information from the user. Forms may also contain
text and other elements.

The other component of a web form is an application or script on the server
that processes the information collected by the form and returns an appro-
priate response. It’s what makes the form work. In other words, posting an

FORMS 9
CHAPTER

177

HTML document with form elements isn’t enough. Web applications and
scripts require programming know-how that is beyond the scope of this
book, but the “Getting Your Forms to Work” sidebar, later in this chapter, pro-
vides some options for getting the scripts you need.

From Data Entry to Response
If you are going to be creating web forms, it is beneficial to understand what
is happening behind the scenes. This example traces the steps of a transaction
using a simple form that gathers names and email addresses for a mailing list;
however, it is typical of the process for many forms.

1.	 Your visitor—let’s call her Sally—opens the page with a web form in
the browser window. The browser sees the form control elements in the
markup and renders them with the appropriate form controls on the page,
including two text-entry fields and a Submit button (shown in FIGURE 9-1).

2.	 Sally would like to sign up for this mailing list, so she enters her name
and email address into the fields and submits the form by hitting the
Submit button.

3.	 The browser collects the information she entered, encodes it (see the
sidebar “A Word About Encoding”), and sends it to the web application on
the server.

4.	 The web application accepts the information and processes it (that is,
does whatever it is programmed to do with it). In this example, the name
and email address are added to a mailing list database.

5.	 The web application also returns a response. The kind of response sent
back depends on the content and purpose of the form. Here, the response
is a simple web page saying thank you for signing up for the mailing
list. Other applications might respond by reloading the form page with
updated information, by moving the user on to another related form page,
or by issuing an error message if the form is not filled out correctly, to
name only a few examples.

6.	 The server sends the web application’s response back to the browser,
where it is displayed. Sally can see that the form worked and that she has
been added to the mailing list.

A Word About Encoding
Form data is encoded via the same method used for URLs. Spaces and other
characters that are not permitted get translated into their hexadecimal equivalents.
For example, each space character in the collected form data is represented by the
character + or %20 and a slash (/) character is replaced with %2F. You don’t need to
worry about this; the browser handles it automatically.

Part II. HTML for Structure

How Forms Work

178

Name = Sally Strongarm
Email = strongarm@example.com

Data

Response
(HTML)

Web application
(stores data in database)

FIGURE 9-1.   What happens behind the scenes when a web form is submitted.

THE FORM ELEMENT

Forms are added to web pages with (no surprise here) the form element. The
form element is a container for all the content of the form, including some
number of form controls, such as text-entry fields and buttons. It may also
contain block elements (h1, p, and lists, for example). However, it may not
contain another form element.

This sample source document contains a form similar to the one shown in
FIGURE 9-1:

<!DOCTYPE html>
<html>
<head>
 <title>Mailing List Signup</title>
 <meta charset="utf-8">
</head>

<form>…</form>
Interactive form

M AR KU P T I P

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

9. Forms

The form Element

179

<body>
 <h1>Mailing List Signup</h1>

 <form action="/mailinglist.php" method="POST">
 <fieldset>
 <legend>Join our email list</legend>
 <p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

	 <label for="firstlast">Name:</label>
	 <input type="text" name="fullname" id="firstlast">
	 <label for="email">Email:</label>
	 <input type="text" name="email" id="email">
	
 <input type="submit" value="Submit">
 </fieldset>
 </form>

</body>
</html>

In addition to being a container for form control elements, the form element
has some attributes that are necessary for interacting with the form processing
program on the server. Let’s take a look at each.

The action Attribute
The action attribute provides the location (URL) of the application or script
that will be used to process the form. The action attribute in this example
sends the data to a script called mailinglist.php:

<form action="/mailinglist.php" method="POST">...</form>

The .php suffix indicates that this form is processed by a script written in
the PHP scripting language, but web forms may be processed by any of the
following technologies:

•	 PHP (.php) is an open source scripting language most commonly used
with the Apache web server. It is the most popular and widely supported
forms processing option.

•	 Microsoft ASP (Active Server Pages; .asp) is a programming environment
for the Microsoft Internet Information Server (IIS).

•	 Microsoft’s ASP.NET (Active Server Page; .aspx) is a newer Microsoft lan-
guage that was designed to compete with PHP.

•	 Ruby on Rails. Ruby is the programming language that is used with the
Rails platform. Many popular web applications are built with it.

•	 JavaServer Pages (.jsp) is a Java-based technology similar to ASP.

•	 Python is a popular scripting language for web and server applications.

There are other form-processing options that may have their own suffixes or
none at all (as is the case for the Ruby on Rails platform). Check with your

NOTE

It is current best practice to wrap form
controls in semantic HTML elements such
as lists or divs. Ordered lists, as shown in
this example, are a popular solution, but
know that there are often default styles
that you’ll need to clear out before styl-
ing them, particularly on mobile brows-
ers. The fieldset, legend, and label
elements used in the example improve
accessibility. They are explained later in
this chapter.

Part II. HTML for Structure

The form Element

180

programmer, server administrator, or script documentation for the proper
name and location of the program to be provided by the action attribute (see
Web Hosting Tip).

Sometimes there is form processing code such as PHP embedded right in the
HTML file. In that case, leave the action empty, and the form will post to the
page itself.

The method Attribute
The method attribute specifies how the information should be sent to the
server. Let’s use this data gathered from the sample form in FIGURE 9-1 as an
example.

fullname = Sally Strongarm
email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks
like this (see the earlier sidebar if you need a refresher on encoding):

fullname=Sally+Strongarm&email=strongarm%40example.com

There are only two methods for sending this encoded data to the server:
POST or GET, indicated by the method attribute in the form element. The
method is optional and will default to GET if omitted. We’ll look at the dif-
ference between the two methods in the following sections. Our example uses
the POST method, as shown here:

<form action="/mailinglist.php" method="POST">...</form>

The GET method
With the GET method, the encoded form data gets tacked right onto the URL
sent to the server. A question mark character separates the URL from the fol-
lowing data, as shown here:

get http://www.bandname.com/mailinglist.php?name=Sally+Strongarm&email=
strongarm%40example.com

GET is inappropriate if the form submission performs an action, such as
deleting something or adding data to a database, because if the user goes
back, it gets submitted again.

The POST method
When the form’s method is set to POST, the browser sends a separate server
request containing some special headers followed by the data. In theory, only
the server sees the content of this request, and thus it is the best method for
sending secure information such as a home address or other personal informa-
tion. In practice, make sure HTTPS is enabled on your server so the user’s data
is encrypted and inaccessible in transit. (HTTPS is discussed in Chapter 2, How
the Web Works.)

W E B H O ST I N G T I P

If you know you want or need to work
with a particular form processing
language, make sure to confirm it is
supported when you are shopping for
a web hosting service.

Getting Your Forms
to Work
If you aren’t a programmer, don’t fret.
You have a few options for getting
your forms operational:

Use hosting plan goodies
Many site hosting plans include
access to scripts for simple
functions such as mailing lists.
More advanced plans may even
provide everything you need to
add a full shopping cart system to
your site as part of your monthly
hosting fee. Documentation or a
technical support person should
be available to help you use them.

Hire a programmer
If you need a custom solution, you
may need to hire a programmer
who has server-side programming
skills. Tell your programmer what
you are looking to accomplish with
your form, and she will suggest a
solution. Again, you need to make
sure you have permission to install
scripts on your server under your
current hosting plan, and that the
server supports the language you
choose.

→

9. Forms

The form Element

181

http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.bandname.com/mailinglist.php?name=Sally%20Strongarm&email=strongarm%40example.com

The POST method is also preferable for sending a lot of data, such as a
lengthy text entry, because there is no character limit as there is for GET.

The GET method is appropriate if you want users to be able to bookmark
the results of a form submission (such as a list of search results). Because the
content of the form is in plain sight, GET is not appropriate for forms with
private personal or financial information. In addition, GET may not be used
when the form is used to upload a file.

In this chapter, we’ll stick with the more prevalent POST method. Now that
we’ve gotten through the technical aspects of the form element, let’s turn our
attention to form controls.

VARIABLES AND CONTENT

Web forms use a variety of controls that allow users to enter information or
choose between options. Control types include various text-entry fields, but-
tons, menus, and a few controls with special functions. They are added to the
document with a collection of form control elements that we’ll be examining
one by one in the upcoming “The Great Form Control Roundup” section.

As a web designer, you need to be familiar with control options to make your
forms easy and intuitive to use. It is also useful to have an idea of what form
controls are doing behind the scenes.

The name Attribute
The job of each form control is to collect one bit of information from a user.
In the previous form example, text-entry fields collect the visitor’s name and
email address. To use the technical term, “fullname” and “email” are two vari-
ables collected by the form. The data entered by the user (“Sally Strongarm”
and “strongarm@example.com”) is the value or content of the variables.

The name attribute provides the variable name for the control. In this example,
the text gathered by a textarea element is defined as the “comment” variable:

<textarea name="comment" rows="4" cols="45" placeholder="Leave us a
comment."></textarea>

When a user enters a comment in the field (“This is the best band ever!”), it
would be passed to the server as a name/value (variable/content) pair like this:

comment=This+is+the+best+band+ever%21

All form control elements must include a name attribute so the form process-
ing application can sort the information. You may include a name attribute for
submit and reset button elements, but they are not required, because they
have special functions (submitting or resetting the form) not related to data
collection.

NOTE

POST and GET are not case-sensitive and
are commonly listed in all uppercase by
convention. In XHTML documents, how-
ever, the value of the method attribute
(post or get) must be provided in all
lowercase letters.

All form controls (except
submit and reset buttons)
must include a name
attribute.

Part II. HTML for Structure

Variables and Content

182

Naming Your Variables
You can’t just name controls willy-nilly. The web application that processes
the data is programmed to look for specific variable names. If you are design-
ing a form to work with a preexisting application or script, you need to find
out the specific variable names to use in the form so they are speaking the
same language. You can get the variable names from the instructions provided
with a ready-to-use script on your server, your system administrator, or the
programmer you are working with.

If the script or application will be created later, be sure to name your variables
simply and descriptively and to document them well. In addition, to avoid
confusion, you are advised to name each variable uniquely—that is, don’t use
the same name for two variables (however, there may be exceptions for which
it is desirable). You should also avoid putting character spaces in variable
names. Use an underscore or hyphen instead.

We’ve covered the basics of the form element and how variables are named.
Now we can get to the real meat of form markup: the controls.

THE GREAT FORM CONTROL ROUNDUP

This is the fun part—playing with the markup that adds form controls to
the page. This section introduces the elements used to create the following:

•	 Text-entry controls

•	 Specialized text-entry controls

•	 Submit and reset buttons

•	 Radio and checkbox buttons

•	 Pull-down and scrolling menus

•	 File selection and upload control

•	 Hidden controls

•	 Dates and times

•	 Numerical controls

•	 Color picker control

We’ll pause along the way to allow you to try them out by constructing the
pizza ordering form shown in FIGURE 9-2.

As you will see, the majority of controls are added to a form via the input ele-
ment. The functionality and appearance of the input element changes based
on the value of the type attribute in the tag. In HTML5.2, there are twenty-two
types of input controls. We’ll take a look at them all.

NOTE

The attributes associated with each
input type are listed in TABLE 9-1 at the
end of this chapter.

9. Forms

The Great Form Control Roundup

183

FIGURE 9-2.   The pizza ordering form we’ll build in the exercises in this chapter.

Text-Entry Controls
One of the most common web form tasks is entering text information. Which
element you use to collect text input depends on whether users are asked to
enter a single line of text (input) or multiple lines (textarea).

Be aware that if your form has text-entry fields, it needs to use the secure
HTTPS protocol to protect the user-entered content while their data is in
transit to the server (see the “HTTPS, the Secure Web Protocol” sidebar in for
more information).

Single-line text field
One of the most straightforward form input types is the text-entry field for
entering a single word or line of text. In fact, it is the default input type,
which means it is what you’ll get if you forget to include the type attribute
or include an unrecognized value. Add a text input field to a form by insert-
ing an input element with its type attribute set to text, as shown here and
in FIGURE 9-3:

<label>Favorite color: <input type="text" name="favcolor"
value="Red" maxlength="50"></label>

<input type="text">
Single-line text-entry control

NOTE

The markup examples throughout this
section include the label element,
which is used to improve accessibility.
We will discuss label in the upcoming
“Form Accessibility Features” section,
but in the meantime, I want you to get
used to seeing proper form markup.

Part II. HTML for Structure

The Great Form Control Roundup

184

There are a few attributes in there that I’d like to point out:

name

The name attribute is required for indicating the variable name.

value

The value attribute specifies default text that appears in the field when
the form is loaded. When you reset a form, it returns to this value. The
value of the value attribute gets submitted to the server, so in this exam-
ple, the value “Red” will be sent with the form unless the user changes it.
As an alternative, you could use the placeholder attribute to provide a
hint of what to type in the field, such as “My favorite color”. The value of
placeholder is not submitted with the form, and is purely a user interface
enhancement. You’ll see it in action in the upcoming section.

maxlength, minlength	

By default, users can type an unlimited number of characters in a text
field regardless of its size (the display scrolls to the right if the text exceeds
the character width of the box). You can set a maximum character limit
using the maxlength attribute if the form-processing program you are
using requires it. The minlength attribute specifies the minimum number
of characters.

BROWSER SUPPORT NOTE

Versions of Internet Explorer prior to ver-
sion 11 and older versions of Android do
not support placeholder.

Text-entry field (input type="text")

Multiline text-entry field with text content (input type="textarea")

Multiline text-entry field with placeholder text (input type="textarea")

FIGURE 9-3.  Examples of the text-entry control options for web forms.

NOTE

The specific rendering style of form con-
trols varies by operating system and
browser version.

9. Forms

The Great Form Control Roundup

185

size

The size attribute specifies the length of the input field in number of
visible characters. It is more common, however, to use style sheets to set
the size of the input area. By default, a text input widget displays at a size
that accommodates 20 characters.

Multiline text-entry field
At times, you’ll want your users to be able to enter more than just one line of
text. For these instances, use the textarea element, which is replaced by a mul-
tiline, scrollable text entry box when displayed by the browser (FIGURE 9-3).

Unlike the empty input element, you can put content between the opening
and closing tags in the textarea element. The content of the textarea ele-
ment shows up in the text box when the form is displayed in the browser. It
also gets sent to the server when the form is submitted, so carefully consider
what goes there.

<p><label>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" rows="5" cols="50">The band is totally
awesome!</textarea></label></p>

The rows and cols attributes provide a way to specify the size of the textarea
with markup. rows specifies the number of lines the text area should display,
and cols specifies the width in number of characters (although it is more
common to use CSS to specify the width of the field). Scrollbars will be pro-
vided if the user types more text than fits in the allotted space.

There are also a few attributes not shown in the example. The wrap attribute
specifies whether the soft line breaks (where the text naturally wraps at the
edge of the box) are preserved when the form is submitted. A value of soft
(the default) does not preserve line breaks. The hard value preserves line
breaks when the cols attribute is used to set the character width of the box.
The maxlength and minlength attributes set the maximum and minimum
number of characters that can be typed into the field.

It is not uncommon for developers to put nothing between the opening and
closing tags, and provide a hint of what should go there with a placeholder
attribute instead. Placeholder text, unlike textarea content, is not sent to the
server when the form is submitted. Examples of textarea content and place-
holder text are shown in FIGURE 9-3.

<p>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" placeholder="50 words or less" rows="5"
cols="50"></textarea>
</p>

<textarea>…</textarea>
Multiline text-entry control

Part II. HTML for Structure

The Great Form Control Roundup

186

Specialized Text-Entry Fields
In addition to the generic single-line text entry, there are a number of input
types for entering specific types of information such as passwords, search
terms, email addresses, telephone numbers, and URLs.

Password entry field
A password field works just like a text-entry field, except the characters are
obscured from view by asterisk (*) or bullet (•) characters, or another charac-
ter determined by the browser.

It’s important to note that although the characters entered in the password
field are not visible to casual onlookers, the form does not encrypt the infor-
mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. FIGURE 9-4 shows
how it might look after the user enters a password in the field.

<label for="form-pswd">Password:</label>

 <input type="password" name="pswd" maxlength="12" id="form-pswd">

FIGURE 9-4.   Passwords are converted to bullets in the browser display.

disabled and readonly
The disabled and readonly attributes both prevent users from interacting with a
form control, but they work slightly differently.

When a form element is disabled, it cannot be selected. Visual browsers may render
the control as grayed-out by default (which you can change with CSS, of course).
The disabled state can only be changed with a script. This is a useful attribute for
restricting access to some form fields based on data entered earlier in the form and
can be applied to any form control or fieldset.

The readonly attribute prevents the user from changing the value of the form
control (although it can be selected). This enables developers to use scripts to set
values for controls contingent on other data entered earlier in the form. Inputs that
are readonly should have strong visual cues that they are somehow different from
other inputs, or they could be confusing to users who are trying to change their
values. The readonly attribute can be used with textarea and text-based input
controls (see TABLE 9-1 at the very end of this chapter).

The most important difference is that readonly fields are submitted when the form
is submitted, but disabled ones are not.

<input type="password">
Password text control

9. Forms

The Great Form Control Roundup

187

Search, email, telephone numbers, and URLs
Until HTML5, the only way to collect email addresses, telephone numbers,
URLs, or search terms was to insert a generic text input field. In HTML5, the
email, tel, url, and search input types give the browser a heads-up as to what
type of information to expect in the field. These input types use the same
attributes as the generic text input type described earlier (name, maxlength,
minlength, size, and value), as well as a number of other attributes (see
TABLE 9-1 at the end of the chapter).

All of these input types are typically displayed as single-line text inputs. But
browsers that support them can do some interesting things with the extra
semantic information. For example, Safari on iOS uses the input type to pro-
vide a keyboard well suited to the entry task, such as the keyboard featuring
a Search button for the search input type or a “.com” button when the input
type is set to url (FIGURE 9-5). Browsers usually add a one-click “clear field”
icon (usually a little X) in search fields. A supporting browser could check the
user’s input to see that it is valid—for example, by making sure text entered
in an email input follows the standard email address structure (in the past,
you needed JavaScript for validation). For example, the Opera (FIGURE 9-6)
and Chrome browsers display a warning if the input does not match the
expected format.

Although email, search, telephone, and URL inputs are well supported by up-
to-date browsers, there may be inconsistencies in the way they are handled.
Older browsers, such as Opera Mini and any version of Internet Explorer
prior to 11, do not recognize them at all, but will display the default generic
text input instead, which works perfectly fine.

input type="email" input type="search" input type="tel" input type="url"

FIGURE 9-5.   Safari on iOS provides custom keyboards based on the input type.

<input type="search">
Search field

<input type="email">
Email address

<input type="tel">
Telephone number

<input type="url">
Location (URL)

Part II. HTML for Structure

The Great Form Control Roundup

188

FIGURE 9-6.   Opera displays a warning when input does not match the expected
email format as part of its client-side validation support.

Drop-Down Suggestions

<datalist>…</datalist>
Drop-down menu input

The datalist element allows the author to provide a drop-down menu of suggested
values for any type of text input. It gives the user some shortcuts to select from, but
if none are selected, the user can still type in their own text. Within the datalist
element, suggested values are marked up as option elements. Use the list
attribute in the input element to associate it with the id of its respective datalist.

In the following example (FIGURE 9-7), a datalist suggests several education level
options for a text input:

<p>Education completed: <input type="text" list="edulevel"
name="education">

<datalist id="edulevel">
 <option value="High School">
 <option value="Bachelors Degree">
 <option value="Masters Degree">
 <option value="PhD">
</datalist>

As of this writing, browser support for datalists remains spotty. Chrome and Opera
support it, but there is a bug that makes datalists unscrollable (i.e., unusable) if the
list is too long, so it is best used for short lists of options. IE11 and Edge have buggy
implementations, and Safari and iOS don’t support it at all. The good news is if it is
unsupported, browsers present a simple text input, which is a perfectly acceptable
fallback. You could also use a JavaScript polyfill to create datalist functionality.

FIGURE 9-7.   A datalist creates a pop-up menu of suggested values for a text-
entry field.

WARNING

The values from form controls should
be checked by the server code (PHP,
ASP.NET, etc.), as they can be hacked or
manipulated. So, although they make
controlling and validating user input
easier, it is still vital to perform server-
side checks before updating the data-
base on the server.

9. Forms

The Great Form Control Roundup

189

Submit and Reset Buttons

<input type="submit">
Submits the form data to the server

<input type="reset">
Resets the form controls to their default settings

There are several kinds of buttons that can be added to web forms. The most
fundamental is the submit button. When clicked or tapped, the submit but-
ton immediately sends the collected form data to the server for processing.
A reset button returns the form controls to the state they were in when the
form initially loaded. In other words, resetting the form doesn’t simply clear
all the fields.

Both submit and reset buttons are added via the input element. As mentioned
earlier, because these buttons have specific functions that do not include the
entry of data, they are the only form control elements that do not require the
name attribute, although it is OK to add one if you need it.

Submit and reset buttons are straightforward to use. Just place them in
the appropriate place in the form, which in most cases is at the very end.
By default, the submit button displays with the label “Submit” or “Submit
Query,” and the reset button is labeled “Reset.” You can change the text on
the button by using the value attribute, as shown in the reset button in this
example (FIGURE 9-8).

<p><input type="submit"> <input type="reset" value="Start over"></p>

FIGURE 9-8.   Submit and reset buttons.

The reset button is not used in forms as commonly as it used to be. That is
because in contemporary form development, we use JavaScript to check the
validity of form inputs along the way, so users get feedback as they go along.
With thoughtful design and assistance, fewer users should get to the end of
the form and need to reset the whole thing. Still, it is a good function to be
aware of.

At this point, you know enough about form markup to start building the
questionnaire shown in FIGURE 9-2.

EXERCISE 9-1 walks you through the first steps.

A Few More Buttons
There are a handful of custom button
elements that are a little off the
beaten path for beginners, but in the
interest of thoroughness, here they
are tucked off in a sidebar.

Image buttons
<input type="image">
This type of input control allows you
to replace the submit button with
an image of your choice. The image
will appear flat, not like a 3-D button.
Unfortunately, this type of button
has accessibility issues, so be sure to
include a carefully chosen alt value.

Custom input button
<input type="button">
Setting the type of the input element
to “button” creates a button that can
be customized with JavaScript. It has
no predefined function on its own,
unlike submit and reset buttons.

The button element
<button>…</button>
The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.

For more information on what you
can do with the button element,
read “Push My Button” by Aaron
Gustafson at digital-web.com/
articles/push_my_button. “When
to Use the Button Element,” by Chris
Coyier is another helpful read (css-
tricks.com/use-button-element/).

Part II. HTML for Structure

The Great Form Control Roundup

190

FIGURE 9-9.   A sketch of the Black Goose Bistro pizza ordering form.

EXERCISE 9-1.  Starting the pizza order form

Here’s the scenario. You are the web designer in charge of creating
an online pizza ordering form for Black Goose Bistro. The owner
has handed you a sketch (FIGURE 9-9) of the form’s content.
There are sticky notes from the programmer with information
about the script and variable names you need to use.

Your challenge is to turn the sketch into a functional form. I’ve
given you a head start by creating a bare-bones document with
text content and minimal markup and styles. This document,
pizza.html, is available online at learningwebdesign.com/​5e/
materials. The finished form is also provided.

→

9. Forms

The Great Form Control Roundup

191

Radio and Checkbox Buttons
Both checkbox and radio buttons make it simple for your visitors to choose
from a number of provided options. They are similar in that they function
like little on/off switches that can be toggled by the user and are added with
the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when
only one option from the group is permitted—in other words, when the selec-
tions are mutually exclusive (such as “Yes or No,” or “Pick-up or Delivery”).
When one radio button is “on,” all of the others must be “off,” sort of the way
buttons used to work on old radios: press one button in, and the rest pop out.

When checkboxes are grouped together, however, it is possible to select as
many or as few from the group as desired. This makes them the right choice
for lists in which more than one selection is OK.

1.	 Open the file pizza.html in a text editor.

2.	 The first thing we’ll do is put everything after the intro paragraph
into a form element. The programmer has left a note specifying
the action and the method to use for this form. The resulting
form element should look like this (keep it on one line):

<form action="http://www.blackgoosebistro.com/
pizza.php" method="POST">
…
</form>

3.	 In this exercise, we’ll work on the “Your Information” section of
the form. Start with the first four short text-entry form controls
that are marked up appropriately as an unordered list. Here’s
the first one; you insert the other three:

Name: <input type="text" name="customername">

HINTS: Choose the most appropriate input type for each entry
field. Be sure to name the input elements as specified in the
programmer’s note.

4.	 After “Delivery instructions:” add a line break and a multiline
text area. Because we aren’t writing a style sheet for this form,
use markup to make it four rows long and 60 characters wide (in
the real world, CSS is preferable because it gives you more fine-
tuned control):

Delivery instructions:

<textarea name="instructions" rows="4" cols="60"
maxlength="400" placeholder="No more than 400
characters long"></textarea>

5.	 We’ll skip the rest of the form for now until we get a few more
controls under our belt, but we can add the submit and reset

buttons at the end, just before the </form> tag. Note that
they’ve asked us to change the text on the submit button.

<p><input type="submit" value="Bring me a
pizza!"><input type="reset"></p>

6.	 Now, save the document and open it in a browser. The parts
that are finished should generally match FIGURE 9-2. If they
don’t, then you have some more work to do.

Once the document looks right, take it for a spin by entering
some information and submitting the form. You should get a
response like the one shown in FIGURE 9-10. Yes, pizza.php
actually works, but sorry, no pizzas will be delivered.

FIGURE 9-10.   You should see a response page like this if your
form is working. The pizza description fields will be added in later
exercises, so they will return “empty” for now.

NOTE

I have omitted the fieldset and label
elements from the code examples for
radio buttons, checkboxes, and menus
in order to keep the markup structure
as simple and clear as possible. In the
upcoming section “Form Accessibility
Features,” you will learn why it is impor-
tant to include them in your markup for
all form elements.

EXERCISE 9-1. Continued

Part II. HTML for Structure

The Great Form Control Roundup

192

Radio buttons
Radio buttons are added to a form via the input element with the type attri-
bute set to “radio.” Here is the syntax for a minimal radio button:

<input type="radio" name="variable" value="value">

The name attribute is required and plays an important role in binding mul-
tiple radio inputs into a set. When you give a number of radio button inputs
the same name value (“age” in the following example), they create a group of
mutually exclusive options.

In this example, radio buttons are used as an interface for users to enter their
age group. A person can’t belong to more than one age group, so radio but-
tons are the right choice. FIGURE 9-11 shows how radio buttons are rendered
in the browser.

<p>How old are you?</p>

 <input type="radio" name="age" value="under24" checked> under
24
 <input type="radio" name="age" value="25-34"> 25 to 34
 <input type="radio" name="age" value="35-44"> 35 to 44
 <input type="radio" name="age" value="over45"> 45+

Notice that all of the input elements have the same variable name (“age”), but
their values are different. Because these are radio buttons, only one button
can be checked at a time, and therefore, only one value will be sent to the
server for processing when the form is submitted.

You can decide which button is checked when the form loads by adding the
checked attribute to the input element (see Note). In this example, the button
next to “under 24” will be checked when the page loads.

<input type="radio">
Radio button

NOTE

It may look like the checked attribute
has no value, but it is one of the attri-
butes in HTML that can be minimized to
one word. Behind the scenes, the mini-
mized checked attribute stands for the
rather redundant:

checked="checked"

One of the rules of the stricter XHTML
syntax is that attributes cannot be mini-
mized in this way.

Checkboxes (input type="checkbox")Radio buttons (input type="radio")

FIGURE 9-11.  Radio buttons (left) are appropriate when only one selection is
permitted. Checkboxes (right) are best when users may choose any number of choices,
from none to all of them.

9. Forms

The Great Form Control Roundup

193

Checkbox buttons
Checkboxes are added via the input element with its type set to checkbox.
As with radio buttons, you create groups of checkboxes by assigning them
the same name value. The difference, as we’ve already noted, is that more than
one checkbox may be checked at a time. The value of every checked button
will be sent to the server when the form is submitted. Here’s an example of
a group of checkbox buttons used to indicate musical interests; FIGURE 9-11
shows how they look in the browser:

<p>What type of music do you listen to?</p>

 <input type="checkbox" name="genre" value="punk" checked> Punk
rock
 <input type="checkbox" name="genre" value="indie" checked> Indie
rock
 <input type="checkbox" name="genre" value="hiphop"> Hip Hop
 <input type="checkbox" name="genre" value="rockabilly">
Rockabilly

Checkboxes don’t necessarily need to be used in groups, of course. In this
example, a single checkbox is used to allow visitors to opt in to special pro-
motions. The value of the control will be passed along to the server only if
the user checks the box.

<p><input type="checkbox" name="OptIn" value="yes"> Yes, send me news
and special promotions by email.</p>

Checkbox buttons also use the checked attribute to make them preselected
when the form loads.

In EXERCISE 9-2, you’ll get a chance to add both radio and checkbox buttons
to the pizza ordering form.

<input type="checkbox">
Checkbox button

EXERCISE 9-2.  Adding radio buttons and checkboxes

The next section of the Black Goose Bistro pizza ordering form uses radio buttons and
checkboxes for selecting pizza options. Open the pizza.html document and follow these
steps:

1.	 In the “Design Your Dream Pizza” section, there are lists of Crust and Toppings options.
The Crust options should be radio buttons because pizzas have only one crust. Insert a
radio button before each option. Follow this example for the remaining crust options:

<input type="radio" name="crust" value="white"> Classic white

2.	 Mark up the Toppings options as you did the Crust options, but this time, the type
should be checkbox. Be sure the variable name for each is toppings[], and that the
“Red sauce” option is preselected (checked), as noted on the sketch.

3.	 Save the document and check your work by opening it in a browser to make sure it
looks right; then submit the form to make sure it’s functioning properly.

Part II. HTML for Structure

The Great Form Control Roundup

194

Menus
Another way to provide a list of choices is to put them in a drop-down or
scrolling menu. Menus tend to be more compact than groups of buttons and
checkboxes.

You add both drop-down and scrolling menus to a form with the select
element. Whether the menu pulls down or scrolls is the result of how you
specify its size and whether you allow more than one option to be selected.
Let’s take a look at both menu types.

Drop-down menus
The select element displays as a drop-down menu (also called a pull-down
menu) by default when no size is specified or if the size attribute is set to
1. In pull-down menus, only one item may be selected. Here’s an example
(shown in FIGURE 9-12):

<p>What is your favorite 80s band?
<select name="EightiesFave">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option>Tears for Fears</option>
 <option>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

FIGURE 9-12.  Pull-down menus pop open when the user clicks the arrow or bar.

You can see that the select element is just a container for a number of option
elements. The content of the chosen option element is what gets passed to the
web application when the form is submitted. If, for some reason, you want to
send a different value than what appears in the menu, use the value attribute
to provide an overriding value. For example, if someone selects “Everything
But the Girl” from the sample menu, the form submits the value “EBTG” for
the “EightiesFave” variable. For the others, the content between the option
tags will be sent as the value.

Scrolling menus
To make the menu display as a scrolling list, simply specify the number of
lines you’d like to be visible using the size attribute. This example menu has

<select>…</select>
Menu control

<option>…</option>
An option within a menu

<optgroup>…</optgroup>
A logical grouping of options within
a menu

9. Forms

The Great Form Control Roundup

195

the same options as the previous one, except it has been set to display as a
scrolling list that is six lines tall (FIGURE 9-13):

<p>What 80s bands did you listen to?
<select name="EightiesBands" size="6" multiple>
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option selected>Tears for Fears</option>
 <option selected>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

FIGURE 9-13.  A scrolling menu with multiple options selected.

You may notice a few minimized attributes tucked in there. The multiple
attribute allows users to make more than one selection from the scrolling
list. Note that pull-down menus do not allow multiple selections; when the
browser detects the multiple attribute, it displays a small scrolling menu
automatically by default.

Use the selected attribute in an option element to make it the default value
for the menu control. Selected options are highlighted when the form loads.
The selected attribute can be used with pull-down menus as well.

Grouping menu options
You can use the optgroup element to create conceptual groups of options.
The required label attribute provides the heading for the group (see Note).
FIGURE 9-14 shows how option groups are rendered in modern browsers.

<select name="icecream" size="7" multiple>
 <optgroup label="traditional">
 <option>vanilla</option>
 <option>chocolate</option>
 </optgroup>
 <optgroup label="fancy">
 <option>Super praline</option>
 <option>Nut surprise</option>
 <option>Candy corn</option>
 </optgroup>
</select>

NOTE

The label attribute in the optgroup
element is not the same as the label
element used to improve accessibility
(discussed later in this chapter).

Part II. HTML for Structure

The Great Form Control Roundup

196

FIGURE 9-14.   Option groups.

In EXERCISE 9-3, you will use the select element to let Black Goose Bistro
customers choose a number of pizzas for their order.

File Selection Control

<input type="file">
File selection field

Web forms can collect more than just data. They can also be used to trans-
mit external documents from a user’s hard drive. For example, a printing
company could use a web form to upload artwork for a business card order.
A magazine could use a form to collect digital photos for a photo contest.

The file selection control makes it possible for users to select a document
from the hard drive to be submitted with the form data. We add it to the form
by using our old friend, the input element, with its type set to file.

The markup sample here (FIGURE 9-15) shows a file selection control used
for photo submissions:

<form action="/client.php" method="POST" enctype="multipart/form-data">
 <label>Send a photo to be used as your online icon (optional)

 <input type="file" name="photo"></label>
</form>

The file upload widget varies slightly by browser and operating system, but
it is generally a button that allows you to access the file organization system
on your computer (FIGURE 9-15).

File input (on Chrome browser)

FIGURE 9-15.  A file selection form field.

EXERCISE 9-3. 
Adding a menu

The only other control that needs to be
added to the order form is a pull-down
menu for selecting the number of pizzas
to have delivered.

1.	 Insert a select menu element with
the option to order between 1 and 6
pizzas:

<p>How many pizzas:
<select name="pizzas"
size="1">
 <option>1</option>
<-- more options here -->
 </select>
</p>

2.	 Save the document and check it in
a browser. You can submit the form,
too, to be sure that it’s working. You
should get the “Thank You” response
page listing all of the information you
entered in the form.

Congratulations! You’ve built your first
working web form. In EXERCISE 9-4,
we’ll add markup that makes it more
accessible to assistive devices.

9. Forms

The Great Form Control Roundup

197

It is important to note that when a form contains a file selection input ele-
ment, you must specify the encoding type (enctype) as multipart/form-data
in the form element and use the POST method.

The file input type has a few attributes. The accept attribute gives the
browser a heads-up on what file types may be accepted (audio, video, image,
or some other format identified by its media type). Adding the multiple attri-
butes allows multiple files to be selected for upload. The required attribute,
as it says, requires a file to be selected.

Hidden Controls
There may be times when you need to send information to the form process-
ing application that does not come from the user. In these instances, you can
use a hidden form control that sends data when the form is submitted, but is
not visible when the form is displayed in a browser.

Hidden controls are added via the input element with the type set to hidden.
Its sole purpose is to pass a name/value pair to the server when the form is
submitted. In this example, a hidden form element is used to provide the
location of the appropriate thank-you document to display when the transac-
tion is complete:

<input type="hidden" name="success-link" value="http://www.example.com/
thankyou.html">

I’ve worked with forms that have had dozens of hidden controls in the form
element before getting to the parts that the user actually fills out. This is
the kind of information you get from the application programmer, system
administrator, or whoever is helping you get your forms processed. If you are
using an existing script, be sure to check the accompanying instructions to
see if any hidden form variables are required.

Date and Time Controls
If you’ve ever booked a hotel or a flight online, you’ve no doubt used a little
calendar widget for choosing the date. Chances are, that little calendar was
created with JavaScript. HTML5 introduced six new input types that make
date and time selection widgets part of a browser’s standard built-in display
capabilities, just as they can display checkboxes, pop-up menus, and other
widgets today. As of this writing, the date and time pickers are implemented
on only a few browsers (Chrome, Microsoft Edge, Opera, Vivaldi, and
Android), but on non-supporting browsers, the date and time input types
display as a perfectly usable text-entry field instead. FIGURE 9-16 shows date
and time widgets as rendered in Chrome on macOS.

<input type="hidden">
Hidden control field

<input type="date">
Date input control

<input type="time">
Time input control

<input type="datetime-local">
Date/time control

<input type="month">
Specifies a month in a year

<input type="week">
Specifies a particular week in a year

WARNIN G

It is possible for users to access and
manipulate hidden form controls. If
you should become a professional web
developer, you will learn to program
defensively for this sort of thing.

Part II. HTML for Structure

The Great Form Control Roundup

198

input type="time"

input type="date" input type="datetime-local"

input type="month" input type="week"

FIGURE 9-16.   Date and time picker inputs (shown in Chrome on macOS).

The new date- and time-related input types are as follows:

<input type="date" name="name" value="2017-01-14">

Creates a date input control, such as a pop-up calendar, for specifying a
date (year, month, day). The initial value must be provided in ISO date
format (YYYY-MM-DD).

<input type="time" name="name" value="03:13:00">

Creates a time input control for specifying a time (hour, minute, seconds,
fractional sections) with no time zone indicated. The value is provided as
hh:mm:ss.

<input type="datetime-local" name="name" value="2017-01-14T03:13:00">

Creates a combined date/time input control with no time zone informa-
tion (YYYY-MM-DDThh:mm:ss).

NOTE

The value attribute is optional but may
be included to provide a starting date or
time in the widget. It is included here to
demonstrate date and time formats.

9. Forms

The Great Form Control Roundup

199

<input type="month" name="name" value="2017-01">

Creates a date input control that specifies a particular month in a year
(YYYY-MM).

<input type="week" name="name" value="2017-W2">

Creates a date input control for specifying a particular week in a year
using an ISO week numbering format (YYYY-W#).

Numerical Inputs
The number and range input types collect numerical data. For the number
input, the browser may supply a spinner widget with up and down arrows for
selecting a specific numerical value (a text input may display in user agents
that don’t support the input type). The range input is typically displayed as
a slider (FIGURE 9-17) that allows the user to select a value within a specified
range:

<label>Number of guests <input type="number" name="guests" min="1"
max="6"></label>

<label>Satisfaction (0 to 10) <input type="range" name="satisfaction"
min="0" max="10" step="1"></label>

input type="number"

input type="range"

FIGURE 9-17.   The number and range input types (shown in Chrome on macOS).

Both the number and range input types accept the min and max attributes for
specifying the minimum and maximum values allowed for the input (again,
the browser could check that the user input complies with the constraint).
Both min and max are optional, and you can also set one without the other.
Negative values are allowed. When the element is selected, the value can be
increased or decreased with the number keys on a computer keyboard, in
addition to being moved with the mouse or a finger.

<input type="number">
Number input

<input type="range">
Slider input

Part II. HTML for Structure

The Great Form Control Roundup

200

The step attribute allows developers to specify the acceptable increments for
numerical input. The default is 1. A value of “.5” would permit values 1, 1.5,
2, 2.5, and so on; a value of 100 would permit 100, 200, 300, and so on. You
can also set the step attribute to any to explicitly accept any value increment.

These two elements allow for only the calculated step values, not for a speci-
fied list of allowed values (such as 1, 2, 3, 5, 8, 13, 21). If you need customized
values, you need to use JavaScript to program that behavior.

Because these are newer elements, browser support is inconsistent. Some
UI widgets include up and down arrows for increasing or decreasing the
amount, but many don’t. Mobile browsers (iOS Safari, Android, Chrome for
Android) currently do not support min, max, and step. Internet Explorer 9
and earlier do not support number and range inputs at all. Again, browsers
that don’t support these new input types display a standard text input field
instead, which is a fine fallback.

Color Selector
The intent of the color control type is to create a pop-up color picker for
visually selecting a color value similar to those used in operating systems
or image-editing programs. Values are provided in hexadecimal RGB values
(#RRGGBB). FIGURE 9-18 shows the color picker in Chrome on macOS (it is
the same as the macOS color picker). Non-supporting browsers—currently all
versions of IE, iOS Safari, and older versions of Android—​display the default
text input instead.

<label>Your favorite color: <input type="color" name="favorite">
</label>

FIGURE 9-18.   The color input type (shown in Chrome on macOS).

<input type="color">
Color picker

9. Forms

The Great Form Control Roundup

201

That wraps up the form control roundup. Learning how to insert form
controls is one part of the forms production process, but any web developer
worth her salt will take the time to make sure the form is as accessible as
possible. Fortunately, there are a few things we can do in markup to describe
the form’s structure.

A Few More Form Elements
For the sake of completeness, let’s look at the remaining form elements. These were
added in HTML5 and, as of this writing, they still have spotty browser support. They
are somewhat esoteric anyway, so you may wait a while to add these to your HTML
toolbox. We’ve already covered the datalist element for providing suggested values
for text inputs. HTML5 also introduced the following elements:

progress
<progress>…</progress>
Indicates the state of an ongoing process

The progress element gives users feedback on the state of an ongoing process,
such as a file download. It may indicate a specific percentage of completion
(determinate), like a progress bar, or just indicate a “waiting” state (indeterminate),
like a spinner. The progress element requires scripting to function.

Percent downloaded: <progress max="100" id="fave">0</progress>

meter
<meter>…</meter>
Represents a measurement within a range

meter represents a measurement within a known range of values (also known as a
gauge). It has a number of attributes: min and max indicate the highest and lowest
values for the range (they default to 0 and 100); low and high could be used to
trigger warnings at undesirable levels; and optimum specifies a preferred value.

<meter min="0" max="100" name="volume">60%</meter>

output
<output>…</output>
Calculated output value

Simply put, the output element indicates the result of a calculation by a script or
program. This example, taken from the HTML5.2 specification, uses the output
element and JavaScript to display the sum of numbers entered into inputs a and b.

<form onsubmit="return false" oninput="o.value = a.valueAsNumber +
b.valueAsNumber">
<input name=a type=number step=any>
+ <input name=b type=number step=any> =
<output name=o for="a b"></output>
</form>

Part II. HTML for Structure

The Great Form Control Roundup

202

FORM ACCESSIBILITY FEATURES

It is essential to consider how users without the benefit of visual browsers
will be able to understand and navigate through your web forms. The label,
fieldset, and legend form elements improve accessibility by making the
semantic connections between the components of a form clear. Not only is
the resulting markup more semantically rich, but there are also more ele-
ments available to act as “hooks” for style sheet rules. Everybody wins!

Labels
Although we may see the label “Address” right next to a text field for entering
an address in a visual browser, in the source, the label and field input may
be separated. The label element associates descriptive text with its respec-
tive form field. This provides important context for users with speech-based
browsers. Another advantage to using labels is that users can click or tap any-
where on them to select or focus the form control. Users with touch devices
will appreciate the larger tap target.

Each label element is associated with exactly one form control. There are two
ways to use it. One method, called implicit association, nests the control and
its description within a label element. In the following example, labels are
assigned to individual checkboxes and their related text descriptions. (By the
way, this is the way to label radio buttons and checkboxes. You can’t assign a
label to the entire group.)

 <label><input type="checkbox" name="genre" value="punk"> Punk
rock</label>
 <label><input type="checkbox" name="genre" value="indie"> Indie
rock</label>
 <label><input type="checkbox" name="genre" value="hiphop"> Hip
Hop</label>
 <label><input type="checkbox" name="genre" value="rockabilly">
Rockabilly</label>

The other method, called explicit association, matches the label with the con-
trol’s id reference. The for attribute says which control the label is for. This
approach is useful when the control is not directly next to its descriptive text
in the source. It also offers the potential advantage of keeping the label and
the control as two distinct elements, which you may find handy when align-
ing them with style sheets.

<label for="form-login-username">Login account</label>
<input type="text" name="login" id="form-login-username">

<label for="form-login-password">Password</label>
<input type="password" name="password" id="form-login-password">

<label>…</label>
Attaches information to form controls

M AR KU P T I P

To keep form-related ids distinct
from other ids on the page, consider
prefacing them with “form-” as shown
in the examples.

Another technique for keeping forms
organized is to give the form element
an ID name and include it as a prefix
in the IDs for the controls it contains
as follows:

<form id="form-login">
<input id="form-login-user">
<input id="form-login-passwd">

9. Forms

Form Accessibility Features

203

fieldset and legend
The fieldset element indicates a logical group of form controls. A fieldset
may also include a legend element that provides a caption for the enclosed
fields.

FIGURE 9-19 shows the default rendering of the following example, but you
could use style sheets to change the way the fieldset and legend appear (see
Warning):

<fieldset>
 <legend>Mailing List Sign-up</legend>

 <label>Add me to your mailing list <input type="radio"
 name="list" value="yes" checked></label>
 <label>No thanks <input type="radio" name="list" value="no">
 </label>

</fieldset>

<fieldset>
 <legend>Customer Information</legend>

 <label>Full name: <input type="text" name="fullname"></label>

 <label>Email: <input type="text" name="email"></label>
 <label>State: <input type="text" name="state"></label>

</fieldset>

FIGURE 9-19.  The default rendering of fieldsets and legends.

In EXERCISE 9-4, we’ll wrap up the pizza order form by making it more acces-
sible with labels and fieldsets.

WARNIN G

Fieldsets and legends tend to throw some
curveballs when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser to
browser. Legends are unique in that their
text doesn’t wrap. The solution is to put a
span or b element in them and control
presentation of the contained element
without sacrificing accessibility. Be sure
to do lots of testing if you style these form
elements.

<fieldset>…</fieldset
Groups related controls and labels

<legend>…</legend>
Assigns a caption to a fieldset

Part II. HTML for Structure

Form Accessibility Features

204

EXERCISE 9-4.  Labels and fieldsets

Our pizza ordering form is working, but we need to label it
appropriately and create some fieldsets to make it more usable
on assistive devices. Once again, open the pizza.html document
and follow these steps.

I like to start with the broad strokes and fill in details later, so we’ll
begin this exercise by organizing the form controls into fieldsets,
and then we’ll do all the labeling. You could do it the other way
around, and ideally, you’d just mark up the labels and fieldsets as
you go along instead of adding them all later.

1.	 The “Your Information” section at the top of the form is definitely
conceptually related, so let’s wrap it all in a fieldset element.
Change the markup of the section title from a paragraph (p) to a
legend for the fieldset:

<fieldset>
 <legend>Your Information</legend>

 Name: <input type="text" name="fullname">

 …

</fieldset>

2.	 Next, group the Crust, Toppings, and Number questions in a big
fieldset with the legend “Pizza specs” (the text is there; you just
need to change it from a p to a legend):

<h2>Design Your Dream Pizza:</h2>
<fieldset>
<legend>Pizza specs</legend>
 Crust…
 Toppings…
 Number…
</fieldset>

3.	 Create another fieldset just for the Crust options, again changing
the description in a paragraph to a legend. Do the same for the
Toppings and Number sections. In the end, you will have three
fieldsets contained within the larger “Pizza specs” fieldset. When
you are done, save your document and open it in a browser.
Now it should look very close to the final form shown back in
FIGURE 9-2, given the expected browser differences:

<fieldset>
<legend>Crust (Choose one):</legend>
 …
</fieldset>

4.	 OK, now let’s get some labels in there. In the “Your Information”
fieldset, explicitly tie the label to the text input by using the for/
id label method. Wrap the description in label tags and add
the id to the input. The for/id values should be descriptive
and they must match. I’ve done the first one for you; you do the
other four:

<label for="form-name">Name:</label> <input
type="text" name="fullname" id="form-name">

5.	 For the radio and checkbox buttons, wrap the label element
around the input and its value label. In this way, the button will
be selected when the user clicks or taps anywhere inside the
label element. Here’s the first one; you do the rest:

<label><input type="radio" name="crust"
value="white"> Classic White</label>

Save your document, and you’re done! Labels don’t have any
effect on how the form looks by default, but you can feel good
about the added semantic value you’ve added and maybe even
use them to apply styles at another time.

DIY Form Widgets
Despite having dozens of form widgets straight out of HTML to
choose from, it is common for developers to “roll their own”
form widgets using markup, CSS, and JavaScript. This might
be preferable if you want to provide custom functionality or to
make the styling of the form extra-fancy. For example, you could
create a drop-down menu using an unordered list inside a div
instead of the standard select element:

<div class="select" role="listbox">
 <ul class="optionlist">
 <li class="option" role="option">Red
 <li class="option" role="option">Yellow

</div>

To help assistive technologies like screen readers recognize this
as a form element, use the ARIA role attribute to describe the

intended function of the div (a listbox) and each li (an option
in that listbox). There are also many ARIA states and properties
that make forms, both standard and custom, usable with
assistive devices. For a complete list, see www.w3.org/TR/wai-
aria/states_and_properties.

Custom form widgets require scripting and CSS well beyond
the scope of this book, but I wanted you to be aware of the
technique. It’s also extremely easy to mess up, making a user’s
interaction with the form awkward and frustrating (even for
sighted users), so “roll your own” with caution.

The article “How to Build Custom Form Widgets” on MDN Web
Docs provides a nice overview (developer.mozilla.org/en-US/
docs/Web/Guide/HTML/Forms/How_to_build_custom_form_
widgets). You might also choose to use a premade custom
widget from one of the available JavaScript Libraries like jQuery
UI (jqueryui.com).

9. Forms

Form Accessibility Features

205

http://www.w3.org/TR/wai-aria/states_and_properties
http://www.w3.org/TR/wai-aria/states_and_properties

FORM LAYOUT AND DESIGN

I can’t close this chapter without saying a few words about form design, even
though this chapter is about markup, not presentation.

Usable Forms
A poorly designed form can ruin a user’s experience on your site and nega-
tively impact your business goals. Badly designed forms mean lost custom-
ers, so it is critical to get it right—both on the desktop and for small-screen
devices with their special requirements. You want the path to a purchase or
other action to be as frictionless as possible.

The topic of good web form design is a rich one that could fill a book in itself.
In fact, there is such a book: Web Form Design (Rosenfeld Media) by web
form expert Luke Wroblewski, and I recommend it highly. Luke’s subsequent
book, Mobile First (A Book Apart), includes tips for how to format forms in
a mobile context. You can browse over a hundred articles about forms on his
site at www.lukew.com/ff?tag=forms.

Here I’ll offer just a very small sampling of tips from Web Form Design to get
you started, but the whole book is worth a read:

Avoid unnecessary questions.

Help your users get through your form as easily as possible by not includ-
ing questions that are not absolutely necessary to the task at hand. Extra
questions, in addition to slowing things down, may make a user wary of
your motivations for asking. If you have another way of getting the infor-
mation (for example, the type of credit card can be determined from the
first four numbers of the account), then use alternative means and don’t
put the burden on the user. If there is information that might be nice to
have but is not required, consider asking at a later time, after the form has
been submitted and you have built a relationship with the user.

Consider the impact of label placement.

The position of the label relative to the input affects the time it takes to
fill out the form. The less the user’s eye needs to bounce around the page,
the quicker the form completion. Putting the labels above their respective
fields creates a single alignment for faster scans and completion, par-
ticularly when you’re asking for familiar information (name, address, etc.).
Top-positioned labels can also accommodate labels of varying lengths
and work best on narrow, small-screen devices. They do result in a longer
form, however, so if vertical space is a concern, you can position the labels
to the left of the inputs. Left alignment of labels results in the slowest
form completion, but it may be appropriate if you want the user to slow
down or be able to scan and consider the types of required information.

Part II. HTML for Structure

Form Layout and Design

206

Choose input types carefully.

As you’ve seen in this chapter, there are quite a few input types to choose
from, and sometimes it’s not easy to decide which one to use. For example,
a list of options could be presented as a pull-down menu or a number of
choices with checkboxes. Weigh the pros and cons of each control type
carefully, and follow up with user testing.

Group related inputs.

It is easier to parse the many fields, menus, and buttons in a form if they
are visually grouped by related topic. For example, a user’s contact infor-
mation could be presented in a compact group so that five or six inputs
are perceived as one unit. Usually, all you need is a very subtle indication,
such as a fine horizontal rule and some extra space. Don’t overdo it.

Clarify primary and secondary actions.

The primary action at the end of the form is usually some form of submit
button (“Buy,” “Register,” etc.) that signals the completion of the form
and the readiness to move forward. You want that button to be visually
dominant and easy to find (aligning it along the main axis of the form is
helpful as well). Using JavaScript, you can gray out the submit button as
non-functioning until all necessary data has been filled in.

Secondary actions tend to take you a step back, such as clearing or reset-
ting the form. If you must include a secondary action, make sure that it is
styled to look different and less important than the primary action. It is
also a good idea to provide an opportunity to undo the action.

Styling Forms
As we’ve seen in this chapter, the default rendering of form markup is not up
to par with the quality we see on most professional web forms today. As for
other elements, you can use style sheets to create a clean form layout as well
as change the appearance of most form controls. Something as simple as nice
alignment and a look that is consistent with the rest of your site can go a long
way toward improving the impression you make on a user.

Keep in mind that form widgets are drawn by the browser and are informed
by operating system conventions. However, you can still apply dimensions,
margins, fonts, colors, borders, and background effects to form elements such
as text inputs, select menus, textareas, fieldsets, labels, and legends. Be sure
to test in a variety of browsers to check for unpleasant surprises. Chapter 19,
More CSS Techniques, in Part III, lists some specific techniques once you have
more experience with CSS. For more help, a web search for “CSS for forms”
will turn up a number of tutorials.

9. Forms

Form Layout and Design

207

TEST YOURSELF

Ready to put your web form know-how to the test? Here are a few questions
to make sure you’ve gotten the basics. You’ll find the answers in Appendix A.

1.	 Decide whether each of these forms should be sent via the GET or POST
method:

a.	 A form for accessing your bank account online	 ________

b.	 A form for sending t-shirt artwork to the printer	 ________

c.	 A form for searching archived articles		 ________

d.	 A form for collecting long essay entries		 ________

2.	 Which form control element is best suited for the following tasks? When
the answer is “input,” be sure to also include the type. Some tasks may
have more than one correct answer.

a.	 Choose your astrological sign from 12 signs.

b.	 Indicate whether you have a history of heart disease (yes or no).

c.	 Write up a book review.

d.	 Select your favorite ice cream flavors from a list of eight flavors.

e.	 Select your favorite ice cream flavors from a list of 25 flavors.

3.	 Each of these markup examples contains an error. Can you spot it?

a.	 <input name="country" value="Your country here.">

b.	 <checkbox name="color" value="teal">

c.	 <select name="popsicle">
	 <option value="orange">
	 <option value="grape">
	 <option value="cherry">
 </select>

d.	 <input type="password">

e.	 <textarea name="essay" width="100" height="6">Your story.
</textarea>

Part II. HTML for Structure

Test Yourself

208

ELEMENT REVIEW: FORMS

The following table lists all of the form-related elements and attributes
included in HTML 5.2 (some attributes were not covered in this chapter). The
attributes for each input type are listed in TABLE 9-1.

Element and attributes Description

button Generic input button

autofocus Automatically focuses the form control when the page is loaded

name="text" Supplies a unique variable name for the control

disabled Disables the input so it cannot be selected

type="submit|reset|button" The type of custom button

value="text" Specifies the value to be sent to the server

menu="idvalue" Specifies a designated pop-up menu

form,formaction, formenctype,
formmethod, formnovalidate,
formtarget

Form submission-related attributes used for submit and reset type buttons

datalist Provides a list of options for text inputs

fieldset Groups related controls and labels

disabled Disables all the inputs in the fieldset so they cannot be selected, edited, or
submitted

form="idvalue" Associates the element with a specific form

name="text" Supplies a unique variable name for the control

form Form element

action="url" Location of forms processing program (required)

method="get|post" The method used to submit the form data

enctype="content type" The encoding method, generally either application/x-www-form-urlencoded
(default) or multipart/form-data

accept-charset="characterset" Character encodings to use

autocomplete Default setting for autofill feature for controls in the form

name="text" Name of the form to use in the document.forms API

novalidate Bypasses form control validation for this form

target="text|_blank|_self|
_parent|_top"

Sets the browsing context

9. Forms

Element Review: Forms

209

Element and attributes Description

input Creates a variety of controls, based on the type value

autofocus Indicates the control should be ready for input when the document loads

type="submit|reset|button|
text|password|checkbox|radio|
image|file|hidden|email|tel|
search|url|date|time|
datetime-local|month|week|
number|range|color"

See TABLE 9-1 for a full list of
attributes associated with each
input type.

The type of input

disabled Disables the input so it cannot be selected, edited, or submitted

form="form id value" Associates the control with a specified form

label Attaches information to controls

for="text" Identifies the associated control by its id reference

legend Assigns a caption to a fieldset

meter Represents a fractional value within a known range

high="number" Indicates the range that is considered “high” for the gauge

low="number" Indicates the range that is considered “low” for the gauge

max="number" Specifies the highest value for the range

min="number" Specifies the lowest value for the range

optimum="number" Indicates the number considered to be “optimum”

value="number" Specifies the actual or measured value

optgroup Defines a group of options

disabled Disables the optgroup so it cannot be selected

label="text" Supplies a label for a group of options

option An option within a select menu control

disabled Disables the option so it cannot be selected

label="text" Supplies an alternate label for the option

selected Preselects the option

value="text" Supplies an alternate value for the option

output Represents the results of a calculation

for="text" Creates a relationship between output and another element

form="form id value" Associates the control with a specified form

name="text" Supplies a unique variable name for the control

Part II. HTML for Structure

Element Review: Forms

210

Element and attributes Description

progress Represents the completion progress of a task (can be used even if the maximum value
of the task is not known)

max="number" Specifies the total value or final size of the task

value="number" Specifies how much of the task has been completed

select Pull-down menu or scrolling list

autofocus Indicates the control should be highlighted and ready for input when the
document loads

disabled Indicates the control is nonfunctional; can be activated with a script

form="form id value" Associates the control with a specified form

multiple Allows multiple selections in a scrolling list

name="text" Supplies a unique variable name for the control

required Indicates the user input is required for this control

size="number" The height of the scrolling list in text lines

textarea Multiline text-entry field

autocomplete Hint for form autofill feature

autofocus Indicates the control should be highlighted and ready for input when the
document loads

cols="number" The width of the text area in characters

dirname="text" Allows text directionality to be submitted

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

inputmode Hint for selecting an input modality

maxlength="text" Specifies the maximum number of characters the user can enter

minlength="text" Specifies the minimum number of characters the user can enter

name="text" Supplies a unique variable name for the control

placeholder="text" Provides a short hint to help the user enter the correct data

readonly Makes the control unalterable by the user

required Indicates user input is required for this control

rows="number" The height of the text area in text lines

wrap="hard|soft" Controls whether line breaks in the text input are returned in the data; hard
preserves line breaks, while soft does not

9. Forms

Element Review: Forms

211

TABLE 9-1.   Available attributes for each input type

Attribute submit reset button text password checkbox radio image file hidden

accept •

alt •

autocomplete • •

autofocus • • • • • • • • •

checked • •

disabled • • • • • • • • • •

form • • • • • • • • • •

formaction • •

formenctype • •

formmethod • •

formnovalidate • •

formtarget • •

height •

list •

max

min

maxlength • • •

minlength • • •

multiple •

name • • • • • • • • • •

pattern • •

placeholder • •

readonly • •

required • • • • •

size • • •

src •

step

value • • • • • • • • •

width •

Part II. HTML for Structure

Element Review: Forms

212

Attribute email telephone, search, url number range
date, time, datetime-local,
month, week color

accept

alt

autocomplete • • • • • •

autofocus • • • • • •

checked

disabled • • • • • •

form • • • • • •

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list • • • • • •

max • • •

min • • •

maxlength • •

minlength • •

multiple • •

name • • • • • •

pattern • •

placeholder • •

readonly • • •

required • • • •

size • •

src

step • • •

value • • • • • •

width

9. Forms

Element Review: Forms

213

IN THIS CHAPTER

The iframe element

The object element

Video and audio players

The canvas element

The HTML specification defines embedded content as follows:

content that imports another resource into the document, or content from
another vocabulary that is inserted into the document

In Chapter 7, Adding Images, you saw examples of both parts of that defini-
tion because images are one type of embedded content. The img and picture
elements point to an external image resource using the src or srcset attri-
butes, and the svg element embeds an image file written in the SVG vocabu-
lary right in the page.

But images certainly aren’t the only things you can stick in a web page. In this
chapter, we’ll look at other types of embedded content and their respective
markup, including the following:

•	 A window for viewing an external HTML source (iframe)

•	 Multipurpose embedding elements (object and embed)

•	 Video and audio players (video and audio)

•	 A scriptable drawing area that can be used for animations or game-like
interactivity (canvas)

WINDOW-IN-A-WINDOW (IFRAME)

The iframe (short for inline frame) element lets you embed a separate HTML
document or other web resource in a document. It has been around for many
years, but it has recently become one of the most popular ways to share con-
tent between sites.

<iframe>…</iframe>
A nested browsing window

EMBEDDED MEDIA 10
CHAPTER

215

For example, when you request the code to embed a video from YouTube or
a map from Google Maps, they provide iframe-based code to copy and paste
into your page. Many other media sites are following suit because it allows
them to control aspects of the content you are putting on your page. Inline
frames have also become a standard tool for embedding ad content that
might have been handled with Flash back in the day. Web tutorial sites may
use inline frames to embed code samples on pages.

Adding an iframe to the page creates a little window-in-a-window (or a
nested browsing context, as it is known in the spec) that displays the external
resource. You place an inline frame on a page similarly to an image, specifying
the source (src) of its content. The width and height attributes specify the
dimensions of the frame. The content in the iframe element itself is fallback
content for browsers that don’t support the element, although virtually all
browsers support iframes at this point.

In this very crude example, the parent document displays the web page glos-
sary.html in an inline frame (FIGURE 10-1). This iframe has its own set of
scrollbars because the embedded HTML document is too long to fit. To be
honest, you don’t often see iframes used this way in the wild (except for code
examples, perhaps), but it is a good way to understand how they work.

<h1>An Inline Frame</h1>

<iframe src="glossary.html" width="400" height="250" >
 Read the glossary.
</iframe>

FIGURE 10-1.  Inline frames (added with the iframe element) are like a browser
window within the browser that displays external HTML documents and resources.

In modern uses of iframe, the window is not so obvious. In fact, there is usu-
ally no indication that there is an embedded frame there at all, as shown by
the Google Maps example in FIGURE 10-2.

Part II. HTML for Structure

Window-In-A-Window (iframe)

216

FIGURE 10-2.   The edges of an iframe are usually not detectable, as shown in this
embedded Google Map.

There are some security concerns with using iframes because they may act
like open windows through which hackers can sneak. The sandbox attribute
puts restrictions on what the framed content can do, such as not allowing
forms, pop ups, scripts, and the like.

Iframe security is beyond the scope of this chapter, but you’ll need to brush up
if you are going to make use of iframes on your site. I recommend the MDN
Web Docs article “From object to iframe: Other Embedding Technologies” ​
(developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/
Other_embedding_technologies), which provides a good overview of iframe
security issues.

To get a feel for how iframes work, use one to embed your favorite video on
a page in EXERCISE 10-1.

EXERCISE 10-1.  Embedding a video with iframe

If you’d like to poke around with an iframe, it’s easy to grab one from YouTube to
embed your favorite video on a page.

Start by creating a new HTML document, including the basic structural elements that
we covered in Chapter 4, Creating a Simple Page.

Go to YouTube and once you are on the page for your chosen video, look for the Share
button; then choose the Embed option. The iframe code is there for you to copy and
paste. If you click “Show more,” there will be further configuration options. Just copy
the iframe code and paste it into the new HTML document. Open it in a browser, and
you’re done!

10. Embedded Media

Window-In-A-Window (iframe)

217

MULTIPURPOSE EMBEDDER (OBJECT)

In the early days, web browsers were extremely limited in what they were
able to render, so they relied on plug-ins to help them display media that
they couldn’t handle natively. Java applets, Flash movies, RealMedia (an old
web video and audio format), and other media required third-party plug-ins
in order to be played in the browser. Heck, even JPEG images once required
a plug-in to display.

To embed those media resources on the page, we used the object and embed
elements. They have slightly different uses. The object element is a multipur-
pose object placer. It can be used to place an image, create a nested browsing
context (like an iframe), or embed a resource that must be handled by a plug-
in. The embed element was for use with plug-ins only.

To put it frankly, although still in use, object is going out of style, and embed
is all but extinct (I’ve tucked it away in a brief sidebar). Media like Java
applets and Flash movies are disappearing fast, and modern browsers use
APIs to display many types of media natively. In addition, mobile browsers as
well as the desktop Microsoft Edge browser don’t support plug-ins.

That said, let’s take a look at the object element. At its most minimal, the
object element uses the data attribute to point to the resource and the type
attribute to provide its MIME type. Any content within the object element
tags will be used as a fallback for browsers that don’t support the embedded
resource type. Here is a simple object element that places an SVG image on
the page and provides a PNG fallback:

<object data="picture.svg" type="image/svg+xml">

</object>

Additional attributes for the object element are available and vary according
to the type of media it is placing. The media format may also require that the
object contain a number of param elements that set parameters specific to
that type of media.

<object>…</object>
Represents external resource

<param>
Parameters of an object

Farewell Flash
Apple’s announcement that it would not support Flash on its iOS devices, ever,
gave HTML5 an enormous push forward and eventually led to Adobe stopping
development on its mobile Flash products. Not long after, Microsoft announced that
it was discontinuing its Silverlight media player in lieu of HTML5 alternatives. As of
this writing, HTML5 is a long way from being able to reproduce the vast features and
functionality of Flash, but it’s getting there gradually. We are likely to occasionally
see Flash players on the desktop, but the trajectory away from plug-ins and toward
standard web technologies seems clear.

The embed Element
The embed element was created
by Netscape for use with plug-in
technologies. It has always been
well supported, but it wasn’t
adopted into a formal specification
until HTML5. With so many other
options for embedding media, the
embed element is not as useful as
it once was. It is often used as a
fallback when there is a good reason
to support extremely old browser
versions.

embed is an empty element that
points to an external resource with
the src attribute:

<embed type="video/quicktime"
src="movies/hekboy.mov"
width="320" height="256">

There are additional media-specific
attributes that set parameters
similar to the param element, but
I’m not going to cover them all here.
In fact, I think that’s all there is to say
about embed.

A plug-in is software
that gives a browser
functionality that it
doesn’t have natively.

Part II. HTML for Structure

Multipurpose Embedder (object)

218

In this example, param elements specify whether the movie starts automati-
cally (no) or has visible controls (yes):

<object type="video/quicktime" data="movies/hekboy.mov" width="320"
height="256">
 <param name="autostart" value="false">
 <param name="controller" value="true">
</object>

VIDEO AND AUDIO

Until recently, browsers did not have built-in capabilities for handling video
or sound, so they used plug-ins to fill in the gap. With the development of the
web as an open standards platform, and with broadband connections allow-
ing for heftier downloads than previously, it seemed to be time to make mul-
timedia support part of browsers’ out-of-the-box capabilities. Enter the new
video and audio elements and their respective APIs (see the “API” sidebar).

The Good News and the Bad News
The good news is that the video and audio elements are well supported in
modern browsers, including IE 9+, Safari, Chrome, Opera, and Firefox for
the desktop and iOS Safari 4+, Android 2.3+, and Opera Mobile (however,
not Opera Mini).

But if you’re envisioning a perfect world where all browsers are supporting
video and audio in perfect harmony, I’m afraid it’s not that simple. Although
they have all lined up on the markup and JavaScript for embedding media
players, unfortunately they have not agreed on which formats to support.
Let’s take a brief journey through the land of media file formats. If you want
to add video or audio to your page, this stuff is important to understand.

How Media Formats Work
When you prepare audio or video content for web delivery, there are two
format decisions to make. The first is how the media is encoded (the algo-
rithms used to convert the source to 1s and 0s and how they are compressed).
The method used for encoding is called the codec, which is short for “code/
decode” or “compress/decompress.” There are a bazillion codecs out there
(that’s an estimate). Some probably sound familiar, like MP3; others might
sound new, such as H.264, Vorbis, Theora, VP8, and AAC.

Second, you need to choose the container format for the media. You can think
of it as a ZIP file that holds the compressed media and its metadata together
in a package. Usually a container format is compatible with more than one
codec type, and the full story is complicated. Because space is limited in this
chapter, I’m going to cut to the chase and introduce the most common con-
tainer/codec combinations for the web. If you are going to add video or audio
to your site, I encourage you to get more familiar with all of these formats.

T E R M I N O LO GY

API
An API (Application Programming
Interface) is a standardized set of
commands, data names, properties,
actions, and so on, that lets one
software application communicate
with another. HTML5 introduced a
number of APIs that give browsers
programmable features that
previously could only be achieved
with third-party plug-ins.

Some APIs have a markup
component, such as embedding
multimedia with the new HTML5
video and audio elements (Media
Player API). Others happen entirely
behind the scenes with JavaScript
or server-side components, such as
creating web applications that work
even without an internet connection
(Offline Web Application API).

The W3C is working on lots and lots
of APIs for use with web applications,
all in varying stages of completion
and implementation. Most have their
own specifications, separate from
the HTML5 spec itself, but they are
generally included under the wide
HTML5 umbrella that covers web-
based applications.

A list of all HTML5 APIs and specs in
development is available at html5-
overview.net, maintained by Erik
Wilde. You will also find introductions
to better-known APIs in Appendix D.

10. Embedded Media

Video and Audio

219

http://html5-overview.net
http://html5-overview.net

Meet the video formats
For video, the most common options are as follows:

MPEG-4 container + H.264 video codec + AAC audio codec. This com-
bination is generally referred to as “MPEG-4,” and it takes the .mp4 or
.m4v file suffix. H.264 is a high-quality and flexible video codec, but it is
patented and must be licensed for a fee. All current browsers that support
HTML5 video can play MPEG-4 files with the H.264 codec. The newer
H.265 codec (also known as HEVC, High Efficiency Video Coding) is in
development and reduces the bitrate by half, but is not well supported as
of this writing.

WebM container + VP8 video codec + Vorbis audio codec. “WebM” is a
container format that has the advantage of being open source and royalty-
free. It uses the .webm file extension. It was originally designed to work
with VP8 and Vorbis codecs.

WebM container + VP9 video codec + Opus audio codec. The VP9 video
codec from the WebM project offers the same video quality as VP8 and
H.264 at half the bitrate. Because it is newer, it is not as well supported,
but it is a great option for browsers that can play it.

Ogg container + Theora video codec + Vorbis audio codec. This is typically
called “Ogg Theora,” and the file should have an .ogv suffix. All of the
codecs and the container in this option are open source and unencum-
bered by patents or royalty restrictions, but some say the quality is infe-
rior to other options. In addition to new browsers, it is supported on some
older versions of Chrome, Firefox, and Android that don’t support WebM
or MP4, so including it ensures playback for more users.

Of course, the problem that I referred to earlier is that browser makers have
not agreed on a single format to support. Some go with open source, royalty-
free options like Ogg Theora or WebM. Others are sticking with H.264
despite the royalty requirements. What that means is that we web developers
need to make multiple versions of videos to ensure support across all brows-
ers. TABLE 10-1 lists which browsers support the various video options (see
the “Server Setup” sidebar).

Server Setup
In TABLES 10-1 and 10-2, the Type column identifies the MIME type of each
media format. If your site is running on the Apache server, to make sure that video
and audio files are served correctly, you may need to add their respective types to
the server’s .htaccess file. The following example adds the MP4 type/subtype and
extensions:

AddType video/mp4 mp4 m4v

F U RT H E R R E A D I N G

For a thorough introduction to HTML
video and audio, I recommend
Beginning HTML5 Media: Make the
Most of the New Video and Audio
Standards for the Web by Silvia
Pfeiffer and Tom Green (Apress).

Part II. HTML for Structure

Video and Audio

220

Meet the audio formats
The landscape looks similar for audio formats: several to choose from, but no
format that is supported by all browsers (TABLE 10-2).

MP3. The MP3 (short for MPEG-1 Audio Layer 3) format is a codec and
container in one, with the file extension.mp3. It has become ubiquitous
as a music download format.

WAV. The WAV format (.wav) is also a codec and container in one. This
format is uncompressed so it is only good for very short clips, like sound
effects.

Ogg container + Vorbis audio codec. This is usually referred to as “Ogg
Vorbis” and is served with the .ogg or .oga file extension.

MPEG 4 container + AAC audio codec. “MPEG4 audio” (.m4a) is less com-
mon than MP3.

WebM container + Vorbis audio codec. The WebM (.webm) format can also
contain audio only.

WebM container + Opus audio codec. Opus is a newer, more efficient audio
codec that can be used with WebM.

FO R F U RT H E R
E X P LO RAT I O N

HLS (HTTP Streaming
Video)
If you are serious about web video,
you should become familiar with
HLS (HTTP Streaming Video), a
streaming format that can adapt its
bitrate on the fly. The HLS Wikipedia
entry is as good a place as any to
get started: en.wikipedia.org/wiki/
HTTP_Live_Streaming.

TABLE 10-2.   Audio support in current browsers (as of 2017)

Format Type IE MS Edge Chrome Firefox Opera Safari iOS Safari Android

MP3 audio/mpeg mp3 9.0+ 12+ 3.0+ 22+ 15+ 4+ 4.1 2.3+

WAV audio/wav or
audio/wave

– 12+ 8.0+ 3.5+ 11.5+ 4+ 3.2+ 2.3+

Ogg Vorbis audio/ogg ogg oga – – 4.0+ 3.5+ 11.5+ – – 2.3+

MPEG-4/AAC audio/mp4 m4a 11.0+ 12+ 12.0+ – 15+ 4+ 4.1+ 3.0+

WebM/Vorbis audio/webm webm – – 6.0+ 4.0+ 11.5+ – – 2.3.3+

WebM/Opus audio/webm webm – 14+ 33+ 15+ 20+ – – –

TABLE 10-1.   Video support in desktop and mobile browsers (as of 2017)

Format Type IE MS Edge Chrome Firefox Safari Opera Android iOS Safari

MP4 (H.264) video/mp4 mp4 m4v 9.0+ 12+ 4+ Yes* 3.2+ 25+ 4.4+ 3.2+

WebM (VP8) video/webm webm
webmv

– – 6+ 4.0+ – 15+ 2.3+ –

WebM (VP9) video/webm webm
webmv

– 14+ 29+ 28+ – 16+ 4.4+ –

Ogg Theora video/ogg ogv – – 3.0+ 3.5+ – 13+ 2.3+ –

* Firefox version varies by operating system.

10. Embedded Media

Video and Audio

221

Adding a Video to a Page
I guess it’s about time we got to the markup for adding a video to a web page
(this is an HTML chapter, after all). Let’s start with an example that assumes
you are designing for an environment where you know exactly what browser
your user will be using. When this is the case, you can provide only one video
format using the src attribute in the video tag (just as you do for an img).
FIGURE 10-3 shows a movie with the default player in the Chrome browser.

FIGURE 10-3.   An embedded movie using the video element (shown in Chrome on
a Mac).

<video>…</video>
Adds a video player to the page

Video and Audio Encoding Tools
There are scores of options for editing and encoding video and audio files, so I can’t cover them all here, but the following tools are
free and get the job done.

Video conversion
•	 Handbrake (handbrake.fr) is a popular open source tool for

converting to MPEG4 with H.264, H.265, VP8, and Theora. It is
available for Windows, macOS, and Linux.

•	 Firefogg (firefogg.org) is an extension to Firefox for
converting video to the WebM (VP8 and VP9) and Ogg Theora
formats. Simply install the Firefogg extension to Firefox (cross-
platform); then visit the Firefogg site and convert video by
using its online interface.

•	 FFmpeg (ffmpeg.org)is an open source, command-line tool
for converting just about any video format. If you are not
comfortable with the command line, there are a number of
software packages (some for pay, some free) that offer a user
interface to FFmpeg to make it more user-friendly.

•	 Freemake (freemake.com) is a free video and audio
conversion tool for Windows that supports over 500 media
formats.

Audio conversion
•	 Audio Converter (online-audio-converter.com) is one of the

free audio and video tools from 123Apps.com that converts
files to MP3, WAV, OGG, and more.

•	 Media.io (media.io) is a free web service that converts audio
to MP3, WAV, and OGG.

•	 MediaHuman Audio Converter (www.mediahuman.com/
audio-converter/) is free for Mac and Windows and can
convert to all of the audio formats listed in this chapter and
more. It has an easy drag-and-drop interface, but is pretty
much no-frills.

•	 Max (sbooth.org/Max/) is an open source audio converter
(Mac only).

•	 Audacity (www.audacityteam.org) is free, open source,
cross-platform audio software for multitrack recording and
editing. It can import and export files in many of the formats
listed in this chapter.

Part II. HTML for Structure

Video and Audio

222

Here is a simple video element that embeds a movie and player on a web
page:

<video src="highlight_reel.mp4" width="640" height="480"
poster="highlight_still.jpg" controls autoplay>
 Your browser does not support HTML5 video. Get the MP4 video
</video>

Browsers that do not support video display whatever content is provided
within the video element. In this example, it provides a link to the movie that
your visitor could download and play in another player.

There are also some attributes in that example worth looking at in detail:

width="pixel measurement"
height="pixel measurement"

Specifies the size of the box the embedded media player takes up on the
screen. Generally, it is best to set the dimensions to exactly match the pixel
dimensions of the movie. The movie will resize to match the dimensions
set here.

poster="url of image"

Provides the location of an image that is shown in place of the video
before it plays.

controls

Adding the controls attribute prompts the browser to display its built-
in media controls, generally a play/pause button, a “seeker” that lets you
move to a position within the video, and volume controls. It is possible to
create your own custom player interface using CSS and JavaScript if you
want more consistency across browsers.

autoplay

Makes the video start playing automatically after it has downloaded
enough of the media file to play through without stopping. In general,
use of autoplay should be avoided in favor of letting the user decide when
the video should start. autoplay does not work on iOS Safari and some
other mobile browsers in order to protect users from unnecessary data
downloads.

In addition, the video element can use the loop attribute to make the video
play again after it has finished (ad infinitum), muted for playing the video
track without the audio, and preload for suggesting to the browser whether
the video data should be fetched as soon as the page loads (preload="auto")
or wait until the user clicks the play button (preload="none"). Setting
preload="metadata" loads information about the media file, but not the
media itself. A device can decide how to best handle the auto setting; for
example, a browser in a smartphone may protect a user’s data usage by not
preloading media, even when it is set to auto.

10. Embedded Media

Video and Audio

223

Providing video format options
Do you remember back in Chapter 7 when we supplied multiple image for-
mats with the picture element using a number of source elements? Well,
picture got that idea from video!

As you’ve seen, it is not easy to find one video format to please all browsers
(although MPEG4/H.264 gets close). In addition, new efficient video formats
like VP9 and H.265 are available but not supported in older browsers. Using
source elements, we can let the browsers use what they can.

In the markup, a series of source elements inside the video element point to
each video file. Browsers look down the list until they find one they support
and download only that version. The following example provides a video
clip in the souped-up WebM/VP9 format for supporing browsers, as well as
an MP4 and Ogg Theora for other browsers. This will cover pretty much all
browsers that support HTML5 video (see the sidebar “Flash Video Fallback”).

<video id="video" controls poster="img/poster.jpg">
 <source src="clip.webm" type="video/webm">
 <source src="clip.mp4" type="video/mp4">
 <source src="clip.ogg" type="video/ogg">
 Download the MP4 of the clip.
</video>;

Custom video players
One of the powerful things about the video element and the Media Player
API is that the system allows for a lot of customization. You can change the
appearance of the control buttons with CSS and manipulate the functional-
ity with JavaScript. That is all beyond the scope of this chapter, but I recom-
mend the article “Creating a Cross-Browser Video Player” by Eric Shepherd,
Chris Mills, and Ian Devlin (developer.mozilla.org/en-US/Apps/Fundamentals/
Audio_and_video_delivery/cross_browser_video_player) for a good overview.

You may also be interested in trying out a prefab video player that pro-
vides good looks and advanced performance such as support for streaming
video formats. You can implement many of them by adding a line or two of
JavaScript to your document and then by using the video element, so it’s
not hard to get started. There’s a nice roundup of plug-and-play video player
options listed at VideoSWS (videosws.praegnanz.de/).

Flash Video Fallback
Older browsers—most notably Internet Explorer versions 8 and earlier—do not
support video. If f IE8 is making a significant blip in your site statistics, you may
choose to provide a Flash movie fallback. The “Creating a Cross-Browser Video
Player” article mentioned previously has thorough explanation of the technique.
Another article worth a read is Kroc Camen’s “Video for Everybody” (camendesign.
com/code/video_for_everybody). It is a bit dated, but I’m sure would be helpful,
balanced with your up-to-date browser support knowledge.

Part II. HTML for Structure

Video and Audio

224

Adding Audio to a Page
If you’ve wrapped your head around the video markup example, you already
know how to add audio to a page. The audio element uses the same attri-
butes as the video element, with the exception of width, height, and poster
(because there is nothing to display). Just like the video element, you can
provide a stack of audio format options using the source element, as shown
in the example here. FIGURE 10-4 shows how the audio player might look
when it’s rendered in the browser.

<p>Play "Percussion Gun" by White Rabbits</p>

<audio id="whiterabbits" controls preload="auto">
 <source src="percussiongun.mp3" type="audio/mp3">
 <source src="percussiongun.ogg" type="audio/ogg">
 <source src="percussiongun.webm" type="audio/webm">
 <p>Download "Percussion Gun":</p>

 MP3
 Ogg Vorbis

</audio>

FIGURE 10-4.   Audio player as rendered in Firefox.

If you have only one audio file, you can simply use the src attribute instead. If
you want to be evil, you could embed audio in a page, set it to play automati-
cally and then loop, and not provide any controls to stop it like this:

<audio src="jetfighter.mp3" autoplay loop></audio>

But you would never, ever do something like that, right? Right?! Of course
you wouldn’t.

Adding Text Tracks
The track element provides a way to add text that is synchronized with the
timeline of a video or audio track. Some uses include the following:

•	 Subtitles in alternative languages

•	 Captions for the hearing impaired

•	 Descriptions of what is happening in a video for the sight impaired

•	 Chapter titles to allow for navigation through the media

•	 Metadata that is not displayed but can be used by scripts

<audio>…</audio>
Adds an audio file to the page

<track>…</track>
Adds synchronized text to
embedded media

10. Embedded Media

Video and Audio

225

Clearly, adding text tracks makes the media more accessible, but it has the
added bonus of improving SEO (Search Engine Optimization). It can also
allow for deep linking, linking to a particular spot within the media’s timeline.

FIGURE 10-5 shows how captions might be rendered in a browser that sup-
ports the track element.

FIGURE 10-5.   A video with captions.

Use the track element inside the video or audio element you wish to anno-
tate. The track element must appear after all the source elements, if any, and
may include these attributes:

src

Points to the text file.

kind

Specifies the type of text annotation you are providing (subtitles, cap-
tions, descriptions, chapters, or metadata). If kind is set to subtitle, you
must also specify the language (srclang attribute) by using a standard-
ized IANA two-letter language tag (see Note).

label

Provides a name for the track that can be used in the interface for selecting
a particular track.

default

Marks a particular track as the default and it may be used on only one
track within a media element.

NOTE

The full list of two-letter language codes
is published at www.iana.org/assign-
ments/​language-subtag-registry/lan-
guage-subtag-registry.

Part II. HTML for Structure

Video and Audio

226

The following code provides English and French subtitle options for a movie:

<video width="640" height="320" controls>
 <source src="japanese_movie.mp4" type="video/mp4">
 <source src="japanese_movie.webm" type="video/webm">
 <track src="english_subtitles.vtt"
 kind="subtitles"
 srclang="en"
 label="English subtitles"
 default>
 <track src="french.vtt"
 kind="subtitles"
 srclang="fr"
 label="Sous-titres en français">
</video>

WebVTT
You’ll notice in the previous example that the track points to a file with a .vtt
suffix. That is a text file in the WebVTT (Web Video Text Tracks) format that
contains a list of cues. It looks like this:

WEBVTT

00:00:01.345 --> 00:00:03.456
Welcome to Artifact [applause]

00:00:06.289 --> 00:00:09.066
There is a lot of new mobile technology to discuss.

00:00:06.289 --> 00:00:13.049
We're glad you could all join us at the Alamo Drafthouse.

Cues are separated by empty line spaces. Each cue has a start and end time
in hours:minutes:seconds:milliseconds format, separated by an “arrow” (-->).
The cue text (subtitle, caption, description, chapter, or metadata) is on a line
below. Optionally, an ID can be provided for each cue on the line above the
time sequence.

You can probably guess that there’s a lot more to mastering text tracks for
video and audio. Take a look at the following resources:

•	 “Adding Captions and Subtitles to HTML5 Video” at MDN Web Docs
(developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/​
Adding_captions_and_subtitles_to_HTML5_video)

•	 Subtitle tutorial on Miracle Tutorials (www.miracletutorials.com/how-to-
create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/)

•	 The WebVTT specification at the W3C is available at www.w3.org/TR/
webvtt1/

If you’d like to play around with the video element, spend some time with
EXERCISE 10-2.

NOTE

Other timed text formats include SRT
captioning (replaced by WebVTT) and
TML/DFXP, which is maintained by the
W3C and supported by Internet Explorer
but it is not recommended in the HTML5
specification for track.

10. Embedded Media

Video and Audio

227

https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
https://developer.mozilla.org/en-US/Apps/Fundamentals/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/
http://www.miracletutorials.com/how-to-create-captionssubtitles-for-video-and-audio-in-webtvv-srt-dfxp-format/

CANVAS

Another cool, “Look Ma, no plug-ins!” addition in HTML5 is the canvas
element and the associated Canvas API. The canvas element creates an area
on a web page for drawing with a set of JavaScript functions for creating
lines, shapes, fills, text, animations, and so on. You could use it to display an
illustration, but what gives the canvas element so much potential (and has
the web development world so delighted) is that it’s all generated with script-
ing. That means it is dynamic and can draw things on the fly and respond to
user input. This makes it a nifty platform for creating animations, games, and
even whole applications—all using the native browser behavior and without
proprietary plug-ins like Flash.

It is worth noting that the canvas drawing area is raster-based, meaning that
it is made up of a grid of pixels. This sets it apart from the other drawing
standard, SVG, which uses vector shapes and paths that are defined with
points and mathematics.

The good news is that every current browser supports the canvas element
as of this writing, with the exception of Internet Explorer 8 and earlier (see
Note). It has become so well established that Adobe’s Animate software (the
replacement for Flash Pro) now exports to canvas format.

FIGURE 10-6 shows a few examples of the canvas element used to create
games, drawing programs, an interactive molecule structure tool, and an

EXERCISE 10-2.  Embedding a video player

In this exercise, you’ll add a video to a page with the video
element. In the materials for Chapter 10, you will find the small
movie about wind tunnel testing in MPEG-4, OGG/Theora, and
WebM formats.

1.	 Create a new document with the proper HTML5 setup, or you
can use the same document you used in EXERCISE 10-1.

2.	 Start by adding the video element with the src attribute
pointed to windtunnel.mp4 because MP4 video has the best
browser support. Be sure to include the width (320 pixels) and
height (262 pixels), as well as the controls attribute so you’ll
have a way to play and pause it. Include some fallback copy
within the video element—either a message or a link to the
video:

<video src="windtunnel.mp4" width="320"
height="262" controls>
 Sorry, your browser doesn't support HTML5 video.
</video>

3.	 Save and view the document in your browser. If you see the
fallback message, your browser is old and doesn’t support the
video element. If you see the controls but no video, it doesn’t
support MP4, so try it again with one of the other formats.

4.	 The video element is pretty straightforward so you may feel
done at this point, but I encourage you to play around with it a
little to see what happens. Here are some things to try:

•	 Resize the video player with the width and height
attributes.

•	 Add the autoplay attribute.

•	 Remove the controls attribute and see what that’s like as
a user.

•	 Rewrite the video element using source elements for each
of the three provided video formats.

NOTE

If you have a good reason to support
IE8, the FlashCanvas JavaScript library
(flashcanvas.net) adds canvas support
using the Flash drawing API.

Part II. HTML for Structure

Canvas

228

asteroid animation. You can find more examples at EnvatoTuts+ (code.
tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments-
-net-14210), on David Walsh’s blog (davidwalsh.name/canvas-demos), as well
as the results of your own web search.

www.e�ectgames.com/demos/canvascycle/

mahjong.frvr.com/ muro.deviantart.com/

alteredqualia.com/canvasmol/

FIGURE 10-6.   A few examples of the canvas element used for games, animations,
and applications.

Mastering the canvas element is more than we can take on here, particularly
without any JavaScript experience under our belts, but I will give you a taste
of what it is like to draw with JavaScript. That should give you a good idea
of how it works, and also a new appreciation for the complexity of some of
those examples.

The canvas Element
You add a canvas space to the page with the canvas element and specify the
dimensions with the width and height attributes. And that’s really all there is
to the markup. For browsers that don’t support the canvas element, you can
provide some fallback content (a message, image, or whatever seems appro-
priate) inside the tags:

<canvas width="600" height="400" id="my_first_canvas">
Your browser does not support HTML5 canvas. Try using Chrome, Firefox,
Safari or MS Edge.
</canvas>

<canvas>…</canvas>
Adds a 2-D dynamic drawing area

10. Embedded Media

Canvas

229

The markup just clears a space upon which the drawing will happen. You can
affect the drawing space itself with CSS (add a border or a background color,
for example), but all of the contents of the canvas are generated by scripting
and cannot be selected for styling with CSS.

Drawing with JavaScript
The Canvas API includes functions for creating shapes, such as strokeRect()
for drawing a rectangular outline and beginPath() for starting a line drawing.
Some functions move things around, such as rotate() and scale(). It also
includes attributes for applying styles (for example, lineWidth, font, stroke-
Style, and fillStyle).

Sanders Kleinfeld created the following code example for his book HTML5
for Publishers (O’Reilly). He was kind enough to allow me to use it in this
book. FIGURE 10-7 shows the simple smiley face we’ll be creating with the
Canvas API.

FIGURE 10-7.   The finished product of our “Hello Canvas” example. See the original
at examples.oreilly.com/0636920022473/my_first_canvas/my_first_canvas.html.

And here is the script that created it. Don’t worry that you don’t know any
JavaScript yet. Just skim through the script and pay attention to the inline
comments. I’ll also describe some of the functions in use at the end. I bet
you’ll get the gist of it just fine.

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);	
function eventWindowLoaded() {
	 canvasApp();
}

function canvasApp(){
var theCanvas = document.getElementById('my_first_canvas');
var my_canvas = theCanvas.getContext('2d');
my_canvas.strokeRect(0,0,200,225)
 // to start, draw a border around the canvas

Part II. HTML for Structure

Canvas

230

 //draw face
my_canvas.beginPath();
my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.strokeStyle = "black"; // circle outline is black
my_canvas.lineWidth = 3; // outline is three pixels wide
my_canvas.fillStyle = "yellow"; // fill circle with yellow
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw left eye
my_canvas.fillStyle = "black"; // switch to black for the fill
my_canvas.beginPath();
my_canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw right eye
my_canvas.beginPath();
my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // draw smile
my_canvas.lineWidth = 6; // switch to six pixels wide for outline
my_canvas.beginPath();
my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false);
 // semicircle dimensions
my_canvas.stroke();
my_canvas.closePath();

 // Smiley Speaks!
my_canvas.fillStyle = "black"; // switch to black for text fill
my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
my_canvas.fillText ("Hello Canvas!", 45, 200); // write text
}
</script>

Finally, here is a little more information on the Canvas API functions used in
the example:

strokeRect(x1, y1, x2, y2)

Draws a rectangular outline from the point (x1, y1) to (x2, y2). By default,
the origin of the canvas (0, 0) is the top-left corner, and x and y coordi-
nates are measured to the right and down.

beginPath()

Starts a line drawing.

closePath()

Ends a line drawing that was started with beginPath().

10. Embedded Media

Canvas

231

arc(x, y, arc_radius, angle_radians_beg, angle_radians_end)

Draws an arc where (x,y) is the center of the circle, arc_radius is the
length of the radius of the circle, and angle_radians_beg and _end indi-
cate the beginning and end of the arc angle.

stroke()

Draws the line defined by the path. If you don’t include this, the path
won’t appear on the canvas.

fill()

Fills in the path specified with beginPath() and endPath().

fillText(your_text, x1, y1)

Adds text to the canvas starting at the (x,y) coordinate specified.

In addition, the following attributes were used to specify colors and styles:

lineWidth

Width of the border of the path.

strokeStyle

Color of the border.

fillStyle

Color of the fill (interior) of the shape created with the path.

font

The font and size of the text.

Of course, the Canvas API includes many more functions and attributes
than we’ve used here. For a complete list, see the W3C’s HTML5 Canvas 2D
Context specification at www.w3.org/TR/2dcontext. A web search will turn up
lots of Canvas tutorials should you be ready to learn more. In addition, I can
recommend these resources:

•	 The book HTML5 Canvas, Second Edition, by Steve Fulton and Jeff Fulton
(O’Reilly).

•	 If video is more your speed, try this tutorial by David Geary: HTML5
Canvas for Developers (shop.oreilly.com/product/0636920030751.do).

Part II. HTML for Structure

Canvas

232

TEST YOURSELF

We’ve looked at all sorts of ways to stick things in web pages in this chapter.
We’ve seen how to use iframe to create a “window-in-a-window” for display-
ing external web resources; object for resources that require plug-ins, video
and audio players; and the canvas 2-D scriptable drawing space. Now see if
you were paying attention. As always, answers are in Appendix A.

1.	 What is a “nested browsing context,” and how would you create one?

2.	 Why would you use the sandbox attribute with an iframe?

3.	 Name some instances when you might need to know the MIME type for
your media file.

4.	 Identify each of the following as a container format, video codec, or audio
codec:

a.  Ogg ____________________

b.  H.264 ____________________

c.  VP8 ____________________

d.  Vorbis ____________________

e.  WebM ____________________

f.  Theora ____________________

g.  Opus ____________________

h.  MPEG-4 ____________________

5.	 What does the poster attribute do?

6.	 What is a .vtt file?

7.	 List at least two differences between SVG and Canvas.

8.	 List the two Canvas API functions you would use to draw a rectangle and
fill it with red. You don’t need to write the whole script.

10. Embedded Media

Test Yourself

233

ELEMENT REVIEW: EMBEDDED MEDIA

The following elements are used to embed media files of many types into web pages.

Element and Attributes Description
audio Embeds an audio player on the page

src="URL" Address of the resource

crossorigin="anonymous|
use-credentials"

How the element handles requests from other origins (servers)

preload="auto|none|metadata" Indicates how much the media resource should be buffered on page load

autoplay Indicates the media can play as soon as the page is loaded

loop Indicates the media file should start playing again automatically once it reaches
the end

muted Disables the audio output

controls Indicates the browser should display a set of playback controls for the media file

canvas Represents a two-dimensional area that can be used for rendering dynamic bitmap
graphics

height The height of the canvas area

width The width of the canvas area

embed Embeds a multimedia object that requires a plug-in for playback on the page.
Certain media types require custom attributes not listed below.

src="URL" Address of the media resource

type="media type" The media (MIME) type of the media

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

iframe Creates a nested browsing context to display HTML resources in a page

src="URL" Address of the HTML resource

srcdoc="HTML source code" The HTML source of a document to display in the inline frame

name="text" Assigns a name to the inline frame to be referenced by targeted links

sandbox=
 "allow-forms|
 allow-pointer-lock|
 allow-popups|
 allow-same-origin|
 allow-scripts|
 allow-top-navigation"

Security rules for nested content

allowfullscreen Indicates the objects in the inline frame are allowed to use requestFullScreen()

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

Part II. HTML for Structure

Element Review: Embedded Media

234

Element and Attributes Description
object A generic element for embedding an external resource

data="URI" Address of the resource

type="media type" The media (MIME) type of the resource

typemustmatch Indicates the resource is to be used only if the value of the type attribute and the
content type of the resource match

name="text" The name of the object to be referenced by scripts

form="form ID" Associates the object with a form element

width="number" The horizontal dimension of the video player in pixels

height="number" The vertical dimension of the video player in pixels

param Supplies a parameter within an object element

name="text" Defines the name of the parameter

value="text" Defines the value of the parameter

source Allows authors to specify multiple versions of a media file (used with video
and audio)

src="text" The address of the resource

type="media type" The media (MIME) type of the resource

track Specifies an external resource (text or audio) that is timed with a media file that
improves accessibility, navigation, or SEO

kind="subtitles|captions|
descriptions|chapters|metadata"

Type of text track

src="text" Address of external resource

srclang="valid language tag" Language of the text track

label="text" A title for the track that may be displayed by the browser

default Indicates the track should be used by default if it does not override user prefer-
ences

video Embeds a video player on the page

src="URL" Address of the resource

crossorigin="anonymous|
use-credentials"

How the element handles requests from other origins (servers)

poster="URL" The location of an image file that displays as a placeholder before the video
begins to play

preload="auto|none|metadata" Hints how much buffering the media resource will need

autoplay Indicates the media can play as soon as the page is loaded

loop Indicates the media file should start playing again automatically once it reaches
the end

muted Disables the audio output

controls Indicates the browser should display a set of playback controls for the media file

width="number" Specifies the horizontal dimension of the video player in pixels

height="number" Specifies the vertical dimension of the video player in pixels

10. Embedded Media

Element Review: Embedded Media

235

III
CSS FOR PRESENTATION

IN THIS CHAPTER

The benefits and power of CSS

How HTML markup creates a
document structure

Writing style rules

Attaching styles to the HTML
document

Big concepts: inheritance,
specificity, the cascade, rule

order, and the box model

You’ve heard style sheets mentioned quite a bit already, and now we’ll
finally put them to work and start giving our pages some much-needed
style. Cascading Style Sheets (CSS) is the W3C standard for defining the
presentation of documents written in HTML, and in fact, any XML language.
Presentation, again, refers to the way the document is delivered to the user,
whether shown on a computer screen, displayed on a cell phone, printed on
paper, or read aloud by a screen reader. With style sheets handling the presen-
tation, HTML can handle the business of defining document structure and
meaning, as intended.

CSS is a separate language with its own syntax. This chapter covers CSS ter-
minology and fundamental concepts that will help you get your bearings for
the upcoming chapters, where you’ll learn how to change text and font styles,
add colors and backgrounds, and even do basic page layout. By the end of
Part III, I aim to give you a solid foundation for further reading on your own
and lots of practice.

THE BENEFITS OF CSS

Not that you need further convincing that style sheets are the way to go, but
here is a quick rundown of the benefits of using style sheets.

•	 Precise type and layout controls. You can achieve print-like precision
using CSS. There is even a set of properties aimed specifically at the
printed page (but we won’t be covering them in this book).

•	 Less work. You can change the appearance of an entire site by editing
one style sheet. This also ensures consistency of formatting throughout
the site.

INTRODUCING
CASCADING STYLE
SHEETS

11
CHAPTER

239

•	 More accessible sites. When all matters of presentation are handled by
CSS, you can mark up your content meaningfully, making it more acces-
sible for non-visual or mobile devices.

Come to think of it, there really aren’t any disadvantages to using style sheets.
There are some lingering hassles from browser inconsistencies, but they can
either be avoided or worked around if you know where to look for them.

The Power of CSS
We’re not talking about minor visual tweaks here, like changing the color
of headlines or adding text indents. When used to its full potential, CSS is a
robust and powerful design tool. My eyes were first opened to the possibili-
ties of using CSS for design by the variety and richness of the designs at CSS
Zen Garden (www.csszengarden.com).

In the misty days of yore (2003), when developers were still hesitant to give
up their table-based layouts for CSS, David Shea’s CSS Zen Garden site dem-
onstrated exactly what could be accomplished using CSS alone. David posted
an HTML document and invited designers to contribute their own style
sheets that gave the document a visual design. FIGURE 11-1 shows just a few of
my favorites. All of these designs use the exact same HTML source document.

Not only that, they don’t include a single img element (all of the images are in
the background of elements). But look at how different each page looks—and
how sophisticated. That’s all done with style sheets. It is proof of the power in
keeping CSS separate from HTML, and presentation separate from structure.

The CSS Zen Garden is no longer being updated and now is considered a
historical document of a turning point in the adoption of web standards.
Despite its age, I still find it to be a nice one-stop lesson for demonstrating
exactly what CSS can do.

Granted, it takes a lot of practice to be able to create CSS layouts like those
shown in FIGURE 11-1. Killer graphic design skills help too (unfortunately, you
won’t get those in this book). I’m showing this to you up front because I want
you to be aware of the potential of CSS-based design, particularly because the
examples in this beginners’ book tend to be simple and straightforward. Take
your time learning, but keep your eye on the prize.

HOW STYLE SHEETS WORK

It’s as easy as 1-2-3!

1.	 Start with a document that has been marked up in HTML.

2.	 Write style rules for how you ’ d like certain elements to look.

Part III. CSS for Presentation

How Style Sheets Work

240

3.	 Attach the style rules to the document. When the browser displays the
document, it follows your rules for rendering elements (unless the user
has applied some mandatory styles, but we’ll get to that later).

OK, so there’s a bit more to it than that, of course. Let’s give each of these steps
a little more consideration.

1. Marking Up the Document
You know a lot about marking up content from the previous chapters. For
example, you know that it is important to choose elements that accurately
describe the meaning of the content. You also heard me say that the markup

CSS Zen Dragen
by Matthew Buchanan

Shaolin Yokobue
by Javier Cabrera

By the Pier
by Peter Ong Kelmscott

Organica Creativa
by Eduardo Cesario

FIGURE 11-1.  These pages from the CSS Zen Garden use the same HTML source
document, but the design is changed with CSS alone (used with permission of CSS Zen
Garden and the individual designers).

11. Introducing Cascading Style Sheets

How Style Sheets Work

241

creates the structure of the document, sometimes called the structural layer,
upon which the presentation layer can be applied.

In this and the upcoming chapters, you’ll see that having an understanding of
your document’s structure and the relationships between elements is central
to your work as a style sheet author.

In the exercises throughout this chapter you will get a feel for how simple it
is to change the look of a document with style sheets. The good news is that
I’ve whipped up a little HTML document for you to play with. You can get
acquainted with the page we’ll be working with in EXERCISE 11-1.

2. Writing the Rules
A style sheet is made up of one or more style instructions (called style rules)
that describe how an element or group of elements should be displayed. The
first step in learning CSS is to get familiar with the parts of a rule. As you’ll
see, they’re fairly intuitive to follow. Each rule selects an element and declares
how it should look.

The following example contains two rules. The first makes all the h1 elements
in the document green; the second specifies that the paragraphs should be in
a large, sans-serif font. Sans-serif fonts do not have a little slab (a serif) at the
ends of strokes and tend to look more sleek and modern.

h1 { color: green; }
p { font-size: large; font-family: sans-serif; }

In CSS terminology, the two main sections of a rule are the selector that iden-
tifies the element or elements to be affected, and the declaration that provides
the rendering instructions. The declaration, in turn, is made up of a property
(such as color) and its value (green), separated by a colon and a space. One or
more declarations are placed inside curly brackets, as shown in FIGURE 11-3.

selector { property: value; } selector {
 property1: value1;
 property2: value2;
 property3: value3;
 }

declaration declaration block

FIGURE 11-3.  The parts of a style rule.

EXERCISE 11-1. 
A first look

In this chapter, we’ll add a few simple
styles to a short article. The document,
cooking.html, and its associated
image, salads.jpg, are available at
learningwebdesign.com/5e/materials/.

For now, just open the document
in a browser to see how it looks by
default (it should look something like
FIGURE 11-2). You can also open
the document in a text editor to get
ready to follow along in the next two
exercises.

FIGURE 11-2.   This is what the
article looks like without any style
sheet instructions. Although we won’t
be making it beautiful, you will get a
feel for how style sheets work.

Part III. CSS for Presentation

How Style Sheets Work

242

Selectors
In the previous small style sheet example, the h1 and p elements are used as
selectors. This is called an element type selector, and it is the most basic type
of selector. The properties defined for each rule will apply to every h1 and p
element in the document, respectively.

Another type of selector is an ID selector, which selects an element based on
the value of an element’s id attribute. It is indicated with the # symbol. For
example, the selector #recipe targets an element with id="recipe".

In upcoming chapters, I’ll introduce you to more sophisticated selectors that
you can use to target elements, including ways to select groups of elements,
and elements that appear in a particular context. See the “Selectors in this
Book” sidebar for details.

Mastering selectors—that is, choosing the best type of selector and using it
strategically—is an important step in mastering CSS.

Declarations
The declaration is made up of a property/value pair. There can be more than
one declaration in a single rule; for example, the rule for the p element shown
earlier in the code example has both the font-size and font-family proper-
ties. Each declaration must end with a semicolon to keep it separate from the
following declaration (see Note). If you omit the semicolon, the declaration
and the one following it will be ignored. The curly brackets and the declara-
tions they contain are often referred to as the declaration block (FIGURE 11-3).

Because CSS ignores whitespace and line returns within the declaration
block, authors typically write each declaration in the block on its own line,
as shown in the following example. This makes it easier to find the properties
applied to the selector and to tell when the style rule ends.

p {
 font-size: large;
 font-family: sans-serif;
}

Note that nothing has really changed here—there is still one set of curly
brackets, semicolons after each declaration, and so on. The only difference is
the insertion of line returns and some character spaces for alignment.

Properties

The heart of style sheets lies in the collection of standard properties that
can be applied to selected elements. The complete CSS specification defines
dozens of properties for everything from text indents to how table headers
should be read aloud. This book covers the most common and best-support-
ed properties that you can begin using right away.

NOTE

Technically, the semicolon is not required
after the last declaration in the block, but
it is recommended that you get into the
habit of always ending declarations with
a semicolon. It will make adding declara-
tions to the rule later that much easier.

Selectors in This Book
Instead of throwing the selectors at
you all at once, I’ve spread them out
so you can master a few at a time.
Here is where you will find them:

Chapter 11:
Element type selector (p.243)

Grouped selectors (p.252)

Chapter 12:
Descendent selectors (p.281)

ID and class selectors (p.282–6)

Child, next-sibling, and following-
sibling selectors (p.283)

Universal selector (*) (p.285)

Chapter 13:
Pseudo-class selectors (p.316)

Pseudo-element selectors (p.320)

Attribute selectors (p.323)

11. Introducing Cascading Style Sheets

How Style Sheets Work

243

Values

Values are dependent on the property. Some properties take length measure-
ments, some take color values, and others have a predefined list of keywords.
When you use a property, it is important to know which values it accepts;
however, in many cases, simple common sense will serve you well. Authoring
tools such as Dreamweaver or Visual Studio provide hints of suitable values
to choose from. Before we move on, why not get a little practice writing style
rules yourself in EXERCISE 11-2?

EXERCISE 11-2.  Your first style sheet

Open cooking.html in a text editor. In the head of the document
you will find that I have set up a style element for you to type the
rules into. The style element is used to embed a style sheet in an
HTML document. To begin, we’ll simply add the small style sheet
that we just looked at in this section. Type the following rules into
the document, just as you see them here:

<style>
h1 {
 color: green;
}
p {
 font-size: large;
 font-family: sans-serif;
}
</style>

Save the file, and take a look at it in the browser. You should
notice some changes (if your browser already uses a sans-serif
font, you may see only a size change). If not, go back and check
that you included both the opening and closing curly bracket and
semicolons. It’s easy to accidentally omit these characters, causing
the style sheet not to work.

Now we’ll edit the style sheet to see how easy it is to write rules
and see the effects of the changes. Here are a few things to try.

IMPORTANT: Remember that you need to save the document after
each change in order for the changes to be visible when you reload
it in the browser.

•	 Make the h1 element “gray” and take a look at it in the browser.
Then make it “blue”. Finally, make it “orange”. (We’ll run through
the complete list of available color names in Chapter 13,
Colors and Backgrounds.)

•	 Add a new rule that makes the h2 elements orange as well.

•	 Add a 100-pixel left margin to paragraph (p) elements by using
this declaration:

margin-left: 100px;

Remember that you can add this new declaration to the existing
rule for p elements.

•	 Add a 100-pixel left margin to the h2 headings as well.

•	 Add an orange, 1-pixel border to the bottom of the h1 element
by using this declaration:

border-bottom: 1px solid orange;

•	 Move the image to the right margin, and allow text to flow
around it with the float property. The shorthand margin
property shown in this rule adds zero pixels of space on the
top and bottom of the image and 12 pixels of space on the left
and right of the image (the values are mirrored in a manner
explained in Chapter 14, Thinking Inside the Box):

img {
 float: right;
 margin: 0 12px;
}

When you are done, the document should look something like the
one shown in FIGURE 11-4.

FIGURE 11-4.  The article after we add a small style sheet. Not
beautiful—just different.

Part III. CSS for Presentation

How Style Sheets Work

244

3. Attaching the Styles to the Document
In the previous exercise, we embedded the style sheet right in the document
by using the style element. That is just one of three ways that style informa-
tion can be applied to an HTML document. You’ll get to try out each of these
soon, but it is helpful to have an overview of the methods and terminology
up front.

External style sheets

An external style sheet is a separate, text-only document that contains
a number of style rules. It must be named with the .css suffix. The .css
document is then linked to (via the link element) or imported (via an
@import rule in a style sheet) into one or more HTML documents. In this
way, all the files in a website may share the same style sheet. This is the
most powerful and preferred method for attaching style sheets to content.
We’ll discuss external style sheets more and start using them in the exer-
cises in Chapter 13.

Embedded style sheets

This is the type of style sheet we worked with in the exercise. It is placed
in a document via the style element, and its rules apply only to that
document. The style element must be placed in the head of the docu-
ment. This example also includes a comment (see the “Comments in Style
Sheets” sidebar).

<head>
 <title>Required document title here</title>
 <style>
 /* style rules go here */
 </style>
</head>

Inline styles

You can apply properties and values to a single element by using the style
attribute in the element itself, as shown here:

<h1 style="color: red">Introduction</h1>

To add multiple properties, just separate them with semicolons, like this:

<h1 style="color: red; margin-top: 2em">Introduction</h1>

Inline styles apply only to the particular element in which they appear.
Inline styles should be avoided, unless it is absolutely necessary to over-
ride styles from an embedded or external style sheet. Inline styles are
problematic in that they intersperse presentation information into the
structural markup. They also make it more difficult to make changes
because every style attribute must be hunted down in the source.

EXERCISE 11-3 gives you an opportunity to write an inline style and see how
it works. We won’t be working with inline styles after this point for the rea-
sons listed earlier, so here’s your chance.

Comments in Style
Sheets
Sometimes it is helpful to leave
yourself or your collaborators
comments in a style sheet. CSS has
its own comment syntax, shown here:

/* comment goes here */

Content between the /* and */ will
be ignored when the style sheet is
parsed, which means you can leave
comments anywhere in a style sheet,
even within a rule:

body {
 font-size: small;
 /* change this later */
}

One use for comments is to label
sections of the style sheet to make
things easier to find later; for
example:

/* FOOTER STYLES */

CSS comments are also useful for
temporarily hiding style declarations
in the design process. When I am
trying out a number of styles, I can
quickly switch styles off by enclosing
them in /* and */, check the design
in a browser, then remove the
comment characters to make the
style appear again. It’s much faster
than retyping the entire thing.

11. Introducing Cascading Style Sheets

How Style Sheets Work

245

THE BIG CONCEPTS

There are a few big ideas that you need to get your head around to be com-
fortable with how Cascading Style Sheets behave. I’m going to introduce you
to these concepts now so we don’t have to slow down for a lecture once we’re
rolling through the style properties. Each of these ideas will be revisited and
illustrated in more detail in the upcoming chapters.

Inheritance
Are your eyes the same color as your parents’? Did you inherit their hair
color? Well, just as parents pass down traits to their children, styled HTML
elements pass down certain style properties to the elements they contain.
Notice in EXERCISE 11-1, when we styled the p elements in a large, sans-serif
font, the em element in the second paragraph became large and sans-serif as
well, even though we didn’t write a rule for it specifically (FIGURE 11-5). That
is because the em element inherited the styles from the paragraph it is in.
Inheritance provides a mechanism for styling elements that don’t have any
explicit styles rules of their own.

Unstyled paragraph

Paragraph with styles applied

The em element is large and sans-serif even
though it has no style rules of its own. It inherits
styles from the paragraph that contains it.

FIGURE 11-5.  The em element inherits styles that were applied to the paragraph.

Document structure
This is where an understanding of your document’s structure becomes
important. As I’ve noted before, HTML documents have an implicit structure,
or hierarchy. For example, the sample article we’ve been playing with has an
html root element that contains a head and a body, and the body contains
heading and paragraph elements. A few of the paragraphs, in turn, contain
inline elements such as images (img) and emphasized text (em). You can visu-
alize the structure as an upside-down tree, branching out from the root, as
shown in FIGURE 11-6.

EXERCISE 11-3. 
Applying an inline style

Open the article cooking.html in
whatever state you last left it in
EXERCISE 11-2. If you worked to the
end of the exercise, you will have a rule
that makes the h2 elements orange.

Write an inline style that makes the
second h2 gray. We’ll do that right in
the opening h2 tag by using the style
attribute, as shown here:

<h2 style="color: gray">The
Main Course</h2>

Note that it must be gray-with-an-a (not
grey-with-an-e) because that is the way
the color is defined in the spec.

Save the file and open it in a browser.
Now the second heading is gray,
overriding the orange color set in the
embedded style sheet. The other h2
heading is unaffected.

Part III. CSS for Presentation

The Big Concepts

246

html

head body

title style h1 p p p p ppp h2 h2

em em emimg

meta

FIGURE 11-6.  The document tree structure of the sample document, cooking.html.

Parents and children
The document tree becomes a family tree when it comes to referring to the
relationship between elements. All the elements contained within a given
element are said to be its descendants. For example, the h1, h2, p, em, and
img elements in the document in FIGURE 11-6 are all descendants of the body
element.

An element that is directly contained within another element (with no inter-
vening hierarchical levels) is said to be the child of that element. Conversely,
the containing element is the parent. For example, the em element is the child
of the p element, and the p element is its parent.

All of the elements higher than a particular element in the hierarchy are its
ancestors. Two elements with the same parent are siblings. We don’t refer to
“aunts” or “cousins,” so the analogy stops there. This may all seem academic,
but it will come in handy when you’re writing CSS selectors.

Pass it on
When you write a font-related style rule using the p element as a selector, the
rule applies to all of the paragraphs in the document as well as the inline text
elements they contain. We’ve seen the evidence of the em element inheriting
the style properties applied to its parent (p) back in FIGURE 11-5. FIGURE 11-7
demonstrates what’s happening in terms of the document structure diagram.
Note that the img element is excluded because font-related properties do not
apply to images.

Notice that I’ve been saying “certain” properties are inherited. It’s important
to note that some style sheet properties inherit and others do not. In general,
properties related to the styling of text—font size, color, style, and the like—
are passed down. Properties such as borders, margins, backgrounds, and so
on that affect the boxed area around the element tend not to be passed down.
This makes sense when you think about it. For example, if you put a border

11. Introducing Cascading Style Sheets

The Big Concepts

247

around a paragraph, you wouldn’t want a border around every inline element
(such as em, strong, or a) it contains as well.

You can use inheritance to your advantage when writing style sheets. For
example, if you want all text elements to be blue, you could write separate
style rules for every element in the document and set the color to “blue”. A
better way would be to write a single style rule that applies the color property
to the body element, and let all the elements contained in the body inherit that
style (FIGURE 11-8).

Any property applied to a specific element overrides the inherited values for
that property. Going back to the article example, if we specify that the em ele-
ment should be orange, that would override the inherited blue setting.

html

head body

title style h1 p p p p ppp h2 h2

em em emimg

meta

If you apply the color property to the
body element, it will be passed down to
all the elements in the document.

body {color: blue;}

(The color will show for the image only if it has a border applied to it.)

FIGURE 11-8.  All the elements in the document inherit certain properties applied to
the body element.

html

head body

title style h1 p p p p ppp h2 h2

em em emimg

meta

p {font-size: large; font-family: sans serif;}

FIGURE 11-7.  Certain properties applied to the p element are inherited by their
children.

CSS T I P

When you learn a new property, it
is a good idea to note whether it
inherits. Inheritance is noted for every
property listing in this book. For the
most part, inheritance follows your
expectations.

Part III. CSS for Presentation

The Big Concepts

248

Conflicting Styles: The Cascade
Ever wonder why they are called “cascading” style sheets? CSS allows you
to apply several style sheets to the same document, which means there
are bound to be conflicts. For example, what should the browser do if a
document’s imported style sheet says that h1 elements should be red, but its
embedded style sheet has a rule that makes h1s purple? The two style rules
with h1 selectors have equal weight, right?

The folks who wrote the style sheet specification anticipated this problem
and devised a hierarchical system that assigns different weights to the vari-
ous sources of style information. The cascade refers to what happens when
several sources of style information vie for control of the elements on a page:
style information is passed down (“cascades” down) until it is overridden by
a style rule with more weight. Weight is considered based on the priority of
the style rule source, the specificity of the selector, and rule order.

Priority
If you don’t apply any style information to a web page, it renders according to
the browser’s internal style sheet. We’ve been calling this the default render-
ing; the W3C calls it the user agent style sheet. Individual users can apply
their own styles as well (the user style sheet, also called the reader style sheet),
which override the default styles in their browser. However, if the author of
the web page has attached a style sheet (the author style sheet), that overrides
both the user and the user agent styles. The sidebar “Style Rule Hierarchy”
provides an overview of the cascading order from highest to lowest priority.

The only exception is if the user has identified a style as “important,” in
which case that style will override all competing styles (see the “Assigning
Importance” sidebar). This permits users to keep settings accommodating a
disability such as extra large type for sight impairment.

Specificity
It is possible for conflicts to arise in which an element is getting style instruc-
tions from more than one rule. For example, there may be a rule that applies
to paragraphs and another rule for a paragraph that has the ID “intro.” Which
rule should the intro paragraph use?

When two rules in a style sheet conflict, the type of selector is used to deter-
mine the winner. The more specific the selector, the more weight it is given
to override conflicting declarations. In our example, the selector that includes
the ID name (#intro) is more specific than a general element selector (like
p), so that rule would apply to the “intro” paragraph, overriding the rules set
for all paragraphs.

It’s a little soon to be discussing specificity because we’ve looked at only two
types of selectors. For now, put the term specificity and the concept that some

The “cascade” refers
to what happens when
several sources of style
information vie for control
of the elements on a
page.

Style Rule Hierarchy
Style information can come from
various origins, listed here from
highest priority to lowest. In other
words, items higher in the list
override items below.

•	 Any style rule marked !important
by the reader (user)

•	 Any style rule marked !important
by the author

•	 Style sheets written by the author

•	 Style sheets created by the reader
(user)

•	 Browser’s default style rules (“user
agent style sheet”)

When two rules in a single
style sheet conflict, the
type of selector is used to
determine the winner.

11. Introducing Cascading Style Sheets

The Big Concepts

249

selectors have more “weight,” and therefore override others, on your radar.
We will revisit specificity in much more detail in Chapter 12, Formatting Text
when you have more selector types under your belt.

Rule order
After all the style sheet sources have been sorted by priority, and after all
the linked and imported style sheets have been shuffled into place, there are
likely to be conflicts in rules with equal weights. When that is the case, the
order in which the rules appear is important. The cascade follows a “last one
wins” rule. Whichever rule appears last has the last word.

Within a style sheet, if there are conflicts within style rules of identical
weight, whichever one comes last in the list “wins.” Take these three rules,
for example:

<style>
 p { color: red; }
 p { color: blue; }
 p { color: green; }
</style>

In this scenario, paragraph text will be green because the last rule in the style
sheet—that is, the one closest to the content in the document—overrides the
earlier ones. Procedurally, the paragraph is assigned a color, then assigned a
new one, and finally a third one (green) that gets used. The same thing hap-
pens when conflicting styles occur within a single declaration stack:

Assigning Importance
If you want a rule not to be overridden by a subsequent
conflicting rule, include the !important indicator just after
the property value and before the semicolon for that rule. For
example, to guarantee paragraph text will be blue, use the
following rule:

p {color: blue !important;}

Even if the browser encounters an inline style later in the
document (which should override a document-wide style
sheet), like this one:

<p style="color: red">

that paragraph will still be blue because the rule with the
!important indicator cannot be overridden by other styles in
the author’s style sheet.

The only way an !important rule may be overridden is by a
conflicting rule in a reader (user) style sheet that has also been
marked !important. This is to ensure that special reader

requirements, such as large type or high-contrast text for the
visually impaired, are never overridden.

Based on the previous examples, if the reader’s style sheet
includes this rule

p {color: black;}

the text would still be blue because all author styles (even those
not marked !important) take precedence over the reader’s
styles. However, if the conflicting reader’s style is marked
!important, like this

p {color: black !important;}

the paragraphs will be black and cannot be overridden by any
author-provided style.

Beware that the !important indicator is not a get-out-of-jail-
free card. Best practices dictate that it should be used sparingly,
if at all, and certainly never just to get yourself out of a sticky
situation with inheritance and the cascade.

The cascade follows
a “last one wins” rule.
Whichever rule appears
last has the last word.

Part III. CSS for Presentation

The Big Concepts

250

<style>
 p { color: red;
 color: blue;
 color: green; }
</style>

The resulting color will be green because the last declaration overrides the
previous two. It is easy to accidentally override previous declarations within a
rule when you get into compound properties, so this is an important behav-
ior to keep in mind. That is a very simple example. What happens when style
sheet rules from different sources come into play?

Let’s consider an HTML document that has an embedded style sheet (added
with the style element) that starts with an @import rule for importing an
external .css file. That same HTML document also has a few inline style
attributes applied to particular h1 elements.

STYLE DOCUMENT (external.css):

…
h1 { color: red }
…

HTML DOCUMENT:

<!DOCTYPE html>
<html>
<head>
 <title>…</title>
 <style>
 @import url(external.css); /* set to red first */
 h1 { color: purple;} /* overridden by purple */
 </style>
</head>
<body>
 <h1 style="color: blue">Heading</h1> /* blue comes last and wins */
 …
</body>
</html>

When the browser parses the file, it gets to the imported style sheet first,
which sets h1s to red. Then it finds a rule with equal weight in the embed-
ded style sheet that overrides the imported rule, so h1s are set to purple. As it
continues, it encounters a style rule right in an h1 that sets its color to blue.
Because that rule came last, it’s the winner, and that h1 will be blue. That’s the
effect we witnessed in EXERCISE 11-3. Note that other h1s in this document
without inline style rules would be purple, because that was the last h1 color
applied to the whole document.

The Box Model
As long as we’re talking about Big CSS Concepts, it is only appropriate to
introduce the cornerstone of the CSS visual formatting system: the box
model. The easiest way to think of the box model is that browsers see every
element on the page (both block and inline) as being contained in a little

Using Rule Order for
Fallbacks
Many CSS properties are tried
and true and are supported by all
browsers; however, there are always
useful, new properties emerging that
take a while to be implemented by
browsers. It is common for just one
or two browsers to support a new
feature and for others to lag behind
or never support it at all. It also takes
a long time for some old browsers to
completely fade from existence.

Fortunately, there are a number of
ways to provide fallbacks (alternative
styles using better-supported
properties) to non-supporting
browsers. The most straightforward
method takes advantage of browsers’
built-in behavior of ignoring any
declaration they don’t understand
and then using rule order strategically.

In this example, I have added a
decorative border image to an
element by using the border-image
property and provided a fallback
solid border with the tried-and-
true border property. Supporting
browsers use the image because
it is the last rule in the stack. Non-
supporting browsers set a solid
border but stop there when they
get to the border-image property
they don’t understand. They won’t
crash or throw an error. They just
ignore it. The border displays as
the fallback solid red line on those
browsers, which is fine, but users
with supporting browsers will see the
decorative border as intended.

h1 {
/* fallback first */
 border: 25px solid #eee;
/* newer technique */
border-image: url(fancyframe.
png) 55 fill / 55px / 25px;
}

You’ll see this method of providing
fallbacks by putting newer properties
last throughout this book.

11. Introducing Cascading Style Sheets

The Big Concepts

251

rectangular box. You can apply properties such as borders, margins, padding,
and backgrounds to these boxes, and even reposition them on the page.

We’re going to go into a lot more detail about the box model in Chapter 14,
but having a general feel for it will benefit you even as we discuss text and
backgrounds in the following two chapters.

To see the elements roughly the way the browser sees them, I’ve written style
rules that add borders around every content element in our sample article:

h1 { border: 1px solid blue; }
h2 { border: 1px solid blue; }
p { border: 1px solid blue; }
em { border: 1px solid blue; }
img { border: 1px solid blue; }

FIGURE 11-9 shows the results. The borders reveal the shape of each block
element box. There are boxes around the inline elements (em and img) as well.
If you look at the headings, you will see that block element boxes expand to
fill the available width of the browser window, which is the nature of block
elements in the normal document flow. Inline boxes encompass just the char-
acters or image they contain.

FIGURE 11-9.  Rules around all the elements reveal their element boxes.

Grouped Selectors
Hey! This is a good opportunity to show you a handy style rule shortcut. If
you ever need to apply the same style property to a number of elements, you
can group the selectors into one rule by separating them with commas. This

A Quick History of CSS
The first official version of CSS (the
CSS Level 1 Recommendation,
a.k.a CSS1) was released in 1996,
and included properties for adding
font, color, and spacing instructions
to page elements. Unfortunately,
lack of browser support prevented
the widespread adoption of CSS for
several years.

CSS Level 2 (CSS2), released in
1998, most notably added properties
for positioning that allowed CSS
to be used for page layout. It also
introduced styles for other media
types (such as print and handheld)
and more sophisticated methods
for selecting elements. CSS Level
2, Revision 1 (CSS2.1) made some
minor adjustments to CSS2 and
became a Recommendation in 2011.

CSS Level 3 (CSS3) is different
from prior versions in that it is
divided into individual modules,
each addressing a feature such as
animation, multiple column layouts,
or borders. While some modules are
being standardized, others remain
experimental. In that way, browser
developers can begin implementing
(and we can begin using!) one feature
at a time instead of waiting for an
entire specification to be “ready.”

Now that each CSS module is on its
own track, modules have their own
Level numbers. No more big, all-
encompassing CSS versions. Newly
introduced modules, such as the
Grid Layout Module, start out at Level
1. Modules that have been around
a while may have already reached
Level 4.

You won’t believe how many
individual specifications are in
the works! For an overview of the
specifications in their various states of
“doneness,” see the W3C’s CSS current
work page at www.w3.org/Style/CSS/
current-work.

Part III. CSS for Presentation

The Big Concepts

252

one rule has the same effect as the five rules listed previously. Grouping them
makes future edits more efficient and results in a smaller file size:

h1, h2, p, em, img { border: 1px solid blue; }

Now you have two selector types in your toolbox: a simple element selector
and grouped selectors.

CSS UNITS OF MEASUREMENT

This chapter lays the groundwork for upcoming lessons, so it’s a good time to
get familiar with the units of measurement used in CSS. You’ll be using them
to set font size, the width and height of elements, margins, indents, and so on.
The complete list is provided in the sidebar “CSS Units.”

Some will look familiar (like inches and millimeters), but there are some units
that bear more explanation: absolute units, rem, em, and vw/vh. Knowing
how to use CSS units effectively is another one of those core CSS skills.

Pop Quiz
Can you guess why I didn’t just add
the border property to the body
element and let it inherit to all the
elements in the grouped selector?

Answer:

Because border is one of the
properties that are not inherited.

CSS Units
CSS3 provides a variety of units of measurement. They fall into
two broad categories: absolute and relative.

Absolute units
Absolute units have predefined meanings or real-world
equivalents. With the exception of pixels, they are not
appropriate for web pages that appear on screens.

px	 pixel, defined as equal to 1/96 of an inch in CSS3.

in	 inches.

mm	 millimeters.

cm	 centimeters.

q	 ¼ millimeter.

pt	 points (1/72 inch). Points are a unit commonly used in
print design.

pc	 picas (1 pica = 12 points or 1/6 inch). Points are a unit
commonly used in print design.

Relative units
Relative units are based on the size of something else, such as
the default text size or the size of the parent element.

em	 a unit of measurement equal to the current font size.

ex	 x-height, approximately the height of a lowercase “x” in
the font.

rem	 root em, equal to the em size of the root element
(html).

ch	 zero width, equal to the width of a zero (0) in the
current font and size.

vw	 viewport width unit, equal to 1/100 of the current
viewport (browser window) width.

vh	 viewport height unit, equal to 1/100 of the current
viewport height.

vmin	 viewport minimum unit, equal to the value of vw or vh,
whichever is smaller.

vmax	 viewport maximum unit, equal to the value of vw or vh,
whichever is larger.

NOTES

•	 Although not a “unit,” percentages are another common
measurement value for web page elements. Percentages
are calculated relative to another value, such as the value
of a property applied to the current element or its parent or
ancestor. The spec always says what a percentage value for a
property is calculated on.

When used for page layouts, percentage values ensure that
page elements stay proportional.

•	 Child elements do not inherit the relative values of their
parent, but rather the resulting calculated value.

•	 IE9 supports vm instead of vmin. IE and Edge (all versions as
of 2017) do not support vmax.

11. Introducing Cascading Style Sheets

CSS Units of Measurement

253

Absolute Units
Absolute units have predefined meanings or real-world equivalents. They are
always the same size, regardless of the context in which they appear.

The most popular absolute unit for web design is the pixel, which CSS3
defines as 1/96 inch. Pixels are right at home on a pixel-based screen and
offer precise control over the size of the text and elements on the page. For a
while there, pixels were all we used. Then we realized they are too rigid for
pages that need to adapt to a wide variety of screen sizes and user preferences.
Relative measurements like rem, em, and % are more appropriate to the fluid
nature of the medium.

As long as we are kicking px to the curb, all of the absolute units—such as pt,
pc, in, mm, and cm—are out because they are irrelevant on screens, although
they may be useful for print style sheets. That narrows down your unit
choices a bit.

That said, pixels do still have their place in web design for elements that truly
should stay the same size regardless of context. Border widths are appropriate
in pixels, as are images that have inherent pixel dimensions.

Relative Units
As I just established, relative units are the way to go for most web measure-
ments, and there are a few options: rem, em, and vw/vh.

The rem unit
CSS3 introduced a relative measurement called a rem (for root em) that is
based on the font size of the root (html) element, whatever that happens to
be. In modern browsers, the default root font size is 16 pixels; therefore, a rem
is equivalent to a 16-pixel unit (unless you set it explicitly to another value).
An element sized to 10rem would measure 160 pixels.

For the most part, you can use rem units like an absolute measurement in
style rules; however, because it is relative, if the base font size changes, so
does the size of a rem. If a user changes the base font size to 24 pixels for
easier reading from a distance, or if the page is displayed on a device that has
a default font size of 24 pixels, that 10rem element becomes 240 pixels. That
seems dodgy, but rest assured that it is a feature, not a bug. There are many
instances in which you want a layout element to expand should the text size
increase. It keeps the page proportional with the font size, which can help
maintain optimum line lengths.

The em unit
An em is a relative unit of measurement that, in traditional typography, is
based on the width of the capital letter M (thus the name “em”). In the CSS

Rem Fallbacks for Old
IE Browsers
The drawback to rems is that IE8
and earlier do not support them
at all, and you need to provide
a fallback declaration with the
equivalent measurement in pixels.
There are production tools that
can convert all your rem units to
pixels automatically, which are
discussed in Chapter 20, Modern
Development Tools.

Part III. CSS for Presentation

CSS Units of Measurement

254

specification, an em is calculated as the distance between baselines when the
font is set without any extra space between the lines (also known as leading).
For text with a font size of 16 pixels, an em measures 16 pixels; for 12-pixel
text, an em equals 12 pixels; and so on, as shown in FIGURE 11-10.

Hey there!

em box

12px type
1em = 12px

16px type
1em = 16px

24px type
1em = 24px

Hey there! Hey there!

FIGURE 11-10.   An em is based on the size of the text.

Once the dimension of an em for a text element is calculated by the browser,
it can be used for all sorts of other measurements, such as indents, margins,
the width of the element on the page, and so on. Basing measurements on text
size helps keep everything in proportion should the text be resized.

The trick to working with ems is to remember they are always relevant to
the current font size of the element. To borrow an example from Eric Meyer
and Estelle Weyl’s CSS: The Definitive Guide (O’Reilly), if you set a 2em left
margin on an h1, h2, and p, those elements will not line up nicely because the
em units are based on their respective element’s sizes (FIGURE 11-11).

h1, h2, p { margin-left: 2em; }

FIGURE 11-11.   Em measurements are always relevant to the element’s font size. An
em for one element may not be the same for another.

Viewport percentage lengths (vw/vh)
The viewport width (vw) and viewport height (vh) units are relative to the
size of the viewport (browser window). A vw is equal to 1/100 the width of
the viewport. Similarly, a vh is equal to 1/100 the height of the viewport.
Viewport-based units are useful for making images and text elements stay
the full width or height of the viewport:

NOTE

Don’t confuse the em unit of measure-
ment with the em HTML element used
to indicate emphasized text. They are
totally different things.

11. Introducing Cascading Style Sheets

CSS Units of Measurement

255

header {
 width: 100vw;
 height: 100vh; }

It’s also easy to specify a unit to be a specific percentage of the window size,
such as 50%:

img {
 width: 50vw;
 height: 50vh; }

Related are the vmin unit (equal to the value of vw or vh, whichever is smaller)
and vmax (equal to the value of vw or vh, whichever is larger).

That should give you a good introduction to the units you’ll be using in your
style sheets. I recommend reading the full CSS Values and Units Module
(www.w3.org/TR/css3-values/) to deepen your knowledge and make the values
listed for properties in this book easier to understand. In addition to length
units, it includes text-based values (such as keywords, text strings, and URLs),
numbers and percentage values, colors, and more.

DEVELOPER TOOLS RIGHT IN
YOUR BROWSER

Because of the cascade, a single page element may have styles applied from a
number of sources. This can make it tricky to debug a page when styles aren’t
displaying the way you think they should. Fortunately, every major browser
comes with developer tools that can help you sort things out.

I’ve opened the simple cooking.html document that we’ve been working on
in the Chrome browser, then selected View → Developer → Developer Tools from
the menu. The Developer Tools panel opens at the bottom of the document,
as you can see in FIGURE 11-12. You can also make it its own separate window
by clicking the windows icon in the top left.

In the Elements tab on the left, I can see the HTML source for the document.
The content is initially hidden so you can see the structure of the document
more clearly, but clicking the arrows opens each section. When I click the
element in the source (like the second p element shown in the figure), that
element is also highlighted in the browser window view.

In the Styles tab on the right, I can see all of the styles that are being applied
to the selected element. In the example, I see the font-size, font-family, and
margin-left properties from the style element in the document. If there were
external CSS documents, they’d be listed too. I can also see the “User Agent
Style Sheet,” which is the browser’s default styles. In this case, the browser
style sheet adds the margin space around the paragraph. Chrome also pro-
vides a box model diagram for the selected element that shows the content
dimensions, padding, border, and margins that are applied. This is a great
tool for troubleshooting unexpected spacing in layouts.

BROWSER SU PPO RT NOTE

IE9 supports vm instead of vmin. IE and
Edge (all versions as of 2017) do not sup-
port vmax.

Elements selected in
code are highlighted in

the browser view.

All styles that are applied
to the selected element.

Margins, borders, and
paddings applied to the
element.

HTML source for the page.

FIGURE 11-12.   The Chrome browser with the Developer Tools panel open.

BROWSE R SU PPORT NOTE

IE9 supports vm instead of vmin. IE and
Edge (all versions as of 2017) do not sup-
port vmax.

Part III. CSS for Presentation

Developer Tools Right in Your Browser

256

http://www.w3.org/TR/css3-values/

The cool thing is that when you edit the style rules in the panel, the changes
are reflected in the browser view of the page in real time! If I select the h1
element and change the color from orange to green, it turns green in the win-
dow. It’s a great way to experiment with or troubleshoot a design; however,
the changes are not being made to the document itself. It’s just a preview, so
you’ll have to duplicate the changes in your source.

You can inspect any page on the web in this way, play around with turning
styles off and on, and even add some of your own. Nothing you do has any
effect on the actual site, so it is just for your education and amusement.

The element and style inspectors are just the tip of the iceberg of what
browser developer tools can do. You can also tweak and debug JavaScript,
check performance, view the document in various device simulations, and
much more. The good news is that all major browsers now have built-in tools
with similar features. As a web developer, you’ll find they are your best friend.

•	 Chrome DevTools (View → Developer → Developer Tools)
developer.chrome.com/devtools

•	 Firefox (Tools → Web Developer)
developer.mozilla.org/en-US/docs/Tools

•	 Microsoft Edge (open with F12 key)
developer.microsoft.com/en-us/microsoft-edge/platform/documentation/
f12-devtools-guide/

Elements selected in
code are highlighted in

the browser view.

All styles that are applied
to the selected element.

Margins, borders, and
paddings applied to the
element.

HTML source for the page.

FIGURE 11-12.   The Chrome browser with the Developer Tools panel open.

11. Introducing Cascading Style Sheets

Developer Tools Right in Your Browser

257

•	 Safari (Develop → Show Web Inspector)
developer.apple.com/library/content/documentation/AppleApplications/
Conceptual/Safari_Developer_Guide/Introduction/Introduction.html)

•	 Opera (View → Developer Tools → Opera Dragonfly)
www.opera.com/dragonfly/

•	 Internet Explorer 9+ (open with F12 key)
msdn.microsoft.com/en-us/library/gg589512(v=vs.85).aspx

MOVING FORWARD WITH CSS

This chapter covered all the fundamentals of Cascading Style Sheets, includ-
ing rule syntax, ways to apply styles to a document, and the central concepts
of inheritance, the cascade (including priority, specificity, and rule order),
and the box model. Style sheets should no longer be a mystery, and from this
point on, we’ll merely be building on this foundation by adding properties
and selectors to your arsenal and expanding on the concepts introduced here.

CSS is a vast topic, well beyond the scope of this book. Bookstores and the
web are loaded with information about style sheets for all skill levels. I’ve
compiled a list of the resources I’ve found the most useful during my learning
process. I’ve also provided a list of popular tools that assist in writing style
sheets.

Books
There is no shortage of good books on CSS out there, but these are the ones
that taught me, and I feel good recommending them.

•	 CSS: The Definitive Guide, 4th Edition by Eric A. Meyer and Estelle Weyl
(O’Reilly)

•	 CSS Cookbook by Christopher Schmitt (O’Reilly)

Online Resources
The sites listed here are good starting points for online exploration of style
sheets.

CSS-Tricks (css-tricks.com)

The is the blog of CSS guru Chris Coyier. Chris loves CSS and enthusias-
tically shares his research and tinkering on his site.

World Wide Web Consortium (www.w3.org/TR/CSS/)

The World Wide Web Consortium oversees the development of web tech-
nologies, including CSS. This page is a “snapshot” of the CSS specifica-
tions. See also www.w3.org/Style/CSS/current-work.

Part III. CSS for Presentation

Moving Forward with CSS

258

MDN Web Docs (developer.mozilla.org)

The CSS pages at MDN include detailed reference pages, step-by-step
tutorials, and demos. It’s a great hub for researching any web technology.

A List Apart (www.alistapart.com/topics/code/css/)

This online magazine features some of the best thinking and writing
on cutting-edge, standards-based web design. It was founded in 1998 by
Jeffrey Zeldman and Brian Platz.

TEST YOURSELF

Here are a few questions to test your knowledge of the CSS basics. Answers
are provided in Appendix A.

1.	 Identify the various parts of this style rule:

		 blockquote { line-height: 1.5; }

selector: ______________	 value: ____________________

property: _____________	 declaration: ________________

2.	 What color will paragraphs be when this embedded style sheet is applied
to a document? Why?

	 <style type="text/css">
	 p { color: purple; }
	 p { color: green; }
	 p { color: gray; }
	 </style>

3.	 Rewrite each of these CSS examples. Some of them are completely incor-
rect, and some could just be written more efficiently.

a.	 p {font-family: sans-serif;}
	 p {font-size: 1em;}
	 p {line-height: 1.2em;}

b.	 blockquote {
	 font-size: 1em
	 line-height: 150%
	 color: gray }

c.	 body
	 {background-color: black;}
	 {color: #666;}
	 {margin-left: 12em;}
	 {margin-right: 12em;}

11. Introducing Cascading Style Sheets

Test Yourself

259

http://www.alistapart.com/topics/code/css/

d.	 p {color: white;}
	 blockquote {color: white;}
	 li {color: white;}

e.	 <strong style="red">Act now!

4.	 Circle all the elements that you would expect to appear in red when
the following style rule is applied to a document with the structure dia-
grammed in FIGURE 11-13.

 div#intro { color: red;}

html

head body

title style h1 p

p

img strong

h2 pp h2ul

li li li

div id="intro" div id="main"

FIGURE 11-13.   The document structure of a sample document.

Part III. CSS for Presentation

Test Yourself

260

IN THIS CHAPTER

Font properties

Web fonts

Advanced typography
with CSS3

Text line settings

Text effects

Selectors: descendent,
ID, and class

Specificity overview

List styles

Now that you’ve gotten your feet wet formatting text, are you ready to jump
into the deep end? By the end of this chapter, you’ll pick up over 40 additional
CSS properties used to manipulate the appearance of text. Along the way,
you’ll also learn how to use more powerful selectors for targeting elements in
a particular context and with a specific id or class name.

The nature of the web makes specifying type tricky, if not downright frustrat-
ing, particularly if you have experience designing for print or even formatting
text in a word processing program. There is no way to know for sure whether
the font you specify will be available or how large or small the type will
appear when it hits your users’ browsers. We’ll address the best practices for
dealing with these challenges as we go along.

Throughout this chapter, we’ll be sprucing up a Black Goose Bistro online
menu similar to the one we marked up back in Chapter 5, Marking Up Text. I
encourage you to work along with the exercises to get a feel for how the prop-
erties work. FIGURE 12-1 shows how the menu looks before and after we’re
done. It’s not a masterpiece, because we’re just scratching the surface of CSS
here, but at least the text has more personality.

BASIC FONT PROPERTIES

When I design a text document (for print or the web), one of the first things
I do is specify a font. In CSS, fonts are specified using a set of font-related
properties for typeface, size, weight, font style, and special characters. There
are also shortcut properties that let you specify multiple font attributes in a
single rule.

FORMATTING TEXT 12
CHAPTER

261

FIGURE 12-1.   Before and after views of the Black Goose Bistro menu that we’ll be
working on in this chapter.

A Word About Property Listings
Each CSS property listing in this book is accompanied by information on how it
behaves and how to use it. Property listings include:

Values:
These are the accepted values for the property. Predefined keyword values appear
in code font (for example, small, italic, or small-caps) and must be typed in
exactly as shown.

Default:
This is the value that will be used for the property by default (its initial value)—
that is, if no other value is specified. Note that the default browser style sheet
values may vary from the defaults defined in CSS.

Applies to:
Some properties apply only to certain types of elements.

Inherits:
This indicates whether the property is passed down to the element’s descendants.

CSS-wide keywords
All CSS properties accept the three CSS-wide keywords: initial, inherit, and
unset. Because they are shared by all properties, they are not listed with the values
for individual property listings.

•	 The initial keyword explicitly sets the property to its default (initial) value.

•	 The inherit keyword allows you to explicitly force an element to inherit a style
property from its parent. This may come in handy to override other styles applied
to that element and to guarantee that the element always matches its parent.

•	 Finally, unset erases declared values occurring earlier in the cascade, setting the
property to either inherit or initial, depending on whether it inherits or not.

Part III. CSS for Presentation

Basic Font Properties

262

Specifying the Font Name

Choosing a typeface, or font family as it is called in CSS, for your text is a
good place to start. Let’s begin with the font-family property and its values.

font-family

Values: 	 one or more font or generic font family names, separated by commas

Default: 	 depends on the browser

Applies to: 	 all elements

Inherits: 	 yes

Use the font-family property to specify a font or list of fonts (known as a
font stack) by name, as shown in these examples:

body { font-family: Arial; }
var { font-family: Courier, monospace; }
p { font-family: "Duru Sans", Verdana, sans-serif; }

Here are some important syntax requirements:

•	 All font names, with the exception of generic font families, must be capi-
talized. For example, use Arial instead of arial.

•	 Use commas to separate multiple font names, as shown in the second and
third examples.

•	 Notice that font names that contain a character space (such as Duru Sans
in the third example) must appear within quotation marks.

You might be asking, “Why specify more than one font?” That’s a good ques-
tion, and it brings us to one of the challenges of specifying fonts for the web.

Font limitations
Browsers are limited to displaying fonts they have access to. Traditionally, that
meant the fonts that were already installed on the user’s hard drive. In 2010,
however, there was a boom in browser support for embedded web fonts using
the CSS @font-face rule, so it became possible for designers to provide their
own fonts. See the sidebar “Say Hello to Web Fonts” for more information.

But back to our font-family rule. Even when you specify that the font should
be Futura in a style rule, if the browser can’t find it (for example, if that font
is not installed on the user’s computer or the provided web font fails to load),
the browser uses its default font instead.

Fortunately, CSS allows us to provide a list of back-up fonts (that font stack
we saw earlier) should our first choice not be available. If the first specified
font is not found, the browser tries the next one, and down through the list
until it finds one that works. In the third font-family rule shown in the previ-
ous code example, if the browser does not find Duru Sans, it will use Verdana,
and if Verdana is not available, it will substitute some other sans-serif font.

AT A G L A N C E

Font Properties
The CSS2.1 font-related properties
are universally supported:

font-family
font-size
font-weight
font-style
font-variant
font

The CSS Font Module Level 3
adds these properties for more
sophisticated font handling, although
browser support is inconsistent as of
this writing:

font-stretch
font-variant-ligatures
font-variant-position
font-variant-caps
font-variant-numeric
font-variant-alternates
font-variant-east-asian
font-size-adjust
font-kerning
font-feature-settings
font-language-override

12. Formatting Text

Basic Font Properties

263

Say Hello to Web Fonts
The ability to provide your own font for use on a web page has been around since
1998, but it was never feasible because of browser inconsistencies. Fortunately, that
story has changed, and now web fonts are a perfectly viable option. The web has
never looked better!

There is a lot to say about web fonts, so this sidebar is merely an introduction,
starting with the challenges.

Web font formats
There have been two main hurdles to including fonts with web pages. First, there is
the problem that different browsers support different font formats. Most fonts come
in OpenType (OTF) or TrueType (TTF) format, but older versions of Internet Explorer
accept only its proprietary Embedded Open Type (EOT).

The good news is that there is a new standard for packaging fonts for delivery to web
pages that all browser vendors, even IE, are implementing. The new format, WOFF/
WOFF2 (for Web Open Font Format versions 1 and 2), is a container that packages
font files for web delivery. Now that IE9 supports WOFF, one day it may be all we
need. As of this writing, however, it is still a best practice to provide the same font in a
number of different formats (more on that in just a moment).

The other issue with providing fonts on web pages is that the font companies, or
foundries, are concerned (a polite way to say “freaked out”) that their fonts will be
sitting vulnerably on servers and available for download. Fonts cost a lot to create
and are very valuable. Most come with licenses that cover very specific uses by a
limited number of machines, and “free to download for whatever” is usually not
included.

So, to link to a web font, you need to use the font legally and provide it in a way that
all browsers support. There are two general approaches to providing fonts: host them
yourself or use a web font service. Let’s look at both options.

Host your own
In the “host your own” option, you find the font you want, put it on your server in all
the required formats, and link it to your web page by using the CSS3 @font-face
rule. It is worth noting that each font file corresponds to a single weight or variant of
a typeface. So if you want to use regular, bold, and italic versions, you have to host
three different font files and reference each in your CSS.

Step 1: Find a font. This can be a bit of a challenge because the End User License
Agreement (EULA) for virtually all commercial fonts does not cover web usage. Be
sure to purchase the additional web license if it is available. However, thanks to
demand, some foundries are opening fonts up for web use, and there are a growing
number of open source fonts that you can use for free. The service Fontspring
(fontspring.com), by Ethan Dunham, is a great place to purchase fonts that have
a web license that you can use on your site or your own computer. The site Font
Squirrel (fontsquirrel.com), also by Ethan Dunham, is a great source for open source
fonts that can be used for commercial purposes for free.

Step 2: Save it in multiple formats. As of this writing, providing multiple formats
(EOT, WOFF, TTF, SVG) is a reality. The recommended source for the various formats
is the font vendor where you purchased the font, as they will be the best quality and

Part III. CSS for Presentation

Basic Font Properties

264

approved under the EULA. If you have an open source font (one
that is free from licensing restrictions) and you need alternative
formats, there is a service that will take your font and make
everything you need for you—the “@font-face Generator” from
Font Squirrel (www.fontsquirrel.com/fontface/generator). Go
to that page and upload your font, and it gives back the font in
TTF, EOT, WOFF, WOFF2, and SVG, as well as the CSS code you
need to make it work.

Step 3: Upload to the server. Developers typically keep their
font files in the same directory as the CSS files, but that’s just
a matter of preference. If you download a package from Font
Squirrel, be sure to keep the pieces together as you found them.

Step 4: Write the code. Link the font to your site by using the
@font-face rule in your .css document. The “at-rule” gives the
font a font-family name that you can then reference later
in your style sheet. It also lists the locations of the font files in
their various formats. This cross-browser code example was
developed by Ethan Dunham (yep, him again!) to address a bug
in IE. I recommend reading the full article at blog.fontspring.
com/2011/02/further-hardening-of-the-bulletproof-syntax/.
See also Paul Irish’s updated version at paulirish.com/2009/
bulletproof-font-face-implementation-syntax/.

@font-face {
 font-family: 'MyWebFont';
 src: url('webfont.eot'); /* IE9 Compat Modes */
 src: url('webfont.eot?#iefix') format('embedded-
opentype'), /* IE6-IE8 */
 url('webfont.woff') format('woff'),
 /* Modern Browsers */
 url('webfont.ttf') format('truetype'),
 /* Safari, Android, iOS */
 url('webfont.svg#svgFontName') format('svg');
 /* Legacy iOS */
 }

Then you just refer to the established font name in your font
rules, like so:

p {font-family: MyWebFont; }

Use a font embedding service
If that seems like a lot of work, you may want to sign up with
one of the font embedding services that do all the heavy lifting
for you. For a fee, you get access to high-quality fonts, and
the service handles font licensing and font protection for the
foundries. They also generally provide an interface and tools
that make embedding a font as easy as copy and paste.

The services have a variety of fee structures. Some charge
monthly fees; some charge by the font. Some have a surcharge
for bandwidth as well. There are generally tiered plans that

range from free to hundreds of dollars per month.

Here are some font embedding services that are popular as
of this writing, but it’s worth doing a web search to see what’s
currently offered.

Google Web Fonts (www.google.com/webfonts)
Google Web Fonts is a free service that provides access to
hundreds of open source fonts that are free for commercial
use. All you have to do is choose a font, and then copy and
paste the code they generate for you. If you don’t have a font
budget and you aren’t too particular about fonts, this is a
wonderful way to go. We’ll use it in the first exercise in this
chapter.

Typekit, from Adobe (www.typekit.com)
Typekit was the first web font service and is now part of
Adobe. Their service uses JavaScript to link the fonts to
your site in a way that improves performance and quality
in all browsers. I also recommend their blog for excellent
articles on how type works (see blog.typekit.com/
category/​type-rendering/).

Fonts.com (fonts.com)
Fonts.com boasts the largest font collection from the biggest
font foundries. If you need a particular font, they are likely to
have it.

Other services include Cloud Typography by Hoefler & Co.
(www.typography.com/cloud/welcome/), Typotheque (www.
typotheque.com/webfonts), and Fonts Live (www.fontslive.
com). They differ in the number of fonts they offer and their
fee structures, so you may want to shop around. Fontstand
(fontstand.com/) allows you to rent fonts on a monthly basis,
which, depending on your use, could work out to be a fraction
of the cost of buying the font outright.

Summing up web fonts
Which method you use to add fonts to your site is up to your
discretion. If you like total control, hosting your own font
(legally, of course) may be a good way to go. If you need a very
particular, well-known font because your client’s brand depends
on it, you will probably find it on one of the web font services for
a price. If you want to experiment with web fonts and are happy
to choose from what’s freely available, then Google Web Fonts
is for you.

You now have a good foundation in including web fonts on your
web pages. The landscape is likely to change quickly over the
next few years, so be sure to do your own research when you are
ready to get started.

12. Formatting Text

Basic Font Properties

265

http://www.fontsquirrel.com/fontface/generator
http://www.google.com/webfonts
http://www.typekit.com
http://www.typotheque.com/webfonts
http://www.typotheque.com/webfonts
http://www.fontslive.com/
http://www.fontslive.com/
https://fontstand.com/

Generic font families
That last option, “some other sans-serif font,” bears more discussion. “Sans-
serif” is just one of five generic font families that you can specify with the
font-family property. When you specify a generic font family, the browser
chooses an available font from that stylistic category. FIGURE 12-2 shows
examples from each family.

monospace

cursive

fantasy

Apple Chancery SnellComic Sans

Impact MojoStencil

Monospace font
(equal widths)

Proportional font
(di�erent widths)

serif

sans-serif

Verdana

Times Georgia

Times New Roman Lucida

Trebuchet MS

Arial Arial Black

Courier

Courier New Andale Mono

Straight
strokes

Decorative
strokes

FIGURE 12-2.  Examples of the five generic font families.

serif

Examples: Times, Times New Roman, Georgia

Serif typefaces have decorative slab-like appendages (serifs) on the ends
of certain letter strokes.

sans-serif

Examples: Arial, Arial Black, Verdana, Trebuchet MS, Helvetica, Geneva

Sans-serif typefaces have straight letter strokes that do not end in serifs.

NOTE

Generic font family names do not need
to be capitalized in the style rule.

Part III. CSS for Presentation

Basic Font Properties

266

monospace

Examples: Courier, Courier New, and Andale Mono

In monospace (also called constant width) typefaces, all characters take
up the same amount of space on a line. For example, a capital W will
be no wider than a lowercase i. Compare this to proportional typefaces
(such as the one you’re reading now) that allot different widths to differ-
ent characters.

cursive

Examples: Apple Chancery, Zapf-Chancery, and Comic Sans

Cursive fonts emulate a script or handwritten appearance.

fantasy

Examples: Impact, Western, or other decorative font

Fantasy fonts are purely decorative and would be appropriate for head-
lines and other display type.

Font stack strategies
The best practice for specifying fonts for web pages is to start with your first
choice, provide some similar alternatives, and then end with a generic font
family that at least gets users in the right stylistic ballpark. For example,
if you want an upright, sans-serif font, you might start with a web font if
you are providing one (Oswald), list a few that are more common (Univers,
Tahoma, Geneva), and finish with the generic sans-serif. There is no limit
to the number of fonts you can include, but many designers strive to keep it
under 10.

font-family: Oswald, Univers, Tahoma, Geneva, sans-serif;

A good font stack should include stylistically related fonts that are known
to be installed on most computers. Sticking with fonts that come with the
Windows, macOS, and Linux operating systems, as well as fonts that get
installed with popular software packages such as Microsoft Office and Adobe
Creative Suite, gives you a solid list of “web-safe” fonts to choose from. A good
place to look for stylistically related web-safe fonts is CSS Font Stack (www.
cssfontstack.com). There are many articles on font stack strategies that are just
a Google search away. I recommend Michael Tuck’s “8 Definitive Font Stacks”
(www.sitepoint.com/eight-definitive-font-stacks), which is an oldie but goodie.

So, as you see, specifying fonts for the web is more like merely suggesting
them. You don’t have absolute control over which font your users will see.
You might get your first choice; you might get the generic fallback. It’s one of
those web design quirks you learn to live with.

Now seems like a good time to get started formatting the Black Goose Bistro
menu. We’ll add new style rules one at a time as we learn new properties,
staring with EXERCISE 12-1.

12. Formatting Text

Basic Font Properties

267

http://www.cssfontstack.com
http://www.cssfontstack.com
http://www.sitepoint.com/eight-definitive-font-stacks

EXERCISE 12-1.  Formatting a menu

In this exercise, we’ll change the fonts for the body and main
heading of the Black Goose Bistro menu document, menu.html,
which is available at.learningwebdesign.com/5e/materials. Open
the document in a text editor. You can also open it in a browser to
see its “before” state. It should look something like FIGURE 12-1.
Hang on to this document, because this exercise will continue as
we pick up additional font properties.

I’ve included an embedded font in this exercise to show you how
easy it is to do with a service like Google Web Fonts.

1.	 Use an embedded style sheet for this exercise. Start by adding a
style element in the head of the document, like this:

<head>
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

2.	 I would like the main text to appear in Verdana or some other
sans-serif font. Instead of writing a rule for every element in the
document, we will write one rule for the body element that will
be inherited by all the elements it contains. Add this rule to the
embedded style sheet:

<style>
 body {font-family: Verdana, sans-serif;}
</style>

3.	 I want a fancy font for the “Black Goose Bistro, Summer Menu”
headline, so I chose a free display font called Marko One from
Google Web Fonts (www.google.com/webfonts). Google
gave me the code for linking the font file on their server to my
HTML file (it’s actually a link to an external style sheet). It must
be placed in the head of the document, so copy it exactly as
it appears, but keep it on one line. Put it after the title and
before the style element.

<head>
<title>Black Goose Bistro</title>
<link href="http://fonts.googleapis.com/
css?family=Marko+One" rel="stylesheet">
<style>
…

4.	 Now write a rule that applies it to the h1 element. Notice I’ve
specified Georgia or another serif font as fallbacks:

<style>
 body {font-family: Verdana, sans-serif;}
 h1 {font-family: "Marko One", Georgia, serif;}
</style>

5.	 Save the document and reload the page in the browser. It
should look like FIGURE 12-3. Note that you’ll need to have
an internet connection and a current browser to view the
Marko One headline font. We’ll work on the text size in the next
exercise.

FIGURE 12-3.  The menu after we change only the font family.

→

Part III. CSS for Presentation

Basic Font Properties

268

http://www.google.com/webfonts

Specifying Font Size
Use the aptly named font-size property to specify the size of the text.

font-size

Values: 	 length unit | percentage | xx-small | x-small | small | medium | large |
x-large | xx-large | smaller | larger

Default: 	 medium

Applies to: 	 all elements

Inherits: 	 yes

You can specify text size in several ways:

•	 Using one of the CSS length units, as shown here:

h1 { font-size: 1.5em; }

When specifying a number of units, be sure the unit abbreviation imme-
diately follows the number, with no extra character space in between (see
the sidebar “Providing Measurement Values”).

CSS length units are discussed in Chapter 11, Introducing Cascading Style
Sheets. See also the “CSS Units Cheat Sheet” sidebar.

•	 As a percentage value, sized up or down from the element’s inherited font
size:

h1 { font-size: 150%; }

•	 Using one of the absolute keywords (xx-small, x-small, small, medium,
large, x-large, xx-large). On most current browsers, medium corresponds
to the default font size.

h1 { font-size: x-large; }

•	 Using a relative keyword (larger or smaller) to nudge the text larger or
smaller than the surrounding text:

strong { font-size: larger; }

I’m going to cut to the chase and tell you that, despite all these options, the
preferred values for font-size in contemporary web design are the relative
length units em and rem, as well as percentage values. You can specify font size
in pixels (px), but in general, they do not provide the flexibility required in
web page design. All of the other absolute units (pt, pc, in, etc.) are out too,
unless you are creating a style sheet specifically for print.

I’ll explain the keyword-based font-size values in a moment, but let’s start
our discussion with the best practice using relative values.

EXERCISE 12-1.  Formatting a menu

In this exercise, we’ll change the fonts for the body and main
heading of the Black Goose Bistro menu document, menu.html,
which is available at.learningwebdesign.com/5e/materials. Open
the document in a text editor. You can also open it in a browser to
see its “before” state. It should look something like FIGURE 12-1.
Hang on to this document, because this exercise will continue as
we pick up additional font properties.

I’ve included an embedded font in this exercise to show you how
easy it is to do with a service like Google Web Fonts.

1.	 Use an embedded style sheet for this exercise. Start by adding a
style element in the head of the document, like this:

<head>
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

2.	 I would like the main text to appear in Verdana or some other
sans-serif font. Instead of writing a rule for every element in the
document, we will write one rule for the body element that will
be inherited by all the elements it contains. Add this rule to the
embedded style sheet:

<style>
 body {font-family: Verdana, sans-serif;}
</style>

3.	 I want a fancy font for the “Black Goose Bistro, Summer Menu”
headline, so I chose a free display font called Marko One from
Google Web Fonts (www.google.com/webfonts). Google
gave me the code for linking the font file on their server to my
HTML file (it’s actually a link to an external style sheet). It must
be placed in the head of the document, so copy it exactly as
it appears, but keep it on one line. Put it after the title and
before the style element.

<head>
<title>Black Goose Bistro</title>
<link href="http://fonts.googleapis.com/
css?family=Marko+One" rel="stylesheet">
<style>
…

4.	 Now write a rule that applies it to the h1 element. Notice I’ve
specified Georgia or another serif font as fallbacks:

<style>
 body {font-family: Verdana, sans-serif;}
 h1 {font-family: "Marko One", Georgia, serif;}
</style>

5.	 Save the document and reload the page in the browser. It
should look like FIGURE 12-3. Note that you’ll need to have
an internet connection and a current browser to view the
Marko One headline font. We’ll work on the text size in the next
exercise.

FIGURE 12-3.  The menu after we change only the font family.

Providing Measurement
Values
When you’re providing measurement
values, the unit must immediately
follow the number, like this:

margin: 2em;

Adding a space before the unit will
cause the property not to work:

INCORRECT: margin: 2 em;

It is acceptable to omit the unit of
measurement for zero values:

margin: 0;

AT A G L A N C E

CSS Units Cheat Sheet
As a quick reference, here are the CSS
length units again:

Relative units
em ex rem ch

vw vh vmin vmax

Absolute units
px in mm cm

q pt pc

The preferred font-size
values are em, rem,
and %.

12. Formatting Text

Basic Font Properties

269

Sizing text with relative values
The best practice for setting the font size of web page elements is to do it in a
way that respects the user’s preference. Relative sizing values %, rem, and em
allow you to use the default font size as the basis for proportional sizing of
other text elements. It’s usually not important that the headlines are exactly
24 pixels; it is important that they are 1.5 times larger than the main text so
they stand out. If the user changes their preferences to make their default font
size larger, the headlines appear larger, too.

To maintain the browser’s default size, set the font-size of the root element
to 100% (see Note):

html {
 font-size: 100%;
}

That sets the basis for relative sizing. Because the default font size for all mod-
ern browsers is 16 pixels, we’ll assume our base size is 16 pixels going forward
(we’ll also keep in mind that it could be different).

Rem values

The rem unit, which stands for “root em,” is always relative to the size of the
root (html) element. If the root size is 16 pixels, then a rem equals 16 pixels.
What’s nice about rem units is, because they are always relative to the same
element, they are the same size wherever you use them throughout the docu-
ment. In that way, they work like an absolute unit. However, should the root
size be something other than 16 pixels, elements specified in rem values will
resize accordingly and proportionally. It’s the best of both worlds.

Here is that same heading sized with rem values:

h1 { font-size: 1.5rem; } /* 1.5 x 16 = 24 */

Em measurements

Em units are based on the font size of the current element. When you specify
font-size in ems, it will be relative to the inherited size for that element.
Once the em is calculated for an element, it can be used for other measure-
ments as well, such as margins, padding, element widths, and any other set-
ting you want to always be relative to the size of the font.

Here I’ve used em units to specify the size of an h1 that has inherited the
default 16-pixel font size from the root:

h1 { font-size: 1.5em; } /* 1.5 x 16 = 24 */

There are a few snags to working with ems. One is that because of rounding
errors, there is some inconsistency in how browsers and platforms render text
set in ems.

NOTE

It is also common practice to set the body
to 100%, but setting it on the html ele-
ment is a more flexible approach.

BROWSE R SU PPORT NOTE

Note that rem units are not supported in
Internet Explorer 8 and earlier. If for some
reason you need to support old brows-
ers, you’ll need to provide a fallback dec-
laration set in pixels. There are also tools
that change all your rem units to pixels
automatically, as discussed in Chapter
20, Modern Web Development Tools.

Part III. CSS for Presentation

Basic Font Properties

270

The other tricky aspect to using ems is that they are based on the inherited
size of the element, which means that their size is based on the context in
which they are applied.

The h1 in the previous example was based on an inherited size of 16 pixels.
But if this h1 had appeared in an article element that had its font size set to
14 pixels, it would inherit the 14-pixel size, and its resulting size would be just
21 pixels (1.5 × 14 = 21). FIGURE 12-4 shows the results.

THE MARKUP	

<h1>Headline in Body</h1>
<p>Pellentesque ligula leo,…</p>
<article>
 <h1>Headline in Article</h1>
 <p>Vivamus …</p>
</article>

THE STYLES

h1 {
 font-size: 1.5em; /* sets all h1s to 1.5em */
}
article {
 font-size: .875em /* 14 pixels based on 16px default */
}

FIGURE 12-4.   All h1 elements are sized at 1.5em, but they are different sizes because
of the context in which they appear.

From this example, you can see that an element set in ems might appear at
different sizes in different parts of the document. If you wanted the h1 in the
article to be 24 pixels as well, you could calculate the em value by dividing
the target size by its context: 24 / 14 = 1.71428571 em. (No need to round that
figure down…the browser knows what to do with it.)

If you have elements nested several layers deep, the size increase or decrease
compounds, which can create problems. With many layers of nesting, text
may end up being way too small. When working with ems, pay close atten-
tion and write style rules in a way that takes the context into account.

This compounding nature of the em is what has driven the popularity of the
predictable rem unit.

NOTE

Ethan Marcotte introduced the target
÷ context = result formula in his book
Responsive Web Design (A Book Apart). It
is useful for converting pixel values into
percentages and ems.

12. Formatting Text

Basic Font Properties

271

Percentage values

We saw a percentage value (100%) used to preserve the default font size, but
you can use percentage values for any element. They are pretty straightfor-
ward.

In this example, the h1 inherits the default 16px size from the html element,
and applying the 150% value multiplies that inherited value, resulting in an
h1 that is 24 pixels:

h1 { font-size: 150%; } /* 150% of 16 = 24 */

Working with keywords
An alternative way to specify font-size is by using one of the predefined
absolute keywords: xx-small, x-small, small, medium, large, x-large, and
xx-large. The keywords do not correspond to particular measurements, but
rather are scaled consistently in relation to one another. The default size is
medium in current browsers. FIGURE 12-5 shows how each of the absolute
keywords renders in a browser when the default text is set at 16 pixels. I’ve
included samples in Verdana and Times to show that, even with the same
base size, there is a big difference in legibility at sizes small and below.
Verdana was designed to be legible on screens at small font sizes; Times was
designed for print so is less legible in that context.

FIGURE 12-5.  Text sized with absolute keywords.

The relative keywords, larger and smaller, are used to shift the size of text
relative to the size of the parent element text. The exact amount of the size
change is determined by each browser and is out of your control. Despite that
limitation, it is an easy way to nudge type a bit larger or smaller if the exact
proportions are not critical.

You can apply your new CSS font knowledge in EXERCISE 12-2.

To calculate % and em
values, use this formula:
target size ÷ size of
context = result.

Part III. CSS for Presentation

Basic Font Properties

272

EXERCISE 12-2.  Setting font size

Let’s refine the size of some of the text elements to give the online menu a more
sophisticated appearance. Open menu.html in a text editor and follow the steps. You can
save the document at any point and take a peek in the browser to see the results of your
work. You should also feel free to try out other size values along the way.

1.	 There are many approaches to sizing text on web pages. In this example, start by
putting a stake in the ground and setting the font-size of the body element to 100%,
thus clearing the way for em measurements thereafter:

body {
 font-family: Verdana, sans-serif;
 font-size: 100%;
}

2.	 The browser default of 16 pixels is a fine size for the main
page text, but I would like to improve the appearance of
the heading levels. I’d like the main heading to be 24 pixels,
or one and a half times larger than the body text [target (24)
÷ context (16) = 1.5]. I’ll add a new rule that sets the size
of the h1 to 1.5em. I could have used 150% to achieve the
same thing.

h1 {
 font-size: 1.5em;
}

3.	 Now make the h2s the same size as the body text so they
blend in with the page better:

h2 {
 font-size: 1em;
}

FIGURE 12-6 shows the result of our font-sizing efforts.
FIGURE 12-6.  The online menu after a few minor font-size
changes to the headings.

Font Weight (Boldness)
After font families and size, the remaining font properties are straightfor-
ward. For example, if you want a text element to appear in bold, use the
font-weight property to adjust the boldness of type.

font-weight

Values: 	 normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800
| 900

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

As you can see, the font-weight property has many predefined values, includ-
ing descriptive terms (normal, bold, bolder, and lighter) and nine numeric
values (100 to 900) for targeting various weights of a font if they are available.

12. Formatting Text

Basic Font Properties

273

Because most fonts commonly used on the web have only two weights, nor-
mal (or Roman) and bold, the only font weight value you will use in most
cases is bold. You may also use normal to make text that would otherwise
appear in bold (such as strong text or headlines) appear at a normal weight.

The numeric chart may come in handy when using web fonts with a large
range of weights (I’ve seen a few Google web fonts that require numeric size
values). If multiple weights are not available, numeric settings of 600 and
higher generally result in bold text, as shown in FIGURE 12-7 (although even
that can vary by browser).

If a separate bold face is not available, the browser may “synthesize” a bold
font by beefing up the available normal face (see Note).

FIGURE 12-7.  The effect (and lack thereof!) of font-weight values.

Font Style (Italics)
The font-style property affects the posture of the text—that is, whether the
letter shapes are vertical (normal) or slanted (italic and oblique).

font-style

Values: 	 normal | italic | oblique

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

Use the font-style property to make text italic. Another common use is to
make text that is italicized in the browser’s default styles (such as emphasized
text) display as normal. There is an oblique value that specifies a slanted ver-
sion of the font; however, browsers generally display oblique exactly the same
as italic.

Try out weight and style in EXERCISE 12-3.

NOTE

The CSS Fonts Module Level 3 introduced
the font-synthesis property, which
allows authors to turn off (with a value
of none) or allow synthesized bold fonts
(value of weight); however, it is still con-
sidered experimental at this time.

Part III. CSS for Presentation

Basic Font Properties

274

Font Variant in CSS2.1 (Small Caps)

font-variant

Values: 	 normal | small-caps

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

Some typefaces come in a “small caps” variant. This is a separate font design
that uses small uppercase-style letters in place of lowercase letters. Small caps
characters are designed to match the size and density of lowercase text so
they blend in.

Small caps should be used for strings of three or more capital letters appear-
ing in the flow of text, such as acronyms and abbreviations, that may look
jarring as full-sized capitals. Compare NASA and USA in the standard font to
nasa and usa in small caps. Small caps are also recommended for times, like
1am or 2017ad.

When the font-variant property was introduced in CSS2.1, it was a one-trick
pony that allowed designers to specify a small-caps font for text elements.
CSS3 has greatly expanded the role of font-variant, as I will cover in the
upcoming section “Advanced Typography with CSS3.” For now, we’ll look at
only the CSS2.1 version of font-variant.

EXERCISE 12-3.  Making text bold and italic

Back to the menu. I’ve decided that I’d like all of the menu item
names to be in bold text. What I’m not going to do is wrap each
one in tags…that would be so 1996! I’m also not going to
mark them up as strong elements…that is not semantically
accurate. Instead, the right thing to do is simply apply a style to the
semantically correct dt (definition term) elements to make them
all bold at once. Add this rule to the end of the style sheet, save the
file, and try it out in the browser:

dt { font-weight: bold; }

Now that all the menu item names are bold, some of the text I’ve
marked as strong isn’t standing out very well, so I think I’ll make
them italic for further emphasis. To do this, simply apply the font-
style property to the strong element:

strong { font-style: italic;}

Once again, save and reload. It should look like the detail shown in
FIGURE 12-8.

FIGURE 12-8.  Applying the font-weight and font-style
properties.

12. Formatting Text

Basic Font Properties

275

In most cases, browsers simulate small caps by scaling down uppercase letters
in the current font. To typography sticklers, this is less than ideal and results
in inconsistent stroke weights, but you may find it an acceptable option for
adding variety to small amounts of text. You will see an example of small caps
when we use the font-variant property in EXERCISE 12-5.

Font Stretch (Condensed and Extended)

font-stretch

Values: 	 normal | ultra-condensed | extra-condensed | condensed |
semi-condensed | semi-expanded | expanded | extra-expanded |
ultra-expanded

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

The CSS3 font-stretch property tells the browser to select a normal, con-
densed, or extended font in the font family (FIGURE 12-9). If the browser can-
not find a matching font, it will not try to synthesize the width by stretching
or squeezing text; it may just substitute a font of a different width. Browser
support is just beginning to kick in for this property. As of this writing, it
works on IE11+, Edge, Firefox, Chrome 48+, Opera, and Android 52+, but it
is not yet supported on Safari or iOS Safari; however, that may change.

The Shortcut font Property
Specifying multiple font properties for each text element can get repetitive
and lengthy, so the creators of CSS provided the shorthand font property,
which compiles all the font-related properties into one rule.

font

Values: 	 font-style font-weight font-variant font-stretch font-size/line-height
font-family | caption | icon | menu | message-box | small-caption |
status-bar

Default: 	 depends on default value for each property listed

Applies to: 	 all elements

Inherits: 	 yes

The value of the font property is a list of values for all the font properties
we just looked at, separated by character spaces. It is important to note that
only the CSS2.1 version of font-variant (small-caps) can be used in the font
shortcut (which is one reason I kept it separate). In this property, the order of
the values is important:

{ font: style weight stretch variant size/line-height font-family; }

WARNIN G

Be careful when using shorthand prop-
erties like font. Any omitted property
resets to its default value. On the flip
side, the shorthands are a good way to
get a blank slate if you need one.

C RO SS- B ROWS E R
SU P PO RT T I P

If you include values for the newer
font-stretch property in the font
shorthand, first list a version that
omits stretch for browsers that don’t
support it. You will end up with two
declarations like this:

h3 {
 font: bold 1.25em Helvetica;
 font: bold extended 1.25em
Helvetica;
}

Universe Ultra Condensed

Universe Condensed

Univers

Universe Extended

FIGURE 12-9.   Examples of
condensed, normal, and extended
versions of the Universe typeface.

Part III. CSS for Presentation

Basic Font Properties

276

At minimum, the font property must include a font-size value and a font-
family value, in that order. Omitting one or putting them in the wrong order
causes the entire rule to be invalid. This is an example of a minimal font
property value:

p { font: 1em sans-serif; }

Once you’ve met the size and family requirements, the other values are
optional and may appear in any order prior to the font-size. When style,
weight, stretch, or variant is omitted, its value is set to normal. That makes it
easy to accidentally override a previous setting with the shorthand property,
so be careful when you use it.

There is one value in there, line-height, that we have not seen yet. As it
sounds, it adjusts the height of the text line and is used to add space between
lines of text. It appears just after font-size, separated by a slash, as shown
in these examples. The line-height property is covered in more detail later
in this chapter.

h3 { font: oblique bold small-caps 1.5em/1.8em Verdana, sans-serif; }
h2 { font: bold 1.75em/2 sans-serif; }

In EXERCISE 12-4, we’ll use the shorthand font property to make some
changes to the h1 headings in the bistro menu.

System font keywords
The font property also has a number of keyword values (caption, icon, menu,
message-box, small-caption, and status-bar) that represent system fonts,
the fonts used by operating systems for things like labels for icons and menu
items. These may be useful when you’re designing a web application so that
it matches the environment the user is working on. These are considered
shorthand values because they encapsulate the font, size, style, and weight of
the font used for each purpose with only one keyword.

Like the shorthand font property, EXERCISE 12-4 is short and sweet.

ADVANCED TYPOGRAPHY WITH CSS3

Now you have a good basic toolkit for formatting fonts with CSS. If you want
to get fancy, you should read up on all the properties in the CSS Fonts Module
Level 3, which give you far more control over character selection and position.
I’m going to keep my descriptions brief because of space restraints and the
fact that many of these features are still experimental or have very limited
browser support. But if nice typography is your thing, I urge you to do more
research, starting with the specification at www.w3.org/TR/css-fonts-3.

EXERCISE 12-4. 
Using the shorthand
font property

One last tweak to the menu, and then
we’ll take a brief break. To save space,
we can replace all the font properties
we’ve specified for the h1 element with
one declaration with the shorthand
font property:

h1 {
 font: bold 1.5em "Marko One",
Georgia, serif;
}

You might find it redundant that I
included the bold font weight value in
this rule. After all, the h1 element was
already bold by default, right? The thing
about shorthand properties is that if you
omit a value, it is reset to the default
value for that property, not the browser’s
default value.

In this case, the default font-weight
value within a font declaration is
normal. Because our style sheet
overrides the browser’s default bold
heading style, the h1 would appear in
normal-weight text if we don’t explicitly
make it bold in the font property.
Shorthand properties can be tricky that
way…pay attention so you don’t leave
something out and override a default or
inherited value you were counting on.

You can save this and look at it in the
browser. If you’ve done your job right, it
should look exactly the same as in the
previous step.

12. Formatting Text

Advanced Typography with CSS3

277

Font Variant in CSS3
The collection of font-variant- prefixed properties in CSS3 aims to give
designers and developers access to special characters (glyphs) in fonts that
can make the typography on a page more sophisticated.

As I mentioned earlier, the CSS3 Font Module greatly expanded the defini-
tion of font-variant. Now it can serve as a shorthand property for a number
of font-variant- prefixed properties. These properties are still considered
experimental, although browser support is starting to pick up. Still, it’s inter-
esting to see how font control in web design is evolving, so let’s take a look.

NOTE

With the exception of font-variant-position, which has a specific purpose, the other
font-variant properties are great opportunities to practice progressive enhancement.
They are nice to have but OK to lose.

font-variant-ligatures

A ligature is a glyph that combines two or more characters into one
symbol. One common example is the combination of a lowercase f and i,
where the dot on the i becomes part of the f (). Ligatures can smooth out
the appearance of known awkward letter pairings, and ligature glyphs are
included in many fonts. The font-variant-ligatures property provides a
way to control the use of ligatures on web pages. This one is better sup-
ported than the others, and already works in IE10+, Chrome 34+, as well
as Safari and Opera (with the -webkit- prefix). I would expect browser
support to steadily improve.

font-variant-caps

Allows the selection of small-cap glyphs (small-caps) from the font’s
character set rather than simulating them in the browser. The all-small-
caps value uses small caps for upper- and lowercase letters. unicase uses
small caps for uppercase only, and lowercase letters in the word stay the
same. titling-caps is used for all-caps titles but is designed to be less
strong. Other options are petite-caps and all-petite-caps.

font-variant-position

Selects superscript (super) or subscript (sub) glyphs from the font’s char-
acter set when they are available. Otherwise, the browser creates super-
script or subscript text for the sup and sub elements by shrinking the
character and moving it above or below the baseline.

font-variant-numeric

Allows the selection of various number character styles if they are avail-
able. For example, you can pick numerals that are proportional or line up
in columns as for a spreadsheet (proportional-numbers/tabular-numbers)
opt for old-style numerals (old-style-nums) where some characters dip

NOTE

The font-variant-ligatures prop-
erty has a long list of values, which you
can find at www.w3.org/TR/css-fonts-
3/#propdef-font-variant-ligatures.

Part III. CSS for Presentation

Advanced Typography with CSS3

278

below the baseline, and specify whether fractions should be on a diagonal
or stacked (diagonal-fractions/stacked-fractions). It also allows you to
make ordinal numbers look like 2nd instead of 2nd (ordinal) and gives
you a way to use zeros with slashes through them as is preferred in some
contexts (slashed-zero).

font-variant-alternates

Fonts sometimes offer more than one glyph for a particular character—for
example, a few swash designs for the letter S, or an old-fashioned s that
looks more like an f. font-variant-alternates provides a way to specify
swashes and other alternative characters. Many of its values are font-spe-
cific and must be defined first with the @font-features-values at-rule. I’ll
leave a deeper explanation to the spec.

font-variant-east-asian

Allows selection of particular Asian glyphs.

Finally, the old font-variant property that has been around since the begin-
ning of CSS has been upgraded to be a shorthand property for all of the
properties listed here. You can use it today with the original small-caps value,
and it will be perfectly valid. Once these properties gain traction, it will be
able to do a whole lot more.

Other CSS3 Properties
It’s time to finish up our review of the font properties in the Fonts Module
Level 3. I’ll give you a general idea of what is available (or will be, after
browser support catches up) and you can dig deeper in the spec on your own:

font-size-adjust

The size text looks on the page often has more to do with the height of the
lowercase x (its x-height) than the specified size of the text. For example,
10-point type with relatively large x-height is likely easier to read than
10-point type with dainty little lowercase letters. The font-size-adjust
property allows the browser to adjust the size of a fallback font until its
x-height matches the x-height of the first-choice font. This can ensure
better legibility even when a fallback font needs to be used.

font-kerning

Kerning is the space between character glyphs. Fonts typically contain
metadata about which letter pairs need to be cozied up together to make
the spacing in a word look consistent. The font-kerning property allows
the font’s kerning information to be applied (normal), turned off (none), or
left to the browser’s discretion (auto).

font-feature-settings

This property gives authors the ability to control advanced typographic
features in OpenType fonts that are not widely used, such as swashes, small

12. Formatting Text

Advanced Typography with CSS3

279

caps, ligatures, automatic fractions, and more. Those features should look
familiar, as many of them can be controlled with various font-variant
properties. In fact, the spec recommends you use font-variant whenever
possible and reserve font-feature-settings for edge cases. As of this
writing, however, the font-feature-settings property has better browser
support, so for the time being it may be a better option. Just be aware that
it cascades poorly, meaning it is easy to undo a setting when you use it
later to set something else. CSS-Tricks provides a good overview by Robin
Rendle (css-tricks.com/almanac/properties/f/font-feature-settings).

font-language-override

This experimental property controls the use of language-specific glyphs.

We’ve finally made our way through the various ways to control fonts in CSS
(it took a while!), but that is just one aspect of text presentation. Changing
the color of text is another common design choice.

F U RT H E R R E A D I N G

For a nice overview of OpenType features and why they are worthwhile, read “Caring
about OpenType Features” by Tim Brown at Adobe Typekit (practice.typekit.com/
lesson/caring-about-opentype-features/).

CHANGING TEXT COLOR

You got a glimpse of how to change text color in Chapter 11, Introducing
Cascading Style Sheets, and to be honest, there’s not a lot more to say about
it here. You change the color of text with the color property.

color

Values: 	 color value (name or numeric)

Default: 	 depends on the browser and user’s preferences

Applies to: 	 all elements

Inherits: 	 yes

Using the color property is very straightforward. The value of the color
property can be a predefined color name (see the “Color Names” sidebar) or
a numeric value describing a specific RGB color. Here are a few examples, all
of which make the h1 elements in a document gray:

h1 { color: gray; }
h1 { color: #666666; }
h1 { color: #666; }
h1 { color: rgb(102,102,102); }

Part III. CSS for Presentation

Changing Text Color

280

Don’t worry about the numeric values for now; I just wanted you to see what
they look like. RGB color is discussed in detail in Chapter 13, Colors and
Backgrounds, so in this chapter, we’ll just stick with color names for demon-
stration purposes.

Color is inherited, so you can change the color of all the text in a document
by applying the color property to the body element, as shown here:

body { color: fuchsia; }

OK, so you probably wouldn’t want all your text to be fuchsia, but you get
the idea.

For the sake of accuracy, I want to point out that the color property is not
strictly a text-related property. In fact, according to the CSS specification, it
is used to change the foreground (as opposed to the background) color of an
element. The foreground of an element consists of both the text it contains as
well as its border. So, when you apply a color to an element (including image
elements), know that color will be used for the border as well, unless there
is a specific border-color property that overrides it. We’ll talk more about
borders and border color in Chapter 14, Thinking Inside the Box.

Before we add color to the online menu, I want to take a little side trip and
introduce you to a few more types of selectors that will give us more flexibil-
ity in targeting elements in the document for styling.

A FEW MORE SELECTOR TYPES

So far, we’ve been using element names as selectors. In the last chapter, you
saw how to group selectors together in a comma-separated list so you can
apply properties to several elements at once. Here are examples of the selec-
tors you already know:

Element selector	 p { color: navy; }

Grouped selectors	 p, ul, td, th { color: navy; }

The disadvantage of selecting elements this way, of course, is that the proper-
ty (in this case, navy blue text) is applied to every paragraph and other listed
elements in the document. Sometimes you want to apply a rule to a particular
paragraph or paragraphs. In this section, we’ll look at three selector types that
allow us to do just that: descendant selectors, ID selectors, and class selectors.

Descendant Selectors
A descendant selector targets elements that are contained within (and there-
fore are descendants of) another element. It is an example of a contextual
selector because it selects the element based on its context or relation to
another element. The sidebar “Other Contextual Selectors” lists some more.

A character space
between element
names means that the
second element must be
contained within the first.

AT A G L A N C E

Color Names
CSS2.1 defines 17 standard color
names:

black	 white	 purple	

lime	 navy	 aqua	

silver	 maroon	 fuchsia	

olive	 blue	 orange	

gray	 red	 green	

yellow	 teal

The updated CSS Color Module
Level 3 allows names from a
larger set of 140 color names to be
specified in style sheets. You can see
samples of each in FIGURE 13-2
and at learningwebdesign.com/
colornames.html.

12. Formatting Text

A Few More Selector Types

281

Descendant selectors are indicated in a list separated by a character space.
This example targets emphasized text (em) elements, but only when they
appear in list items (li). Emphasized text in paragraphs and other elements
would be unaffected (FIGURE 12-10).

li em { color: olive; }

head

title style h2p

em

ul

em li li li em

em em

html

body

li em { property: value; }

FIGURE 12-10.   Only em elements within li elements are selected. The other em
elements are unaffected.

Here’s another example that shows how contextual selectors can be grouped
in a comma-separated list, just as we saw earlier. This rule targets em ele-
ments, but only when they appear in h1, h2, and h3 headings:

h1 em, h2 em, h3 em { color: red; }

It is also possible to nest descendant selectors several layers deep. This
example targets em elements that appear in anchors (a) in ordered lists (ol):

ol a em { font-variant: small-caps; }

ID Selectors
Back in Chapter 5, Marking Up Text, we learned about the id attribute, which
gives an element a unique identifying name (its id reference). The id attribute
can be used with any element, and it is commonly used to give meaning to
the generic div and span elements. ID selectors allow you to target elements
by their id values. The symbol that identifies ID selectors is the octothorpe
(#), also known as a hash or pound symbol.

Here is an example of a list item with an id reference:

<li id="sleestak">Sleestak T-shirt

Other Contextual Selectors
Descendant selectors are one of four types of contextual selectors (called
combinators in the Selectors specifications Level 3 and Level 4). The other three are
child selectors, next-sibling selectors, and subsequent-sibling selectors.

Child selector
A child selector is similar to a descendant selector, but it targets only the direct
children of a given element. There may be no other hierarchical levels in between.
They are indicated with the greater-than symbol (>). The following rule affects
emphasized text, but only when it is directly contained in a p element. An em element
inside a link (a) within the paragraph would not be affected.

p > em {font-weight: bold;}

Next-sibling selector
A next-sibling selector targets an element that comes directly after another element
with the same parent. It is indicated with a plus (+) sign. This rule gives special
treatment to paragraphs that follow an h1. Other paragraphs are unaffected.

h1 + p {font-style: italic;}

Subsequent-sibling selectors
A subsequent-sibling selector selects an element that shares a parent with the
specified element and occurs after it in the source order. They do not need to follow
one another directly. This type of selector is new in CSS3 and is not supported by
Internet Explorer 8 and earlier. The following rule selects any h2 that both shares a
parent element (such as a section or article) with an h1 and appears after it in
the document.

h1 ~ h2 {font-weight: normal;}

The # symbol identifies
an ID selector.

Part III. CSS for Presentation

A Few More Selector Types

282

Now you can write a style rule just for that list item using an ID selector, like
so (notice the # preceding the id reference):

li#sleestak { color: olive; }

Because id values must be unique in the document, it is acceptable to omit
the element name. The following rule is equivalent to the last one:

#sleestak { color: olive; }

You can also use an ID selector as part of a contextual selector. In this
example, a style is applied only to a elements that appear within the element
identified as “resources.” In this way, you can treat links in the element named
“resources” differently than all the other links on the page without any addi-
tional markup.

#resources a { text-decoration: none; }

You should be beginning to see the power of selectors and how they can be
used strategically along with well-planned semantic markup.

Other Contextual Selectors
Descendant selectors are one of four types of contextual selectors (called
combinators in the Selectors specifications Level 3 and Level 4). The other three are
child selectors, next-sibling selectors, and subsequent-sibling selectors.

Child selector
A child selector is similar to a descendant selector, but it targets only the direct
children of a given element. There may be no other hierarchical levels in between.
They are indicated with the greater-than symbol (>). The following rule affects
emphasized text, but only when it is directly contained in a p element. An em element
inside a link (a) within the paragraph would not be affected.

p > em {font-weight: bold;}

Next-sibling selector
A next-sibling selector targets an element that comes directly after another element
with the same parent. It is indicated with a plus (+) sign. This rule gives special
treatment to paragraphs that follow an h1. Other paragraphs are unaffected.

h1 + p {font-style: italic;}

Subsequent-sibling selectors
A subsequent-sibling selector selects an element that shares a parent with the
specified element and occurs after it in the source order. They do not need to follow
one another directly. This type of selector is new in CSS3 and is not supported by
Internet Explorer 8 and earlier. The following rule selects any h2 that both shares a
parent element (such as a section or article) with an h1 and appears after it in
the document.

h1 ~ h2 {font-weight: normal;}

12. Formatting Text

A Few More Selector Types

283

Class Selectors
One last selector type, and then we can get back to text style properties. The
other element identifier you learned about in Chapter 5 is the class identifier,
used to classify elements into a conceptual group. Unlike the id attribute,
multiple elements may share a class name. Not only that, but an element
may belong to more than one class.

You can target elements belonging to the same class with—you guessed it—a
class selector. Class names are indicated with a period (.) at the beginning
of the selector. For example, to select all paragraphs with class="special",
use this selector (the period indicates the following word is a class selector):

p.special { color: orange; }

To apply a property to all elements of the same class, omit the element name
in the selector (be sure to leave the period; it’s the character that indicates a
class). This example targets all paragraphs and any other element that has
been marked up with class="special":

.special { color: orange; }

Specificity 101
In Chapter 11, I introduced you to the term specificity, which refers to the
fact that more specific selectors have more weight when it comes to handling
style rule conflicts. Now that you know a few more selectors, it is a good time
to revisit this very important concept.

This list of selector types from most to least specific should serve you well
in most scenarios:

•	 Inline styles with the style attribute are more specific than (and will
override…)

•	 ID selectors, which are more specific than (and will override…)

•	 Class selectors, which are more specific than (and will override…)

•	 Individual element selectors

The full story is a little more complicated, but here it is in a nutshell. To cal-
culate specificity, start by drawing three boxes:

[] [] []

Now count up the number of IDs in the selector, and put that number in
the first box. Next count up the number of classes and pseudo-classes in the
selector, and put that number in the second box. Third, count up the element
names, and put that number in the third box.

Specificity is compared box by box. The first box that is not a tie determines
which selector wins. Here is a simple example of two conflicting rules for the
h1 element:

The period (.) symbol
indicates a class selector.

Part III. CSS for Presentation

A Few More Selector Types

284

h1 { color: red;} 		 [0] [0] [1]

h1.special { color: lime; }	 [0] [1] [1]

The second one has a class selector and the first one doesn’t; therefore, the
second one is more specific and has more weight.

How about something more complicated?

article#main aside.sidebar:hover > h1:first-of-type [1] [3] [3]

.x.x.x.x.x.x.x.x a:link	 [0] [8] [1]

The second selector targets a link in an element with a string of class names
(represented by “.x”). But the first selector has an ID (#main) and is therefore
more specific.

You may need to do this full specificity calculation, but in most cases you’ll
have a feel for which selector is more specific by following previously listed
general guidelines.

You can use specificity strategically to keep your style sheets simple and your
markup minimal. For example, it is possible to set a style for an element (p,
in this example), and then override when necessary by using more specific
selectors.

p { line-height: 1.2em; }		 [0] [0] [1]
blockquote p { line-height: 1em; }	 [0] [0] [2]
p.intro { line-height: 2em; }		 [0] [1] [1]

In these examples, p elements that appear within a blockquote have a smaller
line height than ordinary paragraphs. However, all paragraphs with a class
of “intro” will have a 2em line height, even if it appears within a blockquote,
because class selectors are more specific.

Understanding the concepts of inheritance and specificity is critical to mas-
tering CSS, and there is a lot more to be said about specificity. The “More
About Specificity” sidebar provides useful references.

Now, back to the menu. Fortunately, our Black Goose Bistro page has been
marked up thoroughly and semantically, so we have a lot of options for select-
ing specific elements. Give these new selectors a try in EXERCISE 12-5.

The Universal Selector
The universal element selector (*) matches any element , like a
wildcard in programming languages. The style rule

* { border: 1px solid gray; }

puts a 1-pixel gray border around every element in the
document. It is also useful as a contextual selector, as shown in
this example that selects all elements in an “intro” section:

#intro * { color: gray; }

Be aware that every element will be selected with the universal
selector, including some that you might not be expecting
to style. For example, some styles might mess up your form
controls, so if your page contains form inputs, the safest bet is to
avoid the universal selector.

More About Specificity
The specificity overview in this
chapter is enough to get you started,
but when you get more experienced
and your style sheets become more
complicated, you may find that you
need a more thorough understanding
of the inner workings.

For the technical explanation of
exactly how specificity is calculated,
see the CSS Selectors Module Level
4 specification at www.w3.org/TR/
selectors4/#specificity.

Eric Meyer provides a thorough,
yet more digestible, description of
this system in his book Selectors,
Specificity, and the Cascade: Applying
CSS to Documents (O’Reilly). This
material is also included in his book
co-authored with Estelle Weyl, CSS:
The Definitive Guide, 4e (O’Reilly).

If you are looking for help online,
I recommend the Smashing
Magazine article “CSS Specificity:
Things You Should Know”
(coding.smashingmagazine.
com/2007/07/27/css-specificity-
things-you-should-know/) by Vitaly
Friedman. It’s over a decade old, but
the concepts hold true.

As for most web design topics,
the MDN Web Docs site provides
a comprehensive explanation:
developer.mozilla.org/en-US/docs/
Web/CSS/Specificity.

12. Formatting Text

A Few More Selector Types

285

TEXT LINE ADJUSTMENTS

The next batch of text properties has to do with the treatment of whole lines
of text rather than the shapes of characters. They allow web authors to for-
mat web text with indents, extra space between lines (leading), and different
horizontal alignments, similar to print.

Line Height

line-height

Values: 	 number | length measurement | percentage | normal

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

The line-height property defines the minimum distance from baseline to
baseline in text. We saw it earlier as part of the shorthand font property. The
line-height property is said to specify a “minimum” distance because if you
put a tall image or large characters on a line, the height of that line expands
to accommodate it.

A baseline is the imaginary line upon which the bottoms of characters sit.
Setting a line height in CSS is similar to adding leading in traditional type-
setting; however, instead of space being added between lines, the extra space
is split above and below the text. The result is that line-height defines the
height of a line-box in which the text line is vertically centered (FIGURE 12-12).

Size of 1em for this text

Baseline

line-height: 2em;

line-height is set to 2em (twice the text size); the
extra space is divided equally above and below the
text line, centering it vertically in the line height.

FIGURE 12-12.   Text lines are centered vertically in the line height.

These examples show three different ways to make the line height twice the
height of the font size:

p { line-height: 2; }

p { line-height: 2em; }

p { line-height: 200%; }

EXERCISE 12-5.  Using selectors

This time, we’ll add a few more style rules using descendant, ID,
and class selectors combined with the font and color properties
we’ve learned about so far.

1.	 I’d like to add some attention-getting color to the “new item!”
elements next to certain menu item names. They are marked up
as strong, so we can apply the color property to the strong
element. Add this rule to the embedded style sheet, save the
file, and reload it in the browser:

strong {
 font-style: italic;
 color: tomato;
}

That worked, but now the strong element “Very spicy” in the
description is “tomato” red too, and that’s not what I want.
The solution is to use a contextual selector that targets only
the strong elements that appear in dt elements. Remove the
color declaration you just wrote from the strong rule, and
create a new rule that targets only the strong elements within
definition list terms:

dt strong { color: tomato; }

2.	 Look at the document source, and you will see that the content
has been divided into three unique divs: info, appetizers,
and entrees. We can use these to our advantage when it comes
to styling. For now, let’s do something simple and apply a teal
color to the text in the div with the ID “info”. Because color
inherits, we need to apply the property only to the div and it
will be passed down to the h1 and p:

#info { color: teal; }

3.	 Now let’s get a little fancier and make the paragraph inside
the “info” section italic in a way that doesn’t affect the other
paragraphs on the page. Again, a contextual selector is the
answer. This rule selects only paragraphs contained within the
info section of the document:

#info p { font-style: italic; }

4.	 I want to give special treatment to all of the prices on the menu.
Fortunately, they have all been marked up with span elements:

$3.95

So now all we have to do is write a rule using a class selector to
change the font to Georgia or some serif font, make the prices
italic, and gray them back:

.price {
 font-family: Georgia, serif;
 font-style: italic;
 color: gray;
}

5.	 Similarly, in the “info” div, I can change the appearance of the
spans that have been marked up as belonging to the “label”
class to make the labels stand out:

.label {
 font-weight: bold;
 font-variant: small-caps;
 font-style: normal;
}

6.	 Finally, there is a warning at the bottom of the page that I want
to make small and red. It has been given the class “warning,”
so I can use that as a selector to target just that paragraph for
styling. While I’m at it, I’m going to apply the same style to the
sup element (the footnote asterisk) earlier on the page so they
match. Note that I’ve used a grouped selector, so I don’t need to
write a separate rule.

p.warning, sup {
 font-size: small;
 color: red;
}

FIGURE 12-11 shows the results of all these changes. We now
have some touches of color and special typography treatments.

FIGURE 12-11.   The current state of the bistro menu.

Part III. CSS for Presentation

A Few More Selector Types

286

TEXT LINE ADJUSTMENTS

The next batch of text properties has to do with the treatment of whole lines
of text rather than the shapes of characters. They allow web authors to for-
mat web text with indents, extra space between lines (leading), and different
horizontal alignments, similar to print.

Line Height

line-height

Values: 	 number | length measurement | percentage | normal

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

The line-height property defines the minimum distance from baseline to
baseline in text. We saw it earlier as part of the shorthand font property. The
line-height property is said to specify a “minimum” distance because if you
put a tall image or large characters on a line, the height of that line expands
to accommodate it.

A baseline is the imaginary line upon which the bottoms of characters sit.
Setting a line height in CSS is similar to adding leading in traditional type-
setting; however, instead of space being added between lines, the extra space
is split above and below the text. The result is that line-height defines the
height of a line-box in which the text line is vertically centered (FIGURE 12-12).

Size of 1em for this text

Baseline

line-height: 2em;

line-height is set to 2em (twice the text size); the
extra space is divided equally above and below the
text line, centering it vertically in the line height.

FIGURE 12-12.   Text lines are centered vertically in the line height.

These examples show three different ways to make the line height twice the
height of the font size:

p { line-height: 2; }

p { line-height: 2em; }

p { line-height: 200%; }

12. Formatting Text

Text Line Adjustments

287

When a number is specified alone, as shown in the first example, it acts as a
scaling factor that is multiplied by the current font size to calculate the line-
height value.

Line heights can also be specified in one of the CSS length units. Ems and
percentage values are based on the current font size of the element. In the
three examples, if the font size is 16 pixels, the calculated line height would
be 32 pixels (see FIGURE 12-12).

The difference between using a scaling factor (number value) and a relative
value (em or %) is how they inherit. If you set the line height with a scaling
factor for a whole document on the body element, its descendants inherit the
multiplier. If the scaling factor is set to 2 for the body, a 24-pixel headline will
end up with a line height of 48 pixels.

If you set the line-height on the body element using ems or percentages,
its descendants inherit the calculated size based on the body’s font size. For
example, if the line height is set to 1em for the body element (calculated at 16
pixels), a 24-pixel headline inherits the calculated 16-pixel line height, not the
1em value. This is likely not the effect you are after, making number values
a more intuitive option.

Indents
The text-indent property indents the first line of text by a specified amount.

text-indent

Values: 	 length measurement | percentage

Default: 	 0

Applies to: 	 block containers

Inherits: 	 yes

You can specify a length measurement or a percentage value for text-indent.
The results are shown in FIGURE 12-13. Here are a few examples:

p#1 { text-indent: 2em; }

p#2 { text-indent: 25%; }

p#3 { text-indent: -35px; }

Percentage values are calculated based on the width of the parent element,
and they are passed down to their descendant elements as percentage values
(not calculated values). So if a div has a text-indent of 10%, so will all of its
descendants.

In the third example, notice that a negative value was specified, and that’s just
fine. It will cause the first line of text to hang out to the left of the left text
edge (also called a hanging indent).

NOTE

The text-indent property indents just
the first line of a block. If you want space
along the whole side of the text block,
use one of the margin or padding prop-
erties to add it.

Designers may be accustomed to specify-
ing indents and margins in tandem, but
to be consistent with how CSS handles
them, margins will be discussed as part
of the box model in Chapter 14.

Part III. CSS for Presentation

Text Line Adjustments

288

2em

25%

–35px

FIGURE 12-13.  Examples of the text-indent property.

Horizontal Text Alignment
You can align text for web pages just as you would in a word processing or
desktop publishing program with the text-align property.

text-align

Values: 	 left | right | center | justify | start | end

Default: 	 start

Applies to: 	 block containers

Inherits: 	 yes

This is a fairly straightforward property to use. The results of the various
CSS2.1 text-align values are shown in FIGURE 12-14.

text-align: left Aligns text on the left margin

text-align: right Aligns text on the right margin

text-align: center Centers the text in the text block

text-align: justify Aligns text on both right and left margins

The CSS Text Module Level 3 added the start and end values, which specify
the side of the line box the text should align to (see Note). This accommo-
dates languages that are written vertically and right to left. For left-to-right
reading languages, start corresponds to left.

Good news—only five more text properties to go! Then we’ll be ready to try
a few of them in the Black Goose Bistro menu.

D E S I G N T I P

If you use a hanging indent, be sure
that there is also a left padding
applied to the element. Otherwise,
the hanging text may disappear off
the left edge of the browser window.

NOTE

The CSS Text Module Level 3 also defines
two new properties related to text align-
ment—text-align-last (for aligning
the last line of text) and text-justify
(for more fine-tuned control over how
space is inserted in justified text).

12. Formatting Text

Text Line Adjustments

289

text-align: left;

text-align: right;

text-align: center;

text-align: justify;

FIGURE 12-14.  Examples of CSS2.1 text-align values.

UNDERLINES AND OTHER
“DECORATIONS”

If you want to put a line under, over, or through text, or if you’d like to turn
of the underline under links, then text-decoration is the property for you.

text-decoration

Values: 	 none | underline | overline | line-through | blink

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no, but since lines are drawn across child elements, they may look like
they are “decorated” too

The values for text-decoration are intuitive and are shown in FIGURE 12-15.

underline Underlines the element

overline Draws a line over the text

line-through Draws a line through the text

The most popular use of the text-decoration property is turning off the
underlines that appear automatically under linked text, as shown here:

a { text-decoration: none; }

There are a few cautionary words to be said regarding text-decoration:

•	 First, if you get rid of the underlines under links, be sure there are other
cues to compensate, such as color and weight.

text-decoration: underline;

text-decoration: overline;

text-decoration: line-through;

FIGURE 12-15.  Examples of
text-decoration values.

NOTE

The CSS3 Text Module includes enhance-
ments to text-decoration, including
text-decoration-line, text-dec-
oration-color, text-decoration-
style, text-decoration-skip, and
text-underline-position. No version
of IE or Edge supports these properties,
but with the exception of -skip, they are
supported in other modern browsers.
See CanIUse.com for specifics.

Part III. CSS for Presentation

Underlines and Other “Decorations”

290

•	 On the flip side, because underlines are such a strong visual cue to “click
here,” underlining text that is not a link may be misleading and frustrat-
ing. Consider whether italics may be an acceptable alternative.

•	 Finally, there is no reason to make your text blink. Browser makers agree
and therefore have dropped support for blinking text. IE never supported
it in the first place.

CHANGING CAPITALIZATION

I remember when desktop publishing programs introduced a feature that let
me change the capitalization of text on the fly (OK, I’m dating myself here).
This made it easy to see how my headlines might look in all capital letters
without needing to retype them. CSS includes this feature as well with the
text-transform property.

text-transform

Values: 	 none | capitalize | lowercase | uppercase | full-width

Default: 	 none

Applies to: 	 all elements

Inherits: 	 yes

When you apply the text-transform property to a text element, it changes
its capitalization when it renders without changing the way it is typed in the
source. The values are as follows (FIGURE 12-16):

none As it is typed in the source

capitalize Capitalizes the first letter of each word

lowercase Makes all letters lowercase

uppercase Makes all letters uppercase

full-width Chooses a “full-width” version of a character if one exists
(not well supported)

text-transform: none;
(as it was typed in the source)

text-transform: capitalize;

text-transform: lowercase;

text-transform: uppercase;

FIGURE 12-16.  The text-transform property changes the capitalization of
characters when they are displayed, regardless of how they are typed in the source.

12. Formatting Text

Changing Capitalization

291

SPACED OUT

The next two text properties are used to insert space between letters (letter-
spacing) or words (word-spacing) when the text is displayed.

letter-spacing

Values: 	 length measurement | normal

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

word-spacing

Values: 	 length measurement | normal

Default: 	 normal

Applies to: 	 all elements

Inherits: 	 yes

The letter-spacing and word-spacing properties do what they say: add
space between the letters of the text or words in a line, respectively.

FIGURE 12-17 shows the results of letter spacing and word spacing applied to
the simple paragraph shown here:

<p>Black Goose Bistro Summer Menu</p>

p { letter-spacing: 8px; }

p { word-spacing: 1.5em; }

FIGURE 12-17.   letter-spacing (top) and word-spacing (bottom).

It is worth noting that when you specify em measurements, the calculated
size is passed down to child elements, even if they have a smaller font size
than the parent.

In EXERCISE 12-6 later in this chapter, we’ll make one last trip back to the
Black Goose Bistro menu and use the letter-spacing property on h2s.

Part III. CSS for Presentation

Spaced Out

292

TEXT SHADOW

The text-shadow property adds a “shadow” below your text that makes it
seem to hover or pop out above the page. Since flat-color design has become
the fashion, drop shadows have gone out of style, but they can still be a useful
visual tool, particularly when your text is in front of a patterned or photo-
graphic background.

Text shadows are drawn behind the text but in front of the background and
border if there is one. Text shadows are supported by all current browsers.
Internet Explorer versions 9 and earlier lack support.

text-shadow

Values: 	 ‘horizontal offset’ ‘vertical offset’ ‘blur radius’ ‘color’ | none

Default: 	 none

Applies to: 	 all elements

Inherits: 	 yes

The value for the text-shadow property is two or three measurements (a hori-
zontal offset, vertical offset, and an optional blur radius) and a color. FIGURE

12-18 shows an example of a minimal text shadow declaration.

h1 {
 color: darkgreen;
 text-shadow: .2em .2em silver;
}

h1 {
 color: darkgreen;
 text-shadow: -.3em -.3em silver;
}

The first value is a horizontal offset that positions the shadow to the right of
the text (a negative value pulls the shadow to the left of the text). The second
measurement is a vertical offset that moves the shadow down by the speci-
fied amount (a negative value moves the shadow up). The declaration ends
with the color specification (silver). If the color is omitted, the text color will
be used.

That should give you an idea for how the first two measurements work, but
that sharp shadow doesn’t look very…well…shadowy. What it needs is a blur
radius measurement. Zero (0) is no blur, and the blur gets softer with higher
values (FIGURE 12-19). Usually, you just have to fiddle with values until you
get the effect you want.

It is possible to apply several text shadows to the same element. If you vary
the position and blur amounts, you can give the text the appearance of mul-
tiple light sources.

text-shadow: .2em .2em silver;

text-shadow: -.3em -.3em silver;

FIGURE 12-18.   A minimal text drop
shadow.

text-shadow: .2em .2em .1em silver;

text-shadow: .2em .2em .3em silver;

FIGURE 12-19.   Adding a blur radius
to a text drop shadow.

12. Formatting Text

Text Shadow

293

The Other Text Properties
In the interest of saving space and keeping this
an introductory-level book, I haven’t given these
properties the full treatment, but they are worth
mentioning. Each is labeled with the CSS Level in
which it was introduced.

For even more text-related properties in
development, see the following CSS Text Modules:

•	 CSS Text Module Level 3:
 www.w3.org/TR/css-text-3

•	 CSS Text Decoration Module Level 3:
www.w3.org/TR/css-text-decor-3

•	 CSS Text Module Level 4 (still in Working Draft
and considered experimental):
www.w3.org/TR/css-text-4

white-space (CSS2) Specifies how whitespace
in the element source is handled in layout. For
example, the pre value preserves the character
spaces and returns found in the source, similar
to the pre HTML element.

vertical-align (CSS2) Specifies the vertical
alignment of an inline element’s baseline
relative to the baseline of the surrounding text.
It is also used to set the vertical alignment of
content in a table cell (td).

word-break and line-break (CSS3) Affects
how text wrapping is calculated within words
and lines, respectively, in various languages,
including East Asian (Chinese, Japanese,
Korean).

text-justify (CSS3) Specifies the manner in
which space is to be added within and between
words when the text-align property on the
element is set to justify.

text-align-last (CSS3) Specifies how the last
line of a block of text should be justified when
the text-align property on the element is set
to justify. For example, it is often preferable to
have the last line left-justified for justified text to
avoid awkwardly spaced words.

tab-size (CSS3) Specifies the length of the tab
character (Unicode point 0009) in number of
characters or a length measurement.

hyphens (CSS3) Provides control over how text
is hyphenated. manual means hyphenation
happens only when there is a hyphen added in
the source. auto gives control to the browser,
and none turns off hyphenation completely.

overflow-wrap (CSS3) Specifies whether browsers
are allowed to break words to fit text in its
bounding box.

hanging-punctuation (CSS3) Determines
whether the punctuation mark may be outside
the element’s line box at the start or end of a
line. Hanging punctuation can make margins
appear more tidy.

The following properties are in the spec, but should
not be used. Use the dir HTML attribute instead.

direction (CSS3) Specifies the direction in which
the text reads: left to right (ltr) or right to left
(rtl).

unicode-bidi (CSS2) Related to bidirectional
features of Unicode. The Recommendation
states that it allows the author to generate levels
of embedding within the Unicode embedding
algorithm. If you have no idea what this means,
don’t worry. Neither do I.

So go have some fun with text shadows, but be careful not to overdo it. Not
only can drop shadows make text difficult to read, but adding a shadow to
everything can slow down page performance (scrolling, mouse interactions,
etc.) as well, which is particularly problematic for mobile browsers without
much processing power. In addition, be careful that your text doesn’t require
a shadow in order to be visible. Folks with non-supporting browsers won’t see
a thing. My advice is to use drop shadows as an enhancement in a way that
isn’t critical if they don’t appear.

EXERCISE 12-6 gives you a chance to try out more text formatting properties
to put a little polish on the Black Goose Bistro menu.

Part III. CSS for Presentation

Text Shadow

294

EXERCISE 12-6.  Finishing touches

Let’s add a few finishing touches to the online menu, menu.html.
It might be useful to save the file and look at it in the browser after
each step to see the effect of your edits and to make sure you’re on
track. The finished style sheet is provided in the materials folder
for this chapter.

1.	 First, I have a few global changes to the body element in mind.
I’ve had a change of heart about the font-family. I think that
a serif font such as Georgia would be more sophisticated and
appropriate for a bistro menu. Let’s also use the line-height
property to open up the text lines and make them easier to read.
Make these updates to the body style rule, as shown:

body {
 font-family: Georgia, serif;
 font-size: small;
 line-height: 1.75em;
}

2.	 I also want to redesign the “info” section of the document.
Remove the teal color setting by deleting that whole rule. Once
that is done, make the h1 olive green and the paragraph in the
header gray. Add color declarations to the existing rules:

#info { color: teal; } /* delete */
h1 {
 font: bold 1.5em "Marko One", Georgia, serif;
 color: olive;}
#info p {
 font-style: italic;
 color: gray;}

3.	 Next, to imitate a fancy restaurant menu, I’m going to center a
few key elements on the page with the text-align property.
Write a rule with a grouped selector to center the headings and
the “info” section:

h1, h2, #info {
 text-align: center;}

4.	 I want to make the “Appetizer” and “Main Courses” h2 headings
more eye-catching. Instead of large, bold type, I’m going to
use all uppercase letters, extra letter spacing, and color to call
attention to the headings. Here’s the new rule for h2 elements
that includes all of these changes:

h2 {
 font-size: 1em;
 text-transform: uppercase;
 letter-spacing: .5em;
 color: olive;}

5.	 We’re really close now; just a few more tweaks to those
paragraphs right after the h2 headings. Let’s center those too
and make them italic:

h2 + p {
 text-align: center;
 font-style: italic;}

Note that I’ve used a next-sibling selector (h2 + p) to select any
paragraph that follows an h2.

6.	 Next, add a softer color to the menu item names (in dt
elements). I’ve chosen “sienna,” one of the names from the
CSS3 color module. Note that the strong elements in those dt
elements stay “tomato” red because the color applied to the
strong elements overrides the color inherited by their parents.

dt {
 font-weight: bold;
 color: sienna;}

7.	 Finally, for kicks, add a drop shadow under the h1 heading. You
can play around with the values a little to see how it works. I find
it to look a little clunky against a white background, but when
you have a patterned background image, sometimes a drop
shadow provides the little punch you need to make the text
stand out. Notice how small the shadow values are—a little goes
a long way!

h1 {
 font: bold 1.5em "Marko One", Georgia, serif;
 color: olive;
 text-shadow: .05em .05em .1em lightslategray;}

And we’re done! FIGURE 12-20 shows how the menu looks
now—an improvement over the unstyled version, and we used
only text and color properties to do it. Notice that we didn’t touch
a single character of the document markup in the process. That’s
the beauty of keeping style separate from structure.

FIGURE 12-20.   The formatted Black Goose Bistro menu.

12. Formatting Text

Text Shadow

295

NOTE

This section documents the CSS2.1
list-style types that are well support-
ed on current browsers. CSS3 extends the
marker functionality shown here, includ-
ing a method for authors to define their
own list styles, allowing for numbering
in many languages (www.w3.org/TR/
css3-lists/).

NOTE

CSS3 introduces the @counter-style
rule, which provides box, check, dia-
mond, and dash marker types as well as
the ability to specify your own markers
when a predefined one won’t do. See the
spec for details.

CHANGING LIST BULLETS AND NUMBERS

Before we close out this chapter on text properties, I want to show you a few
tweaks you can make to bulleted and numbered lists. As you know, browsers
automatically insert bullets before unordered list items, and numbers before
items in ordered lists (the list markers). For the most part, the rendering of
these markers is determined by the browser. However, CSS provides a few
properties that allow authors to choose the type and position of the marker,
or turn them off entirely.

Choosing a Marker
Apply the list-style-type property to the ul, ol, or li element select the
type of marker that appears before each list item (see Note).

list-style-type

Values: 	 none | disc | circle | square | decimal | decimal-leading-zero |
lower-alpha | upper-alpha | lower-latin | upper-latin | lower-roman |
upper-roman | lower-greek

Default: 	 disc

Applies to: 	 ul, ol, and li (or elements whose display value is list-item)

Inherits: 	 yes

More often than not, developers use the list-style-type property with its
value set to none to remove bullets or numbers altogether. This is handy when
you’re using list markup as the foundation for a horizontal navigation menu
or the entries in a web form. You can keep the semantics but get rid of the
pesky markers.

The disc, circle, and square values generate bullet shapes just as brows-
ers have been doing since the beginning of the web itself (FIGURE 12-21).
Unfortunately, there is no way to change the appearance (size, color, etc.) of
generated bullets, so you’re stuck with the browser’s default rendering.

disc circle square

FIGURE 12-21.  The list-style-type values disc, circle, and square.

The remaining keywords (TABLE 12-1) specify various numbering and letter-
ing styles for use with ordered lists.

Part III. CSS for Presentation

Changing List Bullets and Numbers

296

TABLE 12-1.   Lettering and numbering system (CSS2.1)

Keyword System

decimal 1, 2, 3, 4, 5…

decimal-leading-zero 01, 02, 03, 04, 05…

lower-alpha a, b, c, d, e…

upper-alpha A, B, C, D, E…

lower-latin a, b, c, d, e… (same as lower-alpha)

upper-latin A, B, C, D, E… (same as upper-alpha)

lower-roman i, ii, iii, iv, v…

upper-roman I, II, III, IV, V…

lower-greek α, β, γ, δ, ε…

Marker Position

By default, the marker hangs outside the content area for the list item, dis-
playing as a hanging indent. The list-style-position property allows you
to pull the bullet inside the content area so it runs into the list content.

list-style-position

Values: 	 inside | outside | hanging

Default: 	 outside

Applies to: 	 ul, ol, and li (or elements whose display value is list-item)

Inherits: 	 yes

I’ve applied a light green background color to the
list items in FIGURE 12-22 to reveal the boundaries
of their content area boxes.

You can see that when the position is set to out-
side (top), the markers fall outside the content
area.When it is set to inside (bottom), the mark-
ers are tucked into the content area.

li {background-color: #F99;}
ul#outside {list-style-position: outside;}
ul#inside {list-style-position: inside;}

CSS3 adds the hanging value for list-style-
position. it is similar to inside, but the markers
appear outside and abutting the left edge of the
shaded area.

List Item Display Role
You may have noticed that the list
style properties apply to “elements
whose display value is list-item.”
The CSS2.1 specification allows any
element to perform like a list item by
setting its display property to list-
item. This property can be applied
to any HTML element or elements in
other XML languages. For example,
you could automatically bullet or
number a series of paragraphs by
setting the display property of
paragraph (p) elements to list-
item, as shown in this example:

p.lettered {
 display: list-item;
 list-style-type: upper-alpha;
}

outside

inside

FIGURE 12-22.  The list-style-position property.

12. Formatting Text

Changing List Bullets and Numbers

297

Make Your Own Bullets
You can also use your own image as a bullet by using the list-style-image
property.

list-style-image

Values: 	 url(location) | none

Default: 	 none

Applies to: 	 ul, ol, and li (or elements whose display value is list-item)

Inherits: 	 yes

The value of the list-style-image property is the URL of the image you
want to use as a marker. The list-style-type is set to disc as a backup
in case the image does not display or the property isn’t supported by the
browser or other user agent. The result is shown in FIGURE 12-23.

ul {
 list-style-type: disc;
 list-style-image: url(/images/rainbow.gif);
 list-style-position: outside;
}

FIGURE 12-23.   Using an image as a marker.

CSS T I P

There is a list-style shorthand property that combines the values for type,
position, and image, in any order. For example:

ul {
 list-style: url(/images/rainbow.gif) disc outside;
}

As for all shorthands, be careful not to override list style properties set earlier in the
style sheet.

Wow! Whatta chapter! We started by looking at properties for specifying
fonts and character shapes followed by a review of all the text-level settings
and effects. You also got to use descendent, ID, and class selectors and looked
a little more closely at specificity. We topped it off with the properties avail-
able for adding some style to lists. I don’t expect you to have all of these
properties committed to memory (although many will become second nature
the more you practice), but let’s see how you do on the following questions.

Part III. CSS for Presentation

Changing List Bullets and Numbers

298

TEST YOURSELF

It’s time to see how well you understand the font properties and selectors
introduced in this chapter. Check Appendix A for the answers if you get stuck.

1.	 Match the style property with the text samples in FIGURE 12-24.

a.	 _______ {font-size: 1.5em;}

b.	 _______ {text-transform: capitalize;}

c.	 _______ {text-align: right;}

d.	 _______ {font-family: Verdana; font-size: 1.5em;}

e.	 _______ {letter-spacing: 3px;}

f.	 _______ {font: bold italic 1.2em Verdana;}

g.	 _______ {text-transform: uppercase;}

h.	 _______ {text-indent: 2em;}

i.	 _______ {font-variant: small-caps;}

1

2

3

4

5

6

7

8

9

default font and size

FIGURE 12-24.  Styled text samples.

12. Formatting Text

Test Yourself

299

2.	 Here is a chance to get a little practice writing selectors. Using the dia-
gram shown in FIGURE 12-25, write style rules that make each of the ele-
ments described here red (color: red;). Write the selector as efficiently
as possible.

a.	 All text elements in the document

b.	 h2 elements

c.	 h1 elements and all paragraphs

d.	 Elements belonging to the class special

e.	 All elements in the “intro” section

f.	 strong elements in the “main” section

g.	 Extra credit: just the paragraph that appears after an h2

html

head body

title style div id="intro"

p class="special" p class="special"

div id="main"h1 p

pul h2 h2

img strong strongli li li

FIGURE 12-25.  Sample document structure.

Part III. CSS for Presentation

Test Yourself

300

CSS REVIEW: FONT AND TEXT
PROPERTIES

In this chapter, we covered the properties used to format text elements. Here
is a summary in alphabetical order.

Property Description

color Specifies the foreground color (text and borders) for
an element

direction Indicates whether the text reads left-to-right or right-
to-left

font A shorthand property that combines font properties

font-family Specifies a typeface or generic font family

font-feature-settings Allows access to lesser-used OpenType features

font-kerning Controls how browsers implement kerning data
(space between characters)

font-language-override Controls use of language-specific glyphs

font-size Specifies the size of the font

font-size-adjust Matches the x-height of a fallback font with the speci-
fied font

font-stretch Selects a condensed, normal, or extended font

font-style Specifies italic or oblique fonts

font-synthesis Controls whether a browser may simulate bold or
italic fonts

font-variant Specifies a small-caps font

font-variant-alternates Selects alternate versions of character glyphs

font-variant-caps Selects small caps and similar alternates when
available

font-variant-east-asian Selects alternate glyphs in Chinese, Japanese, and
Korean

font-variant-ligatures Selects ligatures for certain letter pairs when available

font-variant-numeric Selects alternate number glyphs

font-variant-position Selects subscript or superscript character glyphs

font-weight Specifies the boldness of the font

hanging-punctuation Indicates whether the punctuation may hang outside
the content box

hyphens Controls how text is hyphenated

letter-spacing Inserts space between letters

line-break Describes rules for breaking lines

line-height Indicates the distance between baselines of neighbor-
ing text lines

12. Formatting Text

CSS Review: Font and Text Properties

301

Property Description

list-style-image Specifies an image to be used as a list marker

list-style-position Puts a list marker inside or outside the content area

list-style-type Selects the marker type for list items

overflow-wrap Specifies whether the browser can break lines within
words to prevent overflow

tab-size Specifies the length of a tab character

text-align Indicates the horizontal alignment of text

text-align-last Specifies how the last line in justified text is aligned

text-decoration Specifies underlines, overlines, and lines through

text-indent Specifies the amount of indentation of the first line in
a block

text-justify Denotes how space is distributed in justified text

text-shadow Adds a drop shadow under the text

text-transform Changes the capitalization of text when it displays

unicode-bidi Works with Unicode bidirectional algorithms

vertical-align Adjusts the vertical position of inline elements relative
to the baseline

white-space Specifies how whitespace in the source is displayed

word-break Specifies whether to break lines within words

word-spacing Inserts space between words

word-wrap Indicates whether the browser can break lines within
words to prevent overflow (same as overflow-wrap)

Part III. CSS for Presentation

CSS Review: Font and Text Properties

302

IN THIS CHAPTER

CSS color names

RGB color values

Foreground and background
colors

Tiling background images

Color gradients

Pseudo-class, pseudo-element,
and attribute selectors

External style sheets

If you had seen the web back in 1993, you would have found it to be a dreary
affair by today’s standards—every background was gray, and all the text
was black. Then came Netscape Navigator and, with it, a handful of HTML
attributes that allowed rudimentary (but welcome) control over font colors
and backgrounds. For years, we made do. But thankfully, we now have style
sheet properties that have laid those unmentionable presentational attributes
to rest.

We’re going to cover a lot of ground in this chapter. Of course, I’ll introduce
you to all of the properties for specifying colors and backgrounds. This
chapter also rounds out your collection of selector types and shows you how
to create an external style sheet. Our first order of business, however, is to
explore the options for specifying color in CSS, including a primer on the
nature of color on computer monitors.

SPECIFYING COLOR VALUES

There are two main ways to specify colors in style sheets—with a predefined
color name, as we have been doing so far:

color: red; color: olive; color: blue;

Or, more commonly, with a numeric value that describes a particular RGB
color (the color model on computer monitors). You may have seen color val-
ues that look like these:

color: #FF0000; color: #808000; color: #00F;

We’ll get to all the ins and outs of RGB color in a moment, but first, a short
and sweet section on the standard color names.

COLORS AND
BACKGROUNDS
PLUS MORE SELECTORS AND
EXTERNAL STYLE SHEETS

13
CHAPTER

303

Color Names
The most intuitive way to specify a color is to call it by name. Unfortunately,
you can’t make up just any color name and expect it to work. It has to be one
of the color keywords predefined in the CSS Recommendation. CSS1 and
CSS2 adopted the 16 standard color names originally introduced in HTML
4.01. CSS2.1 tossed in orange for a total of 17 (FIGURE 13-1).

CSS3 adds support for the extended set of 140 (rather fanciful) color names.
Now we can specify names like burlywood, peachpuff, oldlace, and my long-
time favorite, papayawhip! The extended colors are shown in FIGURE 13-2, but
if you want a more accurate view, point your browser at learningwebdesign.
com/colornames.html. CSS3 also added the transparent keyword, which can
be used with any property that has a color value.

Color names are easy to use—just drop one into place as the value for any
color-related property:

color: silver;
background-color: gray;
border-bottom-color: teal;

black gray silver white
#000000 #808080 #C0C0C0 #FFFFFF

maroon red purple fuchsia
#800000 #FF0000 #800080 #FF00FF

green lime olive yellow
#008000 #00FF00 #808000 #FFFF00

navy blue teal aqua
#000080 #0000FF #008080 #00FFFF

orange (CSS 2.1)
#FFA500

FIGURE 13-1.  The 17 standard color names in CSS2.1. (Note that “gray” must be
spelled with an “a.”)

F U N FACT

The extended color names, also
known as the X11 color names, were
originally provided with the X Window
System for Unix.

Part III. CSS for Presentation

Specifying Color Values

304

http://www.learningwebdesign.com/colornames.html
http://www.learningwebdesign.com/colornames.html

FIGURE 13-2.   The 140 extended color names in CSS3. Bear in mind that these look
quite different on a screen.

13. Colors and Backgrounds

Specifying Color Values

305

RGB Color Values
Names are easy, but as you can see, they are limited. By far, the most common
way to specify a color is by its RGB value. It also gives you millions of colors
to choose from.

For those who are not familiar with how computers deal with color, I’ll start
with the basics before jumping into the CSS syntax.

A word about RGB color
Computers create the colors you see on a monitor by combining three colors
of light: red, green, and blue. This is known as the RGB color model. You can
provide recipes (of sorts) for colors by telling the computer how much of
each color to mix in. The amount of light in each color “channel” is typically
described on a scale from 0 (none) to 255 (full blast), although it can also be
provided as a percent. The closer the three values get to 255 (100%), the closer
the resulting color gets to white (FIGURE 13-3). Wondering why the scale is
from 0 to 255? See the “Why 255?” sidebar.

Any color you see on your monitor can be described by a series of three
numbers: a red value, a green value, and a blue value. This is one of the ways
that image editors such as Adobe Photoshop keep track of the colors for every
pixel in an image. With the RGB color system, a pleasant lavender can be
described as R:200, G:178, B:230.

Taken together, 255 colors in each channel can define around 16.7 million
color combinations. This color space of millions of colors is known as
Truecolor. There are different ways to encode those colors (that is, convert
them to bytes for computers), and the web uses an encoding called sRGB. So,
if you see an option for saving images as sRGB in a graphics program, click Yes.

FIGURE 13-3.   Computers create colors on a monitor by mixing different amounts of
red, green, and blue light (thus, RGB). The color in the middle of each diagram shows
what happens when the three color channels are combined. The more light there is in
each channel (i.e., the higher the number value), the closer the combination is to white.

G: 255
(100%)

R: 255
(100%)

B: 255
(100%)

G: 128
(50%)

R: 128
(50%)

B: 128
(50%)

G: 0
(0%)

R: 0
(0%)

B: 0
(0%)

G: 178
(70%)

R: 200
(78%)

B: 230
(90%)

The RGB Color Model

RGB: 255, 255, 255
white

RGB: 0, 0, 0
black

RGB: 200, 178, 230
pleasant lavender

RGB: 128, 128, 128
gray

Why 255?
In true RGB color, 8 bits of
information are devoted to each color
channel. Because 8 bits can describe
256 shades (28 = 256), colors are
measured on a scale from 0 to 255.

Part III. CSS for Presentation

Specifying Color Values

306

Picking a color
There are a number of ways to pick a color and find its RGB color values. One
quick and easy option is to go to Google.com and search “color picker,” and
voilà—a full-featured color picker (FIGURE 13-4, left)! If you tend to keep an
image-editing program such as Adobe Photoshop open and handy, you can
use its built-in color picker (FIGURE 13-4, right).

Google color picker Photoshop color picker

FIGURE 13-4.  Color pickers such as the one at Google.com (search “color picker”)
and in Photoshop.

Both the Google and image editor color pickers show how the selected color
would be expressed in a variety of color models (to reveal the values in
Google, click “Show color values” below the picker). RGB is the most com-
mon for web design, so we’re focusing our attention on that one. HSL (Hue
Saturation Lightness or Luminosity) is another option for specifying color in
style sheets, and we’ll take a look at it in a moment (see Note). CMYK (Cyan
Magenta Yellow blacK) is used primarily for print media, so you won’t use it
except perhaps to translate print colors to their screen equivalents.

When you select a color from the spectrum in the color picker, the red, green,
and blue values are listed, as pointed out in FIGURE 13-4. And look next to
the # symbol—those are the same three values, converted to hexadecimal
equivalents so they are ready to go in a style sheet. I’ll explain the six-digit
hex values in a moment.

Writing RGB values in style sheets
CSS allows RGB color values to be specified in a number of formats. Going
back to that pleasant lavender, we could add it to a style sheet by listing each
value on a scale from 0 to 255:

color: rgb(200, 178, 230);

You can also list them as percentage values, although that is less common:

color: rgb(78%, 70%, 90%);

NOTE

HSL is not the same as HSB (Hue
Saturation Brightness), another color
model provided in Photoshop and other
image editors.

The Web Palette
You may come across the terms web
palette or web-safe colors in web
production tools like Dreamweaver
or Photoshop. The web got its start
in the days when computer monitors
typically could display only 256 colors
at a time. The web palette was a
collection of 216 colors that could
be displayed on both Windows and
Macintosh operating systems without
dithering, and thus they were “safe”
for the web. That era is long behind
us, as is the need to restrict our color
choices to the web palette.

13. Colors and Backgrounds

Specifying Color Values

307

Or, you can provide the six-digit hexadecimal version that we saw in the
color pickers. These six digits represent the same three RGB values, except
they have been converted into hexadecimal (or hex for short) equivalents.
Note that hex RGB values are preceded by the # symbol and do not require
the rgb() notation shown in the previous examples. They may be upper- or
lowercase, but it is recommended that you be consistent:

color: #C8B2E6;

There is one last shorthand way to specify hex color values. If your value hap-
pens to be made up of three pairs of double digits or letters, such as

color: #FFCC00; or color: #993366;

you can condense each pair down to one digit or letter. It’s easier to type
and to read, and it slightly reduces the size of your file. These examples are
equivalent to the ones just listed:

color: #FC0; or color: #936;

About hexadecimal values
It’s time to clarify what’s going on with that six-digit string of characters.
What you’re looking at is actually a series of three two-digit numbers, one
each for red, green, and blue. But instead of decimal (base-10, the system we’re
used to), these values are written in hexadecimal, or base-16. FIGURE 13-5
shows the structure of the hex RGB value.

#RRGGBBHexadecimal RGB values
must be preceded by the
symbol.

Hex
RED

value

Hex
GREEN
value

Hex
BLUE
value

FIGURE 13-5.  Hexadecimal RGB values are made up of three two-digit numbers, one
for red, one for green, and one for blue.

The hexadecimal numbering system uses 16 digits: 0–9 and A–F (for repre-
senting the quantities 10–15). FIGURE 13-6 shows how this works. The hex
system is used widely in computing because it reduces the space it takes to
store certain information. For example, the RGB values are reduced from
three to two digits once they’re converted to hexadecimal.

Now that most graphics and web development software provides easy access
to hexadecimal color values (as we saw in FIGURE 13-4), there isn’t much need
to translate RGB values to hex yourself, as we needed to do back in the old
days. Should you need to, there are plenty of decimal-to-hexadecimal convert-
ers online.

AT A G L A N C E

Specifying RGB Values
There are four formats for providing
RGB values in CSS:

rgb(255, 255, 255)

rgb(100%, 100%, 100%)

#FFFFFF

#FFF

All of these examples specify white.

T I P

Handy Hex Values
White = #FFFFFF or #FFF
(the equivalent of 255,255,255)

Black = #000000 or #000
(the equivalent of 0,0,0)

Part III. CSS for Presentation

Specifying Color Values

308

Decimal

Hex

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

A

11

B

12

C

13

D

14

E

15

F

20
2 sixteens and 0 ones

00 2A
2 sixteens and 10 ones

The decimal number 32
is represented as

The decimal number 42
is represented as

sixteens
place

ones
place

FIGURE 13-6.  The hexadecimal numbering system is base-16.

RGBa Color
RGBa color allows you to specify a color and make it as transparent or as
opaque as you like. The “a” in “RGBa” stands for alpha, which is an additional
channel that controls the level of transparency on a scale from 0 (fully trans-
parent) to 1 (fully opaque). Here’s how it looks written in a style rule:

color: rgba(0, 0, 0, .5);

The first three values in the parentheses are regular old RGB values, in this
case creating the color black. The fourth value, .5, is the transparency level. So
this color is black with 50% transparency. That allows other colors or back-
ground patterns to show through slightly (FIGURE 13-7).

color: rgba(0, 0, 0, .1);

color: rgba(0, 0, 0, .5);

color: rgba(0, 0, 0, 1);

FIGURE 13-7.   Headings with various levels of transparency using RGBa values.

HSL Color
CSS3 introduced the ability to specify colors by their HSL values: Hue
(color), Saturation, and Lightness (or Luminosity). In this system, the colors
are spread out around a circle in the order of the rainbow, with red at the
top (12 o’clock) position. Hue values are then measured in degrees around
the circle: red at 0°/360°, green at 120°, and blue at 240°, with other colors
in between. Saturation is a percentage value from 0% (gray) to 100% (color
at full blast). Lightness (or brightness) is also a percentage value from 0%
(darkest) to 100% (lightest).

BROWSER SUPPORT NOTE

Internet Explorer versions 8 and earlier
do not support RGBa color, so if a signifi-
cant percentage of your users have those
browsers, you may want to provide a
fallback. Pick an RGB color that approxi-
mates the look you’re going for and list
it first in the style rule. IE ignores the
RGBa value, and supporting browsers
will override the opaque color when they
get to the second declaration.

h1 {
 color: rgb(120, 120, 120);
 color: rgba(0, 0, 0, .5);
}

BROWSER SUPPORT NOTE

HSL and HSLa color are not supported in
Internet Explorer versions 8 and earlier,
so use a fallback if you must support
those browsers.

13. Colors and Backgrounds

Specifying Color Values

309

FIGURE 13-8 shows one hue, cyan (located at 180° on the wheel) with its asso-
ciated saturation and lightness levels. You can see why some people find this
system more intuitive to use, because once you lock into a hue, it is easy to
make it stronger, darker, or lighter by increasing or decreasing the percentage
values. RGB values are not intuitive at all, although some practiced designers
develop a feel for them.

HUE: 180° (Cyan)

SATURATION

BR
IG

H
TN

ES
S

100%

100%

75%

75%

50%

50%

25%

25% 0%

FIGURE 13-8.   One hue in the HSL color model, with its associated saturation and
lightness values.

In CSS, HSL values are provided as the hue value and two percentages. They
are never converted to hexadecimal values, as may be done for RGB. Here is
that lavender from FIGURE 13-3 as it would be specified using HSL:

color: hsl(265, 51%, 80%);

Picking HSL color
There are a number of HSL color pickers online. In the Google color picker,
click “Show color values” below the panel to reveal the HSL values for your
selected color. Here are some other cool tools worth checking out:

•	 A Most Excellent HSL Color Picker by Brandon Mathis (hslpicker.com/)

•	 HSL Color Picker (www.workwithcolor.com/hsl-color-picker-01.htm)

•	 HSLa Explorer by Chris Coyier at CSS-Tricks (css-tricks.com/examples/
HSLaExplorer/)

WARNI NG

Be aware that the HSB color model listed in Photoshop’s color picker is not the same as HSL
and cannot be used for CSS.

Part III. CSS for Presentation

Specifying Color Values

310

http://www.workwithcolor.com/hsl-color-picker-01.htm

HSLa color
As with RGB, you can add an alpha channel to set the transparency of HSL
colors, resulting in the HSLa color model. As for RGBa, the fourth value is
the degree of transparency on a scale from 0 (fully transparent) to 1 (fully
opaque). This example specifies a spring green color that is 65% opaque:

color: hsla(70, 60%, 58%, .65);

Summing Up Color Values
It took us a few pages to get here, but the process for picking and specifying
colors in style sheets is actually easy:

•	 Pick one of the predefined color names,

or

•	 Use a color picker to select a color and copy down the RGB values (prefer-
ably the six-digit hex values). Put those values in the style rule using one
of the four RGB value formats, and you’re done. Or you could use HSL, if
that feels easier to you.

There is one more colorful way to fill an element, and that’s gradients (colors
that fade from one hue to another), but I’m going to save them for the end
of this chapter.

FOREGROUND COLOR

Now that we know how to write color values, let’s get to the color-related
properties. You can specify the foreground and background colors for any
HTML element. There are also border-color properties that take color values,
but we’ll get to those in Chapter 14, Thinking Inside the Box.

The foreground of an element consists of its text and border (if one is speci-
fied). You specify a foreground color with the color property, as we saw in
the last chapter when we rolled it out to give text a little pizzazz. Here are the
details for the color property one more time.

color

Values: 	 color value (name or numeric)

Default: 	 depends on the browser and user’s preferences

Applies to: 	 all elements

Inherits: 	 yes

In the following example, the foreground of a blockquote element is set to
green with a color name. You can see that applying the color property to the
blockquote element means the color is inherited by the p and em elements it

The foreground of an
element consists of its
text and border (if one is
specified).

13. Colors and Backgrounds

Foreground Color

311

contains (FIGURE 13-9). The thick dashed border around the whole block-
quote is green as well; however, if we were to apply a border-color property
to this same element, that color would override the green foreground setting.

THE STYLE RULE

blockquote {
 border: 4px dashed;
 color: green;
}

THE MARKUP

<blockquote>
In the latitude of central New England, cabbages are not secure ...
</blockquote>

FIGURE 13-9.   Applying a color to the foreground of an element.

BACKGROUND COLOR

Use background-color to apply a background color to any element.

background-color

Values: 	 color value (name or numeric) | transparent

Default: 	 transparent

Applies to: 	 all elements

Inherits: 	 no

A background color fills the canvas behind the element that includes the con-
tent area, and any padding (extra space) added around the content, extending
behind the border out to its outer edge. Let’s see what happens when we use
the background-color property to make the background of the same sample
blockquote light green (FIGURE 13-10):

blockquote {
 border: 4px dashed;
 color: green;
 background-color: #c6de89;
}

Part III. CSS for Presentation

Background Color

312

FIGURE 13-10.   Adding a light green background color to the sample blockquote.

As expected, the background color fills the area behind the text, all the way
to the border. Look closely at the gaps in the border, and you’ll see that the
background color goes to its outer edge. But that’s where the background
stops; if we apply a margin around this element, the background will not
extend into the margin. We’ll revisit all these components of an element when
we talk about the CSS box model. For now, just know that, by default, if your
border has gaps, the background will show through.

It’s worth noting that background colors do not inherit, but because the
default background setting for all elements is transparent, the parent’s back-
ground color shows through its descendant elements. For example, you can
change the background color of a whole page by applying the background-
color property to the body element and the color will show through all the
elements on the page (see “An Important Exception”).

In addition to setting the color of the whole page, you can change the back-
ground color of any element, both block-level (like the blockquote shown in
the previous example) as well as inline. In this example, I’ve used the color
and background-color properties to highlight a word marked up as a “glos-
sary” term. You can see in FIGURE 13-11 that the background color fills the
little box created by the inline dfn element.

THE STYLE RULE

.glossary {
 color: #0378a9; /* blue */
 background-color: yellow;
}

THE MARKUP

<p>Every variety of cabbage had their origin in the wild cabbage of
Europe (<dfn class="glossary"><i>Brassica oleracea</i></dfn>)</p>

FIGURE 13-11.   Applying the background-color property to an inline element.

To color the background
of the whole page, apply
the background-color
property to the body
element.

A N I M PO RTA N T
E XC E PT I O N

When you apply a background to the
body (or more generically, on the root
html) element, it is treated specially.
It doesn’t get clipped to the box, but
instead extends to cover the entire
viewport.

13. Colors and Backgrounds

Background Color

313

CLIPPING THE BACKGROUND

Traditionally, the background painting area (the area on which fill colors are
applied) of an element extends all the way out to the outer edge of the border,
as we saw in FIGURE 13-10. CSS3 introduced the background-clip property
to give designers more control over where the painting area begins and ends.

background-clip

Values: 	 border-box | padding-box | content-box

Default: 	 border-box

Applies to: 	 all elements

Inherits: 	 no

The default border-box value draws the painting area to the outside edge
of the border, as we’ve seen. FIGURE 13-12 shows that padding-box starts the
painting area on the outside edge of the padding area for the element (and to
the inside edge of the border). Finally, content-box allows the background to
fill only the content area for the element.

I can’t help but feel like I’m spoiling the surprise of the element box model
and its properties here a little, since I was saving that for the next chapter.
I’ve added some padding (space between the content and the border) so the
effects of the clip settings will be more apparent.

blockquote {
 padding: 1em; border: 4px dashed; color: green; background-color: #C6DE89;}
}

background-clip: border-box;

background-clip: padding-box;

background-clip: content-box;

FIGURE 13-12.   The background-clip property.

D E S I G N T I P

Using Color
Here are a few quick tips related to
working with color:

•	 Limit the number of colors you use
on a page. Nothing creates visual
chaos faster than too many colors.
I tend to choose one dominant
color and one highlight color. I
may also use a couple of shades of
each, but I resist adding too many
different hues.

•	 When specifying a foreground and
background color, make sure that
there is adequate contrast. People
tend to prefer reading dark text on
very light backgrounds online.

•	 Keep color-blind users in mind
when selecting colors. Chris
Coyier’s article “Accessibility
Basics: Testing Your Page for
Color Blindness” (css-tricks.com/
accessibility-basics-testing-your-
page-for-color-blindness/) is a
good place to start researching
strategies for color-blind-friendly
design.

Color contributes to both the
aesthetics and usability of a site, so
it is important to get it right. Geri
Coady’s book Color Accessibility
Workflows (A Book Apart) provides
many best practices.

Part III. CSS for Presentation

Clipping the Background

314

https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/
https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/
https://css-tricks.com/accessibility-basics-testing-your-page-for-color-blindness/

PLAYING WITH OPACITY

Earlier, we talked about the RGBa color format, which adds a level of trans-
parency when it is applied to a color or background. There is another way to
make an element slightly see-through, however—the CSS3 opacity property.

opacity

Values: 	 number (0 to 1)

Default: 	 1

Applies to: 	 all elements

Inherits: 	 no

The value for opacity is a number between 0 (completely transparent) and 1
(completely opaque). A value of .5 gives the element an opacity of 50%. The
opacity setting applies to the entire element—both the foreground and the
background (if one has been set). If you want to affect just one or the other,
use an RGBa color value instead.

In the following code example (and FIGURE 13-13), a heading has been given
a color of gold and a background color of white. When the opacity property
is set, it allows the blue background of the page to show through both the
text and the element box.

h1 {color: gold; background: white; opacity: .25;}

h1 {color: gold; background: white; opacity: .5;}

h1 {color: gold; background: white; opacity: 1;}

opacity: .25;

opacity: .5;

opacity: 1;

FIGURE 13-13.   Setting the opacity on an element affects both the foreground and
background colors.

You may be itching to take these color and background properties out for a
spin, and we will in a moment, but first, I want to introduce you to some of
the fancier CSS selectors and round out your collection. The “At a Glance”
sidebar lists the selectors you should feel comfortable with so far.

The opacity setting applies
to the entire element—both
the foreground and the
background.

BROWSER SUPPORT NOTE

The opacity property is not supported
in Internet Explorer versions 8 and earlier.
If you need to support IE8, use a style
rule with Microsoft’s proprietary filter
property, then override it with the stan-
dard opacity style rule.

h1 {
 filter:alpha(opacity=50);
 opacity: .5;
}

13. Colors and Backgrounds

Playing with Opacity

315

PSEUDO-CLASS SELECTORS

Have you ever noticed that a link is often one color when you click it and
another color when you go back to that page? That’s because, behind the
scenes, your browser is keeping track of which links have been clicked (or
“visited,” to use the lingo). The browser keeps track of other states too, such
as whether the user’s cursor is over an element (hover state), whether an ele-
ment is the first of its type, whether it’s the first or last child of its parent, and
whether a form element has been checked or disabled, just to name a few.

In CSS, you can apply styles to elements in these states by using a special kind
of selector called a pseudo-class selector. It’s an odd name, but you can think
of it as though elements in a certain state belong to the same class. However,
the class name isn’t in the markup—it’s something the browser just keeps
track of. So it’s kinda like a class…it’s a pseudo-class.

Pseudo-class selectors are indicated by the colon (:) character. They typically
go immediately after an element name—for example, li:first-child.

There are quite a few pseudo-classes in CSS3, and the W3C has been going a
little crazy in the CSS Selector Module Level 4 slinging around new pseudo-
classes, the majority of which have no browser support as of this writing. In
this section, I’ll introduce you to the most commonly used and the best sup-
ported as a solid starter kit. You can explore the cutting-edge selectors as you
gain more experience. The full list of CSS selectors (including Level 4), with
descriptions, can be found in Appendix C.

Link Pseudo-Classes
The most basic pseudo-class selectors target links (a elements) based on
whether they have been clicked. Link pseudo-classes are a type of dynamic
pseudo-class because they are applied as the result of the user interacting
with the page rather than something in the markup.

:link Applies a style to unclicked (unvisited) links
:visited Applies a style to links that have already been clicked

By default, browsers typically display linked text as blue and links that have
been clicked as purple, but you can change that with a few style rules. There
are limitations on what properties may be applied to :visited links, as
explained in the “Visited Links and Security” sidebar.

In these examples, I’ve changed the color of unclicked links to maroon and
visited links to gray. It is common for visited links to be a more muted color
than unclicked links:

a:link {
 color: maroon;
}
a:visited {
 color: gray;
}

AT A G L A N C E

Selector Review
Here is a quick summary of the
selector types we’ve covered already
(“E” stands for “Element”):

Element type selector
E {property: value;}

Grouped selectors
E1, E2, E3 {property: value;}

Descendant selector
E1 E2 {property: value;}

Child selector
E1 > E2 {property: value;}

Next-sibling selector
E1 + E2 {property: value;}

Subsequent-sibling selector
E1 ~ E2 {property: value;}

ID selector
E#id {property: value;}
#id {property: value;}

Class selector
E.class {property: value;}
.class {property: value;}

Universal selector
* {property: value;}

USA B I L I T Y T I P

When you alter the appearance of
links and visited links, be sure that
they still look like links.

Part III. CSS for Presentation

Pseudo-Class Selectors

316

User Action Pseudo-Classes
Another type of dynamic pseudo-class targets states that result from direct
user actions.

:focus 	 Applies when the element is selected and ready for input

:hover	 Applies when the mouse pointer is over the element

:active	 Applies when the element (such as a link or button) is in the
process of being clicked or tapped

Focus state
If you’ve ever used a web form, then you should be familiar with how a brows-
er visually emphasizes a form element when you select it. When an element is
highlighted and ready for input, it is said to have “focus.” The :focus selector
lets you apply custom styles to elements when they are in the focused state.

In this example, when a user selects a text input, it gets a yellow background
color to make it stand out from the other form inputs:

input:focus { background-color: yellow; }

Hover state
The :hover selector is an interesting one. It targets elements while the user’s
mouse pointer is directly over them. You can use the hover state with any ele-
ment, although it is most commonly used with links to give the user visual
feedback that an action is possible. Hover states are also used to trigger pop-
up menus for navigation or for revealing more information about an object
on the page.

This rule gives links a light pink background color while the mouse hovers
over them:

a:hover {
 color: maroon;
 background-color: #ffd9d9;
}

In the previous chapter, we saw the text-decoration property used to turn
off underlines under links. You could use the :hover selector to make the
underlines appear only “on hover”:

a:hover {
 text-decoration: underline;
}

It is important to note that there is no true hover state on touch-screen
devices such as smartphones and tablets, so hover effects must be used with
care and alternative solutions (see the sidebar “Hover on Touch Devices”).

Visited Links and Security
Browsers keep track of what links
have been visited, but for some users,
a record of their visited links (which
could be stolen by a malicious site)
may be undesirable. For people in
regions with severe restrictions on
viewing online content, that record
in the wrong hands could even be life
threatening. When it was determined
that visual styles applied to visited
links, as well as the methods
browsers use to keep track of them,
could be used to track users’ viewing
histories, some changes were made
to how visited links are handled.

The first change was to limit the
visual presentation properties
that can be applied to visited
links. Style rules with :visited
pseudo-class selectors may use only
the following properties: color,
background-color, border-
color (and individual side border
properties), and outline-color.
Any other property will be ignored.
Furthermore, you cannot use any
value that makes the link transparent,
including the transparent keyword
and RGBa and HSLa color values.

Under the hood, the DOM mechanism
that keeps track of what links have
been visited will always return a “not
visited” state, even when visited styles
are displayed on the screen. This
keeps browsing history hidden at the
DOM level as well.

The fate of the :visited pseudo-
class is uncertain, so do not apply
styles that are critical to the usability
of your site.

13. Colors and Backgrounds

Pseudo-Class Selectors

317

Active state
Finally, the :active selector applies styles to an element while it is in the
process of being activated. In the case of a link, it is the style that is applied
while it is being clicked or while a fingertip is in contact with it on a touch
screen. This style may be displayed only for an instant, but it can give a subtle
indication that something has happened. In this example, I’ve brightened up
the color for the active state (from maroon to red):

a:active {
 color: red;
 background-color: #ffd9d9;
}

Putting It All Together
Web designers commonly provide styles for all of these link states because it
is an easy way to give a nice bit of feedback at every stage of clicking a link
(and it usually improves on the browser defaults). In fact, users have come to
expect this feedback: seeing at a glance which links have been followed, hav-
ing links do something when they point at them, and receiving confirmation
when the links are successfully clicked.

When you apply styles to a elements with all five pseudo-classes, the order in
which they appear is important for them to function properly. For example,
if you put :link or :visited last, they override the other states, preventing
them from appearing. The required order for link pseudo-classes is :link,
:visited, :focus, :hover, :active (LVFHA, which you can remember with
LoVe For Hairy Animals, or the mnemonic device of your choice).

Hover on Touch Devices
On the desktop, the mouse pointer can hover over elements on
the screen, but touch devices respond only when the screen is
actually touched. This can make hover effects problematic on
smartphones and tablets.

When hover effects are applied to a link (an a element), mobile
operating systems may display the hover state styles after a
single tap. To follow the link, the user must tap again. Other
hover-triggered elements, such as pop-up menus, may get stuck
open, requiring the user to tap elsewhere or reload the page
to clear it (not a good user experience, and a deal-breaker for
some designs).

There is no single CSS-based solution to this issue. Always
including :focus and :active state styles along with the
:hover styles may help in some situations. Otherwise, your
options are to use JavaScript to program the desired effect

for mobile devices or to avoid the :hover state and stick with
outright clicks. It is possible to serve the hover-free styles in a
style sheet targeted specifically to touch devices.

JavaScript solutions are beyond the scope of this chapter, so I
recommend these resources to get started. Some knowledge of
JavaScript is required.

•	 “4 novel ways to deal with sticky :hover effects on mobile
devices” (www.javascriptkit.com/dhtmltutors/sticky-hover-
issue-solutions.shtml).

•	 Search for “hover states on touch devices” on StackOverflow.
com and see questions and answers related to this issue.
Stack Overflow is a forum where programmers can ask
questions and get help from fellow programmers. You’ll find a
lot of solutions, but also some dead ends.

The required order for
pseudo-classes is:

:link
:visited
:focus
:hover
:active

Part III. CSS for Presentation

Pseudo-Class Selectors

318

http://www.javascriptkit.com/dhtmltutors/sticky-hover-issue-solutions.shtml
http://www.javascriptkit.com/dhtmltutors/sticky-hover-issue-solutions.shtml

It is recommended that you provide a :focus style for users who use the
keyboard to tab through links on a page rather than clicking with a mouse.
Applying the same style used for :hover is common, although not required.

To sum things up, the link styles I’ve shown should look like this in the style
sheet. FIGURE 13-14 shows the results.

a { text-decoration: none; } /* turns underlines off for all links */

a:link { color: maroon; }

a:visited { color: gray; }

a:focus { color: maroon; background-color: #ffd9d9; }

a:hover { color: maroon; background-color: #ffd9d9; }

a:active { color: red; background-color: #ffd9d9; }

a:link

Links are maroon and not
underlined.

a:focus
a:hover

While the mouse is over the
link or when the link has
focus, the pink background
color appears.

a:active

As the mouse button is
being pressed, the link
turns bright red.

a:visited

A�er that link has been
visited, the link is gray.

FIGURE 13-14.   Changing the colors and backgrounds of links with pseudo-class
selectors.

Other Pseudo-Class Selectors
OK…five CSS3 pseudo-classes down, only 40 more to go! Well, I don’t know
about you, but that sounds like it would take a while, and we have other
selector types to explore. However, I do want you to know what is possible
today and what is in the works, so I’ve tucked the CSS3 pseudo-class selec-
tors into the “More CSS Pseudo-Classes” sidebar. In addition, you can find the
complete list of Level 3 and 4 selectors in Appendix C, CSS Selectors, Level 3
and 4 with brief descriptions.

I also highly recommend reading “An Ultimate Guide to CSS Pseudo-
Classes and Pseudo-Elements” by Ricardo Zea of Smashing Magazine (www.
smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-
pseudo-elements/). He’s done the hard work of providing explanations and
examples of all of the CSS3 pseudo-class selectors in one big roundup.

13. Colors and Backgrounds

Pseudo-Class Selectors

319

http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/
http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/
http://www.smashingmagazine.com/2016/05/an-ultimate-guide-to-css-pseudo-classes-and-pseudo-elements/

PSEUDO-ELEMENT SELECTORS

Pseudo-classes aren’t the only kind of pseudo-selectors. There are also four
pseudo-elements that act as though they are inserting fictional elements into
the document structure for styling. In CSS3, pseudo-elements are indicated
by a double colon (::) symbol to differentiate them from pseudo-classes.
However, all browsers support the single-colon syntax (:) as they were
defined in CSS2, so many developers stick with that to ensure backward
compatibility with older browsers.

First Letter and Line
The following pseudo-elements are used to select the first line or the first
letter of text in an element as displayed in the browser.

::first-line

This selector applies a style rule to the first line of the specified element.
The only properties you can apply, however, are as follows:
color

font properties
background properties
word-spacing

letter-spacing

text-decoration

vertical-align

text-transform

line-height

More CSS3 Pseudo-Classes
The W3C has been creating all sorts of
interesting ways to select content for
styling based on states the browser keeps
track of on the fly.

CSS3 introduced a whole slew of pseudo-
classes, most of which are supported
by browsers today. Of course, Internet
Explorer 8 and earlier lack support, but
you could use the Selectivizr polyfill
(selectivizr.com) to emulate support in
the rare event you need to support IE 6–8.

An excellent resource for learning more
about these CSS Level 3 and 4 selectors,
including browser support information, is
CSS4-selectors.com by Nelly Brekardin.

Structural pseudo-classes
These allow selection based on where
the element is in the structure of the
document (the document tree):

:root

:empty

:first-child

:last-child

:only-child

:first-of-type

:last-of-type

:only-of-type

:nth-child()

:nth-last-child()

:nth-of-type()

:nth-last-of-type()

Input pseudo-classes
These selectors apply to states that are
typical for form inputs:

:enabled

:disabled

:checked

Location pseudo-classes (in addition to
:link and :visited)

:target (fragment identifier)

Linguistic pseudo-class
:lang()

Logical pseudo-class
:not()

NOTE

There are a few properties in this list
that you haven’t seen yet. We’ll cover
the box-related properties (margin, pad-
ding, border) in Chapter 14, Thinking
Inside the Box. The float property is
introduced in Chapter 15, Floating and
Positioning.

Part III. CSS for Presentation

Pseudo-Element Selectors

320

::first-letter

This applies a style rule to the first letter of the specified element. The
properties you can apply are limited to the following:
color

font properties
background properties
letter-spacing

word-spacing

text-decoration

text-transform

vertical-align (if float is none)
padding properties
margin properties
border properties
line-height

float

FIGURE 13-15 shows examples of the ::first-line and ::first-letter
pseudo-element selectors.

p::first-line { letter-spacing: 9px; }

p::first-letter { font-size: 300%; color: orange; }

::first-line

::first-letter

FIGURE 13-15.  Examples of ::first-line and ::first-letter pseudo-element
selectors.

Generated Content with ::before and ::after
You’ve seen how browsers add bullets and numbers to lists automatically,
even though they are not actually in the HTML source. That is an example of
generated content, content that browsers insert on the fly. It is possible to tell
browsers to generate content before or after any element you like by using the
::before and ::after pseudo-elements (see Note).

Generated content could be used to add icons before list items, to display
URLs next to links when web documents get printed out, to add language-
appropriate quotation marks around a quote, and much more. Here’s a simple
example that inserts an image by using the url() function before the para-
graph and “Thank you.” at the end of the paragraph. Compare the markup
to what you see rendered in the browser (FIGURE 13-16).

NOTE

Although double colons are specified in
CSS3, you can use single colons for back-
ward compatibility. Browsers are also
required to support single colons going
forward.

13. Colors and Backgrounds

Pseudo-Element Selectors

321

THE STYLES:

p.warning::before {
 content: url(exclamation.png);
 margin-right: 6px;
}

p.warning::after { 	
 content: " Thank you.";
 color: red;
}

THE MARKUP:

<p class="warning">We are required to warn you that undercooked food is
a health risk.</p>

FIGURE 13-16.  Generated content added with the ::before and ::after pseudo-
selectors.

There are a few things of note in this example:

•	 The pseudo-element selector goes immediately after the target element
without any space.

•	 The pseudo-element rule both inserts the content and specifies how it
should be styled in one declaration block.

•	 The content property, which provides the content you want inserted, is
required. The selector won’t do anything without it.

•	 If you want spaces between the generated content and the content from
the source document, you must include the character spaces inside the
value’s quotation marks or apply a margin.

If you want to insert an image, such as an icon or other mark, specify the URL
without quotations marks:

li:before { content: url(images/star.png) }

When using generated content, keep in mind that whatever you insert does
not become part of the document’s DOM. It exists in the browser’s display
only and is not accessible to assistive devices like screen readers. It is best to
use generated content for decorations and other “extras” that are not critical
to your meaning and message.

F U RT H E R R E A D I N G

“Learning to Use the :before and :after Pseudo-Elements in CSS” by Louis Lazaris
(www.smashingmagazine.com/2011/07/learning-to-use-the-before-and-after-
pseudo-elements-in-css/).

Part III. CSS for Presentation

Pseudo-Element Selectors

322

ATTRIBUTE SELECTORS

We’re finally in the home stretch with selectors. Attribute selectors target ele-
ments based on attribute names or values, which provides a lot of flexibility
for selecting elements without needing to add a lot of class or id markup.
The CSS3 attribute selectors are listed here:

element[attribute]

The simple attribute selector targets elements with a particular attribute
regardless of its value. The following example selects any image that has
a title attribute.

img[title] {border: 3px solid;}

element[attribute="exact value"]

The exact attribute value selector selects elements with a specific value for
the attribute. This selector matches images with exactly the title value
“first grade”.

img[title="first grade"] {border: 3px solid;}

element[attribute~="value"]

The partial attribute value selector (indicated with a tilde, ~) allows you
to specify one part of an attribute value. The following example looks for
the word “grade” in the title, so images with the title value “first grade”
and “second grade” would be selected.

img[title~="grade"] {border: 3px solid;}

element[attribute|="value"]

The hyphen-separated attribute value selector (indicated with a bar, |)
targets hyphen-separated values. This selector matches any link that
points to a document written in a variation on the English language (en),
whether the attribute value is en-us (American English), en-in (Indian
English), en-au-tas (Australian English), and so on.

[hreflang|="en"] {border: 3px solid;}

element[attribute^="first part of the value"]

The beginning substring attribute value selector (indicated with a carat, ^)
matches elements whose specified attribute values start in the string of
characters in the selector. This example applies the style only to images
that are found in the /images/icons directory.

img[src^="/images/icons"] {border: 3px solid;}

element[attribute$="last part of the value"]

The ending substring attribute value selector (indicated with a dollar
sign, $) matches elements whose specified attribute values end in the
string of characters in the selector. In this example, you can apply a style
to just the a elements that link to PDF files.

a[href$=".pdf"] {border-bottom: 3px solid;}

F U N FACT

Class and ID selectors are just special
types of attribute selectors.

13. Colors and Backgrounds

Attribute Selectors

323

element[attribute*="any part of the value"]

The arbitrary substring attribute value selector (indicated with an aster-
isk, *) looks for the provided text string in any part of the attribute value
specified. This rule selects any image that contains the word “February”
somewhere in its title.

img[title*="February"] {border: 3px solid;}

OK, we’re done with selectors! You’ve been a real trouper. I think it’s definitely
time to try out foreground and background colors as well as a few of these
new selector types in EXERCISE 13-1 before moving on to background images.

BACKGROUND IMAGES

We’ve seen how to add images to the content of the document by using the
img element, but most decorative images are added to pages and elements as
backgrounds with CSS. After all, decorations such as tiling background pat-
terns are firmly part of presentation, not structure. We’ve come a long way
from the days when sites were giant graphics cut up and held together with
tables (shudder).

In this section, we’ll look at the collection of properties used to place and
push around background images, starting with the basic background-image
property.

Adding a Background Image
The background-image property adds a background image to any element. Its
primary job is to provide the location of the image file.

background-image

Values: 	 url(location of image) | none

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no

The value of background-image is a sort of URL holder that contains the loca-
tion of the image (see Note).

The URL is relative to wherever the CSS rule is at the time. If the rule is in
an embedded style sheet (a style element in the HTML document), then the
pathname in the URL should be relative to the location of the HTML file.
If the CSS rule is in an external style sheet, then the pathname to the image
should be relative to the location of the .css file.

As an alternative, providing site root relative URLs for images ensures that the
background image can be found regardless of the location of the style rules.

NOTE

The proper term for that “URL holder”
is a functional notation. It is the same
syntax used to list decimal and percent-
age RGB values.

Part III. CSS for Presentation

Background Images

324

EXERCISE 13-1.  Adding color to a document

In this exercise, we’ll start with a simple black-and-white menu and
give it some personality with foreground and background colors
(FIGURE 13-17). You should have enough experience writing style
rules by this point that I’m not going to hold your hand as much as
I have in previous exercises. This time, you write the rules. You can
check your work against the finished style sheet provided with the
materials for this chapter.

Open the file summer-menu.html (get it at learningwebdesign.
com/5e/materials) in a text editor. You will find that there
is already an embedded style sheet that provides basic text
formatting. You’ll just need to work on the colors. Feel free to save
the document at any step along the way and view your progress in
a browser.

1.	 Make the h1 heading purple (R:153, G:51, B:153, or #993399)
by adding a new declaration to the existing h1 rule. Note
that because this value has all double digits, you can use the
condensed version (#939).

2.	 Make the h2 headings light brown (R:204, G:102, B:0, #cc6600 or
#c60).

3.	 Make the background of the entire page a light green (R:210,
G:220, B:157, or #d2dc9d). Now might be a nice time to save,
have a look in a browser, and troubleshoot if the background
and headings do not appear in color.

4.	 Make the background of the header white with 50%
transparency (R:255, G:255, B:255, .5) so a hint of the background
color shows through.

5.	 I’ve already added a rule that turns underlines off under links
(text-decoration:none), so we’ll be relying on color to make
the links pop. Write a rule that makes links the same purple as
the h1 (#939).

6.	 Make visited links a muted purple (#937393).

7.	 When the mouse is placed over links, make the text a brighter
purple (#c700f2) and add a white background color (#fff).
This will look a little like the links are lighting up when the
mouse is pointing at it. Use these same style rules for when the
links are in focus.

8.	 As the mouse is being clicked (or tapped on a touch device),
add a white background color and make the text turn a vibrant
purple (#ff00ff). Make sure that all of your link pseudo-classes
are in the correct order.

When you are done, your page should look like FIGURE 13-17.
We’ll be adding background images to this page later, so if you’d
like to continue experimenting with different colors on different
elements, make a copy of this document and give it a new name.
Remember that the Google color picker is an easy destination for
colors and their RGB equivalents.

purple muted purple bright purple
R:153, G:51, B:153 R:147, G:115, B:147 R:199, G:0, B:242
#993399 or #939 #937393 #C700F2

vibrant purple light green light brown
R:255, G:0, B:255 R:210, G:220, B:157 R:204, G:102, B:0
#FF00FF #D2DC9D #CC6600 or #C60

FIGURE 13-17.   The Black Goose Bistro menu page with colors applied.

WARNING

Don’t forget the # character before hex values. The rule won’t work
without it.

13. Colors and Backgrounds

Background Images

325

The root directory is indicated by a slash at the beginning of the URL. For
example:

background-image: url(/images/background.jpg);

The downside, as for all site root relative URLs, is that you won’t be able to
test it locally (from your own computer) unless you have it set up as a server.

These examples and FIGURE 13-18 show background images applied behind
a whole page (body) and a single blockquote element with padding and a
border applied.

body {
 background-image: url(star.png);
}

blockquote {
 background-image: url(dot.png);
 padding: 2em;
 border: 4px dashed;
}

star.png
150 × 150 pixels

dot.png
50 × 50 pixels

FIGURE 13-18.   Tiling background images added with the background-image
property.

AT A G L A N C E

Background Properties
The properties related to the
background are:

background-color

background-image

background-repeat

background-position

background-attachment

background-clip

background-size

background

D E S I G N T I P

Tiling Background Images
When working with background
images, keep these guidelines and
tips in mind:

•	 Use a simple image that won’t
interfere with the legibility of the
text over it.

•	 Always provide a background-
color value that matches the
primary color of the background
image. If the background image
fails to display, at least the overall
design of the page will be similar.
This is particularly important if
the text color would be illegible
against the browser’s default white
background.

•	 As usual for the web, keep the file
size of background images as small
as possible.

Part III. CSS for Presentation

Background Images

326

Here you can see the default behavior of background-image. The image starts
in the top-left corner and tiles horizontally and vertically until the entire ele-
ment is filled (although you’ll learn how to change that in a moment). Like
background colors, tiling background images fill the area behind the content
area, fill the extra padding space around the content, and extend to the outer
edge of the border (if there is one). You can change the background painting
area with the background-clip property.

If you provide both a background-color and a background-image to an ele-
ment, the image is placed on top of the color. In fact, it is recommended that
you do provide a backup color that is similar in hue, in the event that the
image fails to download.

Now you can try your hand at adding a tiling background image to a page
in EXERCISE 13-2.

EXERCISE 13-2.  Adding a tiling background image

In this exercise, we’re going to add a simple tiling background
image to the menu. The images provided for this exercise should
be in the images directory.

Add a declaration to the body style rule that makes the image
bullseye.png tile in the background of the page. Be sure to include
the pathname relative to the style sheet (in this case, the current
HTML document).

background-image: url(images/bullseye.png);

Easy, isn’t it? When you save and view the page in the browser, it
should look like FIGURE 13-19.

I want to point out that bullseye.png is a slightly transparent PNG
graphic, so it blends into any background color. Try temporarily
changing the background-color for the body element by adding
a second background-color declaration lower in the stack so it
overrides the previous one. Play around with different colors and
notice how the circles blend in. When you are done experimenting,
delete the second declaration so the background is green again
and you’re ready to go for upcoming exercises.

FIGURE 13-19.   The menu with a simple tiling background image.

Always specify a similar
background color should
your background image
fail to load.

13. Colors and Backgrounds

Background Images

327

Background Repeating
As we saw in FIGURE 13-18, images tile left and right, up and down, when
left to their own devices. You can change this behavior with the background-
repeat property.

background-repeat

Values: 	 repeat | no-repeat | repeat-x | repeat-y | space | round

Default: 	 repeat

Applies to: 	 all elements

Inherits: 	 no

If you want a background image to appear just once, use the no-repeat key-
word value:

body {
 background-image: url(star.png);
 background-repeat: no-repeat;
}

You can also restrict the image to tiling only horizontally (repeat-x) or verti-
cally (repeat-y), as shown in these examples:

body {
 background-image: url(star.png);
 background-repeat: repeat-x;
}
body {
 background-image: url(star.png);
 background-repeat: repeat-y;
}

FIGURE 13-20 shows examples of each of these keyword values. Notice that
in all the examples, the tiling begins in the top-left corner of the element (or
browser window when an image is applied to the body element). In the next
section, I’ll show you how to change that.

The remaining keyword values, space and round, attempt to fill the available
background painting area an even number of times.

When background-repeat is set to space, the browser calculates how many
background images can fit across the width and height of the background
area, then adds equal amounts of space between each image. The result is
even rows and columns and no clipped images (FIGURE 13-21).

The round keyword makes the browser squish the background image
horizontally and vertically (not necessarily proportionally) to fit in the back-
ground area an even number of times (FIGURE 13-21).

Let’s try out some background repeating patterns in EXERCISE 13-3.

BROWSE R SU PPORT NOTE

Internet Explorer 8 and earlier do not
support the space and round keywords
for background-repeat.

Part III. CSS for Presentation

Background Images

328

no-repeat

repeat-x

repeat-y

FIGURE 13-20.   Turning off automatic tiling with no-repeat (top), applying
horizontal-axis tiling with repeat-x (middle), and applying vertical-axis tiling with
repeat-y (bottom).

space

round

FIGURE 13-21.   Examples of space and round keywords for background-repeat.
The “space” example would be less clunky if the background color matched the image,
but I’ve left it white to better demonstrate how the space value works.

13. Colors and Backgrounds

Background Images

329

EXERCISE 13-3.  Controlling tile direction

Now let’s try some slightly more sophisticated tiling on the Summer Menu page. This time
we’ll add a tiling background just along the top edge of the header element.

1.	 In the header rule, add the image purpledot.png and set it to repeat horizontally only:

header {
 margin-top: 0;
 padding: 3em 1em 2em 1em;
 text-align: center;
 background-color: rgba(255,255,255,.5);
 background-image: url(images/purpledot.png);
 background-repeat: repeat-x;
}

2.	 Save the file and look at it in the browser. It should look something like FIGURE 13-22.
I recommend resizing your browser window wider and narrower and paying attention to
the position of the background pattern. See how it’s always anchored on the left? You’re
going to learn how to adjust position next. Try changing the style rule to make the dot
repeat vertically only; then make it not repeat at all (set it back to repeat-x and save
when you’re done).

FIGURE 13-22.  Adding a horizontal tiling image to the header.

3.	 Finally, try out the space and round repeat values on the body background image and
see if you like the effect. Note that the tiles are evenly spaced within the body of the
document, not just the viewport, so you may see some cut-off circles at the bottom
edge of your browser. Delete the background-repeat declaration so it goes back to the
default repeat for upcoming exercises:

body {
 …
 background-repeat: space;
}

Part III. CSS for Presentation

Background Images

330

Background Position
The background-position property specifies the position of the origin image
in the background. You can think of the origin image as the first image that
is placed in the background from which tiling images extend. Here is the
property and its various values.

background-position

Values: 	 length measurement | percentage | left | center | right | top | bottom

Default: 	 0% 0% (same as left top)

Applies to: 	 all elements

Inherits: 	 no

To position the origin image, provide horizontal and vertical values that
describe where to place it. There are a variety of ways to do it.

Keyword positioning

The keyword values (left, right, top, bottom, and center) position the
origin image relative to the outer edges of the element’s padding. For
example, left positions the image all the way to the left edge of the back-
ground area. The default origin position corresponds to left top.

Keywords are typically used in pairs, as in these examples:

background-position: left bottom;
background-position: right center;

The keywords may appear in any order. If you provide only one keyword,
the missing keyword is assumed to be center. Thus, background-position:
right has the same effect as background-position: right center.

Length measurements

Specifying position using length measurements such as pixels or ems
indicates an amount of offset from the top-left corner of the element
to the top-left corner of the background origin image. When you are
providing length values, the horizontal measurement always goes first.
Specifying negative values is allowed and causes the image to hang out-
side the visible background area.

This example positions the top-left corner of the image 200 pixels from
the left edge and 50 pixels down from the top edge of the element (or
more specifically, the padding edge by default):

background-position: 200px 50px;

Percentages

Percentage values are provided in horizontal/vertical pairs, with 0% 0%
corresponding to the top-left corner and 100% 100% corresponding to the
bottom-right corner. As with length values, the horizontal measurement
always goes first.

When you are providing
length or percentage
values, the horizontal
measurement always
goes first.

13. Colors and Backgrounds

Background Images

331

It is important to note that the percentage value applies to both the canvas
area and the image itself. A horizontal value of 25% positions the point
25% from the left edge of the image at a point that is 25% from the left
edge of the background positioning area. A vertical value of 100% posi-
tions the bottom edge of the image at the bottom edge of the positioning
area.

background-position: 25% 100%;

As with keywords, if you provide only one percentage, the other is
assumed to be 50% (centered).

FIGURE 13-23 shows the results of each of the aforementioned background-
position examples with the background-repeat set to no-repeat for clarity. It is

background-position: left bottom;

background-position: 300px 50px;

background-position: 25% 100%;

background-position: right center;

background-position: right;
or

300px

50
px

25%

25%

FIGURE 13-23.  Positioning a non-repeating background image. If these background
images were allowed to repeat, they would extend left and right and/or up and down
from the initial positions.

Background Edge Offsets
The CSS3 specification also includes
a four-part syntax for background-
position that allows you to specify
an offset (in length or percentage
from a particular edge). This is the
syntax:

background-position:
 edge-keyword offset
 edge-keyword offset;

In this example, an origin image is
positioned 50 pixels from the right
edge and 50 pixels from the bottom
of the element’s positioning area:

background-position:
 right 50px bottom 50px;

This four-part syntax is not supported
by IE 8 and earlier, Safari and iOS
Safari 6 and earlier, and Android 4.3
and earlier.

Part III. CSS for Presentation

Background Images

332

possible to position the origin image and let it tile from there, in both direc-
tions or just horizontally or vertically. When the image tiles, the position of
the initial image might not be obvious, but you can use background-position
to make a tile pattern start at a point other than the left edge of the image.
This might be used to keep a background pattern centered and symmetrical.

Background Position Origin
Notice in FIGURE 13-23 that when the origin image was placed in the corner
of an element, it was placed inside the border (only repeated images extend
under the border to its outer edge). This is the default position, but you can
change it with the background-origin property.

background-origin

Values: 	 border-box | padding-box | content-box

Default: 	 padding-box

Applies to: 	 all elements

Inherits: 	 no

This property defines the boundaries of the background positioning area in
the same way background-clip defined the background painting area. You
can set the boundaries to the border-box (so the origin image is placed under
the outer edge of the border, padding-box (outer edge of the padding, just
inside the border), or content-box (the actual content area of the element).
These terms will become more meaningful once you get more familiar with
the box model in the next chapter. In the meantime, FIGURE 13-24 shows the
results of each of the keyword options.

border-box padding-box content-box

FIGURE 13-24.   Examples of background-origin keywords.

Before we move on to the remaining background properties, check out
EXERCISE 13-4 to get a feel for background positioning.

BROWSER SUPPORT NOTE

background-origin is not supported
by Internet Explorer 8 and earlier.

13. Colors and Backgrounds

Background Images

333

EXERCISE 13-4.  Positioning background images

Let’s have some fun with the position of the background image
in the menu. First we’re going to make some subtle adjustments
to the background images that are already there, and then we’ll
swap them out for a whole different background and play around
some more. We are still working with the summer-menu.html
document, which should have repeating tile patterns in the body
and header elements.

1.	 I’m thinking that because the main elements of the menu are
centered, it would be nice if the background patterns stayed
centered, too. Add this declaration to both the body and header
rules; then save and look at it in the browser.

background-position: center top;

You may not notice the difference until you resize the browser
wide and narrow again. Now the pattern is anchored in the
center and reveals more or less on both edges, not just the right
edge as before.

2.	 For kicks, alter the background-position values so that the
purple dots are along the bottom edge of the header (center
bottom). (That doesn’t look so good; I’m putting mine back to
top.) Then try moving bullseye.png down 200 pixels (center
200px). Notice that the pattern still fills the entire screen—we
moved the origin image down, but the background is still set to
tile in all directions. FIGURE 13-25 shows the result of these
changes.

3.	 That looks good, but let’s get rid of the background on the
body for now. I want to show you a little trick. During the design
process, I prefer to hide styles in comments instead of deleting
them entirely. That way, I don’t need to remember them or type
them in again; I only have to remove the comment indicators,
and they’re back. When the design is done and it’s time to
publish, I strip unused styles out to keep the file size down.

Here’s how to hide declarations as CSS comments:
body {

 …
 background-color: #d2dc9d;
 /* background-image: url(images/bullseye.png);
 background-position: center 200px; */
}

4.	 Now, add the blackgoose.png image (also a semi-transparent
PNG) to the background of the page. Set it to not repeat, and
center it at the top of the page:

background-image: url(images/blackgoose.png);
background-repeat: no-repeat;
background-position: center top;

Take a look in the browser window and watch the background
scroll up with the content when you scroll the page.

5.	 I want you to get a feel for the various position keywords and
numeric values. Try each of these out and look at it in the
browser. Be sure to scroll the page and watch what happens.
Note that when you provide a percentage or keyword to
the vertical position, it is based on the height of the entire
document, not just the browser window. You can try your own
variations as well.

background-position: right top;

background-position: right bottom;

background-position: left 50%;

background-position: center 100px;

6.	 Leave the image positioned at center 100px so you are ready
to go for the next exercise. Your page should look like the one
shown on the right in FIGURE 13-25.

Centered background pattern Positioned non-repeating image

FIGURE 13-25.   The results of positioning the origin image in the tiling background patterns (left) and positioning a single
background logo (right).

Part III. CSS for Presentation

Background Images

334

Background Attachment

In the previous exercise, I asked you to scroll the page and watch what hap-
pens to the background image. As expected, it scrolls along with the docu-
ment and off the top of the browser window, which is its default behavior.
However, you can use the background-attachment property to free the back-
ground from the content and allow it to stay fixed in one position while the
rest of the content scrolls.

background-attachment

Values: 	 scroll | fixed | local

Default: 	 scroll

Applies to: 	 all elements

Inherits: 	 no

With the background-attachment property, you have the choice of whether the
background image scrolls with the content or stays in a fixed position. When
an image is fixed, it stays in the same position relative to the viewport of the
browser (as opposed to being relative to the element it fills). You’ll see what I
mean in a minute (and you can try it yourself in EXERCISE 13-5).

In the following example, a large, non-tiling image is placed in the back-
ground of the whole document (the body element). By default, when the
document scrolls, the image scrolls too, moving up and off the page, as shown
in FIGURE 13-26. However, if you set the value of background-attachment to
fixed, it stays where it is initially placed, and the text scrolls up over it.

body {
 background-image: url(images/bigstar.gif);
 background-repeat: no-repeat;
 background-position: center 300px;
 background-attachment: fixed;
}

The local value, which was added in CSS3, is useful when an element has
its own scrolling mechanism. Instead of scrolling with the viewport’s scroller,
local makes the background image fixed to the content of the scrolling ele-
ment. This keyword is not supported in IE8 and earlier and may also be
problematic on mobile browsers.

A large non-repeating background image
in the body of the document.

background-attachment: scroll;

By default, the background image is
attached to the body element and scrolls
o� the page when the content scrolls.

background-attachment: fixed;

When background-attachment is set to
fixed, the image stays in its position
relative to the browser viewing area and
does not scroll with the content.

FIGURE 13-26.   Preventing the
background image from scrolling with
the background-attachment property.

13. Colors and Backgrounds

Background Images

335

Background Size
OK, we have just one more background image property to cover before we
wrap it all up with the background shorthand property. So far, the background
images we’ve seen are displayed at the actual size of the image itself. You can
change the size of the image by using the background-size property.

background-size

Values: 	 length | percentage | auto | cover | contain

Default: 	 auto

Applies to: 	 all elements

Inherits: 	 no

There are several ways to specify the size of the background image. Perhaps
the most straightforward is to specify the dimensions in length units such as
pixels or ems. As usual, when two values are provided, the first one is used as
the horizontal measurement. If you provide just one value, it is used as the
horizontal measurement, and the vertical value is set to auto.

This example resizes the target.png background image, which has an intrinsic
size of 300 pixels by 300 pixels (FIGURE 13-27):

header {
 background-image: url(images/target.png);
 background-size: 600px 150px;
}

Percentage values are calculated based on the background positioning area,
which by default runs to the inside edge of the border, but may have been
altered with background-origin—something to keep in mind. So a horizontal
value of 50% does not make the image half its width; rather, it sizes it to 50%
of the width of the positioning area (FIGURE 13-27). Again, the horizontal
value goes first. It is OK to mix percentage and length values, as shown in
this example:

header {
 background-image: url(images/target.png);
 background-size: 50% 10em;
}

The auto keyword resizes the image in whatever direction is necessary to
maintain its proportions. Bitmapped images such as GIF, JPEG, and PNG
have intrinsic proportions, so they will always stay proportional when one
sizing value is set to auto. Some images, such as SVG and CSS gradients, don’t
have intrinsic proportions. In that case, auto sets the width or height to 100%
of the width or height of the background positioning area.

The cover and contain keywords are interesting additions in CSS3. When
you set the background size to cover, the browser resizes a background image
large enough to reach all the sides of the background positioning area. There
will be only one image because it fills the whole element, and it is likely that

EXERCISE 13-5. 
Fixed position

When we last left the bistro menu, we
had applied a large, non-repeating logo
image to the background of the page.
We’ll leave it just like that, but we’ll use
the background-attachment property
to keep it in the same place even when
the page scrolls:

body {
 background-image: url(images/
blackgoose.png);
 background-repeat: no-repeat;
 background-position: center
100px;
 background-attachment: fixed;
}

Save the document, open it in
the browser, and try scrolling. The
background image stays put in the
viewing area of the browser. Cool, huh?

For extra credit, see what happens when
you fix the attachment of the dot pattern
in the header. (Spoiler: it stays in the
same place, but only within the header
itself. When the header slides out of
view, so does its background.)

Part III. CSS for Presentation

Background Images

336

portions of the image will fall outside the positioning area if the proportions
of the image and the positioning area do not match (FIGURE 13-28).

By contrast, contain sizes the image just large enough to fill either the width
or the height of the positioning area (depending on the proportions of the
image). The whole image will be visible and “contained” within the back-
ground area (FIGURE 13-28). If there is leftover space, the background image
repeats unless background-repeat is set to no-repeat.

div#A {
 background-image: url(target.png);
 background-size: cover; }

div#B {
 background-image: url(target.png);
 background-size: contain; }

background-size: cover;

The entire background area of the element
is covered, and the image maintains its
proportions even if it is clipped.

background-size: contain;

The image is sized proportionally so it fits
entirely in the element. There may be room
le� over for tiling (as shown).

FIGURE 13-28.   Examples of the cover and contain background size keywords.

WARNING

When sizing a bitmapped image such as
a GIF or PNG larger, you run the risk that
it will end up blurry and pixelated. Use
background sizing with care.

target.png
300 × 300 pixels

background-size: 600px 300px; background-size: 50% 10em;

FIGURE 13-27.   Resizing a background image with specific length units and
percentages.

13. Colors and Backgrounds

Background Images

337

THE SHORTHAND BACKGROUND
PROPERTY

You can use the handy background property to specify all of your background
styles in one declaration.

background

Values: 	 background-color background-image background-repeat
background-attachment background-position background-clip
background-origin background-size

Default: 	 see individual properties

Applies to: 	 all elements

Inherits: 	 no

The value of the background property is a list of values that would be provid-
ed for the individual background properties previously listed. For example,
this one background rule

body { background: white url(star.png) no-repeat right top fixed; }

replaces this rule with five separate declarations:

body {
 background-color: white;
 background-image: url(star.png);
 background-repeat: no-repeat;
 background-position: right top;
 background-attachment: fixed;
}

All of the property values for background are optional and may appear in any
order. The only restriction is that when you are providing the coordinates for
the background-position property, the horizontal value must appear first,
immediately followed by the vertical value. As with any shorthand property,
be aware that if any value is omitted, it will be reset to its default value. See
the “Watch Out for Overrides” sidebar.

In EXERCISE 13-6, you can convert your long-winded background properties
to a single declaration with background.

Watch Out for Overrides
The background property is efficient,
but use it carefully. We’ve addressed
this before, but it bears repeating.
Because background is a shorthand
property, when you omit a value, that
property will be reset to its default. Be
careful that you do not accidentally
override style rules earlier in the style
sheet with a later shorthand rule that
reverts your settings to their defaults.

In this example, the background
image dots.gif will not be applied to
h3 elements because by omitting the
value for background-image, you
essentially set that value to none:

h1, h2, h3 {
background: red url(dots.gif)
repeat-x;
}
h3 {
background: green;
}

To override particular properties, use
the specific background property
you intend to change. For example,
if the intent in the preceding
example were to change just the
background color of h3 elements,
the background-color property
would be the correct choice.

EXERCISE 13-6. Convert to shorthand property

This one is easy. Replace all of the background-related declarations
in the body of the bistro menu with a single background property
declaration:

body {
 font-family: Georgia, serif;
 font-size: 100%;

 line-height: 175%;
 margin: 0 15%;
 background: #d2dc9d url(images/blackgoose.png)
no-repeat center 100px fixed;
}

Do the same for the header element, and you’re done.

Part III. CSS for Presentation

The Shorthand background Property

338

Multiple Backgrounds
CSS3 introduced the ability to apply multiple background images to a single
element. To apply multiple values for background-image, put them in a list
separated by commas. Additional background-related property values also go
in comma-separated lists; the first value listed applies to the first image, the
second value to the second, and so on.

Although CSS declarations usually work on a “last one wins” rule, for mul-
tiple background images, whichever is listed last goes on the bottom, and
each image prior in the list layers on top of it. You can think of them like
Photoshop layers in that they get stacked in the order in which they appear in
the list. Put another way, the image defined by the first value will go in front,
and others line up behind it, in the order in which they are listed.

body {
 background-image: url(image1.png), url(image2.png), url(image3.png);
 background-position: left top, center center, right bottom;
 background-repeat: no-repeat, no-repeat, no-repeat;
 …
}

Alternatively, you can take advantage of the background shorthand property
to make the rule simpler. Now the background property has three value series,
separated by commas:

body {
 background:
 url(image1.png) left top no-repeat,
 url(image2.png) center center no-repeat,
 url(image3.png) right bottom no-repeat;
}

FIGURE 13-29 shows the result. The big, orange 1 is positioned in the top-
left corner, the 2 is centered vertically and horizontally, and the 3 is in the
bottom-right corner. All three background images share the background
positioning area of one body element. Try it out for yourself in EXERCISE 13-7.

FIGURE 13-29.   Three separate background images added to the body element.

BROWSER SUPPORT NOTE

Internet Explorer 8 and earlier do not
support multiple background images
and will entirely ignore any background
declaration with more than one value.
The fix is to choose one background-
image for the element as a fallback for IE
and other non-supporting browsers, and
then specify the multiple background
rules that override it:

body {
/* for non-supporting browsers */
 background: url(image_fallback.
png) top left no-repeat;
/* multiple backgrounds */
background:
 url(image1.png) left top
no-repeat,
 url(image2.png) center center
no-repeat,
 url(image3.png) right bottom
no-repeat;
/* background color */
background-color: papayawhip;
}

13. Colors and Backgrounds

The Shorthand background Property

339

LIKE A RAINBOW (GRADIENTS)

A gradient is a transition from one color to another, sometimes through mul-
tiple colors. In the past, the only way to put a gradient on a web page was to
create one in an image-editing program and add the resulting image with CSS.

Now we can specify color gradients by using CSS notation alone, leaving the
task of rendering color blends to the browser. Although they are specified
with code, gradients are images. They just happen to be generated on the fly.
A gradient image has no intrinsic size or proportions; the size matches the
element it gets applied to. Gradients can be applied anywhere an image may
be applied: background-image, border-image, and list-style-image. We’ll
stick with background-image examples in this chapter.

There are two types of gradients:

•	 Linear gradients change colors along a line, from one edge of the element
to the other.

•	 Radial gradients start at a point and spread outward in a circular or
elliptical shape.

EXERCISE 13-7. Multiple background images

In this exercise, we’ll give multiple background images a try (be
sure you aren’t using an old version of IE, or this won’t work).

I’d like the dot pattern in the header to run along the left and
right sides. I also have a little goose silhouette (gooseshadow.png)
that might look cute walking along the bottom of the header. I’m
making this example friendly for non-supporting browsers (IE8 and
earlier) by providing a fallback declaration with just one image and
separating out the background-color declaration so it doesn’t
get overridden. If IE8 is not a concern, you don’t need the fallback.

You can see in the example that we are placing three images in a
single header: dots on the left side, dots on the right, and a goose
at the bottom.

header {
 …
 background: url(images/purpledot.png) center top
repeat-x;
 background:
 url(images/purpledot.png) left top repeat-y,
 url(images/purpledot.png) right top repeat-y,
 url(images/gooseshadow.png) 90% bottom no-repeat;
 background-color: rgba(255,255,255,.5);
}

FIGURE 13-30 shows the final result. Meh, I liked it better before,
but you get the idea.

FIGURE 13-30.   The bistro menu header with two rows of
dots and a small goose graphic in the header element.

Gradients are images
that browsers generate
on the fly. Use them
as you would use a
background image.

Part III. CSS for Presentation

Like a Rainbow (Gradients)

340

Linear Gradients
The linear-gradient() notation provides the angle of the gradient line
and one or more points along that line where the pure color is positioned
(color stops). You can use color names or any of the numerical color values
discussed earlier in the chapter, including transparency. The angle of the gra-
dient line is specified in degrees (ndeg) or with keywords. With degrees, 0deg
points upward, and positive angles go around clockwise so that 90deg points
to the right. Therefore, if you want to go from aqua on the top edge to green
on the bottom edge, set the rotation to 180deg:

background-image: linear-gradient(180deg, aqua, green);

The keywords describe direction in increments of 90° (to top, to right, to
bottom, to left). Our 180deg gradient could also be specified with the to
bottom keyword. The result is shown in FIGURE 13-31 (top):

background-image: linear-gradient(to bottom, aqua, green);

You can use the “to” syntax to point to corners as well. The following gradi-
ent would be drawn from the bottom-left corner to the top-right corner. The
resulting angle of a gradient drawn between corners is determined by the
aspect ratio of the box.

background-image: linear-gradient(to top right, aqua, green);

In the following example, the gradient now goes from left to right (90deg) and
includes a third color, orange, which appears 25% of the way across the gradi-
ent line (FIGURE 13-31, middle). You can see that the placement of the color
stop is indicated after the color value. You can use percentages or any length
measurement. The first and last color stops don’t require positions because
they are set to 0% and 100%, respectively, by default.

background-image: linear-gradient(90deg, yellow, orange 25%, purple);

You certainly aren’t limited to right angles. Specify any degree you like to
make the linear gradient head in that direction. You can also specify as many
colors as you like. If no positions are specified, the colors are spaced evenly
across the length of the gradient line. If you position the last color stop short
of the end of the gradient line (such as the blue at 50% in this example), the
last color continues to the end of the gradient line (FIGURE 13-31, bottom):

background-image: linear-gradient(54deg, red, orange, yellow, green,
blue 50%);

P E R FO R M A N C E T I P

Gradients offer both advantages and disadvantages when it comes to performance.
On the plus side, they do not require an extra call to the server and require fewer
bytes to download than images. On the other hand, all that rendering on the fly
requires time and processing power that can hurt performance. Radial gradients are
the worst culprits. They can be particularly problematic on mobile devices, where
processing power may be limited. Consider serving a separate style sheet without
gradients to mobile devices.

13. Colors and Backgrounds

Like a Rainbow (Gradients)

341

linear-gradient(180deg, aqua, green);
or
linear-gradient(to bottom, aqua, green);

linear-gradient(90deg, yellow, orange 25%, purple);

linear-gradient(54deg, red, orange, yellow, green, blue 50%);

yellow
(0%)

orange
(25%)

purple
(100%)

blue begins 50%
along gradient line

gradient lin
e at 5

4°

FIGURE 13-31.   Examples of linear gradients.

These examples are pretty garish, but if you choose your colors and stops
right, gradients are a nice way to give elements subtle shading and a 3-D
appearance. The button in FIGURE 13-32 uses a background gradient to
achieve a 3-D look without graphics.

a.button-like {
 background: linear-gradient(to bottom, #e2e2e2 0%, #dbdbdb 50%,
 #d1d1d1 51%, #fefefe 100%);
}

That concludes our quick-and-dirty tour of linear gradients. You should
know that I really only scratched the surface of linear gradient behavior and

FIGURE 13-32.   A 3-D button made
with only CSS.

Part III. CSS for Presentation

Like a Rainbow (Gradients)

342

possibilities, so you may want to check out the resources in the “Further
Reading” sidebar. It’s time to move on to radial gradients.

Radial Gradients
Radial gradients, like the name says, radiate out from a point in a circle along
a gradient ray (like a gradient line, but it always points outward from the
center). At minimum, a radial gradient requires two color stops, as shown in
this example:

background-image: radial-gradient(yellow, green);

By default, the gradient fills the available background area, and its center is
positioned in the center of the element (FIGURE 13-33). The result is an ellipse
if the containing element is a rectangle and a circle if the element is square.

FIGURE 13-33.   A minimal radial gradient with default size and position.

That looks pretty spiffy already, but you don’t have to settle for the default.
The radial-gradient() notation allows you to specify the shape, size, and
center position of the gradient:

Shape

In most cases, the shape of the radial gradient will result from the shape
of the element or an explicit size you apply to it, but you can also specify
the shape by using the circle or ellipse keywords. When you make a
gradient a circle (without conflicting size specifications), it stays circular
even when it is in a rectangular element (FIGURE 13-34, top).

background-image: radial-gradient(circle, yellow, green);

Size

The size of the radial gradient can be specified in length units or percent-
ages, which apply to the gradient ray, or with keywords. If you supply just
one length, it is used for both width and height, resulting in a circle. When
you provide two lengths, the first one is the horizontal measurement and
the second is vertical (FIGURE 13-34, middle). For ellipses, you can provide
percentage values as well, or mix percentages with length values.

background-image: radial-gradient(200px 80px, aqua, green);

F U RT H E R R E A D I N G

The most in-depth coverage of CSS
gradient syntax that I’ve read is in Eric
Meyer’s book, Colors, Backgrounds,
and Gradients (O’Reilly). The same
content is available in CSS: The
Definitive Guide, by Eric Meyer and
Estelle Weyl (also from O’Reilly).

Online, I recommend these overviews
and tutorials:

•	 “CSS Gradients” by Chris Coyier
(css-tricks.com/css3-gradients/)

•	 “Using CSS Gradients” at MDN
Web Docs (developer.mozilla.
org/en-US/docs/Web/CSS/CSS_
Images/Using_CSS_gradients)

•	 “CSS3 Gradients,” part of the CSS
Mine e-book by Martin Michalek
(www.cssmine.com/ebook/css3-
gradients)

13. Colors and Backgrounds

Like a Rainbow (Gradients)

343

https://css-tricks.com/css3-gradients/

There are also four keywords—closest-side, closest-corner, farthest-
side, and farthest-corner—that set the length of the gradient ray rela-
tive to points on the containing element.

Position

By default, the center of the gradient is positioned at center center, but
you can change that by using the positioning syntax we covered for the
background-position property. The syntax is the same, but it should be
preceded by the at keyword, as in this example (FIGURE 13-34, bottom).
Notice that in this example, I have included an additional color stop of
orange at the 50% mark.

background-image: radial-gradient(farthest-side at right bottom,
yellow, orange 50%, purple);

radial-gradient(circle, yellow, green);

radial-gradient(200px 80px, aqua, green);

radial-gradient(farthest-side at right bottom, yellow, orange 50%, purple);

FIGURE 13-34.   Examples of sizing and positioning radial gradients.

Part III. CSS for Presentation

Like a Rainbow (Gradients)

344

Repeating Gradients
If you’d like your gradient pattern to repeat, use the repeating-linear-gra-
dient() or repeating-radial-gradient() notation. The syntax is the same
as for single gradients, but adding “repeating-” causes the pattern to repeat
the color stops infinitely in both directions. This is commonly used to create
interesting striped patterns. In this simple example, a gradient from white to
silver (light gray) repeats every 30 pixels because the silver color stop is set to
30px (FIGURE 13-35, top):

background: repeating-linear-gradient(to bottom, white, silver 30px);

This example makes a diagonal pattern of orange and white stripes (FIGURE

13-35, bottom). The edges are sharp because the white stripe starts at exactly
the point where the orange one ends (at 12px) with no fading:

background: repeating-linear-gradient(45deg, orange, orange 12px, white
12px, white 24px);

repeating-linear-gradient(to bottom, white, silver 30px);

repeating-linear-gradient(45deg, orange, orange 12px, white 12px, white 24px);

FIGURE 13-35.   Repeating gradient pattern.

Browser Support and Vendor Prefixes
All of the major browsers started adding support for the standard gradient
syntax between 2012 and 2013 (see Browser Support Note), so they’ve been
reliable for a good number of years. However, if you need to support older
browsers, you can do so using each browser’s proprietary gradient syntax
with a vendor prefix (see the “Vendor Prefixes” sidebar). For Internet Explorer
9 and earlier, you can use its proprietary filter function. Or, go the progres-
sive enhancement route and use a solid color as a fallback.

BROWSER SUPPORT NOTE

Standard gradient syntax is supported in
Internet Explorer 10+, Edge, Firefox 16+,
Chrome 26+, Safari 6.1+, iOS 7.1+, and
Android 4.4+.

13. Colors and Backgrounds

Like a Rainbow (Gradients)

345

Vendor Prefixes
Browser makers usually start tinkering with proprietary solutions for cutting-edge
web technologies before the specs are fully settled. For many years, they kept their
experimentation separate from the final implementation by adding a vendor prefix
(or browser prefix) to the property or function name. The prefix indicates that the
implementation is proprietary and still a work in progress. For example, while Safari
was implementing text-wrap shapes, it used its own -webkit- prefixed version of the
standard shape-outside property:

-webkit-shape-outside: url(cube.png);

TABLE 13-1 lists the prefixes used by the major browsers.

TABLE 13-1.   Browser vendor prefixes

Prefix Organization Most popular browsers

-ms- Microsoft Internet Explorer

-moz- Mozilla Foundation Firefox, Camino, SeaMonkey

-o- Opera Software Opera, Opera Mini, Opera Mobile

-webkit- Originally Apple;
now open source

Safari, Chrome, Android, Silk,
BlackBerry, WebOS, many others

Vendor prefixes allowed developers to start using cool new CSS features on the
browsers that supported them, which was a plus for moving web design and
the specification forward. On the downside, the whole system turned out to be
complicated and often misused. In the end, the browser makers agreed to put the
prefix system to rest and not release any more proprietary properties.

These days, browsers hide experimental features behind “flags” (options you can turn
on or off) or in separate technology preview releases that developers can access for
testing purposes only. When a feature seems stable, it is made public in the formal
browser release. We’ll look at methods for testing for individual CSS features in
Chapter 19, More CSS Techniques.

However, there are a few CSS properties and features that came into vogue during
the prefix era that still require prefixes in order to work in older browsers, should you
choose to support them. Gradient syntax is one of those features.

Prefixing Tools
Writing all those redundant prefixed properties is a big pain, but fortunately, there are
some tools that will generate them for you automatically.

If you use one of the CSS preprocessor syntaxes (like Sass, LESS, or Stylus), you can
take advantage of their prefixing “mixins.” We’ll talk more about preprocessors in
Chapter 19.

If you write your CSS in the standard syntax, you can run it through a postprocessor
like AutoPrefixer when you are done. Autoprefixer parses your styles, then
automatically adds prefixes just for the properties and notations that need them.
The prefixing happens as part of a “build step” via a build tool like Grunt. For a good
overview, see “Autoprefixer: A Postprocessor Dealing with Vendor Prefixes in the Best
Possible Way” at CSS-Tricks (css-tricks.com/autoprefixer/). I’ll talk more about build
tools in Chapter 20, Modern Web Development Tools.

Part III. CSS for Presentation

Like a Rainbow (Gradients)

346

A gradient for all browsers
The following example shows the yellow-to-green linear gradient written to
address every browser, past and present, with the Internet Explorer filter
equivalent thrown in for good measure. Notice that there are differences in
syntax. Where the CSS3 spec uses the to bottom keyword, most of the others
use top. A very old version used by WebKit browsers used –webkit-gradient
for both linear and radial gradients, but it was quickly replaced with separate
functions. Another difference not evident in this example is that in the old
syntax, 0deg pointed to the right edge, not to the top edge as was standard-
ized in CSS3, and the angles increased counterclockwise.

This is a serious chunk of code for a single gradient, and thankfully, we are
very close to this no longer being necessary:

background: #ffff00; /* Old browsers */
background: -moz-linear-gradient(top, #ffff00 0%, #00ff00 100%);
/* FF3.6+ */
background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%,#ffff00), color-stop(100%,#00ff00));
/* Chrome,Safari4+ */
background: -webkit-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* Chrome10+,Safari5.1+ */
background: -o-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* Opera 11.10+ */
background: -ms-linear-gradient(top, #ffff00 0%,#00ff00 100%);
/* IE10+ */
background: linear-gradient(to bottom, #ffff00 0%,#00ff00 100%);
/* W3C Standard */
filter: progid:DXImageTransform.Microsoft.gradient(
startColorstr='#ffff00', endColorstr='#00ff00',GradientType=0);
/* IE6-9 */

In upcoming chapters, whenever a property requires vendor prefixes, I will
be sure to note it. Otherwise, you can assume that the standard CSS is all
you need.

Designing Gradients
That last code example was a doozy! Vendor prefixes aside, just the task of
describing gradients can be daunting. Although it is not impossible to write
the code by hand, I recommend you do what I do—use an online gradient
tool. One option is the Ultimate CSS Gradient Generator from Colorzilla
(www.colorzilla.com/gradient-editor/), shown in FIGURE 13-36. Simply enter as
many color stops as you’d like, slide the sliders around until you get the look
you want, and then copy the code. That’s exactly what I did to get the example
we just looked at. The CSS Gradient Generator by Virtuosoft is another fine
option that also includes support for repeating gradients (www.virtuosoft.eu/
tools/css-gradient-generator/).

13. Colors and Backgrounds

Like a Rainbow (Gradients)

347

http://www.colorzilla.com/gradient-editor/

FIGURE 13-36.   The Ultimate CSS Gradient Generator (www.colorzilla.com/gradient-
editor) makes creating CSS gradients a breeze.

If you want your mind blown, take a look at the wild background patterns
made with gradients assembled by Lea Verou in her CSS3 Patterns Gallery
(lea.verou.me/css3patterns) (FIGURE 13-37). It’s inspirational, and you can
take a peek at the code used to create them.

FINALLY, EXTERNAL STYLE SHEETS

Back in Chapter 11, Introducing Cascading Style Sheets, I told you that there
are three ways to connect style sheets to an HTML document: inline with
the style attribute, embedded with the style element, and as an external .css
document linked to or imported into the document. In this section, we finally
get to that third option.

External style sheets are by far the most powerful way to use CSS because you
can make style changes across an entire site simply by editing a single style
sheet document. That is the advantage to having all the style information in
one place, and not mixed in with the document source.

Furthermore, because a single style document is downloaded and cached
by the browser for the whole site, there is less code to download with every
document, resulting in better performance.

First, a little bit about the style sheet document itself. An external style sheet
is a plain-text document with at least one style sheet rule. It may not include
any HTML tags (there’s no reason to include them, anyway). It may contain

FIGURE 13-37.   CSS3 Patterns
Gallery assembled by Lea Verou
(lea.verou.me/css3patterns). You may
also enjoy Lea’s book, CSS Secrets:
Better Solutions to Everyday Web
Design Problems (O'Reilly).

Part III. CSS for Presentation

Finally, External Style Sheets

348

http://www.colorzilla.com/gradient-editor
http://www.colorzilla.com/gradient-editor

comments, but they must use the CSS comment syntax that you’ve seen
already:

/* This is the end of the section */

The style sheet should be named with the .css suffix (there are some excep-
tions to this rule, but you’re unlikely to encounter them as a beginner). It
may also begin with the @charset at-rule to declare the character encoding,
although you really need to do that only if you are using an encoding other
than UTF-8. If you use @charset, it must be the first element in the style
sheet, with no characters, including comments or style rules, preceding it.

FIGURE 13-38 shows how a short style sheet document looks in my text editor.

FIGURE 13-38.   External style sheets contain only CSS rules and comments in a
plain-text document.

There are two ways to apply an external style sheet: the link element and an
@import rule. Let’s look at both of these attachment methods.

Using the link Element
The link element defines a relationship between the current document and
an external resource. By far, its most popular use is to link to style sheets. The
link element goes in the head of the document, as shown here:

<head>
 <title>Titles are required.</title>
 <link rel="stylesheet" href="/path/stylesheet.css">
</head>

You need to include two attributes in the link element:

13. Colors and Backgrounds

Finally, External Style Sheets

349

rel="stylesheet"

Defines the linked document’s relation to the current document. The
value of the rel attribute is always stylesheet when you are linking to a
style sheet.

href="url"

Provides the location of the .css file.

You can include multiple link elements to different style sheets, and they’ll
all apply. If there are conflicts, whichever one is listed last will override previ-
ous settings, because of the rule order and the cascade.

Importing with @import
The other method for attaching an external style sheet to a document is to
import it with an @import rule. The @import at-rule is another type of rule
you can add to a style sheet, either in an external .css style sheet document,
or right in the style element, as shown in the following example:

<head>
 <style>
 @import url("/path/stylesheet.css");
 p { font-face: Verdana;}
 </style>
 <title>Titles are required.</title>
</head>

In this example, a relative URL is shown, but it could also be an absolute URL
(beginning with http://). The @import rule must go at the beginning of the
style sheet before any selectors. You can import more than one style sheet, and
they all will apply, but rules from the last style sheet listed take precedence
over earlier ones.

You can also limit a style sheet’s import to specific media types (such as
screen, print, or projection, to name a few) or viewing environments (orien-
tation, screen size, etc.) using media queries. Media queries are a method for
applying styles based on the medium used to display the document. They
appear after the @import rule in a comma-separated list. For example, if you
have created a style sheet that should be imported and used only when the
document is printed, use this rule:

@import url(print_styles.css) print;

Or to serve a special style sheet just for small devices, you could also query
the viewport:

@import url(small_device.css) screen and (max-width: 320px;);

We’ll talk a lot more about media queries in Chapter 17, Responsive Web
Design, but I mention them here as they are relevant to importing style sheets.

You can try both the link and @import methods in EXERCISE 13-8.

EXERCISE 13-8. 
Making an external
style sheet

It is OK to use an embedded style
sheet while designing a page, but it is
probably best moved to an external
style sheet once the design is finished so
it can be reused by multiple documents
in the site. We’ll do just that for the
summer menu style sheet.

1.	 Open the latest version of summer-
menu.html. Select and cut all of the
rules within the style element, but
leave the <style>...</style>
tags because we’ll be using them in a
moment.

2.	 Create a new plain ASCII text
document and paste all of the style
rules. Make sure that no markup got
in there by accident.

3.	 Save this document as menustyles.css
in the same directory as the summer-
menu.html document.

4.	 Now, back in summer-menu.html,
add an @import rule to attach the
external style sheet:

<style>
@import url(menustyles.css);
</style>

Save the file and reload it in the
browser. It should look exactly the
same as it did when the style sheet
was embedded. If not, go back and
make sure that everything matches
the examples.

5.	 Delete the whole style element, and
this time we’ll add the style sheet with
a link element in the head of the
document.

<link rel="stylesheet"
href="menustyles.css">

Again, test your work by saving the
document and taking a look at it in
the browser.

Part III. CSS for Presentation

Finally, External Style Sheets

350

Using Modular Style Sheets
Because you can compile information from multiple external style sheets,
modular style sheets have become a popular technique for style management.
Many developers keep styles they frequently reuse—such as typography
treatments, layout rules, or form-related styles—in separate style sheets, then
combine them in mix-and-match fashion using @import rules. Again, the
@import rules need to go before rules that use selectors.

Here’s an example of a style sheet that imports multiple external style sheets:

/* basic typography */
@import url("type.css");

/* form inputs */
@import url("forms.css");

/* navigation */
@import url("list-nav.css");

/* site-specific styles */
body { background: orange; }

/* more style rules */

This is a good technique to keep in mind as you build experience in creating
sites. You’ll find that there are some solutions that work well for you, and it
is nice not to have to reinvent the wheel for every new site. Modular style
sheets are a good time-saving and organizational device; however, they can
be a problem for performance and caching.

If you use this method, it is recommended that you compile all of the styles
into a single document before delivering them to a browser. Not to worry, you
don’t need to do it manually; there are tools out there that will do it for you.
The LESS and Sass CSS preprocessors (which will be formally introduced in
Chapter 20) are just two tools that offer compiling functionality.

WRAPPING IT UP

We’ve covered a lot of ground (or background, to be more accurate) in this
chapter. We looked at ways to set the foreground and background colors for
an element by using various numeric systems and color names. We looked at
options for adjusting the level of transparency with the opacity property and
RGBa, and HSLa color spaces. We spent a long time exploring the various
ways to add a background image and adjust how it repeats, where the origin
image is placed, and how it is sized. We saw how linear and radial gradients
can be used as background images as well. Along the way, you picked up
pseudo-class, pseudo-element, and attribute selectors and looked at ways to
attach external style sheets. I think that’s enough for one chapter! See how
much you remember with this little quiz.

NOTE

You can also supply the URL without the
url() notation:

@import "/path/style.css";

Again, absolute pathnames, beginning
at the root, will ensure that the .css docu-
ment will always be found.

13. Colors and Backgrounds

Wrapping It Up

351

TEST YOURSELF

This time I’ll test your background prowess entirely with matching and
multiple-choice questions. Answers appear in Appendix A.

1.	 Which of these areas gets filled with a background color by default?

a.	 The area behind the content

b.	 Any padding added around the content

c.	 The area under the border

d.	 The margin space around the element

e.	 All of the above

f.	 a and b

g.	 a, b, and c

2.	 Which of these is not a way to specify the color white in CSS?

a. #FFFFFF

b. #FFF

c. rgb(255, 255, 255)

d. rgb(FF, FF, FF)

e. white

f. rgb(100%, 100%, 100%)

3.	 Match the pseudo-class with the elements it targets.

a. a:link 1. Links that have already been clicked

b. a:visited 2. An element that is highlighted and ready for input

c. a:hover 3. An element that is the first child element of its parent

d. a:active 4. A link with the mouse pointer over it

e. :focus 5. Links that have not yet been visited

f. :first-child 6. A link that is in the process of being clicked

Part III. CSS for Presentation

Test Yourself

352

4.	 Match the following rules with their respective samples as shown in
FIGURE 13-39. All of the samples in the figure use the same source docu-
ment, consisting of one paragraph element to which some padding and a
border have been applied.

1

4 5 6

2 3

FIGURE 13-39.   Samples for Question 4.

a.	 body {
	 background-image: url(graphic.gif);
	 }

b.	 p {
	 background-image: url(graphic.gif);
	 background-repeat: no-repeat;
	 background-position: 50% 0%;
	 }

c.	 body {
	 background-image: url(graphic.gif);
	 background-repeat: repeat-x;
	 }

d.	 p {
	 background: url(graphic.gif) no-repeat right center;
	 }

e.	 body {
	 background-image: url(graphic.gif);
	 background-repeat: repeat-y;
	 }

f.	 body {
	 background: url(graphic.gif) no-repeat right center;
	 }

13. Colors and Backgrounds

Test Yourself

353

CSS REVIEW: COLOR AND BACKGROUND
PROPERTIES

Here is a summary of the properties covered in this chapter, in alphabetical
order.

Property Description

background Shorthand property that combines background properties

background-attachment Specifies whether the background image scrolls or is
fixed

background-clip Specifies how far the background image should extend

background-color Specifies the background color for an element

background-image Provides the location of an image to use as a background

background-origin Determines how the background-position is calculated
(from edge of border, padding, or content box)

background-position Specifies the location of the origin background image

background-repeat Specifies whether and how a background image repeats
(tiles)

background-size Specifies the size of the background image

color Specifies the foreground (text and border) color

opacity Specifies the transparency level of the foreground and
background

Part III. CSS for Presentation

CSS Review: Color and Background Properties

354

IN THIS CHAPTER

The parts of an element box

Setting box dimensions

Padding

Borders

Outlines

Margins

Assigning display roles

Adding a drop shadow

In Chapter 11, Introducing Cascading Style Sheets, I described the box model
as one of the fundamental concepts of CSS. According to the box model,
every element in a document generates a box to which properties such as
width, height, padding, borders, and margins can be applied. You probably
already have a feel for how element boxes work from adding backgrounds to
elements. This chapter covers all the box-related properties, beginning with
an overview of the components of an element box, and then taking on the
box properties from the inside out: content dimensions, padding, borders,
and margins.

THE ELEMENT BOX

As we’ve seen, every element in a document, both block-level and inline,
generates a rectangular element box. The components of an element box are
diagrammed in FIGURE 14-1. Pay attention to the new terminology—it will
be helpful in keeping things straight later in the chapter.

THINKING INSIDE
THE BOX

14
CHAPTER

Vestibulum varius neque nec sem aliquam,
a interdum eros feugiat. Nunc ultricies leo
ac pulvinar blandit. Morbi vestibulum,
dolor sed venenatis gravida, arcu odio

Content area

Padding area

Margin area

Outer edge Border Inner edge

FIGURE 14-1.  The parts of an element box according to the CSS box model.
355

Content area

At the core of the element box is the content itself. In FIGURE 14-1, the
content area is indicated by a white box.

Inner edges

The edges of the content area are referred to as the inner edges of the ele-
ment box. Although the inner edges are made distinct by a color change
in FIGURE 14-1, in real pages, the edge of the content area is invisible.

Padding

The padding is the area between the content area and an optional border.
In the diagram, the padding area is indicated by a yellow-orange color.
Padding is optional.

Border

The border is a line (or stylized line) that surrounds the element and its
padding. Borders are also optional.

Margin

The margin is an optional amount of space added on the outside of the
border. In the diagram, the margin is indicated with light-blue shading,
but in reality, margins are always transparent, allowing the background of
the parent element to show through.

Outer edge

The outside edges of the margin area make up the outer edges of the
element box. This is the total area the element takes up on the page, and
it includes the width of the content area plus the total amount of pad-
ding, border, and margins applied to the element. The outer edge in the
diagram is indicated with a dotted line, but in real web pages, the edge of
the margin is invisible.

All elements have these box components; however, as you will see, some
properties behave differently based on whether the element is block or
inline. In fact, we’ll see some of those differences right away as we look at
box dimensions.

SPECIFYING BOX DIMENSIONS

width

Values: 	 length | percentage | auto

Default: 	 auto

Applies to: 	 block-level elements and replaced inline elements (such as images)

Inherits: 	 no

The amount of space
taken up by an element
on the page includes the
content plus the total
amount of padding,
borders, and margins
applied to the element.

Part III. CSS for Presentation

Specifying Box Dimensions

356

height

Values: 	 length | percentage | auto

Default: 	 auto

Applies to: 	 block-level elements and replaced inline elements (such as images)

Inherits: 	 no

box-sizing

Values: 	 content-box | border-box

Default: 	 content-box

Applies to: 	 all elements

Inherits: 	 no

By default, the width and height of a block element are calculated automati-
cally by the browser (thus the default auto value). The box will be as wide as
the browser window or other containing block element, and as tall as neces-
sary to fit the content. However, you can use the width and height properties
to make the content area of an element a specific width or height.

Unfortunately, setting box dimensions is not as simple as just dropping those
properties in your style sheet. You have to know exactly which part of the
element box you are sizing.

There are two ways to specify the size of an element. The default method—
introduced way back in CSS1—applies the width and height values to the
content box. That means that the resulting size of the element will be the
dimensions you specify plus the amount of padding and borders that have
been added to the element. The other method—introduced as part of the
box-sizing property in CSS3—applies the width and height values to the
border box, which includes the content, padding, and border. With this
method, the resulting visible element box, including padding and borders,
will be exactly the dimensions you specify. We’re going to get familiar with
both methods in this section.

Regardless of the method you choose, you can specify the width and height
only for block-level elements and non-text inline elements such as images.
The width and height properties do not apply to inline text (non-replaced)
elements and are ignored by the browser. In other words, you cannot specify
the width and height of an anchor (a) or strong element (see Note).

Sizing the Content Box
By default (that is, if you do not include a box-sizing rule in your styles), the
width and height properties are applied to the content box. That is the way
all current browsers interpret width and height values, but you can explicitly
specify this behavior by setting box-sizing: content-box.

NOTE

Actually, there is a way to apply width
and height properties to inline elements
such as anchors (a): by forcing them
to behave as block elements with the
display property, covered at the end of
this chapter.

BROWSER SUPPORT T IP

The major browsers began supporting
the box-sizing property in 2011 and
2012. For browsers released prior to that
(Chrome <10, Safari <5.1, Safari iOS <5.1,
or Android <4.3), there is the prefixed ver-
sion –webkit-box-sizing, but at this
point, the prefix is considered no longer
necessary. Internet Explorer 6 and 7 do
not support box-sizing at all, but they
are fairly extinct.

14. Thinking Inside the Box

Specifying Box Dimensions

357

In the following example and in FIGURE 14-2, a simple box is given a width
of 500 pixels and a height of 150 pixels, with 20 pixels of padding, a 5-pixel
border, and a 20-pixel margin all around. In the default content box model,
the width and height values are applied to the content area only.

p {
 background: #f2f5d5;
 width: 500px;
 height: 150px;
 padding: 20px;
 border: 5px solid gray;
 margin: 20px;
}

The resulting width of the visible element box ends up being 550 pixels: the
content plus 40px padding (20px left and right) and 10px of border (5px left
and right).

Visible element box =

5px + 20px + 500px width + 20px + 5px = 550 pixels

When you throw in 40 pixels of margin, the width of the entire element box
is 590 pixels. Knowing the resulting size of your elements is critical to getting
layouts to behave predictably.

Element box =

20px + 5px + 20px + 500px width + 20px + 5px + 20px = 590 pixels

width: 500px20px5px20px 20px 5px 20px

he
ig

ht
:

15
0p

x
Total visible box width = 550px

Total element width = 590px

content-box model

FIGURE 14-2.   Specifying the width and height with the content-box model.

Using the border-box Model
The other way to specify the size of an element is to apply width and height
dimensions to the entire visible box, including the padding and border.
Because this is not the default browser behavior, you need to explicitly set
box-sizing: border-box in the style sheet.

Part III. CSS for Presentation

Specifying Box Dimensions

358

Let’s look at the same paragraph example from the previous section and see
what happens when we make it 500 pixels using the border-box method
(FIGURE 14-3). All other style declarations for the box stay the same.

p {
 …
 box-sizing: border-box;
 width: 500px;
 height: 150px;
}

Now the width of the visible box is 500 pixels (compare to 550 pixels in the
content-box model), and the total element widh is 540px. Many develop-
ers find the border-box model to be a more intuitive way to size elements.
It is particularly helpful for specifying widths in percentages, which is a
cornerstone of responsive design. For example, you can make two columns
50% wide and know that they will fit next to each other without having to
mess around with adding calculated padding and border widths to the mix
(although you still need to account for margins).

20px 20pxwidth: 500px;

Total visible box width = 500px

Total element width = 540px

border-box model

box-sizing: content-box;
width: 500px;

box-sizing: border-box;
width: 500px;

FIGURE 14-3.   Sizing an element with the border-box method. The bottom diagram
compares the resulting boxes from each sizing method.

14. Thinking Inside the Box

Specifying Box Dimensions

359

In fact, many developers simply set everything in the document to use the
border-box model by setting it on the root (html) element, then setting all
other elements to inherit, like this:

html {box-sizing: border-box;}

*, *:before, *:after {box-sizing: inherit;}

For more information on this technique, read Chris Coyier’s article “Inheriting
box-sizing Probably Slightly Better Best-Practice” (css-tricks.com/inheriting-
box-sizing-probably-slightly-better-best-practice).

Specifying Height
The height property works just the same as width. In general practice, it is
less common to specify the height of elements. It is more in keeping with
the nature of the medium to allow the height to be calculated automatically,
allowing the element box to change based on the font size, user settings, or
other factors. If you do specify a height for an element containing text, be
sure to also consider what happens should the content not fit. Fortunately,
CSS gives you some options, as we’ll see in the next section.

Handling Overflow
When an element is sized too small for its contents, you can specify what to
do with the content that doesn’t fit by using the overflow property.

overflow

Values: 	 visible | hidden | scroll | auto

Default: 	 visible

Applies to: 	 block-level elements and replaced inline elements (such as images)

Inherits: 	 no

FIGURE 14-4 demonstrates the predefined values for overflow. In the figure,
the various values are applied to an element that is 150 pixels square. The
background color makes the edges of the content area apparent.

visible

The default value is visible, which allows the content to hang out over
the element box so that it all can be seen.

hidden

When overflow is set to hidden, the content that does not fit gets clipped
off and does not appear beyond the edges of the element’s content area.

scroll

When scroll is specified, scrollbars are added to the element box to
let users scroll through the content. Be aware that they may become

Maximum and Minimum
Dimensions
If you want to set a limit on the
size of a block element, use the
max- and min- width and height
properties.

max-height, max-width,
min-height, min-width

Values: 	 length | percentage | none
These properties work with block-
level and replaced elements (like
images) only. When the content-
box model is used, the value applies
to the content area only, so if you
apply padding, borders, or margins,
it will make the overall element box
larger, even if a max-width or max-
height property has been specified.
Note also that IE8 does not support
box-sizing on elements with max-/
min- sizes.

WARNIN G

Avoid using max- and min- widths
and heights with the border-box
model. They are known to cause
browser problems.

Part III. CSS for Presentation

Specifying Box Dimensions

360

visible only when you click the element to scroll it. There is an issue
with this value on old iOS (<4), Android (<2.3), and a few other older
mobile browsers, so it may be worthwhile to use a simpler alternative to
overflow:scroll for mobile.

auto

The auto value allows the browser to decide how to handle overflow. In
most cases, scrollbars are added only when the content doesn’t fit and
they are needed.

PADDING

Padding is the space between the content area and the border (or the place
the border would be if one isn’t specified). I find it helpful to add padding
to elements when using a background color or a border. It gives the content
a little breathing room, and prevents the border or edge of the background
from bumping right up against the text.

You can add padding to the individual sides of any element (block-level or
inline). There is also a shorthand padding property that lets you add padding
on all sides at once.

padding-top, padding-right, padding-bottom, padding-left

Values: 	 length | percentage

Default: 	 0

Applies to: 	 all elements

Inherits: 	 no

visible hidden scroll auto (short text) auto (long text)

FIGURE 14-4.   Options for handling content overflow. The scroll and auto options
have narrow gray scrollbars to the right of the text (as rendered on macOS).

Padding is the space
between the content and
the border.

14. Thinking Inside the Box

Padding

361

padding

Values: 	 length | percentage

Default: 	 0

Applies to: 	 all elements

Inherits: 	 no

The padding-top, padding-right, padding-bottom, and padding-left proper-
ties specify an amount of padding for each side of an element, as shown in
this example and FIGURE 14-5 (note that I’ve also added a background color
to make the outer edges of the padding area apparent).

blockquote {
 padding-top: 2em;
 padding-right: 4em;
 padding-bottom: 2em;
 padding-left: 4em;
 background-color: #D098D4; /* light green */
}

2em

4em4em

2em

FIGURE 14-5.   Adding padding around the content of an element.

Specify padding in any of the CSS length units (em and px are the most com-
mon) or as a percentage of the width of the parent element. Yes, the parent’s
width is used as the basis, even for top and bottom padding. If the width of
the parent element changes, so will the padding values on all sides of the
child element, which makes percentage values somewhat tricky to manage.

The Shorthand padding Property
As an alternative to setting padding one side at a time, you can use the short-
hand padding property to add padding all around the element. The syntax is
interesting; you can specify four, three, two, or one value for a single padding
property. Let’s see how that works, starting with four values.

When you supply four padding values, they are applied to each side in
clockwise order, starting at the top. Some people use the mnemonic device
“TRouBLe” for the order Top Right Bottom Left. This is a common syntax for
applying shorthand values in CSS, so take a careful look:

Part III. CSS for Presentation

Padding

362

padding: top right bottom left;

Using the padding property, we could reproduce the padding specified with
the four individual properties in the previous example like this:

blockquote {
 padding: 2em 4em 2em 4em;
 background-color: #D098D4;
}

If the left and right padding are the same, you can shorten it by supplying
only three values. The value for “right” (the second value in the string) will
be mirrored and used for “left” as well. It is as though the browser assumes
the “left” value is missing, so it just uses the “right” value on both sides. The
syntax for three values is as follows:

padding: top right/left bottom;

This rule would be equivalent to the previous example because the padding
on both the left and right edges of the element is set to 4em:

blockquote {
 padding: 2em 4em 2em;
 background-color: #D098D4;
}

Continuing with this pattern, if you provide only two values, the first one is
used for the top and the bottom edges, and the second one is used for the left
and right edges:

padding: top/bottom right/left;

Again, the same effect achieved by the previous two examples could be
accomplished with this rule:

blockquote {
 padding: 2em 4em;
 background-color: #D098D4;
}

Note that all of the previous examples have the same visual effect as shown
in FIGURE 14-5.

Finally, if you provide just one value, it will be applied to all four sides of the
element. This declaration applies 15 pixels of padding on all sides of a div
element:

div#announcement {
 padding: 15px;
 border: 1px solid;
}

Get a feel for adding padding to elements in EXERCISE 14-1.

AT A G L A N C E

Shorthand Values
1 value
padding: 10px;

Applied to all sides.

2 values
padding: 10px 6px;

First is top and bottom; second is
left and right.

3 values
padding: 10px 6px 4px;

First is top; second is left and right;
third is bottom.

4 values
padding: 10px 6px 4px 10px;

Applied clockwise to top, right,
bottom, and left edges consecutively
(TRBL).

14. Thinking Inside the Box

Padding

363

EXERCISE 14-1.  Adding a little padding

In this exercise, we’ll begin adding box properties to improve the appearance of a site for
the fictional Black Goose Bakery. I’ve given you a head start by marking up the source
(bakery.html). Unlike pages in previous exercises, the bakery page uses an external style
sheet, bakery-styles.css. Everything we will be doing to format this site over the next few
chapters happens in the CSS file, so you should never need edit the HTML document;
however, that is the file you will open in the browser to see the results of your style
changes. All the files are available at learningwebdesign.com/5e/materials.

FIGURE 14-6 shows before and after shots of the site. It’s going to take several exercises
over three chapters to get there, and padding is just the beginning. In Chapter 16, CSS
Layout with Flexbox and Grid, we’ll turn that ugly navigation list into a nice navigation
menu bar (in the meantime, please avert your eyes) and give the page a two-column
layout suitable for larger screens.

Start by getting familiar with the source document. Open bakery.html in a browser and
a text editor to see what you’ve got to work with. The style sheet has been added with
an @import rule in the style element. The document has been marked up with header
(including a nav section), main, aside, and footer sections.

Now take a look at bakery-styles.css in your text editor. I used comments in the style
sheet to organize the styles related to each section (bonus points for you if you keep
the styles organized as you go along!). You will find styles for text formatting, colors, and
backgrounds—all properties that we’ve covered so far in this book, so they should look
familiar. Now let’s add some rules to bakery-styles.css to add padding to the elements.

FIGURE 14-6.   Before and after shots of the Black Goose Bakery site.

NOTE

This design uses a Google web font
called Stint. You will need to have an
internet connection in order to see it.
If you are working offline, you will see
Georgia or some serif font instead, which
is just fine for these purposes, but your
page won’t look exactly like the ones in
the figures.

Part III. CSS for Presentation

Padding

364

http://www.learningwebdesign.com/5e/materials

1.	 The first thing we’ll do is to set the box-sizing model to border-box for all the
elements in the document. Add these new rules to the existing style element. This will
make measurements simpler going forward.

html { 	
 box-sizing: border-box;
}
* { 	
 box-sizing: inherit;
}

2.	 Now find the styles for the header and give it a height. It will fill 100% of the width of
the page by default, so the width is taken care of. I picked 15em for the height because
it seemed tall enough to accommodate the content and show a nice amount of the
croissant background image, but you can play around with it.

header { 	
 …
 height: 15em;
}

3.	 The main section is going to need a little padding, so add 1em of padding on all sides.
You can add this declaration after the existing main styles.

main { 	
 …
 padding: 1em; 	
}

4.	 Next, we’ll get a little fancier with the aside element (“Hours”). We’ll need extra
padding on the left side for the tiling scallop background image to be visible.
There are several approaches to applying different padding amounts to each side,
but I’m going to do it in a way that gives you experience deliberately overriding
earlier declarations.

Use the padding shorthand property to add 1em of padding on all sides of the
aside element. Then write a second declaration that adds 45 pixels of padding
on just the left side. Because the padding-left declaration comes second, it will
override the 1em setting applied with the shorthand.

aside { 	
 …
 padding: 1em;
 padding-left: 45px; 	
}

5.	 Finally, that footer is looking skinny and cramped. Let’s add padding, which will
increase the height of the footer and give the content some space.

footer { 	
 …
 padding: 1em;
}

6.	 Save the bakery-styles.css document, and then open (or reload) bakery.html in
the browser to see the result of your work. The changes at this point are pretty
subtle. FIGURE 14-7 highlights the padding additions.

FIGURE 14-7.   The shaded areas indicate the
padding added to main (blue), aside (pink),
and footer (yellow). Colors added for demo
purposes but wouldn’t render in the browser.

14. Thinking Inside the Box

Padding

365

BORDERS

A border is simply a line drawn around the content area and its (optional)
padding. You can choose from eight border styles and make them any width
and color you like. Borders can be applied all around the element or just on a
particular side or sides. CSS3 introduced properties for rounding the corners
or applying images to borders. We’ll start our border exploration with the
various border styles.

Border Style
The style is the most important of the border properties because, according
to the CSS specification, if there is no border style specified, the border does
not exist (the default is none). In other words, you must always declare the
style of the border, or the other border properties will be ignored.

Border styles can be applied one side at a time or with the shorthand border-
style property.

border-top-style, border-right-style,
border-bottom-style, border-left-style

Values: 	 none | solid | hidden | dotted | dashed | double | groove | ridge | inset |
outset

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no

border-style

Values: 	 none | solid | hidden | dotted | dashed | double | groove | ridge | inset |
outset

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no

The value of the border-style property is one of 10 keywords describing the
available border styles, as shown in FIGURE 14-8. The value hidden is equiva-
lent to none.

Use the side-specific border style properties (border-top-style, border-
right-style, border-bottom-style, and border-left-style) to apply a style
to one side of the element. If you do not specify a width, the default medium
width will be used. If there is no color specified, the border uses the fore-
ground color of the element (same as the text).

In the following example, I’ve applied a different style to each side of an ele-
ment to show the single-side border properties in action (FIGURE 14-9).

D E S I G N T I P

Bottom Borders Instead
of Underlines
Turning off link underlines and
replacing them with a custom
bottom border is a common design
technique. It lightens the look of links
while still making them stand out
from ordinary text.

Part III. CSS for Presentation

Borders

366

div#silly {
 border-top-style: solid;
 border-right-style: dashed;
 border-bottom-style: double;
 border-left-style: dotted;
 width: 300px;
 height: 100px;
}

The border-style shorthand property works on the clockwise (TRouBLe)
system described for padding earlier. You can supply four values for all four
sides or fewer values when the left/right and top/bottom borders are the
same. The silly border effect in the previous example could also be specified
with the border-style property as shown here, and the result would be the
same as shown in FIGURE 14-9:

 border-style: solid dashed double dotted;

FIGURE 14-9.   Border styles applied to individual sides of an element.

FIGURE 14-8.   The available border styles (shown at the default medium width).

14. Thinking Inside the Box

Borders

367

Border Width (Thickness)
Use one of the border-width properties to specify the thickness of the border.
Once again, you can target each side of the element with a single-side prop-
erty, or specify several sides at once in clockwise order with the shorthand
border-width property.

border-top-width, border-right-width,
border-bottom-width, border-left-width

Values: 	 length | thin | medium | thick

Default: 	 medium

Applies to: 	 all elements

Inherits: 	 no

border-width

Values: 	 length | thin | medium | thick

Default: 	 medium

Applies to: 	 all elements

Inherits: 	 no

The most common way to specify the width of borders is using a pixel or
em measurement; however, you can also specify one of the keywords (thin,
medium, or thick) and leave the rendering up to the browser.

I’ve included a mix of values in this example (FIGURE 14-10). Notice that I’ve
also included the border-style property because if I didn’t, the border would
not render at all:

div#help {
 border-top-width: thin;
 border-right-width: medium;
 border-bottom-width: thick;
 border-left-width: 12px;
 border-style: solid;
 width: 300px;
 height: 100px;
}

or:

div#help {
 border-width: thin medium thick 12px;
 border-style: solid;
 width: 300px;
 height: 100px;
}

thin

medium12px

thick

FIGURE 14-10.   Specifying the width of borders.

Part III. CSS for Presentation

Borders

368

Border Color
Border colors are specified in the same way: via the side-specific properties
or the border-color shorthand property. When you specify a border color, it
overrides the foreground color as set by the color property for the element.

border-top-color, border-right-color,
border-bottom-color, border-left-color

Values: 	 color name or RGB/HSL value | transparent

Default: 	 the value of the color property for the element

Applies to: 	 all elements

Inherits: 	 no

border-color

Values: 	 color name or RGB/HSL value | transparent

Default: 	 the value of the color property for the element

Applies to: 	 all elements

Inherits: 	 no

You know all about specifying color values, and you should be getting used
to the shorthand properties as well, so I’ll keep this example short and sweet
(FIGURE 14-11). Here, I’ve provided two values for the shorthand border-color
property to make the top and bottom of a div maroon and the left and right
sides aqua:

div#special {
 border-color: maroon aqua;
 border-style: solid;
 border-width: 6px;
 width: 300px;
 height: 100px;
}

FIGURE 14-11.   Specifying the color of borders.

D E S I G N T I P

Setting border-color to
transparent allows the background
to show through the border, yet
holds the width of the border as
specified. This may be useful when
you’re creating rollover (:hover)
effects with borders, because the
space where the border will appear is
maintained even when the mouse is
not over the element.

14. Thinking Inside the Box

Borders

369

CSS Outlines
Another type of rule you can draw around an element is an outline. Outlines look like
borders, and the syntax is the same, but there is an important difference. Outlines,
unlike borders, are not calculated in the width of the element box. They just lay on
top, not interfering with anything. Outlines are drawn on the outside edge of the
border (if one is specified) and overlap the margin.

Because outlines do not affect layout, they’re a great tool for checking your design.
You can turn them on and off without affecting width measurements to see where
and how element boxes are positioned.

The outline properties are similar to border properties with one important difference:
It is not possible to specify outlines for particular sides of the element box—it’s all or
nothing.

outline-style

Values: 	 auto | solid | none | dotted | dashed | double | groove | ridge |
inset | outset

Default: 	 none

These are the same as the border-style values, with the addition of auto, which
lets the browser choose the style. Also, you cannot set the outline-style to
hidden.

outline-width

Values: 	 length | thin | medium | thick
Default: 	 medium

Same as border-width values.

outline-color

Values: 	 color name or RGB/HSL value | invert
Default: 	 invert

The default invert value applies the inverse of the background color to the outline,
but it has very little browser support.

outline-offset

Values: 	 length
Default: 	 0

By default, the outline is drawn just outside the border edge. outline-offset
moves the outline beyond the border by a specified length.

outline

Values: 	 outline-style outline-width outline-color
Default: 	 Defaults of individual properties
The shorthand outline property combines values for outline-style, outline-
width, and outline-color. Remember that you can specify them only for all sides
of the element at once.

div#story { outline: 2px dashed red; }

Outlines are a good tool
for checking your page
layout as you work.

Part III. CSS for Presentation

Borders

370

Combining Style, Width, and Color
The authors of CSS didn’t skimp when it came to border shortcuts. They also
created properties for providing style, width, and color values in one declara-
tion, one side at a time. You can specify the appearance of specific sides, or
use the border property to change all four sides at once.

border-top, border-right, border-bottom, border-left

Values: 	 border-style border-width border-color

Default: 	 defaults for each property

Applies to: 	 all elements

Inherits: 	 no

border

Values: 	 border-style border-width border-color

Default: 	 defaults for each property

Applies to: 	 all elements

Inherits: 	 no

The values for border and the side-specific border properties may include
style, width, and color values in any order. You do not need to declare all
three, but if the border style value is omitted, no border will render.

The border shorthand property works a bit differently than the other short-
hand properties that we’ve covered in that it takes one set of values and always
applies them to all four sides of the element. In other words, it does not use
the clockwise TRBL system that we’ve seen with other shorthand properties.

Here is a smattering of valid border shortcut examples to give you an idea of
how they work:

h1 { border-left: red .5em solid; } /* left border only */
h2 { border-bottom: 1px solid; } /* bottom border only */
p.example { border: 2px dotted #663; }  /* all four sides */

Rounded Corners with border-radius
Perhaps you’d like your element boxes to look a little softer and rounder.
Well, then, the border-radius property is for you! There are individual corner
properties as well as a border-radius shorthand.

border-top-left-radius, border-top-right-radius,
border-bottom-right-radius, border-bottom-left-radius

Values: 	 length | percentage

Default: 	 0

Applies to: 	 all elements

Inherits: 	 no

14. Thinking Inside the Box

Borders

371

border-radius

Values: 	 1, 2, 3, or 4 length or percentage values

Default: 	 0

Applies to: 	 all elements

Inherits: 	 no

To round off the corner of an element, simply apply one of the border-radius
properties, but keep in mind that you will see the result only if the element
has a border or background color. Values are typically provided in ems or pix-
els. Percentages are allowed and are nice for keeping the curve proportional to
the box should it resize, but you may run into some browser inconsistencies.

You can target the corners individually or use the shorthand border-radius
property. If you provide one value for border-radius, it is applied to all four
corners. Four values are applied clockwise, starting in the top-left corner
(top-left, top-right, bottom-right, bottom-left). When you supply two values,
the first one is used for top-left and bottom-right, and the second is for the
other two corners.

Compare the border-radius values to the resulting boxes in FIGURE 14-12.
You can achieve many different effects, from slightly softened corners to a
long capsule shape, depending on how you set the values.

BROWSER SUPPORT NOTE

All browsers have been supporting border-radius properties using the standard syntax
(that is, without prefixes) since about 2010. There are prefixed properties for Firefox <3.6
and Safari <5.0, but they’re so old it’s probably not worth worrying about. Internet Explorer
8 and earlier, however, do not support border-radius at all. But in this case, chances are
the usability of your site doesn’t depend on rounded corners, so this is a good opportunity
to practice progressive enhancement: non-supporting browsers get perfectly acceptable
square corners, and all modern browsers get a little something extra.

Elliptical corners
So far, the corners we’ve made are sections of perfect circles, but you can also
make a corner elliptical by specifying two values: the first for the horizontal
radius and the second for the vertical radius (see FIGURE 14-13, A and B).

A border-top-right-radius: 100px 50px;

B border-top-right-radius: 50px 20px;
 border-top-left-radius: 50px 20px;

If you want to use the shorthand property, the horizontal and vertical radii
get separated by a slash (otherwise, they’d be confused for different corner
values). The following example sets the horizontal radius on all corners to
60px and the vertical radius to 40px (FIGURE 14-13, C):

C border-radius: 60px / 40px;

border-top-right-radius: 50px;

border-top-left-radius: 1em;
border-top-right-radius: 2em;
border-bottom-right-radius: 1em;
border-bottom-left: 2em;

or
border-radius: 1em 2em;

border-radius: 1em;

border-radius: 50px;

p {
 width: 200px;
 height: 100px;
 background: darkorange;
}

FIGURE 14-12.   Make the corners
of element boxes rounded with the
border-radius properties.

Part III. CSS for Presentation

Borders

372

If you want to see something really nutty, take a look at a border-radius
shorthand property that specifies a different ellipse for each of the four
corners. All of the horizontal values are lined up on the left of the slash in
clockwise order (top-left, top-right, bottom-right, bottom-left), and all of the
corresponding vertical values are lined up on the right (FIGURE 14-13, D):

D border-radius: 36px 40px 60px 20px / 12px 10px 30px 36px;

B

border-top-right-radius: 50px 20px;
border-top-left-radius: 50px 20px;

A

border-top-right-radius: 100px 50px;

C

border-radius: 60px / 40px;

D

border-radius:
36px 40px 60px 20px/12px 10px 30px 36px;

FIGURE 14-13.   Applying elliptical corners to boxes.

Now it’s time to try your hand at borders. EXERCISE 14-2 will not only give
you some practice, but it should also give you some ideas on the ways borders
can be used to add visual interest to designs.

EXERCISE 14-2.  Border tricks

In this exercise, we’ll have some fun with borders on the Black
Goose Bakery page. In addition to putting borders around content
sections of the page, we’ll use borders to beef up the headlines
and as an alternative to underlines under links.

1.	 Open bakery-styles.css in a text editor if it isn’t already. We’ll
start with the basics by using the shorthand border property to
add a tan double rule around the main element. Add the new
declaration to the existing rule for main:

main { 	
 …
 padding: 1em; 	
 border: double 4px #EADDC4;
}

2.	 Now try out some border-radius properties to add generous
rounded corners to the main and aside sections. A 25-pixel
radius should do. Pixels are my choice over ems here because I
don’t want the radius to scale with the text. Start by adding this
declaration to the styles for main:

 border-radius: 25px;

And give just the top-right corner of the aside a matching
rounded corner:

aside { 	
 …
 border-top-right-radius: 25px;
}

→

14. Thinking Inside the Box

Borders

373

3.	 Just for fun (and practice), we’ll add a decorative border on two sides of the baked
goods headings (h3). Find the existing rule for h3 elements and add a declaration that
adds a 1-pixel solid rule on the top of the headline. Add another that adds a thicker
3-pixel solid rule on the left. I want the borders to be the same color as the text, so we
don’t need to specify the border-color. Finally, to prevent the text from bumping into
the left border, add a little bit of padding (1em) to the left of the headline content:

h3 {
 …
 border-top: 1px solid;
 border-left: 3px solid;
 padding-left: 1em;
}

4.	 The last thing we’ll do is to replace the standard underline with a decorative bottom
border under links. Start by turning off the underline for all links. Add this rule in the
“link styles” section of the style sheet:

a {
 text-decoration: none;
}

Then add a 1-pixel dotted border to the bottom edge of links:

a {
 text-decoration: none;
 border-bottom: 1px dotted;
}

As is often the case when you add a border to an element, it is a good idea to also add a
little padding to keep things from bumping together:

a {
 text-decoration: none;
 border-bottom: 1px dotted;
 padding-bottom: .2em;
}

Now you can save the style sheet and reload bakery.html in the browser. FIGURE 14-14
shows a detail of how your page should be looking so far.

FIGURE 14-14.   The results of our border additions.

EXERCISE 14-2. Continued

Part III. CSS for Presentation

Borders

374

55px 55px

55
px

55
px

fancyframe.png With border image Without border image

FIGURE 14-15.   Examples of a border image applied to a box.

Picture-Perfect Borders
CSS3 introduced the border-image-* properties, which let
you fill in the sides and corners of a border box with an image
of your choice, as shown in FIGURE 14-15.

Border images are applied with a collection of five properties:

•	 border-image-source indicates the location of the image

•	 border-image-slice divides the image into nine sections
using offset measurements

•	 border-image-width specifies the width of the border area

•	 border-image-repeat specifies whether the image should
stretch or repeat along the sides

•	 border-image-outset pushes the border away from the
content by the specified amount

There is also a shorthand border-image property that
combines the individual properties in the following syntax:

border-image: source slice / width / outset
repeat;

The style rules for the image border in FIGURE 14-15 are as
follows:

border: 5px solid #d1214a; /* red */
border-image: url(fancyframe.png) 55 fill / 55px /
25px stretch;

The border shorthand provides a fallback style for the border
should the image not load or if the border-image isn’t
supported by the browser.

The border-image rule tells the browser to apply the image
fancyframe.png to the border, slice it 55 pixels from the edges,
and use the center of the image to fill the center of the box.
The width of the border area is 55px, and the image should be
pushed toward the margins by 25px. Finally, the image areas
that make up the sides should stretch to fill the width and
height of the box.

That's not much of an explanation, I know, but I've written an
article, “Border Images,” which goes into more detail. You
can download it at learningwebdesign.com/articles/. For even
more information on border images, check out these resources:

•	 The CSS Background and Borders Module Level 3 (www.
w3.org/TR/css3-background/#the-border-image-source)

•	 The border-image listing on CSS-Tricks (css-tricks.com/
almanac/properties/b/border-image/), for a less dense
explanation

14. Thinking Inside the Box

Borders

375

https://css-tricks.com/almanac/properties/b/border-image/
https://css-tricks.com/almanac/properties/b/border-image/

MARGINS

A margin is an optional amount of space that you can add on the outside of
the border. Margins keep elements from bumping into one another or the
edge of the browser window or viewport.

The side-specific and shorthand margin properties work much like the pad-
ding properties we’ve looked at already; however, margins have some special
behaviors to be aware of.

margin-top, margin-right, margin-bottom, margin-left

Values: 	 length | percentage | auto

Default: 	 auto

Applies to: 	 all elements

Inherits: 	 no

margin

Values: 	 length | percentage | auto

Default: 	 auto

Applies to: 	 all elements

Inherits: 	 no

The margin properties are very straightforward to use. You can either specify
an amount of margin to appear on each side of the element or use the margin
property to specify all sides at once.

The shorthand margin property works the same as the padding shorthand.
When you supply four values, they are applied in clockwise order (top, right,
bottom, left) to the sides of the element. If you supply three values, the middle
value applies to both the left and right sides. When two values are provided,
the first is used for the top and bottom, and the second applies to the left and
right edges. Finally, one value will be applied to all four sides of the element.

As with most web measurements, ems, pixels, and percentages are the most
common ways to specify margins. Be aware, however, that if you specify a
percentage value, it is calculated based on the width of the parent element. If
the parent’s width changes, so will the margins on all four sides of the child
element (padding has this behavior as well). The auto keyword allows the
browser to fill in the amount of margin necessary to fit or fill the available
space (see Power Tool sidebar).

FIGURE 14-16 shows the results of the following margin examples. I’ve added
a red border to the elements in the examples to make their boundaries more
clear. The dotted rules were added in the figure illustration to indicate the
outer edges of the margins for clarity purposes only, but they are not some-
thing you’d see in the browser.

CSS T I P

Browser Default Margins
You may have noticed that space
is added automatically around
headings, paragraphs, and other
block elements. That’s the browser’s
default style sheet at work, applying
margin amounts above and below
those elements.

It’s good to keep in mind that the
browser is applying its own values
for margins and padding behind the
scenes. These values will be used
unless you specifically override them
with your own style rules.

If you are working on a design and
coming across mysterious amounts
of space that you didn’t add, the
browser’s default styles may be
the culprit. To troubleshoot, I
recommend using your browser’s
Web Inspector tool, which will show
you the source of all the styles
applied to the element. Or if you just
don’t want to worry about browser
styles at all, one solution is to reset
the padding and margins for all
elements to zero, which is discussed
in the “CSS Reset” section in
Chapter 19, More CSS Techniques.

POW E R TO O L

Centering with auto
Margins
Setting the margin to auto on the left
and right sides of a sized element has
the effect of centering the element in
its container.

Part III. CSS for Presentation

Margins

376

A p#A {
 margin: 4em;
 border: 2px solid red;
 background: #e2f3f5;
 }
B p#B {
 margin-top: 2em;
 margin-right: 250px;
 margin-bottom: 1em;
 margin-left: 4em;
 border: 2px solid red;
 background: #e2f3f5;
 }
C body {
 margin: 0 20%;
 border: 3px solid red;
 background-color: #e2f3f5;
 }

4em 4em

4em

4em

4em 250px

1em

2em

20% 20%

0

A

B

C

FIGURE 14-16.  Applying margins to the body and to individual elements.

Adding a margin to
the body element adds
space between the page
content and the edges of
the viewport.

14. Thinking Inside the Box

Margins

377

Take a look at Example C in FIGURE 14-16. Here I’ve applied the margin
property to the body element of the document. For this particular design, I
set the top margin to zero (0) so the body starts flush against the top edge of
the browser window. Adding equal amounts of margin to the left and right
sides of the body keeps the content of the page centered and gives it a little
breathing room.

Margin Behavior
Although it is easy to write rules that apply margin amounts around HTML
elements, it is important to be familiar with some of the quirks of margin
behavior.

Collapsing margins
The most significant margin behavior to be aware of is that the top and bot-
tom margins of neighboring elements collapse. This means that instead of
accumulating, adjacent margins overlap, and only the largest value is used.

Using the two paragraphs from the previous figure as an example, if the top
element has a bottom margin of 4em, and the following element has a top
margin of 2em, the resulting margin space between elements does not add
up to 6ems Rather, the margins collapse and the resulting margin between
the paragraphs will be 4em, the largest specified value. This is demonstrated
in FIGURE 14-17.

The only time top and bottom margins don’t collapse is for floated or
absolutely positioned elements (we’ll get to that in Chapter 15, Floating and
Positioning). Margins on the left and right sides never collapse, so they’re nice
and predictable.

4em

FIGURE 14-17.  Vertical margins of neighboring elements collapse so that only the
larger value is used.

Adjacent margins overlap,
and only the largest value
will be used.

F U RT H E R R E A D I N G

Collapsing Margins
When spacing between and around
elements behaves unpredictably,
collapsing margins are often to
blame. Here are a few articles that
dig deep into collapsing margin
behavior. Although they were written
long ago, the information is still solid
and may help you understand what is
happening behind the scenes in your
layouts.

•	 “No Margin for Error” by Andy
Budd (www.andybudd.com/
archives/2003/11/no_margin_for_
error)

•	 “Uncollapsing Margins” by Eric
Meyer (www.complexspiral.
com/publications/uncollapsing-
margins)

Part III. CSS for Presentation

Margins

378

http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/
http://www.andybudd.com/archives/2003/11/no_margin_for_error/

Margins on inline elements
You can apply top and bottom margins to inline text elements (or “non-
replaced inline elements,” to use the proper CSS terminology), but it won’t
add vertical space above and below the element, and the height of the line
will not change. However, when you apply left and right margins to inline
text elements, margin space will be held clear before and after the text in the
flow of the element, even if that element breaks over several lines.

Just to keep things interesting, margins on replaced inline elements, such as
images, do render on all sides, and therefore do affect the height of the line.
See FIGURE 14-18 for examples of each.

em { margin: 2em; }

img { margin: 2em; }

FIGURE 14-18.   Examples of margins on inline elements. Only horizontal margins are
rendered on non-replaced elements (top). Margins are rendered on all sides of replaced
elements such as images.

Negative margins
It is worth noting that it is possible to specify negative values for margins.
When you apply a negative margin, the content, padding, and border are
moved in the opposite direction that would have resulted from a positive
margin value.

I’ll make this clear with an example. FIGURE 14-19 shows two neighboring
paragraphs with different-colored borders applied to show their boundaries.
In the left view, I’ve added a 3em bottom margin to the top paragraph, which
has the effect of pushing the following paragraph down by that amount. If
I specify a negative value (–3em), the following element moves up by that
amount and overlaps the element with the negative margin.

14. Thinking Inside the Box

Margins

379

p.top { margin-bottom: 3em; } p.top { margin-bottom: -3em; }

Pushes the following paragraph down by 3 ems. The following element moves up by 3 ems.

FIGURE 14-19.  Using negative margins.

This may seem like a strange thing to do, and in fact, you probably wouldn’t
make blocks of text overlap as shown. The point here is that you can use
margins with both positive and negative values to move elements around on
the page. This is the basis of some older CSS layout techniques.

Now let’s use margins to add some space between parts of the Black Goose
Bakery home page in EXERCISE 14-3.

ASSIGNING DISPLAY TYPES

As long as we’re talking about boxes and the CSS layout model, this is a good
time to introduce the display property. You should already be familiar with
the display behavior of block and inline elements. Although HTML assigns
display behaviors (or display types, to use the latest CSS term) to the ele-
ments it defines, there are other XML-based languages that can use CSS that
don’t do the same. For this reason, the display property was created to allow
authors to specify how elements should behave in layouts.

display

Values: 	 inline | block | run-in | flex | grid | flow | flow-root | list-item |
table | table-row-group | table-header-group | table-footer-group |
table-row | table-cell | table-column-group | table-column |
table-caption | ruby | ruby-base | ruby-text | ruby-base-container |
ruby-text-container | inline-block | inline-table | inline-flex |
inline-grid | contents | none

Default: 	 inline

Applies to: 	 all elements

Inherits: 	 yes

Part III. CSS for Presentation

Assigning Display Types

380

EXERCISE 14-3.  Adding margin space around elements

It’s time to adjust the margins around the elements on the bakery
page. We’ll start by adjusting margins on the whole document, and
then make tweaks to each section from top to bottom. You should
have bakery-styles.css open in a text editor.

1.	 It is a common practice to set the margin for the body element
to zero, thus clearing out the browser’s default margin setting.
Add this margin declaration to the body styles, and then save
the file and open it in a browser. You’ll see that the elements
now go to the very edge of the window with no space between.

body {
 …
 margin: 0;
}

NOT E

When the value is 0, you don’t need to provide a specific unit.

2.	 If you are a careful observer, you may have noticed that there is
still a bit of whitespace above the colored navigation bar. That
happens to be the top margin of the ul list pushing the whole
nav element down from the top edge of the browser. Let’s take
care of that. Add a new style rule in the “nav styles” section of
the style sheet:

nav ul { 	
 margin: 0;
}

3.	 Margins are good for nudging elements around in the layout. For
example, I think I’d like to move the h1 with the logotype down
a bit, so I’ll add a margin to its top edge. I played around with a
few values before deciding on 1.5em for this new style rule:

header h1 { 	
 margin-top: 1.5em;
}

I’d like the intro paragraph in the header to be a little closer to
the logotype, so let’s get wacky and use a negative top margin to
pull it up. Add this declaration to the existing style rule:

header p { 	
 …
 margin-top: -12px;
}

4.	 Give the main section a 2.5% margin on all sides:

main {
 …
 margin: 2.5%;
}

5.	 Add a little extra space above the h3 headings in the main area.
I’ve chosen 2.5em, but you can play around with different values
to see what you like best:

h3 {
 …
 margin-top: 2.5em;
}

6.	 Finally, add some space around the aside. This time, we’ll do
different amounts on each side for kicks. Put 1em on the top,
2.5% on the right side, 0 on the bottom, and 10% margin on the
left. I’m going to let you do this one yourself. Can you make all
those changes with one declaration? If you want to check your
work, my finished version of the Black Goose Bakery page so far
is available with the exercise materials for this chapter.

7.	 Save the style sheet again, and reload the page in the browser.
It should look like the one in FIGURE 14-20. This isn’t the most
beautiful design, particularly if your browser window is set wide.
However, if you resize your browser window narrow, you’ll find
that it wouldn’t be too bad as the small-screen version in a
responsive design. (Bet you can’t wait for the Responsive Web
Design chapter to learn how to fix this!)

FIGURE 14-20.   The Black Goose Bakery home page after
padding, borders, and margins are added.

14. Thinking Inside the Box

Assigning Display Types

381

The display property defines the type of element box an element generates
in the layout. In addition to the familiar inline and block display types, you
can also make elements display as list items or the various parts of a table.
There are also a number of values for ruby annotation for East Asian lan-
guages. As you can see from the list of values, there are a lot of display types,
but there are only a few that are used in everyday practice.

Display type assignment is useful for achieving layout effects while keeping
the semantics of the HTML source intact. For example, it is common practice
to make li elements (which usually display with the characteristics of block
elements) display as inline elements to turn a list into a horizontal navigation
bar. You may also make an otherwise inline a (anchor) element display as a
block in order to give it a specific width and height:

ul.navigation li { display: inline; }

ul.navigation li a { display: block; }

Another useful value for the display property is none, which removes the
content from the normal flow entirely. Unlike visibility: hidden, which
just makes the element invisible but keeps the space it would have occupied
blank, display: none removes the content, and the space it would have occu-
pied is closed up.

One popular use of display: none is to prevent certain content in the source
document from displaying in specific media, such as when the page is print-
ed or displayed on devices with small screens. For example, you could display
URLs for links in a document when it is printed, but not when it is displayed
on a computer screen where the links are interactive.

Be aware that content that has its display set to none still downloads with
the document. Setting some content to display:none for devices with small
screens may keep the page shorter, but it is not doing anything to reduce data
usage or download times.

BOX DROP SHADOWS

We’ve arrived at the last stop on the element box tour. In Chapter 12,
Formatting Text, you learned about the text-shadow property, which adds a
drop shadow to text. The box-shadow property applies a drop shadow around
the entire visible element box (excluding the margin).

box-shadow

Values: 	 ‘horizontal offset’ ‘vertical offset’ ‘blur distance’ ‘spread distance’ color
inset | none

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no

WARNIN G

Bear in mind that changing the presen-
tation of an HTML element with the CSS
display property does not change the
definition of that element as block-level
or inline in HTML. Putting a block-level
element within an inline element will
always be invalid, regardless of its dis-
play role.

F U RT H E R R E A D I N G

“Five Ways to Hide Elements in CSS”
by Baljeet Rathi (www.sitepoint.com/
five-ways-to-hide-elements-in-css)
compares various methods for hiding
content, including display: none.

BROWSE R SU PPORT NOTE

Browsers released before 2011 require
vendor prefixes for box-shadow. Box
shadows are not supported at all in
Internet Explorer versions 8 and earlier.
This is a case for progressive enhance-
ment—it is likely that a box without a
shadow will be just fine for users clinging
to old browser versions.

Part III. CSS for Presentation

Box Drop Shadows

382

http://www.sitepoint.com/five-ways-to-hide-elements-in-css
http://www.sitepoint.com/five-ways-to-hide-elements-in-css

The value of the box-shadow property should seem familiar to you after work-
ing with text-shadow: specify the horizontal and vertical offset distances, the
amount the shadow should blur, and a color. For box shadows, you can also
specify a spread amount, which increases (or decreases with negative values)
the size of the shadow. By default, the shadow color is the same as the fore-
ground color of the element, but specifying a color overrides it.

FIGURE 14-21 shows the results of the following code examples. A adds a
simple box shadow 6 pixels to the right and 6 pixels down, without blur or
spread. B adds a blur value of 5 pixels, and C shows the effect of a 10-pixel
spread value. Box shadows are always applied to the area outside the border of
the element (or the place it would be if a border isn’t specified). If the element
has a transparent or translucent background, you will not see the box shadow
in the area behind the element.

A.	box-shadow: 6px 6px gray;

B.	box-shadow: 6px 6px 5px gray; /* 5 pixel blur */

C.	box-shadow: 6px 6px 5px 10px gray; /* 5px blur, 10px spread */

You can make the shadow render inside the edges of the visible element box
by adding the inset keyword to the rule. This makes it look like the ele-
ment is pressed into the screen (FIGURE 14-22).

box-shadow: inset 6px 6px 5px gray;

FIGURE 14-22.   An inset box shadow renders on the inside of the element box.

As for text-shadow, you can specify multiple box shadows on an element by
providing the values in a comma-separated list. The values that come first get
placed on top, and subsequent shadows are placed behind it in the order in
which they appear in the list.

A

B

C

FIGURE 14-21.   Adding drop
shadows around an element with the
box-shadow property.

WARNING

Box shadows, text shadows, and gra-
dients take a lot of processor power
because you are shifting the burden of
interpreting and rendering them onto
the browser. The more you use, the slow-
er performance will be, and as we all
know, performance is everything on the
web. So go easy on them.

14. Thinking Inside the Box

Box Drop Shadows

383

TEST YOURSELF

At this point, you should have a good feel for element boxes and how to
manipulate the space within and around them. In the next chapter, we’ll start
moving the boxes around on the page, but first, why not get some practice at
writing rules for padding, borders, and margins in the following test?

In this test, your task is to write the declarations that create the effects shown
in each example in FIGURE 14-23 (see Useful Hints). All the paragraphs shown
here share a rule that sets the dimensions and the background color for each
paragraph. You just need to provide the box-related property declarations.
Answers, as always, appear in Appendix A.

A.	

B.	

C.	

D.	

E.	

F.	

CSS REVIEW: BOX PROPERTIES

Property Description

border A shorthand property that combines border properties

border-top
border-right
border-bottom
border-left

Combines border properties for each side of the element

border-color Shorthand property for specifying the color of borders

border-top-color
border-right-color
border-bottom-color
border-left-color

Specifies the border color for each side of the element

border-image Adds an image inside the border area

border-image-outset How far the border image should be positioned away from the border area.

border-image-repeat The manner in which the image fills the sides of the border

border-image-slice The points at which the border image should be divided into corners and sides

border-image-source The location of the image file to be used for the border image

US E F U L H I N TS

•	 Outer margin edges are indicated
by dotted blue lines.

•	 All necessary measurements are
provided in blue.

•	 Borders are either black or red.

Table continues...

Part III. CSS for Presentation

Test Yourself

384

p { background-color: #C2F670;
 width: 200px;
 height: 200px;}

2 em

2 em

2
em

2
em

2 em

2 em

2
em

2
em

4 pixels 4 pixels

2 em

2 em

2
em

2
em

1 em

1 em

50
 p

ix
el

50
 p

ix
el

2 pixels

(Same amount of
margin on le�
and right sides)

(Same amount of
margin on le�
and right sides)

A

C

4 pixels

1 em
1 em

1 em
1 em

6 em 6 em 1
em 6 em

F

D E

B

All of the samples in
this exercise start
out styled as shown
here and share the
properties listed
below.

FIGURE 14-23.   Write the declarations for these examples.

14. Thinking Inside the Box

CSS Review: Box Properties

385

Property Description

border-image-width The width of the space the border image should occupy

border-radius Shorthand property for rounding the corners of the visible element box

border-top-left-radius
border-top-right-radius
border-bottom-right-radius border-
bottom-left-radius

Specifies the radius curve for each individual corner

border-style Shorthand property for specifying the style of borders

border-top-style
border-right-style
border-bottom-style
border-left-style

Specifies the border style for each side of the element

border-width Shorthand property for specifying the width of borders

border-top-width
border-right-width
border-bottom-width
border-left-width

Specifies the border width for each side of the element

box-sizing Specifies whether width and height dimensions apply to the content box or the
border box

box-shadow Adds a drop shadow around the visible element box

display Defines the type of element box an element generates

height Specifies the height of the element’s content box or border box

margin Shorthand property for specifying margin space around an element

margin-top
margin-right
margin-bottom
margin-left

Specifies the margin amount for each side of the element

max-height Specifies the maximum height of an element

max-width Specifies the maximum width of an element

min-height Specifies the minimum height of an element

min-width Specifies the minimum width of an element

outline Shorthand property for adding an outline around an element

outline-color Sets the color of the outline

outline-offset Sets space between an outline and the outer edge of the border

outline-style Sets the style of the outline

outline-width Sets the width of the outline

overflow Specifies how to handle content that doesn’t fit in the content area

padding Shorthand property for specifying space between the content area and the border

padding-top
padding-right
padding-bottom
padding-left

Specifies the padding amount for each side of the element

width Specifies the width of an element’s content box or border box

Part III. CSS for Presentation

CSS Review: Box Properties

386

IN THIS CHAPTER

Floating elements to the
left and right

Clearing floated elements

Containing floated elements

Creating text-wrap shapes

Relative positioning

Absolute positioning and
containing blocks

Fixed positioning

At this point, you’ve learned dozens of CSS properties that let you change
the appearance of text elements and the boxes they generate. But so far, we’ve
merely been formatting elements as they appear in the flow of the document.

In this chapter, we’ll look at floating and positioning, the CSS methods
for breaking out of the normal flow and arranging elements on the page.
Floating an element moves it to the left or right and allows the following text
to wrap around it. Positioning is a way to specify the location of an element
anywhere on the page with pixel precision.

Before we start moving elements around, let’s be sure we are well acquainted
with how they behave in the normal flow.

NORMAL FLOW

We’ve covered the normal flow in previous chapters, but it’s worth a refresher.
In the CSS layout model, text elements are laid out from top to bottom in the
order in which they appear in the source, and from left to right in left-to-right
reading languages (see Note). Block elements stack up on top of one another
and fill the available width of the browser window or other containing ele-
ment. Inline elements and text characters line up next to one another to fill
the block elements.

When the window or containing element resizes, the block elements expand
or contract to the new width, and the inline content reflows to fit as shown
in FIGURE 15-1.

Objects in the normal flow affect the layout of the objects around them. This
is the behavior you’ve come to expect in web pages—elements don’t overlap
or bunch up. They make room for one another.

FLOATING AND
POSITIONING

15
CHAPTER

NOTE

For right-to-left reading languages such
as Arabic and Hebrew, the normal flow is
top to bottom and right to left.

387

a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e f g h i j k l
m n o p q r s t u v
w x y z

<p>

<h1>

<p>

<p>

<p>

<h1>

<p>

<p>

Blocks are laid out in
the order in which
they appear in the
source.

Each block starts on a
new line.

Inline content reflows to fit the width of the block.

Blocks fill the available width.

FIGURE 15-1.   One more example of the normal flow behavior.

We’ve seen all of this before, but in this chapter we’ll be paying attention to
whether elements are in the flow or removed from the flow. Floating and
positioning change the relationship of elements to the normal flow in dif-
ferent ways. Let’s first look at the special behavior of floated elements (or
“floats” for short).

FLOATING

Simply stated, the float property moves an element as far as possible to the
left or right, allowing the following content to wrap around it. It is a unique
feature built into CSS with some interesting behaviors.

float

Values: 	 left | right | none

Default: 	 none

Applies to: 	 all elements

Inherits: 	 no

The best way to explain floating is to demonstrate it. In this example, the
float property is applied to an img element to float it to the right. FIGURE

15-2 shows how the paragraph and the contained image are rendered by
default (top) and how it looks when the float property is applied (bottom).

THE MARKUP

<p> After the cream is frozen rather
stiff,…

THE STYLES

img {
 float: right;
}

Floating an element
moves it to the left or
right and allows the
following text to wrap
around it.

Part III. CSS for Presentation

Floating

388

Inline image in the normal flow Space next to image is held clear

Image moves over, and text
wraps around itInline image floated to the right

FIGURE 15-2.   The layout of an image in the normal flow (top), and with the float
property applied (bottom).

That’s a nice effect. We’ve gotten rid of a lot of wasted space on the page, but
now the text is bumping right up against the image. How do you think you
would add some space between the image element and the surrounding text?
If you guessed “add a margin,” you’re absolutely right. I’ll add 1em of space on
all sides of the image with the margin property (FIGURE 15-3). You can begin
to see how the box properties work together to improve page layout.

img {
 float: right;
 margin: 1em;
}

Indicates outer margin edge
(dotted line does not appear in the browser)

FIGURE 15-3.   Adding a 1em margin around the floated image.

15. Floating and Positioning

Floating

389

The previous two figures demonstrate some key behaviors of floated elements:

A floated element is like an island in a stream.

First and foremost, you can see that the image is removed from its posi-
tion in the normal flow yet continues to influence the surrounding
content. The subsequent paragraph text reflows to make room for the
floated img element. One popular analogy compares floats to islands in a
stream—they are not in the flow, but the stream has to flow around them.
This behavior is unique to floated elements.

Floats stay in the content area of the containing element.

It is also important to note that the floated image is placed within the
content area (the inner edges) of the paragraph that contains it. It does
not extend into the padding area of the paragraph.

Margins are maintained.

In addition, margins are held on all sides of the floated image, as indicated
in FIGURE 15-3 by the dotted line. In other words, the entire element box,
from outer edge to outer edge, is floated.

Floating Inline and Block elements
Those are the basics, so now let’s look at more examples and explore addi-
tional floating behaviors. It is possible to float any HTML element, both
inline and block-level, as we’ll see in the following examples.

Floating an inline text element
In the previous example, we floated an inline image element. This time, let’s
look at what happens when you float an inline text (non-replaced) element—
in this case, a span of text (FIGURE 15-4).

THE MARKUP

<p>TIP: Make sure that your packing tub or bucket
has a hole below the top of the mold so the water will drain
off.After the cream is frozen rather stiff, prepare a tub or
bucket of…</p>

THE STYLES

span.tip {
 float: right;
 margin: 1em;
 width: 200px;
 color: #fff;
 background-color: lightseagreen;
 padding: 1em;
}

Part III. CSS for Presentation

Floating

390

FIGURE 15-4.  Floating an inline text (non-replaced) element.

At a glance, it is behaving the same as the floated image, which is what we’d
expect. But there are some subtle things at work here that bear pointing out:

Always provide a width for floated text elements.

First, you’ll notice that the style rule that floats the span includes the
width property. It is necessary to specify a width for a floated text element
because without one, its box is sized wide enough to fit its content (auto).
For short phrases that are narrower than the container, that might not be
an issue. However, for longer, wrapped text, the box expands to the width
of the container, making it so wide that there wouldn’t be room to wrap
anything around it. Images have an inherent width, so we didn’t need to
specify a width in the previous example (although we certainly could have).

Floated inline elements behave as block elements.

Notice that the margin is held on all four sides of the floated span text,
even though top and bottom margins are usually not rendered on inline
elements (see FIGURE 14-20 in the previous chapter). That is because all
floated elements behave like block elements. Once you float an inline
element, it follows the display rules for block-level elements, and margins
are rendered on all four sides.

Margins on floated elements do not collapse.

In the normal flow, abutting top and bottom margins collapse (overlap),
but margins for floated elements are maintained on all sides as specified.

Floating block elements
Let’s look at what happens when you float a block within the normal flow.
In this example, the whole second paragraph element is floated to the left
(FIGURE 15-5).

THE MARKUP

<p>If you wish to pack ice cream...</p>
<p id="float">After the ice cream is rather stiff,...</p>
<p>Make sure that your packing tub or bucket...</p>
<p>As cold water is warmer than the ordinary...</p>

It is necessary to specify
the width for floated text
elements.

15. Floating and Positioning

Floating

391

THE STYLES

p { 	
 border: 2px red solid;
}

#float { 	
 float: left;
 width: 300px;
 margin: 1em;
 background: white;
}

FIGURE 15-5.   Floating a block-level element.

I’ve added a red border around all p elements to reveal their boundaries.
In addition, I’ve made the background of the floated paragraph white so it
stands out and added a 1em margin on all sides (indicated with a blue dotted
line). The bottom view in FIGURE 15-5 shows how it looks with all the extra
stuff turned off, as it would more likely appear on a real page.

Just as we saw with the image, the paragraph moves off to the side (left this
time), and the following content wraps around it, even though blocks nor-
mally stack on top of one another. There are a few things I want to point out
in this example:

Part III. CSS for Presentation

Floating

392

You must provide a width for floated block elements.

If you do not provide a width value, the width of the floated block will be
set to auto, which fills the available width of the browser window or other
containing element. There’s not much sense in having a full-width floated
box, because the idea is to wrap text next to the float, not start below it.

Elements do not float higher than their reference in the source.

A floated block will float to the left or right relative to where it occurs in
the source, allowing the following elements in the flow to wrap around
it. It stays below any block elements that precede it in the flow (in effect,
it is “blocked” by them). That means you can’t float an element up to the
top corner of a page, even if its nearest ancestor is the body element. If you
want a floated element to start at the top of the page, it must appear first
in the document source (see Note).

Non-floated elements maintain the normal flow.

The red borders in the top image reveal that the element boxes for the
surrounding paragraphs still extend the full width of the normal flow.
Only the content of those elements wraps around the float. This is a good
model to keep in mind.

For example, adding a left margin to the surrounding paragraphs would
add space on the left edge of the page, not between the text and the
floated element. If you want space between the float and the wrapped
text, you need to apply the margin to the float itself.

Clearing Floated Elements
If you’re going to be floating elements around, it’s important to know how
to turn the text wrapping off and get back to normal flow as usual. You do
this by clearing the element that you want to start below the float. Applying
the clear property to an element prevents it from appearing next to a floated
element and forces it to start against the next available “clear” space below
the float.

clear

Values: 	 left | right | both | none

Default: 	 none

Applies to: 	 block-level elements only

Inherits: 	 no

Keep in mind that you apply the clear property to the element you want
to start below the floated element, not the floated element itself. The left
value starts the element below any elements that have been floated to the
left. Similarly, the right value makes the element clear all floats on the right
edge of the containing block. If there are multiple floated elements, and you

NOTE

Absolute positioning is the CSS method
for placing elements on a page regard-
less of how they appear in the source.
We’ll get to absolute positioning later
in this chapter. You can also change
the order in which elements display by
using Flexbox and Grid as discussed in
Chapter 16, CSS Layout with Flexbox
and Grid.

15. Floating and Positioning

Floating

393

want to be sure an element starts below all of them, use the both value to
clear floats on both sides.

In this example, the clear property has been used to make h2 elements start
below left-floated elements. FIGURE 15-6 shows how the h2 heading starts at
the next available clear edge below the float.

img {
 float: left;
 margin-right: .5em;
}
h2 {
 clear: left;
 margin-top: 2em;
}

FIGURE 15-6.  Clearing a left-floated element.

Notice in FIGURE 15-6 that although there is a 2em top margin applied to
the h2 element, it is not rendered between the heading and the floated image.
That’s the result of collapsing vertical margins in the flow. If you want to
make sure space is held between a float and the following text, apply a bot-
tom margin to the floated element itself.

By now you have enough float know-how to give it a try in EXERCISE 15-1.

Floating Multiple Elements
It’s perfectly fine to float multiple elements on a page or even within a single
element. In fact, for years, floats have been the primary method for lining
up elements like navigation menus and even for creating whole page layouts
(please take time to read the sidebar “Float-Based Layouts”).

When you float multiple elements, there is a complex system of behind-the-
scenes rendering rules that ensures floated elements do not overlap. You can
consult the CSS specification for details, but the upshot of it is that floated
elements will be placed as far left or right (as specified) and as high up as
space allows.

Float-Based Layouts
Curiously, there were no tools for
true page layout in CSS1 or CSS2.
Some clever designers realized we
could use the CSS float behavior to
line up elements horizontally, and
floats started being used to turn lists
into navigation bars and even turn
whole sections of a document into
columned layouts.

Float-based layouts are still prevalent
on the web as I write this, but now
that better CSS layout tools like
Flexbox and Grid are gaining browser
support, we are recognizing our float-
based layouts for the hacks they are.
Float-based layouts will eventually
vanish like the table-based layouts of
the 1990s.

That said, we are in a time of
transition. Not all browsers in use
today support newer standards like
Flexbox and Grid, so depending on the
browsers you need to support, you
may still need to provide a fallback
design that is universally supported.
Floats will get the job done.

If you need to support older browsers
that do not support Flexbox and
Grid, you can download my article
“Page Layout with Floats and
Positioning” (PDF), which is
available at learningwebdesign.
com/articles/. It contains lessons on
how to create navigation bars with
floats and a number of templates for
creating multicolumn layouts with
floats and positioning. You may never
need to know these techniques, but
the information is there if you do.

Part III. CSS for Presentation

Floating

394

EXERCISE 15-1.  Floating images

In the exercises in this chapter, we’ll make further improvements to
the Black Goose Bakery home page that we worked on in Chapter
14, Thinking Inside the Box. If you did not follow along in the
last chapter, or if you would just like a fresh start, there is a copy
of the document in its most recent state (bakery_ch15.html) in the
Chapter 15 materials (learningwebdesign.com/5e/materials).

1.	 Open the CSS file in a text editor and the HTML document in
the browser. We’ll start by removing wasted vertical space next
to the baked good images by floating those images to the left.
We’ll create a new style rule with a contextual selector to target
only the images in the main section:

main img {
 float: left;
}

Save the CSS file and refresh the page in the browser, and you’ll
see that we have some post-float tidying up to do.

2.	 I want the “Learn more” links to always appear below the
images so they are clearly visible and consistently on the left
side of the page. Fortunately, the paragraphs with those links are
marked up with the class “more” and there is already a style rule
for them using a class selector. Make those paragraphs clear any
floats on the left edge.

p.more {
 …
 clear: left;
}

3.	 Lastly, we’ll adjust the spacing around the floated images. Give
both images a 1em margin on the right and bottom sides by
using the shorthand margin property:

main img {
 float: left;
 margin: 0 1em 1em 0;
}

I feel like the muffin image could use extra space on the left
side so it lines up better with the bread. Use this nifty attribute
selector to grab any image whose src attribute contains the
word muffin (there’s only one):

img[src*="muffin"] { 	
 margin-left: 50px;
}

FIGURE 15-7 shows the new and improved “Fresh from the Oven”
section.

FIGURE 15-7.   The product section with floated images and wrapped text has less
wasted space.

15. Floating and Positioning

Floating

395

http://www.learningwebdesign.com/5e/materials

FIGURE 15-8 shows what happens when a series of sequential paragraphs is
floated to the same side. The first three floats start stacking up from the left
edge, but when there isn’t enough room for the fourth, it moves down and to
the left until it bumps into something—in this case, the edge of the browser
window. However, if one of the floats, such as P2, had been very long, it would
have bumped up against the edge of the long float instead. Notice that the
next paragraph in the normal flow (P6) starts wrapping at the highest point
it can find, just below P1.

Elements �oated to the
same side line up.

If there is not enough
room, subsequent
elements move down
and as far left as possible.

FIGURE 15-8.  Multiple floated elements line up and do not overlap.

THE MARKUP

<p>[PARAGRAPH 1] ONCE upon a time…</p>
<p class="float">[P2]…</p>
<p class="float">[P3]…</p>
<p class="float">[P4]…</p>
<p class="float">[P5]…</p>
<p>[P6]…</p>
<p>[P7]…</p>
<p>[P8]…</p>
<p>[P9]…</p>
<p>[P10]…</p>

THE STYLES

p.float {
 float: left;
 width: 200px;
 margin: 0px;
 background: #F2F5d5;
 color: #DAEAB1;
}

Part III. CSS for Presentation

Floating

396

Containing Floats
This is a good time to address a quirky float behavior: float containment. By
default, floats are designed to hang out of the element they are contained in.
That’s just fine for allowing text to flow around a floated image, but some-
times it can cause some unwanted behaviors.

Take a look at the example in FIGURE 15-9. It would be nicer if the border
expanded around all the content, but the floated image hangs out the bottom.

FIGURE 15-9.   The containing element does not expand to accommodate the floated
image as indicated by its blue border.

If you float all the elements in a container element, there
will be no elements remaining in the flow to hold the
containing element open. This phenomenon is illustrated
in FIGURE 15-10. The #container div contains two para-
graphs. The view of the normal flow (top) shows that the
#container has a background color and border that wraps
around the content.

<div id="container">
 <p>…</p>
 <p>…</p>
</div>

#container {
 background: #f2f5d5;
 border: 2px dashed green;
}

However, when both paragraphs (that is, all of the content
within the div) are floated, as shown in the figure on the
bottom), the element box for the #container closes up to
a height of zero, leaving the floats hanging down below
(you can still see the empty border at the top). There’s no
content left in the normal flow to give the containing div
height. This clearly is not the effect we are after.

p {
 float: left;
 width: 44%;
 padding: 2%;
}

In the normal flow, the container div encloses
the paragraphs.

When both paragraphs are floated, the container
does not stretch around them.

FIGURE 15-10.   The container box disappears entirely
when all its contents are floated.

15. Floating and Positioning

Floating

397

Fortunately, there are a few fixes to this problem, and they are pretty straight-
forward. The most popular and foolproof solution is the “clearfix” technique.
It uses the :after pseudo-element to insert a character space after the con-
tainer, set its display to “block,” and clear it on both sides. For more informa-
tion on this version of clearfix, see Thierry Koblentz’s article “The very latest
clearfix reloaded” (cssmojo.com/the-very-latest-clearfix-reloaded). Here it is
applied to the #container div in FIGURE 15-10:

#container:after {
 content: " ";
 display: block;
 clear: both;
 background-color: #f2f5d5; /*light green*/
 border: 2px dashed green;
 padding: 1em;
 }

Another option is to float the containing element as well and give it a width
of 100%:

#container {
 float: left;
 width: 100%;
 …
 }

FIGURE 15-11 shows the result of applying a containment technique to the
previous examples. Either will do the trick.

FIGURE 15-11.   Our hanging floats are now contained.

That covers the fundamentals of floating. If you are thinking that rectangular
text wraps are a little ho-hum, you could add some pizzazz (or just eliminate
extra whitespace) by using CSS Shapes.

The Future of Clearfix
A new display value, flow-root, may
make the clearfix hack obsolete once
and for all. Setting the display of
a container element to flow-root
makes the element automatically
expand to contain its floats. As of this
writing, it is still in an experimental
phase, but it’s worth keeping an eye
on. A potential disadvantage is that it
disables collapsing margins between
the element and its first/last child,
which can produce unpredictable
results. You can read more about
the flow-root method in Rachel
Andrew’s post “The end of the
clearfix hack?” (rachelandrew.co.uk/
archives/2017/01/24/the-end-of-the-
clearfix-hack).

Part III. CSS for Presentation

Floating

398

FANCY TEXT WRAP WITH CSS SHAPES

Look at the previous float examples, and you will see that the text always
wraps in a rectangular shape around a floated image or element box.
However, you can change the shape of the wrapped text to a circle, ellipse,
polygon, or any image shape by using the shape-outside property. This is an
up-and-coming CSS feature, so be sure to check the Browser Support Note.
Following is a quick introduction to CSS Shapes, which should inspire and
prepare you for more exploration on your own.

shape-outside

Values: 	 none | circle() | ellipse() | polygon() | url() |
[margin-box | padding-box | content-box]

Default: 	 none

Applies to: 	 floats

Inherits: 	 no

FIGURE 15-12 shows the default text wrap around a floated image (left) and
the same wrap with shape-outside applied (right). This is the kind of thing
you’d expect to see in a print magazine, but now we can do it on the web!

It is worth noting that you can change the text wrap shape around any floated
element (see Note), but I will focus on images in this discussion, as text ele-
ments are generally boxes that fit nicely in the default rectangular wrap.

There are two approaches to making text wrap around a shape. One way is
to provide the path coordinates of the wrap shape with circle(), ellipse(),
or polygon(). Another way is to use url() to specify an image that has trans-
parent areas (such as a GIF or a PNG). With the image method, text flows
into the transparent areas of the image and stops at the opaque areas. This is
the shape method shown in FIGURE 15-12 and the method I’ll introduce first.

Default text wrap Text wrap with shape-outside using the
transparent areas of the image as a guide

FIGURE 15-12.   Example of text wrapping around an image with shape-outside.

BROWSER SUPPORT NOTE

As of this writing in 2018, text wrap
shapes are supported only by Chrome
37+, Opera 24+, Safari 7.1+ (with pre-
fix; without starting in 10.1), iOS Safari
8+ (with prefix; without in 10.3+), and
Android 56+. The feature is under consid-
eration at Microsoft Edge and in develop-
ment at Firefox, so the support situation
may be better by the time you are read-
ing this. Check CanIUse.com for the cur-
rent state of support.

For the time being, feel free to use it as a
progressive enhancement for designs in
which a rectangular text wrap would be
perfectly acceptable. Another alternative
is to use a feature query (@supports)
to serve a fallback set of styles to non-
supporting browsers. Feature queries
are introduced in Chapter 19, More CSS
Techniques.

NOTE

shape-outside works only on floated
elements for now, but it is believed that
this will change in the future.

15. Floating and Positioning

Fancy Text Wrap with CSS Shapes

399

Using a Transparent Image
In the example in FIGURE 15-12, I placed the sundae.png image in the HTML
document to display on the page, and I’ve specified the same image in the
style rule using url() so that its transparent areas define the wrap shape (see
important Warning). It makes sense to use the same image in the document
and for the CSS shape, but it is not required. You could apply a wrap shape
derived from one image to another image on the page.

THE MARKUP

<p> In places…</p>

THE STYLES

img.wrap {
 float: left;
 width: 300px;
 height: 300px;
 -webkit-shape-outside: url(sundae.png); /* prefix required in 2018 */
 shape-outside: url(sundae.png);

Notice that the wrapped text is now bumping right into the image. How
about we give it a little extra space with shape-margin?

shape-margin

Values: 	 length | percentage

Default: 	 0

Applies to: 	 floats

Inherits: 	 no

The shape-margin property specifies an amount of space to hold between the
shape and the wrapped text. In FIGURE 15-13, you can see the effect of adding
1em of space between the opaque image areas and the wrapped text lines. It
gives it a little breathing room the way any good margin should.

-webkit-shape-margin: 1em;
shape-margin: 1em;

FIGURE 15-13.   Adding a margin between the shape and the wrapped text.

WARNIN G

There is a security setting in Chrome
and Opera that makes image-based text
wraps a little tricky to use. Without get-
ting into too much sys-admin detail, the
browser restricts the use of the image
used to create the CSS shape if it isn’t on
the same domain as the file requesting it.
This is not a bug; they are following the
rules set out in the specification.

The rule also means that compliant
browsers won’t allow images to be used
for shapes when the files are served
locally (i.e., on your computer). They need
to be uploaded to a server to work, which
makes the design process a little more
cumbersome, especially for beginners.

If you use image-based text wraps,
you know your CSS is written correctly,
but you aren’t seeing wrapping in the
browser, this security setting (related to
Cross-Origin Resource Sharing, or CORS,
if you’re curious) is probably the culprit.

Opacity Threshold
If you have a source image with
multiple levels of transparency, such
as the gradient shadow, the shape-
image-threshold property allows
text to creep into the image but
stop when it encounters a specific
transparency level. The value of this
property is a number between 0
and 1, representing a percentage of
transparency. For example, if you set
the threshold to .2, text will wrap into
areas that are up to 20% transparent,
but stop when it gets to more opaque
levels.

Part III. CSS for Presentation

Fancy Text Wrap with CSS Shapes

400

Using a Path
The other method for creating a text wrap shape is to define it using one of
the path keywords: circle(), ellipse(), and polygon().

The circle() notation creates a circle shape for the text to wrap around. The
value provided within the parentheses represents the length of the radius of
the circle:

circle(radius)

In this example, the radius is 150px, half of the image width of 300 pixels. By
default, the circle is centered vertically and horizontally on the float:

img.round {
 float: left;
 -webkit-shape-outside: circle(150px);
 shape-outside: circle(150px);
}

FIGURE 15-14 shows this style rule applied to different images. Notice that the
transparency of the image is not at play here. It’s just a path overlaid on the
image that sets the boundaries for text wrap. Any path can be applied to any
image or other floated element.

FIGURE 15-14.   The same circle() shape applied to different images in the source.

This is a good point to demonstrate a critical behavior of wrap shapes. They
allow text to flow into the floated image or element, but they cannot hold
space free beyond it.

In the example in FIGURE 15-15, I’ve increased the diameter of the circle path
from 150px to 200px. Notice that the text lines up along the right edge of the
image, even though the circle is set 50 pixels beyond the edge. The path does
not push text away from the float. If you need to keep wrapped text away
from the outside edge of the floated image or element, apply a margin to the
element itself (it will be the standard rectangular shape, of course).

15. Floating and Positioning

Fancy Text Wrap with CSS Shapes

401

img.round {
 float: left;
 -webkit-shape-outside: circle(200px);
 shape-outside: circle(200px);
}

200px radius

FIGURE 15-15.   CSS shapes allow text to wrap into the floated element but do not
hold space beyond it.

Elliptical shapes are created with the ellipse() notation, which provides the
horizontal and vertical radius lengths followed by the word at and then the
x,y coordinates for the center of the shape. Here is the syntax:

ellipse(rx ry at x y);

The position coordinates can be listed as a specific measurement or a per-
centage. Here I’ve created an ellipse with a 100-pixel horizontal radius and
a 150-pixel vertical radius, centered in the floated element it is applied to
(FIGURE 15-16):

img.round {
 float: left;
 -webkit-shape-outside: ellipse(200px 100px at 50% 50%);
 shape-outside: ellipse(200px 100px at 50% 50%);
}

The edges of the image (blue) and
ellipse path (dotted orange) revealed

FIGURE 15-16.   An elliptical text wrap created with ellipse().

A CSS shape allows
text to wrap into floated
elements, but does not
push text away from
them.

Part III. CSS for Presentation

Fancy Text Wrap with CSS Shapes

402

Finally, we come to polygon(), which lets you create a custom path using a
series of comma-separated x,y coordinates along the path. This style rule cre-
ates the wrap effect shown in FIGURE 15-17:

img.wrap {
 float: left;
 width: 300px;
 height: 300px;
 shape-outside: polygon(0px 0px, 186px 0px, 225px 34px, 300px 34px,
300px 66px, 255px 88px, 267px 127px, 246px 178px, 192px 211px, 226px
236px, 226px 273px, 209px 300px, 0px 300px);
}

The edges of the image (blue) and
polygon path (dotted orange) revealed

FIGURE 15-17.   A custom path created with polygon().

Holy coordinates! That’s a lot of numbers, and my path was fairly simple. I’d
like to be able to point you to a great tool for drawing and exporting polygon
paths, but sadly, as of this writing I have none to recommend (see Note). I got
the coordinates for my polygon examples by opening the image in Photoshop
and gathering them manually, which, although possible, is not ideal.

CSS Shapes Resources
There are some finer points regarding CSS Shapes that I must leave to you to
research further. Here are a few resources to get you started:

•	 CSS Shapes Module, Level 1 (www.w3.org/TR/css-shapes-1/)

•	 “Getting Started with CSS Shapes” by Razvan Caliman (www.html5rocks.
com/en/tutorials/shapes/getting-started)

•	 CSS Shapes at the Experimental Layout Lab of Jen Simmons (labs.jensim-
mons.com/#shapes)

•	 “A Redesign with CSS Shapes” by Eric Meyer (alistapart.com/article/
redesign-with-css-shapes)

Why don’t we make the text wrap around the images in the Black Goose
Bakery page in a more interesting way for users with browsers that support
it (EXERCISE 15-2)?

NOTE

A CSS Shapes Editor will be included in
a future version of Firefox that will likely
be available by the time you are read-
ing this (developer.mozilla.org/en-US/
docs/Tools/Page_Inspector/How_to/
Edit_CSS_shapes).

W E B S E AR C H T I P

If you search for “CSS Shapes” you
will certainly come across that term
used for a technique that uses CSS
to draw geometric shapes such as
triangles, arrows, circles, and so on.
It’s a little confusing, although those
other “CSS shapes” are pretty nifty
and something you might want to
tinker with. I introduce them briefly in
Chapter 23, Web Image Basics.

15. Floating and Positioning

Fancy Text Wrap with CSS Shapes

403

http://www.w3.org/TR/css-shapes-1/
http://www.html5rocks.com/en/tutorials/shapes/getting-started
http://www.html5rocks.com/en/tutorials/shapes/getting-started

EXERCISE 15-2.  Adding shapes around floats

The bread and muffin images on the Black Goose Bakery page
provide a nice opportunity to try out CSS Shapes. You will need
to use a supporting browser such as a recent version of Chrome,
Safari, or Opera to see the wrapping effect.

Open the latest version of the bakery style sheet and look for the
section labeled /* main "products" styles */. We’ll put the
image wrap styles there to keep our style sheet organized.

Target each image individually using an attribute selector (there is
one set up for “muffin” already). Start out simply and make the text
wrap around a circle. Set the radius of the circle to 125px for the
bread image and 110px for the muffin.

img[src*="bread"] {
 -webkit-shape-outside: circle(125px);
 shape-outside: circle(125px);
}
img[src*="muffin"] {
 margin-left: 50px;
 -webkit-shape-outside: circle(110px);
 shape-outside: circle(110px);
}

Save the styles and take a look at the page in a supporting
browser. The circles look pretty good, but I think I could improve
the wrap around the bread by making it an ellipse. Add these

after the circle declarations, and the ellipse wrap will override the
previous styles (or delete and replace):

img[src*="bread"] {
 -webkit-shape-outside: ellipse(130px 95px at 50%
50%);
 shape-outside: ellipse(130px 95px at 50% 50%);
}

If you’re feeling ambitious, you could add a polygon wrap shape
around the muffin image instead of the circle. You’ll need to copy
these coordinates or just copy and paste from the finished exercise
provided in the materials for this chapter. Or just stick with the
circle, and nobody will judge you.

img[src*="muffin"] {
…
shape-outside: polygon(0px 0px, 197px 0px, 241px
31px, 241px 68px, 226px 82px, 219px 131px, 250px
142px, 250px 158px, 0px 158px);
}

The final result is shown in FIGURE 15-18. It is most apparent
when the browser window is sufficiently narrow that enough lines
wrap to reveal the shape. For browsers that don’t support shapes,
the rectangular whitespace is just fine.

FIGURE 15-18.   The bakery page with text wrapping around images in an ellipse
(bread) and polygon (muffin) using CSS Shapes.

Part III. CSS for Presentation

Fancy Text Wrap with CSS Shapes

404

Well, that covers floating! You’ve learned how to float elements left and right,
clear the following elements so they start below the floats, and even make
fancy text wrapping shapes. Now let’s move on to the other approach to mov-
ing elements around on the page—positioning.

POSITIONING BASICS

CSS provides several methods for positioning elements on the page. They can
be positioned relative to where they would normally appear in the flow, or
removed from the flow altogether and placed at a particular spot on the page.
You can also position an element relative to the viewport, and it will stay put
while the rest of the page scrolls.

Types of Positioning

position

Values: 	 static | relative | absolute | fixed

Default: 	 static

Applies to: 	 all elements

Inherits: 	 no

The position property indicates that an element is to be positioned and
specifies which positioning method to use. I’ll introduce each keyword value
briefly here, and then we’ll take a more detailed look at each method in the
remainder of this chapter.

static

This is the normal positioning scheme in which elements are positioned
as they occur in the normal document flow.

relative

Relative positioning moves the element box relative to its original posi-
tion in the flow. The distinctive behavior of relative positioning is that the
space the element would have occupied in the normal flow is preserved as
empty space.

absolute

Absolutely positioned elements are removed from the document flow
entirely and positioned with respect to the viewport or a containing ele-
ment (we’ll talk more about this later). Unlike relatively positioned ele-
ments, the space they would have occupied is closed up. In fact, they have
no influence at all on the layout of surrounding elements.

T E R M I N O LO GY

Viewport
I’ll be sticking with the more formal
term viewport throughout the
positioning discussions, but keep in
mind it could be a browser window
on a desktop computer, the full
screen of a mobile device, or the
frame of an iframe element from the
perspective of the web page loaded
in that frame. It is any space that
visually displays a web page.

15. Floating and Positioning

Positioning Basics

405

fixed

The distinguishing characteristic of fixed positioning is that the element
stays in one position in the viewport even when the document scrolls.
Fixed elements are removed from the document flow and positioned rela-
tive to the viewport rather than another element in the document.

sticky

Sticky positioning is a combination of relative and fixed in that it behaves
as though it is relatively positioned, until it is scrolled into a specified
position relative to the viewport, at which point it remains fixed.

The MDN Web Docs site has this description for a potential use case:

Sticky positioning is commonly used for the headings in an alphabetized list-
ing. The B heading will appear just below the items that begin with A until
they are scrolled offscreen. Rather than sliding offscreen with the rest of the
content, the B heading will then remain fixed to the top of the viewport until
all the B items have scrolled offscreen, at which point it will be covered up
by the C heading.

The sticky position value is supported by current versions of Chrome,
Firefox, Opera, MS Edge, Android, as well as Safari and iOS Safari with
the -webkit- prefix. No version of IE supports it. Happily, sticky posi-
tioning degrades gracefully, as the element simply stays inline and scrolls
with the document if it is not supported.

Each positioning method has its purpose, but absolute positioning is the
most versatile. With absolute positioning, you can place an object anywhere
in the viewport or within another element. Absolute positioning has been
used to create multicolumn layouts, but it is more commonly used for small
tasks, like positioning a search box in the top corner of a header. It’s a handy
tool when used carefully and sparingly.

Specifying Position
Once you’ve established the positioning method, the actual position is speci-
fied with some combination of up to four offset properties.

top, right, bottom, left

Values: 	 length | percentage | auto

Default: 	 auto

Applies to: 	 positioned elements (where position value is relative, absolute, or
fixed)

Inherits: 	 no

The value provided for each offset property defines the distance the element
should be moved away from that respective edge. For example, the value of
top defines the distance the top outer edge of the positioned element should
be offset from the top edge of the browser or other containing element. A

Part III. CSS for Presentation

Positioning Basics

406

positive value for top results in the element box moving down by that amount
(see Note). Similarly, a positive value for left would move the positioned ele-
ment to the right (toward the center of the containing block) by that amount.

Further explanations and examples of the offset properties will be provided
in the discussions of each positioning method. We’ll start our exploration of
positioning with the fairly straightforward relative method.

RELATIVE POSITIONING

As mentioned previously, relative positioning moves an element relative to its
original spot in the flow. The space it would have occupied is preserved and
continues to influence the layout of surrounding content. This is easier to
understand with a simple example.

Here I’ve positioned an inline em element. A bright background color on the
em and a border on the containing paragraph make their boundaries appar-
ent. First, I used the position property to set the method to relative, and
then I used the top offset property to move the element 2em down from its
initial position, and the left property to move it 3em to the right. Remember,
offset property values move the element away from the specified edge, so if
you want something to move to the right, as I did here, you use the left offset
property. The results are shown in FIGURE 15-19.

em {
 position: relative;
 top: 2em; /* moves element down */
 left: 3em; /* moves element right */
 background-color: fuchsia;
}

3em

2em

FIGURE 15-19.  When an element is positioned with the relative method, the space it
would have occupied is preserved.

NOTE

Negative values are acceptable and
move the element in the opposite direc-
tion of positive values. For example, a
negative value for top would have the
effect of moving the element up.

When an element is
relatively positioned, the
space it once occupied is
preserved.

15. Floating and Positioning

Relative Positioning

407

I want to point out a few things that are happening here:

The original space in the document flow is preserved.

You can see that there is a blank space where the emphasized text would
have been if the element had not been positioned. The surrounding con-
tent is laid out as though the element were still there, and therefore we say
that the element still “influences” the surrounding content.

Overlap happens.

Because this is a positioned element, it can potentially overlap other ele-
ments, as happens in FIGURE 15-19.

The empty space left behind by relatively positioned objects can be a
little awkward, so this method is not used as often as absolute positioning.
However, relative positioning is commonly used to create a “positioning con-
text” for an absolutely positioned element. Remember that term positioning
context—I’ll explain it in the next section.

ABSOLUTE POSITIONING

Absolute positioning works a bit differently and is a more flexible method for
accurately placing items on the page than relative positioning.

Now that you’ve seen how relative positioning works, let’s take the same
example as shown in FIGURE 15-19, only this time we’ll change the value of
the position property to absolute (FIGURE 15-20):

em {
 position: absolute;
 top: 2em;
 left: 3em;
 background-color: fuchsia;
}

3em

2em

FIGURE 15-20.  When an element is absolutely positioned, it is removed from the
flow and the space is closed up.

Columns with Absolute
Positioning
Like floats, absolute positioning can
be used to create columned layouts.
These days, columned layouts should
be created with CSS Grid, but you
may use positioned columns as a
fallback if you need to support old
browsers that don’t support Grid.

Should you like to learn how
absolute positioning can be used for
whole page layout, I have included
instructions and templates in the
supplemental article “Page Layout
with Floats and Positioning” (PDF),
available at learningwebdesign.com/
articles/.

Part III. CSS for Presentation

Absolute Positioning

408

As you can see in FIGURE 15-20, the space once occupied by the em element
is now closed up, as is the case for all absolutely positioned elements. In its
new position, the element box overlaps the surrounding content. In the end,
absolutely positioned elements have no influence whatsoever on the layout
of surrounding elements.

The most significant difference here, however, is the location of the positioned
element. This time, the offset values position the em element 2em down and
3em to the right of the top-left corner of the viewport (browser window).

But wait—before you start thinking that absolutely positioned elements are
always placed relative to the viewport, I’m afraid that there’s more to it than that.

What actually happens in absolute positioning is that the element is posi-
tioned relative to its nearest containing block. It just so happens that the near-
est containing block in FIGURE 15-20 is the root (html) element, also known
as the initial containing block, so the offset values position the em element
relative to the whole document.

Getting a handle on the containing block concept is the first step to tackling
absolute positioning.

Containing Blocks
The CSS Positioned Layout Module, Level 3, states, “The position and size of
an element’s box(es) are sometimes computed relative to a certain rectangle,
called the containing block of the element.” It is critical to be aware of the
containing block of the element you want to position. We sometimes refer to
this as the positioning context.

The spec lays out a number of intricate rules for determining the containing
block of an element, but it basically boils down to this:

•	 If the positioned element is not contained within another positioned ele-
ment, then it will be placed relative to the initial containing block (created
by the html element).

•	 But if the element has an ancestor (i.e., is contained within an element)
that has its position set to relative, absolute, or fixed, the element will
be positioned relative to the edges of that element instead.

FIGURE 15-20 is an example of the first case: the p element that contains the
absolutely positioned em element is not positioned itself, and there are no
other positioned elements higher in the hierarchy. Therefore, the em element
is positioned relative to the initial containing block, which is equivalent to
the viewport area.

Let’s deliberately turn the p element into a containing block and see what
happens. All we have to do is apply the position property to it; we don’t
have to actually move it. The most common way to make an element into a
containing block is to set its position to relative, but not move it with any

When an element is
absolutely positioned, the
space it once occupied is
closed up.

15. Floating and Positioning

Absolute Positioning

409

offset values. This is what I was talking about earlier when I said that relative
positioning is used to create a positioning context for an absolutely positioned
element.

In this example, we’ll keep the style rule for the em element the same, but
we’ll add a position property to the p element, thus making it the containing
block for the positioned em element. FIGURE 15-21 shows the results.

p {
 position: relative;
 padding: 15px;
 background-color: #F2F5D5;
 border: 2px solid purple;
}

2em

3em

FIGURE 15-21.   The relatively positioned p element acts as a containing block for the
em element.

You can see that the em element is now positioned 2em down and 3em from
the top-left corner of the paragraph box, not the browser window. Notice also
that it is positioned relative to the padding edge of the paragraph (just inside
the border), not the content area edge. This is the normal behavior when
block elements are used as containing blocks (see Note).

I’m going to poke around at this some more to reveal additional aspects of
absolutely positioned objects. This time, I’ve added width and margin proper-
ties to the positioned em element (FIGURE 15-22):

em {
 width: 200px;
 margin: 25px;
 position: absolute;
 top: 2em;
 left: 3em;
 background-color: fuchsia;
}

NOTE

When inline elements are used as con-
taining blocks (and they can be), the
positioned element is placed relative to
the content area edge, not the padding
edge.

Part III. CSS for Presentation

Absolute Positioning

410

3em

25px

2em

FIGURE 15-22.   Adding a width and margins to the positioned element.

Here we can see that:

•	 The offset values apply to the outer edges of the element box (the outer
margin edge) for absolutely positioned elements (see Note).

•	 Absolutely positioned elements always behave as block-level elements.
For example, the margins on all sides are maintained, even though this is
an inline element. It also permits a width to be set for the element.

It is important to keep in mind that once you’ve positioned an element, it
becomes the new containing block for all the elements it contains. Say you
position a narrow div at the top-left corner of a page, creating a column. If
you were to absolutely position an image within that div with offset values
that place it in the top-right corner, it appears in the top-right corner of that
div, not the entire page. Once the parent element is positioned, it acts as the
containing block for the img and any other contained elements.

Specifying Position
Now that you have a better feel for the containing block concept, let’s take
some time to get better acquainted with the offset properties. So far, we’ve
only seen an element moved a few ems down and to the right, but that’s not
all you can do, of course.

Pixel measurements
As mentioned previously, positive offset values push the positioned element
box away from the specified edge and toward the center of the containing
block. If there is no value provided for a side, it is set to auto, and the browser
adds enough space to make the layout work. In this example, div#B is con-
tained within div#A, which has been given the dimensions 600 pixels wide by
300 pixels high. I’ve used pixel lengths for all four offset properties to place

NOTE

For relatively positioned elements, the
offset is measured to the box itself (not
the outer margin edge).

15. Floating and Positioning

Absolute Positioning

411

the positioned element (#B) at a particular spot in its containing element
(#A) (FIGURE 15-23).

THE MARKUP

<div id="A">
 <div id="B"> </div>
</div>

THE STYLES

div#A {
 position: relative; /* creates the containing block */
 width: 600px;
 height: 300px;
 background-color: #C6DE89; /* green */
}

div#B {
 position: absolute;
 top: 25px;
 right: 50px;
 bottom: 75px;
 left: 100px;
 background-color: steelblue;
}

div#B
(calculated at 450 wide x 200px high)

div#A (600px wide x 300px high)

 top: 25px

right:
50px

bottom: 75px

left: 100px

FIGURE 15-23.  Setting offset values for all four sides of a positioned element.

Notice that by setting offsets on all four sides, I have indirectly set the dimen-
sions of the positioned div#B. It fills the 450 × 200 pixel space that is left over
within the containing block after the offset values are applied. If I had also
specified a width and other box properties for div#B, there is the potential for
conflicts if the total of the values for the positioned box and its offsets does
not match the available space within the containing block.

Part III. CSS for Presentation

Absolute Positioning

412

The CSS specification provides a daunting set of rules for handling conflicts,
but the upshot is that you should just be careful not to over-specify box
properties and offsets. In general, a width (factoring in margins as well as
padding and border if you are using the content-box box-sizing model) and
one or two offset properties are all that are necessary to achieve the layout
you’re looking for. Let the browser take care of the remaining calculations.

Percentage values
You can also specify positions with percentage values. In the first example in
FIGURE 15-24, the image is positioned halfway (50%) down the left edge of
the containing block. In the second example on the right, the img element is
positioned so that it always appears in the bottom-right corner of the con-
taining block.

img#A {
 position: absolute;
 top: 50%;
 left: 0%;
}
img#B {
 position: absolute;
 bottom: 0%;
 right: 0%;
}

Although the examples here specify both a vertical and horizontal offset, it
is common to provide just one offset for a positioned element—for example,
to move it left or right into a margin using either left or right properties.

In EXERCISE 15-3, we’ll make further changes to the Black Goose Bakery
home page, this time using absolute positioning.

WARNING

Be careful when positioning elements
at the bottom of the initial containing
block (the html element). Although you
may expect it to be positioned at the bot-
tom of the whole page, browsers actu-
ally place the element at the bottom of
the browser window. Results may be
unpredictable. If you want something
positioned at the bottom of your page,
put it in a containing block element at
the end of the document source, and go
from there.

NOTE

The % symbol could be omitted for a 0
value, which essentially turns it into a 0
length but achieves an equivalent result.

top: 50%

left: 0% bottom: 0%; right: 0%

FIGURE 15-24.   Using percentage values to position an element in a containing block.

15. Floating and Positioning

Absolute Positioning

413

Stacking Order
Before we close the book on absolute positioning, there is one last related
concept that I want to introduce. As we’ve seen, absolutely positioned ele-
ments overlap other elements, so it follows that multiple positioned elements
have the potential to stack up on one another.

By default, elements stack up in the order in which they appear in the docu-
ment, but you can change the stacking order with the z-index property (see
Note). Picture the z-axis as a line that runs perpendicular to the page, as
though from the tip of your nose, through this page, and out the other side.

NOTE

The z-index property is also useful for items in a grid, which also have the potential to
overlap, as discussed in Chapter 16.

EXERCISE 15-3.  Absolute positioning

In this exercise, we’ll use absolute positioning to add an award
graphic to the home page. Open the version of the site you saved
in EXERCISE 15-2.

1.	 Good news! Black Goose Bakery won the Farmers’ Market
Award, and we have the privilege of displaying an award medal
on the home page. Because this is new content, we’ll need to
add it to the markup in bakery.html. Because it is nonessential
information, add the image in a new div in the footer of the
document:

<footer>
 <p>All content copyright © 2017, Black
Goose Bistro.</p>
 <div id="award"><img src="images/award.png"
alt="Farmers' Market Award"></div>
</footer>

2.	 Just because the award is at the end of the source document
doesn’t mean it needs to display there. We can use absolute
positioning to place the award in the top-left corner of the
viewport by adding a new rule to the style sheet that positions
the div, like so (I put mine in the /* misc styles */ section):

#award { 	
 position: absolute; 	
 top: 30px; 	
 left: 50px;
}

Save the document and take a look (FIGURE 15-25). Resize
the browser window very narrow, and you will see that the
positioned award image overlaps the header content. Notice
also that when you scroll the document, the image scrolls
with the rest of the page. Try playing around with other offset
properties to get a feel for positioning in the viewport (or the
“initial containing block” to be precise).

P.S. I know that the navigation list still looks bad, but we’ll fix it
up in Chapter 16.

FIGURE 15-25.  An absolutely positioned award graphic.

Part III. CSS for Presentation

Absolute Positioning

414

z-index

Values: 	 number | auto

Default: 	 auto

Applies to: 	 positioned elements

Inherits: 	 no

The value of the z-index property is a number (positive or negative). The
higher the number, the higher the element will appear in the stack (that is,
closer to your nose). Lower numbers and negative values move the element
lower in the stack. Let’s look at an example to make this clear (FIGURE 15-26).

Here are three paragraph elements, each containing a letter image (A, B, and
C, respectively) that have been absolutely positioned in such a way that they
overlap on the page. By default, paragraph C would appear on top because
it appears last in the source. However, by assigning higher z-index values to
paragraphs A and B, we can force them to stack in our preferred order.

Note that the values of z-index do not need to be sequential, and they do not
relate to anything in particular. All that matters is that higher number values
position the element higher in the stack.

THE MARKUP

<p id="A"></p>
<p id="B"></p>
<p id="C"></p>

THE STYLES

#A {
 z-index: 100;
 position: absolute;
 top: 175px;
 left: 200px;
}

#B {
 z-index: 5;
 position: absolute;
 top: 275px;
 left: 100px;
}

#C {
 z-index: 1;
 position: absolute;
 top: 325px;
 left: 250px;
}

To be honest, the z-index property is not often required for most page lay-
outs, but you should know it’s there if you need it. If you want to guarantee
that a positioned element always ends up on top, assign it a very high z-index
value, such as 100 or 1000. If you want to make sure it’s at the bottom, give it
a negative value. The number itself doesn’t actually matter.

By default, elements later in the
document source order stack on top of
preceding elements.

You can change the stacking order with
the z-index property. Higher values
stack on top of lower values.

z-index: 100

z-index: 1

z-index: 5

FIGURE 15-26.  Changing the stacking order with the z-index property.

15. Floating and Positioning

Absolute Positioning

415

FIXED POSITIONING

We’ve covered relative and absolute positioning, so now it’s time to take on
fixed positioning.

For the most part, fixed positioning works just like absolute positioning. The
significant difference is that the offset values for fixed elements are always
relative to the viewport, which means the positioned element stays put even
when the rest of the page scrolls. By contrast, you may remember that when
you scrolled the Black Goose Bakery page in EXERCISE 15-3, the award
graphic scrolled along with the document—even though it was positioned
relative to the initial containing block (equivalent to the viewport). Not so
with fixed positioning, where the position is, well, fixed.

Fixed elements are often used for menus that stay in the same place at the top,
bottom, or side of a screen so they are always available, even when the content
scrolls (see Warning). Bear in mind that if you fix an element to the bottom of
the viewport, you’ll need to leave enough space at the end of the document
so the content doesn’t get hidden behind the fixed element. Fixed elements
are also problematic when the document is printed because they will print
on every page without reserving any space for themselves. It’s best to turn off
fixed elements when printing the document. (Targeting print with @media is
addressed in Chapter 17, Responsive Web Design.)

Let’s switch the award graphic on the Black Goose Bakery page to a fixed
position in EXERCISE 15-4 to see the difference.

WARNIN G

The position: fixed property causes
some buggy behaviors on old versions of
mobile Safari (5, 6, and 7) and Android
(<4.4). Fortunately, these mobile brows-
ers are nearly obsolete as of this writing,
but it is a reminder to do thorough test-
ing on a range of mobile devices if you
have fixed elements.

EXERCISE 15-4.  Fixed positioning

This should be simple. Open the bakery style sheet as you left it
in EXERCISE 15-3 and edit the style rule for the #award div to
make it fixed rather than absolute:

#award {
 position: fixed;
 top: 30px;
 left: 50px;
 }

Save the styles and open the page in a browser. When you scroll
the page, you will see that the award now stays put where we
positioned it in the browser window (FIGURE 15-27). You can
see that fixed positioned elements have the potential to hide
content as the page scrolls. Test well to see the potential pitfalls
and weigh them against the benefits. FIGURE 15-27.  The award stays in the same place in the

top-left corner of the browser when the document scrolls.

Part III. CSS for Presentation

Fixed Positioning

416

That does it for floating and positioning. In the next chapter, you’ll learn
about flexible boxes and grid layout, which are powerful tools for designing
the overall structure of a page and specific page features. But first, try your
hand at a few questions about floating and positioning.

TEST YOURSELF

Before we move on, take a moment to see how well you absorbed the prin-
ciples in this chapter. You’ll find the answers in Appendix A.

1.	 Which of the following is not true of floated elements?

a.	 All floated elements behave as block elements.

b.	 Floats are positioned against the padding edge of the containing
element.

c.	 The contents of inline elements flow around a float, but the element
box is unchanged.

d.	 You must provide a width property for floated block elements.

2.	 Which of these style rules is incorrect? Why?

a.	 img { float: left; margin: 20px;}

b.	 img { float: right; width: 120px; height: 80px; }

c.	 img { float: right; right: 30px; }

d.	 img { float: left; margin-bottom: 2em; }

3.	 How do you make sure a footer element always starts below any floated
sidebars on the page?

4.	 Write the name of the positioning method or methods (static, relative,
absolute, or fixed) that best matches each of the following descriptions.

a.	 Positions the element relative to a containing block.

b.	 Removes the element from the normal flow.

c.	 Always positions the element relative to the viewport.

d.	 The positioned element may overlap other content.

Continued...

15. Floating and Positioning

Test Yourself

417

e.	 Positions the element in the normal flow.

f.	 The space the element would have occupied in the normal flow is
preserved.

g.	 The space the element would have occupied in the normal flow is
closed up.

h.	 You can change the stacking order with z-index.

i.	 Positions the element relative to its original position in the normal
flow.

CSS REVIEW: FLOATING AND
POSITIONING PROPERTIES

Here is a summary of the properties covered in this chapter.

Property Description

clear Prevents an element from being laid out next to a float

float Moves the element to the right or left and allows the
following text to flow around it

position Specifies the positioning method to be applied

top, bottom,
right, left

Specifies the offset amount from each respective edge

shape-outside Causes content to wrap around a shape instead of the
float’s bounding box.

shape-margin Adds a margin to shape-outside

shape-image-threshold Defines the alpha channel threshold used to create the
wrap shape

z-index Specifies the order of appearance within a stack of over-
lapping positioned elements

Part III. CSS for Presentation

CSS Review: Floating and Positioning Properties

418

IN THIS CHAPTER

Flex containers and items

Flow direction and wrapping

Flex item alignment

Controlling item “flex”

Grid containers and items

Setting up a grid template

Placing items in the grid

Implicit grid features

Grid item alignment

Get ready…this is a whopper of a chapter! In it, you will learn about two
important CSS page layout tools:

•	 Flexbox for greater control over arranging items along one axis

•	 Grid for honest-to-goodness grid-based layouts, like those print designers
have used for decades

Each tool has its special purpose, but you can use them together to achieve
layouts we’ve only dreamed of until now. For example, you could create the
overall page structure with a grid and use a flexbox to tame the header and
navigation elements. Use each technique for what it’s best suited for—you
don’t have to choose just one.

Now that browsers have begun to support these techniques, designers and
developers have true options for achieving sophisticated layouts with baked-
in flexibility needed for dealing with a wide array of screen sizes. Once old
browsers fade from use, we can kiss our old float layout hacks goodbye (in
the meantime, they make decent fallbacks).

You may notice that this chapter is big. Really big. That’s because the specs
are overflowing with options and new concepts that require explanation and
examples. It’s a lot to pack in your mind all at once, so I recommend treating
it as two mini-chapters and spend some time getting up to speed with each
technique individually.

FLEXIBLE BOXES WITH CSS FLEXBOX

The CSS Flexible Box Layout Module (also known as simply Flexbox) gives
designers and developers a handy tool for laying out components of web
pages such as menu bars, product listings, galleries, and much more.

CSS LAYOUT WITH
FLEXBOX AND
GRID

16
CHAPTER

419

According to the spec,

The defining aspect of flex layout is the ability to make the flex items “flex,”
altering their width/height to fill the available space in the main dimension.

That means it allows items to stretch or shrink inside their containers, pre-
venting wasted space and overflow—a real plus for making layouts fit a vari-
ety of viewport sizes. Other advantages include the following:

•	 The ability to make all neighboring items the same height

•	 Easy horizontal and vertical centering (curiously elusive with old CSS
methods)

•	 The ability to change the order in which items display, independent of
the source

The Flexbox layout model is incredibly robust, but because it was designed
for maximum flexibility, it takes a little time to wrap your head around it (at
least it did for me). Here’s how it helped me to think about it: when you tell
an element to become a flexbox, all of its child elements line up on one axis,
like beads on a string. The string may be horizontal, it may hang vertically, or
it may even wrap onto multiple lines, but the beads are always on one string
(or to use the proper term, one axis). If you want to line things up both hori-
zontally and vertically, that is the job of CSS Grid, which I’ll introduce in the
next section of this chapter.

Before we dig in, I have a quick heads-up about browser support. All current
browser versions support the latest W3C Flexible Box Layout Module spec;
however, older browsers require prefixes and even different, outdated proper-
ties and values altogether. I’ll be sticking with the current standard properties
to keep everything simple while you learn this for the first time, but know

Multicolumn Layout
A third CSS3 layout tool you may
want to try is multicolumn layout.
The Multi-column Layout Module
(w3.org/TR/css-multicol-1) provides
tools for pouring text content into a
number of columns, as you might see
in a newspaper (FIGURE 16-1). It is
designed to be flexible, allowing the
widths and number of columns to
automatically fit the available space.

This chapter is already big enough,
so I’ve put this lesson in an article,
“Multicolumn Layout” (PDF),
available at learningwebdesign.com/
articles/. FIGURE 16-1.   An example of text formatted with the multicolumn properties.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

420

that production-ready style sheets may require more code. I’ll give you the
nitty-gritty on browser support at the end of this section.

Setting Up a Flexbox Container
You’ve already learned about the block layout mode for stacking elements
in the normal flow and the inline mode for displaying content within it
horizontally. Flexbox is another layout mode with its own behaviors. To turn
on flexbox mode for an element, set its display property to flex or inline-
flex (see Note). It is now a flex container, and all of its direct child elements
(whether they are divs, list items, paragraphs, etc.) automatically become flex
items in that container. The flex items (the beads) are laid out and aligned
along flex lines (the string).

FIGURE 16-2 shows the effect of simply adding display: flex to a div, thus
turning on the Flexbox switch. I’ve added a blue border to the container to
make its boundaries clear. To save space, I am not showing purely cosmetic
styles such as colors and fonts.

THE MARKUP

<div id="container">
 <div class="box box1">1</div>
 <div class="box box2">2</div>
 <div class="box box3">3</div>
 <div class="box box4">4</div>
 <div class="box box5">5</div>
</div>

THE STYLES

#container { 	
 display: flex;
}

Flexbox Resources
You’ll learn all the ins and outs of Flexbox in this chapter, but it
is always good to get a few perspectives and hands-on tutorials
online. If you do a web search, be sure to limit your findings to
2015 posts and later, or you may come across outdated advice
based on earlier spec versions. Following are some of the sites
that I’ve found most useful or most entertaining:

A Complete Guide to Flexbox
(css-tricks.com/snippets/css/a-guide-to-flexbox/)

This summary of Flexbox features by Chris Coyier is one of the
most popular Flexbox references out there. Many developers
just keep it open in a browser when they do Flexbox work.

Flexbox Froggy (flexboxfroggy.com/)
Don’t miss this online game for learning Flexbox by helping
colorful frogs make it back to their lily pads.

What the Flexbox?! (flexbox.io/)
Wes Bos does a great job walking you through Flexbox
properties as well as a few code projects in this free, 20-part
video series.

Flexbox Playground (codepen.io/enxaneta/full/adLPwv/)
As the name says, this page by Gabi lets you play around with
all of the Flexbox properties and values and see the results
instantly. It’s a nice way to get familiar with what Flexbox can
do.

Flexy Boxes (the-echoplex.net/flexyboxes/)
This is another Flexbox playground and code generator.

NOTE

The inline-flex value generates an
inline-level flex container box. We’ll be
focusing on the more commonly used
flex value in this chapter.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

421

display: flex;

By default, the divs display as block elements, stacking
up vertically. Turning on flexbox mode makes them line
up in a row.

block layout mode

flexbox layout mode

flex container

flex
item

flex
item

flex
item

flex
item

flex
item

FIGURE 16-2.   Applying the flex display mode turns the child elements into flex
items that line up along one axis. You don’t need to do anything to the child elements
themselves.

You can see that the items have lined up in a row from left to right, which is
the default Flexbox behavior if your page is in English or another language
written in rows from left to right. That is because the default flexbox direc-
tion matches the direction of the language the page is written in. It would go
from right to left by default in Hebrew or Arabic or in columns if the page is
set with a vertical writing direction. Because it is not tied to one default direc-
tion, the terminology for specifying directions tends to be a little abstract.
You’ll see what I mean when we talk about “flow” in the following section.

It is worth noting that you can turn any flex item into a flex container by set-
ting its display to flex, resulting in a nested flexbox. In fact, you’ll get to try
that yourself in an upcoming exercise. Some Flexbox solutions use flexboxes
nested several layers deep.

Controlling the “Flow” Within the Container
Once you turn an element into a flex container, there are a few properties you
can set on that container to control how items flow within it. The flow refers
to the direction in which flex items are laid out as well as whether they are
permitted to wrap onto additional lines.

F L E X B OX F U N FACTS

Here are a few things to know about
Flexbox and flex item behavior:

•	 float, clear, multicolumn layout,
and vertical-align do not work
with elements in flexbox mode.

•	 Margins do not collapse in flexbox
mode. The margin edges of items
are placed at the start or end of
the flex line and do not overlap
the padding of the container. The
margins on neighboring items
add up.

•	 The spec recommends avoiding
percentage values for margin and
padding on flex items because of
unpredictable results.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

422

Specifying flow direction
You may be happy with items lining up in a row as shown in FIGURE 16-2,
but there are a few other options that are controllled with the flex-direction
property.

flex-direction

Values: 	 row | column | row-reverse | column-reverse

Default: 	 row

Applies to: 	 flex containers

Inherits: 	 no

The default value is row, as we saw in the previous example (see the “Row
and Column Direction” sidebar). You can also specify that items get aligned
vertically in a column. The other options, row-reverse and column-reverse,
arrange items in the direction you would expect, but they start at the end
and get filled in the opposite direction. FIGURE 16-3 shows the effects of each
keyword as applied to our simple example.

flex-direction: row; (default) flex-direction: row-reverse;

flex-direction: column; flex-direction: column-reverse;

FIGURE 16-3.   Examples of flex-direction values row, row-reverse, column, and
column-reverse.

Now that you’ve seen Flexbox in action, it’s a good time to familiarize your-
self with the formal Flexbox terminology. Because the system is direction-
agnostic, there are no references to “left,” “right,” “top,” or “bottom” in the
property values. Instead, we talk about the main axis and the cross axis. The
main axis is the flow direction you’ve specified for the flex container. For
primarily horizontal languages, when set to row, the main axis is horizontal;
for column, the main axis is vertical (again, rows and columns are language-
dependent, as explained earlier in the “Row and Column Direction” sidebar).

Row and Column
Direction
In writing systems with horizontal
lines of text, the row keyword
lays items out horizontally, as we
Westerners typically think of a
“row.” Bear in mind that in vertically
oriented languages, row aligns
items vertically, in keeping with
the default direction of the writing
system. Similarly, column results in
horizontally aligned items in vertical
languages.

This is a behavior worth knowing;
however, because we are creating
English language sites in this book,
I’ll be sticking with the assumptions
that row = horizontal and column =
vertical throughout this chapter for
simplicity’s sake.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

423

The cross axis is whatever direction is perpendicular to the main axis (verti-
cal for row, horizontal for column). The parts of a flex container are illustrated
in FIGURE 16-4.

In addition to the axes, understanding the other parts of the Flexbox system
makes the properties easier to learn. Both the main and cross axes have a start
and an end, based on the direction in which the items flow. The main size is
the width (or height if it’s a column) of the container along the main axis, and
the cross size is height (or width if it’s a column) along the cross axis.

Wrapping onto multiple lines
If you have a large or unknown number of flex items in a container and don’t
want them to get all squished into the available space, you can allow them to
break onto additional lines with the flex-wrap property.

The main axis is the flow
direction you’ve specified
for the flex container.
The cross axis is perpen
dicular to the main axis.

D O N ’ T WO RR Y

Keeping the main and cross axes
straight as you switch between rows
and columns can feel like mental
gymnastics and is one of the trickier
things about using Flexbox. With
practice, you’ll get used to it.

flex container

main size

main
start

cross
start

cross
end

cross
size

cross axis

main
end

flex item flex item

flex-direction: row;

When flex-direction is set to row, the main axis is horizontal
and the cross axis is vertical.

FOR LANGUAGES THAT READ HORIZONTALLY FROM LEFT TO RIGHT:

main axis

flex container

main
size

main
start

cross
start

cross
end

cross size

m
ain axis

main
end

flex item

flex item

flex-direction: column;

When flex-direction is set to column, the main axis is vertical
and the cross axis is horizontal.

cross axis

FIGURE 16-4.   The parts of a flex container.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

424

flex-wrap

Values: 	 nowrap | wrap | wrap-reverse

Default: 	 nowrap

Applies to: 	 flex containers

Inherits: 	 no

By default, items do the squish thing and do not wrap onto additional lines
(nowrap). The wrap keyword turns on the ability to wrap onto multiple lines
in the direction from cross start to cross end. For example, if the direction is
row, then lines are positioned from the top down.

wrap-reverse breaks the elements onto multiple lines, but flows them in the
opposite direction, from cross end to cross start (from the bottom up, in this
case). It feels a little esoteric to me, but you never know when an occasion
might arise to put it to use.

I’ve added more divs to our numbered flexbox example and I’ve given the
flex items a width of 25% so that only four will fit across the width of the
container. FIGURE 16-5 shows a comparison of the various wrap options
when the flex-direction is the default row.

THE MARKUP THE STYLES

<div id="container"> #container {
 <div class="box box1">1</div> display: flex;
 <!-- more boxes here --> flex-direction: row;
 <div class="box box10">10</div> flex-wrap: wrap;
</div> }

.box {
 width: 25%;
}

flex-wrap: nowrap; (default)

flex-wrap: wrap; flex-wrap: wrap-reverse;

When wrapping is disabled, flex items squish if
there is not enough room, and if they can’t
squish any further, may get cut o� if there is not
enough room in the viewport.

FIGURE 16-5.   Comparing the effects of nowrap, wrap, and wrap-reverse keywords
for flex-wrap.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

425

By default, when the flex-direction is set to column, the container expands
to contain the height of the items. In order to see wrapping kick in, you need
to set a height on the container, as I’ve done here. FIGURE 16-6 shows how
wrapping works for each of the flex-wrap keywords. Notice that the items
are still 25% the width of their parent container, so there is space left over
between the columns.

#container { 	
 display: flex;
 height: 350px;
 flex-direction: column;
 flex-wrap: wrap;
}
.box {
 width: 25%;
}

flex-wrap: nowrap; (default) flex-wrap: wrap;

flex-wrap: wrap-reverse;

FIGURE 16-6.   Comparing nowrap, wrap, and wrap-reverse when the items are in a
column.

Putting it together with flex-flow
The shorthand property flex-flow makes specifying flex-direction and
flex-wrap short and sweet. Omitting one value results in the default value
for its respective property, which means you can use flex-flow for either or
both direction and wrap.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

426

flex-flow

Values: 	 flex-direction flex-wrap

Default: 	 row nowrap

Applies to: 	 flex containers

Inherits: 	 no

Using flex-flow, I could shorten the previous example (FIGURE 16-6) like so:

#container {
 display: flex;
 height: 350px;
 flex-flow: column wrap;
}	

You’ve only scratched the surface of Flexbox, but you’ve got what it takes to
whip that ugly nav menu on the bakery page into shape in EXERCISE 16-1.

EXERCISE 16-1.  Making a navigation bar with Flexbox

Open the most recent version of the style sheet for the bakery
home page in a text editor. If you need a fresh start, you will find an
updated copy of bakery-styles.css in the materials for Chapter 16.

Note: Be sure to use one of the Flexbox-supporting browsers listed
at the end of this section.

1.	 Open bakery-styles.css in a text editor and start by making the
ul element in the nav element as neutral as possible:

nav ul { 	
 margin: 0;
 padding: 0;
 list-style-type: none;
}

Turn that ul element into a flexbox by setting its display to
flex. As a result, all of the li elements become flex items.
Because we want rows and no wrapping, the default values for
flex-direction and flex-wrap are fine, so the properties can
be omitted:

nav ul {
 …	
 display: flex;
}

Save the document and look at it in a browser. You should
see that the links are lined up tightly in a row, which is an
improvement, but we have more work to do.

2.	 Now we can work on the appearance of the links. Start by
making the a elements in the nav list items display as block
elements instead of inline. Give them 1px rounded borders,
padding within the borders (.5em top and bottom, 1em left and
right), and .5em margins to give them space and to open up the
brown navigation bar.

nav ul li a { 	
 display: block; 	
 border: 1px solid; 	
 border-radius: .5em; 	
 padding: .5em 1em; 	
 margin: .5em;
}

3.	 We want the navigation menu to be centered in the width of the
nav section. I’m getting a little ahead here because we haven’t
seen alignment properties yet, but this one is fairly intuitive.
Consider it a preview of what’s coming up in the next section.
Add the following declaration for the nav ul element:

nav ul {
 …	
 display: flex;
 justify-content: center;
}

FIGURE 16-7 shows the way your navigation menu should look
when you are finished.

IMPORTANT: We’ll be using this version of the bakery site as the
starting point for EXERCISE 16-6, so save it and keep it for later.

FIGURE 16-7.   The list of links is now styled as a horizontal
menu bar.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

427

Controlling the Alignment of Flex Items in the Container
So far we’ve seen how to turn flexbox mode on, turning an element into
a flex container and its children into flex items. We’ve also learned how to
change the direction in which items flow, and allow them to wrap onto mul-
tiple lines. The remaining set of container properties affects the alignment of
items along the main axis (justify-content) and cross axis (align-items and
align-content).

Aligning on the main axis
By default, flex items are just as wide as they need to be to contain the ele-
ment’s content, which means the container may potentially have space to
spare on the flex line. We saw this back in FIGURE 16-2. Also by default, the
items flow in right next to each other from the “main start” (based on lan-
guage direction and the direction of the flex line).

The justify-content property defines how extra space should be distributed
around or between items that are inflexible or have reached their maximum
size (see Note).

justify-content

Values: 	 flex-start | flex-end | center | space-between | space-around

Default: 	 flex-start

Applies to: 	 flex containers

Inherits: 	 no

Apply justify-content to the flex container element because it controls spac-
ing within the container itself:

#container { 	
 display: flex;
 justify-content: flex-start;
}

FIGURE 16-8 shows how items align using each of the keyword values for
justify-content. As you would expect, flex-start and flex-end position
the line of items toward the start and end of the main axis, respectively, and
center centers them.

space-between and space-around warrant a little more explanation. When
justify-content is set to space-between, the first item is positioned at the
start point, the last item goes at the end point, and the remaining space is
distributed evenly between the remaining items. The space-around property
adds an equal amount of space on the left and right side of each item, result-
ing in a doubling up of space between neighboring items.

NOTE

As new alignment keywords are added to
the Grid Layout spec, they are available
for Flexbox as well; however, because
they are newer, they will be less well sup-
ported. Be sure to check the Flexbox spec
for updates.

NOTE

You can also distribute extra space along
the main axis by making the flex items
themselves wider to fill the available
space. That is the job of the flex proper-
ties, which we'll look at in a moment.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

428

justify-content: flex-start; (default)

justify-content: flex-end; justify-content: center;

justify-content: space-between; justify-content: space-around;

FIGURE 16-8.   Options for aligning items along the main axis with justify-content.

When the direction is set to a column with a vertical main axis, the keywords
work the same way; however, there needs to be an explicit container height
with space left over in order for you to see the effect. I’ve changed the size of
the text and set a height on the container element in FIGURE 16-9 to demon-
strate the same keywords as applied to a vertical main axis.

justify-content: flex-start; (default) justify-content: flex-end; justify-content: center;

justify-content: space-between; justify-content: space-around;

FIGURE 16-9.   Options for aligning items along a vertical main axis (flex-direction
set to column) with justify-content.

NOTE

The justify-content setting is applied
after margins have been calculated on
items and after the way that items have
been set to “flex” has been accounted for.
If the flex value for items allows them
to grow to fill the container width, then
justify-content is not applicable.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

429

Aligning on the cross axis
That takes care of arranging things on the main axis, but you may also want
to play around with alignment on the cross axis (up and down when the
direction is row, left and right if the direction is column). Cross-axis alignment
and stretching is the job of the align-items property.

align-items

Values: 	 flex-start | flex-end | center | baseline | stretch

Default: 	 stretch

Applies to: 	 flex containers

Inherits: 	 no

I’ve demonstrated the various keyword values for align-items as it applies
to rows in FIGURE 16-10. In order to see the effect, you must specify the
container height; otherwise, it expands just enough to contain the content
with no extra space. I’ve given the container a height to show how items are
positioned on the cross axis.

Like justify-content, the align-items property applies to the flex container
(that can be a little confusing because “items” is in the name).

#container { 	
 display: flex; 	
 flex-direction: row; 	
 height: 200px;
 align-items: flex-start;
}

The flex-start, flex-end, and center values should be familiar, only this
time they refer to the start, end, and center of the cross axis. The baseline
value aligns the baselines of the first lines of text, regardless of their size. It
may be a good option for lining up elements with different text sizes, such as
headlines and paragraphs across multiple items. Finally, stretch, which is the
default, causes items to stretch until they fill the cross axis.

align-items: flex-start; align-items: flex-end;

align-items: stretch; (default)

align-items: center;

align-items: baseline;

Items are aligned so that the baselines
of the first text lines align.

FIGURE 16-10.   Aligning along the cross axis with align-items.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

430

When the flex container’s direction is set to column, align-items aligns items
left and right. Look back at FIGURES 16-2 and 16-9 and you will see that
when we set the items in a column and did not provide any alignment infor-
mation, each item stretched to the full width of the cross axis because stretch
is the default value.

If you’d like one or more items to override the cross-axis setting, use the
align-self property on the individual item element(s). This is the first prop-
erty we’ve seen that applies to an item, not the container itself. align-self
uses the same values as align-items; it just works on one item at a time.

align-self

Values: 	 flex-start | flex-end | center | baseline | stretch

Default: 	 stretch

Applies to: 	 flex items

Inherits: 	 no

In the following code and FIGURE 16-11, the fourth box is set to align at the
end of the cross axis, while the others have the default stretch behavior.

.box4 { 	
 align-self: flex-end;
}

align-self: flex-end;

FIGURE 16-11.   Use align-self to make one item override the cross-axis alignment
of its container.

Aligning multiple lines
The final alignment option, align-content, affects how multiple flex lines are
spread out across the cross axis. This property applies only when flex-wrap is
set to wrap or wrap-reverse and there are multiple lines to align. If the items
are on a single line, it does nothing.

align-content

Values: 	 flex-start | flex-end | center | space-around | space-between | stretch

Default: 	 stretch

Applies to: 	 multi-line flex containers

Inherits: 	 no

align-content applies only
when there are multiple
wrapped flex lines.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

431

All of the values you see in the property listing should look familiar, and
they work the way you would expect. This time, however, they apply to how
extra space is distributed around multiple lines on the cross axis, as shown
in FIGURE 16-12.

Again, the align-content property applies to the flex container element. A
height is required for the container as well, because without it the container
would be just tall enough to accommodate the content and there would be
no space left over.

#container { 	
 display: flex; 	
 flex-direction: row;
 flex-wrap: wrap; 	
 height: 350px;
 align-items: flex-start;
}

box {
 width: 25%;
}

align-content: flex-start; align-content: flex-end; align-content: center;

align-content: space-around;align-content: space-between; align-content: stretch; (default)

FIGURE 16-12.   The align-content property distributes space around multiple flex
lines. It has no effect when flex items are in a single line.

Aligning items with margins
As long as we’re talking about alignment, there is one good trick I’d like to
show you that will be useful when you start laying out components with
Flexbox.

Menu bars are ubiquitous on the web, and it is common for one element of
the bar, such as a logo or a search field, to be set off visually from the others.
You can use a margin to put the extra container space on a specified side or

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

432

sides of a flex item, thus setting one item apart. This should be more clear
with an example.

The menu in FIGURE 16-13 has a logo and four menu options. I’d like the logo
to stay in the left corner but the options to stay over to the right, regardless
of the width of the viewport.

THE MARKUP

 <li class="logo">
 About
 Blog
 Shop
 Contact

THE STYLES

ul { 	
 display: flex; 	
 align-items: center; 	
 background-color: #00af8f; 	
 list-style: none; /* removes bullets */	
 padding: .5em; 	
 margin: 0;
}
li { 	
 margin: 0 1em;
}
li.logo { 	
 margin-right: auto;
}

FIGURE 16-13.   Using a margin to adjust the space around flex items. In this example,
the right margin of the logo item pushes the remaining items to the right.

I’ve turned the unordered list (ul) into a flex container, so its list items (li)
are now flex items. By default, the items would stay together at the start of the
main axis (on the left) with extra space on the right. Setting the right margin
on the logo item to auto moves the extra space to the right of the logo, push-
ing the remaining items all the way to the right (the “main end”).

This technique applies to a number of scenarios. If you want just the last item
to appear on the right, set its left margin to auto. Want equal space around
the center item in a list? Set both its left and right margins to auto. Want to
push a button to the bottom of a column? Set the top margin of the last item
to auto. The extra space in the container goes into the margin and pushes the
neighboring items away.

We’ve covered a lot of territory, so it’s a good time to try out Flexbox in
EXERCISE 16-2.

HEADS-UP

When you use margin: auto on a flex
item, the justify-content property no
longer has a visual effect because you’ve
manually assigned a location for the
extra space on the main axis.

Use margins to add space
on the sides of particular
flex items.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

433

EXERCISE 16-2. A flexible online menu

Now it’s time for you to play around with Flexbox properties
by using content a bit more complex than links in a menu
bar. In this exercise, you’ll format a simple online menu with a
number of menu items. As always, the materials are available at
learningwebdesign.com/5e/materials.

Open flex-menu.html in a text editor, and you’ll see that it has all
of the content ready to go as well as an internal style sheet with
styles for the cosmetic aspects of the menu (colors, fonts, borders,
spacing, etc.). Open the file in a browser, and the menu items
should appear in a column because they are block elements. I
put a border on the #menu wrapper div so you can visualize its
boundaries.

1.	 First, we’ll go for maximum impact with minimal effort by
making the #menu wrapper div a flex container. There is already
a rule for #menu, so add this declaration to it:

#menu { 	
 border: 3px solid #783F27;
 display: flex;
}

Save and reload the page in the browser, and BAM!…they’re
in a row now! And because we haven’t added any other flex

properties, they are demonstrating default flexbox behavior
(FIGURE 16-14):

•	 Each item (defined by a section element) is the full height
of the #menu container, regardless of its content.

•	 The sections have their widths set to 240 pixels, and that
measurement is preserved by default. Depending on how
wide your browser window is set, you may see content
extending beyond the container and getting clipped off, as
shown in the figure.

2.	 By default, flex items appear in the writing direction (a row, left
to right, in English). Add the flex-direction property to the
existing #menu rule to try out some of the other values (row-
reverse, column, column-reverse). The items are numbered
to make their order more apparent.

flex-direction: row-reverse;

3.	 Set the flex-direction back to row, and let’s play around
with the cross-axis alignment by using the align-items
property. Begin by setting it to flex-start (FIGURE 16-15).
Save and reload, and see that the items all line up at the start of
the cross axis (the top, in this case). Try some of the other values

FIGURE 16-14.   The bistro menu in default flexbox mode. By default, the items stay
in one row even though there is not enough room for them and content gets clipped.

FIGURE 16-15.   Using the align-items property to align the items at the start of the
cross axis (flex-start).

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

434

for align-items (flex-end, center, baseline, and stretch)
to get a feel for how each behaves.

align-items: flex-start;

4.	 When you are done experimenting, set align-items back
to stretch. Instead of having all the items on one line and
getting cropped by the edge of the browser, let’s have them
wrap onto multiple lines by using the flex-wrap property on
the #menu container:

flex-wrap: wrap;

Save the file and look at it in the browser (FIGURE 16-16).
Resize the browser window and watch the lines rewrap. Notice
that each flex line is as tall as the tallest item in that row, but
rows may have different heights based on item content.

FIGURE 16-16.   The menu with wrapping turned on.

5.	 If you’d like, you can replace the flex-direction and flex-
wrap declarations with a single flex-flow declaration like so:

flex-flow: row wrap;

6.	 By default, the items on each flex line are stacked toward the
start of the main axis (the left). Try changing the main-axis
alignment of items with the justify-content property (again,
applied to the #menu flex container rule). I like how they look
centered in the container, but check out the effect of the other
values (flex-start, flex-end, space-between, space-
around) as well.

justify-content: center;

7.	 As a final tweak, let’s make the price buttons line up at the
bottom of each menu item, which is possible if each item is
also a flex container. Here, I’m making each item a nested flex
container by setting its display to flex and specifying the
direction as column so they continue to stack up vertically. Now
the h2 and p elements become flex items within the section
flex container.

section {
 …
 display: flex; 	
 flex-direction: column;
}

When you reload the page in the browser, it looks about the
same as when the sections were made up of block elements.
The subtle difference is that now the neighboring margins
between elements stack up and do not collapse.

Now push the paragraphs containing the prices to the bottom
using the margin: auto trick. Add this declaration to the
existing style rule for elements with the class name “price.”

.price {
 …
 margin-top: auto;
}

FIGURE 16-17 shows the final state of the “Bistro Items to Go”
menu with nested flexboxes. We’ll continue working on this file
after we’ve learned the item-specific properties, so save it for later.

FIGURE 16-17.   The menu so far with wrapping flex items
and aligned prices.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

435

Determining How Items “Flex” in the Container
One of the great marvels of the flexbox model is that items resize, or flex to
use the formal term, to fit the available space. It’s this flexibility that makes
Flexbox such a powerful tool for designing for the wide array of screen and
browser window sizes we encounter as web designers. The beauty is that the
browser figures out the sizes on the fly, and that means less math for us! In
this section, we’ll get to know the flex properties.

Earlier, you learned about the justify-content property, which distributes
extra space in the container between and around items along the main axis.
The concept of flex is concerned with how space is distributed within items,
growing or shrinking items as required to make them fit.

Flex is controlled with the flex property, which specifies how much an item
can grow and shrink, and identifies its starting size. The full story is that
flex is a shorthand property for flex-grow, flex-shrink, and flex-basis, but
the spec strongly recommends that authors use the flex shorthand instead
of individual properties in order to avoid conflicting default values and to
ensure that authors consider all three aspects of flex for every instance.

flex

Values: 	 none | 'flex-grow flex-shrink flex-basis'

Default: 	 0 1 auto

Applies to: 	 flex items

Inherits: 	 no

The value for the flex property is typically three flex properties listed in this
order:

flex: flex-grow flex-shrink flex-basis;

For the flex-grow and flex-shrink properties, the values 1 and 0 work like
on/off switches, where 1 “turns on” or allows an item to grow or shrink, and
0 prevents it. The flex-basis property sets the starting dimensions, either to
a specific size or a size based on the contents.

In this quick example, a list item starts at 200 pixels wide, is allowed to
expand to fill extra space (1), but is not allowed to shrink (0) narrower than
the original 200 pixels.

li {
 flex: 1 0 200px;
}

That should give you the general idea. In this section, we’ll take a much closer
look at growing, shrinking, and base size, in that order.

But first, it is important to note that flex and its component properties apply
to flex items, not the container. Keeping track of which properties go on the
container and which go on items is one of the tricks of using Flexbox. See the
“Flex Properties” sidebar for a handy list of how the properties are divided.

The flex properties apply
to flex items, not the
container.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

436

Expanding items (flex-grow)
The first value in the flex property specifies whether (and in what propor-
tion) an item may stretch larger—in other words, its flex-grow value (see
Note). By default it is set to 0, which means an item is not permitted to grow
wider than the size of its content or its specified width. Because items do not
expand by default, the alignment properties have the opportunity to go into
effect. If the extra space was taken up inside items, alignment wouldn’t work.

flex-grow

Values: 	 number

Default: 	 0

Applies to: 	 flex items

Inherits: 	 no

If you set the flex-grow value for all the items in a container to 1, the browser
takes whatever extra space is available along the main axis and applies it
equally to each item, allowing them all to stretch the same amount.

Let’s take the simple box example from earlier in the chapter and see how it
behaves with various flex settings applied. FIGURE 16-18 shows what happens
when flex-grow is set to 1 for all box items (flex-shrink and flex-basis are
left at their default values). Compare this to the same example with flex-grow
set to the default 0 (this is the same behavior we observed in FIGURE 16-2).

THE MARKUP THE STYLES

<div id="container"> .box {
 <div class="box box1">1</div> … 	
 <div class="box box2">2</div> flex: 1 1 auto;
 <div class="box box3">3</div> }
 <div class="box box4">4</div>
 <div class="box box5">5</div>
</div>

AT A G L A N C E

Flex Properties
Now that you’ve been introduced to
all the properties in the Flexible Box
Module, it might be helpful to see at
a glance which properties apply to
containers and which are set on flex
items.

Container Properties
Apply these properties to the flex
container:

display

flex-flow

 flex-direction

 flex-wrap

justify-content

align-items

align-content

Flex Item Properties
Apply these properties to flex items:

align-self

flex

 flex-grow

 flex-shrink

 flex-basis

order

NOTE

flex-grow is the individual property
that specifies how an item may expand.
Authors are encouraged to use the short-
hand flex property instead.

flex: 0 1 auto; (prevents expansion)

flex: 1 1 auto; (allows expansion)

FIGURE 16-18.   When flex-grow is set to 1, the extra space in the line is distributed
into the items in equal portions, and they expand to fill the space at the same rate.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

437

If you specify a higher flex-grow integer to an item, it acts as a ratio that
applies more space within that item. For example, giving “box4” the value
flex-grow: 3 means that it receives three times the amount of space than the
remaining items set to flex-grow: 1. FIGURE 16-19 shows the result.

.box4 {
 flex: 3 1 auto;
}

flex: 3 1 auto;

1 1 1 1 1 1 3 3 1 1

FIGURE 16-19.   Assigning a different amount flex-grow to an individual item. Here
“box4” was set to expand at three times the rate of the other items.

Notice that the resulting item is not three times as wide as the others; it just
got three times the amount of space added to it.

If there’s not much space left over on the line, there’s a chance that each por-
tion of space could be small enough that it would not add up to much differ-
ence. You may just need to play around with the flex-grow values and adjust
the width of the browser until you get the effect you want.

Now that you have that concept down, shrinking should be straightforward
because it is based on the same principle.

Squishing items (flex-shrink)
The second flex property value, flex-shrink, kicks in when the container is
not wide enough to contain the items, resulting in a space deficit. It essen-
tially takes away some space from within the items, shrinking them to fit,
according to a specified ratio.

flex-shrink

Values: 	 number

Default: 	 1

Applies to: 	 flex items

Inherits: 	 no

By default, the flex-shrink value is set to 1, which means if you do nothing,
items shrink to fit at the same rate. When flex-shrink is 0, items are not per-
mitted to shrink, and they may hang out of their container and out of view
of the viewport. Finally, as in flex-grow, a higher integer works as a ratio. An
item with a flex-shrink of 2 will shrink twice as fast as if it were set to 1. You

NOTE

flex-shrink is the individual property
that specifies how an item may contract.
Authors are encouraged to use the short-
hand flex property instead.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

438

will not generally need to specify a shrink ratio value. Just turning shrinking
on (1) or off (0) should suffice.

Flex items stop shrinking when they reach their minimum size (defined by
min-width/min-height). By default (when min-width/min-height is auto), this
minimum is based on its min-content size. But it can easily be set to zero, or
12em, or any other length that seems useful. Watch for this effect when deeply
nested items force a flex item to be wider than expected.

You will see the flex-shrink property in action in FIGURE 16-20 in the next
section.

Providing an initial size (flex-basis)
The third flex value defines the starting size of the item before any wrap-
ping, growing, or shrinking occurs (flex-basis). It may be used instead of the
width property (or height property for columns) for flex items.

flex-basis

Values: 	 length | percentage | content | auto

Default: 	 auto

Applies to: 	 flex items

Inherits: 	 no

In this example, the flex-basis of the boxes is set to 100 pixels (FIGURE

16-20). The items are allowed to shrink smaller to fit in the available space
(flex-shrink: 1), but they are not allowed to grow any wider (flex-grow: 0)
than 100 pixels, leaving extra space in the container.

box {
 flex: 0 1 100px;
}

When the container is wide, the items will not grow wider than their
flex-basis of 100 pixels because flex-grow is set to 0.

When the container is narrow, the items are allowed to shrink to fit
(flex-shrink: 1).

flex: 0 1 100px;

FIGURE 16-20.   Using flex-basis to set the starting width for items.

Flex settings override
specified widths/heights
for flex items.

By default, items may
shrink when the container
is not wide enough
(flex-shrink: 1).

NOTE

flex-basis is the individual proper-
ty that sets the initial size of the item.
Authors are encouraged to use the short-
hand flex property instead.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

439

By default, flex-basis is set to auto, which uses the specified width/height
property values for the item size. If the item’s main size property (width or
height) is not set or is auto (its default), flex-basis uses the content width.
You can also explicitly set flex-basis to be the width of the content with the
content keyword; however, that value is poorly supported as of this writing.

In this example, the flex basis for the boxes is set to 100 pixels because the
auto value uses the value set by width. Items are allowed to grow, taking up
any extra space in the container, but they are not allowed to shrink.

box {
 width: 100px;
 flex: 1 0 auto;
}

When the browser goes about sizing a flex item, it consults the flex-basis
value, compares it to the available space along the axis, and then adds or
removes space from items according to their grow and shrink settings. It’s
important to note that if you allow an item to grow or shrink, it could end
up being narrower or wider than the length provided by flex-basis or width.

Handy shortcut flex values
The advantage to using the flex property is that there are some handy
shortcut values that cover typical Flexbox scenarios. Curiously, some of the
shortcut values override the defaults of the individual properties, which was
confusing to me at first, but in the end it results in more predictable behav-
iors. When creating a flexbox component, see if one of these easy settings
will do the trick:

flex: initial;

This is the same as flex: 0 1 auto. It prevents the flex item from grow-
ing even when there is extra space, but allows it to shrink to fit in the
container. The size is based on the specified width/height properties,
defaulting to the size of the content. With the initial value, you can use
justify-content for horizontal alignment.

flex: auto;

This is the same as flex: 1 1 auto. It allows items to be fully flexible,
growing or shrinking as needed. The size is based on the specified width/
height properties.

flex: none;

This is equivalent to flex: 0 0 auto. It creates a completely inflexible flex
item while sizing it to the width and height properties. You can also use
justify-content for alignment when flex is set to none.

When creating a flexbox
component, see if you can
take advantage of one of
the handy flex shortcuts.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

440

flex: integer;

This is the same as flex: integer 1 0px. The result is a flexible item
with a flex basis of 0, which means it has absolute flex (see the sidebar
“Absolute Versus Relative Flex”) and free space is allocated according to
the flex number applied to items.

How are you doing? Are you hanging in there with all this Flexbox stuff? I
know it’s a lot to take in at once. We have just one more Flexbox item prop-
erty to cover before you get another chance to try it out yourself.

Absolute Versus Relative Flex
In FIGURE 16-19, we saw how extra space is assigned to items based on their flex
ratios. This is called relative flex, and it is how extra space is handled whenever the
flex-basis is set to any size other than zero (0), such as a particular width/height
value or auto.

However, if you reduce the value of flex-basis to 0, something interesting happens.
With a basis of 0, the items get sized proportionally according to the flex ratios, which
is known as absolute flex. So with flex-basis: 0, an item with a flex-grow value
of 2 would be twice as wide as the items set to 1. Again, this kicks in only when the
flex-basis is 0.

In practice it is recommended that you always include a unit after the 0, such as 0px
or the preferred 0%.

In this example of absolute flex, the first box is given a flex-grow value of 2, and
the fourth box has a flex-grow value of 3 via the aforementioned shortcut flex:
integer. In FIGURE 16-21, you can see that the resulting overall size of the boxes is
in proportion to the flex-grow values because the flex-basis is set to 0.

.box {
 /* applied to all boxes */
 flex: 1 0 0%;
}
.box1 {
 flex: 2; /* shortcut value for flex: 2 1 0px */
}
.box4 {
 flex: 3; /* shortcut value for flex: 3 1 0px */
}

flex-grow: 2; flex-grow: 3;flex-grow: 1; flex-grow: 1;

(120px) (60px) (180px)
2x 1x

(60px)
1x

(60px)
1x3x

FIGURE 16-21.   In absolute flex, boxes are sized according to the flex value ratios.

NOTE

I use Flexbox to format a responsive
form in the “Styling Forms” section of
Chapter 19, More CSS Techniques.
Flex properties allow form fields to
adapt to the available width, while
labels are set to always stay the same
size. Wrapping allows form fields to
move below their labels on smaller
screens. You’ve probably got Flexbox
in your head right now, so it might be
worth taking a look ahead.

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

441

Changing the Order of Flex Items
One of the killer features of Flexbox is the ability to display items in an
order that differs from their order in the source (see the “When to Reorder
(and When Not To)” sidebar). That means you can change the layout order of
elements by using CSS alone. This is a powerful tool for responsive design,
allowing content from later in a document to be moved up on smaller screens.

To change the order of items, apply the order property to the particular
item(s) you wish to move.

order

Values: 	 integer

Default: 	 0

Applies to: 	 flex items and absolutely positioned children of flex containers

Inherits: 	 no

The value of the order property is a positive or negative number that affects
the item’s placement along the flex line. It is similar to the z-index property
in that the specific number value doesn’t matter, only how it relates to other
values.

By default, all items have an order value of zero (0). When items have the
same order value, they are laid out in the order in which they appear in the
HTML source. If they have different order values, they are arranged from the
lowest order value to the highest.

Going back to our colorful numbered box example, I’ve given box3 an order
value of 1. With a higher order value, it appears after all the items set to 0 (the
default), as shown in FIGURE 16-22.

.box3 {
 order: 1;
}

order: 0
(default)

order: 0
(default)

order: 0
(default)

order: 0
(default)

order: 1

FIGURE 16-22.   Changing the order of items with the order property. Setting box3 to
order: 1 makes it display after the rest.

When multiple items share the same order value, that group of value-sharing
items (called an ordinal group) sticks together and displays in source order.
What happens if I give box2 an order value of 1 as well? Now both box2 and
box3 have an order value of 1 (making them an ordinal group), and they get

When to Reorder
(and When Not to)
Keep in mind that although
convenient, reordering is only a
visual display sleight-of-hand and
should be used with discretion.
Some points to remember:

•	 Although elements display in a
different order for visual browsers,
alternative devices such as screen
readers still read the content in
the order in which it appears in
the source (although it is not 100%
reliable in the real world).

•	 Reorder the source if there is a
logical (rather than visual) reason
for the reordering.

•	 Don’t use order because it is more
convenient.

•	 Use order if the logical and visual
order are intended to be disjointed.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

442

displayed in source order after all the items with the lower order value of 0
(FIGURE 16-23).

.box2, .box3 {
 order: 1
}

order: 0 order: 0 order: 0 order: 1 order: 1

ordinal group ordinal group

FIGURE 16-23.   Setting box2 to order: 1 as well makes it display after the items
with the default order of 0.

You can also use negative values for order. To continue with our example, I’ve
given box5 an order value of –1. Notice in FIGURE 16-24 that it doesn’t just
move back one space; it moves before all of the items that still have order set
to 0, which is a higher value than –1.

.box5 {
 order: -1
}

order: -1 order: 0 order: 0 order: 1 order: 1

ordinal groupordinal group ordinal group

FIGURE 16-24.   Negative values display before items with the default order of 0.

I’ve used simple values of 1 and –1 in my examples, but I could have used
10008 or –649, and the result would be the same; the order goes from least
value to greatest value. Number values don’t need to be in sequential order.

Now let’s take a look at how we can use order for something more useful
than moving little boxes around in a line. Here is a simple document with a
header, a main section consisting of an article and two aside elements, and
a footer:

<header>…</header>
<main>
 <article><h2>Where It's At</h2></article>
 <aside id="news"><h2>News></h2></aside>
 <aside id="contact"><h2>Contact</h2><aside>
</main>
<footer>…<footer>

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

443

In the following CSS, I’ve made the main element a flexbox container so the
article and aside elements line up in a row, creating three columns (FIGURE

16-25). I set the flex factor for each item, allowing them to grow and shrink,
and set their widths with flex-basis. Finally, I used the order property to
specify the order in which I’d like them to appear. Notice that the Contact
section is now first in the row, although it appears last in the source order.
And, as an added bonus, all of the columns fill the height of the main con-
tainer despite the amount of content in them.

main { 	
 display: flex;
}
article { 	
 flex: 1 1 50%; 	
 order: 2; 	
}
#news { 	
 flex: 1 1 25%; 	
 order: 3;
}
#contact { 	
 flex: 1 1 25%; 	
 order: 1;
}

FIGURE 16-25.   A columned layout using Flexbox.

That concludes our tour of Flexbox properties! In EXERCISE 16-3, you can
put some of the item-level properties to use in the bistro menu. When you are
finished, come back for some tips on dealing with varying browser support
in the next section.

Browser Support for Flexbox
The current Flexible Box Layout Module became a stable Candidate
Recommendation in 2012 (www.w3.org/TR/css-flexbox-1/). The good news
is that all major desktop and mobile browsers have supported the standard

NOTE

Although you can create a full-page
layout with Flexbox, the task is more
appropriately handled with Grid Layout,
which we’ll cover next. However, because
Flexbox has better browser support than
Grid Layout, it may be a suitable fall-
back. Flexbox is better suited for indi-
vidual components on the page such as
navigation, series of product “cards,” or
anything that you want to put in a line.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

444

http://www.w3.org/TR/css-flexbox-1/

EXERCISE 16-3.  Adjusting flex and order

The online menu is looking pretty good, but let’s put a few finishing
touches on it. Open the flex-menu.html file as you left it at the end
of EXERCISE 16-2.

1.	 Instead of having lots of empty space inside the menu container,
we’ll make the items fill the available space. Because we want
the items to be fully flexible, we can use the auto value for flex
(the same as flex: 1 1 auto;). Add this declaration to the
section rule to turn on the stretching behavior:

section {
 …
 flex: auto;
}

2.	 OK, one last tweak: let’s make the photos appear at the top of
each menu item. Because each section is a flex container, we
can use the order property to move its items around. In this
case, select the paragraphs with the “photo” class name and
give it a value less than the default 0. This will make the photo
display first in the line (FIGURE 16-26):

.photo { 	
 order: -1;
}

If you want to get fancy, you can set the width of the img elements
to 100% so they always fill the width of the container. The little
image I’ve provided gets quite blurry when it expands larger, so
you can see how the responsive image techniques we covered in

Chapter 7, Adding Images, might be useful here. It’s not the best-
looking web page in the world, but you got a chance to try out a
lot of the Flexbox properties along the way.

FIGURE 16-26.   The final bistro menu with items flexing to fill
the extra space and the photos moved to the top of each listing.

since 2015 and a few since as far back as 2013. That covers roughly 80–90%
of users as of this writing according to CanIUse.com.

The Flexbox specification went through a lot of big changes in its path to
stabilization, and along the way, some older browsers implemented those old
specs. The three main releases are as follows:

Current version (2012)

Syntax example: display: flex;

Supported by: IE11+, Edge 12+, Chrome 21-28 (-webkit-), Chrome 29+,
Firefox 22–27 (-moz-, no wrapping), Firefox 28+, Safari 6–8 (-webkit-),
Safari 9+, Opera 17+, Android 4.4+, iOS 7–8.4 (-webkit-), iOS 9.2+

“Tweener” version (2011)

Syntax example: display: flexbox;

Supported by: IE10

16. CSS Layout with Flexbox and Grid

Flexible Boxes with CSS Flexbox

445

Old version (2009)

Syntax example: display: box;

Supported by: Chrome <21, Safari 3.1–6, Firefox 2–21, iOS 3.2–6.1,
Android 2.1–4.3

What you won’t find in these listings is Internet Explorer 9 and earlier, which
lack Flexbox support altogether.

Ensuring Flexbox works on the maximum number of browsers requires a
gnarly stack of prefixes and alternative properties, the details of which are too
complicated to dive into here. It’s also not something you’d want to write out
by hand anyway, but fortunately there are options.

You can use Autoprefixer to magically generate that gnarly stack for you auto-
matically. As you’re learning and practicing your CSS skills, you can convert
your styles online at autoprefixer.github.io. Just paste in your styles, and it
spits out the code (FIGURE 16-27) that you can add to your style sheet.

FIGURE 16-27.   The Autoprefixer site converts standard Flexbox styles into all the
styles needed for full browser support.

When you are ready to bring your workflow to a professional level, you can
include Autoprefixer as part of a “build step” that automates a lot of the
development gruntwork. If you are using a CSS preprocessor such as SASS,
you can also use “mixins” to manage tedious prefixes. We’ll look at build
tools and preprocessors in Chapter 20, Modern Web Development Tools.

You may still want to provide fallback styles for non-supporting browsers
(floats, inline blocks, and table display values are all options). If that is the
case, you can use a feature detection technique to determine whether the
browser supports Flexbox. If the browser fails the test, it gets a fallback set of

WARNIN G

Be aware that although Autoprefixer
makes adding prefixes easier, it does not
guarantee that your flexboxes will work
seamlessly in all browsers. There are
behavior differences that can be unpre-
dictable, so be sure to test on all of your
target browsers.

Part III. CSS for Presentation

Flexible Boxes with CSS Flexbox

446

styles, while supporting browsers get the full Flexbox treatment. We’ll take a
look at feature detection in Chapter 19.

One big layout technique down, one big layout technique to go! Are you still
with me? We’ve covered a lot of nitty-gritty details, and if you’re like me, your
head may be swimming. That’s why I’ve included FIGURE 16-28. It has noth-
ing to do with CSS layout, but I figured we could use a breather. In fact, why
don’t you put down this book and take a little walk before taking on grids?

FIGURE 16-28.   This adorable red panda has nothing to do with CSS layout, but I
figured we could use a breather before moving on to Grid Layout (photo by Teri Finn).

CSS GRID LAYOUT

At long last, we web designers and developers have a CSS module for using
an underlying grid to achieve true page layout—and we only had to wait 25
years to get it! The CSS Grid Layout Module provides a system for laying out
elements in rows and columns (remember that Flexbox lays out elements on
one axis only) in a way that can remain completely flexible to fit a variety
of screen sizes or mimic a print page layout. You can use grids to create the
sort of web page layouts that are familiar today, or get more sophisticated

O N L I N E R E S O U RC E

Flexbugs
There are some buggy implementations of Flexbox out there. Lucky for us, Philip
Walton has been gathering all of these bugs in a GitHub repository called Flexbugs.
To see the bugs and workarounds for them, visit github.com/philipwalton/flexbugs.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

447

with typography and whitespace as Jen Simmons has done in her Lab demos
(FIGURE 16-29). You can also use a grid to format just a portion of a page,
such as a gallery of images or products.

In this section, I will give you a good head start on using Grid Layout; how-
ever, I should note that there will be a few stones left unturned that you can
explore on your own.

The Grid Layout Module is one of the more complex specs in CSS, the finer
points of which could fill a book. In fact, Eric Meyer has written that book:
Grid Layout in CSS (O’Reilly)(see Note). I found that Eric helped me make
practical sense of the dense language of the spec itself (which you will also
want to reference at www.w3.org/TR/css-grid-1/). I also highly recommend
Grid expert Rachel Andrew’s book, The New CSS Layout (A Book Apart) for
a complete view of how we got to grid layouts and how to use them.

You will also find many great Grid resources online, which I will round up
at the end of this section.

The Obligatory Talk About Browser Support
There’s great and not-so-great news about browser support for Grid Layout.
The great news is that Chrome 57+, Opera, Firefox 52+, Safari 10+, and iOS
Safari 10+ all started supporting the Grid standard free and clear of browser
prefixes in March 2017. Microsoft Edge added support in version 16 in 2017.

The not-so-great news is that in addition to lingering older versions of those
browsers, no version of Internet Explorer supports the current Grid standard
(see the Browser Support Note).

Re-creation of print jazz
poster using grid

Re-creation of Die Neue
Typography lecture invitation
(1927) using grid

Overlap experiment with
photos by Dorthea Lange

FIGURE 16-29.   Examples of grid-based designs from Jen Simmons’s “Experimental
Layout Lab” page (labs.jensimmons.com).

NOTE

CSS: The Definitive Guide, 4th edition
(O’Reilly), by Eric A. Meyer and Estelle
Weyl, is a megavolume of everything you
could ever want to know about CSS. It
contains the entire Grid Layout in CSS
book as a chapter.

BROWSE R SU PPORT NOTE

Internet Explorer versions 10 and 11 and
MS Edge through 15 implemented an
early draft of the Grid Layout Module,
much of which has since been made
obsolete. They should be treated as
non-supporting browsers when it comes
to the standard grid styles outlined in
this chapter. However, if those Microsoft
browsers are used by a significant share
of your target audience, it is probably
worth targeting them with an alternative
version of your layout written in the older
grid syntax they understand.

Part III. CSS for Presentation

CSS Grid Layout

448

http://www.w3.org/TR/css-grid-1/

So, for the time being, you need to provide an alternative layout for non-
supporting browsers by using Flexbox or old-fashioned floats (or the older
Grid specification for IE and Edge <15), depending on the browsers you need
to target. A good way to get your Grid-based layouts to the browsers that can
handle them is to use a CSS Feature Query that checks for Grid support and
provides the appropriate set of styles. Feature queries are discussed in detail
in Chapter 19.

Be sure to check CanIUse.com for updated browser support information.
Another good resource is the Browser Support page at the “Grid by Example”
site, created by Rachel Andrew (gridbyexample.com/browsers), where she
posts browser support news as well as known bugs.

How Grid Layout Works
The process for using the CSS Grid Layout Module is fundamentally simple:

1.	 Use the display property to turn an element into a grid container. The
element’s children automatically become grid items.

2.	 Set up the columns and rows for the grid. You can set them up explicitly
and/or provide directions for how rows and columns should get created
on the fly.

3.	 Assign each grid item to an area on the grid. If you don’t assign them
explicitly, they flow into the cells sequentially.

What makes Grid Layout complicated is that the spec provides so many
options for specifying every little thing. All those options are terrific for
customizing production work, but they can feel cumbersome when you are
learning Grids for the first time. In this chapter, I’ll set you up with a solid
Grid toolbox to get started, which you can expand on your own as needed.

Grid Terminology
Before we dive into specific properties, you’ll need to be familiar with the
basic parts and vocabulary of the Grid system.

Starting with the markup, the element that has the display: grid property
applied to it becomes the grid container and defines the context for grid for-
matting. All of its direct child elements automatically become grid items that
end up positioned in the grid. If you’ve just read the Flexbox section of this
chapter, this children-become-items scheme should sound familiar.

The key words in that previous paragraph are “direct child,” as only those
elements become grid items. Elements contained in those elements do not,
so you cannot place them on the grid. You can, however, nest a grid inside
another grid if you need to apply a grid to a deeper level.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

449

The grid itself has a number of components, as pointed out in FIGURE 16-30.

grid lines

bl
oc

k
ax

is

inline axis

grid track (row)grid track (column)

grid cell and grid area

cell

area

FIGURE 16-30.   The parts of a CSS grid.

Grid line

The horizontal and vertical dividing lines of the grid are called grid lines.

Grid cell

The smallest unit of a grid is a grid cell, which is bordered by four adja-
cent grid lines with no grid lines running through it.

Grid area

A grid area is a rectangular area made up of one or more adjacent grid cells.

Grid track

The space between two adjacent grid lines is a grid track, which is a generic
name for a grid column or a grid row. Grid columns are said to go along
the block axis, which is vertical (as block elements are stacked) for lan-
guages written horizontally. Grid rows follow the inline (horizontal) axis.

It is worth pointing out that the structure established for the grid is indepen-
dent from the number of grid items in the container. You could place 4 grid
items in a grid with 12 cells, leaving 8 of the cells as “whitespace.” That’s the
beauty of grids. You can also set up a grid with fewer cells than grid items,

Part III. CSS for Presentation

CSS Grid Layout

450

and the browser adds cells to the grid to accommodate them. It’s a wonder-
fully flexible system.

Without further ado, it’s time to get into some code.

Declaring Grid Display
To turn an element into a grid container, set its display property to grid or
inline-grid (see Note).

In this simple example, the #layout div becomes a grid container, and each
of its children (#one, #two, #three, #four, and #five), therefore, is a grid item.

THE MARKUP

<div id="layout">
 <div id="one">One</div>
 <div id="two">Two</div>
 <div id="three">Three</div>
 <div id="four">Four</div>
 <div id="five">Five</div>
</div>

THE STYLES

#layout {
 display: grid;
}

That sets the stage (or to use the more accurate term, the context) for the
grid. Now we can specify how many rows and columns we want and how
wide they should be.

Setting Up the Grid
Because I don’t want to have to figure out cells and spans in my head, I’ve
made a quick sketch of how I’d like my final grid to look (FIGURE 16-31). A
sketch is a good first step for working with grids. From the sketch, I can see
that my layout requires three row tracks and three column tracks even though
some of the content areas span over more than one cell. This is a pretty stan-
dard arrangement for a web page, and although I’m sticking with one-word
content so we can focus on structure, you can imagine longer text content
filling each area.

NOT E

You probably noticed that this page layout with its header, footer, and three columns looks
like the one we made using Flexbox in FIGURE 16-25. And you’re right! It just goes to
show that there may be several solutions for getting to an intended result. Once Grid Layout
becomes solidly supported, it will be the clear winner for creating flexible, whole-page
layouts like this one.

NOTE

Inline grids function the same as block-
level grids, but they can be used in the
flow of content. In this section, I focus
only on block-level grids.

As of this writing, work has begun on a
Working Draft of CSS Grid Layout Module
Level 2, which incudes a “subgrid” mode
that allows a nested grid to inherit its
grid structure from its parent.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

451

Defining grid tracks
To set up a grid in CSS, specify the height of each row and the width of each
column (see Note) with the template properties, grid-template-rows and
grid-template-columns, which get applied to the container element.

grid-template-rows
grid-template-columns

Values: 	 none | list of track sizes and optional line names

Default: 	 none

Applies to: 	 grid containers

Inherits: 	 no

The value of the grid-template-rows property is a list of the heights for each
row track in the grid. The value of the grid-template-columns is a list of the
widths for each column track. The number of track sizes determines the num-
ber of rows or columns. For example, if you provide four lengths for grid-
template-columns, you get a grid that is initially divided into four columns.

You can also include names for the grid lines between tracks, which we’ll get
to in a moment, but for now, let’s start off as simply as possible.

FIGURE 16-31.   A rough sketch for my grid-based page layout. The dotted lines in the
bottom image show how many rows and columns the grid requires to create the layout
structure.

NOTE

Like the Flexbox Module, the Grid Layout
Module is dependent on the direction of
the language in which the page is writ-
ten. In this book, I will base grid terminol-
ogy on the left-to-right, top-to-bottom
writing direction.

Part III. CSS for Presentation

CSS Grid Layout

452

Grid track sizes

In the following example, I’ve added template properties to divide the #layout
container into three columns and three rows with the sizes I designated in my
original sketch (FIGURE 16-31):

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 500px 200px;
}

Let’s see what happens if I do a quick check of the grid so far in the browser.
FIGURE 16-32 shows that by default, the grid items flow in order into the
available grid cells. I’ve added background colors to the items so their bound-
aries are clear, and I used Firefox CSS Grid Inspector (right) to reveal the
entire grid structure.

Because there are only five child elements in the #layout div, only the first
five cells are filled. This automatic flowing behavior isn’t what I’m after for
this grid, but it is useful for instances in which it is OK for content to pour
into a grid sequentially, such as a gallery of images. Soon, we will place each
of our items on this grid deliberately, but first, let’s look at the template prop-
erty values in greater depth.

Browser view Grid structure revealed with Firefox Grid Inspector

100px

200px 500px 200px

400px

100px

FIGURE 16-32.   By default, grid items flow into the grid cells by rows.

Grid line numbers and names

When the browser creates a grid, it also automatically assigns each grid line
a number that you can reference when positioning items. The grid line at the
start of the grid track is 1, and lines are numbered sequentially from there.
FIGURE 16-33 shows how the grid lines are numbered for our sample grid.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

453

1 2 3 4

–4 –3 –2 –1

1

2

3

4

–4

–3

–2

–1

FIGURE 16-33.   Grid lines are assigned numbers automatically.

The lines are numbered from the end of tracks as well, starting with –1, and
numbers count back from there (–2, –3, etc.), as shown by the gray numbers
in FIGURE 16-33. Being able to target the end of a row or column without
counting lines (or even knowing how many rows or columns there are) is a
handy feature. You’ll come to love that –1.

But if you don’t like to keep track of numbers, you can also assign names
to lines that may be more intuitive. In the following example, I’ve assigned
names that correspond to how I will be using the grid in the final page. Line
names are added within square brackets in the position they appear relative
to the tracks.

#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [content-start] 400px
[footer-start] 100px;
 grid-template-columns: [ads] 200px [main] 500px [links] 200px;
}

Based on this example, the grid line at the top of the grid can now be referred
to as “header-start,” “1,” or “–4.” I could also name the line that comes after
the first row track “header-end” even though I’ve already named it “content-
start.” To give a line more than one name, just include all the names in the
brackets, separated by spaces:

grid-template-rows: [header-start] 100px [header-end content-start]
400px [footer-start] 100px;

It is common for each grid line to end up with multiple names and numbers,
and you can choose whichever is the easiest to use. We’ll be using these num-
bers and names to place items on the grid in a moment.

CO O L TO O L T I P

Firefox CSS Grid Inspector
and Layout Panel
Firefox 52+ includes a great developer
tool called the CSS Grid Inspector
that overlays a representation of
the grid structure for elements with
their display set to grid. It’s what
I used for the right screenshot in
FIGURE 16-32. To get to it, open the
Inspector (Tools → Web Developer →
Inspector). Find an element that is a
grid and click the # icon, and you’ll
see the grid overlaid on the page.

You can also click the Layout tab to
access the Layout Panel, which lists
all the grid containers on the page
and provides tools for analyzing grid
lines and areas. It also has a box-
model properties component so
you can easily see the dimensions,
padding, border, and margins for
every grid-related element, and more.
These visual tools make it easier to
tweak your designs.

As this book goes to press, the
news is that similar grid layout
development tools are coming to
Chrome and Safari. The future looks
bright for grid designers!

Part III. CSS for Presentation

CSS Grid Layout

454

Specifying track size values
I provided all of the track sizes in my example in specific pixel lengths to
make them easy to visualize, but fixed sizes are one of many options. They
also don’t offer the kind of flexibility required in our multi-device world. The
Grid Layout Module provides a whole bunch of ways to specify track sizes,
including old standbys like lengths (e.g., pixels or ems) and percentage values,
but also some newer and Grid-specific values. I’m going to give you quick
introductions to some useful Grid-specific values: the fr unit, the minmax()
function, auto, and the content-based values min-content/max-content. We’ll
also look at functions that allow you to set up a repeating pattern of track
widths: the repeat() function with optional auto-fill and auto-fit values.

Fractional units (flex factor)

The Grid-specific fractional unit (fr) allows developers to create track
widths that expand and contract depending on available space. To go back to
the example, if I change the middle column from 500px to 1fr, the browser
assigns all leftover space (after the 200-pixel column tracks are accommo-
dated) to that column track (FIGURE 16-34).

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 1fr 200px;
}

200px 1fr 200px

200px 1fr 200px

FIGURE 16-34.   When the middle column has a track size of 1fr, it takes up the
remaining space in the browser window and flexes to adapt to the browser width.

AT A G L A N C E

Track Size Values
The Grid specification provides
the following values for the
grid-template-* properties:

•	 Lengths (such as px or em)

•	 Percentage values (%)

•	 Fractional units (fr)

•	 auto
•	 min-content, max-content

•	 minmax()
•	 fit-content()

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

455

The fr unit is great for combining fixed and flexible track widths, but I
could also use all fr units to give all the columns proportional widths. In this
example, all of the column widths flex according to the available browser
width, but the middle column will always be twice the width of the side
columns (see Note).

grid-template-columns: 1fr 2fr 1fr;

Minimum and maximum size range

You can constrict the size range of a track by setting its minimum and maxi-
mum widths using the minmax() function in place of a specific track size.

grid-template-columns: 200px minmax(15em, 45em) 200px;

This rule sets the middle column to a width that is at least 15em but never
wider than 45em. This method allows for flexibility but allows the author to
set limits.

Content-based sizing

The min-content, max-content, and auto values size the track based on the
size of the content within it (FIGURE 16-35).

Look
for
the
good
in
others
and
they’ll
see
the
good
in
you.

Look for the good in others and they’ll see the good in you.

Look for the good in
others and they’ll see
the good in you.

Text content in cell Column width set to
min-content

Column width set to
max-content

FIGURE 16-35.   The min-content and max-content track sizing values.

The min-content value is the smallest that track can get without overflowing
(by default, unless overridden by an explicit min-width). It is equivalent to the
“largest unbreakable bit of content”—in other words, the width of the longest
word or widest image. It may not be useful for items that contain normal
paragraphs, but it may be useful in some cases when you don’t want the
track larger than it needs to be. This example establishes three columns, with
the right column sized just wide enough to hold the longest word or image:

grid-template-columns: 50px 1fr min-content;

The max-content property allots the maximum amount of space needed for
the content, even if that means extending the track beyond the boundaries of
the grid container. When used as a column width, the column track will be

NOTE

Technically, the browser adds up the fr
units (4 in our example), divides the left-
over space into that many portions, and
then assigns the portions based on the
number of units specified.

WARNIN G

fr units are not permitted as the mini-
mum value in a minmax() statement.

Part III. CSS for Presentation

CSS Grid Layout

456

as wide as the widest content in that track without line wrapping. That means
if you have a paragraph, the track will be wide enough to contain the text
set on one line. This makes max-content more appropriate for short phrases
or navigation items when you don’t want their text to wrap (auto may work
better because it allows wrapping if there’s not enough room).

Using the auto keyword for a track size is basically like handing the keys
over to the browser. In general, it causes the track to be sized large enough to
accommodate its content, while taking into consideration what other restric-
tions are in place.

In the minmax() function, the auto keyword behaves very similarly to either
min-content or max-content, depending on whether you put it in the mini-
mum or maximum slot. As a keyword on its own, it functions similarly to
minmax(min-content, max-content), allowing the track to squeeze as narrow
as it can without anything overflowing, but grow to fit its content without
wrapping if there’s enough space.

Unlike max-content, an auto maximum allows align-content and justify-
content to stretch the track beyond the size of the content. As a minimum,
it has a few more smarts than min-content—for example, using a specified
min-width or min-height on an item (if any) instead of its min-content size,
and ignoring the contents of any grid items with scrollbars.

If you want to size a track based on its content, but you’re not sure which
keyword to use, start with auto.

Repeating track sizes
Say you have a grid that has 10 columns with alternating column widths, like so:

grid-template-columns: 20px 1fr 20px 1fr 20px 1fr 20px 1fr 20px 1fr
20px 1fr;

That’s kind of a bummer to have to type out (I know, I just did it), so the fine
folks at the W3C have provided a nice shortcut in the form of the repeat()
function. In the previous example, the pattern “20px 1fr” repeats five times,
which can be written as follows:

grid-template-columns: repeat(5, 20px 1fr);

Much better, isn’t it? The first number indicates the number of repetitions,
and the track sizes after the comma provide the pattern. You can use the
repeat() notation in a longer sequence of track sizes—for example, if those
10 columns are sandwiched between two 200-pixel-wide columns at the start
and end:

grid-template-columns: 200px repeat(5, 20px 1fr) 200px;

You can also provide grid line names before and/or after each track size, and
those names will be repeated in the pattern:

grid-template-rows: repeat(4, [date] 5em [event] 1fr);

If you want to size a track
based on its content, but
you’re not sure which
keyword to use, start with
auto.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

457

auto-fill and auto-fit

In the previous repeat() examples, we told the browser how many times to
repeat the provided pattern. You can also let the browser figure it out itself
based on the available space by using the auto-fill and auto-fit values
instead of an integer in repeat().

For example, if I specify

grid-template-rows: repeat(auto-fill, 10em);

and the grid container is 35em tall, then the browser creates a row every 10
ems until it runs out of room, resulting in three rows. Even if there is only
enough content to fill the first row, all three rows are created and the space
is held in the layout.

The auto-fit value works similarly, except any tracks that do not have con-
tent get dropped from the layout. If there is leftover space, it is distributed
according to the vertical (align-content) and horizontal (justify-content)
alignment values provided (we’ll discuss alignment later in this section).

Defining grid areas
So far we’ve been exploring how to divide a grid container into row and
column tracks by using the grid-template-columns and grid-template-rows
properties, and we’ve looked at many of the possible values for track dimen-
sions. We’ve learned that you can assign names to individual grid lines to
make them easy to refer to when placing items on the grid.

You can also assign names to areas of the grid, which for some developers
is an even more intuitive method than calling out specific lines. Remember
that a grid area is made up of one or more cells in a rectangle (no L-shapes or
other non-rectangular collections of cells). Naming grid areas is a little funky
to implement, but provides nice shortcuts when you need them.

To assign names to grid areas, use the grid-template-areas property.

grid-template-areas

Values: 	 none | series of area names

Default: 	 none

Applies to: 	 grid containers

Inherits: 	 no

The value of the property is a list of names provided for every cell in the
grid, listed row by row, with each row in quotation marks. When neighbor-
ing cells share a name, they form a grid area with that name (see Bonus Grid
Line Names sidebar).

In the following example, I’ve given names to areas in the example grid we’ve
been working on so far (FIGURE 16-36). Notice that there is a cell name for
each of the nine cells as they appear in each row. The row cell lists don’t need

WARNIN G

You can only use one auto-repeat for a
given declaration, and you cannot use
it with fr units. You also cannot put
content-based size keywords inside an
auto-fill or auto-repeat notation.
Note that you can use minmax() nota-
tion inside an auto-repeat, and you
can use it with frs or content-based
keywords (auto, min-content, max-
content) if they’re in the max position
with a min length.

Bonus Grid Line Names
When you give an area a name with
grid-template-areas, as an added
bonus, you get a set of automatically
generated grid line names to go with
it. For example, when you name an
area “main”, the left and top grid lines
of that area are automatically named
“main-start,” and the right and
bottom grid lines are named “main-
end.” You can use those line names
when positioning items.

The inverse is true as well. If you
explicitly assign line names “portal-
start” and “portal-end” around an
area, you can use the area name
“portal” to assign content to that
area later, even if you haven’t defined
it with grid-template-areas.
You can keep this shortcut in mind
when naming grid lines, but it is not
required.

This is a prime example of the
flexibility and complexity of the Grid
Layout Module.

Part III. CSS for Presentation

CSS Grid Layout

458

to be stacked as I’ve done here, but many developers find it helpful to line up
the cell by names using character spaces to better visualize the grid structure.

#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [content-start] 400px
[footer-start] 100px;
 grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
 grid-template-areas:
 "header header header"
 "ads main links"
 "footer footer footer";
}

″header header header″

″ads main links″

″footer footer footer″

header

footer

ads main links

FIGURE 16-36.   When neighboring cells have the same name, they form a named
area that can be referenced later.

If there are three columns in the grid, there must be three names provided
for each row. If you want to leave a cell unnamed, type one or more periods
(.) in its place as a space holder so that every cell is still accounted for. Again,
a sketch of your grid with the areas identified will make it easier to plan out
the grid-template-areas value.

Be aware that the track sizes are still coming from the grid-template-columns
and grid-template-rows properties. The grid-template-areas property sim-
ply assigns names to the areas, making it easier to plop items in them later.

The grid shorthand property
Use the grid shorthand property to set values for grid-template-rows, grid-
template-columns, and grid-template-areas with one style rule. Bear in
mind that any properties you do not use will be reset to their defaults, as is
the case for all shorthands.

grid

Values: 	 none | row info / column info

Default: 	 none

Applies to: 	 grid containers

Inherits: 	 no

HEADS-UP

Be sure that you place the cell names in
a way that forms rectangles when they
combine to identify a named area. No
L-shapes or fragments.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

459

In grid, the row values and column values are separated by a slash, with the
row values appearing first:

grid: rows / columns

It’s easier to grasp without the clutter of line and area names, so here is the
shorthand declaration for our example grid with just the row and column
track information:

#layout {
 display: grid;
 grid: 100px 400px 100px / 200px 1fr 200px;
}

To include custom line names, add the names in brackets around their respec-
tive tracks, as we saw in the earlier named line example.

Including area names looks a little convoluted at first, but if you remember
that you list cell names row by row, it makes sense that they appear with the
other row information, before the slash. The complete order goes as follows:

[start line name] "area names" <track size> [end line name]

The line names and area names are optional. Repeat this for each row in the
grid, simply listing them one after another with no special character separat-
ing rows. You may find it helpful to stack them as I’ve done in the following
example to help keep each row distinct. When the rows are done, add a slash,
and list the column track information after it. Here’s a complete example of
our grid written with the grid shorthand:

#layout {
 display: grid;
 grid:
 [header-start] "header header header" 100px
 [content-start] "ads main links" 400px
 [footer-start] "footer footer footer" 100px
 /[ads] 200px [main] 1fr [links] 200px; }

This expands to the following:

#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [content-start] 400px
[footer-start] 100px;
 grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
 grid-template-areas:
 "header header header"
 "ads main links"
 "footer footer footer" }

There is also a grid-template property that works exactly like grid, but it
may be used only with explicitly defined grids (as opposed to implicit grids,
which I cover later). The Grid Layout spec strongly recommends that you use
the grid shorthand instead of grid-template (see Note) unless you specifi-
cally want the cascading behavior of grid-template.

I’m thinking that it’s a good time for you to put all of these grid setup styles
to use in EXERCISE 16-4.

NOTE

The Grid experts I’ve talked to don’t tend
to use grid or grid-template except
for the simplest of grid structures. The
code becomes overly complex, and one
small slip can make the whole grid fall
apart. For complicated grid structures,
stick to separate properties for defining
rows, columns, and areas.

Part III. CSS for Presentation

CSS Grid Layout

460

NOTE

You will need to use a browser that sup-
ports grids for this exercise. I am using
Firefox in order to take advantage of the
Grid Inspector tool. Supporting browsers
are listed earlier in this section. See the
“Firefox Grid Inspector and Layout
Panel” sidebar for instructions on how
to open the tool.

EXERCISE 16-4.  Setting up a grid

In this exercise, we’ll set up the grid template for the page shown in FIGURE 16-37. We’ll
place the grid items into the grid in EXERCISE 16-5, so for now just pay attention to
setting up the rows and columns.

This page is similar to the bakery page we’ve been working on, but it has a few more
elements and whitespace to make things interesting. The starter document, grid.html, is
provided with the exercise materials at learningwebdesign.com/5e/materials. Open it in
a text editor, and you’ll see that all of the styles affecting the appearance of each element
are provided.

1fr

20px

150px

20px

150px

20px

150px

3em
20px

150px

300px

5em

FIGURE 16-37.The Breads of the World page that we will create using Grid Layout.

1.	 Start by turning the containing element, the #layout div, into a grid container by
setting its display mode to “grid”:

#layout {
 …
 display: grid;
}

2.	 FIGURE 16-37 shows the row and column tracks required to accommodate the
content in the desired layout. Start by defining the rows as specified in the sketch, using
the grid-template-rows property. There should be six values, representing each
of the six rows. (Spoiler alert: we’ll be tweaking these values when we get to the next
exercise. This is just a starting point.)

#layout {
 …
 display: grid;
 grid-template-rows: 3em 20px 150px 300px 5em;
}

3.	 Do the same for the seven columns. Because I want the text column to grow and shrink
with the available space, I’ve specified its width in fractional units (1fr). The remaining
columns create 150px-wide cells for three images and 20px of space before them.

→
16. CSS Layout with Flexbox and Grid

CSS Grid Layout

461

EXERCISE 16-4. Continued

You can write them all out like this:

 grid-template-columns: 1fr 20px 150px 20px 150px 20px 150px;

However, because the last six columns are a repeating pattern, it would be easier to use
the repeat() function to repeat the spaces and figure columns three times:

grid-template-columns: 1fr repeat(3, 20px 150px);

4.	 Finally, let’s assign names to the grid lines that border the grid area where the main
content element should appear. The names give us some intuitive options for placing
that item later. The main area starts at the third row track, so assign the name “main-
start” to the grid line between the second and third row track measurements:

grid-template-rows: 3em 20px [main-start] 150px 300px 5em;

The main area extends into the last row track, so assign the name “main-end” to the last
grid line in the grid (after the last row track):

grid-template-rows: 3em 20px [main-start] 150px 300px 5em [main-end];

5.	 Now do the same for the grid lines that mark the boundaries of the column track where
the main content goes:

grid-template-columns: [main-start] 1fr [main-end] repeat(3, 20px
150px);

I’ve saved my work and looked at it in Firefox with the Grid Inspector turned on
(FIGURE 16-38). Because I haven’t specified where the grid items go, they flowed into
the cells sequentially, making the mess you see in the figure. However, the grid overlay
reveals that the structure of the grid looks solid. Save the file and hold on to it until the
next exercise.

FIGURE 16-38.   The grid items are not placed correctly yet, but the Firefox Grid
Inspector shows that the grid is set up correctly.

Part III. CSS for Presentation

CSS Grid Layout

462

Placing Grid Items
Now that we’ve covered all the ins and outs of setting up a grid, including
giving ourselves handy line and area names, we can move on to assigning
items to areas on the grid.

As we saw in FIGURES 16-32 and 16-38, without any explicit placement
instruction, grid items flow into the available grid cells sequentially. That’s
fine for some use cases, but let’s tell our grid items where to go!

Positioning using lines
One method for describing a grid item’s location on the grid is to specify
the four lines bordering the target grid area with four properties that specify
the start and end row lines and the start and end column lines. Apply these
properties to the individual grid item element you are positioning.

grid-row-start
grid-row-end
grid-column-start
grid-column-end

Values: 	 auto | grid line | span number | span ‘line name’ | number ‘line name’

Default: 	 auto

Applies to: 	 grid items

Inherits: 	 no

This set of properties provides a straightforward way to describe an element’s
position on the grid by identifying either the name or number of the grid line
on each border. As an alternative, you can provide just one line identifier and
tell the item to “span” a certain number of cells. By default, an item occupies
one track width, which is what you get with the auto keyword.

Getting back to our five-item example, I would like the first item to go in the
top row and span across all three columns (FIGURE 16-39).

One way to do this is to use the four line start/end properties and identify
lines by their numbers like so:

#one {
 grid-row-start: 1;
 grid-row-end: 2;
 grid-column-start: 1;
 grid-column-end: 4;
}

Take a moment to compare this to the position of the #one div back in
FIGURE 16-36. For grid-row-start, the 1 value refers to the first (top) line
of the grid container. For grid-column-start, 1 refers to the first line on the
left edge of the container, and the value 4 for grid-column-end identifies the
fourth and last line on the right edge of the container.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

463

Here’s one more for good measure. This style declaration positions the #four
item element in the right side column as shown in FIGURE 16-36:

#four {
 grid-row-start: 2;
 grid-row-end: 3;
 grid-column-start: 3;
 grid-column-end: 4;
}

Remember how grid lines are also numbered in the opposite direction start-
ing at –1? We can use that here. I could specify the grid-column-end for #one
as –1, and it would be the same as 4. In fact, this method has the advantage of
guaranteeing to span to the end of the track and avoids miscounting.

I could also use the named lines I set up here. These row values are inter-
changeable with the previous example:

#one {
 grid-row-start: header-start;
 grid-row-end: header-end;
 …
}

If I omit the end line declaration, the row would be one track high (the
default). That’s what I want here, so omitting the end declaration altogether
is one more way to achieve the effect I want.

Ready for yet another option? I can tell the item what line to start on, but
instead of providing an end line, I can use the span keyword to specify how
many tracks to span over. In this example, the item starts at the left edge of
the track (line 1) and spans over three columns, effectively ending at line 4.

2 3 4

–4 –3 –2 –1

2, header-end,
content-start

1, header-start

3

4

–4

–3

–2

–1

1

FIGURE 16-39.   Positioning a grid item across the top row track in our sample grid.

H OT T I P

If you need to span to the last grid
line in a row or column, use the value
–1 and save yourself some counting.
Also, even if the number of rows or
columns changes down the line, –1
will always select the last line, so you
won’t need to renumber.

NOTE

If you omit a start or end line, the area
will be one track wide (the default, auto).

Part III. CSS for Presentation

CSS Grid Layout

464

#one {
 …
 grid-column-start: 1;
 grid-column-end: span 3;
}

Spans can work in reverse as well. If you provide only an end line, the span
searches toward the start of the track. The following styles have the same
effect as our previous examples because they define the target area by its end
line at the far right of the grid and span back three columns to the beginning:

#one {
 …
 grid-column-start: span 3;
 grid-column-end: -1;
}

If four declarations feels like too many, use the shorthand grid-row and grid-
column properties instead.

grid-row
grid-column

Values: 	 start line / end line

Default: 	 see individual properties

Applies to: 	 grid items

Inherits: 	 no

These properties combine the *-start and *-end properties into a single dec-
laration. The start and end line values are separated by a slash (/). With the
shorthand, I can shorten my example to the following two declarations. Any
of the methods for referring to lines work in the shorthand values.

#one {
 grid-row: 1 / 2;
 grid-column: 1 / span 3;
}

Positioning by area
The other way to position an item on a grid is to tell it go into one of the
named areas by using the grid-area property.

grid-area

Values: 	 area name | 1 to 4 line identifiers

Default: 	 see individual properties

Applies to: 	 grid items

Inherits: 	 no

The grid-area property points to one of the areas named with grid-tem-
plate-areas. It can also point to an area name that is implicitly created when
you name lines delimiting an area with the suffixes “-start” and “-end”. With

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

465

this method, I can drop all of the grid items into the areas I set up with my
template earlier (FIGURE 16-40):

#one { grid-area: header; }
#two { grid-area: ads; }
#three { grid-area: main }
#four { grid-area: links; }
#five { grid-area: footer; }

header

footer

ads main links

two three four

five

one

FIGURE 16-40.   Assigning grid items by area names.

How easy was that?! One benefit of using areas is that you can change the
grid, and as long as you provide consistently named grid areas, the items will
end up in the right place. There’s no need to renumber lines in the style sheet.

You can also use grid-area to provide a list of four grid lines that define an
area, separated by slashes. The order in which they appear is “row-start,”
“column-start,” “row-end,” “column-end” (counterclockwise from the top).
There are a lot of rules for what happens when you omit values, but I’m not
going to get into all those finer points here. The grid-area declaration for the
first grid item could be written like this to achieve the same result as previ-
ous examples:

#one {
 grid-area: 1 / 1 / 2 / span 3;
 /* row-start / column-start / row-end / column-end */
}

As you can see, the Grid Layout Module gives you a variety of ways to set up
a grid and a variety of ways to place items on it. In fact, the spec includes a
few more uses of span that you can explore. Choose the methods that work
best for the grid you are designing or that work best for your brain.

Now let’s finish up the grid we’ve been working on in EXERCISE 16-5.

Part III. CSS for Presentation

CSS Grid Layout

466

EXERCISE 16-5.  Placing items on a grid

Now that we have the grid set up for the Breads of the World
page, we can place items into the correct grid areas by using line
numbers and names.

I’m going to go through them quickly, but feel free to save the
file and look at the page in a grid-supporting browser at any step
along the way. Refer to the finished layout in FIGURE 16-41 for
the final item positions and line number hints.

1.	 Open grid.html in your text editor if it isn’t open already. We’ll
start by placing the nav element into the first row of the grid,
using the four grid line properties:

nav {
 grid-row-start: 1;
 grid-row-end: 2;
 grid-column-start: 1;
 grid-column-end: 8; /* you could also use -1 */
}

2.	 Now place the figures in their positions on the grid. Start by
putting the third figure (#figC) in its place in the far-right
column by using the shorthand grid-row and grid-column
properties. It goes between the 3rd and 4th row grid lines and
extends from the 7th to 8th column lines. For columns, instead
of 7 and 8, use the negative value for the last line and span it
one space to the left to get to the starting point:

#figC {
 grid-row: 3 / 4;
 grid-column: span 1 / -1;
}

Now position the #figA and #figB elements by using the
grid-area property with line values. Remember that the values
go in the order top, left, bottom, right (counterclockwise around
the area).

#figA {
 grid-area: 3 / 3 / 4 / 4;
}
#figB {
 grid-area: 3 / 5 / 4 / 6;
}

3.	 We gave the grid lines around the main area names, so let’s use
them to place the main grid item:

main {
 grid-row: main-start / main-end;
 grid-column: main-start / main-end;
}

Do you remember that when you name lines around an area
*-start and *-end, it creates an implicitly named area *?
Because we named the lines according to this syntax, we could
also place the main element with grid-area like this:

main {
 grid-area: main;
}

4.	 Finally, we can put the footer into its place. It starts at the last
row grid line and spans back one track. For columns, it starts at
the third line and goes to the last. Here is one way to write those
instructions. Can you come up with others that achieve the
same result?

footer {
 grid-row: 5 / 6;
 grid-column: 3 / -1;
}

Save your file and look at it in the browser. You may spot a
problem, depending on the width of your browser window. When

1
2

3

4

3
main-start

4

5

5

6
main-end

6 7 8
1
main-start

2
main-end

FIGURE 16-41.   The final Breads of the World grid layout.

→

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

467

Now you know the basics of creating an explicit grid and placing items on
it. There are a few more grid-related topics that are important to be familiar
with: implicit grids, gutter spaces, and grid alignment. I have space for only
a basic introduction to each topic, but when you start implementing grid
layouts on your own, you can do the deep dive required to meet your needs.

Implicit Grid Behavior
So far, we’ve been focusing on ways to define an explicit grid and place items
on it deliberately. But along the way, we’ve encountered a few of the Grid
system’s automatic, or implicit, behaviors. For example, without explicit
placement instructions, grid items flow into the grid sequentially, as we saw
in FIGURE 16-32. I also pointed out how creating a named area implicitly
generates grid lines with the “-start” and “-end” suffixes, and vice versa.

Another implicit Grid behavior is the creation of row and column tracks on
the fly to accommodate items that don’t fit in the defined grid. For example,
if you place an item outside a defined grid, the browser automatically gener-
ates tracks in the grid to accommodate it. Similarly, if you simply have more
items than there are cells or areas, the browser generates more tracks until all
the items are placed.

By default, any row or column automatically added to a grid will have the
size auto, sized just large enough to accommodate the height or width of the
contents. If you want to give implicit rows and columns specific dimensions,
such as to match a rhythm established elsewhere in the grid, use the grid-
auto-* properties.

grid-auto-rows
grid-auto-columns

Values: 	 list of track sizes

Default: 	 auto

Applies to: 	 grid containers

Inherits: 	 no

The grid-auto-row and grid-auto-columns properties provide one or more
track sizes for automatically generated tracks and apply to the grid con-
tainer. If you provide more than one value, it acts as a repeating pattern. As
just mentioned, the default value is auto, which sizes the row or column to
accommodate the content.

In this example, I’ve explicitly created a grid that is two columns wide and
two columns high. I’ve placed one of the grid items in a position equivalent
to the fifth column and third row. My explicit grid isn’t big enough to accom-
modate it, so tracks get added according to the sizes I provided in the grid-
auto-* properties (FIGURE 16-42).

The Grid Item Shuffle
So far, you’ve seen grid items flowing
into a grid sequentially and get
placed into their own little areas
on a grid explicitly. There are a few
properties that may be useful for
tweaking the position of grid items.

Changing the Order
As in Flexbox, you can apply the
order property to a grid item
element to change the order in
which it appears when it is rendered.
Keep in mind that the order
property does not change the order
in which it is read by an assistive
device. See the section “Changing
the Order of Flex Items” earlier in
this chapter for more information on
how to use order.

Stacking Order
It is possible to position items in a
grid in a way that causes them to
overlap. When more than one item
is assigned to a grid area, items
that appear later in the source are
rendered on top of items earlier in
the source, but you can change the
stacking order by using the z-index
property. Assigning a higher z-index
value to earlier item elements makes
them render above items that appear
later. See the section “Stacking
Order” in Chapter 15, Floating
and Positioning, for details on using
z-index.

the browser is wide, the layout works
fine, but when it is made narrower, the
text in the main element overflows its
cell. That’s because the 300-pixel height
we gave that row is not sufficient to hold
the text when it breaks onto additional
lines or is resized larger.

5.	 We can fix that by changing the
measurement of the fifth row track
to auto. In that way, the height of
that row will always be at least big
enough to hold the content. The
min-content value would work as
well, but auto is always the first value
to try:

#layout {
 display: grid;
 grid-template-rows: 3em 20px
[main-start] 150px auto 5em
[main-end];
…
}

If you reload the page in the browser,
the text is always contained in its grid
area, regardless of the width of the
window. Everything should fall into
place nicely, as shown in FIGURE 16-41.

You now have your first grid layout
under your belt. This exercise gives you
only a taste of what Grid Layout can do,
but we’ve covered the fundamentals of
setting up a grid and placing items in it.
You’re off to a great start!

EXERCISE 16-5. Continued

Part III. CSS for Presentation

CSS Grid Layout

468

THE MARKUP

<div id="littlegrid">
 <div id="A">A</div>
 <div id="B">B</div>
</div>

THE STYLES

#littlegrid {
 display: grid;
 grid-template-columns: 200px 200px;
 grid-template-rows: 200px 200px;
 grid-auto-columns: 100px;
 grid-auto-rows: 100px;
}
#A {
 grid-row: 1 / 2;
 grid-column: 2 / 3;
}
#B {
 grid-row: 3 / 4;
 grid-column: 5 / 6;
}

200px

200px

200px 200px

100px

100px 100px100px

The grid has two explicitly defined rows and columns at 200 pixels wide each.

Rows and column tracks are added automatically as needed. They are sized
as specified by grid-auto-rows and grid-auto-columns (100 pixels).

FIGURE 16-42.   Browsers generate rows and columns automatically to place grid
items that don’t fit the defined grid.

Hopefully, that example helped you form a mental model for automatically
generated rows and columns. A more common use of auto-generated tracks
is to tile images, product listings, and the like into columns, letting rows be

The Grid Item Shuffle
So far, you’ve seen grid items flowing
into a grid sequentially and get
placed into their own little areas
on a grid explicitly. There are a few
properties that may be useful for
tweaking the position of grid items.

Changing the Order
As in Flexbox, you can apply the
order property to a grid item
element to change the order in
which it appears when it is rendered.
Keep in mind that the order
property does not change the order
in which it is read by an assistive
device. See the section “Changing
the Order of Flex Items” earlier in
this chapter for more information on
how to use order.

Stacking Order
It is possible to position items in a
grid in a way that causes them to
overlap. When more than one item
is assigned to a grid area, items
that appear later in the source are
rendered on top of items earlier in
the source, but you can change the
stacking order by using the z-index
property. Assigning a higher z-index
value to earlier item elements makes
them render above items that appear
later. See the section “Stacking
Order” in Chapter 15, Floating
and Positioning, for details on using
z-index.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

469

created as needed. These styles set up a grid with explicit columns (as many
as will fit the width of the viewport, no narrower than 200px) and as many
200px-high rows as needed:

grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
grid-auto-rows: 200px;

You can also control the manner in which items automatically flow into the
grid with the grid-auto-flow property.

Flow direction and density

grid-auto-flow

Values: 	 row or column | dense (optional)

Default: 	 row

Applies to: 	 grid containers

Inherits: 	 no

Use grid-auto-flow to specify whether you’d like items to flow in by row or
column. The default flow follows the writing direction of the document (left-
to-right and top-to-bottom for English and other left-to-right languages).

In this example, I’ve specified that I’d like grid items to flow in by columns
instead of the default rows:

#listings {
 display: grid;
 grid-auto-flow: column;
}

By default, items are placed in the first area in which they fit. Cells that are
too small to accommodate the content will be skipped over until a cell large
enough is found for placement. If you include the optional dense keyword for
the grid-auto-flow property, it instructs the browser to fill the grid as densely
as possible, allowing the items to appear out of sequence in order to fill the
available space:

#listings {
 display: grid;
 grid-auto-flow: dense rows;
}

The example on the left of FIGURE 16-43 shows the default flow method.
Look closely and you’ll see that the grid items are in order. When there isn’t
enough room for the whole item, it moves down and to the left until it fits
(similar to floats). This method may leave empty cells as shown in the figure.
By comparison, the dense flow example on the right is all filled in, and if
you look at the numbering, you can see that putting items wherever they fit
makes them end up out of order. Note that dense flow doesn’t always result
in a completely filled-in grid like the figure, but it is likely to have fewer holes
and be more compact than the default mode.

Part III. CSS for Presentation

CSS Grid Layout

470

Default �ow pattern Dense �ow pattern

FIGURE 16-43.   Comparison of default and dense auto-flow modes.

The grid shorthand property revisited
Earlier we saw the grid shorthand property used to provide track sizes as well
as area names. In that section, we were dealing with explicit grids, but grid
can be used with implicit grid properties as well.

Adding the auto-flow keyword to either the row or track information indi-
cates that the tracks on that axis should be automatically generated at the
provided dimension.

Say we want to establish columns explicitly, but let rows generate automati-
cally as needed. The grid shorthand for this common scenario is shown here:

grid: auto-flow 12em / repeat(5, 1fr);

Remember that the grid shorthand syntax lists row information first, then a
slash, then the column information. Here, the rule says to create rows auto-
matically that are 12 ems high and create 5 columns at 1fr each. When auto-
flow is applied to rows, the grid-auto-flow is set to row.

In this example, the resulting grid will have two 300px rows, but 100px-wide
columns will be generated on the fly as grid items are added:

grid: 300px 300px / auto-flow 100px;

With auto-flow applied to columns, the grid-auto-flow is set to column.

It is important to keep in mind that because grid is a shorthand property,
any omitted value will be reset to its default. Therefore, if you’ve also used
grid to set up explicit rows and columns, those will be essentially lost if a
grid shorthand with implicit grid instructions appears later in the style sheet.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

471

Spacing and Alignment
The remaining properties defined in the Grid Layout Module relate to spac-
ing and alignment. You can add space between tracks and adjust alignment
of the grid and its items by using many of the same methods you learned for
Flexbox.

Spacing between tracks (gutters)

grid-row-gap
grid-column-gap

Values: 	 length (must not be negative)

Default: 	 0

Applies to: 	 grid containers

Inherits: 	 no

grid-gap

Values: 	 grid-row-gap grid-column-gap

Default: 	 0 0

Applies to: 	 grid containers

Inherits: 	 no

Setting a length value for grid-row-gap adds space between the row tracks of
the grid, and grid-column-gap adds space between (you guessed it) column
tracks. The effect is as if the grid lines have a width; however, the gap width
is applied only to lines between tracks, not outside the first and last lines in
the grid. (Spacing on the outside edges can be controlled with padding.) You
can use the grid-gap shorthand to specify gap widths for rows and columns
in one go, with rows first, as usual.

In this example, I’ve added 20px space between rows and 50px space between
columns by using the grid-gap shorthand (FIGURE 16-44).

div#container {
 border: 2px solid gray;
 display: grid;
 grid: repeat(4, 150px) / repeat(4, 1fr);
 grid-gap: 20px 50px;
 }

Grid and item alignment
You can align grid items in their cells with the same alignment vocabulary
used for Flexbox items (see the “Box Alignment” sidebar). I’m going to touch
on these quickly, but you can play around with them on your own.

NOTE

These property names will be chang-
ing to row-gap, column-gap, and gap.
Until browsers start supporting the new
syntax, you can still use the grid-* pre-
fixed versions, which will continue to be
supported for backward compatibility.

Box Alignment
It’s no coincidence that Flexbox and
Grid share alignment properties and
values. They are all standardized in
their own spec called the CSS Box
Alignment Module, Level 3, which
serves as a reference to a number of
CSS modules. You can check it out at
www.w3.org/TR/css-align/.

Part III. CSS for Presentation

CSS Grid Layout

472

Aligning individual items

justify-self

Values: 	 start | end | center | left | right | self-start | self-end | stretch |
normal | auto

Default: 	 auto (looks at the value for justify-items, which defaults to normal)

Applies to: 	 grid items

Inherits: 	 no

align-self

Values: 	 start | end | center | left | right | self-start | self-end | stretch |
normal | auto

Default: 	 auto (looks at the value for align-items)

Applies to: 	 grid items

Inherits: 	 no

When a grid item doesn’t fill its entire grid area, you can specify how you’d
like it to be aligned in that space. Specify the horizontal (inline) alignment
with the justify-self property. align-self specifies alignment on the ver-
tical (block) axis. These properties apply to the grid item element, which
makes sense because you want the item to align itself.

FIGURE 16-45 shows the effects of each keyword value. For items with their
size set to auto (or in other words, not explicitly set with width and height
properties), the default is stretch. This is what we’ve seen in all the previous

50px

20px

20px

20px

50px 50px

grid-row-gap: 20px;
grid-column-gap: 50px;

FIGURE 16-44.   Grid gaps add gutter spaces between tracks.

NOTE

The self-start and self-end val-
ues look at the writing direction of the
content of the item and use its start or
end edge for alignment. For example,
if an item is in Arabic, its self-start
edge is on the right, and it would be
aligned to the right. The start and end
values consider the writing direction of
the grid container. The left and right
keywords are absolute and would not
change with the writing system, but they
correspond to start and end in left-to-
right languages.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

473

grid examples. If the grid item has a width and height specified, those dimen-
sions are preserved and the default is start.

After reading about Flexbox, you should find these familiar—for example,
the use of “start” and “end” to keep the system language direction-agnostic.

Aligning all the items in a grid

justify-items

Values: 	 start | end | center | left | right | self-start | self-end | stretch |
normal

Default: 	 normal (stretch for non-replaced elements; start for replaced ele-
ments)

Applies to: 	 grid containers

Inherits: 	 no

align-items

Values: 	 start | end | center | left | right | self-start | self-end | stretch |
normal

Default: 	 normal (stretch for non-replaced elements; start for replaced ele-
ments)

Applies to: 	 grid containers

Inherits: 	 no

To align all of the items in a grid in one fell swoop, use the justify-items
property for horizontal/inline axis alignment and align-items for vertical/
block axis. Apply these properties to the grid container element so it affects
all of the items in the grid. The keywords do the same things shown in

justify-self

align-self

FIGURE 16-45.   Values for justify-self and align-self for aligning a grid item
within its respective grid area. These values have the same use in the justify-items
and align-items properties that are used to align all the items in the grid.

T I P

If you want a grid item to stay
centered in its grid area, set both
align-self and justify-self to
center.

Speaking of Spacing,
What About Margins?
You can add margins to a grid item
as you can for any other element. It is
useful to know that the item’s margin
box will be anchored to the cell or
grid area, and the margin space is
preserved.

You can use margins to move the
item around in the grid area. For
example, setting the left margin to
“auto” pushes the item to the right, as
we saw in earlier Flexbox examples.
Setting the left and right margins to
“auto” (as long as item has a specified
width) centers it horizontally. In Grid,
you can also set the top and bottom
margins to “auto” and, as long as
there’s a specified height, it centers
vertically. Of course, you have the grid
item alignment properties to achieve
these effects as well.

Part III. CSS for Presentation

CSS Grid Layout

474

FIGURE 16-43; just picture it happening consistently across the entire grid.
Keep in mind that these settings will be overridden by the *-self properties.

Aligning tracks in the grid container

There may be instances in which the tracks of your grid do not fill the entire
area of their grid container—for example, if you’ve specified track widths
and heights in specific pixel measurements. You can decide how the browser
should handle leftover space within the container by using the justify-content
(horizontal/inline axis) and align-content (vertical/block axis) properties.

justify-content

Values: 	 start | end | left | right | center | stretch | space-around |
space-between | space-evenly

Default: 	 start

Applies to: 	 grid containers

Inherits: 	 no

align-content

Values: 	 start | end | left | right | center | stretch | space-around |
space-between | space-evenly

Default: 	 start

Applies to: 	 grid containers

Inherits: 	 no

In FIGURE 16-46, the grid container is indicated with a gray outline. The rows
and columns of the drawn grid do not fill the whole container, so something
has to happen to that extra space. The start, end, and center keywords move
the whole grid around within the container by putting the extra space after,
before, or equally on either side, respectively. The space-around and space-
between keywords distribute space around tracks as discussed in the Flexbox
section. The space-evenly keyword adds an equal amount of space at the
start and end of each track and between items.

NOTE

The stretch keyword works only when
the track width or height is set to auto.

justify-content:
start end center space-around space-between space-evenly

align-content:
start end center space-around space-between space-evenly

FIGURE 16-46.   The justify-content and align-content properties distribute extra space in the container.

WARNING

When you distribute space around and
between tracks, it adds to whatever gap
settings you may have.

Alignment properties
apply to the grid
container.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

475

Before we close out this discussion of Grid Layout, let’s give the Black Goose
Bakery page a nice two-column layout in EXERCISE 16-6.

EXERCISE 16-6.  A grid layout for the bakery page

The Black Goose Bakery page has come a long way. You’ve added padding, borders, and
margins. You’ve floated images, positioned an award graphic, and created a navigation bar
by using Flexbox. Now you can use your new grid skills to give it a two-column layout that
would be appropriate for tablets and larger screens (FIGURE 16-47).

150px

m
in

-c
on

te
nt

5em

16emminimum 25em, maximum 1fr

FIGURE 16-47.   The Black Goose Bakery page with a two-column grid layout.

Start by opening the bakery file as you left it in EXERCISE 16-1.

1.	 We need to add a bit of markup that encloses everything in the body of the document in
an element that will serve as the grid container. Open the HTML document bakery.html,
add a div around all of the content elements (from header to footer), and give it the
id “container”. Save the HTML file.

Part III. CSS for Presentation

CSS Grid Layout

476

<body>
 <div id="container">
 <header>…</header>
 <main>…</main>
 <aside>…</aside>
 <footer>…</footer>
 </div>
</body>

In the style sheet (bakery-styles.css), add a new style to make
the new div display as a grid:

#container {
 display: grid;
}

2.	 First we’ll work on the rows. FIGURE 16-47 shows that we
need three rows to create the layout. Set the height of the
first row track to auto so it will observe the height settings on
the elements within it and automatically accommodate the
content. The second row has a lot of text, so use the auto track
value again to guarantee the track will expand at least as much
as necessary to fit the text. For the third row, a height of 5em
should be sufficient to fit the few lines of text with a comfortable
amount of space:

#container { 	
 display: grid; 	
 grid-template-rows: auto auto 5em;
}

3.	 Now we can set up the column tracks. It looks like we’ll need
only two: one for the main content and one for the Hours
sidebar. I’ve used the minmax() value so I can ensure the text
column never gets narrower than 25em, but it can expand to fill
the available space in the browser (1fr). The Hours column feels
right to me at 16em. Feel free to try other values.

#container { 	
 display: grid; 	
 grid-template-rows: auto auto 5em;
 grid-template-columns: minmax(25em, 1fr) 16em;
}

4.	 Next, name the areas in the grid so we can place the items in it
easily and efficiently. Use the grid-template-areas property
to name the cells in the grid:

#container { 	
 display: grid; 	
 grid-template-rows: auto auto 5em;
 grid-template-columns: minmax(25em, 1fr) 16em;
 grid-template-areas:
 "banner banner"
 "main hours"
 "footer footer";
}

5.	 With everything set up, it’ll be a breeze to put the content items
into their proper places. Create a style rule for each grid item
and tell it where to go with grid-area:

header { 	
 grid-area: banner;
}
main { 	
 grid-area: main;
}
aside { 	
 grid-area: hours;
}
footer { 	
 grid-area: footer;
}

Pretty easy, right? Now would be a good time to save the file and
take a look at it in the browser (if you haven’t already). The 2.5%
margins that we had set on the main element earlier give it some
nice breathing room in its area, so let’s leave that alone. However,
I’d like to remove the right margin and border radius we had set
on the aside so it fills the right column. I’m going to just comment
them out so that information is still around if I need to use it later:

aside {
 …
 /* border-top-right-radius: 25px; */
 /* margin: 1em 2.5% 0 10%; */
}

That does it! Open the bakery.html page in a browser that
supports CSS grids, and it should look like the screenshot in
FIGURE 16-47.

Now the bakery page has a nice two-column layout using a simple
grid. In the real world, this would be just one layout in a set that
would address different screen sizes as part of a responsive design
strategy. We’ll be talking about responsive design in the next
chapter. And because grids are not supported by Internet Explorer,
Edge, and older browsers, you would also create fallback layouts
using Flexbox or floats depending on how universally you need the
layout to work. I don’t mean to kill your buzz, but I do want you to
be aware that although this exercise let you sharpen your skills, it’s
part of a much broader production picture.

Note: For float- and position-based layout techniques that could
be used as fallbacks, get the article “Page Layout with Floats
and Positioning” (PDF) at learningwebdesign.com/articles/.

16. CSS Layout with Flexbox and Grid

CSS Grid Layout

477

Online Grid Resources
As you continue your Grid Layout adventure, I’m sure you’ll find plenty of
excellent resources online, as more are popping up all the time. I’d like to
point you to a few of the most complete and authoritative resources that I
found helpful as I learned about grids myself.

Rachel Andrew’s “Grid By Example” site (gridbyexample.com)

Rachel Andrew, one of the first champions of Grid Layout, has assembled
an incredible collection of articles, free video tutorials, browser support
information, and more. You can also try searching the web for her excel-
lent conference talks on the topic.

Jen Simmons’ “Experimental Layout Lab” (labs.jensimmons.com)

Jen Simmons, who works for Mozilla Foundation, shows off what Grid
Layout can do in her Experimental Layout Lab. It’s definitely worth a
visit for the cool examples of Grid and other emerging CSS technologies
as well as exercises that let you code along.

You can find Jen’s many articles on CSS Grid at jensimmons.com/writing.
I also recommend her roundup of resources for learning Grid Layout at
jensimmons.com/post/feb-27-2017/learn-css-grid. See also Jen’s YouTube
video series called “Layout Land” (youtube.com, search for “Layout Land
Jen Simmons”).

Grid Garden by Thomas Park (cssgridgarden.com)

If you enjoyed the Flexbox Froggy game created by Thomas Park, you
will have fun playing his Grid Garden game for getting familiar with CSS
Grid Layout.

TEST YOURSELF

We covered lots of ground in this chapter. See how you do on this quiz of
some of the highlights. As always, Appendix A has the answers.

Flexbox
1.	 How do you turn an element into a flex item?

2.	 Match the properties with their functions.

a. justify-content 1. Distribute space around and between flex
lines on the cross axis.

b. align-self 2. Distribute space around and between items
on the main axis.

AT A G L A N C E

Grid Property Roundup
Here’s a nice, handy list of the Grid
properties, organized by whether they
apply to the container or to individual
grid items.

Grid Container Properties
display: grid | inline-grid

grid

 grid-template

 grid-template-rows

 grid-template-columns

 grid-template-areas

 grid-auto-rows

 grid-auto-columns

 grid-auto-flow

grid-gap

 grid-row-gap

 grid-column-gap

justify-items

align-items

justify-content

align-content

Grid Item Properties
grid-column

 grid-column-start

 grid-column-end

grid-row

 grid-row-start

 grid-row-end

grid-area

justify-self

align-self

order (not part of Grid Module)

z-index (not part of Grid Module)

Part III. CSS for Presentation

Test Yourself

478

c. align-content 3. Position items on the cross axis.

d. align-items 4. Position a particular item on the cross axis.

3.	 How is align-items different from align-content?
What do they have in common?

4.	 Match the properties and values to the resulting effects.

a. flex: 0 1 auto; 1. Items are completely inflexible, neither
shrinking nor growing.

b. flex: none; 2. Item will be twice as wide as others with
flex: 1 and may also shrink.

c. flex: 1 1 auto; 3. Items are fully flexible.

d. flex: 2 1 0px; 4. Items can shrink but not grow bigger.

5.	 Match the following flex-flow declarations with the resulting flexboxes
(FIGURE 16-48).

a.	 flex-flow: row wrap; 	

b.	 flex-flow: column nowrap; 	

c.	 flex-flow: row wrap-reverse; 	

d.	 flex-flow: column wrap-reverse;

e.	 flex-flow: row nowrap;

	

1

4

2 3

5

FIGURE 16-48.   Various flex-flow settings.

16. CSS Layout with Flexbox and Grid

Test Yourself

479

6.	 Write style rules for displaying the flexbox items in the order shown in
FIGURE 16-49.

<div id="container">
 <div class="box box1">1</div>
 <div class="box box2">2</div>
 <div class="box box3">3</div>
 <div class="box box4">4</div>
 <div class="box box5">5</div>
 <div class="box box6">6</div>
 <div class="box box7">7</div>
</div>

Source HTML A�er reordering

FIGURE 16-49.   Write styles to put items in the shown order.

Grid Layout
7.	 What is the key difference between Grid Layout and Flexbox? Name at

least one similarity (there are multiple answers).

8.	 Create the grid template for the layout shown in FIGURE 16-50 by using
grid-template-rows and grid-template-columns.

Write it again, this time using the grid shorthand property.

12em

100px

300px flexible
Always twice the width

of the right column

At least
the height

of the
content

FIGURE 16-50.   Create the grid template for this grid structure.

Part III. CSS for Presentation

Test Yourself

480

9.	 Match the following style declarations with the lettered grid items in
FIGURE 16-51. In addition to automatic numbering, some of the grid lines
have been named, as labeled.

a.	 _________

	 grid-row-start: 1; 	
	 grid-row-end: 3; 	
	 grid-column-start: 3; 	
	 grid-column-end: 7;

b.	 _________

	 grid-area: 2 / 2 / span 4 / 3;

c.	 _________

	 grid-area: bowie;

d.	 _________

	 grid-row: -2 / -1; 	
	 grid-column: -2 / -1;

e.	 _________

	 grid-row-start: george;
	 grid-row-end: ringo;
	 grid-column-start: paul;
	 grid-column-end: john;

paul

george

ringo

john
bowie-st

art

bowie-start

bowie-end

bowie-end

FIGURE 16-51.   Match the style examples to the items in this grid.

16. CSS Layout with Flexbox and Grid

Test Yourself

481

10.	 Write a style rule that adds 1em space between columns in a grid con-
tainer named #gallery.

11.	 Match the tasks with the declarations.

a.	 justify-self: end;

b.	 align-items: end;

c.	 align-content: center;

d.	 align-self: stretch;

e.	 justify-items: center;

_____ Make a particular item stretch to fill its container.

_____ Position an image on the right edge of its grid area (in a left-to-
right reading language).

_____ Center the whole grid vertically in its container.

_____ Push all of the images in a grid to the bottom of their respective
cells.

_____ Center all items in their areas horizontally.

CSS REVIEW: LAYOUT PROPERTIES

Here are the properties covered in this chapter, sorted into Flexbox and Grid
sections and whether they apply to the container or item.

Flexbox Properties

Flex container properties

display: flex Turns on flexbox mode and makes the element a
flex container

flex-direction Indicates the direction in which items are placed in
the flex container

flex-wrap Specifies whether the flex items are forced onto a
single line or wrapped onto multiple lines

flex-flow Shorthand property for flex-direction and
flex-wrap

justify-content Specifies how space is distributed between and
around items on the main axis

align-content Aligns flex lines within the flex container when
there is extra space on the cross axis

align-items Specifies how the space is distributed around items
on the cross axis

Part III. CSS for Presentation

CSS Review: Layout Properties

482

Flex item properties

align-self Specifies how one item is aligned on the cross axis
(overrides align-items)

flex Shorthand property for flex-grow, flex-shrink, and
flex-basis; specifies how items alter their dimen-
sions to fit available space

flex-basis Indicates the initial main size of a flex item

flex-grow Specifies how much a flex item is permitted to grow
when there is extra space in the container

flex-shrink Specifies how much a flex item is permitted to
shrink when there is not enough room in the
container

order Indicates the order used to lay out items in their
container

Grid Properties

Grid container properties

display:
grid | inline-grid

Sets the display mode of an element to a grid
context

grid-template Shorthand property for specifying
grid-template-areas, grid-template-rows, and
grid-template-columns

grid-template-areas Assigns names to areas in the grid

grid-template-columns Specifies track sizes for the columns in explicit grids

grid-template-rows Specifies track sizes for the rows in explicit grids

grid-auto-columns Specifies track sizes for automatically generated
columns

grid-auto-flow Indicates the direction and density in which items
flow automatically into a grid

grid-auto-rows Specifies track sizes for automatically generated rows

grid Shorthand property for specifying
grid-template-rows, grid-template-columns,
and grid-template-areas; or grid-auto-flow,
grid-auto-rows, and grid-auto-columns

grid-gap Shorthand property for grid-row-gap and
grid-column-gap

grid-column-gap Specifies the width of the gutter between columns

grid-row-gap Specifies the width of the gutter between rows

justify-items Indicates alignment of all the grid items along the
inline axis within their respective areas

justify-content Indicates alignment of the grid tracks along the
inline axis in its container

16. CSS Layout with Flexbox and Grid

CSS Review: Layout Properties

483

align-items Indicates alignment of all the items in a grid along
the block axis within their respective grid areas

align-content Indicates alignment of the grid tracks along the
block axis in the container

Grid item properties

grid-column Shorthand property for specifying
grid-column-start and grid-column-end

grid-column-end Denotes the end line of the column in which an item
is to be placed

grid-column-start Denotes the start line of the column in which an
item is to be placed

grid-row Shorthand property for specifying grid-row-start
and grid-row-end

grid-row-end Denotes the end line of the row in which an item is
to be placed

grid-row-start Denotes the start line of the row in which an item is
to be placed

grid-area Assigns a grid item to a named area or an area
described by its four boundary grid lines

align-self Indicates alignment of a single item along the block
axis within its grid area

justify-self Indicates alignment of a single grid item along the
inline axis within its area

order Specifies the order in which to display the item rela-
tive to other items in the source

z-index Specifies the stacking order of an item relative to
other items when there is overlap

Part III. CSS for Presentation

CSS Review: Layout Properties

484

IN THIS CHAPTER

What RWD is and why it’s
important

Fluid layouts

Media queries

Design strategies and patterns

Testing options

I first introduced you to the concept of Responsive Web Design way back in
Chapter 3, Some Big Concepts You Need to Know, and we’ve been addressing
ways to keep all screen sizes in mind throughout this book. In this chapter, we
get to do a deeper dive into responsive strategies and techniques.

Just to recap, Responsive Web Design (or RWD) is a design and production
approach that allows a website to be comfortably viewed and used on all
manner of devices. The core principle is that all devices get the same HTML
source, located at the same URL, but different styles are applied based on the
viewport size to rearrange components and optimize usability. FIGURE 17-1
shows examples of responsive sites as they might appear on a smartphone,
tablet, and desktop, but it is important to keep in mind that these sites are
designed to work well on the continuum of every screen width in between.

WHY RWD?

Since the iPhone shook things up in 2007, folks now view the web on phones
of all sizes, tablets, “phablets,” touch-enabled laptops, wearables, televisions,
video game consoles, refrigerators, and who knows what else that may be
coming down the line.

In 2016, mobile internet usage surpassed desktop usage—an important
milestone. The percentage of web traffic that comes from devices other than
desktop browsers is steadily increasing. For roughly 10% of Americans, a
smartphone or tablet is their only access to the internet because of lack of
access to a computer or high-speed WiFi at work or home.* Younger users
may be mobile-only by choice. Furthermore, the vast majority of us access the

*	 Pew Research Center, “Smartphone Use in 2015,” www.pewinternet.org/2015/04/01/us-smart-
phone-use-in-2015/.

RESPONSIVE WEB
DESIGN

17
CHAPTER

485

web from a number of platforms (phone, tablet, computer) over the course of
the day. And guess what—we expect to have a similar experience using your
content or service regardless of how we access your site.

That’s where RWD fits in. With one source, you ensure that mobile visitors
receive the same content as other visitors (although it might be organized dif-
ferently). Users are not penalized with stripped-down content or features just
because they are using a smartphone. And for visitors who might start using
your site on one device and finish it on another, you can ensure a consistent
experience.

In fact, for many web designers, “responsive design” is now just “web design.”
Instead of a niche approach, it is becoming the default way to build a website
that meets the demands of our current multidevice environment.

THE RESPONSIVE RECIPE

The deluge of web-enabled mobile devices initially sent shockwaves through
the web design community. Accustomed to designing exclusively for large
desktop screens, we were unclear about how we could accommodate screens
that fit in the palm of your hand.

An Event Apart
aneventapart.com

Warwick Public Library
warwicklibrary.org

The Boston Globe
bostonglobe.com

FIGURE 17-1.   Examples of responsive sites that adapt to fit small, medium, and large
screens and all sizes in between.

NOTE

Each site in FIGURE 17-1 has one mor-
phing design, not three distinct layouts.
Some sites do have a limited number of
layouts aimed at specific devices, which
is an approach known as Adaptive
Design.

Responsive design is
becoming the default way
to build a website that
meets the demands of
our current multidevice
environment.

Part III. CSS for Presentation

The Responsive Recipe

486

One solution was to rely on the phone’s built-in web display functionality.
By default, mobile devices display an entire web page shrunken down to fit
on whatever screen real estate is available. Users can pinch to zoom into the
details and scroll around to various parts of the page. While that technically
works, it is far from an optimal experience. Another approach was to create
a separate mobile site just for small screens and people “on the go.” There
are still many companies and services that use dedicated mobile (“m-dot”)
sites—Twitter and Facebook come to mind—but in general, m-dot sites are
going away in favor of RWD. Google is helping the process along by favoring
responsive sites with single URLs over m. or mobile. versions.

In 2010, Ethan Marcotte gave name to another, more flexible solution in
his article “Responsive Web Design” (alistapart.com/article/responsive-web-
design), which has since become a cornerstone of modern web design. In this
chapter, I will follow the “ingredients” for RWD that Ethan outlines in his
book Responsive Web Design (A Book Apart).

The technique has three core components:

A flexible grid

Rather than remaining at a static width, responsive sites use methods that
allow them to squeeze and flow into the available browser space.

Flexible images

Images and other embedded media need to be able to scale to fit their
containing elements.

CSS media queries

Media queries give us a way to deliver sets of rules only to devices that
meet certain criteria, such as width and orientation.

To this list of ingredients, I would add the viewport meta element, which
makes the width of the web page match the width of the screen. That’s where
we’ll begin our tour of the mechanics of RWD.

Setting the Viewport
To fit standard websites onto small screens, mobile browsers render the page
on a canvas called the viewport and then shrink that viewport down to fit
the width of the screen (device width). For example, on iPhones, mobile Safari
sets the viewport width to 980 points (see Note), so a web page is rendered
as though it were on a desktop browser window set to 980 pixels wide. That
rendering gets shrunk down to the width of the screen (ranging from 320 to
414 points, depending on the iPhone model), cramming a lot of information
into a tiny space.

Mobile Safari introduced the viewport meta element, which allows us to
define the size of that initial viewport. Soon, the other mobile browsers fol-
lowed suit. The following meta element, which goes in the head of the HTML

NOTE

Mobile sites were discussed in the side-
bar “M-dot Sites” in Chapter 3.

NOTE

iOS layouts are measured in points, a
unit of measurement that is independent
from the number of pixels that make up
the physical screen. Points and device
pixels are discussed in more detail in
Chapter 23, Web Image Basics.

17. Responsive Web Design

The Responsive Recipe

487

https://alistapart.com/article/responsive-web-design
https://alistapart.com/article/responsive-web-design

document, tells the browser to set the width of the viewport equal to the
width of the device screen (width=device-width), whatever that happens to
be (FIGURE 17-2). The initial-scale value sets the zoom level to 1 (100%).

<meta name="viewport" content="width=device-width, initial-scale=1">

With the viewport meta element in place, if the device’s screen is 320 pixels
wide, the rendering viewport on that device will also be 320 pixels across (not
980) and will appear on the screen at full size. That is the width we test for
with media queries, so setting the viewport is a crucial first step.

viewport = 980pt

screen = 320pt

viewport = 320pt

screen = 320pt

By default, the viewport shrinks
to the size of the screen.

With the viewport meta tag, the viewport
is created at the same size as the screen.

<meta name="viewport"
 content="width=device-width,
 initial-scale=1">

FIGURE 17-2.   The viewport meta element matches the resolution of the device’s
browser viewport to the resolution of its screen.

Flexible Grids (Fluid Layouts)
In the Flexbox and Grid discussions in the previous chapter, we saw examples
of items expanding and contracting to fill the available space of their contain-
ers. That fluidity is exactly the sort of behavior you need to make content
neatly fit a wide range of viewport sizes. Fluid layouts (or “flexible grids,”
as Ethan Marcotte calls them in his article and book) are the foundation of
responsive design.

F U N FACT

Media queries are always at work,
even after the page has initially
loaded. If the viewport changes—for
example, if a user turns a phone from
portrait to landscape orientation or
resizes a desktop browser window—
the query runs again and applies the
styles appropriate for the new width.

WARNIN G

The viewport meta element also allows
the maximum-scale attribute. Setting it
to 1 (maximum-scale=1) prevents users
from zooming the page, but it is strongly
recommended that you avoid doing so
because resizing is important for acces-
sibility and usability.

Part III. CSS for Presentation

The Responsive Recipe

488

In a fluid layout, the page area and its grid resize proportionally to fill the
available width of the screen or window (FIGURE 17-3, top). That is easily
accomplished with fr and minmax() units in CSS Grid layouts and with flex
property settings in Flexbox. If you need to also target older browsers that
don’t support CSS layout standards, you can use percentage values for hori-
zontal measurements so elements remain proportional at varying sizes (see
the sidebar “Converting Pixels to Percentages”).

In the past, when we knew that everyone was looking at our sites on desktop
monitors, fixed-width layouts were the norm. (Ahh, those simple pre-mobile
days when we only needed to deal with radically incompatible browser sup-
port!) As the name implies, fixed-width layouts are created at a specific pixel
width (FIGURE 17-3, bottom), with 960 pixels being quite fashionable (see
Note). Specifying all measurements in pixel values gave designers control
over the layout as they might have in print, and ensured that users across all
platforms and browsers got similar, if not the same, rendering of the page.

kexp.org

w3c.org

Fluid layouts fill the viewport proportionally.

Fixed layouts stay the same size and may get cut o� or leave extra space.

FIGURE 17-3.   Fluid and fixed layout examples.

It didn’t take long to realize, however, that it would be impossible to create
separate fixed-width designs tailored to every device size. Clearly, fluidity
has the advantage. It is based on the intrinsic nature of the normal flow, so
we’re working with the medium here rather than against it. When the layout
reflows to fill the available width, you don’t need to worry about horizontal
scrollbars or awkward empty space in the browser.

On the downside, fluid layouts may allow text line lengths to become uncom-
fortably long, so that is something to watch out for. We’ll go into more detail
on layouts later in this chapter.

Converting Pixels to
Percentages
To convert measurements in your
layout from pixels to percentages, use
the following formula:

target ÷ context = result

The target is the size of the element
you are resizing. The context is the
size of the containing element. The
result is a percentage you can use in
in your style rules. Don’t worry about
rounding long decimal strings down.
Browsers know what to do with them,
and the extra precision doesn’t hurt.

NOTE

Designers landed on 960 pixels wide as
a standard page width because it filled
the standard desktop width at the time
(1,028 pixels) and it was easily divided
into an equal columns. Page layout sys-
tems based on 12-column grids within
the 960-pixel page were also popular.

P E RS O N A L A N EC D OT E

When I got started in web design in
1993, the most common PC monitor
size was a measly 640 × 480 pixels,
unless you were a fancy-pants
designer type with a 800 × 600 screen.
My earliest designs had a fixed width
of an adorable 515 pixels.

17. Responsive Web Design

The Responsive Recipe

489

Making Images Flexible
Every now and then a solution is simple. Take, for example, the style rule
required to make images scale down to fit the size of their container:

img {
 max-width: 100%;
}

That’s it! When the layout gets smaller, the images in it scale down to fit
the width of their respective containers. If the container is larger than the
image—for example, in the tablet or desktop layouts—the image does not
scale larger; it stops at 100% of its original size (FIGURE 17-4). When you
apply the max-width property, you can omit the width and height attributes
in the img elements in the HTML document. If you do set the width attribute,
be sure the height attribute is set to auto; otherwise, the image won’t scale
proportionately.

img { max-width: 100%, }

FIGURE 17-4.   Setting the max-width of inline images allows them to shrink to fit
available space but not grow larger than actual size.

Responsive images
But wait—things are never that simple, right? If you think back to our dis-
cussion of responsive images in Chapter 7, Adding Images, you’ll remember
that there is some elbow grease required to avoid serving unnecessarily large
images to small devices as well as making sure large, high-density monitors
get high-resolution images that shine. Choosing the best image size for per-
formance is part of the responsive design process, but we won’t be concentrat-
ing on that in this chapter. We’ve got bigger fish to fry!

Other embedded media
Videos and other embedded media (using object or embed elements) also
need to scale down in a responsive environment. Unfortunately, videos do
not retain their intrinsic ratios when the width is scaled down, so there are a

Part III. CSS for Presentation

The Responsive Recipe

490

few more hoops to jump through to get good results. Thierry Koblentz docu-
ments one strategy nicely in his article “Creating Intrinsic Ratios for Video”
at www.alistapart.com/articles/creating-intrinsic-ratios-for-video. There is also
a JavaScript plug-in called FitVids.js (created by Chris Coyier and the folks
at Paravel) that automates Koblentz’s technique for fluid-width videos. It is
available at fitvidsjs.com.

Media Query Magic
Now we get to the real meat of responsive design—media queries! Media
queries apply different styles based on characteristics of the browser: its
width, whether it is vertically or horizontally oriented, its resolution, and
more. They are what make it possible to send a one-column layout to small
screens and a multicolumn layout to larger screens on the fly.

The query itself includes a media type followed by a particular feature and a
value for which to test. The criteria are followed by a set of curly brackets that
contain styles to apply if the test is passed. The structure of a media query as
used within a style sheet goes like this:

@media type and (feature: value) {
 /* styles for browsers that meet this criteria */
}

Let’s clarify that with an example. The following media queries look at
whether the viewport is on a screen and in landscape (horizontal) or por-
trait (vertical) orientation. When the query detects that the viewport is in
landscape mode, the background color of the page is “skyblue”; when it is in
portrait orientation, the background is “coral” (FIGURE 17-5). If this were dis-
played on a smartphone that tips from vertical to horizontal and back again,
the colors would change as it tilts. This isn’t a very practical design choice, but
it does provide a very simple illustration of media queries at work.

@media screen and (orientation: landscape) {
 body {
 background: skyblue;
 }
}
@media screen and (orientation: portrait) {
 body {
 background: coral;
 }
}

When the viewport is in
portrait mode, the

background color is “coral.”

When the viewport is in
landscape mode, the

background color is “skyblue.”

FIGURE 17-5.  Changing the background color based on the
orientation of the viewport with media queries.

HE A DS U P

Having style declaration curly brackets nested inside media
query curly brackets can get a little confusing. Be sure that you
have the right number of curly brackets and nest them properly.
Careful indenting is helpful. Many code-editing programs also
use color coding to help you keep them straight.

17. Responsive Web Design

The Responsive Recipe

491

http://www.alistapart.com/articles/creating-intrinsic-ratios-for-video

Media types
Media types, as included in the first part of a query, were introduced in CSS2
as a way to target styles to particular media. For example, this @media rule
delivers a set of styles only when the document is printed (it does not test for
any specific features or values):

@media print {
 /* print-specific styles here */
}

The most current defined media types are all, print, screen, and speech
(see Note). If you are designing for screen, the media type is optional, so you
can omit it as shown in the syntax example shown here, but including it
doesn’t hurt. I’ll be including the screen media type for the sake of clarity in
my examples.

@media (feature: value) {
 }

NOTE

CSS2 also defined aural, handheld, braille, embossed, projection, tty, and tv, but
they have been deprecated in the latest Media Queries Level 4 spec (currently a Working
Draft) and are discouraged from use.

Media feature queries
CSS3 media queries take targeting one step further by letting us test for a
particular feature of a viewport or device. We saw an example of testing the
orientation of a device in FIGURE 17-5. The most common feature to test for
is the viewport width. You can also test for a minimum width (min-width) and
maximum width (max-width).

Here is a simple example that displays headline fonts in a fancy cursive font
only when the viewport is 40em or wider—that is, when there is enough
space for the font to be legible. Viewports that do not match the query
(because they are narrower than 40em) use a simple serif face.

h1 {
 font-family: Georgia, serif;
 }

@media screen and (min-width: 40em) {
 h1 {
 font-family: 'Lobster', cursive;
 }
}

The complete list of device features you can detect with media queries
appears in TABLE 17-1.

AU T H O R I N G T I P

Minimum-width queries are your
go-to for creating mobile-first
responsive design.

Part III. CSS for Presentation

The Responsive Recipe

492

TABLE 17-1.   Media features you can evaluate with media queries

Feature Description

width The width of the display area (viewport). Also min-width and max-width.

height The height of the display area (viewport). Also min-height and max-height.

orientation Whether the device is in portrait or landscape orientation.

aspect-ratio Ratio of the viewport’s width divided by height (width/height).
Example: aspect-ratio: 16/9.

color The bit depth of the display; for example, color: 8 tests for whether the device has at least
8-bit color.

color-index The number of colors in the color lookup table.

monochrome The number of bits per pixel in a monochrome device.

resolution The density of pixels in the device. This is increasingly relevant for detecting high-resolu-
tion displays.

scan Whether a tv media type uses progressive or interlace scanning.
(Does not accept min-/max- prefixes.)

grid Whether the device uses a grid-based display, such as a terminal window.
(Does not accept min-/max- prefixes.)

Deprecated features

The following features have been deprecated in Media Queries Level 4 Working Draft and are discouraged from use.

device-width The width of the device’s rendering surface (the whole screen).
(Deprecated in favor of width.)

device-height The height of the device’s rendering surface (the whole screen).
(Deprecated in favor of height.)

device-aspect-ratio Ratio of the whole screen’s (rendering surface) width to height.
(Deprecated in favor of aspect-ratio.)

New in Media Queries Level 4

These features have been added in the Working Draft of MQ4. Some may gain browser support, and some may be
dropped from future drafts. I include them here to show you where the W3C sees media queries going. For details,
see drafts.csswg.org/mediaqueries-4.

update-frequency How quickly (if at all) the output device modifies the appearance of the content.

overflow-block How the device handles content that overflows the viewport along the block axis.

overflow-inline Whether the content that overflows the viewport along the inline axis can be scrolled.

color-gamut The approximate range of colors that are supported by the user agent and output device.

pointer Whether the primary input mechanism is a pointing device and how accurate it is.

hover Whether the input mechanism allows the user to hover over elements.

any-pointer Whether any available input mechanism is a pointing device, and how accurate it is.

any-hover Whether any available input mechanism allows hovering.

17. Responsive Web Design

The Responsive Recipe

493

How to use media queries
You can use media queries within a style sheet or to conditionally load exter-
nal style sheets. Media queries may not be used with inline styles.

Within a style sheet

The most common way to utilize media queries is to use an @media (“at-
media”) rule right in the style sheet. The examples in this chapter so far are
all @media rules.

When you use media queries within a style sheet, the order of rules is very
important. Because rules later in the style sheet override the rules that come
before them, your media query needs to come after any rules with the same
declaration.

The strategy is to specify the baseline styles that serve as a default, and then
override specific rules as needed to optimize for alternate viewing environ-
ments. In RWD, the best practice is to set up styles for small screens and
browsers that don’t support media queries, and then introduce styles for
increasingly larger screens later in the style sheet.

That’s exactly what I did in the headline font-switching example earlier. The
h1 sets a baseline experience with a local serif font, and then gets enhanced
for larger screens with a media query.

With external style sheets

For large or complicated sites, developers may choose to put styles for dif-
ferent devices into separate style sheets and call in the whole .css file when
certain conditions are met. One method is to use the media attribute in the
link element to conditionally load separate .css files. In this example, the
basic styles for a site are requested first, followed by a style sheet that will
be used only if the device is more than 1,024 pixels wide (and if the browser
supports media queries):

<head>
 <link rel="stylesheet" href="styles.css">
 <link rel="stylesheet" href="2column-styles.css" media="screen and
(min-width:1024px)">
</head>

Some developers find this method helpful for managing modular style sheets,
but it comes with the disadvantage of requiring extra HTTP requests for each
additional .css file. Be sure to provide only as many links as necessary (per-
haps one for each major breakpoint), and rely on @media rules within style
sheets to make minor adjustments for sizes in between.

Similarly, you can carry out media queries with @import rules that pull in
external style sheets from within a style sheet. Notice that the word “media”
does not appear in this syntax, only the type and query.

Part III. CSS for Presentation

The Responsive Recipe

494

<style>
 @import url("/default-styles.css");
 @import url("/wide-styles.css") screen and (min-width: 1024px);
 /* other styles */
</style>

Browser support
We can’t close out a discussion of media queries without a nod to browser
support. The good news is that media queries are supported by virtually all
desktop and mobile browsers in use today. The big exceptions are Internet
Explorer versions 8 and earlier, which have no support. Because of the stay-
ing power of the Windows XP operating system, IE8 continues to show up
in browser use statistics (at 1–2% as I write, ahead of IE 9 and 10). If your
site has hundreds of thousands of users, that 1% ends up being a significant
number of broken experiences.

If you expect to have visitors using old versions of IE, you have a couple of
options. First, you could use the Respond.js polyfill, which adds support for
min-width and max-width to non-supporting browsers. It was created by Scott
Jehl and is available at github.com/scottjehl/Respond.

The other option is to create a separate style sheet with a no-frills desktop
layout and deliver it only to users with IE8 or earlier by using a conditional
comment. Other browsers ignore the content of this IE-specific comment:

<!-- [if lte IE 8]>
 <link rel="stylesheet" href="/path/IE_fallback.css">
<![endif]-->

Depending on your site statistics and when you are reading this, you may not
need to worry about media query support at all. Lucky you!

CHOOSING BREAKPOINTS

A breakpoint is the point at which we use a media query to introduce a style
change. When you specify min-width: 800px in a media query, you are saying
that 800 pixels is the “breakpoint” at which those particular styles should be
used. FIGURE 17-6 shows some of the breakpoints at which Etsy.com makes
both major layout changes and subtle design tweaks on its home page.

Choosing breakpoints can be challenging, but there are a few best practices
to keep in mind.

When RWD was first introduced, there were only a handful of devices to
worry about, so we tended to base our breakpoints on the common device
sizes (320 pixels for smartphones, 768 pixels for iPads, and so on), and we cre-
ated a separate design for each breakpoint. It didn’t take long until we had to
deal with device widths at nearly every point from 240 to 3,000+ pixels. That
device-based approach definitely didn’t scale.

A breakpoint is a width
at which you introduce a
style change.

17. Responsive Web Design

Choosing Breakpoints

495

At the 480-pixel
breakpoint, the
category
navigation
changes from a list
to photos.
“Register” is
added to the top
navigation bar.

At 501 pixels, “Sell”
becomes “Sell on
Etsy” (a very subtle
adjustment). You
can also see more
links in the
navigation bar
under the search
field.

At 640 pixels, the “How Etsy
Works” images and
messages move above the
categories. In smaller views,
they were accessible via the
“Learn how Etsy works” link
in a yellow bar.

At 901 pixels, the search input
form moves into the top header.

At 981 pixels, the word “Cart” appears under the
shopping cart icon. We now see the full list of
navigation options in the header (no “More” link).
At this point, the layout expands to fill larger
windows until it reaches its maximum width of
1400 pixels. Then margins add space equally on
the le� and right to keep the layout centered.

FIGURE 17-6.   A series of breakpoints used by Etsy’s responsive site (2017).

Part III. CSS for Presentation

Choosing Breakpoints

496

Module-Based Breakpoints
A better approach is to create breakpoints for the individual parts of a page
rather than switching out the entire page at once (although for some pages
that may work just fine). A common practice is to create the design for narrow
screens first, and then resize the browser wider and pay attention to the point
at which each part of the page starts to become unacceptable. The naviga-
tion might become too awkward and need a breakpoint at 400 pixels wide,
but the one-column layout might be OK until it reaches 800 pixels, at which
point a two-column design could be introduced.

In his book Responsive Design: Patterns & Principles (A Book Apart), Ethan
Marcotte calls this “content out” design and puts it like this:

For me, that “content out” process begins by looking at the smallest version
of a piece of content, then expanding that element until its seams begin to
show and it starts to lose its shape. Once that happens, that’s an opportunity
to make a change—to introduce a breakpoint that reshapes the element and
preserves its integrity.

If you find that you have a lot of breakpoints within a few pixels or ems of
one another, grouping them together may streamline your style sheet and
process. And it doesn’t hurt to keep the screen sizes of the most popular
devices in mind in case nudging your breakpoint down a little helps improve
the experience for a whole class of users. The site Screen Sizes (screensiz.es)
lists the dimensions of a wide range of popular devices. A web search will
turn up similar resources.

Em-Based Breakpoints
The examples in this section have been based on breakpoints with pixel mea-
surements. An alternative, and many would say better, method is to use ems
instead of pixels in the media query. Remember that an em is equal to the
current font size of an element. When used in a media query, an em is based
on the base font size for the document (16 pixels by default, although that
can be changed by the user or the page author).

Pixel-based media queries don’t adapt if the user changes their font size set-
tings, which people do in order to be able to read the page more easily. But
em-based media queries respond to the size of the text, keeping the layout of
the page in proportion.

For example, say you have a layout that switches to two columns when the
page reaches 800 pixels. You’ve designed it so the main column has an opti-
mum text line length when the base font size is the default 16 pixels. If the
user changes their base font size to 32 pixels, that double-sized text will pour
into a space intended for text half its size. Line lengths would be awkward.

Using em-based queries, if the query targets browsers wider than 50em, when
the base font size is 16 pixels, the switch happens at 800 pixels (as designed).

It is common to create
breakpoints for each
component of the page
rather than changing the
entire page at once.

Em-based media queries
keep the layout proportional
to the font size.

17. Responsive Web Design

Choosing Breakpoints

497

However, should the base font size change to 32 pixels, the two-column
layout would kick in at 1,600 pixels (50em × 32px = 1,600px), when there is
plenty of room for the text to fill the main column with the same line lengths
as the original design.

This example used a whole-page layout switch, but media queries on indi-
vidual components (as discussed earlier) can use ems as well. In the next
section, I’ll introduce some of the aspects of web pages that require attention
when you’re choosing breakpoints.

How Wide Is the Viewport?
I’ve suggested making your browser wider until you see that a breakpoint is needed,
but how do you know how wide the window is? There are a number of tools that
provide window measurements.

Firefox, Chrome, and Safari all have tools that can show you how a page looks at
specific viewport dimensions. In Responsive Mode (or View), you get a resizable
window-in-a-window that can be set to standard device sizes or resized manually.
The pixel dimensions are displayed as the viewport resizes.

In Firefox, access Responsive Design Mode (FIGURE 17-7) via the Web Developer
Tools (Tools → Web Developer → Responsive Design Mode). Safari’s Responsive
Design Mode is accessible via Develop → Enter Responsive Design Mode. Chrome
offers a Device Toolbar (View → Developer → Developer Tools, and then look for the
Toggle Device Toolbar icon on the left of the menu bar). They all work about the
same, but you may find you prefer one browser’s user interface over another.

To find out how your browser window or device responds to media queries, go to
MQTest.io (mqtest.io) by Viljami Salminen. In addition to viewport width and height,
it reports on other device features such as device-pixel-ratio, aspect ratio, and more.

Responsive Design Mode in Firefox
shows you the exact pixel dimensions of
its viewport. It has shortcuts to resize it
to common device dimensions. Chrome
and Safari have similar responsive views.

MQTest.io is a web page that
reports on how your browser
responds to media queries,
including width.

FIGURE 17-7.   Checking viewport size in Firefox’s Responsive Design Mode and
MQTest.io.

Part III. CSS for Presentation

Choosing Breakpoints

498

DESIGNING RESPONSIVELY

We’ve covered the RWD nuts and bolts—now let’s talk about some of the
decisions designers make when creating responsive sites. I am only going to
be able to scratch the surface here, but you’ll find much deeper explorations
on these themes in the books and articles listed along the way. For now, I just
want to raise your awareness of responsive strategies. At the end of the sec-
tion, you will use some of these strategies to make the Black Goose Bakery
page responsive.

We’ve seen a few examples in our exercises of content looking wonky when
the browser gets very narrow or very wide. A three-column layout just doesn’t
fit, and text in an image may become unreadable when it is scaled down to
fit a 320-pixel-wide screen. At the other end of the spectrum, the line length
in single-column layouts becomes too long to read comfortably when the
viewport fills a high-resolution desktop monitor. For many aspects of a web
page, one size does not fit all. As designers, we need to pay attention to where
things fall apart and set breakpoints to “preserve the integrity” of the ele-
ments (as Ethan Marcotte so nicely puts it).

In the broadest of strokes, the tricky bits to keep optimized over a wide range
of viewport sizes include the following:

•	 Content hierarchy

•	 Layout

•	 Typography

•	 Navigation

•	 Images

•	 Special content such as tables, forms, and interactive features

Content Hierarchy
Content is king on the web, so it is critical that content is carefully considered
and organized before any code gets written. These are tasks for Information
Architects and Content Strategists who address the challenges of organizing,
labeling, planning, and managing web content.

Organization and hierarchy across various views of the site are a primary
concern, with a particular focus on the small-screen experience. It is best to
start with an inventory of potential content and pare it down to what is most
useful and important for all browsing experiences. Once you know what the
content modules are, you can begin deciding in what order they appear on
various screen sizes.

Keep in mind that you should strive for content parity—that is, the notion
that the same content is accessible regardless of the device used to access the

17. Responsive Web Design

Designing Responsively

499

site. It might be that visitors need to follow a slightly different navigational
path to that information, but dropping portions of your site on small screens
because you think mobile users won’t need it is false thinking. People do bop
between devices mid-task, and you want to be sure they have everything they
need.

This is a woefully brief introduction to what is perhaps the most important
first step of creating a site, but it is just outside the focus of this book. To get
up to speed properly with content strategy, particularly as it applies to RWD,
I recommend the following books:

•	 Content Strategy for the Web, 2nd Edition, by Kristina Halvorson and
Melissa Rich (New Riders)

•	 Content Strategy for Mobile by Karen McGrane (A Book Apart)

Layout
Rearranging content into different layouts may be the first thing you think of
when you picture responsive design, and with good reason. The layout helps
form our first impression of a site’s content and usability.

As mentioned earlier, responsive design is based on fluid layouts that expand
and contract to fill the available space in the viewport. One fluid layout is
usually not enough, however, to serve all screen sizes. More often, two or
three layouts are produced to meet requirements across devices, with small
adjustments between layout shifts.

Designers typically start with a one-column layout that fits well on small
handheld devices and rearrange elements into columns as more space is
available. They may also have the design for the widest screens worked out
early on so there is an end-point in mind. The design process may involve
a certain amount of switching between views and making decisions about
what happens along the way.

Layout and line length
A good trigger for deciding when to adjust the layout is to look at text line
lengths. Lines of text that are too stubby or too long are difficult to read,
so you should aim for optimal line lengths of 45 to 75 characters, including
spaces. If your text lines are significantly longer, it’s time to make changes to
the layout such as increasing the margins or introducing an additional col-
umn. You might also increase the font size of the text to keep the character
count in the desired range.

Clarissa Peterson introduces a neat trick for testing line lengths in her book
Learning Responsive Web Design (O’Reilly). Put a span around the 45th to 75th
characters in the text and give it a background color (FIGURE 17-8). That way,
you can easily check whether the line breaks are happening in the safe zone

Conditional Loading
Content parity doesn’t mean that
all of the content that fits on a large
screen should be stuffed onto the
small-screen layout. All that scrolling
and extra data to download isn’t
doing mobile users any favors.

A better approach is to use
conditional loading, in which small-
screen users get the most important
content with links to access
supplemental content (comments,
product details, ads, lists of links, etc.)
when they want it. The information is
available to them, just not all at once.
Meanwhile, on larger screens, those
supplemental pieces of content get
displayed in sidebars automatically.

Conditional loading requires
JavaScript to implement, so I won’t
be giving you the specific how-tos
here, but it is good to know that there
are alternatives to cramming every
little thing onto every device.

Part III. CSS for Presentation

Designing Responsively

500

at a glance. Of course, this line length hint would be removed before the site
is made public.

FIGURE 17-8.   Highlight the 45th to 75th characters to test for optimal line lengths at
a glance.

Responsive layout patterns
The manner in which a site transitions from a small-screen layout to a
wide-screen layout must make sense for that particular site, but there are
a few patterns (common and repeated approaches) that have emerged over
the years. We can thank Luke Wroblewski (known for his “Mobile First”
approach to web design, which has become the standard) for doing a sur-
vey of how responsive sites handle layout. The article detailing his findings,
“Multi-Device Layout Patterns” (www.lukew.com/ff/entry.asp?1514), is getting
on in years, but the patterns persist today. Following are the top patterns Luke
named in his article (FIGURE 17-9):

Mostly fluid

This pattern uses a single-column layout for small screens, and another
fluid layout that covers medium and large screens, with a maximum
width set to prevent it from becoming too wide. It generally requires less
work than other solutions.

Column drop

This solution shifts between one-, two-, and three-column layouts based
on available space. When there isn’t room for extra columns, the sidebar
columns drop below the other columns until everything is stacked verti-
cally in the one-column view.

Layout shifter

If you want to get really fancy, you can completely reinvent the layout for
a variety of screen sizes. Although expressive and potentially cool, it is not
necessary. In general, you can solve the problem of fitting your content to
multiple environments without going overboard.

Tiny tweaks

Some sites use a single-column layout and make tweaks to type, spacing,
and images to make it work across a range of device sizes.

17. Responsive Web Design

Designing Responsively

501

http://www.lukew.com/ff/entry.asp?1514

Off canvas

As an alternative to stacking content vertically on small screens, you may
choose to use an “off-canvas” solution. In this pattern, a page component
is located just out of sight on the left or right of the screen and flies into
view when requested. A bit of the main content screen remains visible on
the edge to orient users as to the relationship of moving parts. This was
made popular by Facebook, wherein Favorites and Settings were placed
on a panel that slid in from the left when users clicked a menu icon.

You can see working examples of these and additional layout patterns on the
“Responsive Patterns” page assembled by Brad Frost (bradfrost.github.io/this-
is-responsive/patterns.html).

Typography
Typography requires fine-tuning along the spectrum from small-screen to
wide-screen views in order to keep it legible and pleasant to read. Here are a
few typography-related pointers (FIGURE 17-10):

Font face

Be careful about using fancy fonts on small screens and be sure to test
for legibility. At small sizes, some fonts become difficult to read because

Mostly fluid Column drop

Layout shi�er Tiny tweaks

O� canvas

FIGURE 17-9.   Examples of the responsive layout patterns identified by Luke
Wroblewski.

Part III. CSS for Presentation

Designing Responsively

502

line strokes become too light or extra flourishes become little blobs.
Consider also that small screens may be connecting over cellular, so tak-
ing advantage of locally available fonts may be better for performance
than requiring a web font to download. If a strict brand identity requires
font consistency on all devices, be sure to choose a font face that works
well at all sizes. If that is not a concern, consider using a web font only on
larger screens. We strive to serve the same design to all devices, but as with
everything else in web design, flexibility is important.

Font size

Varying viewport widths can wreak havoc on line lengths. You may find
that you need to increase the font size of text elements for wider viewports
to maintain a line length of between 45 and 75 characters. It also makes it
easier to read from the distance users typically sit from their large screens.
Conversely, you could use em-based media queries so that the layout stays
proportional to the font size. With em-based queries, line lengths stay
consistent.

Line height

Line height is another measurement that you may want to tweak as
screens get larger. On average, line height should be about 1.5 (using a
number value for the line-height property); however, slightly tighter line
spacing (1.2 to 1.5) is easier to read with the shorter line lengths on small
screens. Large screens, where the type is also likely to be larger, can handle
more open line heights (1.4 to 1.6).

Margins

On small screens, make the most of the available space by keeping left
and right margins on the main column to a minimum (2–4%). As screens
get larger, you will likely need to increase side margins to keep the line

Variable Fonts
In late 2016, OpenType released a
new font technology called OpenType
Font Variations, known less formally
as “variable fonts.” You can change
the weight, width, style (italic), slant,
and optical size of a variable font by
using font-* style properties. The
marvel of this technology is that you
can deliver one font file (that’s just
one call to the server) and stretch and
manipulate it to suit many purposes,
such as to make it narrower to
preserve height and line length on
small screens. Browser support for
variable fonts is due to start kicking
in in 2018. For more information, see
the article “Get Started with Variable
Fonts” by Richard Rutter at medium.
com/@clagnut/get-started-with-
variable-fonts-c055fd73ecd7.

The axis-praxis.org site allows you
to play around with variable fonts
using sliders to adjust the weight and
other qualities. Note that you need a
browser that supports variable fonts
for it to work.

Narrow screens:
• Legible fonts
• Smaller type size
• Tighter line height
• Narrow margins

Wide screens:
• Stylized fonts OK
• Larger type size
• Open line height
• Wider margins

FIGURE 17-10.   General typography guidelines for small and large screens.

17. Responsive Web Design

Designing Responsively

503

lengths under control and just to add some welcome whitespace to the
layout. Remember to specify margins above and below text elements in
em units so they stay proportional to the type.

Navigation
Navigation feels a little like the Holy Grail of Responsive Web Design. It
is critical to get it right. Because navigation at desktop widths has pretty
much been conquered, the real challenges come in re-creating our navigation
options on small screens. A number of successful patterns have emerged for
small screens, which I will briefly summarize here (FIGURE 17-11):

Top navigation

If your site has just a few navigation links, they may fit just fine in one or
two rows at the top of the screen.

Priority +

In this pattern, the most important navigation links appear in a line
across the top of the screen alongside a More link that exposes additional
options. The pros are that the primary links are in plain view, and the
number of links shown can increase as the device width increases. The
cons include the difficulty of determining which links are worthy of the
prime small-screen real estate.

Select menu

For a medium list of links, some sites use a select input form element.
Tapping the menu opens the list of options using the select menu UI of
the operating system, such as a scrolling list of links at the bottom of the
screen or on an overlay. The advantage is that it is compact, but on the
downside, forms aren’t typically used for navigation, and the menu may
be overlooked.

Link to footer menu

One straightforward approach places a Menu link at the top of the page
that links to the full navigation located at the bottom of the page. The risk
with this pattern is that it may be disorienting to users who suddenly find
themselves at the bottom of the scroll.

Accordion sub-navigation

When there are a lot of navigation choices with sub-navigation menus, the
small-screen solution becomes more challenging, particularly when you
can’t hover to get more options as you can with a mouse. Accordions that
expand when you tap a small arrow icon are commonly used to reveal
and hide sub-navigation. They may even be nested several levels deep. To
avoid nesting navigation in accordion submenus, some sites simply link
to separate landing pages that contain a list of the sub-navigation for that
section.

Fluid Typography with
Viewport Units
To make the size of text proportional
to the size of the viewport, use the
viewport-percentage lengths, vw and
vh, for font-size. A vw (viewport
width) unit is equal to 1% of the
width of the viewport (or the “initial
containing block,” as it is called in
the specification). One vh is 1% of
the viewport height. The spec also
defines a vmin unit (the smaller of
vw or vh) and vmax (the larger of
vw or vh), but they are not as well
supported.

Browser support is pretty good with
the exception of IE9 and earlier and
support for vmin and vmax. There are
quite a few known bugs, so be sure
to check the Known Issues tab on the
CanIUse.com page for these values.

For an exploration of using viewport
units for text, read “Responsive Font
Size and Fluid Typography with vh
and vw” by Michael Riethmuller
at Smashing Magazine (www.
smashingmagazine.com/2016/05/
fluid-typography).

Part III. CSS for Presentation

Designing Responsively

504

http://www.smashingmagazine.com/2016/05/fluid-typography
http://www.smashingmagazine.com/2016/05/fluid-typography
http://www.smashingmagazine.com/2016/05/fluid-typography

Top navigation

Select menu

Priority +

Link to footer menu

O�-canvas/fly-in

Push toggle (pushes content down)

Overlay toggle (covers top of screen)

Blog Shop About Contact

LoGo a good company

Shop Contact About MORE

LoGo a good company LoGo a good company

Shop Contact About MORE

Blog

FAQ

Jobs

LoGo a good company

Shop Contact About Blog FAQ Jobs

LoGo a good company

LoGo a good company

Blog

FAQ

Jobs

Shop

Contact

About

MENU

Accordion sub-navigation

LoGo a good company

Blog

Shop

Contact

About

LoGo a good company

LoGo a good company

Blog

Shop

• Kitchen

• Bedroom

• O�ice

Contact

About

MENU

MENU

MENU

LoGo a good company

Blog

Shop

Contact

About

LoGo a good company

MENU

Blog

FAQ

Jobs

Shop

Contact

About

LoGo a good company

MENU

Blog

FAQ

Jobs

Shop

Contact

About

= tap

KEY

FIGURE 17-11.  Responsive navigation patterns.

17. Responsive Web Design

Designing Responsively

505

Push and overlay toggles

In toggle navigation, the navigation is hidden but expands downward
when the menu link is tapped. It may push the main content down below
it (push toggle) or slide down in front of the content (overlay toggle).

Off-canvas/fly-in

This popular pattern puts the navigation in an off-screen panel to the
left or right of the main content that slides into view when you tap the
menu icon.

For a deeper dive into the pros and cons of navigation patterns, read Brad
Frost’s article “Responsive Navigation Patterns” (bradfrost.com/blog/web/
responsive-nav-patterns). Brad also includes examples of these patterns and
more on his Responsive Patterns page (bradfrost.github.io/this-is-responsive/
patterns.html).

For working examples of these patterns with the code used to create them,
see the “Adventures in Responsive Navigation” page assembled by Eric Arbé
at responsivenavigation.net.

Images
Images require special attention in responsive designs. Here is a quick run-
down of some of the key issues, most of which should sound familiar:

•	 Use responsive image markup techniques (covered in Chapter 7) to pro-
vide multiple versions of key images for various sizes and resolutions.

•	 Serve the smallest version as the default to prevent unnecessary data
downloads.

•	 Be sure that important image detail is not lost at smaller sizes. Consider
substituting a cropped version of the image for small screens.

•	 Avoid putting text in graphics, but if it is necessary, provide alternate ver-
sions with larger text for small screens.

Special Content
Without the luxury of wide-open, desktop viewports, some of our common
page elements pose challenges when it comes to fitting on smaller screens:

Forms

Forms often take a little finagling to fit the available space appropriately.
Flexbox is a great tool for adding flexibility and conditional wrapping to
form fields and their labels. A web search will turn up some fine tutorials.
Also make sure that your form is as efficient as possible, with no unneces-
sary fields, which is good advice for any screen size. Finally, consider that

Designing for Fingers
Keep in mind that people use their
fingers to get around on touch
devices, which these days include
smartphones, tablets, and even
desktop-sized screens like Microsoft
Surface and iPad Pro.

Links in navigation should be big
enough to easily target with thumbs
and fingertips. Apple requires 44
pixels for its apps, and that’s a good
ballpark to keep in mind for links on
web pages as well.

Another consideration for touch
devices is that there is no hover state.
Hovering has become the convention
for opening sub-navigation on web
pages on the desktop, but with
no mouse, that experience is very
different with touch. Most devices
open the submenu with a second
click. If you use hover in your
navigation and elsewhere on your
site, you’ll need to do thorough
device testing. Someday, we may be
able to write a media query to test
for hover, but in the meantime, either
avoid it or test the alternatives.

A really great book about all of this
stuff is Josh Clark’s Designing for
Touch (A Book Apart).

Part III. CSS for Presentation

Designing Responsively

506

https://bradfrost.github.io/this-is-responsive/patterns.html
https://bradfrost.github.io/this-is-responsive/patterns.html

form inputs will be used with fingertips, not mouse pointers, so increase
the target size by adding ample padding or margins and by making labels
tappable to select an input.

Tables

One of the greatest challenges in small-screen design is how to deal with
large data tables. Not surprisingly, because there are many types of tables,
there are also many solutions. See the “The Trouble with Tables” sidebar
for more information and resources.

Interactive elements

A big embedded map may be great on a desktop view of a site, but it is
less useful when it is the size of a postage stamp. Consider whether some
interactive features should be substituted for other methods for perform-
ing the same task. In the case of the map, adding a link to a map can trig-
ger the device’s native mapping app to open, which is designed to provide
a better small-screen experience. Other interactive components, such as
carousels, can be adapted for smaller viewports.

The Trouble with Tables
Large tables, such as those shown back in FIGURE 8-1, can
be difficult to use on small-screen devices. By default, they are
shrunk to fit the screen width, rendering the text in the cells too
small to be read. Users can zoom in to read the cells, but then
only a few cells may be visible at a time, and it is difficult to
parse the organization of headings and columns.

Designers and developers have created a number of approaches
for making tables responsive. To be honest, using tables on
small devices is still relatively new, so right now what we’re
seeing is a lot of experimentation and throwing solutions
against the wall to see what sticks. Most solutions involve some
advanced web development mojo (more than we can take on
with only a few chapters under your belt), but I do want you
to be familiar with responsive tables. There are three general
approaches: scrolling, stacking, and hiding.

For scrolling solutions, the table stays as wide as it needs to be,
and users can scroll to the right to see the columns that won’t
fit. This can be accomplished with JavaScript or CSS alone. You
can even anchor the left column to the window so that it stays
put when the rest of the table scrolls.

Another approach is to stack up the entries in a long, narrow
scroll. Each entry repeats the headers, so the data is always
presented with the proper context. Again, you could do this with
JavaScript or CSS alone. The downside is that the list can end
up very long, and it makes it difficult to compare entries, but at
least all of the information is visible without horizontal scrolling.

You may also choose to hide certain columns of information
when the page first loads on small devices and give the user
the option to click to see the whole table or to toggle on and off
specific columns. That is a little more risky from an interaction
design perspective. Those columns just might not be seen at all.

CSS Tables and Flexbox are other options for making tabular
material responsive. The best approach entirely depends on the
type of data you’re publishing and how the table is expected to
be used. If you are interested in learning more, I recommend the
following resources:

•	 “Accessible, Simple, Responsive Tables” by Davide Rizzo on
CSS-Tricks (css-tricks.com/accessible-simple-responsive-
tables/): A roundup of solutions using CSS tables.

•	 “CSS-only Responsive Tables” by David Bushell (dbushell.
com/2016/03/04/css-only-responsive-tables/): A CSS-only
scrolling approach using CSS shadows for improved usability.

•	 “Picking a Responsive Tables Solution” by Jason Grigsby
at Cloud Four (cloudfour.com/thinks/picking-responsive-
tables-solution/).

•	 Responsive Tables by ZURB Studios (zurb.com/playground/
responsive-tables): A fixed-left-column scrolling solution
using JavaScript and CSS.

•	 Tablesaw by Filament Group (github.com/filamentgroup/
tablesaw): A group of JQuery (JavaScript) plug-ins for
creating a variety of responsive table effects.

17. Responsive Web Design

Designing Responsively

507

http://dbushell.com/2016/03/04/css-only-responsive-tables/
http://dbushell.com/2016/03/04/css-only-responsive-tables/
http://zurb.com/playground/responsive-tables
http://zurb.com/playground/responsive-tables

That should give you a feel for some of the aspects of a site that need special
attention in a responsive design. We covered content hierarchy, various lay-
out patterns, typography tweaks, responsive navigation patterns, and image
strategies, and addressed tables, forms, and interactive features. I’d say that’s
enough lecturing. Now you’ll get some hands-on time in EXERCISE 17-1.

EXERCISE 17-1.  Making the bakery home page responsive

We’ve done a lot of work on the Black Goose Bakery site over the
last few chapters, but the resulting site works best on large screens.
In this exercise, we’re going to back up a few steps and build it
again using a small-screen-first strategy, making changes to layout,
navigation, typography, and more at strategic breakpoints.

I’ve done the heavy lifting of writing the necessary styles for each
breakpoint, but I will talk you through each step and share the
reasoning for the changes. The starting style sheet (bakery-rwd.
css) as well as the finished style sheet (bakery-rwd-finished.css)
and the other files for the site are provided with the materials for
this chapter. The HTML file, bakery.html, hasn’t changed since we
added the container element to it in Chapter 16, CSS Layout
with Flexbox and Grid, and we will not need to edit it again.

Getting Started
Open the HTML file (bakery.html) in a browser with a Responsive
View (see the previous sidebar, “How Wide Is the Viewport?”)
so you can expand the viewport window and watch the changing
pixel dimensions. FIGURE 17-12 shows the page at 320 pixels
wide with the default, narrow-screen styles that will be the starting
point for this design.

The content of the page is the same as in previous chapters, but if
you worked on the exercises in Chapter 16, you’ll notice that I’ve
changed a few styles to make the initial layout suitable for small
screens. Allow me to point out the characteristics of this baseline
design:

•	 Layout: The page has a one-column layout for small screens.
There are no borders around the main text area, and the Hours
section has a scalloped edge on the top instead of the side. That
maintains the look and feel, but is more appropriate when the
sections are stacked.

•	 Navigation: The navigation menu, which was created with
Flexbox, couldn’t flex small enough to fit across a small screen.
To make it fit, I turned on wrapping (flex-wrap: wrap;) and
set the width of each li to 50% so there would be two on each
row. I also made it so they can both grow and shrink as needed
(flex: 1 1 50%).

•	 Conditional header text: The tagline was taking up a lot
of vertical space, and I decided it wasn’t critical. I hid the
paragraph (display: none;) and I will make it visible again
when there is more room.

•	 Typography: On small screens, I decided to use a legible sans-
serif font for the text and not to employ my web font because it
is likely to be difficult to read at small sizes.

•	 Images: I set the img elements for the bread and muffin images
to display: block so they have the full width of the viewport
to themselves with no text sneaking in next to them. Setting the
side margins to auto keeps them centered horizontally.

•	 Miscellaneous:
— The award appears at the bottom of the page because there
is not enough space for it to be positioned at the top.

— I highlighted a span from the 45th to 75th characters to reveal
when the line lengths get too long.

FIGURE 17-12.  The small-screen design is our starting point.

Part III. CSS for Presentation

Designing Responsively

508

Before breakpoint change

A�er

FIGURE 17-13.   The navigation started to look awkward, so I
add a breakpoint at 400 pixels to switch it to one line.

Fixing the Navigation
Now we can start tailoring the design for other screen sizes. Using
a Responsive View tool, I can resize the viewport and get an instant
readout of the dimensions of the window. Give it a try on your
browser. Keep making it wider, and you’ll see that some things
look OK, and some things start looking awkward pretty quickly.

One thing that looks awkward to me right away is the stacked
navigation at the top. I’d like it to switch to one centered line
as soon as there is room, which to my eye happens when the
viewport is 400 pixels wide (FIGURE 17-13).

Are you ready to write your first media query? Open the style sheet
(bakery-rwd.css) in a text editor. Remember that media queries
need to come after other rules for the same declaration, so to keep
this exercise simple, we’ll add them at the end of the style sheet,
before </style>. Add this query as you see it here. Remember to
make sure you have the right number of nesting curly brackets:

@media screen and (min-width: 400px) {
 nav ul li { 		
 flex: none; 	
 }
 nav ul {
 justify-content: center;
 }
}

This tells the browser that when the page is on a screen and the
viewport is 400 pixels or wider, set the “flex” of menu list items to
“none.” The none keyword is equivalent to flex: 0 0 auto;, so
the items are not allowed to grow or shrink and will be sized based
on their content. I’ve centered the flexbox container by setting
justify-content: center.

Save the style sheet and reload the page in the browser. Try
resizing the viewport to see how it works at wider sizes. I think this

centered arrangement will work for even the widest of screens, so
navigation is all set. If you had navigation with additional elements
such as an inline logo and a search box, you might find it best to
create a few different arrangements over a number of breakpoints.

Floating Images
As I continue to make the viewport gradually wider, I notice that
the main images start looking very lonely on a line alone, and that
there is room to start wrapping text around them again at about
480 pixels wide. Let’s take care of that awkward whitespace by
floating the images to the left once the screen reaches 480 pixels
(FIGURE 17-14):

@media screen and (min-width: 480px) { 		
 main img { 		
 float: left; 		
 margin: 0 1em 1em 0; 	
 } 	
}

NOTE: If you like, you can include the CSS shapes from
Chapter 15, Floating and Positioning, for a more interesting
text wrap. I’ve omitted them here for brevity and because of
limited browser support.

Text and Typography
Once the screen gets to be about 600 pixels wide, I feel like there
is enough room to introduce some embellishments. There is room
for the tagline in the header, so I’ll set that to display again.

Now some attention to typography. I like the Stint Ultra Expanded
web font, but it isn’t key to the company’s brand, so I omitted it on
the narrow layout because of line length issues. At this breakpoint,
I can begin using it because I know it will be more legible and
result in comfortable line lengths. I’ve also loosened up the line
height a little. I’ll take advantage of the extra space to add a

A breakpoint is needed to fill
in the awkward space around
the image.

At 480 pixels wide, the image
is floated to the le�.

FIGURE 17-14.   The images float left once there is enough
width to accommodate wrapping text.

→

17. Responsive Web Design

Designing Responsively

509

.

FIGURE 17-15.   This medium size
layout is well suited for tablet-sized
devices.

rounded border around the main text area to bring it closer to the original brand identity
for the site. The result is an enhanced one-column layout that is well suited for tablet-sized
devices (FIGURE 17-15).

Here is the media query for the 600-pixel breakpoint. Add this to the bottom of the style
sheet after the other two queries:

@media screen and (min-width: 600px) {
 header p { 	
 display: block; 	
 margin-top: -1.5em; 	
 font-family: Georgia, serif; 	
 font-style: italic; 	
 font-size: 1.2em;
 }
 main, h2, h3 { 	
 font-family: 'Stint Ultra Expanded', Georgia, serif;
 }
 h2, h3 {
 font-weight: bold;
 }
 main { 	
 line-height: 1.8em; 	
 padding: 1em;
 border: double 4px #EADDC4;
 border-radius: 25px;
 margin: 2.5%;
 }
}

Multicolumn Layout
As I continue to make the viewport wider and pay attention to the yellow highlighted span
of characters, I see that the text line is growing longer than 75 characters. I could increase
the font size or the margins, but I think this is a good point to introduce a second column
to the layout. If you aren’t targeting a specific device, the exact breakpoint is subjective.
I’ve chosen 940 pixels as the point above which the page gets a columned layout.

I’ve simply taken the grid layout styles from the previous chapter and reapplied them
here. On the aside element, I moved the scalloped background graphic to the left edge.
In addition, I set a maximum width of 1200px on the container and set its side margins to
auto, so if the browser window is wider than 1,200 pixels, the layout will stay a fixed width
and get centered in the viewport. Finally, I absolutely positioned the award graphic at the
top of the page now that there’s enough room (FIGURE 17-16).

Add this final media query at the end of the style sheet. You can copy and paste them
from the final exercise in Chapter 16 (that’s what I did) and make a few tweaks to the
#container and #aside rules as shown:

@media screen and (min-width: 940px) {
 #container { 	
 display: grid; 	
 grid-template-rows: auto min-height 5em; 	
 grid-template-columns: minmax(25em, 1fr) 16em; 	
 grid-template-areas: 	
 "banner banner"
 "main hours"
 "footer footer";
 max-width: 1200px;

EXERCISE 17-1. Continued

Part III. CSS for Presentation

Designing Responsively

510

.

NOTE

The highlighted background on the
length span should be turned off before
you publish, but I’ve left it visible in the
figures so you can see how our line
length is faring across layouts.

FIGURE 17-16.   The two-column grid layout is appropriate for viewports over 940
pixels. On very wide screens, as shown here, the container stops expanding at 1,200
pixels wide and is centered horizontally.

 margin: 0 auto;
 position: relative;
 }
 header { 	
 grid-area: banner;
 }
 main { 	
 grid-area: main;
 }
 aside { 	
 grid-area: hours; 	
 background: url(images/scallop.png) repeat-y left top; 	
 background-color: #F6F3ED; 	
 padding: 1em; 	
 padding-left: 45px;
 }
 footer { 	
 grid-area: footer;
 }
 #award { 	
 position: absolute; 	
 top: 30px; 	
 left: 50px;
 }
}

And we’re done! Is this the most sophisticated responsive site ever? Nope. Is there even
more we could do to improve the design at various screen sizes? Certainly! But now
you should have a feel for what it’s like to start with a small-screen design and make
changes that optimize for increasingly larger sizes. Consider it a modest first step to future
adventures in RWD.

17. Responsive Web Design

Designing Responsively

511

A FEW WORDS ABOUT TESTING

In the previous exercise, we relied on the Responsive View in a modern
browser to make decisions about style changes at various sizes, but although
it’s a handy tool for creating an initial design, much more testing is required
before the design can be considered ready for final launch. That is even more
critical for sites that include features that rely on JavaScript or server-side
functionality.

There are three general options for testing sites: real devices, emulators, and
third-party services. We’ll look at each in this section.

Real Devices
There is really no substitute for testing a site on a variety of real devices and
operating systems. Beyond just seeing how the site looks, testing on real
devices shows you how your site performs. How fast does it load? Are the
links easy to tap? Do all the interactive features work smoothly? Do they
work at all?

Web development companies may have a device lab comprising iPhones and
iPads of various sizes, Android smartphones and tablets of various sizes, and
Macs and PCs with recent operating systems (Windows and Linux) that can
be used by designers and developers for testing sites (FIGURE 17-17). The size
of the device lab depends on the size of the budget, of course (electronic
devices aren’t cheap!).

FIGURE 17-17.   The device lab at Filament Group in Boston, Massachusetts.

If you don’t have the luxury of working at a big company with a big lab, there
are alternatives:

•	 If you live in a big city, you may be near a device lab that is open for public
use. Check the opendevicelab.com site to see if there is one near you.

Building a Device Lab
If you want to set up your own device
lab, I recommend reading the primer
Building a Device Lab by Destiny
Montague and Lara Hogan (Five
Simple Steps Publishing). The book is
a summary of everything the authors
learned while creating a killer device
lab for Etsy. It is available for free at
buildingadevicelab.com.

Part III. CSS for Presentation

A Few Words About Testing

512

•	 You can build your own lab with a collection of used devices. At mini-
mum, you should have access to an iPhone, Android phone, iPad, 7" tablet
(like iPad Mini), and computers running macOS and Microsoft Windows.
The good news is that you generally don’t need a data plan for every
device because you can test over WiFi.

•	 If buying devices is not feasible, you can ask friends and coworkers to bor-
row their phones and tablets briefly. Asking permission at a mobile retail
store to load web pages on their devices is not unheard of.

If you do have multiple real devices for testing, using a synchronization tool
makes the process a whole lot smoother. Software like BrowserSync (browser-
sync.io) and Ghostlab (www.vanamco.com/ghostlab/) runs on your computer
and beams whatever is on your screen to all your devices simultaneously so
you don’t need to load the page on each one individually. It’s like magic!

Emulators
If a particular device is out of your reach, you could use an emulator, a desk-
top application that emulates mobile device hardware and operating systems.
The emulator presents a window that shows exactly how your site would
behave on that particular device (FIGURE 17-18). Emulators require a lot of
space on your computer and they can be buggy, but it is certainly better than
not testing on that device at all.

A good starting point for exploring emulators is Maximiliano Firtman’s
“Mobile Emulators & Simulators: The Ultimate Guide” (www.mobilexweb.
com/emulators).

FIGURE 17-18.   Examples of the
Android Emulator (download at
developer.android.com/studio/index.
html).

The Android Emulator lets you set up
a wide variety of phones, televisions,
wearables, and tablets for testing.
I chose a Nexus 5X.

The Nexus 5X
emulator displays an
image of the device at
actual size. All of the
buttons work as they
would on the phone.

The Bakery page
viewed on the Nexus
5X emulator.

17. Responsive Web Design

A Few Words About Testing

513

http://www.mobilexweb.com/emulators
http://www.mobilexweb.com/emulators

Third-Party Services
Another option for testing your site on over 1,000 devices is to subscribe
to a service like BrowserStack (browserstack.com) or CrossBrowserTesting
(crossbrowsertesting.com). For a monthly fee, you get access to a huge variety
of device simulators (FIGURE 17-19). There are many such services available,
some of which are free or offer free trials. They don’t give you the same
insights as testing on actual devices, but it is another better-than-nothing
alternative.

BrowserStack.com CrossBrowserTesting.com

FIGURE 17-19.   Screenshots generated by BrowserStack and CrossBrowserTesting
(using free trial tools). Notice the variation in how the bakery page displays. This is why
we test!

MORE RWD RESOURCES

We’ve covered the mechanics of using fluid layouts, flexible images, and
media queries to make a page that is usable across a wide range of screen
sizes. We’ve looked at the design concerns and some common responsive pat-
terns for layout, navigation, typography, and images. You even got a chance to
try out creating a responsive page on your own. But this is really only the tip
of the iceberg, and I encourage you to continue learning about RWD, particu-
larly if you are considering web design or development as a career. Following
is a list of RWD resources that I’ve found helpful and should point you in
the right direction.

Books
Responsive Web Design, 2e, by Ethan Marcotte (A Book Apart)

This book is required reading. Ethan goes into much greater detail than I
was able to here on how to calculate flexible grids and how to use media
queries. Plus, it’s just plain fun to read.

Part III. CSS for Presentation

More RWD Resources

514

Learning Responsive Web Design: A Beginner’s Guide by Clarissa Peterson
(O’Reilly)

Clarissa provides a comprehensive overview of all aspects of responsive
design, from detailed code examples to broad strategies on workflow and
mobile-first design.

Smashing Book #5: Real-Life Responsive Web Design, various authors
(Smashing Magazine)

A collection of practical techniques and strategies from prominent web
designers.

Atomic Design by Brad Frost (self-published)

Brad describes his modular approach to RWD, which has become quite
popular for large site development.

Responsive Design Workflow by Stephen Hay (New Riders)

Stephen Hay introduces his “design in the browser” method to creating
responsive sites. This book is jam-packed with suggestions on how to
approach web design and development.

Implementing Responsive Design by Tim Kadlec (New Riders)

Tim Kadlec is a leader in the mobile web design community, and his book
is a comprehensive guide to designing and building a responsive site.

Online Resources
Responsive Web Design Is… (responsivedesign.is)

A collection of articles and podcasts about web design. You can also sign
up for the “RWD Weekly” newsletter and keep your finger on the pulse of
RWD. The site is a side project of Justin Avery and Simple Things.

Responsive Resources (bradfrost.github.io/this-is-responsive/resources.html)

For one-stop shopping for everything you could possibly want to know
about RWD, look no further than Brad Frost’s Responsive Resources. He
has gathered hundreds of links to resources related to strategy, design
tools, layout, media queries, typography, images, components, develop-
ment, testing, content management systems, email, tutorials, and more.
Seriously, there is enough here to keep you busy for months.

Media Queries (mediaqueri.es)

A gallery of exceptional examples of responsive websites curated by
Eivind Uggedal.

NOTE

Most of these titles were written before
CSS Grid Layout became a viable option.
Keep in mind that you have advanced
tools for flexible layouts not mentioned
in these books.

17. Responsive Web Design

More RWD Resources

515

https://justinavery.me/
https://simplethin.gs/
https://bradfrost.github.io/this-is-responsive/resources.html

TEST YOURSELF

Here we are at the end of another chapter, so you know what that means…
quiz time! Get the answers in Appendix A if you’re stumped.

1.	 What makes a responsive site different from a mobile (m-dot) site?

2.	 What does this do?

<meta name="viewport" content="width=device-width, initial-scale=1">

3.	 How do you make sure an image gets smaller when its container gets
smaller in the layout?

4.	 What does this do?

@media screen and (min-width: 60em) {
 body {
 margin: 0 10%;
 }
}

5.	 What are some strategies for creating a layout that adjusts to the available
width of the viewport?

6.	 What is the advantage of using ems as a measurement in media queries?

7.	 List three ways in which a media query may be used.

8.	 Name three tweaks you may make to typography to make it work well
on small screens.

9.	 How might you handle navigation with a lot of submenus on a small
screen?

10.	 List three options for testing websites on multiple devices.

Part III. CSS for Presentation

Test Yourself

516

IN THIS CHAPTER

Creating smooth transitions

Moving, rotating, and scaling
elements

Combining transitions and
transforms

A few words about 3-D
transforms

Keyframe animations

We’ve seen CSS used for visual effects like rounded corners, color gradients,
and drop shadows that previously had to be created with graphics. In this
chapter, we’ll look at some CSS3 properties for producing animated interac-
tive effects that were previously possible only with JavaScript or Flash.

We’ll start with CSS Transitions, a nifty way to make style changes fade
smoothly from one to another. Then we’ll discuss CSS Transforms for repo-
sitioning, scaling, rotating, and skewing elements and look at how you can
animate them with transitions. I’m going to close out the chapter with brief
introductions to 3-D Transforms and CSS Animation, which are important to
know about but are too vast a topic to cover here, so I’ll give you just a taste.

The problem with this chapter is that animation and time-based effects don’t
work on paper, so I can’t show them off right here. I did the next best thing,
though, and made the source code for the figures available in the materials for
this chapter (learningwebdesign.com/5e/materials) in a folder called figures.
Just open the file in your browser.

EASE-Y DOES IT (CSS TRANSITIONS)

Picture, if you will, a link in a navigation menu that changes from blue to red
when the mouse hovers over it. The background is blue…mouse passes over
it…BAM! Red! It goes from state to state instantly, with no states in between.
Now imagine putting your mouse over the link and having the background
gradually change from blue to red, passing through several shades of purple
on the way. It’s smoooooth. And when you remove the mouse, it fades back
down to blue again.

TRANSITIONS,
TRANSFORMS, AND
ANIMATION

18
CHAPTER

517

http://www.learningwebdesign.com/5e/materials

That’s what CSS Transitions do. They smooth out otherwise abrupt changes
to property values between two states over time by filling in the frames
in between. Animators call that tweening. When used with reserve, CSS
Transitions can add sophistication and polish to your interfaces and even
improve usability.

CSS Transitions were originally developed by the WebKit team for the Safari
browser, and they are a Working Draft at the W3C (see Note). Browser sup-
port for Transitions is excellent (see the “CSS Transition Support” sidebar), so
there is no reason not to use them in your designs, particularly if you treat
them as an enhancement. For example, on the rare non-supporting browser
(I’m looking at you, old IE), our link snapping directly from blue to red is
not a big deal.

NOTE

You can read CSS Transitions Module for yourself at www.w3.org/TR/css-transitions-1/.

Transition Basics
Transitions are a lot of fun, so let’s give them a whirl. When applying a
transition, you have a few decisions to make, each of which is set with a CSS
property:

•	 Which CSS property to change (transition-property) (Required)

•	 How long it should take (transition-duration) (Required)

•	 The manner in which the transition accelerates (transition-timing-
function)

•	 Whether there should be a pause before it starts (transition-delay)

Transitions require a beginning state and an end state. The element as it
appears when it first loads is the beginning state. The end state needs to be
triggered by a state change such as :hover, :focus, or :active, which is what
we’ll be using for the examples in this chapter. You could use JavaScript to
change the element (such as adding a class attribute) and use that as a tran-
sition trigger as well.

Let’s put that all together with a simple example. Here is that blue-to-red link
you imagined earlier (FIGURE 18-1). There’s nothing special about the markup.
I added a class so I could be specific about which links receive transitions.

The transition properties are applied to the object that will be transitioned—
in this case, the a element in its normal state. You’ll see them in the set of other
declarations for .smooth, like padding and background-color. I’ve changed the
background color of the link to red by declaring the background-color for the
:hover state (and :focus too, in case someone is tabbing through links with
a keyboard).

SU P PO RT T I P

CSS Transition Support
The good news is that all modern
browsers released since 2013 support
CSS transition properties without
the need for prefixes. There are a few
holes in support you should know
about:

•	 Most notably, Internet Explorer
versions 9 and earlier do not
support transitions and ignore
transition properties entirely.

•	 Chrome and Safari versions
released between 2010 and 2013
support transitions with the
-webkit- prefix. Later versions do
not require a prefix.

•	 On mobile, iOS versions 3.1–6.0
(2010–2013) and Android versions
2.1–4.3 (2009–2013) require the
-webkit- prefix. Later versions do
not require prefixes.

•	 Firefox versions released between
2011 and 2012 require the -moz-
prefix, but they are nearly extinct
as I write this.

As always, check your own server’s
statistics (be sure to pay attention to
mobile use) to see which browsers
you need to support, and check
CanIUse.com for support and bug
details.

In the examples throughout this
chapter, I use only the standard
(non-prefixed) properties. If you
need to support browsers that
require prefixes, I suggest using
Autoprefixer, which is discussed in
Chapter 19, More CSS Techniques.
And remember, when using prefixed
properties, always include the non-
prefixed version last for forward
compatibility with supporting
browsers.

Part III. CSS for Presentation

Ease-y Does It (CSS Transitions)

518

THE MARKUP

awesomesauce

THE STYLES

.smooth { 	
 display: block;
 text-decoration:none;
 text-align: center;
 padding: 1em 2em;
 width: 10em;
 border-radius: 1.5em;
 color: #fff;
 background-color: mediumblue;
 transition-property: background-color;
 transition-duration: 0.3s;
}
.smooth:hover, .smooth:focus {
 background-color: red;
}

Specifying the property

transition-property

Values: 	 property-name | all | none

Default: 	 all

Applies to: 	 all elements, :before and :after pseudo-elements

Inherits: 	 no

transition-property identifies the CSS property that is changing and that
you want to transition smoothly. In our example, it’s the background-color.
You can also change the foreground color, borders, dimensions, font- and
text-related attributes, and many more. TABLE 18-1 lists the animatable CSS
properties as of this writing. The general rule is that if its value is a color,
length, or number, that property can be a transition property.

How long should it take?

transition-duration

Values: 	 time

Default: 	 0s

Applies to: 	 all elements, :before and :after pseudo-elements

Inherits: 	 no

transition-duration sets the amount of time it takes for the animation to
complete in seconds (s) or milliseconds (ms). I’ve chosen .3 seconds, which is
just enough to notice something happened but not so long that the transition
feels sluggish or slows the user down. There is no correct duration, of course,
but I’ve found that .2s seems to be a popular transition time for UI elements.
Experiment to find the duration that makes sense for your application.

0.3s

FIGURE 18-1.   The background color
of this link gradually fades from blue
to red over .3 seconds when awesome
sauce a transition is applied.

Add the transition
properties to the object
that will be transitioned.

18. Transitions, Transforms, and Animation

Ease-y Does It (CSS Transitions)

519

Timing Functions

transition-timing-function

Values: 	 ease | linear | ease-in | ease-out | ease-in-out | step-start | step-end
| steps | cubic-bezier(#,#,#,#)

Default: 	 ease

Applies to: 	 all elements, :before and :after pseudo-elements

Inherits: 	 no

The property and the duration are required and form the foundation of a
transition, but you can refine it further. There are a number of ways a tran-
sition can roll out over time. For example, it could start out fast and then
slow down, start out slow and speed up, or stay the same speed all the way
through, just to name a few possibilities. I think of it as the transition “style,”
but in the spec, it is known as the timing function or easing function.

The timing function you choose can have a big impact on the feel and believ-
ability of the animation, so if you plan on using transitions and CSS anima-
tions, it is a good idea to get familiar with the options.

If I set the transition-timing-function to ease-in-out, the transition will
start out slow, then speed up, then slow down again as it comes to the end
state.

.smooth { 	
 …
 transition-property: background-color;
 transition-duration: 0.3s;
 transition-timing-function: ease-in-out;
}

The transition-timing-function property takes one of the following key-
word values:

ease

Starts slowly, accelerates quickly, and then slows down at the end. This is
the default value and works just fine for most short transitions.

linear

Stays consistent from the transition’s beginning to end. Because it is so
consistent, some say it has a mechanical feeling.

ease-in

Starts slowly, then speeds up.

ease-out

Starts out fast, then slows down.

ease-in-out

Starts slowly, speeds up, and then slows down again at the very end. It is
similar to ease, but with less pronounced acceleration in the middle.

TABLE 18-1. 
Animatable CSS properties

Backgrounds

background-color

background-position

Borders and outlines

border-bottom-color

border-bottom-width

border-left-color

border-left-width

border-right-color

border-right-width

border-top-color

border-top-width

border-spacing

outline-color

outline-width

Color and opacity

color

opacity

visibility

Font and text

font-size

font-weight

letter-spacing

line-height

text-indent

text-shadow

word-spacing

vertical-align

Element box measurements

height

width

max-height

max-width

min-height

min-width

margin-bottom

Continues...

Part III. CSS for Presentation

Ease-y Does It (CSS Transitions)

520

cubic-bezier(x1,y1,x2,y2)

The acceleration of a transition can be plotted with a curve called a Bezier
curve. The steep parts of the curve indicate a fast rate of change, and the
flat parts indicate a slow rate of change. FIGURE 18-2 shows the Bezier
curves that represent the function keywords as well as a custom curve I
created. You can see that the ease curve is a tiny bit flat in the beginning,
gets very steep (fast), then ends flat (slow). The linear keyword, on the
other hand, moves at a consistent rate for the whole transition.

You can get the feel of your animation just right by creating a custom
curve. The site Cubic-Bezier.com is a great tool for playing around with
transition timing and generating the resulting code. The four numbers in
the value represent the x and y positions of the start and end Bezier curve
handles (the pink and blue dots in FIGURE 18-2).

FIGURE 18-2.   Examples of Bezier curves from Cubic-Bezier.com. On the left is my
custom curve that starts fast, slows down, and ends fast.

steps(#, start|end)

Divides the transitions into a number of steps as defined by a stepping
function. The first value is the number of steps, and the start and end
keywords define whether the change in state happens at the begin-
ning (start) or end of each step. Step animation is especially useful for
keyframe animation with sprite images. For a better explanation and
examples, I recommend the article “Using Multi-Step Animations and
Transitions,” by Geoff Graham on CSS-Tricks (css-tricks.com/using-multi-
step-animations-transitions/).

step-start

Changes states in one step, at the beginning of the duration time (the
same as steps(1,start)). The result is a sudden state change, the same as
if no transition had been applied at all.

step-end

Changes states in one step, at the end of the duration time (the same as
steps(1,end)).

TABLE 18-1. Continued.

margin-left

margin-top

padding-bottom

padding-left

padding-right

padding-top

Position

top

right

bottom

left

z-index

clip-path

Transforms
(not in the spec as of this writing,
but supported)

transform

transform-origin

18. Transitions, Transforms, and Animation

Ease-y Does It (CSS Transitions)

521

It’s difficult to show the various options on a still page, but I have put together
a little demo, which is illustrated in FIGURE 18-3 and available in the figures
folder with the materials for this chapter. The width of each labeled element
(white with a blue border) transitions over the course of 4 seconds when
you hover over the green box. They all arrive at their full width at exactly
the same time, but they get there in different manners. The image shown in
FIGURE 18-3 was taken at the 2-second mark, halfway through the duration
of the transition.

ease linear ease-in ease-out

ease-in-out step-start

0% 50% 100%

50
%

10
0%

completion

 p
ro

gr
es

sio
n

0% 50% 100%

50
%

10
0%

0% 50% 100%

50
%

10
0%

0% 50% 100%

50
%

10
0%

0% 50% 100%

50
%

10
0%

step(4, end) step-end

0% 50% 100%

50
%

10
0%

0% 50% 100%

50
%

10
0%

0% 50% 100%

50
%

10
0%

The width of the white boxes is set to transition from 0 to 100% width over 4 seconds.
This screenshot shows the progress after 2 seconds (50%) for each timing function.

FIGURE 18-3.   In this transition-timing-function demo, the elements reach full
width at the same time but vary in the manner in which they get there. If you’d like to
see it in action, the ch18_figures.html file is available with the materials for this chapter.

NOTE

The W3C has broken out the timing func-
tions into their own spec so they are eas-
ier to share among modules. It is avail-
able at www.w3.org/TR/css-timing-1/.

Part III. CSS for Presentation

Ease-y Does It (CSS Transitions)

522

Setting a Delay

transition-delay

Values: 	 time

Default: 	 0s

Applies to: 	 all elements, :before and :after pseudo-elements

Inherits: 	 no

The transition-delay property, as you might guess, delays the start of the
animation by a specified amount of time. In the following example, the back-
ground color transition starts .2 seconds after the pointer moves over the link.

.smooth { 	
…
 transition-property: background-color;
 transition-duration: 0.3s;
 transition-timing-function: ease-in-out;
 transition-delay: 0.2s;
}

The Shorthand transition Property
Thankfully, the authors of the CSS3 spec had the good sense to give us the
shorthand transition property to combine all of these properties into one
declaration. You’ve seen this sort of thing with the shorthand border property.
Here is the syntax:

transition: property duration timing-function delay;

The values for each of the transition-* properties are listed out, separated
by character spaces. The order isn’t important as long as the duration (which
is required) appears before delay (which is optional). If you provide only one
time value, it will be assumed to be the duration.

Using the blue-to-red link example, we could combine the four transition
properties we’ve applied so far into this one line:

.smooth { 	
 …
 transition: background-color 0.3s ease-in-out 0.2s;
}

Definitely an improvement.

Applying Multiple Transitions
So far, we’ve changed only one property at a time, but it is possible to tran-
sition several properties at once. Let’s go back to the “awesomesauce” link
example. This time, in addition to changing from blue to red, I’d like the
letter-spacing to increase a bit. I also want the text color to change to black,

18. Transitions, Transforms, and Animation

Ease-y Does It (CSS Transitions)

523

but more slowly than the other animations. FIGURE 18-4 attempts to show
these transitions on this static page.

0.3s

2s

background-color
letter-spacing

color

FIGURE 18-4.   The color, background-color, and letter-spacing change at
different paces.

One way to do this is to list all of the values for each property separated by
commas, as shown in this example:

.smooth {
 …
 transition-property: background-color, color, letter-spacing;
 transition-duration: 0.3s, 2s, 0.3s;
 transition-timing-function: ease-out, ease-in, ease-out; 	
	
}
.smooth:hover, .smooth:focus {
 background-color: red;
 letter-spacing: 3px;
 color: black;
}

The values are matched up according to their positions in the list. For
example, the transition on the color property (second in the list) has a dura-
tion of 2s and uses the ease-in timing function. If one list has fewer values
than the others, the browser repeats the values in the list, starting over at the
beginning. In the previous example, if I had omitted the third value (.3s) for
transition-duration, the browser would loop back to the beginning of the
list and use the first value (.3s) for letter-spacing. In this case, the effect
would be the same.

You can line up values for the shorthand transition property as well. The
same set of styles we just saw could also be written as follows:

Part III. CSS for Presentation

Ease-y Does It (CSS Transitions)

524

.smooth {
 …
 transition: background-color 0.3s ease-out,
 color 2s ease-in,
 letter-spacing 0.3s ease-out; 	
}

A Transition for All Occasions
But what if you just want to add a little bit of smoothness to all your state
changes, regardless of which property might change? For cases when you
want the same duration, timing function, and delay to apply to all transitions
that might occur on an element, use the all value for transition-property.
In the following example, I’ve specified that any property that might change
for the .smooth element should last .2 seconds and animate via the ease-in-
out function.

.smooth {
 …
 transition: all 0.2s ease-in-out; 	
}

For user interface changes, a short, subtle transition is often all you need for
all your transitions, so the all value will come in handy. Well, that wraps up
our lesson on CSS3 Transitions. Now you give it a try in EXERCISE 18-1.

Normal state.

:hover, :focus
The background and border colors change.

:active
Link appears to be pressed down.

FIGURE 18-5.   In this exercise, we’ll create transitions between these link states.

NOTE

If you’re using a touch device for this
exercise, you’ll miss out on this effect
because there is no hover state on touch
screens. You may see the hover state
with a single tap. Transitions triggered
by a click/tap or when the page loads
will work on all devices, but they are not
covered here.

EXERCISE 18-1.  Trying out transitions

In this exercise, we’re going to create the rollover and active states for a menu link
(FIGURE 18-5) with animated transitions. I’ve put together a starter document
(exercise_18-1.html) for you in the materials folder for this chapter at learningwebdesign.
com/5e/materials. Be sure you are using an up-to-date desktop browser to view your
work (see Note).

→

18. Transitions, Transforms, and Animation

Ease-y Does It (CSS Transitions)

525

http://www.learningwebdesign.com/
http://www.learningwebdesign.com/

First, take a look at the styles that are already applied. The list
has been converted to a horizontal menu with Flexbox. The a
element has been set to display as a block element, underlines
are turned off, dimensions and padding are applied, and the color,
background color, and border are established. I used the box-
shadow property to make it look as though the links are floating off
the page.

1.	 Now we’ll define the styles for the hover and focus states. When
the user puts the pointer over or tabs to the link, make the
background color change to green (#c6de89) and the border
color change to a darker shade of green (#a3c058).

a:hover, a:focus { 	
 background-color: #c6de89; 	
 border-color: #a3c058;
}

2.	 While the user clicks the link (:active), make it move down by
3 pixels as though it is being pressed. Do this by setting the a
element’s position to relative and its top position to 0px , and
then change the value of the top property for the active state.
This moves the link 3 pixels away from the top edge (in other
words, down).

NOTE: Setting the top to 0px in the initial state is for working
around a bug that arises when transitioning the top, bottom,
left, and right properties.

a {
 …
 position: relative;
 top: 0px;
}
a:active {
 top: 3px;
}

3.	 Logically, if the button were pressed down, there would be less
room for the shadow, so we’ll reduce the box-shadow distance
as well.

a:active {
 top: 3px;
 box-shadow: 0 1px 2px rgba(0,0,0,.5);
}

4.	 Save the file and give it a try in the browser. The links should
turn green and move down when you click or tap them. I’d
say it’s pretty good just like that. Now we can enhance the
experience by adding some smooth transitions.

5.	 Make the background and border color transition ease in over
0.2 seconds, and see how that changes the experience of using
the menu. I’m using the shorthand transition property to
keep the code simple. I’m also using the default ease timing
function at first so we can omit that value.

I’m not using any vendor prefixes here because modern

browsers don’t need them. If you wanted to support mobile
browsers released in 2013 and earlier, you could include
the -webkit- prefixed version as well, but since this isn’t
production code, we’re fine without it.

a {
 transition: background-color 0.2s,
 border-color 0.2s;
}

6.	 Save your document, open it in the browser, and try moving
your mouse over the links. Do you agree it feels nicer? Now I’d
like you to try some other duration values. See if you can still see
the difference with a 0.1s duration. Now try a full second (1s).
I think you’ll find that 1 second is surprisingly slow. Try setting
it to several seconds and trying out various timing-function
values (just add them after the duration times). Can you tell
the difference? Do you have a preference? When you are done
experimenting, set the duration back to 0.2 seconds.

7.	 Now let’s see what happens when we add a transition to the
downward motion of the link when it is clicked or tapped.
Transition both the top and box-shadow properties because
they should move in tandem. Let’s start with a 0.2s duration like
the others.

a {
 transition:
 background-color 0.2s,
 border-color 0.2s,
 top 0.2s,
 box-shadow 0.2s;
}

Save the file, open it in the browser, and try clicking the links.
That transition really changes the experience of using the
menu, doesn’t it? The buttons feel more difficult to “press.” Try
increasing the duration. Do they feel even more difficult? I find
it interesting to see the effect that timing has on the experience
of a user interface. It is important to get it right and not make
things feel sluggish. I’d say that a very short transition such
as 0.1 second—or even no transition at all—would keep these
buttons feeling snappy.

8.	 If you thought increasing the duration made the menu
uncomfortable to use, try adding a short 0.5-second delay to the
top and box-shadow properties.

a {
 transition:
 background-color 0.2s,
 border-color 0.2s,
 top 0.1s 0.5s,
 box-shadow 0.1s 0.5s;
}

I think you’ll find that little bit of extra time makes the whole
thing feel broken. Timing is everything!

EXERCISE 18-1. Continued

Part III. CSS for Presentation

Ease-y Does It (CSS Transitions)

526

CSS TRANSFORMS

transform

Values: 	 rotate() | rotateX() | rotateY() | rotateZ() | rotate3d() |
translate() | translateX() | translateY() | scale() | scaleX() |
scaleY() | skew() | skewX() | skewY() | none

Default: 	 none

Applies to: 	 transformable elements (see sidebar)

Inherits: 	 no

The CSS3 Transforms Module (www.w3.org/TR/css-transforms-1) gives
authors a way to rotate, relocate, resize, and skew HTML elements in both
two- and three-dimensional space. It is worth noting up front that trans-
forms change how an element displays, but it is not motion- or time-based.
However, you can animate from one transform state to another using transi-
tions or keyframe animations, so they are useful to learn about in the context
of animation.

This chapter focuses on the more straightforward two-dimensional trans-
forms because they have more practical uses. Transforms are supported on
virtually all current browser versions without vendor prefixes (see the sidebar
“CSS Transforms Support” for exceptions).

You can apply a transform to the normal state of an element, and it appears
in its transformed state when the page loads. Just be sure that the page is
still usable on browsers that don’t support transforms. It is common to intro-
duce a transform only when users interact with the element via :hover or a
JavaScript event. Either way, transforms are a good candidate for progressive
enhancement—if an IE8 user sees an element straight instead of at a jaunty
angle, it’s probably no biggie.

FIGURE 18-6 shows a representation of four two-dimensional transform func-
tions: rotate(), translate(), scale(), and skew() (see Note). The dashed
outline shows the element’s original position.

Transformable Elements
You can apply the transform
property to most element types:

•	 HTML elements with replaced
content, such as img, canvas, form
inputs, and embedded media

•	 Elements with their display set to
block, inline-block, inline-
table (or any of the table-*
display types), grid, and flex

It may be easier to note the element
types you cannot transform, which
include:

•	 Non-replaced inline elements, like
em or span

•	 Table columns and column groups
(but who’d want to?)

rotate() translate() scale() skew()

FIGURE 18-6.   Four types of transforms: rotate(), translate(), scale(), and skew().

NOTE

There are actually five 2-D transform
functions in the CSS spec. The fifth,
matrix(), allows you to craft your own
combined transformation using six val-
ues and some badass trigonometry.
There are tools that can take a number
of transforms and combine them into a
matrix function, but the result isn’t very
user-friendly. Fascinating in theory, but
more than I want to take on personally.

18. Transitions, Transforms, and Animation

CSS Transforms

527

When an element transforms, its element box keeps its original position and
influences the layout around it, in the same way that space is left behind by
a relatively positioned element. It is as though the transformation magically
picks up the pixels of the rendered element, messes around with them, and
lays them back down on top of the page. So, if you move an element with
transform, you’re moving only a picture of it. That picture has no effect on
the surrounding layout. Let’s go through the transform functions one by one,
starting with rotate().

Transforming the Angle (rotate)
If you’d like an element to appear on a bit of an angle, use the rotate()
transform function. The value of the rotate() function is an angle specified
in positive (clockwise) or negative (counterclockwise) degrees. The image in
FIGURE 18-7 has been rotated –10 degrees (350 degrees) with the following
style rule. The tinted image shows the element’s original position for refer-
ence.

img {
 width: 400px;
 height: 300px;
 transform: rotate(-10deg);
}

Notice that the image rotates around its center point, which is the default
point around which all transformations happen. But you can change that
easily with the transform-origin property.

transform: rotate(-10deg);

FIGURE 18-7.   Rotating an img element by using transform: rotate().

SU P PO RT T I P

CSS Transforms Support
As of this writing, CSS Transforms are
supported by every major browser
without vendor prefixes; however,
that support has happened more
recently than Transitions, and there
are a few more holes. Here are a few
browser-related pointers:

•	 Internet Explorer 8 and earlier have
no support for transforms. Version
9 supports Transforms with the
-ms- prefix.

•	 IE 10 and 11 and all versions of
Edge support transforms without
prefixes, but they do not support
transforms on elements in SVGs.

•	 Use the -webkit- prefix if you
need to support the following
browsers:

— Android v2.1 to 4.4.4 (prefixes
dropped in 2017)

— OS Safari v3.2 to 8.4 (prefixes
dropped in 2015)

— Safari 8 and earlier (prefixes
dropped in 2015)

— Opera versions up to v.22
(prefixes dropped in 2014)

As of this writing, it is still
recommended that you include
-ms- and -webkit- prefixes for
transform, but that may no longer
be the case by the time you are
reading this. Check CanIUse.com
for updated browser information,
and ShouldIPrefix.com for
recommendations.

Part III. CSS for Presentation

CSS Transforms

528

transform-origin

Values: 	 percentage | length | left | center | right | top | bottom

Default: 	 50% 50%

Applies to: 	 transformable elements

Inherits: 	 no

The value for transform-origin is either two keywords, length measurements,
or percentage values. The first value is the horizontal offset, and the second is
the vertical offset. If only one value is provided, it will be used for both. The
syntax is the same as you learned for background-position back in Chapter
13, Colors and Backgrounds. If we wanted to rotate our image around a point
at the center of its top edge, we could write it in any of the following ways:

transform-origin: center top;

transform-origin: 50%, 0%;

transform-origin: 200px, 0;

The images in FIGURE 18-8 have all been rotated 25 degrees, but from differ-
ent origin points. It is easy to demonstrate the origin point with the rotate()
function, but keep in mind that you can set an origin point for any of the
transform functions.

Transforming the Position (translate)
Another thing you can do with the transform property is give the element’s
rendering a new location on the page by using one of three translate() func-
tions, as shown in the examples in FIGURE 18-9. The translateX() function
allows you to move an element on a horizontal axis; translateY() is for mov-
ing along the vertical axis; and translate() combines both x and y values.

transform: translateX(50px);

transform: translateY(25px);

transform: translate(50px, 25px); /* (translateX, translateY) */

transform: translate(90px, 60px); transform: translate(-5%, -25%);

FIGURE 18-9.   Moving an element around with the translate() function.

transform-origin: center top;

transform-origin: 100% 100%;

transform-origin: 400px 0;

FIGURE 18-8.   Changing the point
around which the image rotates by
using transform-origin.

18. Transitions, Transforms, and Animation

CSS Transforms

529

Provide length values in any of the CSS units or as a percentage value.
Percentages are calculated on the width of the bounding box—that is, from
border edge to border edge (which, incidentally, is how percentages are calcu-
lated in SVG, from which transforms were adapted). You can provide positive
or negative values, as shown in FIGURE 18-9.

If you provide only one value for the shorthand translate() function, it will
be presumed to be the translateX value, and translateY will be set to zero.
So translate(20px) would be equivalent to applying both translateX(20px)
and translateY(0).

How do you like the transform property so far? We have two more functions
to go.

Transforming the Size (scale)
Make an element appear larger or smaller by using one of three scale func-
tions: scaleX() (horizontal), scaleY() (vertical), and the shorthand scale().
The value is a unitless number that specifies a size ratio. This example makes
an image 150% its original width:

a img {
 transform: scaleX(1.5);
}

The scale() shorthand lists a value for scaleX and a value for scaleY. This
example makes an element twice as wide but half as tall as the original:

a img {
 transform: scale(2, .5);
}

Unlike translate(), however, if you provide only one value for scale(), it
will be used as the scaling factor in both directions. So specifying scale(2) is
the same as applying scaleX(2) and scaleY(2), which is intuitively the way
you’d want it to be.

FIGURE 18-10 shows the results of all our scaling endeavors.

transform: scale(1.25); transform: scale(.75); transform: scale(1.5, .5);

FIGURE 18-10.   Changing the size of an element with the scale() function.

Part III. CSS for Presentation

CSS Transforms

530

Making It Slanty (skew)
The quirky collection of skew properties—skewX(), skewY(), and the short-
hand skew()—changes the angle of either the horizontal or vertical axis
(or both axes) by a specified number of degrees. As for translate(), if you
provide only one value, it is used for skewX(), and skewY() will be set to zero.

The best way to get an idea of how skewing works is to take a look at some
examples (FIGURE 18-11):

a img {
 transform: skewX(15deg);
}

a img {
 transform: skewY(30deg);
}

a img {
 transform: skew(15deg, 30deg);
}

Applying Multiple Transforms
It is possible to apply more than one transform to a single element by listing
out the functions and their values, separated by spaces, like this:

transform: function(value) function(value);

In the example in FIGURE 18-12, I’ve made the forest image get larger, tilt a
little, and move down and to the right when the mouse is over it or when it
is in focus:

img:hover, img:focus {
 transform: scale(1.5) rotate(-5deg) translate(50px,30px);
}

:hover, :focus
rotate(), translate(), and scale() appliedNormal state

FIGURE 18-12.   Applying scale(), rotate(), and translate() to a single element.

transform: skew(15deg, 30deg);

transform: skewY(30deg);

transform: skewX(15deg);

FIGURE 18-11.   Slanting an
element by using the skew()
function.

18. Transitions, Transforms, and Animation

CSS Transforms

531

It is important to note that transforms are applied in the order in which they
are listed. For example, if you apply a translate() and then rotate(), you get
a different result than with a rotate() and then a translate(). Order matters.

Another thing to watch out for is that if you want to apply an additional
transform on a different state (such as :hover, :focus, or :active), you need
to repeat all of the transforms already applied to the element. For example,
this a element is rotated 45 degrees in its normal state. If I apply a scale()
transform on the hover state, I would lose the rotation unless I explicitly
declare it again:

a {
 transform: rotate(45deg);
}
a:hover {
 transform: scale(1.25); /* rotate on a element would be lost */
}

To achieve both the rotation and the scale, provide both transform values:

a:hover {
 transform: rotate(45deg) scale(1.25); /* rotates and scales */
}

Smooooooth Transforms
The multiple transforms applied to the redwood forest image look interesting,
but it might feel better if we got there with a smooth animation instead of just
BAM! Now that you know about transitions and transforms, let’s put them
together and make some magic happen. And by “magic,” of course I mean
some basic animation effects between two states. We’ll do that together, step-
by-step, in EXERCISE 18-2.

EXERCISE 18-2.  Transitioning transforms

In this exercise, we’ll make the travel photos in the gallery shown in FIGURE 18-13 grow
and spin out to an angle when the user mouses over them—and we’ll make it smoooooth
with a transition. A starter document (exercise_18-2.html) and all of the images are
available in the materials folder for this chapter.

1.	 Open exercise_18-2.html in a text editor, and you will see that there are already styles
that arrange the list items horizontally and apply a slight drop shadow. The first thing
we’ll do is add the transform property for each image.

2.	 We want the transforms to take effect only when the mouse is over the image or when
the image has focus, so the transform property should be applied to the :hover and
:focus states. Because I want each image to tilt a little differently, we’ll need to write a
rule for each one, using its unique ID as the selector. You can save and check your work
when you’re done.

Part III. CSS for Presentation

CSS Transforms

532

FIGURE 18-13.   Photos get larger and tilt on :hover and :focus . A transition is used
to help smooth out the change between states. You can see how it works when you are
finished with this exercise (or check it out in the ch18_figures.html page).

a:hover #img1, a:focus #img1 {
 transform: rotate(-3deg);
}
a:hover #img2, a:focus #img2 {
 transform: rotate(5deg);
}
a:hover #img3, a:focus #img3 { 	
 transform: rotate(-7deg);
}
a:hover #img4, a:focus #img4 { 	
 transform: rotate(2deg);
}

NOT E

As of this writing, prefixes are still recommended for the transform
property, so for production-quality code, the complete rule would
look like this:

a:hover #img1, a:focus #img1 {
 -webkit-transform: rotate(-3deg);
 -ms-transform: rotate(-3deg); /* for IE9 */
 transform: rotate(-3deg);
}

Because we are checking our work on a modern browser, we can
omit the prefixes for this exercise.

3.	 Now let’s make the images a little larger as well, to give visitors a
better view. Add scale(1.5) to each of the transform values.
Here is the first one; you do the rest:

a:hover #img1 {
 transform: rotate(-3deg) scale(1.5);
}

Note that my image files are created at the larger size and then
scaled down for the thumbnail view. If we started with small
images and scaled them larger, they would look crummy.

4.	 As long as we are giving the appearance of lifting the photos
off the screen, let’s make the drop shadow appear to be a little
farther away by increasing the offset and blur, and lightening the
shade of gray. All images should have the same effect, so add
one rule using a:hover img as the selector.

a:hover img { 	
 box-shadow: 6px 6px 6px rgba(0,0,0,.3);
}

Save your file and check it out in a browser. The images should
tilt and look larger when you mouse over them. But the action is
kind of jarring. Let’s fix that with a transition.

5.	 Add the transition shorthand property to the normal img
state (i.e., not on :hover or :focus). The property we want
to transition in this case is transform. Set the duration to 0.3
seconds and use the linear timing function.

img {
 …
 transition: transform 0.3s linear;
}

NOTE

The prefixed transform property should be included in the context
of a transition as well, as shown in this fully prefixed declaration:

-webkit-transition: -webkit-transform .3s linear;

The -ms- prefix is not needed because transitions are not supported
by IE9. Those users will see an immediate change to the trans-
formed image without the smooth transition, which is fine.

And that’s all there is to it! You can try playing around with different
durations and timing functions, or try altering the transforms or
their origin points to see what other effects you can come up with.

18. Transitions, Transforms, and Animation

CSS Transforms

533

3-D Transforms
In addition to the two-dimensional transform functions we’ve just seen, the
CSS Transforms spec also describes a system for creating a sense of three-
dimensional space and perspective. Combined with transitions, you can use
3-D transforms to create rich interactive interfaces, such as image carousels,
flippable cards, or spinning cubes! FIGURE 18-14 shows a few examples of
interfaces created with 3-D transforms.

It’s worth noting that this method does not create 3-D objects with a sense of
volume; it merely tilts the otherwise flat element box around on three axes
(animation expert Val Head calls them “postcards in space”). The rotating
cube example in the figure merely stitches together six element boxes at dif-
ferent angles. That said, 3-D transforms still add some interesting depth to an
otherwise flat web page.

3D CSS Rotating Cube by Paul Hayes
paulrhayes.com/experiments/cube-3d/

Movie poster animation by Marco Kuiper
demo.marcofolio.net/3d_animation_css3/

Animated book covers by Marco Barria
tympanus.net/Development/AnimatedBooks/

Webflow transform tools example
3d-transforms.webflow.com

FIGURE 18-14.   Some examples of 3-D transforms. The book covers, movie posters,
and 3-D cube also have cool animation effects, so it’s worth going to the links and
checking them out. Webflow is a visual web design tool that includes the ability to
create 3-D transformed elements.

3-D transforms are not a need-to-know skill for folks just starting out in web
design, so I’m not going to go into full detail here, but I will give you a taste
of what it takes to add a third dimension to a design. If you’d like to learn
more, the following tutorials are good places to start (although the browser
support information they contain may be out-of-date):

Part III. CSS for Presentation

CSS Transforms

534

•	 “Adventures in the Third Dimension: CSS 3D Transforms” by Peter
Gasston (coding.smashingmagazine.com/2012/01/06/adventures-in-the-
third-dimension-css-3-d-transforms/)

•	 “Intro to CSS 3D Transforms” by David DeSandro (desandro.github.
com/3dtransforms/)

To give you a very basic example, I’m going to use the images from EXERCISE

18-2 and arrange them as though they are in a 3-D carousel-style gallery
(FIGURE 18-15).

FIGURE 18-15.   Our aquarium images arranged in space…space…space…

The markup is the same unordered list used in the previous exercise:

The first step is to add some amount of “perspective” to the containing ele-
ment by using the perspective property. This tells the browser that the child
elements should behave as though they are in 3-D space. The value of the
perspective property is some integer larger than zero that specifies a dis-
tance from the element’s origin on the z-axis. The lower the value, the more
extreme the perspective. I have found that values between 300 and 1,500 are
reasonable, but this is something you need to fuss around with until you get
the desired effect.

ul {
 width: 1000px; 	
 height: 100px; 	
 list-style-type: none; 	
 padding: 0;
 margin: 0; 	
 perspective: 600;
}

NOTE

When using the -webkit- prefix for
transform, include the prefixed version
of perspective as well (-webkit-per-
spective).

18. Transitions, Transforms, and Animation

CSS Transforms

535

http://coding.smashingmagazine.com/2012/01/06/adventures-in-the-third-dimension-css-3-d-transforms/
http://coding.smashingmagazine.com/author/peter-gasston/
http://coding.smashingmagazine.com/author/peter-gasston/

The perspective-origin property (not shown) describes the position of your
eyes relative to the transformed items. The values are a horizontal position
(left, center, right, or a length or percentage) and a vertical position (top,
bottom, center, or a length or percentage value). The default (FIGURE 18-15)
is centered vertically and horizontally (perspective-origin: 50% 50%). The
final transform-related property is backface-visibility, which controls
whether the reverse side of the element is visible when it spins around.

With the 3-D space established, apply one of the 3-D transform functions
to each child element—in this case, the li within the ul. The 3-D func-
tions include translate3d, translateZ, scale3d, scaleZ, rotate3d, rotateX,
rotateY, rotateZ, and matrix3d. You should recognize some terms in there.
The *Z functions define the object’s orientation relative to the z-axis (picture
it running from your nose to this page, whereas the x- and y-axes lie flat on
the page).

In our example in FIGURE 18-15, each li is rotated 45 degrees around its
y-axis (vertical axis) by using the rotateY function, which works as though
the element boxes are rotating around a pole.

Compare the result to FIGURE 18-16, in which each li is rotated on its x-axis
(horizontal axis) by using rotateX. It’s as though the element boxes are rotat-
ing around a horizontal bar.

li {
 float: left;
 margin-right: 10px;
 transform: rotateX(45deg); 	
}

FIGURE 18-16.   The same list of images rotated on their horizontal axes with
rotateX().

Obviously, I’m barely scratching the surface of what can be done with 3-D
transforms, but this should give you a mental model for how it works. Next
up, I’ll introduce you to a more sophisticated way to set your web pages in
motion.

KEYFRAME ANIMATION

The CSS Animations Module allows authors to create real, honest-to-good-
ness keyframe animation. FIGURE 18-17 shows just a few examples that you
can see in action online. Unlike transitions that go from a beginning state to

Part III. CSS for Presentation

Keyframe Animation

536

an end state, keyframe animation allows you to explicitly specify other states
at points along the way, allowing for more granular control of the action.
Those “points along the way” are established by keyframes that define the
beginning or end of a segment of animation.

Creating keyframe animations is complex, and more than I can cover here.
But I would like for you to have some idea of how it works, so I’ll sketch out
the minimal details. The following resources are good starting points for
learning more:

•	 CSS Animations Level 1 (a Working Draft at the time of this writing) at www.
w3.org/TR/css-animations-1/.

•	 Transitions and Animations in CSS by Estelle Weyl (O’Reilly).

•	 “Animation & UX Resources” by Val Head (valhead.com/ui-animation/).
Val has compiled a mega-list of resources regarding web animation,
including links to tutorials, articles, tools, galleries, and more. It is not
limited to CSS keyframe animation, but as long as you’re delving into
animation, you can trust Val to point you to good stuff.

CSS transitions are
animations with two
keyframes: a start state
and an end state. More
complex animations
require many keyframes
to control property
changes in the sequence.

NOTE

Keyframe animation is known as explicit
animation because you program its
behavior. By contrast, transitions are an
example of implicit animation because
they are triggered only when a property
changes.

Animated Web Banner
by Caleb Jacob
tympanus.net/codrops/2012/01/10/
animated-web-banners-with-css3/

Adorable animated submarine
by Alberto Jerez
codepen.io/ajerez/pen/EaEEOW

MADMANIMATION
by Anthony Calzadilla and Andy Clarke
stu�andnonsense.co.uk/content/demo/
madmanimation/—hint: click WATCH

How I Learned to Walk
by Andrew Wang-Hoyer
andrew.wang-hoyer.com/experiments/
walking/

FIGURE 18-17.   Examples of animations using only CSS.

18. Transitions, Transforms, and Animation

Keyframe Animation

537

http://valhead.com/ui-animation/

•	 “CSS: Animation” course by Val Head on Lynda.com (www.lynda.com/
CSS-tutorials/CSS-Animation/439683-2.html). You’ll need a subscription to
Lynda.com, but if you are in web-design-learning mode, it may be a good
investment.

•	 “CSS Animation for Beginners” by Rachel Cope (robots.thoughtbot.com/
css-animation-for-beginners). This is a clearly written tutorial with lots of
examples.

•	 “The Guide to CSS Animation: Principles and Examples” by Tom
Waterhouse (www.smashingmagazine.com/2011/09/the-guide-to-css-ani-
mation-principles-and-examples/). This tutorial goes beyond CSS code to
include tips for creating natural animation effects.

Establishing the Keyframes
The animation process has two parts:

1.	 Establish the keyframes with a @keyframes rule.

2.	 Add the animation properties to the elements that will be animated.

Here is a very simple set of keyframes that changes the background color of
an element over time. It’s not a very action-packed animation, but it should
give you a basic understanding of what a @keyframes rule does.

@keyframes colors {
 0% { background-color: red; }
 20% { background-color: orange; }
 40% { background-color: yellow; }
 60% { background-color: green; }
 80% { background-color: blue; }
 100% { background-color: purple; }
}

The keyframes at-rule identifies the name of the animation, the stages of the
animation represented by percentage (%) values, and the CSS properties that
are affected for each stage. Here’s what a @keyframes rule looks like abstracted
down to its syntax:

@keyframes animation-name {
 keyframe { property: value; }
 /* additional keyframes */
}

The sample @keyframes rule says: create an animation sequence called “col-
ors.” At the beginning of the animation, the background-color of the element
should be red; at 20% through the animation runtime, the background color
should be orange; and so on, until it reaches the end of the animation. The
browser fills in all the shades of color in between each keyframe (or tweens it,
to use the lingo). This is represented the best I could in FIGURE 18-18.

Each percentage value and the property/value declaration defines a keyframe
in the animation sequence.

Animation Tools
If you want to add a simple animation
effect to an element—a quick flip here
or a little shimmy there—you may be
able to find a premade effect you can
apply to your design. Here are a few
sites that provide ready-made CSS
for common animation effects (some
also use JQuery plug-ins, but they
explain how to use them):

•	 Animate.css by Daniel Eden
(daneden.github.io/animate.css/)

•	 CSS Animation Cheat Sheet by
Justin Aguilar (www.justinaguilar.
com/animations/index.html)

•	 AngryTools CSS Animation Kit
(angrytools.com/css/animation/)

20s

0% red

20% orange

40% yellow

60% green

80% blue

100% purple

FIGURE 18-18.   Animating through
the colors of the rainbow by using
keyframes.

Part III. CSS for Presentation

Keyframe Animation

538

https://www.lynda.com/CSS-tutorials/CSS-Animation/439683-2.html
https://www.lynda.com/CSS-tutorials/CSS-Animation/439683-2.html
http://www.smashingmagazine.com/2011/09/the-guide-to-css-animation-principles-and-examples/
http://www.smashingmagazine.com/2011/09/the-guide-to-css-animation-principles-and-examples/

As an alternative to percentages, you can use the keyword from for the start of
an animation sequence (equivalent to 0%) and the keyword to for denoting
the end (100%). The following example makes an element slide in from right
to left as the left margin reduces to 0:

@keyframe slide {
 from { margin-left: 100% }
 to { margin-left: 0%; }
}

Adding Animation Properties
Now we can apply this animation sequence to an element or multiple ele-
ments in the document by using a collection of animation properties that are
very similar to the set of transition properties that you already know.

I am going to apply the rainbow animation to the #magic div in my document:

<div id="magic">Magic!</div>

In the CSS rule for #magic, I make decisions about the animation I want to
apply:

•	 Which animation to use (animation-name) (Required).

•	 How long it should take (animation-duration) (Required).

•	 The manner in which it should accelerate (animation-timing-function).
This property uses the same timing function keywords that we covered
for CSS Transitions.

•	 Whether to pause before it starts (animation-delay).

Looks familiar, right? There are a few other animation-specific properties to
know about as well:

animation-iteration-count

How many times the animation should repeat. This can be set to a whole
number or infinite.

animation-direction

Whether the animation plays forward (normal), in reverse (reverse), or
alternates back and forth starting at the beginning (alternate), or alter-
nates starting from the end (alternate-reverse).

animation-fill-mode

The animation fill mode determines what happens with the animation
before it begins and after it ends. By default (none), the animation shows
whatever property values were not specified via @keyframes. If you want
the last keyframe to stay visible after the animation plays, use the for-
wards keyword. If there is a delay set on the animation and you want
the first keyframe to show during that delay, use backwards. To retain the
beginning and end states, use both.

•	 “CSS: Animation” course by Val Head on Lynda.com (www.lynda.com/
CSS-tutorials/CSS-Animation/439683-2.html). You’ll need a subscription to
Lynda.com, but if you are in web-design-learning mode, it may be a good
investment.

•	 “CSS Animation for Beginners” by Rachel Cope (robots.thoughtbot.com/
css-animation-for-beginners). This is a clearly written tutorial with lots of
examples.

•	 “The Guide to CSS Animation: Principles and Examples” by Tom
Waterhouse (www.smashingmagazine.com/2011/09/the-guide-to-css-ani-
mation-principles-and-examples/). This tutorial goes beyond CSS code to
include tips for creating natural animation effects.

Establishing the Keyframes
The animation process has two parts:

11.	 Establish the keyframes with a @keyframes rule.

12.	 Add the animation properties to the elements that will be animated.

Here is a very simple set of keyframes that changes the background color of
an element over time. It’s not a very action-packed animation, but it should
give you a basic understanding of what a @keyframes rule does.

@keyframes colors {
 0% { background-color: red; }
 20% { background-color: orange; }
 40% { background-color: yellow; }
 60% { background-color: green; }
 80% { background-color: blue; }
 100% { background-color: purple; }
}

The keyframes at-rule identifies the name of the animation, the stages of the
animation represented by percentage (%) values, and the CSS properties that
are affected for each stage. Here’s what a @keyframes rule looks like abstracted
down to its syntax:

@keyframes animation-name {
 keyframe { property: value; }
 /* additional keyframes */
}

The sample @keyframes rule says: create an animation sequence called “col-
ors.” At the beginning of the animation, the background-color of the element
should be red; at 20% through the animation runtime, the background color
should be orange; and so on, until it reaches the end of the animation. The
browser fills in all the shades of color in between each keyframe (or tweens it,
to use the lingo). This is represented the best I could in FIGURE 18-18.

Each percentage value and the property/value declaration defines a keyframe
in the animation sequence.

Animation Tools
If you want to add a simple animation
effect to an element—a quick flip here
or a little shimmy there—you may be
able to find a premade effect you can
apply to your design. Here are a few
sites that provide ready-made CSS
for common animation effects (some
also use JQuery plug-ins, but they
explain how to use them):

•	 Animate.css by Daniel Eden
(daneden.github.io/animate.css/)

•	 CSS Animation Cheat Sheet by
Justin Aguilar (www.justinaguilar.
com/animations/index.html)

•	 AngryTools CSS Animation Kit
(angrytools.com/css/animation/)

SU P PO RT T I P

CSS Keyframe Browser
Support
All current versions of major desktop
and mobile browsers support CSS
keyframe animation without vendor
prefixes. Here are the exceptions:

•	 Internet Explorer 9 and earlier do
not support keyframe animation
at all. The animation will appear in
its start state, so be sure that first
frame is an acceptable fallback.

•	 You need to use the -webkit-
prefix to support the following
browsers: Safari and iOS Safari 8
and earlier (2014), Chrome 41 and
earlier (2015), Opera 29 and earlier
(2015), and Android 4.4.4 and
earlier (2014). As I am writing this,
these browsers represent enough
traffic that it is still recommended
that you include the -webkit-
prefix, but that may change
based on when you are doing
development and who your target
audience is.

Note that you need the prefixed
keyframe at-rule as well as prefixed
animation-* properties. As
always, the standard, unprefixed
rules go after prefixed versions.

@-webkit-keyframes

-webkit-animation-*
20s

0% red

20% orange

40% yellow

60% green

80% blue

100% purple

FIGURE 18-18.   Animating through
the colors of the rainbow by using
keyframes.

18. Transitions, Transforms, and Animation

Keyframe Animation

539

animation-play-state

Whether the animation should be running or paused when it loads. The
play-state can be toggled on and off based on user input with JavaScript
or on hover.

The animation-name property tells the browser which keyframe sequence to
apply to the #magic div. I’ve also set the duration and timing function, and
used animation-iteration-count to make it repeat infinitely. I could have
provided a specific number value, like 2 to play it twice, but how fun are only
two rainbows? And for fun, I’ve set the animation-direction to alternate,
which makes the animation play in reverse after it has played forward. Here
is the resulting rule for the animated div:

#magic {
 …
 animation-name: colors;
 animation-duration: 5s;
 animation-timing-function: linear;
 animation-iteration-count: infinite;
 animation-direction: alternate;
}

That gets a bit verbose, especially when you consider that each property may
also follow a prefixed version. You can also use the animation shorthand
property to combine the values, just as we did for transition:

#magic {
 animation: colors 5s linear infinite alternate;
}

Those are the bare bones of creating keyframes and applying animations to
an element on the page. To make elements move around (what we typically
think of as “animation”), use keyframes to change the position of an element
on the screen with translate (the best option for performance) or with the
top, right, bottom, and left properties. When the keyframes are tweened, the
object will move smoothly from position to position. You can also animate
the other transform functions such as scale and skew.

When to Use Keyframe Animation
To keep my example simple, I chose to change only the background color of
a button element, but of course, keyframe animations can be used to create
real animations, especially when combined with the CSS transform functions
for spinning and moving elements around on the page. If you only need to
change an element from one state to another, a transition is the way to go. But
if you have a linear animation such as moving a character, an object, or its
parts around, keyframe animation is the most appropriate choice.

For more complex keyframe animations, particularly those that change with
user interaction or require complex physics, using JavaScript for animation
may be a better choice than CSS animation. JavaScript animation also has

Part III. CSS for Presentation

Keyframe Animation

540

better support in older browsers, making it preferable if animation is critical
to the mission of the page. CSS keyframe animation is a good solution for
simple animations used as an enhancement to a baseline experience.

I should note that as I write this, there is a lot of excitement in the web com-
munity for animating SVG graphics. When you place the source code for an
SVG directly in the HTML document, the elements in it are available to be
animated. As of this writing, there are still limitations and browser support
issues around using CSS to animate SVGs, but as browser support grows, this
approach looks very promising. In the meantime, JavaScript has better access
to SVG properties, has better browser support, and is the more common solu-
tion for SVG animation.

Animation Inspectors
Both Chrome and Firefox offer tools to inspect and modify web animations
(FIGURE 18-19). When you inspect an animated element in the Developer Tools,
click the Animations tab to see a timeline of all the animations applied to that
object. You can slow down the animation to reveal what is happening on a detailed
level. You can also modify the animation by making changes to the timing, delay,
duration, and keyframes. For more information, see the following:

•	 Firefox Animation Inspector (developer.mozilla.org/en-US/docs/Tools/Page_
Inspector/How_to/Work_with_animations)

•	 Chrome Animation Inspector (developers.google.com/web/tools/chrome-
devtools/inspect-styles/animations)

Firefox Animation Inspector

Chrome Animation Inspector

FIGURE 18-19.   Animation inspectors are part of the developer tools offered by
Firefox and Chrome browsers.

18. Transitions, Transforms, and Animation

Keyframe Animation

541

WRAPPING UP

I hope I’ve helped you to wrap your head around how CSS can be used to
add a little motion and smoothness to your pages. For adding motion to a
web page, we have CSS Transitions to smooth out changes from one state to
another and CSS Keyframe Animation for animating a series of states. We
also looked at CSS Transforms for repositioning, spinning, resizing, or skew-
ing an element when it is rendered on the screen.

Used thoughtfully, animation can make your interfaces more intuitive and
enhance your brand personality. It’s powerful stuff, but with great power
comes great responsibility. To learn how to use web animation to enhance
the user experience in a meaningful way, I recommend the book Designing
Interface Animation: Meaningful Motion for User Experience by Val Head
(Rosenfeld Media).

Now let’s see if you were paying attention with a 12-question quiz!

TEST YOURSELF

Think you know your way around transitions, transforms, and keyframe
animations? Here are a few questions to find out (answers in Appendix A):

1.	 What is tweening?

2.	 If a transition had keyframes, how many would it have?

3.	 Write out the transition declaration (property and value) you would use
to accomplish the following:

a.	 Wait .5 seconds before the transition starts.

b.	 Make the transition happen at a constant speed.

c.	 Make the transition last .5 seconds.

d.	 Make the lines of text slowly grow farther apart.

Need a Little Inspiration?
The Codrops blog (tympanus.net/
codrops/), curated by Manoela Ilic
and Pedro Botelho, is a treasure
trove of examples of CSS transitions,
transforms, and animations.
Check out the Playground for cool
experiments (like the collection of
hover effects in FIGURE 18-20) and
the Tutorials section for step-by-
step how-to information with code
examples.

FIGURE 18-20.   One of many
examples of CSS transitions,
transforms, and animations at the
Codrops blog.

Part III. CSS for Presentation

Wrapping Up

542

4.	 Which of the following can you not animate?

a.	 width

b.	 padding

c.	 text-transform

d.	 word-spacing

5.	 Which timing function will be used if you omit the transition-timing-
function property? Describe its action.

6.	 In the following transition, what does .2s describe?

transition: color .2s linear;

7.	 Which transition will finish first?

a.	 transition: width 300ms ease-in;

b.	 transition: width 300ms ease-out;

8.	 Write the transform declaration to accomplish the following:

a.	 Tilt the element 7 degrees clockwise.

b.	 Reposition the element 25 pixels up and 50 pixels to the left.

c.	 Rotate the element from its bottom-right corner.

d.	 Make a 400-pixel-wide image display at 500 pixels wide.

9.	 In the following transform declaration, what does the 3 value describe?

transform: scale(2, 3)

18. Transitions, Transforms, and Animation

Test Yourself

543

10.	 Which 3-D transform would look more angled and dramatic?

a.	 perspective: 250;

b.	 perspective: 1250;

11.	 What happens halfway through this animation?

@keyframes border-bulge {
 from { border-width: 1px; }
 25% { border-width: 10px; }
 50% { border-width: 3px; }
 to { border-width: 5px; }
}

12.	 Write the animation declaration you would use to accomplish the
following:

a.	 Make the animation play in reverse.

b.	 Make the entire animation last 5 seconds.

c.	 Wait 2 seconds before running the animation.

d.	 Repeat the animation three times and then stop.

e.	 The end state of the animation stays visible after the animation is
done playing.

Part III. CSS for Presentation

Test Yourself

544

CSS REVIEW: TRANSITIONS,
TRANSFORMS, AND ANIMATION

Here is a summary of the properties covered in this chapter.

Property Description

animation A shorthand property that combines animation properties

animation-name Specifies the named animation sequence to apply

animation-duration Specifies the amount of time the animation lasts

animation-timing-function Describes the acceleration of the animation

animation-iteration-count Indicates the number of times the animation repeats

animation-direction Specifies whether the animation plays forward, in reverse, or
alternates back and forth

animation-play-state Specifies whether the animation is running or paused

animation-delay Indicates the amount of time before the animation starts
running

animation-fill-mode Overrides limits to when animation properties can be
applied

backface-visibility Determines whether the reverse side of an element may be
visible in 3-D transforms

perspective Establishes an element as a 3-D space and specifies the per-
ceived depth

perspective-origin Specifies the position of your viewpoint in a 3-D space

transform Specifies that the rendering of an element should be altered
via one of the 2-D or 3-D transform functions

transform-origin Denotes the point around which an element is transformed

transform-style Preserves a 3-D context when transformed elements are
nested

transition A shorthand property that combines transition properties

transition-property Defines which CSS property will be transitioned

transition-duration Specifies the amount of time the transition animation lasts

transition-timing-function Describes the manner in which the transition happens
(changes in acceleration rates)

transition-delay Specifies the amount of time before the transition starts

18. Transitions, Transforms, and Animation

CSS Review: Transitions, Transforms, and Animation

545

IN THIS CHAPTER

Styling forms

Style properties for tables

Using a CSS reset or normalizer

Image replacement techniques

CSS sprites

CSS feature detection

By now you have a solid foundation in writing style sheets. You can style
text and element boxes, float and position objects, create responsive page
layouts using Flexbox and Grid, and even add subtle animation effects to
your designs. But there are a few more common techniques that you should
know about.

If you look over at the “In This Chapter” list, you’ll see that this chapter is a
grab bag of sorts. It starts with general approaches to styling forms and the
special properties for table formatting. We’ll cover other tricks of the trade
including clearing out browser styles with a CSS reset, using images in place
of text (only when necessary!), reducing the number of server requests with
CSS sprites, and checking whether a browser supports a particular CSS fea-
ture. Let’s dig in!

STYLING FORMS

Web forms can look a bit hodgepodge right out of the box with no styles
applied (FIGURE 19-1), so you’ll certainly want to give them a more profes-
sional appearance using CSS. Not only do they look better, but studies show
that forms are much easier and faster to use when the labels and inputs are
lined up nicely. In this section, we’ll look at how various form elements can
be styled.

Now, I’m not going to lie: styling forms is somewhat of a dark art because of
the variety of ways in which browsers handle form elements. And for really
slick, custom forms, you will generally need to turn to JavaScript. But the
efforts are well worth it to improve usability.

There aren’t any special CSS properties for styling forms; just use the stan-
dard color, background, font, border, margin, and padding properties that

MORE CSS
TECHNIQUES

19
CHAPTER

547

you’ve learned in the previous chapters. The following is a quick rundown of
the types of things you can do for each form control type.

Text inputs (text, password, email, search, tel, url)

Change the appearance of the box itself with width, height, background-
color, background-image, border, border-radius, margin, padding, and
box-shadow. You can also style the text inside the entry field with the color
property and the various font properties.

The textarea element

This can be styled in the same way as text-entry fields. textarea ele-
ments use a monospace font by default, so you may want to change that
to match your other text-entry fields. Because there are multiple lines,
you may also specify the line height. Note that some browsers display a
handle on the lower-right corner of the textarea box that makes it resiz-
able, but you can turn it off by adding the style resize: none. Text areas
display as inline-block by default, but you can change them to block
with the display property.

Button inputs (submit, reset, button)

Apply any of the box properties to submit and reset buttons (width,
height, border, background, margin, padding, and box-shadow). It is worth
noting that buttons are set to the border-box sizing model by default.
Most browsers also add a bit of padding by default, which can be over-
ridden by your own padding value. You can also style the text that appears
on the buttons.

Radio and checkbox buttons

The best practice for radio and checkbox buttons is to leave them alone. If
you are tenacious, you can use JavaScript to change the buttons altogether.

Coordinated Fonts
By default, a browser may use
different fonts at different sizes for
various input types. For example, it
may use the system font on buttons
and a constant-width font like Courier
for textarea inputs. If you’d like all
inputs to use the same font as the
surrounding text on the page, you
can force the form elements to inherit
font settings:

button, input, select,
textarea {
 font-family: inherit;
 font-size: 100%
}

FIGURE 19-1.  Forms tend to be ugly and difficult to use with HTML alone. Don’t
worry—this one gets spiffed up in FIGURE 19-2.

Part III. CSS for Presentation

Styling Forms

548

Drop-down and select menus (select)

You can specify the width and height for a select element, but note that
it uses the border-box box-sizing model by default. Some browsers allow
you to apply color, background-color, and font properties to option ele-
ments, but it’s probably best to leave them alone to be rendered by the
browser and operating system.

Fieldsets and legends

You can treat a fieldset as any other element box, adjusting the bor-
der, background, margin, and padding. Turning the border off entirely
is one way to keep your form looking tidy while preserving semantics
and accessibility. By default, legend elements are above the top border of
the fieldset, and, unfortunately, browsers make them very difficult to
change. Some developers use a span or b element within the legend and
apply styles to the contained element for more predictable results. Some
choose to hide it in a way that it will still be read by screen readers (legend
{width: 1px; height: 1px; overflow: hidden;}).

Now we know what we can do to style individual controls, but the grander
goal is to make the form more organized and easier to use. FIGURE 19-2 shows
the “after” shots of the unstyled form from FIGURE 19-1. There color, font,
border, and spacing changes, and the labels and input elements are nicely
aligned as well. And not only that, the form is responsive! I’ve used Flexbox to

HEADS UP

The following form elements cannot
be changed with CSS alone: inputs
for range, color, date pickers, file
picker, option, optgroup, datalist,
progress, and meter. It is possible to
customize them by using JavaScript,
which is beyond the scope of this book.

Wide viewport Narrow viewport

FIGURE 19-2.  This responsive form uses Flexbox to allow text inputs to resize and to
shift the position of the labels on small screens.

19. More CSS Techniques

Styling Forms

549

make the labels stack on top of their respective inputs and fieldsets on narrow
screens so there is no wasted space.

If you’d like to take a look at the actual markup and styles, the document
sneakerform.html is available with the materials for this chapter (learningweb-
design.com/5e/materials). I’ve left careful and thorough comments through-
out that explain exactly what each style is for. My approach to styling the
Custom Sneaker Order Form can be summarized as follows:

•	 Set the box-sizing to border-box for the whole document. This makes
sizing form elements more predictable.

•	 Give the form a max-width (so it can shrink to fit smaller viewports) and
optional decorative styling like the green background and rounded bor-
der in the example.

•	 Get rid of the bullets and spacing around the unordered lists that were
used to mark up the form semantically.

•	 Turn list items (each containing a label and some sort of input or field-
set) into flex containers by setting their display to flex (see Note). Turn
on wrapping, which is what allows the input to shift below the labels on
small screens.

•	 Give the labels fixed widths (flex: 0 0 8em;) so they are sized the same
regardless of screen size. Because labels on checkboxes and radio buttons
work differently, set them to override the 8em width (flex: 1 1 auto;).

•	 Allow the input, textarea, and fieldsets to grow to fill the remaining
space (flex: 1 1 20em;). When the screen is too narrow for them to fit
next to the labels, they wrap below.

•	 Set the text input fields’ font-family to inherit so they use the same font
as the rest of the document instead of whatever font the browser uses for
forms. Text inputs also get heights, borders, and a little padding.

•	 Fieldsets and legends are tricky to style. Turn off the border and padding
on the fieldset, and then hide the legend in a way that it will still be read
aloud before each checkbox or radio button option. Because there is both
a label and a legend for each fieldset, I made sure they are not exactly the
same so they won’t be redundant when read aloud by a screen reader. The
legend should be shorter because it is repeated for each option.

•	 The submit button has a rounded border, background color, and font
styling. Set the side margins to auto so it will always be centered in the
width of the form.

This is a very simple example, but it should give you a general idea of how
forms can be styled. You may also want to add highlight styles for interac-
tivity, such as :hover styles on the buttons and :focus styles for text inputs
when they are selected.

NOTE

If you don’t want to use Flexbox, you
can line up labels by using floats. Set
labels to display: block, give them a
width and height, and float them to the
left. You need to clear the li elements
(clear: both) so they start below the
previous floated pair.

Part III. CSS for Presentation

Styling Forms

550

http://learningwebdesign.com/5e/materials
http://learningwebdesign.com/5e/materials

STYLING TABLES

Like any other text content on a web page, content within table cells can be
formatted with various font, text, and background properties.

You will probably want to adjust the spacing in and around tables. To adjust
the amount of space within a cell (cell padding), apply the padding property
to the td or th element. Spacing between cells (cell spacing) is a little more
complicated and is related to how CSS handles cell borders. CSS provides two
methods for displaying borders between table cells: separated or collapsed.
These options are specified with the table-specific border-collapse property
with separate and collapse values, respectively.

border-collapse

Values: 	 separate | collapse

Default: 	 separate

Applies to: 	 table and inline-table elements

Inherits: 	 yes

Separated Borders
By default, borders are separated, and a border is drawn on all four sides of
each cell. The border-spacing property lets you specify the space between
cell borders.

border-spacing

Values: 	 horizontal-length vertical-length

Default: 	 0

Applies to: 	 table and inline-table elements

Inherits: 	 yes

The values for border-spacing are two length measurements. The horizontal
value comes first and applies between columns. The second measurement is
applied between rows. If you provide one value, it will be used both horizon-
tally and vertically. The default setting is 0, causing the borders to double up
on the inside grid of the table (see Note).

The table in FIGURE 19-3 is set to separate with 15 pixels of space between
columns and 5 pixels of space between rows. A purple border has been
applied to the cells to make their boundaries clear.

NOT E

Although the border-spacing default is 0, browsers generally add 2 pixels of space for
the obsolete cellspacing attribute by default. If you want to see the borders double
up, you need to set the cellspacing attribute to 0 in the table element.	

NOTE

In the past, cell padding and spacing
were handled by the cellpadding and
cellspacing attributes in the table
element, respectively, but they have
been made obsolete in HTML5 because
of their presentational nature.

19. More CSS Techniques

Styling Tables

551

td {
 border: 3px solid purple;
}
table {
 border-collapse: separate;
 border-spacing: 15px 5px;
 border: none;
}

5px15px3px border

FIGURE 19-3.   The separated table border model.

For tables with separated borders, you can indicate whether you want empty
cells to display their backgrounds and borders by using the empty-cells
property. For a cell to be “empty,” it may not contain any text, images, or non-
breaking spaces. It may contain carriage returns and space characters.

empty-cells

Values: 	 show | hide

Default: 	 show

Applies to: 	 table cell elements

Inherits: 	 yes

FIGURE 19-4 shows the previous separated table-border example with its
empty cells (what would be Cell 14 and Cell 15) set to hide.

empty-cells: hide;

FIGURE 19-4.   Hiding empty cells with the empty-cells property.

Collapsed Borders
In the collapsed border model, the borders of adjacent borders “collapse” so
that only one of the borders is visible and the space is removed (FIGURE 19-5).
In the example, although each table cell has a 3-pixel border, the borders
between cells measure a total of 3 pixels, not 6. In instances where neighbor-
ing cells have different border styles, a complicated pecking order is called
in to determine which border will display, which you can read in the spec.

The advantage to using the collapsed table-border model is that you can style
the borders for tr, col, rowgroup, and colgroup elements. With the separated
model, you can’t. Strategic use of horizontal and vertical borders improves the
readability of complicated tables, making the collapsed model an attractive
choice.

Part III. CSS for Presentation

Styling Tables

552

td {
 border: 3px solid purple;
}
table {
 border-collapse: collapse;
 border: none;
} 3px border

FIGURE 19-5.  The collapsed border model.

Table Layout

table-layout

Values: 	 auto | fixed

Default: 	 auto

Applies to: 	 table or inline-table elements

Inherits: 	 yes

The table-layout property allows authors to specify one of two methods
of calculating the width of a table. The fixed value bases the table width on
width values provided for the table, columns, or cells. The auto value bases the
width of the table on the minimum width of the contents of the table. Auto
layout may display nominally more slowly because the browser must calcu-
late the default width of every cell before arriving at the width of the table.

That covers basic form and table formatting. I know this is a beginner’s book,
but in the next section, I’m going to introduce you to a few intermediate CSS
techniques that may make your work easier and your pages faster.

Table Display Properties
CSS 2.1 includes a number of values for the display property that allow authors to
attach table display behaviors to elements. The table-related display values are
table, inline-table, table-row-group, table-header-group, table-footer-
group, table-row, table-column-group, table-column, table-cell, and
table-caption.

The original intent for these values was to provide a mechanism for applying table
display behaviors to XML languages that may not have elements like table, tr, or td
in their vocabularies.

In recent years, table display values have become another method for achieving
page layout effects such as vertical centering and flexible column widths. CSS table
layout may be useful as a fallback design for older browsers that do not support CSS
Grid or Flexbox. Note that this is not the same as using table-based layout with HTML
markup. With CSS table layout, the semantics of the source document stay intact. If
you’d like to learn more, I recommend the article “Layout Secret #1: The CSS Table
Property” by Massimo Cassandro (www.sitepoint.com/solving-layout-problems-css-
table-property/).

Now that Flexbox and Grid are gaining momentum, I suspect the table layout
methods will eventually go by the wayside.

Pick a Side
When you use the caption element
in a table, it will appear above the
table by default. If you’d prefer it to
be below the table, you can use the
caption-side property to position
it there.

caption-side

Values: top | bottom

Default: top

Applies to: table caption element

Inherits: yes

19. More CSS Techniques

Styling Tables

553

http://www.sitepoint.com/solving-layout-problems-css-table-property/
http://www.sitepoint.com/solving-layout-problems-css-table-property/

A CLEAN SLATE
(RESET AND NORMALIZE.CSS)

As you know, browsers have their own built-in style sheets (called user agent
style sheets) for rendering HTML elements. If you don’t supply styles for an
h1, you can be certain that it will display as large, bold text with space above
and below. But just how much larger and how much space may vary from
browser to browser, giving inconsistent results. Furthermore, even if you do
provide your own style sheet, elements in your document may be secretly
inheriting certain styles from the user agent style sheets, causing unexpected
results.

There are two methods for getting a consistent starting point for applying
your own styles: a CSS reset or normalize.css. They take different approaches,
so one or the other may be the best solution for what you need to achieve.

CSS Reset
The older approach is a CSS reset, a collection of style rules that overrides
all user agent styles and creates a starting point that is as neutral as possible.
With this method, you need to specify all the font and spacing properties for
every element you use. It’s a truly from-scratch starting point.

The most popular reset was written by Eric Meyer (the author of too many
CSS books to list). It is presented here, and I’ve also included a copy of it in
the materials folder for this chapter for your copy-and-paste pleasure (see
Note). If you look through the code, you’ll see that the margins, border, and
padding have been set to 0 for a long list of block elements. There are also
styles that get typography to a neutral starting point, clear out styles on lists,
and prevent browsers from adding quotation marks to quotes and block-
quotes.

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126 License: none (public domain)*/
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,figure, figcaption, footer,
header, hgroup,menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 	 margin: 0;
 	 padding: 0;
 	 border: 0;
 	 font-size: 100%;
 	 font: inherit;
 	 vertical-align: baseline;
}

NOTE

You can get the CSS reset on the web at
meyerweb.com/eric/tools/css/reset/.

Part III. CSS for Presentation

A Clean Slate (Reset and Normalize.css)

554

http://meyerweb.com/eric/tools/css/reset/

/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,footer, header, hgroup,
menu, nav, section {
 	 display: block;
}
body {
 	 line-height: 1;
}
ol, ul {
 	 list-style: none;
}
blockquote, q {
 	 quotes: none;
}
blockquote:before, blockquote:after,
 q:before, q:after {
 	 content: '';
 	 content: none;
}
table {
 	 border-collapse: collapse;
 	 border-spacing: 0;
}

To use the reset, place these styles at the top of your own style sheet so your
own styles override them. You can use them exactly as you see them here or
customize them as your project requires. I also recommend reading Eric’s
posts about the thinking that went into his settings at meyerweb.com/eric/
tools/css/reset/ and meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/.
A web search will reveal other, potentially smaller, CSS reset options.

Normalize.css
A more nuanced approach is to use Normalize.css, created by Nicolas
Gallagher and Jonathan Neal. They painstakingly combed through the user
agent styles of every modern browser (desktop and mobile) and created a
style sheet that tweaks their styles for consistency, rather than just turning
them all off. Normalize.css gives you a reasonable starting point: paragraphs
still have some space above and below, headings are bold in descending sizes,
lists have markers and indents as you would expect. It also includes styles
that make form widgets consistent, which is a nice service. FIGURE 19-6
shows the difference between CSS reset and Normalize.css starting points.

You can download Normalize.css at necolas.github.io/normalize.css/ and
include it before your own styles. It is too long to print here, but you will find
that it is well organized and includes comments with clear explanations for
each section. For Nicolas’s thoughts on the project, see nicolasgallagher.com/
about-normalize-css/.

Normalize.css is considered a superior successor to the cruder CSS reset, but
I think it is important to be aware of both options. Or, if slight differences
from browser to browser are just fine with you (as they are for a lot of profes-
sional developers), you don’t need to use either.

19. More CSS Techniques

A Clean Slate (Reset and Normalize.css)

555

https://necolas.github.io/normalize.css/

CSS reset Normalize.css

FIGURE 19-6.   The difference between CSS reset (left) and Normalize.css (right).
(Credit: screenshot of a Codepen created by Zach Wolf.)

IMAGE REPLACEMENT TECHNIQUES

Before web fonts were a viable option, we needed to use an image anytime we
wanted text in a font fancier than Times or Helvetica. Fortunately, that is no
longer the case, but every now and then, it may still be necessary to replace a
text element with an image in a way that is still accessible to screen readers.
One common scenario is using a stylized logo in place of a company name
in a heading (see Note).

Removing the text altogether and replacing it with an img element is a bad
idea because the text content is gone forever. The solution is to use a CSS-
based image replacement technique that uses the image as a background in
the element, then shifts the text out of the way so that it is not rendered on
the page. Visual browsers see the background image, while the text content
stays in the file for the benefit of search engines, screen readers, and other
assistive devices. Everybody wins!

Many image replacement techniques have been developed over the years (see
Note), but the most popular is the Phark technique created by Mike Rundle. It
uses a large negative indent to move the text off to the left of the visible page.

In the example in FIGURE 19-7, I use the Phark technique to display the
Jenware logo in place of the h1 “Jenware” text in the HTML source. The
markup is simple:

<h1 id="logo">Jenware</h1>

NOTE

Before going through the effort of an
image replacement technique, consider
whether the alt text in an img element
is all you need. In the case of a logo, the
alt text could represent the company
name should the image of the logo not
be seen. Frankly, the logo example in this
section could probably be handled that
way. That said, there may be instances
in which you need to replace an actual
string of text with an image, in which
case an image replacement technique
might be a good thing to have in your
CSS toolbox.

Part III. CSS for Presentation

Image Replacement Techniques

556

The style rule is as follows:

#logo {
 width: 450px;
 height: 80px;
 background: url(jenware.png) no-repeat;
 text-indent: -9999px;
}

What users see:

What is actually happening:

Jenware

text-indent: -9999px;

Browser window
The h1 text content is pushed way o� to
the le�, outside the browser window.

FIGURE 19-7.   The Phark image replacement technique hides the HTML text by
pushing it out of the visible element box with a large negative text indent so only the
background image displays.

There are a few things of note here. First, the h1 element displays as a block
by default, so we can just specify its width and height to match the dimen-
sions of the image used as a background. The text-indent property pushes
the word Jenware over to the left by 9,999 pixels. This requires the browser to
render a very wide element box, but the performance hit is minimal.

The downside to any image replacement approach is that it means an extra
request to the server for every image used. It can also be more work creating
graphics every time a heading changes. Again, before you reach for an image
replacement, consider whether a web font or inline image with alt text may
do the trick. In the next section, we’ll look at a way to curb unnecessary server
requests.

CSS SPRITES

When I talked about performance back in Chapter 3, Some Big Concepts You
Need to Know, I noted that you can improve site performance by reducing
the number of requests your page makes to the server (a.k.a. HTTP requests).
One strategy for reducing the number of image requests is to combine all
your little images into one big image file so that only one image gets request-
ed. The large image that contains multiple images is known as a sprite, a term
coined by the early computer graphic and video game industry. That image

NOTE

You can view a gallery of old techniques
at “The Image Replacement Museum,”
assembled by Marie Mosley (css-tricks.
com/the-image-replacement-museum/).

19. More CSS Techniques

CSS Sprites

557

gets positioned in the element via the background-position property in such
a way that only the relevant portion of it is visible. An example should make
this clear.

If I want to show a collection of six social media icons on my page, I can turn
those six graphics into one sprite and reduce the number of HTTP requests
accordingly (FIGURE 19-8). You can see in the figure that the icons have been
stacked into one tall graphic (social.png). This example also uses an image
replacement technique so the text for each link is still available to screen
readers.

background-position: 0, 0;

background-position: 0, -40px;
social.png

The separate icons in this panel are contained on one sprite
image (social.png) that is postioned in each a element.

FIGURE 19-8.   Replacing separate graphic files with one sprite image cuts down on
the number of HTTP requests to the server and improves site performance.

THE MARKUP

 Twitter
 Facebook
 Google+
 LinkedIn
 Dropbox
 Pinterest

THE STYLES

.hide {
 text-indent: 100%;
 white-space: nowrap;
 overflow: hidden;
}

Part III. CSS for Presentation

CSS Sprites

558

li a {
 display: block;
 width: 40px;
 height: 40px;
 background-image: url(social.png);
}
li a.twitter { background-position: 0 0; }
li a.fb { background-position: 0 -40px; }
li a.gplus { background-position: 0 -80px; }
li a.linkedin { background-position: 0 -120px; }
li a.dropbox { background-position: 0 -160px; }
li a.pinterest { background-position: 0 -200px; }

In the markup, each item has two class values. The hide class is used as a
selector to apply an image replacement technique. This one was developed by
Scott Kellum and uses a left indent of 100% to move the text out of sight. The
other class name is particular to each social network link. The unique class
values allow us to position the sprite appropriately for each link.

At the top of the style sheet you’ll see the image replacement styles. Notice
in the next rule that all link (a) elements use social.png as their background
image.

Finally, we get to the styles that do the heavy lifting. The background-posi-
tion is set differently for each link in the list, and the visible element box
works like a little window revealing a portion of the background image. The
first item has the value 0,0; this positions the top-left corner of the image in
the top-left corner of the element box. To make the Facebook icon visible,
we need to move the image up by 40 pixels, so its vertical position is set to
–40px (its horizontal position of 0 is fine). The image is moved up by 40-pixel
increments for each link, revealing image areas farther and farther down the
sprite stack.

In this example, all of the icons have the same dimensions and stack up
nicely, but that is not a requirement. You can combine images with a variety
of dimensions on one sprite. The process of setting a size for the element and
then lining the sprite up perfectly with the background-position property is
the same.

CSS FEATURE DETECTION

One of the dominant challenges facing web designers and developers is deal-
ing with uneven browser support. Useful new CSS properties emerge regu-
larly, but it takes a while for them find their way into browsers, and it takes
much longer for the old non-supporting browsers to fade into extinction.

Fortunately, we have a few methods for checking to see if a browser supports
a particular feature so we can take advantage of cutting-edge CSS while also
providing thoughtful fallbacks for non-supporting browsers. Using feature
detection with fallbacks sure beats the alternatives of a) not using a property

Sprite Generators
There are many online tools that
create sprite image files and their
respective styles automatically.
Just upload or drag-and-drop your
individual graphics to the page, and
the tool does the rest. One that I
find easy to use is CSSsprites (css.
spritegen.com). If you need your
sprites to be responsive, use their
responsive version at responsive-css.
spritegen.com.

19. More CSS Techniques

CSS Feature Detection

559

until it is universally supported, or b) using it and letting users with non-
supporting browsers have a broken experience.

We’ll look at two ways to detect whether a feature is supported: feature que-
ries with a new CSS at-rule (@supports) and a JavaScript-based tool called
Modernizr.

CSS Feature Queries (@supports)
The CSS3 Conditional Rules Module Level 3 (www.w3.org/TR/css3-conditional/)
introduces the @supports rule for checking browser support of a particular
property and value declaration. Commonly referred to as a feature query, it
works like a media query in that it runs a test, and if the browser passes that
test, it applies the styles contained in the brackets of the at-rule. The syntax
for @supports is as follows:

@supports (property: value) {
 /* Style rules for supporting browsers here */
}

Note that the query is for an entire declaration, both the property and a
value. It was designed this way because sometimes you may test for a new
property (such as initial-letter), and sometimes you may need to test for
a new value for an existing property. For example, the display property is
universally supported, but the newer grid keyword value is not. Note also
that there is no semicolon at the end.

Let’s look at a more specific example. I think it would be cool to use the new
mix-blend-mode property to make a photo of watermelons blend in with the
background (similar to a Layer Blending Mode in Photoshop). As of this
writing, it is supported only in Firefox, Chrome, and Safari. As a fallback for
non-supporting browsers, I create a somewhat less interesting blended effect
using the opacity property (FIGURE 19-9).

Original image (no e�ect) As seen on browsers that support
mix-blend-mode: multiply;

Fallback for non-supporting browsers
(opacity: .5)

FIGURE 19-9.   The original image (left), the result using the mix-blend-mode
property with multiply keyword (center), and the fallback style using opacity (right).

Part III. CSS for Presentation

CSS Feature Detection

560

As of this writing, the best practice is to specify the fallback styles first, and
then override them with a set of styles targeted at browsers that support the
feature. Note that I also need to set the opacity back to 1 so it overrides my
fallback style.

THE MARKUP

<div id="container">
 <figure class="blend">

 </figure>
</div>

THE STYLES

#container {
 background-color: #96D4E7;
 padding: 5em;
}
.blend img { 	
 opacity: .5;
}
@supports (mix-blend-mode: multiply) {
 .blend img {
 mix-blend-mode: multiply;
 opacity: 1;
 }
}

Operators
The @supports rule can be used with three operators to refine the feature test:
not, and, and or:

not

The not operator lets us test for when a specific property/value pair is
not supported.

@supports not (mix-blend-mode: hue) {
 /* styles for non-supporting browsers */
}

Someday, this will be useful for supplying fallback styles, but with the current
browser support, you risk non-supporting browsers skipping everything in
the @supports rules, including the fallbacks. That’s why I used the override
method in the previous example.

and

Applies styles only when all of the conditions in a series of two or more
are met.

@supports (border-radius: 10em) and (shape-outside: circle()) {
 /* styles that apply only when the browser supports
 shape-outside AND border-radius */
}

WARNING

The browser has to report for itself
whether it has implemented the feature.
If the feature is implemented in a buggy
way, you may still encounter problems
even when using feature queries.

19. More CSS Techniques

CSS Feature Detection

561

or

Use the or operator to apply styles when any of a series of conditions are
met. This one is particularly useful for vendor-prefixed properties.

@supports (-webkit-transform: rotate(10deg)) or
 (-ms-transform: rotate(10deg)) or
 (transform: rotate(10deg))
 /* transform styles */
}

Browser support
Feature queries began working in Chrome, Firefox, and Opera back in 2013,
and they are supported by every version of Microsoft Edge. Safari added
support in version 9 in 2015. Unfortunately, no version of Internet Explorer
supports feature queries, which leaves a big hole in the support picture until
those old browsers go away.

Non-supporting browsers use your fallback design, so make sure that it is
usable at the very least. Beware, however, of browsers that do not support
@supports but may support newer CSS features that you might be inclined
to test. Flexbox is a great example. Safari 8 recognizes the Flexbox proper-
ties, but does not recognize @supports, so if all of your Flexbox layout rules
are tucked away inside a feature query, Safari 8 won’t see them. That’s why
feature queries aren’t the best tool for detecting Flexbox or any property that
has better support than @supports itself. Grid Layout, on the other hand, is
a great place to put feature queries to work because every browser that sup-
ports display: grid also supports @supports. Again, CanIUse.com is a good
resource for comparing support.

Pros and cons
Feature queries are an exciting new tool for web development. They allow us
to take advantage of new CSS properties sooner in a way that doesn’t rely on
JavaScript (we’ll look at Modernizr, a JavaScript solution, next). Downloading
and running a script (even a small one) is slower than using CSS alone.

On the downside, limited browser support (for now) means @supports is not
as far-reaching as Modernizr. However, if it accomplishes your goals, it should
be your first choice. Fortunately, the browser environment will only continue
to improve, giving CSS feature queries the advantage over a script-based solu-
tion in the long run.

So what is this “Modernizr” you’re hearing so much about?

Modernizr
Modernizr is a lightweight JavaScript library that runs behind the scenes and
tests for a long list of HTML5 and CSS3 features when the page is loaded in

AU T H O R I N G T I P

Not every new feature needs a
feature query. Some features, such as
border-radius, simply don’t render
on non-supporting browsers, and
that is just fine.

Part III. CSS for Presentation

CSS Feature Detection

562

the browser. For each feature it tests, it stores the result (supports/doesn’t sup-
port) in a JavaScript object that can be accessed with scripts and optionally as
a class name in the html root element that can be used in CSS selectors. I’m
going to focus on the latter CSS method.

How it works
When Modernizr runs, it appends the html element with a class name for
each feature it detects. For example, if it is configured to test for Flexbox,
when it runs on a browser that does support Flexbox, it adds the .flexbox
class name to the html element:

<html class="js flexbox">

If the feature is not supported, it adds the feature name with a .no- prefix.
On a non-supporting browser, the Flexbox test would be reported like this:

<html class="js no-flexbox">

With the class name in place on the root element, everything on the page
becomes part of that class. We can use the class name as part of a selector to
provide different sets of styles depending on feature support:

.flexbox nav {
 /* flexbox styles for the nav element here */
}

.no-flexbox nav {
 /* fallback styles for the nav element here */
}

This example is short and sweet for demonstration purposes. Typically, you’ll
use Modernizr to test for many features, and the html tag gets filled with a
long list of class names.

How to use it
First, you need to download the Modernizr.js script. Go to Modernizr.com and
find the Download link. From there you can customize the script to contain
just the HTML and CSS features you want to test, a nice way to keep the file
size of the script down. Click the Build button, and you will be given several
options for how it can be saved. A simple click on Download saves the script
in a .js file on your computer.

Once you have your script, put it in the directory with the rest of the files for
your project. Add it to the head of your HTML document, before any linked
style sheets or other scripts that need to use it:

<head>
 <script src="modernizr-custom.js"></script>
 <!--other scripts and style sheets -->
</head>

Modernizr is a lightweight
JavaScript library that
tests for a variety of
HTML and CSS features.

19. More CSS Techniques

CSS Feature Detection

563

Finally, open your HTML document and assign the no-js class name to the
html element.

<html class="no-js">

Modernizr will change it to js once it detects that the browser supports
JavaScript. If JavaScript (and therefore Modernizr) fails to run, you will not
know whether or not features are supported.

Pros and cons
Modernizr is one of the most popular tools in web developers’ arsenals
because it allows us to design for particular features rather than whole
browsers. It is easy to use, and the Modernizr site has thorough and clear
documentation to help you along. Because it’s JavaScript, it works on the vast
majority of browsers. The flip side to that, however, is that because it relies
on JavaScript, you can’t be 100% certain that it will run, which is its main
disadvantage. It will also be slightly slower than using CSS alone for feature
detection.

WRAPPING UP STYLE SHEETS

That concludes our whirlwind tour of Cascading Style Sheets. You’ve come a
long way since styling an h1 and a p back in Chapter 11, Introducing Cascading
Style Sheets. By now, you should be comfortable formatting text and even
doing basic page layout. While CSS is easy to learn, it takes a lot of time and
practice to master. If you get stuck, you will find that there are many resources
online to help you find the answers you need. The nice thing about CSS is
that you can start with just the basics and then build on that knowledge as
you gain proficiency in your web development skills.

In the next chapter, I’ll introduce you to tools that web developers use to
improve their workflow, including tools for writing CSS more efficiently and
optimizing the results. But if you’re feeling overwhelmed with CSS properties,
you can breathe a sigh of relief. We’re done!

TEST YOURSELF

See how well you picked up the CSS techniques in this chapter with these
questions. As you may have guessed, the answers are available in Appendix A.

1.	 What is the purpose of a CSS reset?

a.	 To override browser defaults

b.	 To make presentation more predictable across browsers

c.	 To prevent elements from inheriting unexpected styles

d.	 All of the above

Part III. CSS for Presentation

Wrapping Up Style Sheets

564

2.	 What is the purpose of a CSS sprite?

a.	 To improve site performance

b.	 To use small images in place of large ones, reducing file size

c.	 To reduce the number of HTTP requests

d.	 a and c

e.	 All of the above

3.	 What is the purpose of an image replacement technique?

a.	 To achieve really big text indents

b.	 To use a decorative graphic in place of text

c.	 To remove the text from the document and replace it with a decora-
tive image

d.	 To maintain the semantic content of the document

e.	 b and d

f.	 All of the above

4.	 Name two approaches to aligning form controls and their respective
labels without tables. A general description will do here.

5.	 Match the style rules with their respective tables in FIGURE 19-10.

a.	 table { border-collapse: collapse;}
 td { border: 2px black solid; }

b.	 table { border-collapse: separate; }
 td { border: 2px black solid; }

c.	 table {
 border-collapse: separate;
 border-spacing: 2px 12px; }
 td { border: 2px black solid; }

d.	 table {
 border-collapse: separate;
 border-spacing: 5px;
 border: 2px black solid; }
 td { background-color: #99f; }

e.	 table {
 border-collapse: separate;
   border-spacing: 5px; }
 td { background-color: #99f;
 border: 2px black solid; }

1

4

2

3

5

FIGURE 19-10.   Match these tables
with the code examples in Question 5.

19. More CSS Techniques

Test Yourself

565

6.	 Using Modernizr to test for border-radius, say whether the div will dis-
play with rounded corners based on the following generated class results:

.border-radius div {
 border: 1px solid green;
 border-radius: .5em;
}

a.	 <html class="js .no-border-radius">

b.	 <html class="js .border-radius">

c.	 <html class="no-js">

7.	 As of this writing, what advantage does Modernizr have over CSS feature
detection? What long-term advantage will CSS feature detection have over
Modernizr?

CSS REVIEW: TABLE PROPERTIES

The following is a summary of the properties covered in this chapter.

Property Description

border-collapse Specifies whether borders between cells are separate or
collapsed

border-spacing Denotes the space between cells set to render as separate

caption-side Specifies the position of a table caption relative to the table
(top or bottom)

empty-cells Specifies whether borders and backgrounds should render
for empty cells

table-layout Specifies how table widths are calculated

Part III. CSS for Presentation

CSS Review: Table Properties

566

IN THIS CHAPTER

Introduction to the
command line

CSS preprocessors and
postprocessors

Build tools and task runners

Git version control

In the exercises in this book, you’ve been writing static HTML pages with
embedded style sheets, saving them, and opening them in your browser.
Although that is a perfectly valid approach, it is likely not the way you would
work if you were doing web development for a living. I figure if you are learn-
ing web design and development, you should be familiar with how things are
done in a professional environment.

This chapter introduces you to some of the tools used by web developers to
make their work easier and their code more robust:

•	 CSS processors for writing CSS more efficiently and optimizing the result-
ing code so it works across all browsers

•	 Build tools that automate the sorts of repetitive tasks you encounter when
producing code

•	 Git, a version control program that keeps track of your previous versions
and makes it easy for teams to work together on the same code

What these advanced tools have in common is that they are generally used
with a command-line interface (CLI). So, before we look at specific tools, let’s
first get up to speed with the command line.

GETTING COZY WITH THE
COMMAND LINE

You probably use a computer with a graphical user Interface (GUI), with
icons that stand for files and folders, pull-down menus full of options, and
intuitive actions like dragging files from folder to folder or into the trash.

Computer users in the ’60s and ’70s didn’t have that luxury. The only way
to get a computer to perform a task was to type in a command. Despite our

MODERN WEB
DEVELOPMENT
TOOLS

20
CHAPTER

567

fancy GUIs, typing commands into a command-line terminal is far from
obsolete. In fact, the more experienced you become at web development, the
more likely it is you’ll dip into the command line for certain tasks. If you are
already a programmer, the command line will be nothing new.

The command line is still popular for a number of reasons. First, it is use-
ful for accessing remote computers, and developers often need to access and
manage files on remote web servers. In addition, it is easier to write a program
for the command line than a standalone application with a GUI, so many of
the best tools for optimizing our workflow exist as command-line programs
only. A lot of those tools can be used together in a pipeline for accomplishing
complex tasks.

The time- and sanity-saving benefits are powerful incentives to take on the
command line. Trust me: if you can learn all those elements and style proper-
ties, you can get used to typing a few commands.

The Command-Line Terminal
The program that interprets the commands you type is called a shell (visual
interfaces are also technically a shell; they’re just fancier). Every Mac and
Linux machine comes installed with Terminal, which uses a shell program
called bash. On macOS, you will find the Terminal program in Applications →
Utilities (FIGURE 20-1).

FIGURE 20-1.   The Terminal window in macOS.

Windows users have a few more hoops to jump through to get set up. The
default command-line tool on Windows is Command Prompt (most eas-
ily accessed with Search), which can perform many of the functions you
may want to do as a developer; however, it does not use bash. Because so
many tools use bash, it is better to install a bash-based shell emulator like

Part III. CSS for Presentation

Getting Cozy with the Command Line

568

Cygwin (cygwin.com) or cmder (cmder.net). If you use Windows 10, it is rec-
ommended that you install a Linux environment on your machine by using
Windows Subsystem (msdn.microsoft.com/en-us/commandline/wsl/about) or
Ubuntu, available in the Windows store (www.microsoft.com/en-us/store/p/
ubuntu/9nblggh4msv6).

Getting Started with Commands
When you launch a Terminal window, the first thing you see is a command-
line prompt, which is a string of characters that indicates the computer is
ready to receive your command:

$: _

The dollar sign is common, but you may see another symbol in your terminal
program (see Terminal Tip). The underscore in this example stands for the
cursor position, which may appear as a little rectangle or a flashing line.

The complete prompt that I see in Terminal begins with my computer’s name
(“JensAir”) and an indication of the working directory—that is, the directory
the shell is currently looking at. In GUI terms, the working directory is the
folder you are “in.” In this example, the tilde (~) indicates that I am looking at
my root User directory. The “jen” before the prompt character is my username.
In future examples, I will abbreviate the prompt to simply $:.

JensAir:~ jen$: _

When you see the prompt, type in a command, and hit Enter. The computer
executes the command and gives you a new prompt when it is finished. It is
very no-nonsense about it. For some commands, there may be feedback or
information displayed before the next prompt appears. Sometimes everything
happens behind the scenes, and all you see is a fresh prompt.

When you’re learning about the command line, it is common to start with
the built-in commands for navigating the file system, tasks typically handled
by the Finder on the Mac and My Computer on Windows. Because they are
fairly intuitive, that’s where I’m going to start my simple command-line les-
son as well.

A nice little utility to try as a beginner is pwd (for “print working directory”),
which displays the complete path of the working (current) directory. To use it,
simply type pwd after the prompt. It’s a good one to try first because you can’t
break anything with it, but for seasoned users, it is useful for figuring out
exactly where you’ve landed if you’re disoriented. The forward slash indicates
that this path starts at the root directory for the entire computer.

$: pwd
/Users/jen

Here’s another easy (and low-risk!) example. Typing the ls command at the
prompt returns a list of the files and directories in the working directory

T E R M I N A L T I P

You can customize the appearance
of Terminal by selecting Preferences
→ Profile and changing the settings.
If you want to keep yourself amused,
you can change the prompt character
from $ to the character of your
choice, including an emoji (osxdaily.
com/2013/04/08/add-emoji-
command-line-bash-prompt/).

NOTE

Your user directory is the default root
directory in Terminal and is represented
by a tilde (~) in the prompt, as we saw in
the previous example.

20. Modern Web Development Tools

Getting Cozy with the Command Line

569

(/Users/jen). You can compare it to the Finder view of the same folder in
FIGURE 20-2. They are two ways of looking at the same thing, just as direc-
tory and folder are two terms for the same thing depending on your view.

JensAir:~ jen$ ls
Applications	 Downloads	 Movies	 Public
Desktop	 Dropbox	 Music	 Sites
Documents	 Library	 Pictures
JensAir:~ jen$

FIGURE 20-2.   Finder view of the jen home folder.

Some utilities, like pwd, require only their name at the prompt to run, but it is
more common that you’ll need to provide additional information in the form
of flags and arguments. A flag changes how the utility operates, like an option
or a preference. It follows the command name and is indicated by a single
or double dash (-). In many cases, flags can be abbreviated to just their first
letter because they are used in context with a particular utility. For example,
I can modify the ls utility with the –l flag, which instructs the computer to
display my directory contents in “long” format, including permission settings
and creation dates:

JensAir:~ jen$ ls -l
total 0
drwxr-xr-x 5 jen staff 170 Jul 8 2016 Applications
drwx------ 57 jen staff 1938 Sep 11 09:47 Desktop
drwx------ 26 jen staff 884 May 18 11:34 Documents
drwx------+ 151 jen staff 5134 Sep 3 15:47 Downloads
drwx------@ 48 jen staff 1632 Aug 16 16:34 Dropbox
drwx------@ 72 jen staff 2448 Jul 15 11:21 Library
drwx------ 22 jen staff 748 Oct 6 2016 Movies
drwx------ 12 jen staff 408 Sep 29 2016 Music
drwx------ 14 jen staff 476 Oct 13 2016 Pictures
drwxr-xr-x 6 jen staff 204 May 6 2015 Public
drwxr-xr-x 11 jen staff 374 Jul 10 2016 Sites
JensAir:~ jen$

Dotfiles
There are some files on your
computer that are kept hidden in
the Finder view. These files, known
as dotfiles, start with (you guessed
it) a dot, and they tend to handle
information that is intended to
function behind the scenes. If you
type ls -a (-a is shorthand for “all”),
you can reveal the dotfiles lurking in
a directory. In macOS, it is possible
to configure Finder to show dotfiles
as well, but for most users’ purposes,
hidden is a good thing.

Part III. CSS for Presentation

Getting Cozy with the Command Line

570

An argument provides the specific information required for a particular
function. For example, if I want to change to another directory, I type cd (for
“change directory”) as well as the name of the directory I want to go to (see
Mac Terminal Tip). To make my Dropbox directory the new working directory,
I type this:

JensAir:~ jen$: cd Dropbox

After I hit Enter, my prompt changes to JensAir:Dropbox jen$, indicating
that I am now in the Dropbox directory. If I entered ls now, I’d get a list of
the files and folders contained in the Dropbox folder (definitely way too long
to show here).

To go up a level, and get back to my home user directory (~), I can use the
Unix shorthand for “go up a level”: .. (remember that from your URL path
lesson?). The returned prompt shows I’m back at my root directory (~).

JensAir:Dropbox jen$ cd ..
JensAir:~ jen$

Some other useful file-manipulation commands include mv (moves files and
folders), cp (copies files), and mkdir (creates a new empty directory). The rm
command removes a file or folder in the working directory. Be careful with
this command, however, because it doesn’t just move files to the Trash; it
removes them from your computer entirely (see the “A Word of Caution” note).

Another handy command is man (short for manual), which displays docu-
mentation for any command you pass to it. For example, man ls shows a
description of the ls (list) command and all of its available flags. Some man
pages are long. To move down in the scroll, hitting the Return key moves you
down one line at a time. To move down a page at a time, hit fn+down arrow
on a Mac or Shift+Page Down on Linux. To go back up a page, it’s fn+up
arrow or Shift+Page Up, respectively. Finally, to quit out of the man page, type
q to return to the prompt.

Learning More
Not surprisingly, these commands are just the tip of the tip of the iceberg
when it comes to command-line utilities. For a complete list of commands
that can be used with bash, see “An A–Z Index of the Bash Command Line for
Linux” at ss64.com/bash/. You’ll pick these up on an as-needed basis, so don’t
get overwhelmed. In addition, as you start installing and using new tools like
the ones listed in this chapter, you’ll gradually learn the commands, flags, and
arguments for those too. All part of a day’s work!

Clearly, I don’t have the space (and if I’m being honest, the experience) to
write a comprehensive tutorial on the command line in this chapter, but you
will find books and plenty of tutorials online that can teach you. I found
Michael Hartl’s tutorial “Learn Enough Command Line to Be Dangerous”

M AC T E R M I N A L T I P

On the Mac, Terminal is well
connected to Finder. If you need to
enter a pathname to a directory or a
file, you can drag the icon for that file
or folder from Finder to Terminal, and
it will fill in the pathname for you.

CO M M A N D - L I N E T I P

Typing cd followed by a space
always takes you back to your home
directory.

A WORD OF CAUTION

The command line allows you to muck
around in critical parts of your computer
that your GUI graciously protects from
you. It’s best not to type in a command if
you don’t know exactly what it does and
how it works. Make a complete backup
of your computer before you start play-
ing around with command line so you
have the peace of mind that your files
are still available if something goes hor-
ribly wrong.

20. Modern Web Development Tools

Getting Cozy with the Command Line

571

to be thorough and accessible if you are starting from square one (www.
learnenough.com/command-line-tutorial#sec-basics). I also recommend the
series of tutorials from Envato Tuts+, “The Command Line for Web Design”
(webdesign.tutsplus.com/series/the-command-line-for-web-design--cms-777). If
you enjoy video tutorials, try the “Command Line for Non-Techies” course
by Remy Sharp (terminal.training).

Now that you have a basic familiarity with the command line, let’s look at
tools you might use it for, beginning with tools for writing and optimizing CSS.

CSS POWER TOOLS (PROCESSORS)

I know that you are just getting used to writing CSS, but I would be negligent
if I didn’t introduce you to some advanced CSS power tools that have become
central to the professional web developer workflow. They fall into two general
categories:

•	 Languages built on top of CSS that employ time-saving syntax charac-
teristics of traditional programming languages. These are traditionally
known as preprocessors. The most popular preprocessors as of this writ-
ing are Sass, LESS, and Stylus. When you write your styles in one of these
languages, you have to use a program or script to convert the resulting file
into a standard CSS document that browsers can understand.

•	 CSS optimization tools take your clean, standard CSS and make it even
better by improving cross-browser consistency, reducing file size for bet-
ter performance, and enhancing many other tasks. Tools that optimize
browser-ready CSS are commonly known as postprocessors.

Before you get too comfortable with the terms preprocessor and postprocessor,
you should know that the distinction is not exactly clear-cut. Preprocessors
have always been able to do some of the optimization tasks that postproces-
sors are good for, and postprocessors are starting to allow some functions
typically found in preprocessors. The lines are blurring, so some folks refer to
all of these tools simply as CSS processors, including souped-up special syn-
taxes for authoring as well as CSS optimizers. Many CSS processor functions
are also built in to third-party tools such as CodeKit (codekitapp.com, Mac
only) for one-stop shopping. I think it is beneficial for you to be familiar with
the traditional terms as they are still in widespread use, and I’m going to use
them here for the sake of simplicity.

Introduction to Preprocessors (Especially Sass)
Preprocessors consist of an authoring syntax and a program that translates
(or compiles, to use the proper term) files written in that syntax to plain old
CSS files that browsers can use (FIGURE 20-3). For example, in Sass, you write

Here’s the Thing About
Development Tools
Be aware that the development tool
landscape is ever-shifting. Tools come
and go in rapid-fire fashion, with
the whole development community
jumping on one framework
bandwagon, then moving on to the
next new thing. It’s difficult to write
about specific tools in a book that
has to last a couple of years. I have
made an effort to present the most
established and stable tools as of
early 2018, but you should know that
there are many more niche tools out
there, and by the time you read this,
some new tool may be all the rage.
As you read this chapter, focus on
the functions the tools perform, start
with the ones mentioned here when
you’re ready, and keep your ear to the
ground for newer options.

NOTE

Hat tips to Stefan Baumgartner, whose
article “Deconfusing Pre- and Post-
Processing” (medium.com/@ddprrt/
deconfusing-pre-and-post-processing-
d68e3bd078a3) helped me sort out
all this CSS processing stuff, and David
Clark for his clarifying article “It’s Time
for Everyone to Learn About PostCSS”
(davidtheclark.com/its-time-for-every-
one-to-learn-about-postcss/).

Part III. CSS for Presentation

CSS Power Tools (Processors)

572

https://webdesign.tutsplus.com/series/the-command-line-for-web-design--cms-777
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3
https://medium.com/@ddprrt/deconfusing-pre-and-post-processing-d68e3bd078a3

in the Sass syntax language and save your files with the .scss suffix, indicating
it is in that language and not a CSS file. The Sass program, originally writ-
ten in the Ruby language (see Technical Note), converts the SCSS syntax to
standard CSS syntax and saves the resulting file with the .css suffix. LESS and
Stylus work the same way, but they use JavaScript for conversion. All of these
tools are installed and run via the command line.

Extended
(scripting-like)

CSS syntax

.scss

.less

.styl
.css

Sass Ruby gem or Node Sass (JS)
less.js

stylus.js

COMPILER
(converter)

Standard
CSS

FIGURE 20-3.   A simplified view of the role of a preprocessor.

By far, the most popular preprocessor is Sass (“Syntactically awesome style
sheets”), created by Hampton Catlin and Nathan Weizenbaum, who were
tired of the repetitiveness of normal CSS. Their new syntax allowed CSS
authors to use the type of shortcuts typical in scripting. Originally, it used
an indented, bracket-free syntax (which is still an option), but a later release
known as SCSS (for “Sassy CSS”) is based on the bracketed ({ }) CSS format
we know and love. In fact, a valid CSS document would also be a valid SCSS
document. This makes it much easier to get started with Sass, because it is
familiar, and you can use just a little bit of Sass in style sheets written the way
you’ve learned in this book.

I’m going to show you a few examples of Sass syntax to give you the general
idea. When you are ready to take on learning Sass, a great first step is Dan
Cederholm’s book Sass for Web Designers (A Book Apart). I’ve listed addi-
tional resources at the end of the section. In the meantime, let’s look at three
of the most popular Sass features: nesting, variables, and mixins.

Nesting
Let’s say you have an HTML document with a nav element that contains an
unordered list for several menu options. Sass lets you nest the style rules for
the nav, ul, and li elements to reflect the structure of the HTML markup.
That alleviates the need to type out the selectors multiple times—the Sass
compiler does that for you. The following example shows nested styles as they
can be written in Sass syntax:

T EC H N I CA L N OT E

The Sass project wrote a newer
version in C++ that can be used with
other languages. Most developers
now compile .scss files with Node
Sass because it integrates more
smoothly into a workflow with other
Node.js tools.

Sass lets you nest styles
to match the structure of
the markup.

20. Modern Web Development Tools

CSS Power Tools (Processors)

573

nav {
 margin: 1em 2em;

 ul {
 list-style: none;
 padding: 0;
 margin: 0;

 li {
 display: block;
 width: 6em;
 height: 2em;
 }
 }
}

When Sass converts the SCSS file to standard CSS, it compiles to this:

nav {
 margin: 1em 2em;
}

nav ul {
 list-style: none;
 padding: 0;
 margin: 0;
}

nav ul li {
 display: block;
 width: 6em;
 height: 2em;
}

Variables
A variable is a value you can define once, and then use multiple times through-
out the style sheet. For example, O’Reilly uses the same shade of red repeat-
edly on its site, so their developers could create a variable named “oreilly-red”
and use the variable name for color values. That way, if they needed to tweak
the shade later, they need to change the variable value (the actual RGB color)
only in one place. Here’s what setting up and using a variable looks like in Sass:

$oreilly-red: #900;

a {
 border-color: $oreilly-red;
}

When it compiles to standard CSS, the variable value is plugged into the place
where it is called:

a {
 border-color: #900;
}

The advantage of using a variable is that you can change the value in one
place instead of searching and replacing through the whole document. When
teams use variable names, it also helps keep styles consistent across the site.

A variable is a value that
you define once and reuse
throughout the style
sheet.

Part III. CSS for Presentation

CSS Power Tools (Processors)

574

Mixins
Sass allows you to reuse whole sets of styles by using a convention called
mixins. The following example saves a combination of background, color,
and border styles as a mixin named “special.” To apply that combination of
styles, @include it in the declaration and call it by name:

@mixin special {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
}
a.nav {
 @include special;
}
a.nav: hover {
 @include special;
 border: 1px yellow solid;
}

When compiled, the final CSS looks like this:

a.nav {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
}
a.nav: hover {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
 border: 1px yellow solid;
}

Notice that the hover state has a second border declaration that overrides
the values in the mixin, and that’s just fine. Mixins are a popular solution for
dealing with vendor prefixes. Here is a mixin for border-radius that includes
an argument (a placeholder for a value you provide indicated with a $):

@mixin rounded($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 border-radius: $radius;
}

When including the mixin in a style rule, provide the value for $radius, and
it gets plugged into each instance in the declarations:

aside {
 @include rounded(.5em);
 background: #f2f5d5;
}

This compiles to the following:

aside {
 -webkit-border-radius: .5em;
 -moz-border-radius: .5em;
 border-radius: .5em;
 background: #f2f5d5;
}

Mixins are sets of rules
that can be reused.

20. Modern Web Development Tools

CSS Power Tools (Processors)

575

Building a mixin around fill-in-the-blank arguments makes them reusable
and even shareable. Many developers create their own mixin libraries to use
on multiple projects. You can also take advantage of existing mixin libraries
in tools like Compass (an open source CSS authoring framework at compass-
style.org) or Bourbon (bourbon.io). By the time you read this, there may be
others, so search around to see what’s available.

Sass resources
Nesting, variables, and mixins are only a tiny fraction of what Sass can do. It
can handle math operations, “darken” and “lighten” colors mathematically on
the fly, and process if/else statements, just to name a few features.

Once you get some practice under your belt and feel that you are ready to
take your style sheets to the next level, explore some of these Sass and LESS
articles and resources:

•	 The Sass site (sass-lang.com)

•	 “Getting Started with Sass,” by David Demaree (alistapart.com/articles/
getting-started-with-sass)

•	 “An Introduction to LESS, and LESS Vs. Sass,” by Jeremy Hixon (www.
smashingmagazine.com/2011/09/an-introduction-to-less-and-comparison-
to-sass/)

Introduction to Postprocessors (Mostly PostCSS)
As I mentioned earlier, postprocessors are scripts that optimize standard
CSS code to make it better (FIGURE 20-4). “Better” usually means consistent
and bug-free browser support, but there are hundreds of postprocessing
scripts that do a wide variety of cool things. We’ll look at some examples in
a moment.

.css.css PostCSS
Rework

Pleeease

Optimization
tools

Standard
CSS

Better
CSS

FIGURE 20-4.   Postprocessors optimize existing, standard CSS files.

LESS and Stylus
Sass is the most widely used
preprocessor, but it’s not the only
game in town for nesting, variables,
mixins, and more.

LESS (lesscss.org) is another CSS
extension with scripting-like abilities.
It is very similar to Sass, but it lacks
advanced programming logic features
(such as if/else statements) and
has minor differences in syntax.
For example, variables in LESS are
indicated by the @ symbol instead of
$. The other major difference is that
a LESS file is processed into regular
CSS with JavaScript (less.js) instead of
Ruby. Note that compiling a LESS file
into CSS is processor-intensive and
would bog down a browser. For that
reason, it is best to do the conversion
to CSS before sending it to the server.
LESS offers a very active developer
community and the “LESShat” mixin
library.

Stylus (stylus-lang.com) is the
relative new kid on the preprocessor
block. It combines the logic features
of Sass with the convenience of a
JavaScript-based compiler (stylus.
js). It also offers the most flexible
syntax: you can include as much CSS
“punctuation” (brackets, colons, and
semicolons) as you like, prepend
variables with a $ or not, and treat
mixin names like regular properties.
Developers who use Stylus like how
easy it is to write and compile. Nib
and Axis are two mixin libraries
available for Stylus.

When you are ready to take your
CSS authoring to the next level,
you can give each of these a try.
The one you choose is a matter of
personal preference; however, if
you are working on a professional
development team, one may be
chosen for you.

Part III. CSS for Presentation

CSS Power Tools (Processors)

576

The poster child for postprocessing is Autoprefixer, which takes the CSS
styles you write, scans them for properties that require vendor prefixes,
and then inserts the prefixed properties automatically. What a time- and
headache-saver!

Back in Chapter 16, CSS Layout with Flexbox and Grid, we used Autoprefixer
via a web page interface (autoprefixer.github.io) to generate the required pre-
fixes. Although the web page is handy (especially while you are learning), it
is more common for postprocessors to be implemented with a task runner
such as Grunt or Gulp. We’ll take a quick look at them later in this chapter.

As of this writing, the postprocessing scene is dominated by PostCSS (post-
css.org). PostCSS is “a tool for transforming CSS with JavaScript” created by
Andrey Sitnik, who also created Autoprefixer. PostCSS is both a JavaScript-
based program (a Node.js module, to be precise) and an ecosystem of com-
munity-created plug-ins that solve all sorts of CSS problems.

PostCSS parses the CSS (or a CSS-like syntax such as Sass or LESS), analyzes
its structure, and makes the resulting “tree” available for plug-ins to manipu-
late the code (see Note).

This open API makes it easy for anyone to create a PostCSS plug-in, and as a
result, there are literally hundreds of plug-ins created and shared by develop-
ers (see them at www.postcss.parts). They range from the life-saving to the
esoteric, but because it is a modular system, you can pick and choose just the
tools that you find useful or even create your own. Here are just a few:

•	 Stylelint (stylelint.io) checks your CSS file for syntax errors (a process
called linting) and redundancies.

•	 CSSNext (cssnext.io) allows you to use future CSS Level 4 features today
by generating fallbacks that work across browsers that haven’t imple-
mented those features yet.

•	 PreCSS (github.com/jonathantneal/precss) is a bundle of plug-ins that lets
you write Sass-like syntax (loops, conditionals, variables, mixins, and so
on) and converts it to standard CSS. This is an example of a postproces-
sor being used to aid authoring, which is where the line between pre- and
postprocessing gets blurred.

•	 Fixie (github.com/tivac/fixie) inserts hacks that are required to make
effects work in old versions of Internet Explorer (“Fix-IE,” get it?).

•	 Color format converters translate alternative color formats (such as HWB,
HCL, and hex + alpha channel) to standard RGB or hexadecimal.

•	 The Pixrem plug-in converts rem units to pixels for non-supporting
browsers.

•	 The List-selectors plug-in lists and categorizes the selectors you’ve used
in your style sheet for code review. It is an example of a plug-in that does
not alter your file but gives you useful information about it.

NOTE

The “tree” is formally known as the
Abstract Syntax Tree (AST) and is the API
for PostCSS plug-ins.

20. Modern Web Development Tools

CSS Power Tools (Processors)

577

http://www.postcss.parts

From that short list, you can probably see why postprocessors have become
so popular. They free you up to write CSS with the syntax you want, taking
advantage of cutting-edge properties and values, but with the peace of mind
that everything will work well across browsers. They also eliminate the need
to know about every browser idiosyncrasy, past and present, in order to do
your job. It’s definitely worth knowing about even if you aren’t quite ready to
take it on right away. Check out these resources for more information:

•	 Drew Minns’ article “PostCSS: A Comprehensive Introduction” for
Smashing Magazine
(www.smashingmagazine.com/2015/12/introduction-to-postcss/)

•	 The Envato Tuts+ tutorial “PostCSS Deep Dive”
(webdesign.tutsplus.com/series/postcss-deep-dive--cms-889)

BUILD TOOLS (GRUNT AND GULP)

In the world of software, a build process is required to test source code and
compile it into a piece of executable software. As websites evolved from a
collection of static HTML files to complex JavaScript-reliant applications,
often generated from templates, build tools have become integral to the web
development workflow as well. Some web build tools like Grunt and Gulp
are commonly referred to as task runners. You use them to define and run
various tasks (anything you might do manually from the command line) on
your working HTML, JavaScript, CSS, and image files to get them ready to
publish.

Automation
You can automate your tasks, too, so they happen in the background without
your needing to type commands. To do this, you tell the build tool to “watch”
your files and folders for changes. When a change is detected, it triggers the
relevant tasks to run automatically as you’ve configured them.

Once you have the task runner configured and set to watch your files, you can
go about your business writing CSS, and all that command-line stuff happens
for you without ever touching a terminal appplication. Here’s how that might
look. Imagine making a change to your Sass file and saving it. Grunt instantly
sees that the .scss file has changed, automatically converts it to .css (see Note),
and then reloads the browser to reflect your change.

Some Common Tasks
The previous section on CSS processors should have given you an idea of
some things that would be nice to automate. Allow me to list several more to
give you a solid view of the ways task runners make your job easier.

NOTE

PostCSS is not the only postprocessor out
there. Other frameworks include Rework
(github.com/reworkcss/rework) and
Pleeease (pleeease.io), but they are not
as full featured. By the time you read this,
there may be many more. So goes the
world of web development tools.

NOTE

There is a Grunt plug-in for converting
SCSS files, but it is not as full featured
as Ruby.

Part III. CSS for Presentation

Build Tools (Grunt and Gulp)

578

•	 Concatenation. It is common for web teams to divide style sheets and
scripts into small, specialized chunks of .css and .js. When it’s time to
publish, however, you want as few calls to the server as possible for per-
formance purposes, so those little chunks get concatenated (put together)
into master files.

•	 Compression and “minification.” Another way to improve performance
is to make your files as small as possible by removing unnecessary
spaces and line returns. Build tools can compress your CSS and minify
JavaScript.

•	 Checking your HTML, CSS, and JavaScript for errors (linting).

•	 Optimizing images with tools that squeeze down the file size of all the
images in a directory.

•	 Help committing or pushing changes to a version control repository (Git).

•	 Refreshing your browser to reflect whatever changes you just made to a
file (LiveReload plug-in).

•	 Building final HTML files from templates and content data (see the side-
bar “Building Sites with Data and Templates”).

•	 Running CSS pre- and postprocessors.

Grunt and Gulp
The first and most established web build tool is Grunt (gruntjs.com), presum-
ably named for handling all of the “grunt work” for you. It is a JavaScript tool
built on the open source Node.js framework, and you operate it using the
command line. The compelling thing about Grunt is that the development
community has created literally thousands of plug-ins that perform just
about any task you can think of. Just download one, configure it, and start
using it. You do not have to be a JavaScript master to get started.

Another popular option is Gulp (gulpjs.com), which has the advantage of
running a little faster but also requires more technical knowledge than
Grunt because you configure it with actual JS code. Other contenders as of
this writing are Webpack (quite popular!), Brunch, Browserify, and Broccoli.
New tools with amusing names pop up on a regular basis. Some developers
simply use Node.js-based scripts without using a task-runner program as a
go-between. The point is, there are plenty of options.

You will find many online tutorials for learning how to download and con-
figure the build tool of your choice when you are ready to automate your
workflow. I hope that I have made you aware of the possibilities, and when
a job interviewer mentions Grunt and Gulp, you’ll know they aren’t just suf-
fering from indigestion.

20. Modern Web Development Tools

Build Tools (Grunt and Gulp)

579

Building Sites with Data and Templates
Throughout this book, we’ve been writing the HTML for our
pages manually, wrapping tags around content elements in a
logical source order. All of the content for the page is contained
right there in the .html document. Of course, it is completely
acceptable to build whole sites out of static web pages such as
these, but in the real world—where sites might have thousands
of pages with content tailored to individual users—a more
robust solution is required.

It is more common these days to use a template system or
framework to generate web pages from content stored as data.
The templates use regular HTML markup, so everything you’ve
learned so far will serve you well, but instead of specific content
between the tags, special data markers are placed to pull in
content from a database or data file.

There are a vast number of tool options for site generation, all
of which are well beyond the scope of this book. However, as
usual, I’d like to give you a taste of what the templating process
might look like.

I once worked on a site that used a template tool called
Handlebars (handlebarsjs.com) to pull content in from data
files written in the YAML (www.yaml.org/start.html) language.
These are just two options for doing this sort of thing. Let’s look
at a small example of how a template and data were used to
assemble the web content shown in FIGURE 20-5.

FIGURE 20-5.   A small portion of a speaker web page that
was created with Handlebars and YAML.

Here is a small snippet of the data as it appears in the YAML
(.yml) file:

speaker--name: "Jennifer Robbins"
speaker--description: "Designer, Author, ARTIFACT
Co-founder"
speaker--photo: "/img/speakers/jennifer-robbins.
jpg"
#HTML
speaker--biography: |
 <p>Jennifer has been designing for the web since
1993 when she worked on the first commercial web
site, GNN, from O'Reilly Media. Since then she has

gone on to write several books on web design for
O'Reilly, including <i>Web Design in a Nutshell
</i>, <i>Learning Web Design</i>, and the <i>HTML5
Pocket Reference</i>. More recently, Jennifer's
days are filled with organizing the ARTIFACT
Conference. …</p>
speaker--links:
 - link--label: "Website"
 link--target: "http://www.jenville.com"
 link--title: "jenville.com"
 - link--label: "Twitter"
 link--target: "http://www.twitter.com/jenville"
 link--title: "@jenville"

And here is the markup from the Handlebars template
document, speakers.hbs. (I’ve edited it slightly for brevity.) If
you look at the highlighted code, you see that instead of actual
content, there are the same data labels used in the YAML file
between curly brackets. (If you turn a curly bracket on its side, it
looks like a handlebar mustache, thus the name!). Notice also
that the template has markup for one label/link pair, but it loops
through and displays all the speaker--links in the data file:

<div class="layout--container">
<div class="speaker--photo-container">

</div>
<article class="speaker--content">
 <div class="speaker--biography">
 {{{page-data.speaker--biography}}}
 </div>
 <ul class="speaker--links">
 {{#each page-data.speaker--links}}
 <li class="speaker--link-item">{{link--label}}:
<a href="http://{{link--target}}" class="speaker--
link">{{link--title}}
 {{/each}}

</article>
</div

This is just one example of how templates cut down on
redundancy in markup. The Handlebars site (handlebarsjs.com)
has a nice description of semantic templates right on the home
page if you’d like more information on how it works.

Of course, browsers have no idea what to do with these file
formats, so before the site can be published, it needs to be built
or assembled, merging all the data into the template modules
and all the modules into whole web pages. That is the job of
scripts and build tools like the ones introduced in this section.
Hopefully, this brief example gives you an inkling of how
generated sites work.

Part III. CSS for Presentation

Build Tools (Grunt and Gulp)

580

VERSION CONTROL WITH
GIT AND GITHUB

If you’ve done any sort of work on a computer, you’ve probably used some
sort of system for keeping track of the versions of your work. You might have
come up with a system of naming drafts until you get to the “final” version
(and the “final-final” version, and the “final-final-no-really” version, and so
on). You might take advantage of macOS’s Time Machine to save versions
that you can go back to in an emergency. Or you might have used one of the
professional version control systems that have been employed by teams for
decades.

The king of version control systems (VCS) for web development is a robust
program called Git (git-scm.com). At this point, knowing your way around
Git is a requirement if you are working on a team and is a good skill to have
even for your own projects.

In this section, I’ll introduce you to the terminology and mental models that
will make it easier to get started with Git. Teaching all the ins and outs of how
to configure and use Git from the command line is a job for another book
and online tutorials (I list a few at the end of the section), but I wish someone
had explained the difference between a “branch” and a “fork” to me when I
was starting out, so that’s what I’ll do for you.

We’ll begin with a basic distinction: Git is the version control program that
you run on your computer; GitHub (github.com) is a service that hosts Git
projects, either free or for a fee. You interact with GitHub by using Git, either
from the command line, with the user interface on the GitHub website, or
using a standalone application that offers a GUI interface for Git commands.
This was not obvious to me at first, and I want it to be clear to you from the
get-go.

GitHub and services like it (see Note) are mainly web-based wrappers around
Git, offering features like issue tracking, a code review tool, and a web UI for
browsing files and history. They are convenient, but keep in mind that you
can also set up Git on your own server and share it with your team members
with no third-party service like GitHub involved at all.

Why Use Git
There are several advantages to making Git (and GitHub) part of your work-
flow. First, you can easily roll back to an earlier version of your project if
problems show up down the line. Because every change you make is logged
and described, it helps you determine at which point things might have gone
wrong.

Git also makes it easy to collaborate on a shared code source. You may tightly
collaborate with one or more developers on a private project, merging all of

F U N FACT

Git was created by Linus Torvalds, the
creator of the Linux operating system,
when he needed a way to allow an
enormous community to contribute
to the Linux project.

NOTE

Beanstalk (beanstalkapp.com), GitLab
(gitlab.com), and Bitbucket (bitbucket.
org) are other Git hosting services aimed
at enterprise-scale projects. GitLab has
a free option for public projects, similar
to GitHub, and because it is open source,
you can host it yourself.

20. Modern Web Development Tools

Version Control with Git and GitHub

581

your changes into a primary copy. As an added benefit, the sharing process is
a way to get an extra set of eyes on your work before it is incorporated. You
may also encourage loose collaboration on a public project by welcoming
contributions of people you don’t even know in a way that is safe and man-
aged. Git is a favorite tool for this type of collaboration on all sorts of open
source projects.

Getting up to speed with GitHub in particular is important because it’s what
everyone is using. If your project is public (accessible to anyone), the hosting
is free. For private and commercial projects, GitHub charges a fee for host-
ing. In addition to hosting projects, they provide collaboration tools such as
issue tracking. You may have already found that some of the links to tools I
mentioned in this book go to GitHub repositories. I want you to know what
you can do when you get there.

How Git Works
Git keeps a copy of every revision of your files and folders as you go along,
with every change (called a commit) logged in with a unique ID (generated
by Git), a message (written by you) describing the change, and other meta-
data. All of those versions and the commit log are stored in a repository, often
referred to as a “repo.”

Once you have Git installed on your computer, every time you create a new
repository or clone an existing one, Git adds a directory and files representing
the repo’s metadata alongside other files in the project’s folder. Once the Git
repository is initialized, you can commit changes and take advantage of the
“time machine” feature if you need to get back to an earlier version. In this
way, Git is a good tool for a solo workflow.

More likely you’ll be working with a team of other folks on a project. In that
case, a hub model is used in which there is an official repository on a central
server that each team member makes a local copy of to work on. Each team
member works on their own machine, committing to their local repo, and at
logical intervals, uploads their work back to the central repository.

That’s what makes Git a distributed version control system compared to
other systems, like SVN, that require you to commit every change directly to
the server. With Git, you can work locally and offline.

The first part of mastering Git is mastering its vocabulary. Let’s run through
some of the terminology that will come in handy when you’re learning Git
and the GitHub service. FIGURE 20-6 is a simplified diagram that should
help you visualize how the parts fit together.

Git is a favorite tool for
collaboration on open
source projects.

Part III. CSS for Presentation

Version Control with Git and GitHub

582

Workspace
(working
directory)

Index
(staging area)

Local
repository

Remote
repository

add commit push

pull

FIGURE 20-6.   Visualization of Git structure.

Working directory
The working directory is the directory of files on your computer in which
you do your actual work. Your working copy of a file is the one that you can
make changes to, or to put it another way, it’s the file you can open from the
hard drive by using Finder or My Computer.

Repository
Your local Git repository lives alongside the files in your working directory.
It contains copies, or snapshots, of all the files in a single project at every
step in its development, although these are kept hidden. It also contains the
metadata stored with each change. There may also be a central repository for
the project that lives on a remote server like GitHub.

Commit
A commit is the smallest unit of Git interaction and the bulk of what you will
do with Git. Git uses “commit” as a verb and a noun. You may “save” your
working document frequently as you work, but you commit (v.) a change
when you want to deliberately add that version to the repository. Usually you
commit at a logical pause in the workflow—for example, when you’ve fixed
a bug or finished changing a set of styles.

When you commit, Git records the state of all the project files and assigns
metadata to the change, including the username, email, date and time, a
unique multidigit ID number (see the “Hashes” sidebar), and a message that
describes the change. These stored records are referred to as commits (n.). A
commit is like a snapshot of your entire repository—every file it contains—
at the moment in time you made the commit.

Commits are additive, so even when you delete a file, Git adds a commit to
the stack. The list of commits is available for your perusal at any time. On
GitHub, use the History button to see the list of commits for a file or folder.

The level of granularity in commits allows you to view the repository (proj-
ect) at any state it’s ever been at, ever. You never lose work, even as you proceed

Git Visualization
Resources
Need more help picturing how all
these pieces and commands work
together? Try these visualization
resources:

•	 The Git Cheatsheet from NDP
Software provides a thorough
interactive mapping of how various
Git commands correspond to the
workspace and local and remote
repositories. It’s worth checking
out at ndpsoftware.com/git-
cheatsheet.html#loc=workspace;.

•	 A Visual Git Reference (marklodato.
github.io/visual-git-guide/index-
en.html) is a collection of diagrams
that demonstrate most common
Git commands.

•	 “Understanding the GitHub Flow”
(guides.github.com/introduction/
flow/) explains a typical workflow
in GitHub.

Hashes
The unique ID that Git generates for
each commit is technically called
a SHA-1 hash, more affectionately
known as simply a hash in the
developer world. It is a 40-character
string written in hexadecimal (0–9
and A–F are used), so the odds
of having a duplicate hash are
astronomical. It is common to use
short hashes on projects instead of
the full 40 characters. For example,
on GitHub, short hashes are seven
characters long, and you’ll see them
in places like a project’s Commits
page. Even with just seven characters,
the chances of collision are tiny.

20. Modern Web Development Tools

Version Control with Git and GitHub

583

further and further. It’s a great safety net. Indirectly this also means that
there’s nothing you can do with Git that you can’t undo—you can’t ever get
yourself into an impossible situation.

Staging
Before you can commit a change, you first have to make Git aware of the file
(or to track it, to use the proper term). This is called staging the file, accom-
plished by adding it to Git. In the command line, it’s git add filename, but
other tools may provide an Add button to stage files. This creates a local index
of files that you intend to commit to your local repository but haven’t been
committed yet. It is worth noting that you need to “add” any file that you’ve
changed, not just new files, before committing them. Staging as a concept
may take a little while to get used to at first because it isn’t especially intuitive.

Branch
A branch is a sequential series of commits, also sometimes referred to as a
stack of commits. The most recent commit on any given branch is the head
(see Note). You can also think of a branch as a thread of development. Projects
usually have a primary or default branch, typically (although not necessarily)
called master, which is the official version of the project. To work on a branch,
you need to have it checked out.

When working in a branch, at any point you can start a new branch to do a
little work without affecting the source branch. You might start a new branch
to experiment with a new feature, or to do some debugging, or to play around
with presentation. Branches are often used for small, specific tasks like that,
but you can create a new branch for any purpose you want.

For example, if you are working on “master,” but want to fix a bug, you can
create a new branch off master and give the branch a new descriptive name,
like “bugfix.” You can think of the bugfix branch as a copy of master at the
point at which bugfix was created (FIGURE 20-7), although that’s not exactly
what is happening under the hood.

To work on the bugfix branch, you first need to check it out (git checkout
bugfix), and then you can go about your business of making changes, saving
them, adding them to Git, and committing them. Eventually, the new branch
ends up with a commit history that is different from the source branch.

commit1 commit2 commit3 commit5

commit3 commit4

new branch merge

BUGFIX

MASTER

FIGURE 20-7.   Creating and merging a new branch.

NOTE

There are exceptions, as it is possible to
reorder commits; however, it is almost
always true that the head commit is also
the most recent.

Part III. CSS for Presentation

Version Control with Git and GitHub

584

When you are done working on your new branch, you can merge the changes
you made back into the source branch and delete the branch. If you don’t
like what’s happening with the new branch, delete it without merging, and
no one’s the wiser.

Merging
Merging is Git’s killer feature for sharing code. You can merge commits from
one branch into another (such as all of the commits on a feature branch
into master) or you might merge different versions of the same branch that
are on different computers. According to the Git documentation, merging
“incorporates changes from the named commits (since the time their histo-
ries diverged from the current branch) into the current branch.” Put another
way, Git sees merging as “joining two histories together,” so it useful to think
of merging happening at the commit level.

Git attempts to merge each commit, one by one, into the target branch. If
only one branch has changed, the other branch can simply fast-forward to
catch up with the changes. If both branches have commits that are not in the
other branch—that is, if both branches have changes—Git walks through
each of those commits and, on a line-by-line basis, attempts to merge the dif-
ferences. Git actually changes the code inside files for you automatically so
you don’t have to hunt for what’s changed.

However, if Git finds conflicts, such as two different changes made to the
same line of code, it gives you a report of the conflicts instead of trying to
change the code itself. Conflicts are pointed out in the source files between
======= and <<<<<<< characters (FIGURE 20-8). When conflicts arise,
a real person needs to read through the list and manually edit the file by
keeping the intended change and deleting the other. Once the conflicts are
resolved, the files need to be added and committed again.

FIGURE 20-8.   GitHub conflict report.

20. Modern Web Development Tools

Version Control with Git and GitHub

585

Remotes
All of the features we’ve looked at so far (commits, branches, merges) can be
done on your local computer, but it is far more common to use Git with one
or more remote repositories. The remote repo could be on another computer
within your organization, but it is likely to be hosted on a remote server like
GitHub. Coordinating with a remote repository opens up a few other key Git
features.

Clone
Cloning is making an exact replica of a repository and everything it contains.
It’s common to clone a repo from a remote server to your own computer,
but it is also possible to clone to another directory locally. If you are getting
started on an existing project, making a clone of project’s repo is a logical
first step.

Push/pull
If you are working with a remote repository, you will no doubt need to upload
and download your changes to the server. The process of moving data from
your local repository to a remote repository is known as pushing. When you
push commits to the remote, they are automatically merged with the current
version on the server. To update your local version with the version that is on
the server, you pull it, which retrieves the metadata about the changes and
applies the changes to your working files. You can think of pushing and pull-
ing as the remote version of merging.

It is a best practice to pull the remote master frequently to keep your own
copy up-to-date. That helps eliminate conflicts, particularly if there are a lot
of other people working on the code. Many GUI Git tools provide a Sync
button that pulls and pushes in one go.

Fork
You may hear talk of “forking” a repo on GitHub. Forking makes a copy of
a GitHub repository to your GitHub account so you have your own copy to
play around with. Having the repo in your account is not the same as having
a working copy on your computer, so once you’ve forked it, you need to clone
(copy) it to your own computer (FIGURE 20-9).

People fork projects for all sorts of reasons (see Note). You might just want to
have a look under the hood. You may want to iterate and turn it into some-
thing new. You may want to contribute to that project in the form of pull
requests. In any scenario, forking is a safeguard for repository owners so they
can make the project available to the public while also controlling what gets
merged back into it.

G I T T I P

Always pull before you push to avoid
conflicts.

NOTE

Forking is most often used for contribut-
ing to an open source project. For com-
mercial or personal projects, you gener-
ally commit directly to the repository
shared by your team.

Part III. CSS for Presentation

Version Control with Git and GitHub

586

George’s Repo
github.com/george/app-idea

Jen’s Repo
github.com/jen/app-idea

Jen’s
Computer
3. Update
4. Commit

1. Fork

2. Clone5. Push

6. Pull request

FIGURE 20-9.   Once you fork a repository on GitHub, you need to clone it to get a
local working copy. (Based on a diagram by Kevin Markham.)

Pull request
It is important to keep in mind that your forked copy is no longer directly
connected to the original repository it was forked from. You will not be able
to push to the original. If you come up with something you think is valuable
to the original project, you can do what is called a pull request—that is, ask-
ing the owner to pull your changes into the original master.

You can also do a pull request for a repo that you have access to, not just one
that you’ve forked. For example, if you’ve made a branch off the main project
branch, you can do a pull request to get your team to review what you’ve
done and give you feedback before merging your changes back in. In fact,
pull requests may be used earlier in the process to start a discussion about a
possible feature.

Git Tools and Resources
Most Git users will tell you that the best way to use Git is with the command
line. As David Demaree says in his book Git for Humans, “Git’s command-
line interface is its native tongue.” He recommends typing commands and
seeing what happens as the best way to learn Git. The downside of the com-
mand line, of course, is that you need to learn all the Git commands and
perhaps also tackle the command-line interface hurdle itself. The following
resources will help get you up to speed:

•	 Git for Humans by David Demaree (A Book Apart) is a great place to start
learning Git via the command line (or however you intend to use it!).

•	 Pro Git by Scott Chacon and Ben Straub (Apress) is available free online
(git-scm.com/book/en/v2).

20. Modern Web Development Tools

Version Control with Git and GitHub

587

•	 “Git Cheat Sheet” from GitHub is a list of the most common commands
(services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf).

•	 The Git Reference Manual on the official Git site provides a thorough
listing of commands and features (git-scm.com/docs).

There are also several graphical Git applications available for those who
prefer icons, buttons, and menus for interacting with their repositories, and
there’s no shame in it. I know many developers who use a graphical app and
Terminal side by-side, choosing the tool that most easily allows them to do
the task they need to do. If you feel more comfortable getting started with a
graphical Git tool, I recommend the following:

•	 GitHub Desktop (from GitHub) is free and available for Mac and
Windows (desktop.github.com).

•	 Git Tower 2 (Mac and Windows) costs money, but it is more powerful
and offers a thoughtfully designed interface, including visualizations of
branches and merges (www.git-tower.com).

Many code editors have built-in Git support or Git/GitHub plug-ins as well.

If you go to the GitHub.com site, they do a good job of walking you through
the setup process with easy-to-follow tutorials. You can set up an account and
gain some basic GitHub skills in a matter of minutes. Their online documen-
tation is top-notch, and they even have a YouTube channel with video tutori-
als aimed at beginners (www.youtube.com/githubguides).

And speaking of GitHub, for a good introduction to the ins and outs of
the GitHub interface, I recommend the book Introducing GitHub: A Non-
Technical Guide by Brent Beer (O’Reilly).

When you are ready to get started using Git for version control, you’ll find all
the support you need.

CONCLUSION

This concludes the web developer “power tools” chapter. We began with an
introduction to the command line, and looked at some strong incentives for
learning to use it. You can write CSS faster and make it more cross-browser
compliant. You can take advantage of task runners and build tools that auto-
mate a lot of the repetitive grunt work you come across as a developer. Finally,
although the command line is not required to use Git, it may make learning
Git easier and will give you repo superpowers as you begin to master it.

We’ve talked a fair amount about JavaScript in this chapter. In Part IV, I hand
over the keyboard to JavaScript master Mat Marquis, who will introduce you
to JavaScript and its syntax (also somehow managing to make it very enter-
taining). I’ll be back in Part V to talk about web images.

Part III. CSS for Presentation

Conclusion

588

http://www.youtube.com/githubguides

TEST YOURSELF

It’s time to test your knowledge of the topics introduced in this chapter. See
Appendix A for the answers.

1.	 In the computer world, what is a shell?

2.	 Why might you want to learn to use the command line?

a.	 It is a good way to manipulate files and folders on your own computer.

b.	 It is a good way to manipulate files and folders on a remote server.

c.	 It is required for many useful web development tools.

d.	 All of the above.

3.	 What is a prompt?

4.	 What would you expect to happen if you type mkdir newsite after a
command-line prompt?

5.	 Name the two primary functions of CSS processors.

6.	 Name one advantage of learning Sass.

7.	 Name two features you might use a CSS postprocessor for.

8.	 What is a task (in relation to a build tool/task runner)?

20. Modern Web Development Tools

Test Yourself

589

9.	 What does “Grunt is watching this file” mean?

10.	 What makes Git a distributed version control system?

11.	 In Git, what does it mean if a file is staged?

12.	 What is the difference between a branch and a fork?

13.	 Why should you pull before you push?

14.	 What is a pull request?

Part III. CSS for Presentation

Test Yourself

590

IV
JAVASCRIPT FOR BEHAVIOR

IN THIS CHAPTER

What JavaScript is and isn’t

Variables and arrays

if/else statements and loops

Native and custom functions

Browser objects

Event handlers

by Mat Marquis

In this chapter, I’m going to introduce you to JavaScript. Now, it’s possible
you’ve just recoiled a little bit, and I understand. We’re into full-blown “pro-
gramming language” territory now, and that can be a little intimidating. I
promise, it’s not so bad!

We’ll start by going over what JavaScript is—and what it isn’t—and discuss
some of the ways it is used. The majority of the chapter is made up of an
introduction to JavaScript syntax—variables, functions, operators, loops,
stuff like that. Will you be coding by the end of the chapter? Probably not.
But you will have a good head start toward understanding what’s going on
in a script when you see one. I’ll finish up with a look at some of the ways
you can manipulate the browser window and tie scripts to user actions such
as clicking or submitting a form.

WHAT IS JAVASCRIPT?

If you’ve made it this far in the book, you no doubt already know that
JavaScript is a programming language that adds interactivity and custom
behaviors to our sites. It is a client-side scripting language, which means it
runs on the user’s machine and not on the server, as other web programming
languages such as PHP and Ruby do. That means JavaScript (and the way we
use it) is reliant on the browser’s capabilities and settings. It may not even be
available at all, either because the user has chosen to turn it off or because the
device doesn’t support it, which good developers keep in mind and plan for.
JavaScript is also what is known as a dynamic and loosely typed program-
ming language. Don’t sweat this description too much; I’ll explain what all
that means later.

INTRODUCTION TO
JAVASCRIPT

21
CHAPTER

593

First, I want to establish that JavaScript is kind of misunderstood.

What It Isn’t
Right off the bat, the name is pretty confusing. Despite its name, JavaScript
has nothing to do with Java. It was created by Brendan Eich at Netscape in
1995 and originally named “LiveScript.” But Java was all the rage around that
time, so for the sake of marketing, “LiveScript” became “JavaScript.” Or just
“JS,” if you want to sound as cool as one possibly can while talking about
JavaScript.

JS also has something of a bad reputation. For a while it was synonymous
with all sorts of unscrupulous internet shenanigans—unwanted redirects,
obnoxious pop-up windows, and a host of nebulous “security vulnerabili-
ties,” just to name a few. There was a time when JavaScript allowed less repu-
table developers to do all these things (and worse), but modern browsers have
largely caught on to the darker side of JavaScript development and locked it
down. We shouldn’t fault JavaScript itself for that era, though. As the not-so-
old cliché goes, “with great power comes great responsibility.” JavaScript has
always allowed developers a tremendous amount of control over how pages
are rendered and how our browsers behave, and it’s up to us to use that con-
trol in responsible ways.

What It Is
Now we know what JavaScript isn’t: it isn’t related to Java, and it isn’t a
mustachioed villain lurking within your browser, wringing its hands and
waiting to alert you to “hot singles in your area.” Let’s talk more about what
JavaScript is.

JavaScript is a lightweight but incredibly powerful scripting language. We
most frequently encounter it through our browsers, but JavaScript has snuck
into everything from native applications to PDFs to ebooks. Even web servers
themselves can be powered by JavaScript.

As a dynamic programming language, JavaScript doesn’t need to be run
through any form of compiler that interprets our human-readable code into
something the browser can understand. The browser effectively reads the
code the same way we do and interprets it on the fly.

JavaScript is also loosely typed. All this means is that we don’t necessarily
have to tell JavaScript what a variable is. If we’re setting a variable to a value
of 5, we don’t have to programmatically specify that variable as a number;
that is, 5 is a number, and JavaScript recognizes it as such.

Now, you don’t necessarily need to memorize these terms to get started writ-
ing JS, mind you—to be honest, I didn’t. This is just to introduce you to a

NOTE

JavaScript was standardized in 1996 by
the European Computer Manufacturers
Association (ECMA), which is why you
sometimes hear it called ECMAScript.

Part IV. JavaScript for Behavior

What Is JavaScript?

594

few of the terms you’ll hear often while you’re learning JavaScript, and they’ll
start making more and more sense as you go along. This is also to provide
you with conversation material for your next cocktail party! “Oh, me? Well,
I’ve been really into loosely typed dynamic scripting languages lately.” People
will just nod silently at you, which I think means you’re doing well conversa-
tionally. I don’t go to a lot of cocktail parties.

What JavaScript Can Do
Most commonly we’ll encounter JavaScript as a way to add interactivity to a
page. Whereas the “structural” layer of a page is our HTML markup, and the
“presentational” layer of a page is made up of CSS, the third “behavioral” layer
is made up of our JavaScript. All of the elements, attributes, and text on a web
page can be accessed by scripts using the DOM (Document Object Model),
which we’ll be looking at in Chapter 22, Using JavaScript. We can also write
scripts that react to user input, altering either the contents of the page, the
CSS styles, or the browser’s behavior on the fly.

You’ve likely seen this in action if you’ve ever attempted to register for a web-
site, entered a username, and immediately received feedback that the user-
name you’ve entered is already taken by someone else (FIGURE 21-1). The red
border around the text input and the appearance of the “sorry, this username
is already in use” message are examples of JavaScript altering the contents of
the page. Blocking the form submission is an example of JavaScript altering
the browser’s default behavior. Ultimately, verifying this information is a job
for the server—but JavaScript allows the website to make that request and
offer immediate feedback without the need for a page reload.

FIGURE 21-1.   JavaScript inserts a message, alters styles to make errors apparent,
and blocks the form from submitting. It can also detect whether the email entries
match, but the username would more likely be detected by a program on the server.

21. Introduction to JavaScript

What Is JavaScript?

595

In short, JavaScript allows you to create highly responsive interfaces that
improve the user experience and provide dynamic functionality, without
waiting for the server to load up a new page. For example, we can use
JavaScript to do any of the following:

•	 Suggest the complete term a user might be entering in a search box as he
types. You can see this in action on Google.com (FIGURE 21-2).

FIGURE 21-2.   Google.com uses JavaScript to automatically complete a search term
as it is typed in.

•	 Request content and information from the server and inject it into the
current document as needed, without reloading the entire page—this is
commonly referred to as “Ajax.”

•	 Show and hide content based on a user clicking a link or heading, to cre-
ate a “collapsible” content area (FIGURE 21-3).

FIGURE 21-3.   JavaScript can be used to reveal and hide portions of content.

•	 Test for browsers’ individual features and capabilities. For example, one
can test for the presence of “touch events,” indicating that the user is inter-
acting with the page through a mobile device’s browser, and add more
touch-friendly styles and interaction methods.

•	 Fill in gaps where a browser’s built-in functionality falls short, or add
some of the features found in newer browsers to older browsers. These
kinds of scripts are usually called shims or polyfills.

•	 Load an image or content in a custom-styled “lightbox”—isolated on
the page with CSS—after a user clicks a thumbnail version of the image
(FIGURE 21-4).

This list is nowhere near exhaustive!

Part IV. JavaScript for Behavior

What Is JavaScript?

596

FIGURE 21-4.   JavaScript can be used to load images into a lightbox-style gallery.

ADDING JAVASCRIPT TO A PAGE

As with CSS, you can embed a script right in a document or keep it in an
external file and link it to the page. Both methods use the script element.

Embedded Script
To embed a script on a page, just add the code as the content of a script
element:

<script>
 … JavaScript code goes here
</script>

External Scripts
The other method uses the src attribute to point to a script file (with a .js
suffix) by its URL. In this case, the script element has no content:

<script src="my_script.js"></script>

The advantage to external scripts is that you can apply the same script to
multiple pages (the same benefit external style sheets offer). The downside,
of course, is that each external script requires an additional HTTP request of
the server, which slows down performance.

NOTE

For documents written in the stricter
XHTML syntax, you must identify the
content of the script element as CDATA
by wrapping the code in the following
wrapper:

<script type="text/javascript">
 // <![CDATA[
 …JavaScript code goes here
 //]]>
</script>

21. Introduction to JavaScript

Adding JavaScript to a Page

597

Script Placement
The script element can go anywhere in the document, but the most com-
mon places for scripts are in the head of the document and at the very end
of the body. It is recommended that you don’t sprinkle them throughout the
document, because they would be difficult to find and maintain.

For most scripts, the end of the document, just before the </body> tag, is the
preferred placement because the browser will be done parsing the document
and its DOM structure:

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 </head>
 <body>
 …contents of page…
 <script src="script.js"></script>
 </body>
</html>

Consequently, that information will be ready and available by the time it gets
to the scripts, and they can execute faster. In addition, the script download
and execution blocks the rendering of the page, so moving the script to the
bottom improves the perceived performance.

However, in some cases, you might want your script to do something before
the body completely loads, so putting it in the head will result in better per-
formance. For example, Modernizr (the feature detection tool discussed in
Chapter 19, More CSS Techniques) recommends its script be placed in the head
so the feature detection tests can be run up front.

THE ANATOMY OF A SCRIPT

There’s a reason why the book JavaScript: The Definitive Guide by David
Flanagan (O’Reilly) is 1,100 pages long. There’s a lot to say about JavaScript!
In this section, we have only a few pages to make you familiar with the basic
building blocks of JavaScript so you can begin to understand scripts when
you encounter them. Many developers have taught themselves to program by
finding existing scripts and adapting them for their own needs. After some
practice, they are ready to start writing their own from scratch. Recognizing
the parts of a script is the first step, so that’s where we’ll start.

Originally, JavaScript’s functionality was mostly limited to crude methods of
interaction with the user. We could use a few of JavaScript’s built-in functions
(FIGURE 21-5) to provide user feedback, such as alert() to push a notifica-
tion to a user, and confirm() to ask a user to approve or decline an action. To
request the user’s input, we were more or less limited to the built-in prompt()
function. Although these methods still have their time and place today, they’re

alert("Hi there");

confirm("I′m gonna do something, okay?");

prompt("What should I do?");

FIGURE 21-5.   Built-in JavaScript
functions: alert() (top), confirm()
(middle), and prompt() (bottom).

Part IV. JavaScript for Behavior

The Anatomy of a Script

598

jarring, obtrusive, and—in common opinion, at least—fairly obnoxious ways
of interacting with users. As JavaScript has evolved over time, we’ve been
afforded much more graceful ways of adding behavior to our pages, creating
a more seamless experience for our users.

In order to take advantage of these interaction methods, we have to first
understand the underlying logic that goes into scripting. These are logic pat-
terns common to all manner of programming languages, although the syntax
may vary. To draw a parallel between programming languages and spoken
languages: although the vocabulary may vary from one language to another,
many grammar patterns are shared by the majority of them.

By the end of this section, you’re going to know about variables, arrays, com-
parison operators, if/else statements, loops, functions, and more. Ready?

The Basics
There are a few common syntactical rules that wind their way though all of
JavaScript.

It is important to know that JavaScript is case-sensitive. A variable named
myVariable, a variable named myvariable, and a variable named MYVariable
will be treated as three different objects.

Also, whitespace such as tabs and spaces is ignored, unless it’s part of a string
of text and enclosed in quotes. All of the character spaces added to scripts
such as the ones in this chapter are for the benefit of humans—they make
reading through the code easier. JavaScript doesn’t see them.

Statements
A script is made up of a series of statements. A statement is a command
that tells the browser what to do. Here is a simple statement that makes the
browser display an alert with the phrase “Thank you”:

alert("Thank you.");

The semicolon at the end of the statement tells JavaScript that it’s the end of
the command, just as a period ends a sentence. According to the JavaScript
standard, a line break will also trigger the end of a command, but it is a best
practice to end each statement with a semicolon.

Comments
JavaScript allows you to leave comments that will be ignored at the time the
script is executed, so you can provide reminders and explanations through-
out your code. This is especially helpful if this code is likely to be edited by
another developer in the future.

JavaScript is case-sensitive.

21. Introduction to JavaScript

The Anatomy of a Script

599

There are two methods of using comments. For single-line comments, use
two slash characters (//) at the beginning of the line. You can put single-line
comments on the same line as a statement, as long as the comment comes
after the statement. It does not need to be closed, as a line break effectively
closes it.

// This is a single-line comment.

Multiple-line comments use the same syntax that you’ve seen in CSS.
Everything within the /* */ characters is ignored by the browser. You can
use this syntax to “comment out” notes and even chunks of the script when
troubleshooting.

/* This is a multiline comment.
Anything between these sets of characters will be
completely ignored when the script is executed.
This form of comment needs to be closed. */

I’ll be using the single-line comment notation to add short explanations to
example code, and we’ll make use of the alert() function we saw earlier
(FIGURE 21-5) so we can quickly view the results of our work.

Variables
If you’re anything like me, the very term “variables” triggers nightmarish
flashbacks to eighth-grade math class. The premise is pretty much the same,
though your teacher doesn’t have a bad comb-over this time around.

A variable is like an information container. You give it a name and then assign
it a value, which can be a number, text string, an element in the DOM, or a
function—anything, really. This gives us a convenient way to reference that
value later by name. The value itself can be modified and reassigned in what-
ever way our scripts’ logic dictates.

The following declaration creates a variable with the name foo and assigns
it the value 5:

var foo = 5;

We start by declaring the variable by using the var keyword. The single
equals sign (=) indicates that we are assigning it a value. Because that’s the
end of our statement, we end the line with a semicolon. Variables can also be
declared without the var keyword, which impacts what part of your script
will have access to the information they contain. We’ll discuss that further in
the section “Variable Scope and the var Keyword” later in this chapter.

You can use anything you like as a variable name, but make sure it’s a name
that will make sense to you later. You wouldn’t want to name a variable some-
thing like data; it should describe the information it contains. In our earlier
very specific example, productName might be a more useful name than foo.
There are a few rules for naming a variable:

A variable is like an
information container.

Part IV. JavaScript for Behavior

The Anatomy of a Script

600

•	 It must start with a letter or an underscore.

•	 It may contain letters, digits, and underscores in any combination.

•	 It may not contain character spaces. As an alternative, use underscores
in place of spaces, or close up the space and use camel case instead (for
example, my_variable or myVariable).

•	 It may not contain special characters (e.g., ! . , / \ + * =).

You can change the value of a variable at any time by redeclaring it anywhere
in your script. Remember: JavaScript is case-sensitive, and so are those vari-
able names.

Data types
The values we assign to variables fall under a few distinct data types:

Undefined

The simplest of these data types is likely undefined. If we declare a vari-
able by giving it a name but no value, that variable contains a value of
undefined.

var foo;
alert(foo); // This will open a dialog containing "undefined".

Odds are you won’t find a lot of use for this right away, but it’s worth
knowing for the sake of troubleshooting some of the errors you’re likely
to encounter early on in your JavaScript career. If a variable has a value
of undefined when it shouldn’t, you may want to double-check that it
has been declared correctly or that there isn’t a typo in the variable name.
(We’ve all been there.)

Null

Similar to undefined, assigning a variable of null (again, case-sensitive)
simply says, “Define this variable, but give it no inherent value.”

var foo = null;
alert(foo); // This will open a dialog containing "null".

Numbers

You can assign variables numeric values.

var foo = 5;
alert(foo); // This will open a dialog containing "5".

The word foo now means the exact same thing as the number 5 as far as
JavaScript is concerned. Because JavaScript is loosely typed, we don’t have
to tell our script to treat the variable foo as the number 5. The variable
behaves the same as the number itself, so you can do things to it that you
would do to any other number by using classic mathematical notation:
+, -, *, and / for plus, minus, multiply, and divide, respectively. In this
example, we use the plus sign (+) to add foo to itself (foo + foo).

21. Introduction to JavaScript

The Anatomy of a Script

601

var foo = 5;
alert(foo + foo); // This will alert "10".

Strings

Another type of data that can be saved to a variable is a string, which is
basically a line of text. Enclosing characters in a set of single or double
quotes indicates that it’s a string, as shown here:

var foo = "five";
alert(foo); // This will alert "five"

The variable foo is now treated exactly the same as the word five. This
applies to any combination of characters: letters, numbers, spaces, and
so on. If the value is wrapped in quotation marks, it will be treated as a
string of text. If we were to wrap the number 5 in quotes and assign it to
a variable, that variable wouldn’t behave as a number; instead, it would
behave as a string of text containing the character “5.”

Earlier we saw the plus sign (+) used to add numbers. When the plus sign
is used with strings, it sticks the strings together (called concatenation)
into one long string, as shown in this example.

var foo = "bye"
alert(foo + foo); // This will alert "byebye"

Notice what the alert returns in the following example when we define
the value 5 in quotation marks, treating it as a string instead of a number:

var foo = "5";
alert(foo + foo); // This will alert "55"

If we concatenate a string and a number, JavaScript will assume that the
number should be treated as a string as well, since the math would be
impossible.

var foo = "five";
var bar = 5;
alert(foo + bar); // This will alert "five5"

Booleans

We can also assign a variable a true or false value. This is called a Boolean
value, and it is the lynchpin for all manner of advanced logic. Boolean val-
ues use the true and false keywords built into JavaScript, so quotation
marks are not necessary.

var foo = true; // The variable "foo" is now true

Just as with numbers, if we were to wrap the preceding value in quotation
marks, we’d be saving the word true to our variable instead of the inherent
value of true (i.e., “not false”).

In a sense, everything in JavaScript has either an inherently true or false
value. For example, null, undefined, 0, and empty strings (" ") are all
inherently false, while every other value is inherently true. These values,
although not identical to the Booleans true and false, are commonly
referred to as being “truthy” and “falsy.” I promise I didn’t make that up.

Part IV. JavaScript for Behavior

The Anatomy of a Script

602

Arrays
An array is a group of multiple values (called members) that can be assigned
to a single variable. The values in an array are said to be indexed, meaning
you can refer to them by number according to the order in which they appear
in the list. The first member is given the index number 0, the second is 1,
and so on, which is why one almost invariably hears us nerds start counting
things at zero—because that’s how JavaScript counts things, and many other
programming languages do the same. We can avoid a lot of future coding
headaches by keeping this in mind.

So, let’s say our script needs all of the variables we defined earlier. We could
define them three times and name them something like foo1, foo2, and so on,
or we can store them in an array, indicated by square brackets ([]).

var foo = [5, "five", "5"];

Now anytime you need to access any of those values, you can grab them from
the single foo array by referencing their index number:

alert(foo[0]); // Alerts "5"

alert(foo[1]); // Alerts "five"

alert(foo[2]); // Also alerts "5"

Comparison Operators
Now that we know how to save values to variables and arrays, the next logi-
cal step is knowing how to compare those values. There is a set of special
characters called comparison operators that evaluate and compare values in
different ways:

== Is equal to

!= Is not equal to

=== Is identical to (equal to and of the same data type)

!== Is not identical to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

There’s a reason all of these definitions read as parts of a statement. In com-
paring values, we’re making an assertion, and the goal is to obtain a result that
is either inherently true or inherently false. When we compare two values,
JavaScript evaluates the statement and gives us back a Boolean value depend-
ing on whether the statement is true or false.

alert(5 == 5); // This will alert "true"

alert(5 != 6); // This will alert "true"

alert(5 < 1); // This will alert "false"

21. Introduction to JavaScript

The Anatomy of a Script

603

Equal versus identical
The tricky part is understanding the difference between “equal to” (==) and
“identical to” (===). We already learned that all of these values fall under a
certain data type. For example, a string of “5” and a number 5 are similar, but
they’re not quite the same thing.

Well, that’s exactly what === is meant to check.

alert("5" == 5); // This will alert "true". They're both "5".

alert("5" === 5);
/* This will alert "false". They're both "5", but they're not the same
data type. */

alert("5" !== 5);
/* This will alert "true", since they're not the same data type. */

Even if you have to read through this part a couple of times, understanding
the difference between “equal” and “identical to” means you’ve already begun
to adopt the special kind of crazy one needs to be a programmer. Welcome!
You’re in good company.

Mathematical operators
The other type of operator is a mathematical operator, which performs math-
ematical functions on numeric values (and, of course, variables that contain
numeric values). We touched briefly on the straightforward mathematical
operators for add (+), subtract (-), multiply (*), and divide (/). There are also
some useful shortcuts you should be aware of:

+= Adds the value to itself

++ Increases the value of a number (or a variable containing a number
value) by 1

-- Decreases the value of a number (or a variable containing a number
value) by 1

if/else statements
if/else statements are how we get JavaScript to ask itself a true/false ques-
tion. They are more or less the foundation for all the advanced logic that can
be written in JavaScript, and they’re about as simple as programming gets. In
fact, they’re almost written in plain English. The structure of a conditional
statement is as follows:

if(true) {
 // Do something.
}

It tells the browser “if this condition is met, then execute the commands listed
between the curly brackets ({ }).” JavaScript doesn’t care about whitespace in

WARNIN G

Be careful not to accidentally use a sin-
gle equals sign, or you’ll be reassigning
the value of the first variable to the value
of the second variable!

Part IV. JavaScript for Behavior

The Anatomy of a Script

604

our code, remember, so the spaces on either side of the (true) are purely
for the sake of more readable code.

Here is a simple example using the array we declared earlier:

var foo = [5, "five", "5"];

if(foo[1] === "five") {
 alert("This is the word five, written in plain English.");
}

Since we’re making a comparison, JavaScript is going to give us a value of
either true or false. The highlighted line of code says “true or false: the value
of the foo variable with an index of 1 is identical to the word ‘five’?”

In this case, the alert would fire because the foo variable with an index of 1
(the second in the list, if you’ll remember) is identical to “five”. It is indeed
true, and the alert fires.

We can also explicitly check if something is false by using the != comparison
operator, which reads as “not equal to.”

if(1 != 2) {
 alert("If you're not seeing this alert, we have bigger problems than
JavaScript.");
 // 1 is never equal to 2, so we should always see this alert.
}

I’m not much good at math, but near as I can tell, 1 will never be equal to 2.
JavaScript says, “That ‘1 is not equal to 2’ line is a true statement, so I’ll run
this code.”

If the statement doesn’t evaluate to true, the code inside the curly brackets
will be skipped over completely:

if(1 == 2) {
 alert("If you're seeing this alert, we have bigger problems than
JavaScript.");
// 1 is not equal to 2, so this code will never run.
}

That covers “if,” but what about “else”?
Lastly—and I promise we’re almost done here—what if we want to do one
thing if something is true and something else if that thing is false? We could
write two if statements, but that’s a little clunky. Instead, we can just say, “else,
do something…else.”

var test = "testing";
if(test == "testing") {
 alert("You haven't changed anything.");
} else {
 alert("You've changed something!");
}

Idiomatic JavaScript
There is an effort in the JavaScript
community to create a style guide
for writing JavaScript code. The
document “Principles of Writing
Consistent, Idiomatic JavaScript”
states the following: “All code in any
code-base should look like a single
person typed it, no matter how many
people contributed.” To achieve
that goal, a group of developers has
written an Idiomatic Style Manifesto
that describes how whitespace, line
breaks, quotation marks, functions,
variables, and more should be written
to achieve “beautiful code.” Learn
more about it at github.com/rwldrn/
idiomatic.js/.

21. Introduction to JavaScript

The Anatomy of a Script

605

Changing the value of the test variable to something else—anything other
than the word testing—will trigger the alert “You’ve changed something!”

EXERCISE 21-1 gives you a chance to write a bit of JavaScript yourself.

Loops
There are cases in which we’ll want to go through every item in an array and
do something with it, but we won’t want to write out the entire list of items
and repeat ourselves a dozen or more times. You are about to learn a tech-
nique of devastating power, readers: loops.

I know. Maybe I overstated how exciting loops can be, but they are incredibly
useful. With what we’ve covered already, we’re getting good at dealing with
single variables, but that can get us only so far. Loops allow us to easily deal
with huge sets of data.

Say we have a form that requires none of the fields to be left blank. If we use
the DOM to fetch every text input on the page, the DOM provides an array
of every text input element. (I’ll tell you more about how the DOM does this
in the next chapter.) We could check every value stored in that array one item
at a time, sure, but that’s a lot of code and a maintenance nightmare. If we use
a loop to check each value, we won’t have to modify our script, regardless of
how many fields are added to or removed from the page. Loops allow us to
act on every item in an array, regardless of that array’s size.

There are several ways to write a loop, but the for method is one of the most
popular. The basic structure of a for loop is as follows:

for(initialize the variable; test the condition; alter the value;) {
 // do something
}

Here’s an example of a for loop in action:

for(var i = 0; i < 2; i++) {
 alert(i); // This loop will trigger three alerts, reading "0",
"1", and "2" respectively.
}

That’s a little dense, so let’s break it down:

for()

First, we’re calling the for() statement, which is built into JavaScript. It
says, “For every time this is true, do this.” Next we need to supply that
statement with some information.

var i = 0;

This creates a new variable, i, with its value set to zero. You can tell it’s a
variable by the single equals sign. More often than not, you’ll see coders
using the letter “i” (short for “index”) as the variable name, but keep in

EXERCISE 21-1. 
English-to-JavaScript
translation

In this quick exercise, you can get
a feel for variables, arrays, and if/
else statements by translating the
statements written in English into lines
of JavaScript code. You can find the
answers in Appendix A.

1.	 Create a variable called friends
and assign it an array with four of
your friends’ names.

2.	 Show the user a dialog that displays
the third name in your list of
friends.

3.	 Create a variable called name and
assign it a string value that is your
first name.

4.	 If the value of name is identical to
Jennifer, show the user a dialog
box that says, “That’s my name too!”

5.	 Create a variable called myVariable
and assign it a number value
between 1 and 10. If myVariable
is greater than five, show the user a
dialog that says “upper.” If not, show
the user a dialog that says “lower.”

Part IV. JavaScript for Behavior

The Anatomy of a Script

606

mind that you could use any variable name in its place. It’s a common
convention, not a rule.

We set that initial value to 0 because we want to stay in the habit of count-
ing from zero up. That’s where JavaScript starts counting, after all.

i <= 2;

With i <= 2;, we’re saying, “for as long as i is less than or equal to 2, keep
on looping.” Since we’re counting from zero, that means the loop will run
three times.

i++

Finally, i++ is shorthand for “every time this loop runs, add one to the
value of i” (++ is one of the mathematical shortcut operators we saw
earlier). Without this step, i would always equal zero, and the loop would
run forever! Fortunately, modern browsers are smart enough not to let
this happen. If one of these three pieces is missing, the loop simply won’t
run at all.

{ script }

Anything inside those curly brackets is executed once for each time the
loop runs, which is three times in this case. That i variable is available for
use in the code the loop executes as well, as we’ll see next.

Let’s go back to the “check each item in an array” example. How would we
write a loop to do that for us?

var items = ["foo", "bar", "baz"]; // First we create an array.
for(var i = 0; i < items.length; i++) {
 alert(items[i]); // This will alert each item in the array.
}

This example differs from our first loop in two key ways:

items.length

Instead of using a number to limit the number of times the loop runs,
we’re using a property built right into JavaScript to determine the “length”
of our array, which is the number of items it contains. .length is just one
of the standard properties and methods of the Array object in JavaScript.
In our example, there are three items in the array, so it will loop three
times.

items[i]

Remember how I mentioned that we can use that i variable inside the
loop? Well, we can use it to reference each index of the array. Good thing
we started counting from zero; if we had set the initial value of i to 1, the
first item in the array would have been skipped. The result of our for loop
example is that each item in the array (the text strings foo, bar, and baz)
gets returned after each loop and fed to an alert.

21. Introduction to JavaScript

The Anatomy of a Script

607

Now no matter how large or small that array should become, the loop will
execute only as many times as there are items in the array, and will always
hold a convenient reference to each item in the array.

There are literally dozens of ways to write a loop in JavaScript, but this is one
of the more common patterns you’re going to encounter out there in the wild.
Developers use loops to perform a number of tasks, such as the following:

•	 Looping through a list of elements on the page and checking the value of
each, applying a style to each, or adding/removing/changing an attribute
on each. For example, we could loop through each element in a form and
ensure that users have entered a valid value for each before they proceed.

•	 Creating a new array of items in an original array that have a certain
value. We check the value of each item in the original array within the
loop, and if the value matches the one we’re looking for, we populate a
new array with only those items. This turns the loop into a filter of sorts.

Functions
I’ve introduced you to a few functions already in a sneaky way. Here’s an
example of a function that you might recognize:

alert("I've been a function all along!");

A function is a bit of code for performing a task that doesn’t run until it is
referenced or called. alert() is a function built into our browser. It’s a block
of code that runs only when we explicitly tell it to. In a way, we can think of
a function as a variable that contains logic, in that referencing that variable
will run all the code stored inside it. Functions allow code to be reused any
time it is referenced so you don’t need to write it over and over.

All functions share a common pattern (FIGURE 21-6). The function name
is always immediately followed by a set of parentheses (no space), then a
pair of curly brackets that contains their associated code. The parentheses
sometimes contain additional information used by the function called argu-
ments. Arguments are data that can influence how the function behaves. For
example, the alert() function we know so well accepts a string of text as an
argument, and uses that information to populate the resulting dialog.

addNumbers(a, b) {
 return a + b;
}

Function name Arguments

Code to
execute

Multiple arguments are separated by commas

addNumbers() {
 return 2 + 2;
}

Not all functions take arguments

FIGURE 21-6.   The structure of a function.

The structure of a
function:

 function() {
 }

Part IV. JavaScript for Behavior

The Anatomy of a Script

608

There are two types of functions: those that come “out of the box” (native
JavaScript functions) and those that you make up yourself (custom func-
tions). Let’s look at each.

Native functions
Hundreds of predefined functions are built into JavaScript, including these:

alert(), confirm(), and prompt()

These functions trigger browser-level dialog boxes.

Date()

Returns the current date and time.

parseInt("123")

This function will, among other things, take a string data type containing
numbers and turn it into a number data type. The string is passed to the
function as an argument.

setTimeout(functionName, 5000)

Executes a function after a delay. The function is specified in the first
argument, and the delay is specified in milliseconds in the second argu-
ment (in the example, 5,000 milliseconds, which equals 5 seconds).

There are scores more beyond this as well. Note that names of functions are
case-sensitive, so be sure to write setTimeout instead of SetTimeout.

Custom functions
To create a custom function, we type the function keyword followed by a
name for the function, followed by opening and closing parentheses, followed
by opening and closing curly brackets:

function name() {
 // Our function code goes here.
}

Just as with variables and arrays, the function’s name can be anything you
want, but all the same naming syntax rules apply.

If we were to create a function that just alerts some text (which is a little
redundant, I know), it would look like this:

function foo() {
 alert("Our function just ran!");
 // This code won't run until we call the function 'foo()'
}

We can then call that function and execute the code inside it anywhere in our
script by writing the following:

foo(); // Alerts "Our function just ran!"

We can call this function any number of times throughout our code. It saves
a lot of time and redundant coding.

21. Introduction to JavaScript

The Anatomy of a Script

609

Arguments
Having a function that executes the exact same code throughout your script
isn’t likely to be all that useful. We can “pass arguments” (provide data) to
native and custom functions in order to apply a function’s logic to different
sets of data at different times. To hold a place for the arguments, create a vari-
able name (or a series of comma-separated names) in the parentheses after
the name of the function at the time the function is defined.

For example, let’s say we wanted to create a very simple function that alerts
the number of items contained in an array. We’ve already learned that we can
use .length to get the number of items in an array, so we just need a way to
pass the array to be measured into our function. We do that by supplying the
array to be measured as an argument. In the code, I’ve defined a new func-
tion named alertArraySize() and created the variable arr that holds a place
for the argument. That variable will then be available inside the function and
will contain whatever argument we pass when we call the function.

function alertArraySize(arr) {
 alert(arr.length);
}

When we call that function, anything we include between the parentheses
after the function name (in this case, test) will be passed to the argument
with the arr placeholder as the function executes. Here we’ve defined the vari-
able test as an array of five items. We’ve passed that variable to the function,
and now that array gets plugged in and the length is returned.

var test = [1,2,3,4,5];
alertArraySize(test); // Alerts "5"

Returning a value
This part is particularly wild and incredibly useful.

It’s pretty common to use a function to calculate something and then give you
back a value that you can use elsewhere in your script. We could accomplish
this using what we know now, through clever application of variables, but
there’s a much easier way.

The return keyword inside a function effectively turns that function into a
variable with a dynamic value! This one is a little easier to show than it is to
tell, so bear with me while we consider this example:

function addNumbers(a,b) {
 return a + b;
}

We now have a function that accepts two arguments and adds them together.
That wouldn’t be much use if the result always lived inside that function,
because we wouldn’t be able to use the result anywhere else in our script.
Here we use the return keyword to pass the result out of the function. Now

An argument is a value or
data that a function uses
when it runs.

Part IV. JavaScript for Behavior

The Anatomy of a Script

610

any reference you make to that function gives you the result of the function—
just like a variable would:

alert(addNumbers(2,5)); // Alerts "7"

In a way, the addNumbers() function is now a variable that contains a dynamic
value: the value of our calculation. If we didn’t return a value inside our func-
tion, the preceding script would alert undefined, just like a variable that we
haven’t given a value.

The return keyword has one catch. As soon as JavaScript sees that it’s time to
return a value, the function ends. Consider the following:

function bar() {
 return 3;
 alert("We'll never see this alert.");
}

When you call this function by using bar(), the alert on the second line never
runs. The function ends as soon as it sees it’s time to return a value.

Variable Scope and the var Keyword
There are times when you’ll want a variable that you’ve defined within a
function to be available anywhere throughout your script. Other times, you
may want to restrict it and make it available only to the function it lives in.
This notion of the availability of the variable is known as its scope. A variable
that can be used by any of the scripts on your page is globally scoped, and
a variable that’s available only within its parent function is locally scoped.

JavaScript variables use functions to manage their scope. If a variable is
defined outside a function, it will be globally scoped and available to all
scripts. When you define a variable within a function and you want it to be
used only by that function, you can flag it as locally scoped by preceding the
variable name with the var keyword:

var foo = "value";

To expose a variable within a function to the global scope, we omit the var
keyword and simply define the variable:

foo = "value";

You need to be careful about how you define variables within functions, or
you could end up with unexpected results. Take the following JavaScript snip-
pet, for example:

function double(num){
 total = num + num;
 return total;
}
var total = 10;
var number = double(20);
alert(total); // Alerts 40.

21. Introduction to JavaScript

The Anatomy of a Script

611

You may expect that because you specifically assigned a value of 10 to the
variable total, the alert(total) function at the end of the script would
return 10. But because we didn’t scope the total variable in the function with
the var keyword, it bleeds into the global scope. Therefore, although the vari-
able total is set to 10, the following statement runs the function and grabs
the value for total defined there. Without the var, the variable “leaked out.”

As you can see, the trouble with global variables is that they’ll be shared
throughout all the scripting on a page. The more variables that bleed into
the global scope, the better the chances you’ll run into a “collision” in which
a variable named elsewhere (in another script altogether, even) matches one
of yours. This can lead to variables being inadvertently redefined with unex-
pected values, which can lead to errors in your script.

Remember that we can’t always control all the code in play on our page. It’s
very common for pages to include code written by third parties, for example:

•	 Scripts to render advertisements

•	 User-tracking and analytics scripts

•	 Social media “share” buttons

It’s best not to take any chances on variable collisions, so when you start writ-
ing scripts on your own, locally scope your variables whenever you can (see
the sidebar “Keeping Variables Out of the Global Scope”).

This concludes our little (OK, not so little) introductory tour of JavaScript
syntax. There’s a lot more to it, but this should give you a decent foundation
for learning more on your own and being able to interpret scripts when you
see them. We have just a few more JavaScript-related features to tackle before
we look at a few examples.

THE BROWSER OBJECT

In addition to being able to control elements on a web page, JavaScript also
gives you access to and the ability to manipulate the parts of the browser

Keeping Variables Out of
the Global Scope
If you want to be sure that all of your
variables stay out of the global scope,
you can put all of your JavaScript in
the following wrapper:

<script>

(function() {

 //All your code here!

}());

<script>

This little quarantining solution
is called an IIFE (Immediately
Invoked Functional Expression),
and we owe this method and the
associated catchy term to Ben Alman
(benalman.com/news/2010/11/
immediately-invoked-function-
expression/).

S CO P E C H E AT S H E E T

Variable Location Scope

var identifier value Outside a function Global

var identifier value Inside a function Local

identifier value Inside a function Global

Part IV. JavaScript for Behavior

The Browser Object

612

window itself. For example, you might want to get or replace the URL that is
in the browser’s address bar, or open or close a browser window.

In JavaScript, the browser is known as the window object. The window object
has a number of properties and methods that we can use to interact with it.
In fact, our old friend alert() is actually one of the standard browser object
methods. TABLE 21-1 lists just a few of the properties and methods that can
be used with window to give you an idea of what’s possible. For a complete
list, see the Window API reference at MDN Web Docs (developer.mozilla.org/
en-US/docs/Web/API/Window).

TABLE 21-1.   Browser properties and methods.

Property/method Description

event Represents the state of an event

history Contains the URLs the user has visited within a browser window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an OK
button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an OK and
a Cancel button

focus() Sets focus on the current window

EVENTS

JavaScript can access objects in the page and the browser window, but did you
know it’s also “listening” for certain events to happen? An event is an action
that can be detected with JavaScript, such as when the document loads or
when the user clicks an element or just moves her mouse over it. HTML 4.0
made it possible for a script to be tied to events on the page, whether initi-
ated by the user, the browser itself, or other scripts. This is known as event
binding.

In scripts, an event is identified by an event handler. For example, the onload
event handler triggers a script when the document loads, and the onclick and
onmouseover handlers trigger a script when the user clicks or mouses over an
element, respectively. TABLE 21-2 lists some of the most common event han-
dlers. Keep in mind that these are also case-sensitive.

Event handlers “listen”
for certain document,
browser, or user actions
and bind scripts to those
actions.

21. Introduction to JavaScript

Events

613

TABLE 21-2.   Common events.

Event handler Event description

onblur An element loses focus.

onchange The content of a form field changes.

onclick The mouse clicks an object.

onerror An error occurs when the document or an image loads.

onfocus An element gets focus.

onkeydown A key on the keyboard is pressed.

onkeypress A key on the keyboard is pressed or held down.

onkeyup A key on the keyboard is released.

onload A page or an image is finished loading.

onmousedown A mouse button is pressed.

onmousemove The mouse is moved.

onmouseout The mouse is moved off an element.

onmouseover The mouse is moved over an element.

onmouseup A mouse button is released.

onsubmit The submit button is clicked in a form.

There are three common methods for applying event handlers to items within
our pages:

•	 As an HTML attribute

•	 As a method attached to the element

•	 Using addEventListener()

In the upcoming examples of the latter two approaches, we’ll use the window
object. Any events we attach to window apply to the entire document. We’ll be
using the onclick event in all of these as well.

As an HTML Attribute
You can specify the function to be run in an attribute in the markup, as
shown in the following example:

<body onclick="myFunction();"> /* myFunction will now run when the user
clicks anything within 'body' */

Although still functional, this is an antiquated way of attaching events to
elements within the page. It should be avoided for the same reason we avoid
using style attributes in our markup to apply styles to individual elements.
In this case, it blurs the line between the semantic layer and behavioral layers
of our pages, and can quickly lead to a maintenance nightmare.

Part IV. JavaScript for Behavior

Events

614

As a Method
This is another somewhat dated approach to attaching events, though it does
keep things strictly within our scripts. We can attach functions by using help-
ers already built into JavaScript:

window.onclick = myFunction; /* myFunction will run when the user
clicks anything within the browser window */

We can also use an anonymous function rather than a predefined one:

window.onclick = function() {
	 /* Any code placed here will run when the user clicks anything
within the browser window */
};

This approach has the benefit of both simplicity and ease of maintenance,
but does have a fairly major drawback: we can bind only one event at a time
with this method.

window.onclick = myFunction;

window.onclick = myOtherFunction;

In the example just shown, the second binding overwrites the first, so when
the user clicks inside the browser window, only myOtherFunction will run.
The reference to myFunction is thrown away.

addEventListener
Although a little more complex at first glance, this approach allows us to
keep our logic within our scripts and allows us to perform multiple bindings
on a single object. The syntax is a bit more verbose. We start by calling the
addEventListener() method of the target object, and then specify the event
in question and the function to be executed as two arguments:

window.addEventListener("click", myFunction);

Notice that we omit the preceding “on” from the event handler with this
syntax.

Like the previous method, addEventListener() can be used with an anony-
mous function as well:

window.addEventListener("click", function(e) {

});

This was just a brief introduction, so I recommend getting more information
on addEventListener() at the “eventTarget.addEventListener” page on the
MDN Web Docs (developer.mozilla.org/en/DOM/element.addEventListener).

21. Introduction to JavaScript

Events

615

PUTTING IT ALL TOGETHER

Now you have been introduced to many of the important building blocks of
JavaScript. You’ve seen variables, data types, and arrays. You’ve met if/else
statements, loops, and functions. You know your browser objects from your
event handlers. That’s a lot of bits and pieces. Let’s walk through a couple of
simple script examples to see how they get put together.

Example 1: A Tale of Two Arguments
Here’s a simple function that accepts two arguments and returns the greater
of the two values:

greatestOfTwo(first, second) {
 if(first > second) {
 return first;
 } else {
 return second;
 }
}

We start by naming our function greatestOfTwo. We set it up to accept two
arguments, which we’ll just call “first” and “second” for want of more descrip-
tive words. The function contains an if/else statement that returns first if
the first argument is greater than the second, and returns second if it isn’t.

Example 2: The Longest Word
Here’s a function that accepts an array of strings as a single argument and
returns the longest string in the array. It returns the first occurrence of one of
the longest strings (in case they are of the same length).

longestWord(strings) {
 var longest = strings[0];

 for(i = 1; i < strings.length; i++) {
 if (strings[i].length > longest.length) {
 longest = strings[i];
 }
 }
 return longest;
}

First, we name the function and allow it to accept a single argument. Then,
we set the longest variable to an initial value of the first item in the array:
strings[0]. We start our loop at 1 instead of 0 since we already have the
first value in the array captured. Each time we iterate through the loop, we
compare the length of the current item in the array to the length of the value
saved in the longest variable. If the current item in the array contains more
characters than the current value of the longest variable, we change the value
of longest to that item. If not, we do nothing. After the loop is complete we
return the value of longest, which now contains the longest string in the array.

Part IV. JavaScript for Behavior

Putting It All Together

616

LEARNING MORE ABOUT JAVASCRIPT

Now that you’ve seen the basic building blocks and a few simple examples,
does it whet your appetite for more? Here are a few resources to take you to
the next step:

JavaScript Resources at MDN Web Docs
(developer.mozilla.org/en-US/docs/Web/JavaScript)

The folks at MDN Web Docs have assembled excellent tutorials as well as
thorough documentation on all the components of JavaScript. It’s a great
site to visit when you’re just starting out, and it is likely to be a go-to refer-
ence even after you have years of experience.

JavaScript for Web Designers by Mat Marquis (A Book Apart)

I can say a lot more in a book than in a chapter, so if you’re looking for
a little more depth in a beginner-level manual, I wrote this book for you.

Learning JavaScript by Ethan Brown (O’Reilly)

For a deeper dive into JavaScript, this book will take you to the next level.

Why not see how you’re doing with JavaScript so far with EXERCISE 21-2 and
a quick quiz? In the next chapter, you’ll see how we use these tools in the
context of web design.

EXERCISE 21-2.  You try it

In this exercise, you will write a script that updates the page’s
title in the browser window with a “new messages” count. You
may have encountered this sort of script in the wild from time to
time. We’re going to assume for the sake of the exercise that this
is going to become part of a larger web app someday, and we’re
tasked only with updating the page title with the current “unread
messages” count.

I’ve created a document for you already (title.html), which
is available in the materials folder for this chapter on
learningwebdesign.com. The resulting script is in Appendix A.

1.	 Start by opening title.html in a browser. You’ll see a blank page,
with the title element already filled out. If you look up at the top
of your browser window, you’ll notice it reads “Million Dollar
WebApp”.

2.	 Now open the document in a text editor. You’ll find a script
element containing a comment just before the closing
</body> tag. Feel free to delete the comment.

3.	 If we’re going to be changing the page’s title, we should save
the original first. Create a variable named originalTitle. For
its value, we’ll have the browser get the title of the document
using the DOM method document.title. Now we have a
saved reference to the page title at the time the page is loaded.
This variable should be global, so we’ll declare it outside any
functions.

var originalTitle = document.title;

4.	 Next, we’ll define a function so we can reuse the script whenever
it’s needed. Let’s call the function something easy to remember,
so we know at a glance what it does when we encounter it in
our code later. showUnreadCount() works for me, but you can
name it whatever you’d like.

var originalTitle = document.title;

function showUnreadCount() {
} →

21. Introduction to JavaScript

Learning More About JavaScript

617

https://developer.mozilla.org/en-US/docs/Web/JavaScript

EXERCISE 21-2. Continued

5.	 We need to think about what the function needs to make it useful. This function does
something with the unread message count, so its argument is a single number referred
to as unread in this example.

var originalTitle = document.title;

function showUnreadCount(unread) {
}

6.	 Now let’s add the code that runs for this function. We want the document title for the
page to display the title of the document plus the count of unread messages. Sounds
like a job for concatenation (+)! Here we set the document.title to be (=) whatever
string was saved for originalTitle plus the number in showUnreadCount. As we
learned earlier, JavaScript combines a string and a number as though they are both
strings.

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}

7.	 Let’s try out our script before we go too much further. Below where you defined the
function and the originalTitle variable, enter showUnreadCount(3);. Now save
the page and reload it in your browser (FIGURE 21-7).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + unread;
}
showUnreadCount(3);

FIGURE 21-7.   Our title tag has changed! It’s not quite right yet, though.

8.	 Our script is working, but it’s not very easy to read. Fortunately, there’s no limit on the
number of strings we can combine at once. Here we’re adding new strings that wrap the
count value and the words “new messages” in parentheses (FIGURE 21-8).

var originalTitle = document.title;

function showUnreadCount(unread) {
 document.title = originalTitle + "(" + unread + " new messages!)";
}
showUnreadCount(3);

FIGURE 21-8.   Much better!

Part IV. JavaScript for Behavior

Learning More About JavaScript

618

TEST YOURSELF

We covered a lot of new material in this chapter. Here’s a chance to test what
sunk in. You will find the answers in Appendix A.

1.	 Name one good thing and one bad thing about linking to external .js files.

2.	 Given the following array

var myArray = [1, "two", 3, "4"]

write what the alert message will say for each of these examples:

a.	 alert(myArray[0]);

b.	 alert(myArray[0] + myArray[1]);

c.	 alert(myArray[2] + myArray[3]);

d.	 alert(myArray[2] – myArray[0]);

3.	 What will each of these alert messages say?

a.	 var foo = 5;
foo += 5;
alert(foo);

b.	 i = 5;
i++;
alert(i);

c.	 var foo = 2;
alert(foo + " " + "remaining");

d.	 var foo = "Mat";
var bar = "Jennifer";
if(foo.length > bar.length) {
 alert(foo + " is longer.");
} else {
 alert(bar + " is longer.");
}

e.	 alert(10 === "10");

4.	 Describe what this does:

for(var i = 0; i < items.length; i++) { }

5.	 What is the potential problem with globally scoped variables?

21. Introduction to JavaScript

Test Yourself

619

6.	 Match each event handler with its trigger.

a. onload 1. The user finishes a form and hits the submit button.

b. onchange 2. The page finishes loading.

c. onfocus 3. The pointer hovers over a link.

d. onmouseover 4. A text-entry field is selected and ready for typing.

e. onsubmit 5. A user changes her name in a form field.

Part IV. JavaScript for Behavior

Test Yourself

620

IN THIS CHAPTER

Using the DOM to access and
change elements, attributes,

and contents

Using polyfills to make browser
versions work consistently

Using JavaScript libraries

A brief introduction to Ajax

by Mat Marquis

Now that you have a sense for the language of JavaScript, let’s look at some of
the ways we can put it to use in modern web design. First, we’ll explore DOM
scripting, which allows us to manipulate the elements, attributes, and text on
a page. I’ll introduce you to some ready-made JavaScript and DOM scripting
resources, so you don’t have to go it alone. You’ll learn about polyfills, which
provide older browsers with modern features and normalize functionality. I’ll
also introduce you to JavaScript libraries that make developers’ lives easier
with collections of polyfills and shortcuts for common tasks.

MEET THE DOM

You’ve seen references to the Document Object Model (DOM for short) sev-
eral times throughout this book, but now is the time to give it the attention it
deserves. The DOM gives us a way to access and manipulate the contents of
a document. We commonly use it for HTML, but the DOM can be used with
any XML language as well. And although we’re focusing on its relationship
with JavaScript, it’s worth noting that the DOM can be accessed by other lan-
guages too, such as PHP, Ruby, C++, and more. Although DOM Level 1 was
released by the W3C in 1998, it was nearly five years later that DOM scripting
began to gain steam.

The DOM is a programming interface (an API) for HTML and XML pages.
It provides a structured map of the document, as well as a set of methods
to interface with the elements contained therein. Effectively, it translates our
markup into a format that JavaScript (and other languages) can understand.
It sounds pretty dry, I know, but the basic gist is that the DOM serves as a
map to all the elements on a page and lets us do things with them. We can
use it to find elements by their names or attributes, and then add, modify, or
delete elements and their content.

USING JAVASCRIPT
AND THE DOCUMENT OBJECT MODEL

22
CHAPTER

The DOM gives us a way to
access and manipulate the
contents of a document.

621

Without the DOM, JavaScript wouldn’t have any sense of a document’s
contents—and by that, I mean the entirety of the document’s contents.
Everything from the page’s doctype to each individual letter in the text can be
accessed via the DOM and manipulated with JavaScript.

The Node Tree
A simple way to think of the DOM is in terms of the document tree as dia-
grammed in FIGURE 22-1. You saw documents diagrammed in this way when
you were learning about CSS selectors.

<!DOCTYPE html>
<html>
<head>
 <title>Document title</title>
 <meta charset="utf-8">
</head>
<body>
 <div>
 <h1>Heading</h1>
 <p>Paragraph text with a link here.</p>
 </div>
 <div>
 <p>More text here.</p>
 </div>
</body>
</html>

html

bodyhead

title meta div div

h1 p

a

p

FIGURE 22-1.   A simple document.

Each element within the page is referred to as a node. If you think of the
DOM as a tree, each node is an individual branch that can contain further
branches. But the DOM allows deeper access to the content than CSS because
it treats the actual content as a node as well. FIGURE 22-2 shows the struc-
ture of the first p element. The element, its attributes, and its contents are all
nodes in the DOM’s node tree.

Part IV. JavaScript for Behavior

Meet the DOM

622

p

aParagraph text with a here.

href="foo.html" link

<p>Paragraph text with a link here.</p>

FIGURE 22-2.   The nodes within the first p element in our sample document.

The DOM also provides a standardized set of methods and functions
through which JavaScript can interact with the elements on our page. Most
DOM scripting involves reading from and writing to the document.

There are several ways to use the DOM to find what you want in a document.
Let’s go over some of the specific methods we can use for accessing objects
defined by the DOM (we JS folks call this “crawling the DOM” or “traversing
the DOM”), as well as some of the methods for manipulating those elements.

Accessing DOM Nodes
The document object in the DOM identifies the page itself, and more often
than not will serve as the starting point for our DOM crawling. The docu-
ment object comes with a number of standard properties and methods for
accessing collections of elements. This is reminiscent of the length property
we learned about in Chapter 21, Introduction to JavaScript. Just as length is
a standard property of all arrays, the document object comes with a number
of built-in properties containing information about the document. We then
wind our way to the element we’re after by chaining those properties and
methods together, separated by periods, to form a sort of route through the
document.

To give you a general idea of what I mean, the statement in this example says
to look on the page (document), find the element that has the id value “begin-
ner”, find the HTML content within that element (innerHTML), and save those
contents to a variable (foo):

var foo = document.getElementById("beginner").innerHTML;

Because the chains tend to get long, it is also common to see each property
or method broken onto its own line to make it easier to read at a glance.

AT A G L A N C E

The DOM is a collection of nodes:

•	 Element nodes

•	 Attribute nodes

•	 Text nodes

22. Using JavaScript

Meet the DOM

623

Remember, whitespace in JavaScript is ignored, so this has no effect on how
the statement is parsed.

var foo = document
 .getElementById("beginner")
 .innerHTML;

There are several methods for accessing nodes in the document.

By element name

getElementsByTagName()

We can access individual elements by the tags themselves, using document.
getElementsByTagName(). This method retrieves any element or elements you
specify as an argument.

For example, document.getElementsByTagName("p") returns every paragraph
on the page, wrapped in something called a collection or nodeList, in the
order they appear in the document from top to bottom. nodeLists behave
much like arrays. To access specific paragraphs in the nodeList, we reference
them by their index, just like an array.

var paragraphs = document.getElementsByTagName("p");

Based on this variable statement, paragraphs[0] is a reference to the first
paragraph in the document, paragraphs[1] refers to the second, and so on. If
we had to access each element in the nodeList separately, one at a time…well,
it’s a good thing we learned about looping through arrays earlier. Loops work
the exact same way with a nodeList.

var paragraphs = document.getElementsByTagName("p");
for(var i = 0; i < paragraphs.length; i++) {
 // do something
}

Now we can access each paragraph on the page individually by referencing
paragraphs[i] inside the loop, just as with an array, but with elements on the
page instead of values.

By id attribute value

getElementById()

This method returns a single element based on that element’s ID (the value
of its id attribute), which we provide to the method as an argument. For
example, to access this particular image

we include the id value as an argument for the getElementById() method:

var photo = document.getElementById("lead-photo");

NOTE

nodeLists are living collections. If you
manipulate the document in a nodeList
loop—for example, looping through all
paragraphs and appending new ones
along the way—you can end up in an
infinite loop. Good times!

Part IV. JavaScript for Behavior

Meet the DOM

624

By class attribute value

getElementsByClassName()

Just as it says on the tin, this allows you to access nodes in the document
based on the value of a class attribute. This statement assigns any element
with a class value of “column-a” to the variable firstColumn so it can be
accessed easily from within a script:

var firstColumn = document.getElementsByClassName("column-a");

Like getElementsByTagName(), this returns a nodeList that we can reference
by index or loop through one at a time.

By selector

querySelectorAll()

querySelectorAll() allows you to access nodes of the DOM based on a CSS-
style selector. The syntax of the arguments in the following examples should
look familiar to you. It can be as simple as accessing the child elements of a
specific element:

var sidebarPara = document.querySelectorAll(".sidebar p");

or as complex as selecting an element based on an attribute:

var textInput = document.querySelectorAll("input[type='text']");

querySelectorAll() returns a nodeList, like getElementsByTagName() and
getElementsByClassName(), even if the selector matches only a single element.

Accessing an attribute value

getAttribute()

As I mentioned earlier, elements aren’t the only thing you can access with the
DOM. To get the value of an attribute attached to an element node, we call
getAttribute() with a single argument: the attribute name. Let’s assume we
have an image, stratocaster.jpg, marked up like this:

In the following example, we access that specific image (getElementbyId())
and save a reference to it in a variable (“bigImage”). At that point, we could
access any of the element’s attributes (alt, src, or id) by specifying it as an
argument in the getAttribute() method. In the example, we get the value of
the src attribute and use it as the content in an alert message. (I’m not sure
why we would ever do that, but it does demonstrate the method.)

var bigImage = document.getElementById("lead-image");

alert(bigImage.getAttribute("src")); // Alerts "stratocaster.jpg".

WARNING

This is a relatively new method for access-
ing DOM nodes. Although getElements-
ByClassName() is available in the cur-
rent versions of modern browsers, it will
not work in IE8 or below.

WARNING

querySelectorAll() isn’t supported in
IE7 or below.

22. Using JavaScript

Meet the DOM

625

Manipulating Nodes
Once we’ve accessed a node by using one of the methods discussed previ-
ously, the DOM gives us several built-in methods for manipulating those
elements, their attributes, and their contents.

setAttribute()

To continue with the previous example, we saw how we get the attribute
value, but what if we wanted to set the value of that src attribute to a new
pathname altogether? Use setAttribute()! This method requires two argu-
ments: the attribute to be changed and the new value for that attribute.

In this example, we use a bit of JavaScript to swap out the image by changing
the value of the src attribute:

var bigImage = document.getElementById("lead-image");

bigImage.setAttribute("src", "lespaul.jpg");

Just think of all the things you could do with a document by changing the
values of attributes. Here we swapped out an image, but we could use this
same method to make a number of changes throughout our document:

•	 Update the checked attributes of checkboxes and radio buttons based on
user interaction elsewhere on the page.

•	 Find the link element for our .css file and point the href value to a differ-
ent style sheet, changing all the page’s styles.

•	 Update a title attribute with information on an element’s state (“this
element is currently selected,” for example).

innerHTML

innerHTML gives us a simple method for accessing and changing the text and
markup inside an element. It behaves differently from the methods we’ve
covered so far. Let’s say we need a quick way of adding a paragraph of text to
the first element on our page with a class of intro:

var introDiv = document.getElementsByClassName("intro");

introDiv[0].innerHTML = "<p>This is our intro text</p>";

The second statement here adds the content of the string to introDiv (an
element with the class value “intro”) as a real live element because innerHTML
tells JavaScript to parse the strings “<p>” and “</p>” as markup.

style

The DOM also allows you to add, modify, or remove a CSS style from an
element by using the style property. It works similarly to applying a style
with the inline style attribute. The individual CSS properties are available
as properties of the style property. I bet you can figure out what these state-
ments are doing by using your new CSS and DOM know-how:

Part IV. JavaScript for Behavior

Meet the DOM

626

document.getElementById("intro").style.color = "#fff";

document.getElementById("intro").style.backgroundColor = "#f58220";
	 //orange

In JavaScript and the DOM, property names that are hyphenated in CSS
(such as background-color and border-top-width) become camel case (back-
groundColor and borderTopWidth, respectively) so the “–” character isn’t mis-
taken for an operator.

In the examples you’ve just seen, the style property is used to set the styles
for the node. It can also be used to get a style value for use elsewhere in the
script. This statement gets the background color of the #intro element and
assigns it to the brandColor variable:

var brandColor = document.getElementById("intro").style.backgroundColor;

Adding and Removing Elements
So far, we’ve seen examples of getting and setting nodes in the existing docu-
ment. The DOM also allows developers to change the document structure
itself by adding and removing nodes on the fly. We’ll start out by creating
new nodes, which is fairly straightforward, and then we’ll see how we add
the nodes we’ve created to the page. The methods shown here are more surgi-
cal and precise than adding content with innerHTML. While we’re at it, we’ll
remove nodes, too.

createElement()

To create a new element, use the aptly named createElement() method. This
function accepts a single argument: the element to be created. Using this
method is a little counterintuitive at first because the new element doesn’t
appear on the page right away. Once we create an element in this way, that
new element remains floating in the JavaScript ether until we add it to the
document. Think of it as creating a reference to a new element that lives
purely in memory—something that we can manipulate in JavaScript as we
see fit, and then add to the page once we’re ready:

var newDiv = document.createElement("div");

createTextNode()

If we want to enter text into either an element we’ve created or an existing
element on the page, we can call the createTextNode() method. To use it, pro-
vide a string of text as an argument, and the method creates a DOM-friendly
version of that text, ready for inclusion on the page. Like createElement(),
this creates a reference to the new text node that we can store in a variable
and add to the page when the time comes:

var ourText = document.createTextNode("This is our text.");

22. Using JavaScript

Meet the DOM

627

appendChild()

So we’ve created a new element and a new string of text, but how do we make
them part of the document? Enter the appendChild() method. This method
takes a single argument: the node you want to add to the DOM. You call it on
the existing element that will be its parent in the document structure. Time
for an example.

Here we have a simple div on the page with the id “our-div”:

<div id="our-div"></div>

Let’s say we want to add a paragraph to #our-div that contains the text “Hello,
world!” We start by creating the p element (document.createElement()) as
well as a text node for the content that will go inside it (createTextNode()):

var ourDiv = document.getElementById("our-div");
var newParagraph = document.createElement("p");
var copy = document.createTextNode("Hello, world!");

Now we have our element and some text, and we can use appendChild() to
put the pieces together:

newParagraph.appendChild(copy);
ourDiv.appendChild(newParagraph);

The first statement appends copy (that’s our “Hello, world!” text node) to
the new paragraph we created (newParagraph), so now that element has
some content. The second line appends the newParagraph to the original div
(ourDiv). Now ourDiv isn’t sitting there all empty in the DOM, and it will
display on the page with the content “Hello, world!”

You should be getting the idea of how it works. How about a couple more?

insertBefore()

The insertBefore() method, as you might guess, inserts an element before
another element. It takes two arguments: the first is the node that gets insert-
ed, and the second is the element it gets inserted in front of. You also need to
know the parent to which the element will be added.

So, for example, to insert a new heading before the paragraph in this markup

<div id="our-div">
 <p id="our-paragraph">Our paragraph text</p>
</div>

we start by assigning variable names to the div and the p it contains, and then
create the h1 element and its text node and put them together, just as we saw
in the last example:

var ourDiv = document.getElementById("our-div");
var para = document.getElementById("our-paragraph");

var newHeading = document.createElement("h1");
var headingText = document.createTextNode("A new heading");
newHeading.appendChild(headingText);
// Add our new text node to the new heading

Part IV. JavaScript for Behavior

Meet the DOM

628

Finally, in the last statement shown here, the insertBefore() method places
the newHeading h1 element before the para element inside ourDiv.

ourDiv.insertBefore(newHeading, para);

replaceChild()

The replaceChild() method replaces one node with another and takes two
arguments. The first argument is the new child (i.e., the node you want to
end up with). The second is the node that gets replaced by the first. As with
insertBefore(), you also need to identify the parent element in which the
swap happens. For the sake of simplicity, let’s say we start with the following
markup:

<div id="our-div">
 <div id="swap-me"></div>
</div>

And we want to replace the div with the id “swap-me” with an image. We
start by creating a new img element and setting the src attribute to the path-
name to the image file. In the final statement, we use replaceChild() to put
newImg in place of swapMe.

var ourDiv = document.getElementById("our-div");
var swapMe = document.getElementById("swap-me");
var newImg = document.createElement("img");
// Create a new image element

newImg.setAttribute("src", "path/to/image.jpg");
// Give the new image a "src" attribute
ourDiv.replaceChild(newImg, swapMe);

removeChild()

To paraphrase my mother, “We brought these elements into this world, and
we can take them out again.” You remove a node or an entire branch from
the document tree with the removeChild() method. The method takes one
argument, which is the node you want to remove. Remember that the DOM
thinks in terms of nodes, not just elements, so the child of an element may be
the text (node) it contains, not just other elements.

Like appendChild(), the removeChild() method is always called on the parent
element of the element to be removed (hence, “remove child”). That means
we’ll need a reference to both the parent node and the node we’re looking to
remove. Let’s assume the following markup pattern:

<div id="parent">
 <div id="remove-me">
 <p>Pssh, I never liked it here anyway.</p>
 </div>
</div>

Our script would look something like this:

var parentDiv = document.getElementById("parent");
var removeMe = document.getElementById("remove-me");

22. Using JavaScript

Meet the DOM

629

parentDiv.removeChild(removeMe);
// Removes the div with the id "remove-me" from the page.

For Further Reading
That should give you a good idea of what DOM scripting is all about. Of
course, I’ve just barely scratched the surface of what can be done with the
DOM, but if you’d like to learn more, definitely check out the book DOM
Scripting: Web Design with JavaScript and the Document Object Model, Second
Edition, by Jeremy Keith and Jeffrey Sambells (Friends of Ed).

POLYFILLS

You’ve gotten familiar with a lot of new technologies in this book so far: new
HTML5 elements, new ways of doing things with CSS3, using JavaScript to
manipulate the DOM, and more. In a perfect world, all browsers would be
in lockstep, keeping up with the cutting-edge technologies and getting the
established ones right along the way (see the sidebar “The Browser Wars”).
In that perfect world, browsers that couldn’t keep up (I’m looking at you,
IE8) would just vanish completely. Sadly, that is not the world we live in, and
browser inadequacies remain the thorn in every developer’s side.

I’ll be the first to admit that I enjoy a good wheel reinvention. It’s a great
way to learn, for one thing. For another, it’s the reason our cars aren’t rolling
around on roundish rocks and sections of tree trunk. But when it comes to
dealing with every strange browser quirk out there, we don’t have to start
from scratch. Tons of people smarter than I am have run into these issues
before, and have already found clever ways to work around them and fix the
parts of JavaScript and the DOM where some browsers may fall short. We
can use JavaScript to fix JavaScript.

Polyfill is a term coined by Remy Sharp to describe a JavaScript “shim”
that normalizes differing behavior from browser to browser (remysharp.
com/2010/10/08/what-is-a-polyfill). Or, as Paul Irish put it, a polyfill is

A shim that mimics a future API providing fallback functionality to older
browsers.

There’s a lot of time travel going on in that quote, but basically what he’s say-
ing is that we’re making something new work in browsers that don’t natively
support it—whether that’s brand-new technology like detecting a user’s
physical location or fixing something that one of the browsers just plain got
wrong.

There are tons of polyfills out there targeted to specific tasks, such as making
old browsers recognize new HTML5 elements or CSS3 selectors, and new
ones are popping up all the time as new problems arise. I’m going to fill you
in on the most commonly used polyfills in the modern developer’s toolbox as

The Browser Wars
JavaScript came about during a
dark and lawless time, before the
web standards movement, when
all the major players in the browser
world were—for want of a better
term—winging it. It likely won’t come
as a major surprise to anyone that
Netscape and Microsoft implemented
radically different versions of the
DOM, with the prevailing sentiment
being “may the best browser win.”

I’ll spare you the gory details of the
Battle for JavaScript Hill, but the two
competing implementations were so
different that they were both largely
useless, unless you wanted to either
maintain two separate code bases
or add a “best viewed in Internet
Explorer/Netscape” warning label to
your sites.

Enter the web standards movement!
During this cutthroat time, the W3C
was putting together the foundations
for the modern-day standardized
DOM that we’ve all come to know
and love. Fortunately for us, Netscape
and Microsoft got on board with
the standards movement. The
standardized DOM is supported all
the way back to Internet Explorer
5 and Netscape Navigator 6.
Unfortunately, Internet Explorer’s
advancements in this area stagnated
for quite some time following IE6. As
a result, older versions of IE have a
few significant differences from the
modern-day DOM. Fortunately with
Internet Explorer 9 and later, they’re
catching right back up.

The trouble is, your project likely still
needs to support those users with
older versions of IE. It’s a pain, but
we’re up for it. We have an amazing
set of tools at our disposal, such as
polyfills and JavaScript libraries full
of helper functions, that normalize
the strange little quirks we’re apt to
encounter from browser to browser.

Part IV. JavaScript for Behavior

Polyfills

630

of the release of this book. You may find that new ones are necessary by the
time you hit the web design trenches. You may also find that some of these
techniques aren’t needed for the browsers you need to support.

HTML5 shim (or shiv)
You may remember seeing this one back in Chapter 5, Marking Up Text, but
let’s give it a little more attention now that you have some JavaScript under
your belt.

An HTML5 shim/shiv is used to enable Internet Explorer 8 and earlier to rec-
ognize and style newer HTML5 elements such as article, section, and nav.

There are several variations on the HTML5 shim/shiv, but they all work in
much the same way: crawl the DOM looking for elements that IE doesn’t
recognize, and then immediately replace them with the same element so they
are visible to IE in the DOM. Now any styles we write against those elements
work as expected. Sjoerd Visscher originally discovered this technique, and
many, many variations of these scripts exist now. Remy Sharp’s version is the
one in widest use today.

The shim must be referenced in the head of the document, in order to “tell”
Internet Explorer about these new elements before it finishes rendering the
page. The script is referenced inside an IE-specific conditional comment and
runs only if the browser is less than (lt) IE9—in other words, versions 8 and
earlier:

<!--[if lt IE 9]>
 <script src="html5shim.js"></script>
<![endif]-->

The major caveat here is that older versions of Internet Explorer that have
JavaScript disabled or unavailable will receive unstyled elements. To learn
more about HTML5 shim/shiv, try these resources:

•	 The Wikipedia entry for HTML Shiv (en.wikipedia.org/wiki/HTML5_Shiv)

•	 Remy Sharp’s original post
(remysharp.com/2009/01/07/html5-enabling-script)

Selectivizr
Selectivizr (created by Keith Clark) allows Internet Explorer 6–8 to under-
stand complex CSS3 selectors such as :nth-child and ::first-letter. It uses
JavaScript to fetch and parse the contents of your style sheet and patch holes
where the browser’s native CSS parser falls short.

Selectivizr must be used with a JavaScript library (I talk about them in the
next section). The link to the script goes in an IE conditional comment after
the link to the library .js file, like so:

NOTE

If you don’t need to support IE8 and ear-
lier, you don’t need an HTML5 shim.

NOTE

If you don’t need to support IE8 and ear-
lier, you don’t need Selectivizr.

22. Using JavaScript

Polyfills

631

<script type="text/javascript" src="[JS library]"></script>
<!--[if (gte IE 6)&(lte IE 8)]>
 <script type="text/javascript" src="selectivizr.js"></script>
 <noscript><link rel="stylesheet" href="[fallback css]" /></noscript>
<![endif]-->

Because we’re forgoing the native CSS parser here, we may see a slight perfor-
mance hit in applicable browsers. See the Selectivizr site (selectivizr.com) for
more information.

Picturefill (A Responsive Image Polyfill)
Picturefill enables support for the picture element, srcset and sizes attri-
butes, and features related to delivering images based on viewport size and
resolution (also known as responsive images, as discussed in Chapter 7,
Adding Images). It was created by Scott Jehl of Filament Group and is main-
tained by the Picturefill group.

To use Picturefill, download the script and add it to the head of the document.
The first script creates a picture element for browsers that don’t recognize it.
The second script calls the Picturefill script itself and the async attribute tells
the browser it can load Picturefill asynchronously—that is, without waiting
for the script to finish before loading the rest of the document.

<head>
 <script>
 // Picture element HTML5 shiv
 document.createElement("picture");
 </script>
 <script src="picturefill.js" async></script>
</head>

On the downside, browsers without JavaScript that also do not support the
picture element will see only alt-text for the image. Download Picturefill and
get information about its use at scottjehl.github.io/picturefill/.

JAVASCRIPT LIBRARIES

Continuing on the “you don’t have to write everything from scratch yourself”
theme, it’s time to take on JavaScript libraries. A JavaScript library is a collec-
tion of prewritten functions and methods that you can use in your scripts to
accomplish common tasks or simplify complex ones.

There are many JS libraries out there. Some are large frameworks that include
all of the most common polyfills, shortcuts, and widgets you’d ever need to
build full-blown Ajax web applications (see the sidebar “What Is Ajax?”). Some
are targeted at specific tasks, such as handling forms, animation, charts, or
math functions. For seasoned JavaScript-writing pros, starting with a library
is an awesome time-saver. And for folks like you who are just getting started,
a library can handle tasks that might be beyond the reach of your own skills.

Part IV. JavaScript for Behavior

JavaScript Libraries

632

What Is Ajax?
Ajax (sometimes written AJAX) stands for Asynchronous
JavaScript And XML. The “XML” part isn’t that important—you
don’t have to use XML to use Ajax (more on that in a moment).
The “asynchronous” part is what matters.

Traditionally, when a user interacted with a web page in a way
that required data to be delivered from the server, everything
had to stop and wait for the data, and the whole page needed
to reload when it was available. This made for a not especially
smooth user experience.

But with Ajax, because the page can get data from the server
in the background, you can make updates to the page based
on user interaction smoothly and in real time without the page
needing to be reloaded. This makes web applications feel more
like “real” applications.

You see this on a number of modern websites, although
sometimes it’s subtle. On Twitter, for example, scrolling to the
bottom of a page loads in a set of new tweets. Those aren’t

hardcoded in the page’s markup; they’re loaded dynamically as
needed. Google’s image search uses a similar approach. When
you reach the bottom of the current page, you’re presented with
a button that allows you to load more‚ but you never navigate
away from the current page.

The term “Ajax” was first coined by Jesse James Garrett in an
article “Ajax: A New Approach to Web Applications.” Ajax is not a
single technology, but rather a combination of HTML, CSS, the
DOM, and JavaScript, including the XMLHttpRequest object,
which allows data to be transferred asynchronously. Ajax may
use XML for data, but it has become more common to use JSON
(JavaScript Object Notation), a JavaScript-based and human-
readable format, for data exchange.

Writing web applications with Ajax isn’t the type of thing you
would do right out of the gate, but many of the JavaScript
libraries discussed in this chapter have built-in Ajax helpers and
methods that let you get started with significantly less effort.

The disadvantage of libraries is that because they generally contain all of
their functionality in one big .js file, you may end up forcing your users to
download a lot of code that never gets used. But the library authors are aware
of this and have made many of their libraries modular, and they continue to
make efforts to optimize their code. In some cases, it’s also possible to cus-
tomize the script and use just the parts you need.

jQuery and Other Libraries
As of this writing, the overwhelmingly dominant JavaScript library is jQuery
(jquery.com). Chances are, if you use a library, it will be that one (or at least
that one first). Written in 2005 by John Resig, jQuery has found its way into
over two-thirds of all websites. Furthermore, if a site uses a library at all, there
is a 97% chance that it’s jQuery.

It is free, it’s open source, and it employs a syntax that makes it easy to use if
you are already handy with CSS, JavaScript, and the DOM. You can supple-
ment jQuery with the jQuery UI library, which adds cool interface elements
such as calendar widgets, drag-and-drop functionality, expanding accordion
lists, and simple animation effects. jQuery Mobile is another jQuery-based
library that provides UI elements and polyfills designed to account for the
variety of mobile browsers and their notorious quirks.

Of course, jQuery isn’t the only library in town. Others include MooTools
(mootools.net), Dojo (dojotoolkit.org), and Prototype (prototypejs.org). As for
smaller JS libraries that handle specialized functions, because they are being
created and made obsolete all the time, I recommend doing a web search for

22. Using JavaScript

JavaScript Libraries

633

http://dojotoolkit.org/

“JavaScript libraries for _____________” and see what is available. Some
library categories include the following:

•	 Forms

•	 Animation

•	 Image carousels

•	 Games

•	 Information graphics

•	 Image and 3-D effects for the canvas element

•	 String and math functions

•	 Database handling

•	 Touch gestures

How to Use jQuery
It’s easy to implement any of the libraries I just listed. All you do is download
the JavaScript (.js) file, put it on your server, point to it in your script tag,
and you’re good to go. It’s the .js file that does all the heavy lifting, providing
prewritten functions and syntax shortcuts. Once you’ve included it, you can
write your own scripts that leverage the features built into the framework.
Of course, what you actually do with it is the interesting part (and largely
beyond the scope of this chapter, unfortunately).

As a member of the jQuery Mobile team, I have a pretty obvious bias here,
so we’re going to stick with jQuery in the upcoming examples. Not only is it
the most popular library anyway, but they said they’d give me a dollar every
time I say “jQuery.”

Download the jQuery .js file
To get started with jQuery (cha-ching), go to jQuery.com and hit the big
Download button to get your own copy of jquery.js. You have a choice
between a production version that has all the extra whitespace removed for
a smaller file size, or a development version that is easier to read but nearly
eight times larger in file size. The production version should be just fine if
you are not going to edit it yourself.

Copy the code, paste it into a new plain-text document, and save it with the
same filename that you see in the address bar in the browser window. As of
this writing, the latest version of jQuery is 3.2.1, and the filename of the pro-
duction version is jquery-3.2.1.min.js (the min stands for “minimized”). Put
the file in the directory with the other files for your site. Some developers keep
their scripts in a js directory for the sake of organization, or they may simply

Part IV. JavaScript for Behavior

JavaScript Libraries

634

keep them in the root directory for the site. Wherever you decide put it, be
sure to note the pathname to the file because you’ll need it in the markup.

Add it to your document
Include the jQuery script the same way you’d include any other script in the
document, with a script element:

<script src="pathtoyourjs/jquery-3.2.1.min.js"></script>

And that’s pretty much it. There is an alternative worth mentioning, however.
If you don’t want to host the file yourself, you can point to one of the publicly
hosted versions and use it that way. One advantage to this method is that it
gets cached by the browser, so there’s a chance some of your users’ browsers
already have a copy of it. The jQuery Download page lists a few options,
including the following link to the code on Google’s server. Simply copy this
code exactly as you see it here, paste it into the head of the document or before
the </body> tag, and you’ve got yourself some jQuery!

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/ →
jquery.min.js"></script>

Get “ready”
You don’t want to go firing scripts before the document and the DOM are
ready for them, do you? Well, jQuery has a statement known as the ready
event that checks the document and waits until it’s ready to be manipulated.
Not all scripts require this (for example, if you were only firing a browser
alert), but if you are doing anything with the DOM, it is a good idea to start
by setting the stage for your scripts by including this function in your custom
script or .js file:

<script src="pathtoyourjs/jquery-3.2.1.min.js"></script>

<script>
$(document).ready(function(){

 // Your code here

});
</script>

Scripting with jQuery
Once you’re set up, you can begin writing your own scripts using jQuery. The
shortcuts jQuery offers break down into two general categories:

•	 A giant set of built-in feature detection scripts and polyfills

•	 A shorter, more intuitive syntax for targeting elements
(jQuery’s selector engine)

22. Using JavaScript

JavaScript Libraries

635

You should have a decent sense of what the polyfills do after making your
way through that last section, so let’s take a look at what the selector engine
does for you.

One of the things that jQuery simplifies is moving around through the DOM
because you can use the selector syntax that you learned for CSS. Here is an
example of getting an element by its id value without a library:

var paragraph = document.getElementById("status");

The statement finds the element with the ID “status” and saves a reference to
the element in a variable (paragraph). That’s a lot of characters for a simple
task. You can probably imagine how things get a little verbose when you’re
accessing lots of elements on the page. Now that we have jQuery in play,
however, we can use this shorthand:

var paragraph = $("#status");

That’s right—that’s the id selector you know and love from writing CSS. And
it doesn’t just stop there. Any selector you’d use in CSS will work within that
special helper function.

You want to find everything with a class of header? Use $(".header");.

By the element’s name? Sure: $("div");.

Every subhead in your sidebar? Easy-peasy: $("#sidebar .sub");.

You can even target elements based on the value of attributes:
$("[href='http://google.com']");.

But it doesn’t stop with selectors. We can use a huge number of helper func-
tions built into jQuery and libraries like it to crawl the DOM like so many,
uh, Spider-men. Spider-persons. Web-slingers.

jQuery also allows us to chain objects together in a way that can target things
even CSS can’t (an element’s parent element, for example). Let’s say we have
a paragraph and we want to add a class to that paragraph’s parent element.
We don’t necessarily know what that parent element will be, so we’re unable
to target the parent element directly. In jQuery we can use the parent() object
to get to it:

$("p.error").parent().addClass("error-dialog");

Another major benefit is that this is highly readable at a glance: “find any
paragraph(s) with the class ‘error’ and add the class ‘error-dialog’ to their
parent(s).”

But What If I Don’t Know How to Write Scripts?
It takes time to learn JavaScript, and it may be a while before you can write
scripts on your own. But not to worry. If you do a web search for what you
need (for example, “jQuery image carousel” or “jQuery accordion list”),

Part IV. JavaScript for Behavior

JavaScript Libraries

636

there’s a very good chance you will find lots of scripts that people have cre-
ated and shared, complete with documentation on how to use them. Because
jQuery uses a selector syntax very similar to CSS, it makes it easier to custom-
ize jQuery scripts for use with your own markup.

BIG FINISH

In all of two chapters, we’ve gone from learning the very basics of variables to
manipulating the DOM to leveraging a JavaScript library. Even with all we’ve
covered here, we’ve just barely begun to cover all the things JavaScript can do.

The next time you’re looking at a website and it does something cool, view
the source in your browser and have a look around for the JavaScript. You
can learn a lot from reading and even taking apart someone else’s code. And
remember, there’s nothing you can break with JavaScript that can’t be undone
with a few strokes of the Delete key.

Better still, JavaScript comes with an entire community of passionate devel-
opers who are eager to learn and just as eager to teach. Seek out like-minded
developers and share the things you’ve learned along the way. If you’re stuck
on a tricky problem, don’t hesitate to seek out help and ask questions. It’s rare
that you’ll encounter a problem that nobody else has, and the open source
developer community is always excited to share the things they’ve learned.
That’s why you’ve had to put up with me for two chapters, as a matter of fact.

TEST YOURSELF

Just a few questions for those of you playing along at home. If you need some
help, peek in Appendix A for the answers.

1.	 Ajax is a combination of what technologies?

2.	 What does this do?

document.getElementById("main")

3.	 What does this do?

document.getElementById("main").getElementsByTagName("section");

22. Using JavaScript

Test Yourself

637

4.	 What does this do?

document.body.style.backgroundColor = "papayawhip"

5.	 What does this do? (This one is a little tricky because it nests functions,
but you should be able to piece it together.)

document
 .getElementById("main")
 .appendChild(
 document.createElement("p")
 .appendChild(
 documentCreateTextNode("Hey, I'm walking here!")
)
);

6.	 What is the benefit of using a JavaScript library such as jQuery?

a.	 Access to a packaged collection of polyfills

b.	 Possibly shorter syntax

c.	 Simplified Ajax support

d.	 All of the above

Part IV. JavaScript for Behavior

Test Yourself

638

V
WEB IMAGES

IN THIS CHAPTER

Where to get images

PNG, JPEG, GIF, and WebP

Image and screen resolution

Web image production strategy

How to make favicons

Unless you plan to publish text-only sites, chances are you’ll need images. For
many of you, that might mean getting your hands on an image-editing pro-
gram for the first time and acquiring some basic graphics production skills.
If you are a seasoned designer, you may need to adapt your style and process
to make graphics that are appropriate for web delivery.

In Chapter 7, Adding Images, we covered the basics of embedding images in
the HTML document, including the difference between bitmapped graphic
formats and the vector-based SVG. This chapter covers the fundamentals of
the images themselves. We’ll start by reviewing sources for imagery. From
there, we’ll get to know the file formats available for web graphics to help you
decide which one to use. We’ll look at image resolution and how it relates to
the resolution of the screens on which they appear, including high-density
displays. I’ll also walk you through a series of questions that will help you
form a strategy for creating images for your site. Finally, the chapter wraps up
with a quick Favicon how-to.

IMAGE SOURCES

You need to have an image to save an image, so before we jump into the
nitty-gritty of file formats, let’s look at some ways to get images in the first
place. There are many options: from scanning, shooting, or illustrating them
yourself, to using available stock photos and clip art, to just hiring someone
to create images for you.

Create Your Own Images
In most cases, the most cost-effective way to generate images for your site is
to make your own from scratch. The added bonus is that you know you have

WEB IMAGE BASICS 23
CHAPTER

641

full rights to use the images (we’ll address copyright in a moment). Designers
may generate imagery with scanners, cameras, or a drawing program:

Photographs

You can capture the world around you and pipe it right into an image-
editing program. Depending on the type of imagery you’re after, you may
get sufficient quality with the camera in your phone. Keep in mind that
it’s always a good idea to create high-resolution versions of your images
and save smaller copies as needed.

Electronic illustration

If you have illustration skills, you can make your own image in a drawing
or photo-editing application. Every designer has her own favorite tools
and techniques. For logos and line drawings, I recommend starting with
a vector drawing program like Adobe Illustrator, Corel Draw, or Sketch,
and then saving to a web-appropriate copy as needed.

Scanning

Scanning is a great way to collect source material. You can scan almost
anything, from flat art to small 3-D objects. Beware, however, the tempta-
tion to scan and use found images. Keep in mind that most images you
find are probably copyright-protected and may not be used without per-
mission, even if you modify them considerably. See the “Scanning Tips”
sidebar for some how-to information.

Stock Photography and Illustrations
If you aren’t confident in your design skills, or you just want a head start
with some fresh imagery, there are plenty of collections of ready-made photos,
illustrations, buttons, animations, and textures available for sale or for free.
Stock photos and illustrations generally fall into two broad categories: rights-
managed and royalty-free.

Rights-managed
Rights-managed means that the copyright holder (or a company represent-
ing them) controls who may reproduce the image. In order to use a rights-
managed image, you must obtain a license to reproduce it for a particular
use and for a particular period of time. One of the advantages to licensing
images is that you can arrange to have exclusive rights to an image within a
particular medium (such as the web) or a particular business sector (such as
the health-care industry or banking). You also know that the source of the
image is verified (i.e., it is not stolen).

On the downside, rights-managed images get quite pricey. Depending on the
breadth and length of the license, the price tag may be many thousands of
dollars for a single image. If you don’t want exclusive rights and you want to

S CA N N I N G T I PS

When you’re scanning sources for use
on the web, these tips will help you
create images with better quality:

•	 Because it is easier to maintain
image quality when resizing
smaller than resizing larger,
scan the image larger than you
actually need. This gives you
more flexibility for creating other
sizes later. Issues of image size are
discussed in more detail in the
“Image Size and Resolution”
section later in this chapter.

•	 Scan black-and-white images
in grayscale (8-bit) mode, not in
black-and-white (1-bit, or bitmap)
mode. This enables you to make
adjustments in the midtone gray
areas once you have sized the
image to its final dimensions and
resolution. If you really want only
black-and-white pixels, convert the
image as the last step.

•	 If you are scanning an image that
has been printed, you need to
eliminate the dot pattern that
results from the printing process.
The best way to do this is to
apply a slight blur to the image
(in Photoshop, use the Gaussian
Blur filter), resize the image
slightly smaller, and then apply a
sharpening filter. This will eliminate
those pesky dots. Make sure you
have the rights to use the printed
image, too, of course.

Part V. Web Images

Image Sources

642

use the image only on the web, the cost is more likely to be a few hundred
dollars, depending on the source.

Getty Images (gettyimages.com) is the largest stock image house for rights-
managed images, having acquired most of its competitors over recent years. It
also offers royalty-free images, which we’ll look at next.

Royalty-free
If you don’t have a four-digit or even three-digit budget for images, consider
using royalty-free artwork for which you don’t need to pay a licensing fee.
Royalty-free artwork is available for a one-time fee that gives you unlimited
use of the image, but you have no control over who else is using it. Royalty-
free images are available from the top-notch professional stock houses such
as Getty Images for as little as 50 bucks for a small image appropriate for the
web (like the blissed-out kangaroo in FIGURE 23-1), and from other sites for
less (or even for free).

One of my favorite sources is iStockPhoto (istockphoto.com). They have a
huge collection of images starting around US$10 a pop. You can buy one
image at a time or get a subscription plan.

Creative Commons
Another way to get free images is to find photos and drawings released by the
artists under a Creative Commons license. There are a few types of Creative
Commons licenses, so be sure to check the terms. Some artists make their
work free to use however you want; some artists ask only that you give them
credit (“attribution-only”); and some limit the image use to non-commercial
purposes.

There are a number of resources for images released on a Creative Commons
license, but these are three good first stops:

Flickr Creative Commons (www.flickr.com/creativecommons)

The photo-sharing service Flickr is my first stop for finding photos
released on a Creative Commons license. The quality varies, but I can
usually find what I need (such as the red panda in FIGURE 16-28) for the
cost of a photo credit.

Unsplash (unsplash.com)

Unsplash provides free images of top-notch quality, “gifted by the world’s
most generous community of photographers.” It is the source of many of
the food images I use in this book.

Wikimedia Commons (commons.wikimedia.org/wiki/Main_Page)

A sister site to Wikipedia, Wikimedia Commons is a vast resource of mil-
lions of Creative Commons and public domain images and other media
files. They are contributed by the community and free to use.

FIGURE 23-1.   One blissed-out
kangaroo, an example of a royalty-free
image I got on Gettyimages.com for
your amusement.

F U RT H E R R E A D I N G

For more information about
Creative Commons licenses, go to
creativecommons.org/licenses/.

23. Web Image Basics

Image Sources

643

Clip Art and Icons
Clip art refers to collections of royalty-free illustrations, animations, buttons,
and other doodads that you can copy and paste for a wide range of uses.
There are a number of resources online, and the good news is that some
of these sites give graphics away for free, although you may have to suffer
through a barrage of pop-up ads. Others charge a membership fee, anywhere
from $10 to $200 a year. The drawback is that a lot of them are poor quality
or kind of hokey (but then, “hokey” is in the eye of the beholder). The follow-
ing are two sites to get you started:

Clipart.com (www.clipart.com)

This service charges a membership fee, but is well organized and tends to
provide higher-quality artwork than the free sites.

#1 Free Clip Art (www.1clipart.com)

Another no-frills free clip-art site.

It is also easy to find icons for web pages and applications for free or for a low
price (a simple search for “free icons” will do the trick). Here are two resources
to start you off:

The Noun Project (thenounproject.com)

The Noun Project collects and organizes classic, one-color icons from
around the world. Dozens of collections are available for free, and a yearly
subscription fee gives you access to everything.

Icon Finder (www.iconfinder.com)

This is a good resource for full-color icons of all styles. Some are free, but
most are available via a monthly subscription plan. Be sure to check the
terms of the Creative Commons license, which varies by icon set.

Hire a Designer
Finding and creating custom images takes time and particular talents. If
you have more money than either of those things, consider hiring a graphic
designer, photographer, or illustrator to generate the imagery for your site for
you. The advantage to hiring a professional is that you get custom images
tailored to your message or brand, not just generic stock images. If you start
with high-quality original images, you can use the skills you learn in this
book to produce web versions as you need them.

MEET THE FORMATS

Once you have your hands on some images, you need to get them into a for-
mat that will work on a web page. There are dozens of graphics file formats
out there in the world. For example, if you use Windows, you may be familiar

Part V. Web Images

Meet the Formats

644

with BMP graphics, or if you are a print designer, you may commonly use
images in TIFF and EPS format. On the web, bitmapped (pixel-based) images
can be saved in the following formats (see Note): JPEG (“jay-peg”), PNG
(“ping” or “Pee-en-gee”), GIF (pronounced “giff” or “jiff”), and WebP (I’ve
seen it referred to as “weppy,” but “web-p” sounds fine to me).

There is also the vector format SVG (Scalable Vector Graphics) that we looked
at it in terms of markup back in Chapter 7. SVG is a bit of an oddball in that
it is generated by an XML text file. It is so unique, in fact, that I’ve given it its
own chapter: Chapter 25, SVG. This chapter and the next focus primarily on
the bitmap formats.

When you’re saving an image asset for a web page, it is important that it has
the best image quality at the smallest file size. The first step to achieving
those goals is making sure you save the image in the most appropriate format
based on the image type. This section tackles terminology and digs deep into
the features and functions of GIF, JPEG, PNG, and WebP. Knowing how they
work will help you make the best format decision.

The Photogenic JPEG
One of the most popular graphic formats on the web is JPEG, which stands
for Joint Photographic Experts Group, the standards body that created it.

JPEG is the best format to use if your image is a photograph or contains soft,
smooth color transitions (FIGURE 23-2). The JPEG compression scheme loves
gradient and blended colors, but doesn’t work especially well on flat colors
or hard edges.

FIGURE 23-2.   The JPEG format is ideal for photographs (color or grayscale) or any
image with subtle color gradations.

NOTE

The WebP format is so new as of this writ-
ing that few browsers and image soft-
ware programs support it. Still, I include
it here because it is a promising option
once support improves.

Name Files Properly
Be sure to use the proper file
extensions for your image files:

•	 GIF files end with the .gif suffix.

•	 JPEG files use the .jpg (or the less
common .jpeg) suffix.

•	 PNG files end in .png.

•	 WebP files end in .webp.

•	 SVG files end in .svg.

JPEG is the best format
to use if your image is a
photograph or contains
soft, smooth color
transitions.

23. Web Image Basics

Meet the Formats

645

24-bit Truecolor images
JPEGs are capable of displaying millions of colors in the RGB color space
(also referred to as the Truecolor space; see Note). This is also known as
24-bit color because each of the three color channels (Red, Green, and Blue)
is defined with 8 bits of information.

Displaying 24-bit color is one aspect that makes JPEGs ideal for photo-
graphs—they have all the colors you’ll ever need. By comparison, other for-
mats such as PNG-8 and GIF use a palette that limits the number of colors
in the image to 256 total (we’ll talk about why in a moment).

Lossy compression
The JPEG compression scheme is lossy, which means that some of the
image information is thrown out in the compression process (see Warning).
Fortunately, this loss is not discernible for most images at most compression
levels. When an image is compressed with high levels of JPEG compression,
you begin to see color blotches and squares (referred to as artifacts) that result
from the way the compression scheme samples the image (FIGURE 23-3).

 Original Maximum compression

FIGURE 23-3.   JPEG compression discards image detail to achieve smaller file sizes.
At high compression rates, image quality suffers, as shown in the image on the right.

In most programs, you can control how aggressively you want the image to
be compressed with a Quality setting when saving or exporting. This involves
a trade-off between file size and image quality. The more you compress the
image (for a smaller file size), the more the image quality suffers. Conversely,
when you maximize quality, you also end up with larger files. The best com-
pression level is based on the particular image and your objectives for the site.

Progressive JPEGs
Progressive JPEGs display in a series of passes, starting with a low-resolution
version that gets clearer with each pass, as shown in FIGURE 23-4. In some
image editing programs, you can specify the number of passes it takes to fill
in the final image (3, 4, or 5).

NOTE

RGB color is explained in Chapter 13,
Colors and Backgrounds.

WARNIN G

Cumulative Image
Quality Loss
Be aware that once image quality is lost
in JPEG compression, you can never get
it back again. For this reason, you should
avoid resaving a JPEG as a JPEG. The
image loss is cumulative—in other words,
you lose image quality every time.

It is better to hang on to the original
image and export JPEG copies as need-
ed. That way, if you need to make a
change, you can go back to the original
and do a fresh save or export.

Part V. Web Images

Meet the Formats

646

FIGURE 23-4.   Progressive JPEGs render in a series of passes.

The advantage to using progressive JPEGs is that viewers can get an idea
of the image before it downloads completely. Also, making a JPEG progres-
sive usually reduces its file size slightly. The disadvantage is that progressive
JPEGs take more processing power, which can make them problematic for
low-end mobile devices. Despite that minor hitch, the best practice is to make
all JPEGs progressive, not only for the smaller file size, but because they
appear on the page faster, improving perceived performance.

The Powerful PNG
The PNG (Portable Network Graphics) format was designed to replace GIF
for online purposes and TIFF for image storage and printing. A PNG can be
used to save many image types: 8-bit indexed color, 24- and 48-bit RGB color,
and 16-bit grayscale, but for the purposes of web production, you need to
choose only between 8-bit (PNG-8) and 24-bit (PNG-24).

Despite getting off to a slow start in terms of browser support, PNGs have
become developers’ first choice in web graphics formats, and for good reason.
PNGs offer an impressive lineup of features:

•	 Lossless compression

•	 Multiple-level (alpha) or simple on/off (binary) transparency

•	 Progressive display in multiple passes

•	 Embedded gamma (brightness) adjustment information

•	 Embedded text for attaching information about the image

PNG-8
PNG-8 is good for images that have flat colors, such as logos, line art, and
icons (FIGURE 23-5). You can save photographs or textured images too, but
they won’t be saved as efficiently, resulting in larger file sizes. However, PNG-8
does work nicely for images with a combination of small amounts of photo-
graphic imagery and large, flat areas of color. The two key characteristics of
PNG-8s are that they use an indexed color model and they support transpar-
ency. These concepts are worth exploring a bit deeper.

The Wide World of JPEG
The Joint Photographic Experts
Group has been busy since releasing
the original JPEG format we know
and love. They have released several
newer JPEG standards (JPEG 2000,
JPEG XR, JPEG-LS, JPEG XS, and
others) that aim to keep pace with
changing image requirements in
all arenas, from digital cameras to
medical imaging. Newer formats
include features such as lossless
compression, the ability to store
16-bit information in the RGB color
channels, the CMYK color model, and
lightweight implementations that are
easier to encode and decode. Read
more about them at JPEG.org.

Grayscale PNGs
PNG supports 16-bit grayscale
images—that’s as many as 65,536
shades of gray (216), enabling
black-and-white photographs
and illustrations to be stored with
enormous subtlety of detail, although
they are not appropriate for the web.
In addition to the large file sizes
required to store that much image
information, that level of subtlety
in grays would be lost on most
computer monitors.

23. Web Image Basics

Meet the Formats

647

8-bit indexed color

I mentioned earlier that PNG-8 files contain a maximum of 256 colors. Let’s
talk about why.

PNG-8 files are indexed color images that contain 8-bit color information
(they can also be saved at lower bit depths). Let’s decipher that statement one
term at a time. First, 8-bit means PNG-8s can contain up to 256 colors—the
maximum number that 8 bits of information can define (28 = 256). Lower
bit depths result in fewer colors and also reduce file size. For example, 4-bit
images contain only 16 colors (24 = 16).

Indexed color means that the set of colors in the image, its palette, is stored
in a color table (also called a color map). Each pixel in the image contains a
numeric reference (or index) to a position in the color table. Let’s make this
clear with a simple demonstration. FIGURE 23-6 shows how a 2-bit (4-color)
indexed color image references its color table for display. For 8-bit images,
there are 256 slots in the color table.

Image-editing programs generally allow you to view the color table for an
image. In Photoshop, you can view (and even edit) the color table by select-
ing Image → Mode → Color Table (FIGURE 23-7). In GIMP, go to Windows →
Dockable Dialogs → Color Map (the image must be converted to indexed color
mode first).

Most source images (scans, illustrations, photos, etc.) start out in RGB for-
mat, so they need to be converted to indexed color in order to be saved as a
PNG-8 or GIF. When an image goes from RGB to indexed mode, the colors in
the image are reduced to a palette of 256 colors or fewer, a process known as
quantization. For most programs, including Photoshop, the conversion takes
place when you save or export the image. Some image-editing programs, like

NOTE

Because they are simple illustrations,
the images in FIGURE 23-5 could also
have been drawn with vectors and saved
in SVG format.

FIGURE 23-5.   The PNG-8 format is efficient at compressing graphical images
comprising mainly flat colors and hard edges.

NOTE

GIFs are also 8-bit indexed color images,
so this discussion of bit depth and pal-
ettes applies to GIFs as well.

Part V. Web Images

Meet the Formats

648

1 2 3 4

Color table

The pixels in an indexed color
image contain numerical
references to the color table for
the image.

The color table
matches numbers to
RGB color values. This
is the map for a 2-bit
image with 4 colors.

The image displays
with the colors in
place.

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 3 3 3 3 3 1 1

1 1 3 3 3 3 3 1 1

1 3 3 2 2 2 3 3 1
1 3 2 3 3 3 2 3 1
1 3 3 3 4 3 3 3 1
1 3 3 2 3 2 3 3 1

FIGURE 23-6.   A 2-bit image and its color table.

Photoshop CC (2018)

Image reduced to 64 indexed colors

GIMP

FIGURE 23-7.   The color tables in Photoshop and GIMP display the 64-pixel colors
used in the image.

23. Web Image Basics

Meet the Formats

649

GIMP, may require you to convert the image to indexed color manually first,
and then export the PNG-8 as a second step.

In either case, you might be asked to select a palette for the indexed color
image. The sidebar “Common Color Palettes” outlines the various palette
options available in the most popular image tools. It is recommended that
you use Selective or Perceptual in Photoshop and Optimized Median Cut in
PaintShop Pro for the best results for most image types. In GIMP, “Generate
optimum palette” should do the trick, although it also provides a long list of
crazy custom palettes you could use (Coldfire, Plasma, Paintjet, and Bears, to
name just a few).

Transparency

You can make parts of a PNG-8 image fully transparent so that the back-
ground image or color shows through. Although all bitmapped graphics are
rectangular by nature, transparency creates the illusion that the image has a
more interesting shape (FIGURE 23-8). In the most commonly supported type
of PNG-8 transparency, pixels are either fully transparent or fully opaque,
also known as binary transparency.

PNG-8 files are also capable of storing multiple levels of transparency in
their indexed color maps, allowing soft edges and shadows to blend in with
the background. In the past, although browsers supported PNG-8 with vari-
able levels, it was a challenge to find an image-editing tool that could create
them. Today, you can create transparent PNG-8s right from Photoshop CC,
and there are a number of tools for converting a PNG-24 to PNG-8 while
maintaining its transparency levels.

Common Color Palettes
All 8-bit indexed color images, like PNG-8 and GIF, use palettes
to define the colors in the image, and there are several standard
palettes to choose from. Some are methods for producing a
custom palette based on the colors in the image. Others apply a
preexisting palette to the image.

Exact. Creates a custom palette out of the actual colors in the
image if the image already contains fewer than 256 colors.

Adaptive. Creates a custom palette using the most frequently
used pixel colors in the image. It allows for color-depth
reduction while preserving the original character of the image.

Perceptual (Photoshop only). Creates a custom color table
by giving priority to colors for which the human eye has greater
sensitivity. Unlike Adaptive, it is based on algorithms, not just
a pixel count. It generally results in images with better color
integrity than Adaptive palette images.

Selective (Photoshop only). Similar to Perceptual, but it gives
preference to areas of broad color.

Web Adaptive, Restrictive, or Web216. Creates a palette
of colors exclusively from a palette of 216 colors that do not
dither on 8-bit monitors. Because 8-bit monitors are a thing of
the past, this palette (known as the “web palette”) is no longer
relevant or recommended.

Custom. Allows you to load a palette that was previously saved
and apply it to the current image. Otherwise, it preserves the
current colors in the palette.

System (Windows or Macintosh). Uses the colors in the
specified system’s default palette.

Optimized Median Cut (Paint Shop Pro Photo only). Reduces
the image to a few colors using something similar to an
Adaptive palette.

Optimized Octree (Paint Shop Pro Photo only). Is
recommended if the original image has just a few colors and
you want to keep those exact colors.

FIGURE 23-8.   Transparency allows
the striped background to show
through the bottom image.

Part V. Web Images

Meet the Formats

650

We’ll look at both binary and variable transparency as it applies to PNG-8
files in the “Working with Transparency” section in Chapter 24, Image Asset
Production.

PNG-24
A PNG can also be saved as a Truecolor image, with each channel (red, green,
and blue) defined by 8- or 16-bit information, resulting in 24- or 48-bit RGB
images, respectively. In many graphics programs, 24-bit RGB PNGs are identi-
fied as PNG-24. It should be noted that 48-bit images, while great for storage
of high-quality originals, are useless for the web becuse of file size, and even
24-bit images may not be the best choice. Like JPEG, PNG-24 is good for
photographic images where you want the maximum color range.

The two key characteristics of PNG-24s are that they are “lossless” and they
can contain multiple levels of transparency. Let’s dig into that a bit deeper.

Lossless compression

We learned that in JPEG’s lossy compression algorithm, image data is tossed
out in order to reduce the size of the file. PNG-24 files are lossless, meaning
nothing is sacrificed. Because it is a lossless format, a 24-bit PNG is nearly
always significantly larger than a lossy JPEG of the same image. For that rea-
son, JPEGs are the best choice for photos on the web.

However, PNG-24 was the first format to include a killer feature that has
made it one of the web’s most popular formats, and that is…

Alpha transparency

PNG-24 files can contain multiple levels of transparency, commonly referred
to as alpha transparency. They do this by storing 8-bit transparency informa-
tion (256 levels) in a fourth channel, called the alpha channel.

NOT E

You sometimes see PNG-24 with alpha transparency referred to as a 32-bit PNG because
there are 8 bits for each of four channels: red, green, blue, and alpha.

FIGURE 23-9 shows the same PNG against two different background images.
The orange circle is entirely opaque, but the drop shadow contains multiple
levels of transparency, ranging from nearly opaque to entirely transparent.
The multiple transparency levels stored in the PNG allow the drop shadow to
blend seamlessly with any background. The ins and outs of alpha transparen-
cy will be addressed in the section “Working with Transparency” in Chapter 24.

The two key characteristics
of PNG-24s are that they
are “lossless” and they can
contain multiple levels of
transparency.

FIGURE 23-9.   Alpha-channel
transparency allows multiple levels
of transparency, as shown in the drop
shadow around the orange circle PNG.

23. Web Image Basics

Meet the Formats

651

Additional features
There are a few other features that make PNG a Pretty Nifty Graphic format
(see what I did there?).

Gamma correction

Gamma refers to the brightness setting of a monitor. PNGs can be
tagged with information regarding the gamma setting of the environ-
ment in which they were created. When implemented in the image and
the browser, the PNG retains its intended brightness and color intensity.
Unfortunately, this feature is not consistently supported. In fact, image-
optimizing tools typically remove the chunk of code that controls gamma.
With poor browser support for gamma anyway, nothing is lost but unnec-
essary bytes.

Embedded color profile information

The PNG format can also store the ICC color profile information of the
system it was created on. In fact, if you are finding that it is difficult to
match an RGB value in a PNG to the same RGB value in a background
color, the embedded color profile is to blame. The block of code for stor-
ing ICC profiles also generally gets tossed by image optimizers.

Embedded text

PNGs also have the ability to store strings of text. This is useful for per-
manently attaching text to an image, such as copyright information or a
description of what is in the image. Ideally, the meta-information in the
PNG would be accessible via right-clicking the graphic in a browser, but
this feature has never been implemented.

Progressive display (interlacing)

PNGs can also be coded for interlaced display, revealing the image in a
series of seven passes, filling in the image both horizontally and vertically.
Interlacing adds to the file size and is usually not necessary, so to keep
files as small as possible, turn interlacing display off. I’m finding that
most tools these days don’t give you the option to turn it on anyway.

In conclusion…
Before we move on, here’s the skinny on what you should know about PNGs:

•	 If you have a bitmapped image with areas of flat color, with or without
transparent areas, PNG-8 is the most appropriate format as it will likely
result in the smallest file size.

•	 If you need variable levels of transparency, regardless of the image type,
PNG-24 may be the only option based on the tools you are working with;
however, the file will be smaller as a PNG-8.

•	 If you have a photographic image with no transparency, you could use
PNG-24, but JPEG will almost always result in a smaller file.

NOTE

Safari now supports ICC color pro-
files. This article on CSS Tricks by Chris
Coyier provides a good overview:
css-tricks.com/color-rendering-differ-
ence-firefox-vs-safari/.

Animated PNGs
The APNG (Animated PNG) format
is an extension to PNG that adds the
ability to animate frames. In addition
to 8-bit animations, it includes
support for animated 24-bit images
with alpha transparency. APNG is
supported by current versions of
Chrome and both desktop and
mobile versions of Firefox, Safari,
and Opera. No versions of Internet
Explorer or MS Edge support APNG.
Once they add support and old
versions fall out of use, the APNG will
certainly give animated GIFs a run for
their money.

Part V. Web Images

Meet the Formats

652

Ol’ Grandpa GIF
The GIF (Graphic Interchange Format) file was the first image format sup-
ported by web browsers and for a while, it was the only file format that would
display in a browser window. (I know. I was there.) Although not designed
specifically for the web, it was adopted for its versatility, small file size, and
cross-platform compatibility.

These days, GIF is synonymous with “animated viral meme,” and, as the only
well-supported web image format capable of animation, the GIF format still
has a place at the table (at least until APNG and animated WebP have more
thorough support). For still images, however, GIF has lost ground to the PNG
format, which can do everything GIF can do and usually better. Furthermore,
newer graphics tools are simply omitting the option to save files in GIF for-
mat. Our old friend GIF may be heading for retirement. That’s OK…we just
fight about how to pronounce it anyway.

That said, let’s quickly look at what makes GIF tick.

8-bit indexed color
Like PNG-8, GIF is an 8-bit indexed color format. You can save a GIF at even
lower bit depths, resulting in fewer colors and smaller file sizes.

GIF compression
GIF compression is lossless, although some image information is lost when
the RGB image is converted to indexed color. It uses a compression scheme
(called “LZW” for “Lempel-Ziv-Welch”) that takes advantage of repetition in
data. When it encounters a string of pixels of identical color, it compresses
them into one data description (FIGURE 23-10). This is why images with large
areas of flat color condense better than images with textures. PNG uses a
similar like-color compression scheme.

Transparency
GIF images use binary transparency, in which pixels are either entirely
opaque or transparent.

Interlacing
Interlacing makes a GIF display in a series of passes, like progressive JPEGs.
Each pass is clearer than the pass before, until the image is fully rendered
in the browser window (FIGURE 23-11). Over a fast connection, these effects
(interlacing or image delays) may not be perceptible. However, over slow
connections, interlacing large images may be a way to provide a hint of the
image to come.

NOTE

You may see GIF listed as “Compuserve
GIF” because Compuserve invented the
format. The patent on GIF which was
owned by Unisys expired in 2006.

“14 blue”

“1 blue, 1 aqua, 2 light aqua...” (and so on)

In an image with gradations of color,
information must be saved for every pixel
in the row. The longer description means
a larger file size.

GIF compression stores repetitive pixel
colors as a single description.

FIGURE 23-10.   A simplified
demonstration of the LZW compression
scheme. What actually happens in
technical terms is more complicated,
of course, but this example provides a
good mental model.

FIGURE 23-11.   Interlaced GIFs
display in a series of passes, each
clearer than the pass before.

23. Web Image Basics

Meet the Formats

653

Animation
Another feature built into the GIF file format is the ability to display simple
animations (FIGURE 23-12). Many of the spinning, blinking, fading, or other-
wise moving ad banners you see are animated GIFs, and they certainly show
up in your social media feeds.

FIGURE 23-12.   All the frames of this simple animation are contained in one GIF file.

Animated GIFs contain a number of animation frames, which are separate
images that, when viewed together quickly, give the illusion of motion or
change over time, kind of like a flipbook. All of the frames are stored within
a single GIF file along with settings that describe how they should be played.
Settings include whether and how many times the sequence repeats, how
long each frame stays visible (frame delay), the manner in which one frame
replaces another (disposal method), whether the image is transparent, and
whether it is interlaced.

There are many tools for creating animated GIFs (just do a quick search).
Many are web apps that you can use right in the browser or mobile device,
and many are free. You can also make an animated GIF in Photoshop by using
the Timeline window and clicking Create Frame Animation.

The Performant WebP
There’s a new image format in town, and it’s here to beat up all the other
formats. Google calls its open source WebP format “the Swiss Army knife of
image formats.” It has virtually all the features we’ve looked at in JPEG, PNG,
and GIF at sizes that are typically 25–35% smaller:

Lossless or lossy compression

WebP can be saved in a lossy format (like JPEG) or lossless (like PNG).
Its lossy compression scheme uses the same encoding used in the VP8
video codec.

Alpha transparency

WebP has an alpha channel for multiple levels of transparency, like PNG-
24. Alpha transparency can be used with either the lossless (PNG-like)
image compression or—and this is special—lossy (JPEG-like) compres-
sion. It is the only format that can combine a lossy RGB channel with a

F U N FACT

WebP is a “sister project” to the open
source WebM video format.

Part V. Web Images

Meet the Formats

654

lossless alpha channel, resulting in a file that is 60–70% smaller than a
PNG-24 of the same image.

Animation

It is also possible to animate WebP images. Sorry GIF, there goes your
advantage.

Metadata

Like PNG, the WebP container can store metadata right in its code.

Color profile

The WebP container can also embed color profile (ICC) information.

Support
Here’s where we get to the “sad trombone” portion of the story. Because WebP
is new, it has sparse browser support. As of this writing, it is supported in
only newer Chrome, Android, Opera, Vivaldi, and Samsung browsers. But
that doesn’t mean you can’t use it! The modern web developer knows it’s a
good approach to supply the best (in this case, fastest) experience to browsers
that can handle it and the next best thing to the rest.

You can use Modernizr (covered in Chapter 19, More CSS Techniques) to detect
WebP in its lossy, lossless, alpha-channel, and animated varieties. You can also
use the picture element to deliver a .webp image to browsers that can use it
and a JPEG as a fallback, as we saw back in Chapter 7:

<picture>
 <source type="image/webp" srcset="pizza.webp">

</picture>

It is also common to have the server make the call and deliver WebP images
when it detects that the browser supports them (based on the “accept encod-
ing header”). Backend solutions are beyond the scope of this discussion, but
it’s an option you should be aware of.

Creating WebP files
As with browsers, it will take a while for WebP to find its way into image cre-
ation tools. You can already make WebP files in Sketch, Pixelmator, and a few
other graphics programs. You will find a current list of supporting programs
on the WebP Wikipedia page (en.wikipedia.org/wiki/WebP). There is word that
full WebP support will be added to GIMP in version 2.10, which has not yet
been released as of this writing.

If you use Adobe Photoshop, there are two plug-ins that let you save to
WebP format. The first, by Toby Thain, is at telegraphics.com.au/sw/​product/​
WebPFormat, and a newer one by Brendan Bolles is available atgithub.com/
fnordware/AdobeWebM). Once you install the plug-in, you’ll see WebP in the
list of formats you can save to.

23. Web Image Basics

Meet the Formats

655

Finally, you may also use the cwebp command-line tool (see, they’re not just
for coders!) to convert PNG and JPEG images to WebP format. The corre-
sponding dwebp command converts WebP to PNG.

Where to learn more
WebP has an official site at developers.google.com/speed/webp, where you
will find detailed documentation, an explanation of its compression schemes,
updated lists of supporting tools and browsers (including links to download
the aforementioned plug-ins and command-line tools), and a gallery of sam-
ples. It’s definitely worth reading if you enjoy geeking out on image formats.
WebP is certainly worth keeping an eye on.

Choosing the Best Bitmapped Format
The first step to making quality web graphics that maintain quality and
download quickly is choosing the right format. TABLE 23-1 provides a good
starting point. Because of poor support for WebP as of this writing, I will
stick with the supported bitmap formats PNG, JPEG, and GIF here.

Note that SVG should be your first choice for illustrations and icons with flat
colors. SVG may also result in smaller files for images with a combination of
flat colors and a small areas of bitmapped image, gradients, or effects like
drop shadows. You’ll learn all about them in Chapter 25, but for now, TABLE

23-1 should help you sort out the bitmapped file options.

That concludes our exploration of image formats. I think we just took the
very long way around to say, “if it’s a photo, use JPEG, and if it’s mostly flat
colors, use PNG-8,” but I think it’s important to understand why.

TABLE 23-1.   Choosing the best bitmapped (raster) file format

If your image... use... because...

Is graphical, with flat colors 8-bit PNG or GIF PNG and GIF excel at compressing flat color.

Is a photograph or contains
graduated color

JPEG JPEG compression works best on images with blended colors. Because it is
lossy, it generally results in smaller file sizes than 24-bit PNG.

Is a combination of flat and
photographic imagery

8-bit PNG or GIF Indexed color formats are best at preserving and compressing flat color
areas. The pixelation (dithering) that appears in the photographic areas as
a result of reducing to a palette is usually not problematic.

Requires transparency GIF or PNG-8 Both GIF and PNG allow on/off transparency in images.

Requires multiple levels of
transparency

PNG-24 or PNG-8 Only PNG supports multiple levels of transparency. PNG-24s with alpha
transparency have a much larger file size, but it is easier to find tools to
create them. WebP also supports alpha transparency, and may be a better
option once it is better supported.

Requires animation GIF GIF is the only supported format that can contain animation frames.
APNG and WebP may be better options in the future.

Part V. Web Images

Meet the Formats

656

IMAGE SIZE AND RESOLUTION

There is a new term floating around to describe folks who design web pages
and apps: screen designer. I like it. As the web and smartphones evolve, it is
clear that the requirements and concerns of designing for screens are distinct
from designing for print. As a web designer, you will need to be well versed
in how images display on screens, so let’s zoom in.

One thing that GIF, JPEG, PNG, and WebP images have in common is that
they are all bitmapped (also called raster) images. When you zoom in on a
bitmapped image, you can see that it is like a mosaic made up of many pixels
(tiny, single-colored squares). These are different from vector graphics that
are made up of smooth lines and filled areas, all based on mathematical for-
mulas. FIGURE 23-13 illustrates the difference between bitmapped and vector
graphics.

Bitmapped images are made up of a grid
of variously colored pixels, like a mosaic.

Vector images use mathematical
equations to define shapes.

FIGURE 23-13.   Bitmapped and vector graphics.

Image Resolution
Image-editing programs keep track of how many pixels an image has per
inch. This pixel per inch (ppi) measurement is the resolution of the digital
image. When an image is printed on paper, higher ppi means sharper, higher
quality because there is more information packed into each square inch (see
the “DPI Versus PPI” sidebar). In the print world, image resolutions of 300ppi
and 600ppi are common.

On the web, however, the notion of “inches” is irrelevant because the final dis-
play size of the image is dependent on the resolution of the screen on which
it is displayed (FIGURE 23-14).

If we’re throwing out “inches,” we have to toss out “pixels per inch” as well.
The only thing we know for sure is that the graphic in FIGURE 23-14 is 72
pixels across, and it will be twice as wide as a graphic that is 36 pixels across.
Here’s the bottom line: web images are measured in number of pixels, and the
ppi at which they are created is irrelevant.

Web images are
measured in number of
pixels. The resolution
(ppi) at which they are
created is not important.

DPI Versus PPI
The resolution of digital images is
measured in pixels per inch (ppi).
When it comes to print, however,
printers and printed pages are
measured in dots per inch (dpi),
which describes the number of
printed dots in each inch of the
image. The more ink dots per inch,
the sharper the image. The dpi of the
printed image may or may not be the
same as the ppi for the digital image.

In your travels, you may hear
the terms “dpi” and “ppi” used
interchangeably (albeit incorrectly),
but now you know the difference.

23. Web Image Basics

Image Size and Resolution

657

72 ppi

100 ppi

72 pixels

72
 p

ix
el

s

1
in

ch
1

in
ch

1 inch

Image appears one inch
by one inch on 72ppi

monitor.

Image appears smaller
on 100ppi monitor.

FIGURE 23-14.   Inches, and therefore “pixels per inch,” are not relevant for digital
media, where the size of an image is dependent on the resolution of the screen.

That said, it is the recommended practice to create images at 72ppi if you
are designing in a bitmap image editor like Photoshop or GIMP. This is the
default and keeps images at roughly the size they’ll appear on a desktop
monitor. You are welcome to create your images at a different ppi, but just
be sure to be consistent so images don’t get resized when you’re copying and
pasting from one file to another.

Screen Resolution
Screen displays are made up of pixels, so you can measure their resolution in
pixels per inch (ppi) as well. This is often referred to as the pixel density of
the screen (see Note).

The first Macintosh computers had 72ppi screens, which is pretty crude by
today’s standards. Early PCs used 96ppi. These days, standard desktop and
laptop monitors have resolutions of about 109 to 160ppi. Over the years,
manufacturers have been pushing resolution of displays higher and higher,
which leads us to...

High-density displays
From the 1980s to 2010, we could pretty much count on the pixels in our
images mapping one-to-one with the hardware pixels in the desktop monitor,
as shown in FIGURE 23-14. Of course, there were exceptions—browsers could
zoom images larger or smaller on command, and images were scaled down to
fit on smartphone screens—but that was the general rule.

There was a seismic shift in 2010, however, when Apple introduced the
iPhone 4 with its Retina display. The Retina display packed literally twice the
number of pixels into the same physical screen space, resulting in images that

NOTE

You may see ads for screens with “a
screen resolution of 2560 × 1440,” but
that’s not its “resolution,” that’s its screen
dimension. Resolution is a measure of
pixel density.

Part V. Web Images

Image Size and Resolution

658

were much sharper (remember, the more pixels per inch, the better the image
quality). The flip side of that, of course, was that the bitmapped images we
were already using got rendered by twice as many pixels, and ended up look-
ing a bit blurry (FIGURE 23-15).

Standard web images look
fuzzy on 2x displays. The
PNG is 350 pixels wide in an
img element set to 350px
wide.

Images look sharp on 2x
displays when they are
created at twice the final
layout size. This PNG is 700
pixels wide in an img
element set to 350px wide.

350 pixels

700 pixels

width: 350px;

width: 350px;

FIGURE 23-15.   Typical web graphics look slightly pixel-y on a 2x display.

The Retina screen was just the beginning. There are now both 2x and 3x
Apple devices (including tablets and laptops), and Android devices come in
with 1.5x, 2x, 3x, and even 4x standard pixel densities. As a result, an actual
device pixel is so small that images and text would be illegibly tiny if they
were mapped one to one. What to do?!

Reference pixels: PT and DP
If you think back to our responsive images discussion in Chapter 7, you’ll
remember that we’ve got a solution. High-resolution devices use a measure-
ment called a reference pixel that can be used for the purposes of layout.
Reference pixels go by different names and get calculated slightly differently
depending on the operating system, but they enable us to specify pixel sizes
without getting caught up in pixel densities.

Apple calls its reference pixels points (PT). One point on a standard 1x screen
equals one device pixel. On a 2x screen, a point is 2 × 2 device pixels, and on
3x screens, a point is 3 × 3 device pixels. They all look about the same size
because the high-resolution pixels are so incredibly small. Android calls its
reference pixels device-independent pixels, or DiP, or simply DP. They are
always equal to one pixel at 160ppi, but they work the same way.

You would probably use the terms PT and DP more when designing graphics
to be used in native smartphone apps. For the web, it is sufficient to do the

23. Web Image Basics

Image Size and Resolution

659

layout design in pixels and relevant CSS units. For example, you would say
that the image in FIGURE 23-15 has a width of 350 (reference) pixels in the
layout, even though the image file itself is 700 pixels wide for 2x displays.

The Upshot
At the end of the day, you can go about your business creating images at the
pixel dimensions you intend for the layout. For important images, however,
you may decide that you want them to look as crisp as possible on high-
density displays. In that case, you’ll need to create several versions and deliver
them with responsive image markup or let the server handle it. If you have
a product shot that appears at 150 × 150 pixels at 1x, you’ll need at least a 2x
version (300 × 300) and perhaps a 3x version (450 × 450) as well, knowing that
they will all occupy 150 reference pixels in the layout.

In Chapter 24, we’ll look at tools and techniques for creating multiple image
sizes aimed at high-density displays. The markup for delivering the right
image size to the right device is covered in Chapter 7.

IMAGE ASSET STRATEGY

Now you know where to get images, are acquainted with the various web
format options, and have a feel for screen resolution. Throughout this book,
you’ve also gotten to know the important principles of performance and
Responsive Web Design. Let’s put all of this know-how together in a strategy
for approaching image production.

As a conscientious web designer concerned with providing the best experi-
ence across a wide range of devices, you should have these priorities in mind
when creating graphics for a site:

•	 Keeping the file sizes of images as small as possible

•	 Minimizing the number of HTTP requests to the server

•	 Not downloading more image data than is needed for devices with
smaller screens

•	 Delivering high-quality images to high-density displays

It may be helpful to approach your image requirements systematically, ruling
out classes of images and unnecessary tasks, so you are left with a clear set of
production options. FIGURE 23-16 diagrams a series of questions you can use
to cull your image production options. In this section, we’ll address each step
of the process at a conceptual level. In Chapter 24, you’ll get to try out specific
image production techniques that address these goals.

First off, let’s determine whether you need an image at all.

F U RT H E R R E A D I N G

For much more in-depth explanations
of image and screen resolution, I
recommend theses articles:

•	 “Pixel Density, Demystified” by
Peter Nowell (medium.com/@
pnowelldesign/pixel-density-
demystified-a4db63ba2922)

•	 “Designer’s guide to DPI,” by
Sebastien Gabriel
(sebastien-gabriel.com/designers-
guide-to-dpi/)

Part V. Web Images

Image Asset Strategy

660

https://medium.com/@pnowelldesign/pixel-density-demystified-a4db63ba2922
https://medium.com/@pnowelldesign/pixel-density-demystified-a4db63ba2922
https://medium.com/@pnowelldesign/pixel-density-demystified-a4db63ba2922

NO

I need an image for
my site

CAN IT BE CREATED
WITH CSS ALONE?

Create it with CSS and
save the overhead of an
image download.

Choose the best bitmap format
for each image. Optimize.

DO YOU NEED
RESPONSIVE IMAGES?

DO YOU HAVE A LOT OF
IMAGES?

Choose the best bitmap format and
take advantage of tools for exporting
multiple sizes of the same source
image. Optimize.

Consider a server-side automation
system that creates and optimizes
images at multiple sizes on the fly.

CAN IT BE AN SVG?

Create well-organized and labeled
SVG. Optimize. Place inline (<svg>)
or with <object>.

Create SVG. Optimize. Place with
, <object>, or inline (<svg>).

YES

YESNO

NO, not more
than I can
produce

manually

OMG, YES!

NO,
bitmap is better

YES NO

YES

YES

DO YOU HAVE A
LOT OF IMAGES?

Consider a server-side
image automation system.

WILL THE SVG BE
STYLED OR
SCRIPTED?

NO,
one size is fine

FIGURE 23-16.   This flowchart may look a little crazy, but it is intended to help
you narrow down the options for image asset production. It is the foundation of the
discussion in this section.

23. Web Image Basics

Image Asset Strategy

661

Can It Be Done with CSS?
Before you break out Photoshop, consider whether you can achieve what
you’re after with CSS alone. Not only will the effect be a fraction of the file
size, but you’ll also avoid another call to the server.

Effects like rounded corners and gradients that once required images are now
achievable with CSS properties (border-radius and radial-gradient/linear-
gradient, respectively).

It is also possible to make little drawings with CSS, which may be useful in
place of icons (FIGURE 23-17). Basic shapes such as circles, rectangles, tri-
angles, and more can be created with empty div elements and some trickery
with borders and transforms. Some people have created amazingly complex
illustrations using HTML and CSS, but the technique, which had its heyday
around 2010–11, is largely for demonstration purposes rather than for serious
production.

I don’t want to stray too far from image production in this chapter, so I will
leave you with these articles, where you can learn more about CSS shapes and
illustrations:

•	 “The Shapes of CSS,” a gallery of one-element CSS shapes with the code
used to create them, compiled by Chris Coyier: css-tricks.com/examples/
ShapesOfCSS/

•	 “Beginners Guide to Pure CSS Images,” a step-by-step tutorial by Michael
Mangialardi for creating the koala bear in FIGURE 23-17: medium.com/
coding-artist/a-beginners-guide-to-pure-css-images-ef9a5d069dd2

•	 A collection of “not-so-semantic drawings made with CSS,” on Codepen,
collected by Hugo Giraudel: codepen.io/collection/kFeDz/3/

If you need something more complex than a CSS effect, it’s time to think
about image formats.

Shapes by Chris Coyier
css-tricks.com/examples/ShapesOfCSS/

Koala by Michael Mangialardi
codepen.io/mikemang/pen/oYMePj

Cheesecake by Sasha Tran
codepen.io/sashatran/pen/ggGeZr

FIGURE 23-17.   These little drawings are created with HTML markup and CSS alone.

Part V. Web Images

Image Asset Strategy

662

https://medium.com/@michaelmangial1?source=user_popover
https://medium.com/@michaelmangial1?source=user_popover

Can It Be an SVG?
If your image is a logo, icon, or other illustration, creating it in a vector draw-
ing tool and saving it as an SVG offers the benefits of small file size and reso-
lution independence. Now that browser support is reliable, it is a good solu-
tion to dealing with the variety of devices and displays we need to design for.

If you place the SVG code inline, with the svg element, you save another
HTTP request and gain the ability to style and script the elements. Or, if a
static illustration is all you need, embedding the SVG in the document with
the img element is a perfectly fine option.

In Chapter 25, you’ll take a long journey through the SVG format, so I won’t
say much more here other than the fact that SVG should be your first choice
if you can create the image or illustration in vector format.

If SVG is not appropriate for your image type or if your target audience is
known to use non-supporting browsers in significant numbers, then you may
need to go with a bitmapped format. There are still a few things to consider.

What Is the Best Bitmapped Format?
Image format has a large impact on file size, so choosing the most appropri-
ate format for your image is an important step to optimizing images. As we
learned, PNG-8 is the best option for images with areas of flat color, and
JPEG is the best format for photographic images. In Chapter 24, I’ll show you
how to save images in various formats, and you’ll get to see how format affects
file size firsthand.

Consider also saving the image in the much smaller WebP format and using
the picture element to deliver it to the browsers that can render it (see the
“Responsive Image Markup” section in Chapter 7, for details). It helps speed
things up on supporting browsers and provides a reliable JPEG or PNG fall-
back for the others.

With the format decided, it’s time to start thinking about how many versions
of each image you need to create.

Does Your Layout Require Responsive Images?
The next thing to consider is whether your layout requires responsive images.

No, one size is fine
Some pages, such as text-heavy pages with small illustrations, might get by
fine with just one version of each image that serves all screen sizes. If that is
the case, save or export your image in the most appropriate file format and
you’re nearly done. The final step is to optimize the image to make it as small
as it can be. Optimization techniques are discussed in detail in Chapter 24.

23. Web Image Basics

Image Asset Strategy

663

Yes, I need each image saved at multiple sizes
Your responsive layout may require that you take advantage of the responsive
image techniques we outlined in Chapter 7. To recap, “responsive images”
refers to the process of providing images that are tailored to the user’s view-
ing environment. This includes preventing browsers on small screens from
downloading more image data than they need as well as providing images
large enough to look crisp on high-density displays. You can also provide
alternative versions of the image based on content (called the “art direction”
scenario) or to take advantage of newer formats, such as WebP.

If you’re going the responsive images route, things start getting interesting.

Does Your Site Have a Lot of Images?

Yes, my site has a ton of images (Hint: Automate it!)
Although it is terrific to have an HTML solution for getting the right images
to the right browsers, the current system is a bit cumbersome with stacks of
code and the need to produce multiple images. If you work on a large, image-
heavy site, it could prove to be unmanageable. Image processing is a task that
begs to be automated. The solution: let the server do it!

Fortunately, there are many tools and services, both open source and for pay,
that let the server do the work of creating appropriate image versions on the
fly. You upload the image at the highest quality and largest size required and
let the server handle the rest—no need to create and store multiple versions
of every image. Some services go beyond simple resizing, including the ability
to crop images intelligently, add special effects such as sepia tones, or other-
wise transform images on the fly.

Some content management systems have image-resizing features built in.
Another option is to install software or an open source script (like Glide,
glide.thephpleague.com) on your own server. Bear in mind, however, that
requiring JavaScript to be running is less than ideal. There are also third-
party solutions that provide image-resizing services (like Cloudinary.com,
Akamai.com, or Kraken.io), for a fee. For large, image-heavy sites, they are
worth looking into.

For more information, read “Image Resizing Services” by Jason Grigsby of
Cloud Four (cloudfour.com/thinks/image-resizing-services/). He maintains a
list of current image services, which you can find linked from the article.

No, I can handle images manually
If your site has a reasonable number of images that are updated on a rea-
sonable schedule, you should be able to produce them by hand on your
computer and upload them to the server. The good news is that there’s a
whole slew of new tools designed especially to support the web image asset

Part V. Web Images

Image Asset Strategy

664

production process, including ways to create several versions at once and to
optimize them in batches. Even our old standby, Adobe Photoshop, is evolv-
ing to better support the needs of web image producers. We’ll look at these
tools in the following chapter.

FAVICONS

As long as we’re talking about images, there is one last site-related image
to cover: the favicon. A favicon is the little icon that shows up to the left of
the page title in the browser tab and in bookmark lists (FIGURE 23-18). First
introduced as an Internet Explorer 5 feature in 1999, favicons were quickly
adopted by other browsers. Favicons aren’t required, but they do help users
identify and find your site in a long lineup of tabs or bookmarks. They’re a
little attention to detail that can strengthen your brand.

FIGURE 23-18.   Favicons for Adobe.com, W3C.org, and Firefox.com in browser tabs
(shown in Firefox).

Other web-enabled devices use site-associated icons that are similar to favi-
cons. For example, Apple iPhone and iPad represent sites or web apps with an
icon (called a touch icon) when you save them to the home screen. Site icons
are also used by Microsoft Metro tiles, GoogleTV, and other systems.

This section introduces what it takes to create a basic desktop favicon as well
as a full icon set that covers all the bases. We’ll also look at one tool that does
all the repetitive work for you.

Old-Fashioned Browser Favicons
For desktop browsers, the standard favicon process is easy:

1.	 Save your icon in ICO format and name it favicon.ico.

2.	 Put that file in the root directory of the site, where browsers know to look
for it.

3.	 There is no third step. That’s it!

This is the method that is supported by the most browsers, and the only favi-
con method supported by Internet Explorer 10 and earlier.

There are a few important things to know about the favicon.ico file itself.
Favicons should be created at 16 × 16 pixels with an additional 32 × 32 pixel
version for crisp display on Retina display devices. The good news is that you

23. Web Image Basics

Favicons

665

need only one favicon.ico file because the ICO format is capable of storing
multiple images in a single file. The bad news is that most graphics tools,
including Adobe Photoshop, can’t save images in ICO format, so you need to
use a conversion tool that takes in PNG or JPEG and spits out ICO. There are
several free drag-and-drop ICO converters online, such as icoconverter.com
and convertico.com. If you are on a Mac and want a more full-featured conver-
sion tool, check out Icon Slate by Kodlian (www.kodlian.com/apps/icon-slate)
available in the App Store for US$5.

As mentioned previously, once you have your favicon.ico file, just place it in
the root directory for the site alongside index.html, and the browser will find
it automatically. There is no need to add any markup in the files.

Full Favicon Set
You may decide to go the extra mile and create a complete favicon set to rep-
resent your site on other devices. You can save these icons in good old PNG
format and even include transparent areas, so it’s a more familiar process.

When your icons are in PNG format, you must link them to your files with
the link element in the markup, as in this example that adds a touch icon for
the iPhone with a Retina screen (see the sidebar “iOS Icon Effects”):

<link rel="apple-touch-icon-precomposed" sizes="120x120"
href="apple-touch-icon-120x120.png">

TABLE 23-2 lists most of the standard icon sizes as of this writing.

TABLE 23-2.   Most popular standard favicon sizes

Size (in pixels) Purpose

32 × 32 Standard for most desktop browsers

57 × 57 Standard iOS screen (iPod Touch, iPhone first generation)

76 × 76 iPad home screen icon

96 × 96 GoogleTV icon

120 × 120 iPhone Retina

128 × 128 Chrome web store

144 × 144 IE10 Metro tile for pinned site

152 × 152 iPad touch icon; Android icon (auto-downscaled as
needed)

167 × 167 iPad Retina touch icon

180 × 180 iPhone 6 plus

196 × 196 Chrome for Android home screen

228 × 228 Opera Coast icon

iOS Icon Effects
By default, iOS adds visual effects to
your icon file so it matches the style
of other icons on the home screen:

•	 Rounded corners

•	 Drop shadow

•	 A “shiny” reflection effect

If you like your icon just as it is and
want to turn the special effects off, tell
iOS that the icon is “precomposed”
by setting the value of rel to apple-
touch-icon-precomposed as shown
in the example. If you’d like to take
advantage of those effects, set rel to
simply apple-touch-icon.

Part V. Web Images

Favicons

666

http://www.kodlian.com/apps/icon-slate

Icon Creation
For ultimate control over icon quality, it’s best to create your icons by hand.
Everyone has their own process, but it is generally recommended to start with
a vector-based original and export to the required sizes. If you start with a bit-
mapped image, scale down in increments and check the quality at each step.

For very small icons (32- and especially 16-pixel square), you’ll likely need
to do some pixel-by-pixel fine-tuning to get the best result. If your logo is
complicated, consider using just a distinctive detail as O’Reilly Media does
(FIGURE 23-19).

FIGURE 23-19.   O’Reilly Media uses a detail from their logo in their favicon.

For excellent how-to advice on creating icons in general, I heartily recom-
mend The Icon Handbook (Five Simple Steps), by icon expert John Hicks.
John shares his tricks for effective icon design and how to maintain the best
quality at small sizes.

If manually creating all your icons feels like a burden, an easier option is to
use a favicon generator that creates all the icons from one original and gener-
ates all of the required code as well. There are a few of them out there, but
one I like is Favic-o-matic (www.favicomatic.com) shown in FIGURE 23-20.
Just upload one PNG larger than 300px square, and the tool does the rest.

FIGURE 23-20.   The Favic-o-matic favicon and code generator.

F U RT H E R R E A D I N G

With a PNG-to-ICO converter and
favicon generator tool, you now have
a basic toolkit for creating complete
favicon sets. However, you may want
to read up on the finer details that
I was not able to include here. The
following are a few resources that I
found to be helpful:

•	 “The 2017 Guide to FavIcons for
Nearly Everyone and Everyone
and Every Browser,” from Emerge
Interactive
(www.emergeinteractive.com/
insights/detail/The-Essentials-of-
FavIcons-in-2017)

•	 “How to Make a Favicon” by Nick
Pettit at Treehouse
(blog.teamtreehouse.com/how-
to-make-a-favicon)

•	 The Favicon entry on Wikipedia
(en.wikipedia.org/wiki/Favicon)

CO O L TO O L

If you want to use just the initial
letter of your site’s name as a favicon,
Favicon.io is a neat online tool
that generates icons based on your
character, font, and color selections.

23. Web Image Basics

Favicons

667

http://www.favicomatic.com

SUMMING UP IMAGES

We’ve covered a lot of ground in this chapter. If I’ve done my job, you should
now have a good foundation in web graphics, including where to find an
image and what file format to save it in. You know about image resolution
and screen resolution, including working with high-density displays. You also
have a strategy for identifying your image requirements in order to whittle
down the wide array of options. And of course, you know what it takes to
add a favicon to your site.

In the next chapter, you’ll get hands-on experience creating and optimizing
web images as we explore the particulars of the production process. But first,
a little quiz.

TEST YOURSELF

Answer the following questions to see if you got the big picture on web
graphics. The answers appear in Appendix A.

1.	 What is the primary advantage to using rights-managed images?

2.	 What does “ppi” stand for?

3.	 What is “indexed color”? What file formats use it?

4.	 How many colors are in the color table for an 8-bit image? If you are up for
a bit of math, figure out the maximum number of colors in a 5-bit image.

5.	 Name two things you can do with a GIF that you can’t do with a JPEG.

6.	 Name one thing you can do with a GIF that you can’t do with a PNG.

Part V. Web Images

Summing Up Images

668

7.	 Name one thing you can do with a PNG that you can’t do with a GIF.

8.	 JPEG’s lossy compression is cumulative. What does that mean? Why is it
important to know?

9.	 What is the difference between binary and alpha transparency?

10.	 Pick the best bitmap file format for each of the images in FIGURE 23-21.
You should be able to make the decision just by looking at the images as
they’re printed here and explain your choice. Some images may have more
than one option.

A

B

C

D

E

FIGURE 23-21.   Choose the best file format for each image.

23. Web Image Basics

Test Yourself

669

IN THIS CHAPTER

Selecting web file formats
when exporting

Binary and alpha transparency

Producing responsive images

Image optimization tools
and techniques

In the previous chapter, you learned a lot about images, but now we’re going
to focus on making them. Because images typically make up 60–70% of the
data on the web, it is critical to approach image creation thoughtfully, with a
mind toward responsive design requirements and performance. Once again,
we’ll be working with bitmapped formats: JPEG, PNG, and GIF. SVG has a
different set of considerations and has been given the next chapter all to itself.
This chapter is all about pixel-pushing!

You’ll get a chance to save or export images in a variety of bitmap formats
and create an image with transparent areas. You’ll learn some shortcuts for
creating multiple versions of an image at once for responsive layouts and
high-density displays. Finally, you’ll pick up some optimization tools and
techniques so you can make your image files as small as they can be.

Let’s start out with the most basic of image production tasks, saving an image
in a web-appropriate format.

SAVING IMAGES IN WEB FORMATS

Let’s dig right in with saving web images in Photoshop CC and GIMP. You
may be thinking, “Why just those two?” I wrote you a little sidebar, “Why Just
Photoshop and GIMP?” to explain. If you use one of the dozens of other image
editors, the process and terminology is likely similar to those described here.

In most programs, you can count on seeing JPEG and PNG options (if there’s
only one PNG option, it’s PNG-24) when you Save or Export the final graph-
ic. GIF is available in more established programs like Photoshop, GIMP, and
PaintShop Pro; and WebP is beginning to make an appearance.

IMAGE ASSET
PRODUCTION

24
CHAPTER

671

This section goes over the process of saving or exporting images step-by-
step for those who may not be familiar with using graphics tools. If you are
already pretty handy with image editors, this could be a review, or you might
skip right to EXERCISE 24-1.

Adobe Photoshop CC
There are a number of ways to save graphics in web-appropriate formats in
Photoshop:

Export As

The recommended and most streamlined method is to use the Export
As function, either from the File → Export → Export As menu, or by right-
clicking (Control-clicking on a Mac) a layer to export its contents (FIGURE

24-1, A). From there, you get a dialog box with an image preview and a
File Settings pop-up menu for selecting JPEG, PNG, GIF, or SVG format
B. When you use Export As, Photoshop uses aggressive compression
options to give you the smallest file size.

The Export As dialog box includes format-specific options with a preview
of the image as it appears with the settings applied.

—— For JPEG C, you can set the Quality level (higher quality equals larger
files).

—— For PNG D, you can choose to preserve transparent areas in the image
so soft edges and shadows blend in with the background. By default,
Photoshop exports PNG-24 files, but you can select “Smaller File
(8-bit)” to export as a PNG-8 while still preserving multiple transpar-
ency levels.

—— For GIF E, you get no options. I think that’s Adobe’s way of saying
you’re much better off with PNG.

The Export As dialog box B also gives you the option to resize the image.
This is useful for maintaining a full-size original while exporting copies
sized for different layouts.

Save As

You can also use File → Save As to save the file you’re working on in a new
format (you’ll see the web-friendly formats in the long list of options).
You’ll generally get a few more options with Save As, such as the ability
to turn on interlacing and select a palette for GIFs and to make a JPEG
progressive, but you miss out on the extra compression. And it’s a lot of
compression. Depending on the image and the file type, a Saved As image
could be 10× larger than its exported counterpart.

Why Just Photoshop
and GIMP?
There are dozens of programs
out there for creating images. In
this chapter, I will be sticking with
Adobe Photoshop CC and GIMP
in the examples because I feel
like they represent the far ends of
the commitment spectrum. Most
importantly, both are available for
macOS and Windows, and you can
get copies to work with for free.

On one end of the spectrum,
Photoshop is the most popular
image-editing program for design
professionals, but it is costly,
available via a monthly subscription
fee as part of the Adobe Creative
Cloud suite of products. You can
download a free trial version at www.
adobe.com/creativecloud/catalog/
desktop.html if you’d like to work
along with the exercises.

On the other end, GIMP (GNU Image
Manipulation Program) is an open
source image editor with many of the
same features as Photoshop and it is
absolutely free! Like, forever—not just
a limited trial. Download it at gimp.org.

Convert to sRGB? YES!
In Photoshop’s Export As dialog
box, toward the bottom under Color
Space, you will find the option
Convert to sRGB. You definitely want
to select that option because that
is the color encoding that the web
uses. Adobe has its own expanded
RGB color space, so you will get
unpredictable results if you do not
convert to sRGB first.

Part V. Web Images

Saving Images in Web Formats

672

http://www.adobe.com/creativecloud/catalog/desktop.html
http://www.adobe.com/creativecloud/catalog/desktop.html
http://www.adobe.com/creativecloud/catalog/desktop.html

Save for Web (legacy)

Photoshop’s Save for Web function provides settings for manually opti-
mizing the size of a file while keeping an eye on the resulting image in a
preview window, and even comparing up to four settings at a time. For
GIF and PNG-8 you can reduce the number of colors (the bit depth),
reduce dithering, and turn on interlacing, among other settings. For JPEG,
you can choose the quality, make it progressive or optimized, or apply a
slight amount of blur to the image to reduce its file size.

Adobe has tagged the Save for Web function as “legacy” starting around
2014, and it will be going away entirely in future versions with no sub-
stitutes for many of the settings. But the fact is that there are tools avail-
able now that achieve the same amount of compression without all the
manual work. If you have access to an older version of Photoshop, you can
give it a try, but don’t get too attached (as I am!).

GIMP
In GIMP, working files are always in GIMP’s native XCF format. From there,
you need to choose File → Export As to select your file format. The quickest
way to get the format you want is to type .jpg, .png, or .gif at the end of the
filename in the Name field. For example, typing “name.png” triggers GIMP
to export that file in PNG format. Alternatively, you can select a file type from
the list of options in the Select File Type menu (shown in FIGURE 24-2, A).

After you hit the Export button, you get a dialog box with settings appropri-
ate for the format you’ve chosen.

A B C

D

E

FIGURE 24-1.   Selecting a file type in Photoshop’s Export As dialog box.

24. Image Asset Production

Saving Images in Web Formats

673

•	 For PNG B, deselect all of the options, as many of them store unnecessary
metadata in the file and others are of limited use when you are exporting
a layered file. You may choose to make the image interlaced.

•	 For GIF C, you can make the image interlaced and embed a comment.
You can also save it as an animation if your layers are set up in that way.

•	 For JPEG D, you can play with the Quality setting, with the option to
view the resulting quality as well as its file size in an image window (rec-
ommended). Under Advanced Options, you can Optimize the JPEG, make
it Progressive, and apply a slight blur (Smoothing) to reduce the file size.
Under Subsampling, the 4:4:4 (best quality) is a good choice, especially if
your image has areas of flat color, although 4:2:2 produces smaller files.
You can see the results of these settings in the image window.

A B

D

C

FIGURE 24-2.   Selecting your file format in GIMP.

Why don’t you give this web-image-making a try in EXERCISE 24-1? You’ll
find that the format you choose greatly impacts the size of the file. If you have
Photoshop or GIMP, you can follow the instructions just listed, but if you
don’t, there’s a good chance that whatever image creation tool you do have
will have similar save or export options. Remember that you can download a
free trial of Photoshop, and GIMP is always free.

That takes care of basic web image output. After the exercise, we’ll turn our
attention to one of the core features of web images that you will certainly
want to become handy with: transparency.

Part V. Web Images

Saving Images in Web Formats

674

Work in RGB Mode
Regardless of the final format of
your file, you should always do your
image-editing work in RGB mode
(grayscale is fine for non-color
images). To check the color mode
of the image in Photoshop or GIMP,
select Image → Mode and make sure
there is a checkmark next to RGB
Color.

JPEG and PNG-24 files compress the
RGB color image directly. If you are
saving the file as a GIF or PNG-8, the
RGB image must be converted to
indexed color mode, either manually
or as part of the export process.

Indexed Color
If you need to edit an existing GIF
or PNG-8, convert the image to RGB
as the first step before editing. This
enables the editing tool to use colors
from the full RGB spectrum when
adjusting the image. If you resize the
original indexed color image, you’ll
get lousy results because the new
image is limited to the colors from
the existing color table.

CMYK
If you have experience creating
graphics for print, you may be
accustomed to working in CMYK
mode (printed colors are made up
of Cyan, Magenta, Yellow, and blacK
ink). CMYK mode is irrelevant and
inappropriate for web graphics,
so convert to RGB mode at the
beginning of the image-editing
process.

EXERCISE 24-1.  Formats and file size

In this exercise, we’re going to see the effect the image format has on file size by exporting
two images in a variety of formats and comparing file sizes. I have provided two image files
with the materials for this chapter (FIGURE 24-3), but you could also experiment with
your own.

boats.png asian.png

FIGURE 24-3.   Export these images in various formats to see how each affects their
file size.

1.	 First, open boats.png in the program of your choice and export it in JPEG format. If your
image editor does not have an export function, you may need to do a Save As. Be sure
that you always start with the original image throughout this exercise.

If you are using Photoshop or GIMP, slide the Quality slider from 100% all the way down
to 0%, and pay attention to how the image quality changes in the preview or image
window. Make a note of the file sizes at 100%, 60%, and 10% quality. Save the final JPEG
at 60% quality.

Alternatively, if you do not have a preview in your tool, you can export three separate
JPEGs with the quality set to 100%, 60%, and 10%. Open the images in your image tool
or a browser window to check the quality and use the Finder or File Explorer to check
the resulting file size.

2.	 Now export the full-color image again as a PNG-24 (in Photoshop, do not select the 8-bit
option).

3.	 Finally, convert the image to Indexed color (Image → Mode → Indexed) and select 256
colors. Export the image as a PNG-8 (in Photoshop, select “Smaller File (8-bit)”; GIMP
saves indexed color images as PNG-8 automatically. While the original is still in indexed
color mode, export again in GIF format. When you are done, you can revert the image to
RGB color or close it without saving.

4.	 Let’s see what we’ve got! Here are the resulting file sizes for the boats images that I got
in Photoshop and GIMP. Note that file sizes differ depending on the tool because of the
compression algorithms they use. Yours will likely be different from these, but in the
general ballpark.

Tool JPEG (100) JPEG (60) JPEG (10) PNG-24 PNG-8 GIF

PhotoshopCC 130.3 KB 33.1 KB 9.2 KB 221 KB 67.6 KB 74.1 KB

GIMP 179 KB 20.9 KB 7.4 KB 225 KB 73.7 KB 80.3 KB →

24. Image Asset Production

Saving Images in Web Formats

675

WORKING WITH TRANSPARENCY

Both GIF and PNG formats allow parts of an image to be transparent, so
that the background color or image shows through. In this section, we’ll take
a closer look at transparent graphics, including tips on how to make them.

Remember that there are two types of transparency. In binary transparency,
pixels are either entirely transparent or entirely opaque, like an on/off switch.
Both GIF and PNG-8 files support binary transparency.

In alpha (or alpha-channel) transparency, a pixel may be totally transpar-
ent, totally opaque, or up to 254 levels of opacity in between (a total of 256
opacity levels). Only PNG, WebP, and JPEG 2000 support true alpha-layer
transparency (see Note). The advantage of PNGs with alpha transparency is
that they blend seamlessly with any background color or pattern, as shown
back in FIGURE 23-9. PNG-8 also allows multiple levels of transparency, but
it handles it a little differently, as you’ll learn in a moment.

In this section, you’ll become familiar with how each type of transparency
works, and learn how to make transparent images using GIMP and Photoshop.

Conclusion: The best format for the boats image is JPEG, and a quality of around 60
gives the best balance of image quality and small file size. The PNG-8 and GIF versions
are twice as large and they look pretty bad. Of course, “quality” is subjective. You might
decide that an image is so important that pristine 100% quality is worth the extra
download time, but generally, you can shave a lot of bytes off an image while keeping
quality acceptable.

5.	 OK, now we’re going to repeat all the previous steps, this time using the asian.png
image. Export the original image as a JPEG at various settings (or just make notes on the
file size based on the preview) and as a PNG-24. When you convert the image to indexed
color, play around with the numbers of colors to see how few you can get away with.
Does the image still read well with 128 colors? 64? 32?

I really went for it and reduced the palette to 32 colors, and then exported as PNG-8 and
GIF. Here are my results:

Tool JPEG (100) JPEG (60) JPEG (10) PNG-24
PNG-8
(32 colors)

GIF
(32 colors)

PhotoshopCC 22.7 KB 8.7 KB 3.3 KB 14.8 KB 4.2 KB 4.3 KB

GIMP 27.3 KB 6.8 KB 3.3 KB 14.5 KB 3.3 KB 3.8 KB

Conclusion: For the asian image, the PNG-8 with a reduced color palette is the winner.
Sure, the 10% JPEG file size is smaller, but the quality is disastrous! The PNG-8 offers the
smallest file size while keeping the flat colors artifact-free.

EXERCISE 24-1. Continued

NOTE

Because of poor tool and browser sup-
port for WebP and JPEG 2000, we’ll be
focusing on alpha transparency in PNGs
in this section.

Part V. Web Images

Working with Transparency

676

How Binary Transparency Works
Remember that the pixel colors for PNG-8s and GIFs are stored in an indexed
color table. Transparency is simply treated as a separate color, occupying one
position in the color table. FIGURE 24-4 shows the color table in Photoshop
for a simple transparent GIF. The slot in the color table that is set to transpar-
ent is indicated by a checker pattern. Pixels that correspond to that position
in the color map are completely transparent when the image displays in the
browser. Note that only one slot is transparent—all the other pixel colors are
opaque.

Transparent pixels get a slot in
the indexed color table.

FIGURE 24-4.   Transparency is treated as a color in the indexed color table.

Avoiding halos
When an image has multiple transparency levels, it blends seamlessly with
the web page background. With binary transparency, however, there is a risk
that the soft edges around the image will have a fringe of pixels that don’t
match the color behind it (FIGURE 24-5). This fringe is commonly known as
a halo and it is a potential hazard of binary transparency.

Prevention is the name of the game when it comes to dealing with binary
transparency and halos. The trick is to blend the semitransparent pixels in
the original image (such as the anti-aliased edges around text or a shape with
feathered edges) with a color that is as close as possible to the background
color of the page. Many image-editing tools that support web graphic formats
provide a way to pick the blend color (also known as the matte color) when
saving or exporting.

Some programs use whatever color is selected as the background color to fill
in soft edges. Others may allow you to pick your blend color manually. For

FIGURE 24-5.   This GIF with binary
transparency has a halo because
the semitransparent edges of the
original image were blended with a
light color that doesn’t match the teal
background of the page.

T E R M I N O LO GY

Anti-Aliasing
Anti-aliasing is a slight blur applied
to rounded edges of bitmapped
graphics to make smoother
transitions between colors. Aliased
edges, by contrast, have stair-stepped
edges. Anti-aliasing text and graphics
can give your graphics a more
professional appearance.

24. Image Asset Production

Working with Transparency

677

example, in Photoshop’s legacy Save for Web feature, you can select a matte
color whenever transparency is turned on for the image (see Note). The matte
color is also used to fill in any transparent image areas when you’re convert-
ing an image to JPEG. GIMP, on the other hand, prevents halos by avoiding
any sort of blend at all. You get the choice of hard, stair-stepped edges or a
dithering pattern made of color and transparent pixels meant to simulate the
blurred edge. Neither option looks good, but hey, no halos.

Of course, avoiding halos with these methods requires that you know the
RGB values of the page’s background color in advance so you can match the
matte color to it. If the page color changes, you need to go back and export
the graphics again with the new color. That’s where alpha transparency has
a real advantage—you can change the background, and everything will still
blend in perfectly.

How Alpha Transparency Works
RGB images, such as JPEGs and PNG-24s, store color in separate channels:
one for red, one for green, and one for blue. PNG-24 files add another chan-
nel, called the alpha channel, to store transparency information. In that chan-
nel, each pixel may display one of 256 values, which correspond to 256 levels
of transparency when the image is displayed. The black areas of the alpha
channel mask are transparent, the white areas are opaque, and the grays are
on a scale in between. I think of it as a blanket laid over the image that tells
each pixel below it how transparent it is (FIGURE 24-6).

Original transparent image

Alpha
Red

Green
Blue

Black areas in the alpha channel
correspond to transparent image areas;
white areas are opaque; and grays are
variable levels of transparency in between.

FIGURE 24-6.  Transparency information is stored as a separate (alpha) channel in
24-bit PNGs.

NOTE

Curiously, Photoshop’s preferred Export
As function automatically fills the blurred
edges with white and does not seem to
provide a way to select a matte color for
GIFs and JPEGs. However, with the ability
to export PNG-8s with alpha transpar-
ency, you may never need to select a
matte color in Photoshop again.

Part V. Web Images

Working with Transparency

678

PNG-8 Alpha Transparency
Variable levels of transparency are not limited to 24-bit PNGs—PNG-8 files
can do it too! Although they are referred to as PNG8+alpha or alpha-palette
PNGs, they do not store transparency information in a separate alpha channel
overlay as we saw in FIGURE 24-6.

PNG expert Greg Roelofs explains PNG-8 “alpha” transparency well in this
excerpt from his 1999 book PNG: The Definitive Guide (O’Reilly):

A PNG alpha-palette image is just that: an image whose palette also has
alpha information associated with it, not a palette image with a full alpha
mask. In other words, each pixel corresponds to an entry in the palette with
red, green, blue, and alpha components. So if you want to have bright red
pixels with four different levels of transparency, you must use four separate
palette entries to accommodate them—all four entries will have identical
RGB components, but the alpha values will differ. If you want all of your
colors to have four levels of transparency, you’ve effectively reduced your
total number of available colors from 256 to 64.

No image program (that I know of) displays PNG-8 color tables with mul-
tiple transparency levels, so I’ve simulated one for you in FIGURE 24-7. I based
it on the orange circle with the soft drop shadow from FIGURE 23-9, with the
palette reduced to just 16 colors. The resulting image has a bit of dithering
in the drop shadow, but it’s not that noticeable when it appears over a back-
ground pattern. With file size savings of 75%, it’s worth it.

Original PNG-24 with alpha
transparency (8.4 KB).

Saved as PNG-8 with 16
colors and multiple levels
of transparency (1.6 KB).

When used over a pattern,
you can’t see the dithering.

Simulation of the color table for the PNG-8 with
multiple transparency levels for the drop shadow.

FIGURE 24-7.   A simulation of a PNG-8 color table with multiple levels of
transparency. The PNG-8 is over 80% smaller than the similar PNG-24 with very similar
quality.

CO M M A N D - L I N E TR I C K

How can you tell whether a PNG
is 8-bit or 24-bit? You can peer
into its soul by using the file
command. Just use the command
line to navigate to the directory that
contains the image file, and type
file filename. It returns a brief
description of the file including its
dimensions, color information, and
whether it is interlaced.

In this example, I inspected the file
super8bit.png, which is an 8-bit PNG
with alpha transparency exported
from Photoshop CC. The word
colormap indicates that it is an
indexed color image.

$ file super8bit.png
super8bit.png: PNG image
data, 500 x 92, 8-bit
colormap, non-interlaced

When you inspect a 24-bit PNG with
alpha transparency, you’ll see RGBA in
the description.

$ file super24bitInt.png
super24bitInt.png: PNG image
data, 500 x 200, 8-bit/color
RGBA, interlaced

24. Image Asset Production

Working with Transparency

679

Making Transparent PNGs and GIFs
The easiest way to make parts of an image transparent is to design them
that way from the start and preserve the transparent areas when you export.
Although it is possible to doctor up an existing flattened opaque image and
make areas transparent, it is usually difficult to get a seamless blend with the
background while avoiding jagged edges.

Instead of just telling you, I’ll let you create a layered image and preserve
the transparent areas in EXERCISE 24-2. When you create your layered
Photoshop or GIMP file, be sure that the background layer appears as a gray
checkerboard pattern and is not filled with a color. If you end up with a color
in the background anyway, you can select it all and delete it.

When you’ve finished playing with transparency, you can come back for some
tips on responsive images.

RESPONSIVE IMAGE PRODUCTION TIPS

If your site is responsive, chances are you’ll need responsive images to go with
it. When it comes to bitmapped images, “responsive” actually means “mul-
tiple versions” (see Note).

In the “Responsive Image Markup” section in Chapter 7, Adding Images, you
learned about four responsive image scenarios, but it’s worth a refresher here
(that was hundreds of pages ago, after all). Whereas in the past one image did
the trick, in our current environment we may choose to do the following:

•	 Provide a set of images of various dimensions for use in responsive lay-
outs on different viewport sizes.

•	 Provide versions of the image with varying amounts of detail based on
the device size and orientation (also known as the art direction use case).

•	 Provide large-scale images that look crisp on high-density screens.

•	 Provide alternative image formats that store the same image at much
smaller file sizes.

This section introduces tools, tips, and general strategies for producing (or
automating!) the images you need for the first three scenarios. Alternative
image formats were addressed in Chapter 23, Web Image Basics.

Images for Responsive Layouts
The first scenario addresses providing a range of image sizes that the browser
selects from based on the viewport size. In HTML, you would specify these
using srcset with a w-selector that provides the exact pixel width of the
image, and the sizes attribute that tells the browser how large the image will
appear in the layout.

NOTE

Responsive SVGs are covered in
Chapter 25, SVG.

F U RT H E R R E A D I N G

If you are an Adobe Photoshop user
(or intend to become one), you
will find expert advice on working
Photoshop into your Responsive Web
Design workflow in Dan Rose’s book
Responsive Web Design with Adobe
Photoshop (Adobe).

Part V. Web Images

Responsive Image Production Tips

680

EXERCISE 24-2.  Creating transparent images

In this exercise, we’re going to start from scratch, so you’ll get the
experience of creating a layered image with transparent areas. I’m
going to keep it simple, but you can apply these techniques to
fancier designs, of course.

Because Photoshop and GIMP have different approaches, I’m
going to step through the processes for them separately. You can
use another tool as long as it uses layers in its interface.

Photoshop CC (2018)
1.	 Start a new file and make it 250×250 pixels with a resolution of

72 (FIGURE 24-8). On the New Document dialog A, look for
Background Contents and select Transparent from the pop-up
menu. Click Create. You should see a square filled with a gray
checkerboard pattern indicating the background is transparent.

2.	 Select the ellipse Marquee tool and set the Feather setting to
10. Draw a circle in the center of the document and fill it with
a color. You should have a shape with blurry edges where
the checkerboard shows through. That’s all we need for the
purposes of this exercise, but you can feel free to add more
elements.

3.	 Now you can select File → Export As, select PNG from File
Settings, and be sure the Transparency box is checked B. Also
be sure “Convert to sRGB” is checked. Click Export All, name the
file circle24.png, and click Export.

4.	 Let’s save it as a PNG-8 as well: Export As, PNG, Transparency,
but this time select “Smaller File (8-bit).” Name the file circle8.
png, and click Export.

5.	 Just for comparison, Export As again, but this time select GIF
from the File Settings menu. In the preview, you will see that the
areas that are not 100% opaque are blended with white C, which
is not ideal, but save the file anyway as circle.gif. The Export As
function does not offer a way to change the fill (matte) color for
GIFs and JPEGs.

Now that you have your transparent files circle24.png, circle8.png,
and circle.gif, you can skip ahead to the section “How do they
look?”

A B C

When you select PNG, either 24-bit (default) or
8-bit (Smaller), multiple levels of transparency
are preserved.

Start with a transparent
layered image document.

GIF can store only binary transparency,
so the semitransparent pixels are
blended with solid white.

FIGURE 24-8.   Exporting an image with soft transparent edges in Photoshop CC.

→

24. Image Asset Production

Responsive Image Production Tips

681

GIMP
1.	 Create a new file (File → New), set the dimensions to 250

pixels wide and high, set X and Y resolution to 72.000 pixels/
in. Select Transparency from the “Fill with:” pop-up menu. You
can remove the “Created with GIMP” comment. Click OK. You
should have a new image window filled with a gray, checkered
background. Save the working copy with the name circle.xcf.

2.	 Time to draw a shape. Select the Ellipse Select Tool from the
Toolbox and under Tool Options, turn on Feather Edges, and
set the radius to 10. Now draw a circle in the image window. Set
the foreground color to something you like and drag the color
into your circle to fill it (FIGURE 24-9, A). That’s all we need
to do for the purposes of this exercise, but you can add more
embellishments if you like.

3.	 Now let’s export it. Select File → Export As and name the file
circle24.png B. The suffix tells GIMP to save the file in PNG
format, and because the original image is RGB with transparent
areas, GIMP creates a 24-bit PNG with alpha transparency. In

GIMP, this is the best transparency option. In the Export Image as
PNG dialog box C, uncheck all of the boxes.

4.	 For comparison, let’s see how GIMP handles binary
transparency. To export an 8-bit image in GIMP, you need to
convert it to indexed color first (Image → Color Mode → Indexed
Color). Use the optimum palette with 256 colors. Leave the
“Enable dithering of transparency” box unchecked for now, and
click Convert. All those soft edges are gone, and the pixels are
either opaque or transparent. I recommend zooming in to 200%
(the zoom setting is at the bottom of the window) to see the
stair-stepped edges D.

5.	 OK, revert the file to RGB (File → Revert) and convert it to
indexed color again, only this time, click the box next to Enable
Dithering. If you’re zoomed in, you can see that GIMP creates a
pattern out of solid and transparent pixels that kinda simulates
the blurred edges of the circle D. Export this file in PNG format
as circle8.png. You could also save it in GIF format.

A B

C

D

Converted to indexed color, the soft edges get converted to
on/o� transparency with hard edges (left) or dithered edges
(right). I �nd both of these options unacceptable, so in GIMP, go
for the PNG-24 option.

Naming the �le with the .png
su�x is enough for GIMP to
know to save it as a PNG. If the
image is RGB with transparency,
it outputs a PNG-24 with alpha
transparency by default.

FIGURE 24-9.   Creating a transparent image in GIMP.

EXERCISE 24-2. Continued

Part V. Web Images

Responsive Image Production Tips

682

How do they look?
Now that I have some transparent graphics, I’m going to try them
out on a minimal web page with a white background. The images
and transparency.html file are provided with the materials for this
chapter if you’d like to work along. You could also use the graphics
you created.

<!DOCTYPE html>
<html>
<head>
 <title>Transparency test</title>
 <style>
 body {background-color: white;}
 p {text-align: center;}
 img {margin: 2em;}
 </style>
</head>
<body>
 <p>
 <!-- left -->
 <!-- center -->
 <!-- right -->
 </p>
</body>
</html>	

When I open the file in a browser, the graphics look more or less
the same against the white background (FIGURE 24-10, top).
But if I change the background color of the web page to teal
(background-color: teal;), the difference between the alpha
and binary transparency becomes very obvious (bottom). You can
clearly see the halo on the GIF on the left. Both the PNG-8 and the
PNG-24 versions as exported in Photoshop have smooth alpha
transparency.

Wrapping up
In summary, if you work in Photoshop CC, export transparent
images as 8-bit PNGs. In other tools, use PNG-24 with alpha
transparency, but keep an eye on the file size. If the file is
unacceptably large, you can convert it to a PNG-8 + alpha by using
one of the tools listed in the “Image Optimization” section. Your
other option is to try it with binary transparency and a matte color
that matches the background of the page. If your tool doesn’t have
a Matte feature, see the “Matte Alternative” sidebar.

GIF (binary)

background-color: white;

background-color: teal;

PNG-8 (alpha)
[Photoshop CC only]

PNG-24 (alpha)

FIGURE 24-10.   The difference between binary and alpha
transparency becomes very clear when the background color of
the page changes.

Matte Alternative
If your graphics tool doesn’t have the Matte feature (GIMP and
Photoshop CC 2018 come to mind), create a new layer at the
bottom of the layer “stack” and fill it with the background color
of your page. When the image is flattened as a result of being
changed to indexed color, the anti-aliased edges blend with the
proper background color. Just select that background color to
be transparent when exporting to GIF or PNG, and your image
should be halo-free.

If selecting a transparent color is not an option in the tool you
use, you can copy the important parts of the image including
the blended edges, copy and paste it into a new transparent
image file, and then export it as a GIF or PNG-8.

That’s a lot of work for each image, which is why using alpha
transparency is a superior choice.

24. Image Asset Production

Responsive Image Production Tips

683

This example should look familiar:

<img src="strawberries-640.jpg" alt="baskets of ripe strawberries"
 srcset="strawberries-240.jpg 240w,
 strawberries-480.jpg 480w,
 strawberries-672.jpg 672w"
 sizes="(max-width: 480px) 100vw,
 (max-width: 960px) 70vw,
 240px">

For this particular img element, we’ve provided JPEGs of the strawberry
image at 240, 480, and 672 pixels wide. Other layouts may require fewer
or more breakpoints for each image. The first question you may ask when
producing images for responsive layouts is, “How many images do I need to
create?” That is a good question that doesn’t have an easy answer.

Start by determining the smallest and largest dimensions at which you know
the image is likely to appear. Then, decide how many interim sizes would
be useful to meet the goal of reducing unnecessary downloads. If the range
isn’t that large, you might find that providing small, medium, and large ver-
sions is fine and better than nothing. If there is a large difference between the
extremes, more breakpoints may be required. If there is very little difference,
one image size may suffice.

Resize them manually
If you find you need only a few versions, resizing images on export is a fine
option. FIGURE 24-11 shows resizing options in Photoshop CC’s Export As
dialog box, but you will find similar settings in other programs. Alternatively,
you could use the Image Size tool to resize the image manually before sav-
ing or exporting. That gives you an opportunity to make adjustments to the
image (such as sharpening it up) before committing to the export.

Remember that you always want to start with the image at its largest size in
your image editor, and resize it smaller to your target image sizes. Resizing
larger (upscaling) results in blurry images.

FIGURE 24-11.   Resizing images manually (as shown here in Photoshop CC) is an
option if you have a manageable number of images to produce.

R E S I Z I N G T I P

Resizing an extremely large
photographic image to a small size
appropriate for a web page layout
can blur the image if you do it in
one step, such as on export. I find
I get better results if I reduce the
dimensions a little bit at a time,
sharpening the image after each
pass. For example, if my source image
is 4,000 pixels wide and I need to
get it down to 250 pixels, I’d start by
resizing it manually by 50%, and then
use the Sharpen tool to sharpen it up
again. Then I’d repeat the steps until
I get the image to its target size. It’s
definitely more work, but it’s worth it
if I am happier with the results.

Part V. Web Images

Responsive Image Production Tips

684

Generate images based on file size
If your image is used at a wide range of sizes, more breakpoints than “small,
medium, and large” may be required. In that case, providing a range of selec-
tions based on file size, not pixel dimensions, is a more appropriate approach
(see Further Reading). Keep in mind that the primary goal for viewport-based
responsive images is limiting wasted data downloads. Remember also that
the browser makes the final image file selection based on the user’s viewing
environment—we only provide options with our responsive image markup.
We can trust the browser to make the right selection, scaling up or down
slightly as required.

In the file-size approach to breakpoints, you create a set of images with file
sizes that step up in fixed increments, such as 20 KB, 40 KB, or 80 KB, to cover
all the possibilities and fine-tune the amount of data that gets downloaded.
Granted, that takes a lot of extra work and may not be feasible to do manu-
ally for a site with a lot of images.

Fortunately, there is a tool that generates the images for you. The Responsive
Image Breakpoints Generator by Cloudinary (responsivebreakpoints.com) lets
you upload a large image and set the maximum/minimum dimensions, the
size step, and the maximum number of images, and it generates all the images
automatically. FIGURE 24-12 shows how I used the tool to create strawberry
images at 20 KB increments. By the time you are reading this, there may be
more tools like this, so it’s worth a quick web search to see what’s available.

FIGURE 24-12.   Responsive Image Breakpoints Generator by Cloudinary
(responsivebreakpoints.com) generates image files for you.

F U RT H E R R E A D I N G

I recommend two articles that discuss
the file-size approach to responsive
breakpoints that go into more detail
than I am able to here:

•	 “Responsive Image Breakpoints
Generator, A New Open Source
Tool,” by Nadav Soferman at
Smashing Magazine (www.
smashingmagazine.com/2016/01/
responsive-image-breakpoints-
generation/). This article
introduces the image generator
mentioned in this section and
provides a lot of background
information about the approach.

•	 “Responsive Images 101, Part 9:
Image Breakpoints,” by Jason
Grigsby on the Cloud Four
blog (cloudfour.com/thinks/
responsive-images-101-part-9-
image-breakpoints/), introduces
the idea of basing breakpoints on
a “performance budget,” among
other solutions.

24. Image Asset Production

Responsive Image Production Tips

685

http://www.responsivebreakpoints.com
http://www.responsivebreakpoints.com
http://www.smashingmagazine.com/2016/01/responsive-image-breakpoints-generation/
http://www.smashingmagazine.com/2016/01/responsive-image-breakpoints-generation/
http://www.smashingmagazine.com/2016/01/responsive-image-breakpoints-generation/
http://www.smashingmagazine.com/2016/01/responsive-image-breakpoints-generation/

Art-Directed Images
For some images, simply resizing to fit a layout isn’t sufficient. It may be
necessary to crop or alter the image so that it works successfully at smart-
phone size as well as desktop monitor size. This is what is known as the “art
direction” case for responsive images. Chapter 7 has a full explanation and
examples of art direction–based selections, but as a quick reminder, this is a
scenario for the picture element:

<picture>
 <source media="(min-width: 1024px)" srcset="icecream-large.jpg">
 <source media="(min-width: 760px)" srcset="icecream-medium.jpg">

</picture>

If you want total control over what appears in an image at each size, you need
to design and export each image manually in your favorite image editor. Each
art-directed version may also need to be generated at several sizes, depending
on your breakpoints. That may be just fine if you don’t have too many images
to deal with.

But hold onto your hat! Cloudinary figured out a way to automate art direc-
tion too. You can use the tools in the bottom-right corner of the Responsive
Image Breakpoints Generator to specify image proportions for desktops,
laptops, tablets, and smartphones. Cloudinary’s tool does some sophisticated
image analysis, including edge detection, face detection, and visual unique-
ness to determine the most important parts of the image. The final image is
cropped to include the visually “hot” spots. For more information on how
it’s done, read the article “Automating Art Direction with the Responsive
Image Breakpoints Generator” by Eric Portis at www.smashingmagazine.
com/2016/09/automating-art-direction-with-the-responsive-image-breakpoints-
generator/.

Other image hosting and automation services also offer face detection and
features that improve the quality of the images they generate. If you are shop-
ping for such a service, check to see if smart cropping is available.

Images for High-Density Displays
If you want an image to look its sharpest on high-density screens (@1.5x,
@2x and @3x), it needs to be created large enough to cover the device pixels
at the highest densities. For example, if you want an image to be 300 pixels
wide in your layout, you’ll need a 300-pixel-wide version for standard dis-
plays, a 600-pixel-wide version for 2x displays, and a 900-pixel-wide version
targeted to 3x displays.

To review, this high-resolution scenario uses the srcset attribute in the img
element with an x-descriptor that specifies the target screen density for each
image:

NOTE

To brush up on the special requirements
of high-density displays, see Chapter 7,
where I first introduced device-pixel-
ratios as well as the markup for targeting
images to specific densities. See also the
discussion of image and screen resolu-
tions in Chapter 23.

Part V. Web Images

Responsive Image Production Tips

686

 <img
 src="/images/apple-300px.jpg" alt="apple"
 srcset="/images/apple-600px.jpg 2x,
 /images/apple-900px.jpg 3x" >

Thankfully, the people who make our image creation programs get it, and
they’ve begun building features into their tools that make it easier to output
multiple high-density versions at once.

Export multiple high-density versions
Photoshop CC 2018, Sketch, Illustrator, and Affinity Designer are four tools
aimed at screen designers that make it easy to set up simultaneous exports
at multiple scales. It’s a nice little time (and math!) saver. If you use another
design tool, check to see if it is an option (it is generally located wherever your
tool handles exporting). Later in this section, I’ll give you some strategies for
making sure the image quality stays crisp even at larger scales.

Adobe Photoshop CC 2018

Photoshop lets you add scales on the top-left corner of the Export As
dialog box (FIGURE 24-13). To export a whole artboard, choose Export
As (File → Export → Export As). You can also export a specific element by
right-clicking (Control-clicking on a Mac) its layer name and selecting
Export As from the pop-up menu. In the Scale All section, click the + but-
ton to add more scales for export. The little down arrows open a menu of
standard scales (1x, .5x, 3x, etc.). Click the garbage can to remove a scale.
When you click Export All, all of the images are created at once, named
with the -@nx suffix (see Note).

Adobe Illustrator CC

In Illustrator, to export the entire artboard, choose File → Export → Export
for Screens. You’ll find the option to Add Scale in the right column
(FIGURE 24-13). You can also export individual assets (such as icons and
other elements) via the Assets Export panel (Window → Assets Export),
which has its own export settings. Just drag elements into the panel,
and they are ready to go. The Export As dialog box also provides access
to individual assets via the Assets tab, but they need to be added to the
Assets Export panel first. One click on Export, and voilà! All your scaled
assets exported at once!

Sketch

Sketch (Mac only) is a tool for designing website and app interfaces that
has rapidly grown in popularity. In Sketch, select an artboard or a page
element and click the + icon next to Make Exportable in the bottom-right
corner of the Sketch window. In the revealed Export panel (FIGURE 24-13),
select a file format and click the + icon to add more scales to be created
on export.

NOTE

The “@nx” (@1x, @2x, etc.) conven-
tion was established in the Apple iOS
Developer Library. It seems to have
crossed over to the web world as well.

24. Image Asset Production

Responsive Image Production Tips

687

Photoshop CC 2018
Right-click a layer to
export one layer element
at a time.

Select the file format
under File Settings (right).
Add scales in the Scale All
section (le�).

Illustrator CC
Choose Export for Screens
from the File menu to
export the entire artboard.
Choose the file format and
add scales under Formats.

Sketch
Select the item to export
and click Make Exportable
in the bottom-right corner
of the application. In the
Export settings, select file
formats and add scales.

A	inity Designer
Enter the Export
Persona by clicking its
icon. Click the arrow
icon next to the slice
you want to export to
reveal format and
scale settings.

Export one
element at a time
from the Asset
Export dialog box.
Add assets by
dragging them
into the panel.

Export Persona icon

FIGURE 24-13.   Newer design tools allow you to export multiple high-density sizes at
once.

Part V. Web Images

Responsive Image Production Tips

688

Affinity Designer

Affinity Designer has an export mode (which it calls a “Persona”) in
which you access all of its export settings. Create slices for the elements
you want to export. Enter the Export Persona (using the menu Affinity
Designer → Export Persona or clicking the icon that looks like a molecule).
Select the slice or slices you want to export in the Slices panel (FIGURE

24-13); then click the small arrow to the left of the slice name to expose
export settings, including file format and the ability to add scales with the
+ icon. When you are ready, click Export Slices.

The problem to watch out for with all of these tools is that if you design
at standard (@1x) resolution, the exported @2x and @3x versions will be
much bigger than they are in your working document. That should raise a
red flag in your mind, because doubling or tripling the dimensions of images
typically makes them blurry. There are ways around that, however, which I’ll
discuss next.

Work at @1x scale
Even if you are creating high-definition versions of your images, it is still
recommended that you do your design work at @1x scale (see Note). In
other words, the pixel dimensions in your working document (whether it’s in
Photoshop, Sketch, or some other tool) should match the layout pixels of your
design. In Photoshop and other image-editing tools, @1x scale is equivalent
to 72ppi. The advantages to working at @1x scale include the following:

•	 It’s easier to specify font size and other length measurements as they
appear in your working documents without the need to divide everything
by two. If you work at @2x and you want 16pt type, you need to make
it 32pt in your image document. If you want 10 pixels of padding in the
layout, you need to create it at 20 pixels, and so on.

•	 Pixel-snap features work more reliably at @1x. Snapping to even pixels is
a way to keep edges crisp in detailed elements such as icons.

•	 File sizes are much smaller for a design created at @1x, so it is better for
performance on your computer. Complex files with lots of artboards and
layers at @2x can get sluggish and slow down your work.

•	 It creates a more realistic sense of how much space you have to work
with. A @2x design space might give the impression that you have more
room to fit in elements, but they will end up too small and cramped when
reduced 50% for @1x displays.

Start with vectors when possible
One way to maintain quality when your design is upscaled is to use vector
source images whenever possible. As you’ve learned, vectors can scale up with
no loss of quality, so they make a great starting point for web and app design.

NOTE

On the other hand, some designers
strongly prefer to work at 2x and reduce
everything by half for standard displays,
particularly if they do their design work
on Retina displays. Dan Rodney is one
such designer, and you can read his
argument for @2x design at www.dan-
rodney.com/blog/designing-retina-
web-graphics-in-photoshop-should-
you-work-at-1x-or-2x/.

24. Image Asset Production

Responsive Image Production Tips

689

http://www.danrodney.com/blog/designing-retina-web-graphics-in-photoshop-should-you-work-at-1x-or-2x/
http://www.danrodney.com/blog/designing-retina-web-graphics-in-photoshop-should-you-work-at-1x-or-2x/
http://www.danrodney.com/blog/designing-retina-web-graphics-in-photoshop-should-you-work-at-1x-or-2x/
http://www.danrodney.com/blog/designing-retina-web-graphics-in-photoshop-should-you-work-at-1x-or-2x/

Many new UI design tools for screen and web interfaces, such as Sketch,
Affinity Designer, and Adobe XD, are vector-based by default, so you’ll have
no problem outputting larger versions of elements you create there (the same
goes for vector-based Adobe Illustrator). If you prefer to design in Photoshop,
make sure to use its vector tools such as shapes, paths, and imported vector
smart objects for common web page elements like buttons, icons, and illus-
trations whenever possible.

Embed large-scale bitmaps
To preserve the image quality of photographs and other necessarily bit-
mapped page elements at large scales, start with an image source that is at
least as large as your largest scale. For example, if you know that your @3x
version is 2,880 pixels wide, your source image should be that wide or wider.

In Illustrator, Sketch, and Affinity Designer, “placing” the high-resolution
source image on the @1x artboard and resizing it to fit the needs of the
layout gives the program all the pixel information it needs to export high-
quality, large-scale assets.

In Photoshop CC, to take advantage of the full image resolution, the trick
is to add the image to your design as a linked Smart Object. The Smart
Object is like a placeholder for the image in your @1x design, with the high-
resolution original remaining separate. When it comes time to export at vari-
ous scales, Photoshop references the high-res version, and you end up with
full-resolution exports (see Important Warning). To place an image as a Smart
Object, choose File → Place Linked and resize the image to fit into your design.

Viva la Automation!
I mentioned this in the section “Image Asset Strategy” in the previous chap-
ter, but it bears repeating—if your site is image-heavy, consider using server
software that automates the process of responsive image generation. As Jason
Grigsby says in his article, “Humans shouldn’t be doing this.” I couldn’t agree
more (unless you have a penchant for repetitive tasks).

You may choose to install software on your own server, or as a convenience,
use a third-party vendor that provides hosted image management services.
Again, some popular services currently are Cloudinary (cloudinary.com),
Akamai (akamai.com), and Kraken.io (kraken.io).

I hope that you’ve come away with some strategies to improve the workflow
for creating multiple versions of images for responsive layouts. Or perhaps
you’ve just decided to let the server handle it! Let’s move on to the final topic
in our image asset production deep-dive: optimization.

IMPORTANT WARNI NG

As of this writing, there is a bug in
Photoshop CC 2018 that prevents this
technique from working with JPEG imag-
es. When you link a large-scale JPEG,
Photoshop ignores it and scales up a
screenshot of the image in the current
file. The workaround is to convert the
high-resolution JPEG image to a PSD
file before adding it as a Smart Object.
Adobe knows about this bug, so hopeful-
ly they will fix it in an upcoming release.

R E S O U RC E

Jason Grigsby maintains a
spreadsheet of image-resizing
services, available at tinyurl.com/
pmpbyzj. See also his associated
article “Image Resizing Services”
(cloudfour.com/thinks/image-
resizing-services/).

Part V. Web Images

Responsive Image Production Tips

690

IMAGE OPTIMIZATION

Because a web page is published over a network, it needs to zip through the
lines as little packets of data in order to reach the end user. It is fairly intui-
tive, then, that larger amounts of data will require a longer time to arrive. And
guess which part of a standard web page packs a whole lotta bytes—that’s
right, the images.

Thus is born the conflicted relationship with images on the web. On the one
hand, images make a web page more interesting than text alone, and the abil-
ity to display images is one of the factors contributing to the web’s success.
On the other hand, images also try the patience of users with slow internet
connections and gobble the data plans of mobile devices.

If you study the flowchart back in FIGURE 23-16, you will see that all paths
end with “Optimize.” Making your image files as small as they can be is
critical for fast-loading sites, so all web designers and developers should have
multiple image optimization tricks up their sleeves.

As you saw firsthand in EXERCISE 24-1, choosing the appropriate file format
is your first line of defense against bloated file sizes, but it doesn’t stop there.
It’s possible to squeeze a lot more data out of the images that your image
editor exports.

Optimization approaches fall into two broad categories:

•	 Efforts you make manually and deliberately during the design and export
process

•	 Post-export compression tools that root through the code and crunch
them down even further, generally by throwing out unused data

This section starts with general guidelines for limiting file size. Next, because
each image format is slightly different under the hood, we’ll examine optimi-
zation strategies for JPEG, PNG-24, PNG-8, and GIF files (see Note). Finally,
we’ll round up some optimization tools that work on multiple formats and
are a good last step in any image production process.

General Optimization Guidelines
Regardless of the image or file type, there are a few basic strategies to keep in
mind for limiting file size. In the broadest of terms, they are as follows:

Start with a high-quality original

Start with the best-quality source image you can get your hands on. From
there, you can make copies at various sizes and compression settings, but
you’ll want to keep that original safe.

NOTE

Of course it is important to optimize SVGs
as well, but I’ve saved that discussion for
the SVG chapter (Chapter 25).

All web designers should
have multiple image
optimization tricks up
their sleeves.

24. Image Asset Production

Image Optimization

691

Limit dimensions

Although fairly obvious, the easiest way to keep file size down is to limit
the dimensions of the image itself. There aren’t any magic numbers; just
don’t make images any larger than they need to be. By simply eliminating
extra space in the graphic in FIGURE 24-14, I was able to reduce the file
size by 3 KB (23%).

500 x 136 pixels (10 KB)

600 x 200 pixels (13 KB)

FIGURE 24-14.   You can reduce the size of your files by cropping out extra space.

Reuse and recycle

If you use the same image repeatedly in a site, it is best to create only one
image file and point to it repeatedly wherever it is needed. This allows
the browser to take advantage of the cached image and avoid additional
downloads.

Use appropriate tools

If you know you will be doing a lot of web image production work, it is
worth investing in professional image-editing software with web-specific
features. Whether you choose Photoshop, Sketch, PaintShop Pro, or some
other program mentioned in this book is up to your personal preference
and budget limitations.

Run the image through an optimizer

You should have a number of image optimization tools at your disposal.
I’ll list several throughout this section, many of which are free to use.

Part V. Web Images

Image Optimization

692

Optimizing JPEGs
Here are the general strategies for reducing the file size of JPEGs:

•	 Be aggressive with compression.

•	 Choose Optimized if available.

•	 Soften the image (Blur/Smoothing).

•	 Avoid hard edges and sharp details.

Be aggressive with compression
Your number one tool for optimizing JPEGs is the Quality setting that you’ll
find in just about every graphics tool. The Quality setting allows you to set
the rate of compression; lower quality means higher compression and smaller
files. If your image editor has a preview, you can keep an eye on the image
quality while changing the compression level. Different images can withstand
different amounts of compression, but in general, images hold up reasonably
well at moderate (50–70) and even low (30–40) quality settings. The quality
at particular settings varies from program to program, so use whatever setting
results in the best balance of quality and file size for your particular image.

Choose Optimized if available
Optimized JPEGs have slightly smaller file sizes and better color fidelity than
standard JPEGs (although I’ve never been able to see the difference). For this
reason, you should select the Optimized option if your image software offers it.

Blur the image
Because soft images compress smaller than sharp ones, you can try applying
a slight Gaussian blur to the image to give the JPEG compression something
to chew on. Even an imperceptible blur over the whole image can reduce
file size. In GIMP’s Export as JPEG dialog box, there is a Smoothing setting
that does just that. Photoshop’s legacy Save for Web feature also includes an
option to apply varying amounts of blur across the whole image.

You might also choose to apply a more aggressive blur to less important areas
of the image while preserving areas of interest. In FIGURE 24-15, I applied a
blur to all areas of the image except the face, which remains at the original
quality, and reduced the file size by 6 KB, or 23%. For this image, I’d say
the savings are worth the loss of detail around the edges, but of course, you
should decide whether blurring is appropriate based on the content and
purpose of your images.

Avoid hard edges and details
JPEGs compress areas of smooth, blended colors more efficiently than areas
with high contrast, hard edges, and sharp detail. To demonstrate the difference,

26 KB
Quality: 60%, no blur

20 KB
Quality: 60%, Gaussian blur applied
to areas except the face

FIGURE 24-15.   Applying blur to less
important parts of an image can help
reduce the size of the exported JPEG.

24. Image Asset Production

Image Optimization

693

FIGURE 24-16 shows two similar graphics with blended colors. The image
with more contrast and detail is more than four times larger at the same qual-
ity setting. You can keep this principle in mind when creating your images. If
a photograph has a lot of hard edges, consider whether they can be softened
or edited out. Also see whether a PNG-8 might offer similar image quality at
a smaller size.

“Optimizing” PNG-24
Because PNG-24 is a lossless format, there isn’t much you can do to these
images in terms of optimization. Your best bets are to do the following:

•	 Avoid them for photographs in favor of JPEGs.

•	 Run them through an optimization utility.

•	 Convert them to PNG-8 with multiple levels of transparency.

PNG’s lossless compression makes PNG-24 a wonderful format for preserving
quality in images, but the same image will always be smaller saved as a lossy
JPEG. Therefore, your first “lean and mean” strategy for photographs is to
avoid PNG-24 and go with JPEG instead.

You may be using PNG-24 because you need multiple levels of transparency
(a valid reason). If that is the case, you have two options. Running the image
through one of the image optimizers listed later in this section is a good way
to strip out useless metadata but preserve the image. The other option is to
convert it to a PNG-8 while maintaining alpha transparency.

Converting to PNG-8
Until recently, we didn’t have tools for making PNG-8 with alpha transparen-
cy (see Note). Now Photoshop CC gives you the option to make PNG-8 with
alpha transparency and a smaller file size right in the Export As dialog box.

NOTE

Adobe Fireworks had the little-known ability to create PNG-8 + alpha, but it was discontin-
ued in 2013.

You can also use a standalone utility for converting a PNG-24 to PNG-8 with
alpha transparency. Some options are as follows:

•	 ImageAlpha (pngmini.com) is a Mac-only program created by Kornel
Lesiński for converting PNG-24 to PNG-8 (FIGURE 24-17). For the image
of the orange circle, I was able to reduce the size from 8.4 KB to 2.6 KB, a
savings of 69%. Because the circle had flat colors, I was able to reduce the
color palette to 64 colors without any significant change in appearance.

gradient.jpg (12 KB)

detail.jpg (49 KB)

FIGURE 24-16.   JPEG compression
works better on smooth, blended
colors than hard edges and detail.

Alternatives to PNG-24
PNG-24 images have large file sizes,
so developers look for ways to avoid
them entirely. Here are some options
for achieving multiple levels of
transparency without using PNG-24:

•	 Convert them to PNG-8, as
discussed in this section.

•	 Place a JPEG version of the image
inside an SVG; then use the SVG
clipping or masking features
(covered in Chapter 25) to create
transparent areas.

•	 Apply transparent areas by using
CSS Masks (www.w3.org/TR/
css-masking-1/), which are not
covered in this book but are worth
looking into.

•	 Use a new image format, such
as WebP and JPEG 2000, that
supports alpha transparency.
These will be good alternatives to
PNG-24 once support improves in
image-creation tools and browsers.

Part V. Web Images

Image Optimization

694

http://www.pngmini.com
http://www.w3.org/TR/css-masking-1/
http://www.w3.org/TR/css-masking-1/

•	 TinyPNG (tinypng.com) allows you to drag PNGs right onto their web
page for conversion. They also offer a paid Pro version and developer APIs
that let you use the “tinify” tool with most backend platforms.

•	 PunyPNG Pro (punypng.com) is another compressor with a web interface
that offers “lossy” conversion from PNG-24 to PNG-8, although you get
that feature only with the paid Pro account.

FIGURE 24-17.   The ImageAlpha compression tool (Mac only) turns PNG-24s with
alpha transparency into PNG-8s while retaining multiple transparency levels.

Optimizing PNG-8 and GIF
Follow these optimization strategies in the PNG-8 and GIF creation and
export process:

•	 Reduce the number of colors (bit depth).

•	 Avoid or reduce dithering.

•	 Design with flat colors.

Reduce the number of colors (bit depth)
The most effective way to reduce the size of an indexed color image, and
therefore the first stop in your optimization journey, is to reduce the number
of colors in the image.

Although PNG-8s and GIFs can contain up to 256 colors, there’s no rule
that says they have to. In fact, by reducing the number of colors (bit depth),
you significantly reduce the file size of the image. One reason for this is that
files with lower bit depths contain less data. Another byproduct of the color

F U N FACT

All of these tools use the pngquant
compression library, created by
Kornel Lesiński (pngquant.org),
which reduces the number of colors
from 24-bit to 8-bit while assigning
transparency levels to slots in the
indexed color map.

24. Image Asset Production

Image Optimization

695

http://www.pngquant.org

reduction is that you create more areas of flat color by combining similar,
abutting pixel colors. More flat color areas mean more-efficient compression.

Photoshop and GIMP give you the opportunity to reduce the number of
colors when you convert the image from RGB to indexed color. In Photoshop,
select Image → Mode → Indexed Color, and enter the number of colors to use
in the color map in the Colors box. If you have access to Photoshop’s legacy
Save for Web feature, there is a bit-depth setting you can play around with
while observing the resulting image in the preview before saving the image.
In GIMP, go to Image → Mode → Indexed and enter the “Maximum number of
colors” you’d like to use.

If you reduce the number of colors too far, of course, the image begins to fall
apart or may cease to communicate effectively. For example, in FIGURE 24-18,
once I reduced the number of colors in the PNG to eight, I lost the rainbow,
which was the whole point of the image. This “meltdown” point is different
from image to image. (Granted, this barn and sky image should be a JPEG,
but it demonstrates the effects of optimization dramatically, so thank you for
bearing with me.)

You’ll be surprised to find how many images look perfectly fine with only 32
pixel colors (5-bit), such as the Asian Cuisine image in EXERCISE 24-1. That
is usually my starting point for color reduction, and I go higher only if neces-
sary. Some image types fare better than others with reduced color palettes, but
as a general rule, the fewer the colors, the smaller the file.

The real size savings kick in when there are large areas of flat color. Keep in
mind that even if your image has 8 pixel colors, if it has a lot of blends, gra-
dients, and detail, you won’t see the kind of file size savings you might expect
with such a severe color reduction.

Bit Depth
Bit depth is a way to refer to the
maximum number of colors a graphic
can contain. This chart shows the
number of colors each bit depth
represents:

1-bit	 2 colors

2-bit	 4 colors

3-bit	 8 colors

4-bit	 16 colors

5-bit	 32 colors

6-bit	 64 colors

7-bit	 128 colors

8-bit	 256 colors

256 colors (21 KB) 64 colors (13 KB) 8 colors (6 KB)

FIGURE 24-18.   Reducing the number of colors in an image reduces the file size.

You’d be surprised
how many images look
perfectly fine with only
32 pixel colors.

Part V. Web Images

Image Optimization

696

Reduce dithering
When the colors in an RGB image are reduced to a specific palette, the col-
ors that are not in that palette get approximated by dithering. Dithering is
a speckle pattern that results when palette colors are mixed to simulate an
unavailable color. When converting to indexed color, Photoshop and GIMP
(and most other image editors) allow you to specify whether and how the
image dithers.

In photographic images, dithering is not a problem and can even be benefi-
cial; however, dithering in flat color areas is usually distracting and undesir-
able. In terms of optimization, dithering is undesirable because the speckles
disrupt otherwise smooth areas of color. Those stray speckles stand in the
way of the compression and result in larger files.

One way to shave bytes off a PNG or GIF is to turn off dithering entirely. For
some images, that may result in a banding effect as shown in FIGURE 24-19.
If that is unacceptable, you can turn the dithering back on or try a higher
number of colors if the bit depth was set to less than 8-bit.

Dithering: 9.6 KB No dithering: 7.8 KB

FIGURE 24-19.   Turning off or reducing the amount of dithering reduces the file size.
Both images have 32 pixel colors and use an adaptive palette.

Design with flat colors
When designing your images keep in mind the fact that PNGs and GIFs are
good at compressing areas of flat color.

Choosing flat colors over gradients and patterns makes a big difference in
file size, as shown in FIGURE 24-20. Reducing the colors from 256 to 8 goes
a long way in reducing the file size, but the colors in the blend are approxi-

NOTE

Not all image-editing tools give you con-
trol over the amount of dithering.

24. Image Asset Production

Image Optimization

697

mated with a dither pattern, which we just learned is counterproductive to
GIF and PNG compression. However, if you create the image with flat colors
in the first place, the file size is half that of the dithered version, even though
both images have been reduced to 8 colors.

I feel obliged to say that images like this one should be drawn with vectors
and saved in SVG format, which will be smaller and more versatile than bit-
mapped versions. However, if you have a reason for saving PNGs, design them
in a way that complements the compression. Similarly, if you are starting with
a bitmapped source image, you may be able to edit it in a way that eliminates
unnecessary color blends and patterns.

13.5 KB
PNG with gradient blends and
256 colors.

6.8 KB
PNG with dithering pattern
and only 8 colors.

3.7 KB
PNG designed with flat colors
(8-color palette).

FIGURE 24-20.   For PNG-8 and GIF, you can keep file sizes small by replacing
gradients and patterns with flat colors.

Optimization Tools
Even if you design images to take advantage of their end compression scheme
and take full advantage of all the optimizations in your image-editing tool,
there’s a good chance that you can squeeze down the file size of your images
even further using an optimization tool. These tools are generally lossless,
meaning they do not alter the appearance of your image. They find the file
savings by tossing out chunks of code dedicated to metadata, color profiles,
and other redundant code.

It is recommended that you always run your images through an optimization
tool as the last step in the image production process. The good news is, there
are many ways to do it, so you will surely find one that fits into your work-
flow. Let’s look at some options.

Online image optimizers
One easy solution is to use one of the freely available online optimizers. Just
drag your images onto the web page interface and download the resulting
compressed files. They are a good option if you don’t have too many images
to process, and they have the advantage of being cross-platform. In addition
to free web-based tools, most of these companies also offer Pro packages that
allow you to upload more data and provide additional compression options.
Some also offer server-side solutions:

Always run your images
through an optimization
tool as the last step in
the image production
process.

Part V. Web Images

Image Optimization

698

•	 Optimizilla (optimizilla.com) can optimize both JPEGs and PNGs and
allows you to compress up to 20 images at once. It is free to use.

•	 Kraken.io (kraken.io/web-interface) offers a free web interface in addition
to their commercial server-side services. They give you the option of lossy,
lossless, manual “expert” settings, and the ability to resize the image as
well.

•	 TinyPNG (tinypng.com) was mentioned earlier as a way to convert trans-
parent PNG-24 to PNG-8, but you can use it to compress any PNG or
JPEG.

•	 PunyPng (punypng.com) boasts that they produce the smallest file sizes
for JPEGs, PNGs and GIFs. They also offer a Pro package that gives you
more compression options, such as the PNG-24 to PNG-8 conversion
mentioned earlier.

Standalone optimization apps
You might prefer to have an optimization program running on your own
computer. If that is the case, look into these popular downloadable tools:

•	 ImageOptim (imageoptim.com) is a Mac-only tool with an easy drag-
and-drop interface for optimizing PNGs, JPEGs, GIF (including animated
GIF), and even SVG. It was created by Kornel Lesiński, who also brought
you ImageAlpha.

•	 PNGGauntlet (pnggauntlet.com) is a Windows-only tool for PNG optimi-
zation. It can also convert JPEG, GIF, TIFF, and BMP files to PNG format.

•	 JPEGmini (www.jpegmini.com) is a program for Mac and Windows that
compresses JPEGs. The free trial is good for 200 images; after that, you
need to pay for the Pro version. They offer a free web interface as well as
a server-side option.

•	 Trimage (trimage.org) is an optimization tool similar to ImageOptim that
works on the Linux platform.

Grunt and Gulp plug-ins
If your workflow is based around a task runner such as Grunt or Gulp, you
can make optimization of PNGs and JPEGs an automated task with the
“imagemin” plug-in. imagemin is maintained at github.com/gruntjs/grunt-
contrib-imagemin, where you can get instructions and links to download.

Now you should have some strategies for making your images as lean and
mean as possible, including techniques for each file format during the cre-
ation process as well as tools for squooshing them down even further after
they are made. Let’s put them to the test in EXERCISE 24-3.

24. Image Asset Production

Image Optimization

699

http://www.imageoptim.com
https://pnggauntlet.com
http://www.jpegmini.com
http://www.trimage.org

And with that, we end our tour of image asset production techniques. You
should feel comfortable opening an image in an image-editing application
and saving or exporting to the various web image formats. You’ve gotten to
know the various ways image formats store transparency information and
how to pick the most appropriate format for transparent images. You’ve
picked up some tricks for generating sets of images for responsive sites, and
finally, you have some options for optimizing your images as a final step.

As usual, this chapter ends with a quiz so you can put your new knowledge
to work.

EXERCISE 24-3. Optimize some images

In this exercise, we’ll take the best images we exported in
EXERCISE 24-1 and see if we can make them even smaller using
an online optimization tool. I’ve included starter images boats-60.
jpg and asian-32.png in the materials folder if you’d like to use the
same images shown here.

I’m going to use Kraken.io because it gives me a few more options,
such as the choice between lossy and lossless compression. Click
the Try Free Web Interface button on their home page to get to the
online tool (FIGURE 24-21).

1.	 Let’s start with the asian-32.png file, which if you’ll remember,
was reduced to 32 pixel colors and saved as a PNG-8. Using
Photoshop’s best compression tool (the Export As function), we
get a file size for this image of 3.35 KB, which isn’t bad, but let’s
see if we can make it even smaller. Drag it into the Kraken.io
optimizer, selecting the “lossless” mode, which means it won’t
touch the image data but will find other data in the image that
can be removed.

The “Kraked” (optimized) file size is 2.96 KB, a file savings of
11.8% without the image being altered at all. For what it’s worth,
I tried compressing this same image at TinyPNG.com and got
a file reduction of 15%, so keep in mind that tools offer varying
results based on their compression algorithms.

2.	 Now let’s see what we can do with the boats-60.jpg image. First,
try it using the “lossless” optimization mode, keeping the image
exactly as it is. The file size went from 34.74 KB to 31.56 KB,
which is just over 9% smaller. Next drag it into Kraken.io again
using “lossy” mode, allowing the tool to throw out a little image
data to compress it even smaller.

The resulting file size is just 24.9 KB, a savings of 28%!
I downloaded both the lossy and lossless versions and
compared them in an image editor, and to my eye, there was
no discernable difference. I’d go with the much smaller lossy
version for this one. By comparison, TinyPNG was only able to
reduce boats-60.jpg by 3%.

You can see that running exported images through an optimizer
is well worth the effort. You can probably also see that doing each
one individually could get a little cumbersome, so if you have a
lot of images to produce, consider using a tool that allows batch
processing, or automate the process with a task runner or a server-
side image management tool or service.

FIGURE 24-21.   Optimizing images with the Kraken.io online
image tool.

Part V. Web Images

Image Optimization

700

TEST YOURSELF

Are you an image asset master? Answer these questions to find out. Answers
are in Appendix A.

1.	 What are your file format options if you want multiple levels of trans-
parency in a bitmapped image?

2.	 What is your number one tool for optimizing a JPEG?

3.	 What is your number one tool for optimizing an indexed-color image like
PNG-8 or GIF?

4.	 How does dithering affect the file size of an indexed color PNG or GIF?

5.	 How does adding a blur affect the file size of a JPEG?

6.	 sRGB: Yes or no? Why?

7.	 Why might you need to create @2x and @3x scales of an image?

8.	 Why might you hire a company like Cloudinary or Akamai?

24. Image Asset Production

Test Yourself

701

IN THIS CHAPTER

Shapes in SVG

Clipping and masking

Filter effects

Styling SVGs

Interactivity and animation

SVG tools

Production tips

Responsive SVGs

SVGs (Scalable Vector Graphics) have made several guest appearances in this
book, but in this chapter they finally get to be the star.

When rendered in a browser window, an SVG graphic may look like an image
in any other format, but it’s what’s under the hood that makes it truly unique
and versatile. First, as the name says, it is a vector format, meaning shapes
within SVGs are defined by coordinates and lines, not grids of pixels. That’s
what makes them scalable—they can resize infinitely without loss of quality.

FIGURE 25-1 shows the same tiger image saved as an SVG and a PNG. The
SVG can scale very large without any change in quality. Lines and text stay
sharp, regardless of whether the image is viewed at 100 pixels or 10,000 pix-
els—try doing that with a bitmapped image! Now that our web pages and
interfaces must work on all devices of all scales, from smartphones to high-
density monitors and large-screen televisions, the ability to create a single
image that looks great in all contexts is an epic win.

The vector nature of SVG makes it a good choice for icons, logos, charts, and
other line drawings (FIGURE 25-2). And because these drawings are made up
of shapes and paths, the file size is often significantly smaller than the same
image made up of a grid of pixels.

SVGs may contain raster image content as well—in fact, you can do some
pretty cool effects with them, but you miss out on the file size savings. SVGs
are also an attractive choice for adding animation and interactivity to an
interface. We’ll review all of these capabilities throughout this chapter.

SVG
(SCALABLE VECTOR GRAPHICS)

25
CHAPTER

Scalability and reduced
file sizes make SVG a
great format for icons
and simple illustrations.

703

tiger.svg

10x 10x

tiger.png

FIGURE 25-1.   Vector-based SVG images scale without loss of quality.

1920

100%

75%

50%

25%

1930 1940 1950 1960

“ben” , Open Clip Art

The Noun Project

Ozer Kavak, Open Clip Art Ghostscript tiger

FIGURE 25-2.   SVG format is appropriate for line-style illustrations.

F R E E ST U F F

You can find freely available vector
artwork in SVG format (or formats
easily converted to SVG) at these
sites:

•	 The Open Clip Art library
(openclipart.org)

•	 Freepik (freepik.com)

•	 IcoMoon (icomoon.io)

Part V. Web Images704

SVG

DRAWING WITH XML

That takes care of the “scalable” and “vector” aspects of SVG. What really sets
SVG apart from other formats, though, is that it is an XML language (see the
sidebar “A Quick Introduction to XML”) for describing two-dimensional graph-
ics, including shapes, paths, text, and even special filter effects. Bitmapped
graphics are stored as largely unintelligible code (should you care to peek
inside), but SVG images are generated by text files that are fairly human-
readable. In fact, it is possible to create SVG graphics by typing out the code
directly in a code editor instead of using a graphics program.

SVG Elements
SVG is a markup language, just like HTML, only it includes elements for two-
dimensional graphics, such as the following:

•	 Elements for drawing lines and shapes: circle, rect, ellipse, path, line,
polyline, and polygon

•	 A text element for adding text content

•	 Elements for organization, such as g for grouping shapes together, and use
and symbol for reusing drawings

•	 Elements for clipping (clipPath) and masking (mask) image areas into
interesting shapes

•	 Elements for raster effects such as linearGradient and filter for
Photoshop-like filter effects

SVG History and Browser Support
SVG has had a long ramp-up over 20 years. It was first
introduced by the W3C SVG Working Group in 1998, and SVG
1.0 finally achieved Recommendation status in 2001. SVG 1.1 (a
more modularized version) was released in 2003, then cleaned
up and republished again in 2011 (www.w3.org/TR/SVG11/).

Browser support for SVG 1.1 is excellent, but not quite
ubiquitous. Browsers began supporting SVG natively (without
plug-ins) between 2004 and 2006. The good news is that all
modern browsers now support SVG placed as a standalone
image and as inline code. The notable holes in support are
Internet Explorer 8 and earlier and Android 2.x, which thankfully
are on the verge of being obsolete (but check your own stats).
There are other inconsistencies in browser support when you
get down to the property level and other syntax minutiae. These

are the growing pains all promising web standards go through.
For an overview of feature support, see the Comparison of
Layout Engines (SVG) page on Wikipedia at en.wikipedia.org/
wiki/Comparison_of_layout_engines_(Scalable_Vector_
Graphics).

The W3C also released SVG Tiny 1.2 (www.w3.org/TR/
SVGTiny12), a subset of SVG 1.1 aimed at pre-smartphone
mobile devices. It is not supported on regular desktop or
smartphone browsers.

SVG 2 (www.w3.org/TR/SVG2/) is under development with the
aim to be more integrated with HTML5, CSS, and WOFF (Web
Open Font Format). Browsers are already beginning to roll out
support for individual modules from the SVG 2 spec, which you
can begin using with testing and fallbacks.

25. SVG

Drawing with XML

705

http://www.w3.org/TR/SVG2/

A Quick Introduction to XML
XML (which stands for eXtensible Markup Language) is not a specific language
in itself, but rather a robust set of rules for creating other markup languages. It is a
meta-language.

To use a simplified example, if you were publishing recipes, you might use XML
to create a custom Recipe Markup Language (RML) that includes the elements
<ingredient>, <instructions>, and <servings> to accurately describe the types
of information in your recipe documents. Once labeled correctly, that information
can be treated as data. In fact, XML has proven to be a powerful tool for sharing data
between applications. Despite the fact that XML was developed with the web in mind,
it has had a larger impact outside the web environment because of its data-handling
capabilities. There are XML files working behind the scenes in an increasing number
of software applications, such as Microsoft Office and Apple iTunes.

A few of the XML languages that are used on the web are as follows:

•	 XHTML: HTML rewritten according to the stricter rules of XML

•	 RSS (Really Simple Syndication, or RDF Site Summary): allows your content to be
shared as data and read with RSS feed readers

•	 MathML: Used to describe mathematical notation

•	 SVG: The image description language that you’ll learn all about in this chapter

XML Syntax Requirements
Because it is possible for multiple XML languages to appear in the same document,
it is important that the syntax be very strict to keep things straight. Shortcuts that are
fine in HTML (such as omitting end tags) won’t fly in XML languages.

SVG follows the stricter XML syntax, so it is important to follow these code
requirements when you’re writing SVG:

•	 Element and attribute names must be lowercase.

•	 All elements must be closed (terminated), which means they must have a closing
tag. To close elements without content (a.k.a. empty elements), you add a slash
before the closing bracket (for example, <rect/>).

•	 Attribute values must be in quotation marks. Single or double quotation marks
are acceptable as long as they are used consistently. Furthermore, there should be
no extra whitespace (character spaces or line returns) before or after the attribute
value inside the quotation marks.

•	 All attributes must have explicit attribute values. XML does not support attribute
minimization, the practice in which certain attributes can be reduced to just the
attribute value. This is best explained with an example from XHTML, a stricter
version of HTML rewritten in XML. In HTML, you can write checked to indicate that
a form button should be checked when the form loads, but in XHTML you need to
explicitly write out checked="checked".

•	 Proper nesting of elements is strictly enforced.

•	 Special characters must always be represented by character entities (e.g., &
for the & symbol). Note that most HTML named entities do not work in XML. Use
the numeric Unicode code point reference instead.

•	 Scripts must be contained in a CDATA section so they will be treated as simple
text characters and not parsed as XML markup. There is an example in the
“Interactivity with JavaScript” section later in this chapter.

Part V. Web Images

Drawing with XML

706

Of course, this is by no means an exhaustive list (see Note), but it should give
you the general idea of what SVG is about. A simple example should make
it even clearer. FIGURE 25-3 shows an SVG image, simple.svg, that contains a
sampling of simple SVG elements. It’s not a masterpiece, I know, but it will
introduce you to some common SVG elements.

Here are the contents of the simple.svg file that generates the image in FIGURE

25-3. If you read through it closely, I think you’ll find it’s fairly intuitive, but
my annotations follow.

<?xml version="1.0" encoding="utf-8"?> A
<svg version="1.1" B
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="150" height="200" viewBox="0 0 150 200"> C

<defs> D
 <radialGradient id="fade"> E
 <stop offset="0" stop-color="white"/>
 <stop offset="1" stop-color="orange"/>
 </radialGradient>
</defs>

<g id="greenbox"> F
 <rect x="25" y="25" width="100" height="100" fill="#c6de89"
 stroke-width="2" stroke="green"/> G
 <circle cx="75" cy="75" r="40" fill="url(#fade)"/>
 <path d="M 13 100 L 60 50 L 90 90 L 140 30" stroke="black"
stroke-width="2" fill="none"/> H
</g>

<text x="25" y="150" fill="#000000" font-family="Helvetica"
font-size="16">A Simple SVG</text> I

</svg>

Let’s take a closer look at the various parts of simple.svg:

A.	Because this is an XML file, it starts off with some XML business. The
first line is an XML declaration that identifies the file as XML. For web
SVGs, this declaration is not necessary unless you are using a character
encoding other than the default UTF-8, but you are likely to see it in code
exported by graphics programs.

B.	The entire document is contained in the svg root element. Drawing pro-
grams generally include the version number (1.1), although it is not nec-
essary. The two xmlns attributes declare the XML namespace, which tells
the browser to interpret this document by using the vocabulary defined
in SVG (see Note). The xmlns:xlink attribute allows you to put links and
references to external files in the SVG document. Namespaces help keep
element names straight, especially when there is more than one XML
language used in a document.

C.	The width and height attributes in the root svg element establish a draw-
ing area (viewport) that is 150 pixels wide by 200 pixels tall. The viewport

A Simple SVG

FIGURE 25-3.   A basic SVG image,
simple.svg. The dotted line has been
added to indicate the edges of the
viewport but is not part of the SVG code.

NOTE

The xmlns and xmlns:xlink attributes
are not required when the SVG is placed
inline in an HTML5 document.

NOTE

Lists of all the SVG elements and attri-
butes can be found at www.w3.org/TR/
SVG11/.

25. SVG

Drawing with XML

707

is indicated in FIGURE 25-3 by a dotted line, but this is for illustration
purposes only and wouldn’t appear in the browser. Pixels are the default
measurement unit in SVG, so you don’t need the “px.” The viewBox attri-
bute controls the size of the drawing itself and enables the graphic to scale
neatly if you change the width and height later. (See Note.)

D.	Next we get to the defs element, which defines elements and effects that
will be referenced later in the document by their id values. Elements in
the defs section are created but not immediately rendered. Here we are
using defs to store a radial gradient pattern, but it could also be used for
shapes (like circle) or symbols that get rendered in the document via the
use element. Defining a shape, drawing, or effect once, then reusing it, is
a good way to eliminate redundancy in your SVG code.

E.	This radialGradient element is made up of two color stop elements, one
for white, and one for orange. It is given an id of "fade".

F.	Finally, we get to the elements that describe the drawing itself. The rect-
angle (rect), circle (circle), and path (path) that make up the drawing are
grouped together with the g element and given the name "greenbox". This
makes it easy to access in CSS or a script later.

G.	The square is created using the rect (for “rectangle”) element with its
width and height set to 100 pixels. Notice that this and other empty ele-
ment are closed (terminated) with a slash (/) before the closing bracket,
as is required in XML languages.

The x and y attributes position it on the pixel grid within the viewport
(see FIGURE 25-4 in the “SVG Coordinates” sidebar). You can see that
attributes are used to provide the dimensions, fill color, stroke width, and
stroke color (see Note). The center of the circle element is positioned
with the cx and cy attributes, and its radius is set with r. This circle is
filled with the radial gradient we defined earlier, which is called by its id
“fade” in the url() notation.

NOTE

“Stroke” is what SVG calls the line or border around a shape.

H.	The crooked line is defined by a path element. The d (data) attribute pro-
vides a series of x, y coordinates that make up the points along the path.
All paths start with M (“moveto”), which sets the starting position. Each L
draws a “lineto” the next set of coordinates. Coordinates can be separated
by a character space (as shown) or a comma.

I.	Finally, we have a bit of text defined with the text element. You can see
that it is styled with attributes like font-size and font-family, which
should look familiar now that you’ve learned about CSS. There are many
similarities between SVG attributes and CSS styles.

NOTE

The viewport and viewbox are discussed
in more detail in the section “Responsive
SVGs” later in this chapter.

SVG Coordinates
The coordinates in SVGs start at the
top-left corner and increase down
and to the right (FIGURE 25-4).
The square created with the rect
element in the example has the
coordinates x="25" y="25", which
means its top-left corner is positioned
25 pixels from the left edge of the
viewport/viewbox and 25 pixels down
from the top edge. Some elements,
like circles and ellipses, may be
positioned based by their center
points (cx and cy).

A Simple SVG

50

50 100 150

0

0

100

150

200

FIGURE 25-4.   In SVG, x coor
dinates start on the left and increase
to the right, and y coordinates start
at the top and increase downward.
The 0,0 origin point is in the top-left
corner of the viewport.

Part V. Web Images

Drawing with XML

708

Beyond Simple Shapes
SVGs have some cool image features in addition to drawing lines and shapes.

Embedded bitmap images
SVGs aren’t limited to vector drawings; you can embed bitmap images in
them too. You might do this in order to apply special effects or add some sort
of behavior or interactivity that a PNG or JPEG can’t do on its own. Images
are embedded with the image element.

<image xlink:href="kangaroo.jpg" x="45" y="0" width="100"
height="150"/>

Note that because SVG is an XML format, it requires the xlink:href attribute
to point to the external image file.

Clipping and masking
SVG lets you selectively show parts of an image and hide others by clipping
and masking.

In clipping, a vector path is used to “cut out” a section of an image. The parts
of the image that fall outside the clipping path are hidden completely. FIGURE

25-5 uses a path in the shape of a star to clip the starry sky image. Clipping
paths are defined with the clipPath element.

<defs>
 <clipPath id="star">
 <polygon points="390,12 440,154 590,157 470,250 513,393 390,307
266,393 310,248 189,157 340,154 390,12" style="fill: none"/>
 </clipPath>
</defs>

<image xlink:href="starrysky_600.jpg" width="600" height="400"
style="clip-path: url(#star)"/>

The star-shaped path positioned over the
image.

The image is clipped to the path (dotted
border indicates the SVG viewport but is
not part of the SVG).

FIGURE 25-5.   The star-shaped path is used as a clipping path that reveals part of
the underlying image.

WARNING

External images won’t display for .svg
files added to the HTML page with
the img element. All external files are
blocked for img element SVGs for security
reasons.

25. SVG

Drawing with XML

709

Masking works similarly but is a pixel-based effect. Varying levels of darkness
in the mask result in varying amounts of transparency at each point, similar
to an alpha channel. In SVG masks, pure white areas correspond to 100%
opacity, and pure black corresponds to 0% opacity (fully transparent). Levels
of gray in between result in levels of semitransparency.

You can play with the fill color of the mask to reveal more or less of the object
it is masking. The effect is more interesting when the mask contains gradients
rather than solid fill colors. You can even use an image as a mask (see Note).

FIGURE 25-6 shows the same star shape filled with a gradient and used as a
mask over the starry sky photograph. Note that the areas of the image that
fall outside the mask object are completely transparent, just like the clipping
path.

<defs>
 <linearGradient id="blend">
 <stop offset="0%" stop-color="#ffffff"/>
 <stop offset="100%" stop-color="#000000"/>
 </linearGradient>

 <mask id="star" x="0" y="0" width="400" height="381">
 <polygon points="390,12 440,154 590,157 470,250 513,393 390,307
266,393 310,248 189,157 340,154 390,12" style="fill: url(#blend)"/>
 </mask>
</defs>

<image xlink:href="starrysky_600.jpg" width="600" height="400"
style="mask: url(#star);"/>

The star-shaped path is �lled with a
gradient.

The gradient works as a mask in which the
light areas allow more of the image to
show through. The darker the mask, the
lighter the masked image.

FIGURE 25-6.   The star shape has a gradient fill that affects the transparency of the
masked image.

Filter effects
You might be surprised to learn that a vector-based graphic format includes
Photoshop-like filters for manipulating images. SVG features more than a
dozen filter effects that can be used alone or layered and combined for all

NOTE

If the mask is a color image, it is con-
verted to grayscale based on its lumi-
nance (brightness) using a formula that
interprets yellows and greens as lighter
than reds and blues.

WARNIN G

Masking is not supported in Android ver-
sions 4.3 and earlier.

CO O L TR I C K

It is possible to simulate transparency
in a JPEG by embedding it in an SVG
and using a clipping path or mask
to make certain areas within the
image transparent. That lets you
take advantage of the small file size
of JPEGs for full-color images while
gaining the transparency effects
available only with PNG-24. On the
downside, there are browser support
issues that you don’t run into with
PNG-24.

Part V. Web Images

Drawing with XML

710

sorts of effects, such as simple Gaussian blurs, color shifting, mosaic-like
patterns, and good ol’ drop shadows.

The nice thing about filters is that the original image is untouched; all the
messing around happens when the browser renders the image with the filters
applied. FIGURE 25-7 shows just a few SVG filters to give you an idea of what
can be done.

Original image Gaussian blur Color matrix: saturate

Morphology Turbulence + Displacement map

FIGURE 25-7.   Examples of SVG filters.

To give you a brief taste of how filters work, here is an example that puts a
blur effect on an ellipse element. The filter is defined with a filter element,
which contains one or more filter primitives (a very specific effect that can
be combined with other effects). The filter is given an id and then is called in
as a style on the element that uses it. FIGURE 25-8 shows the ellipse without
and with the blur filter.

NOT E

This example and the next use the style attribute (the same one we use in HTML) to add
inline styles to elements. We’ll talk about options for styling SVGs in the next section.

<defs>
 <filter id="blurry">
 <feGaussianBlur in="SourceGraphic" stdDeviation="4"/>
 </filter>
</defs>

<ellipse cx="200" cy="50" rx="150" ry="100" style="fill: orange;"/>

<ellipse cx="200" cy="300" rx="150" ry="100" style="fill: orange;
filter: url(#blurry);"/>

FIGURE 25-8.   A Gaussian blur filter
applied to an ellipse element.

25. SVG

Drawing with XML

711

To make a drop shadow, the blur filter is defined and then merged with an
offset that moves it down and to the right. FIGURE 25-9 shows the result.

<defs>
<filter id="shadow">
 <feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
 <feOffset in="blur" dx="7" dy="5" result="offsetBlur" />
 <feMerge>
 <feMergeNode in="offsetBlur"/>
 <feMergeNode in="SourceGraphic"/>
 </feMerge>
</filter>
</defs>
<polygon points="390,12 440,154 590,157 470,250 513,393 390,307
266,393 310,248 189,157 340,154 390,12" style="fill: pink; filter:
url(#shadow)"/>

Of course, there is a lot more to SVG filters than I can cover here, but I hope
that I’ve provided a good introduction.

Reuse and recycle
A powerful feature in SVG is the ability to define a shape or effect once and
then reuse it wherever you need it, as many times as you need it. This keeps
the file small by removing redundant code and is a good example of DRY
(Don’t Repeat Yourself) coding.

The trick is defining the element you want to repeat, such as an icon, in a
symbol. The symbol element does not get rendered; it just sets up a drawing
for future use (see Note).

<symbol id="iconA" viewBox="0 0 44 44">
 <!-- all the paths and shapes that make up the icon -->
</symbol>

When you want to use the symbol on the page, call it up with the use ele-
ment, which triggers the symbol to render. The following is a minimal use
element example. The reused symbol scales to whatever dimensions are set
on svg.icon in the web page’s style sheet.

<svg class="icon">
 <use xlink:href="#iconA" />
</svg>

You could include other attributes with instructions such as x,y coordinates
for positioning, width and height dimensions, and styles that override styles
inherited by the copy of the symbol.

The use element doesn’t work only with symbol. You can use it to reuse any
basic SVG shape, image, or group in a similar manner. The advantage to
making the initial SVG a symbol is you can include the viewBox attribute to
enable proportional scaling.

The symbol and use elements are the tools behind SVG sprites. Sprites are a
technique in which multiple SVG drawings (such as an icon set, to use the
most popular example) are defined in one SVG, either in the HTML docu-

FIGURE 25-9.   A drop shadow
created with SVG filters.

F U N FACT

The masking, filter, and transform
features in CSS are extensions of SVG.
The standards bodies are aiming
to make them work together as
seamlessly as possible and to bring
some of the best aspects of SVG into
CSS and standard browser behavior.

NOTE

Because symbols won’t render, you don’t
need to put them in a defs section, but
it’s a good practice because it is a logical
container for elements you’re defining
for later use.

Part V. Web Images

Drawing with XML

712

ment or as an external .svg file. In the HTML document, the use element
(inside an inline svg) pulls a particular icon symbol onto the page. It is a pow-
erful tool for managing SVG icons. You will find plenty of tutorials for SVG
sprites online, and Chris Coyier includes a nice how-to in his book Practical
SVG (A Book Apart).

So far you’ve seen SVG used to draw basic shapes, embed images, clip and
mask selected areas, and add some pretty groovy special effects. The SVG
drawing features are core to the SVG format; however, if we focus only on
what gets drawn in the browser window, we would be missing out on some
of the best features of SVG. Let’s look at them now.

FEATURES OF SVG AS XML

Now you know that behind every SVG that renders on a screen is a struc-
tured text document. In that respect, it’s pretty much the same as HTML.
Furthermore, SVG, as a structured document language, has a DOM that
includes objects, properties, and methods related to manipulating graphic
elements. This opens up some really exciting possibilities that make SVG
more flexible and useful than its static-image counterparts.

Styling
You can target elements in an SVG (or the svg element itself if it’s inline) to
change their presentation with CSS—for example, applying the same color or
border style to HTML elements on the page as well as shapes within the SVG.

Styles are added to SVG in four ways:

Presentation attributes

The earlier “Simple SVG” example in FIGURE 25-3 uses presentational
attributes defined in the SVG language, such as fill and stroke-width,
to control how shapes should appear. Presentation attributes are always
overridden by styles applied with CSS rules.

<rect x="25" y="25" width="100" height="100" fill="#c6de89"
 stroke-width="2" stroke="green"/>

Inline styles

SVG elements may use the inline style attribute, which works the same
as it does in HTML elements. Many developers prefer this approach. The
same rect element could also be written as follows:

<rect x="25" y="25" width="100" height="100" style="fill:#c6de89;
stroke-width:2; stroke:green;" />

Internal style sheet

As in HTML, you can include a style element at the top of the svg (or
in the defs section if there is one) that contains all the styles used in the
SVG document:

25. SVG

Features of SVG as XML

713

<svg> <!-- XML business omitted for brevity -->
 <style>
 /* styles here */
 </style>
 <!--drawing here -->
</svg>

External style sheet

If your SVG is inline or placed on the page with the object or iframe ele-
ments, you can import an external style sheet with the @import rule in the
style element. Remember that external files won’t work for standalone
SVGs embedded with the img element. That includes the style sheet itself
as well as references to external resources using the url() notation within
style rules.

<svg>
 <style type="text/css">
 @import "svg-style.css";
 /* more styles */
 </style>
 <!-- drawing here -->
</svg>

For inline SVGs, you can also style elements with a style sheet linked to
the HTML document with the link element:

<head>
 <!-- additional head elements -->
 <link href="svg-style.css" rel="stylesheet" type="text/css">
</head>
<body>
 <svg>
 <!-- drawing here -->
 </svg>
</body>

Adding SVG to a Page: A Refresher
Chapter 7, Adding Images, went into detail about the ways to
add an SVG to a page, but I thought it would be good to have a
little refresher now in the context of our SVG deep-dive. See the
original discussion in Chapter 7 for more markup details. SVGs
can be added to an HTML document in the following ways:

As an image
You can add a self-contained .svg file to a page with the img
element as you would any other graphic:

An SVG can also be used in any CSS property that accepts
images, such as background-image.

When standalone SVGs are added to pages like simple graphics,
they behave as simple graphics. You can no longer style or
script the elements in the SVG, it won’t be interactive (i.e., won’t
register user events like clicks or hover), and it won’t load any

external files like embedded images, style sheets, or scripts. if a
static image is all you need, this is a reliable option.

As an embedded object
You can use the object element to embed an SVG on a page.
This method’s advantage is that it allows scripts to run and
external files to load. You can also provide a fallback image for
non-supporting browsers (although there aren’t many):

<object data="star.svg" type="image/svg+xml">

</object>

As inline SVG code
The entire SVG file can be pasted right into the HTML source as
an svg element. This option gives you total access to the SVG’s
DOM for styling and scripting, which is a big advantage. On the
downside, the code for an SVG can get very long.

Part V. Web Images

Features of SVG as XML

714

Interactivity with JavaScript
SVGs aren’t just pretty pictures—SVGs are images you can program! You can
add interactivity to the elements in an SVG with JavaScript because all of its
element and attribute nodes are accessible in the DOM. It is worth noting
that SVGs may also include simple a links, are a basic kind of interactivity.

For example, because an SVG can listen for mouseovers, you can create fun
hover effects that add personality to UI elements. You can also trigger changes
in the SVG on a click or a tap. JavaScript can do everything from adding a
little motion to an icon to creating whole Flash-like game interfaces and mul-
timedia presentations, as shown in FIGURE 25-10.

FIGURE 25-10.   An example of an SVG game interface created with the Snap.svg
JavaScript library. When you put the pointer over each dot, a funny little worm pops up.
See more interactive SVG demos at snapsvg.io/demos.

If your SVG is inline, scripts in the HTML document can access elements
within the SVG. For standalone SVGs, you can use SVG’s script element.
Because it is an XML document, the code needs to be wrapped in an XML
Character Data Block (<![CDATA[]]>) so <, >, and & symbols are parsed
correctly, as shown in this example:

<script><![CDATA[

 //script here

]]></script>

SVG Versus Canvas
In Chapter 10, Embedded Media,
we looked at the HTML5 canvas
element and API that creates a
space for a two-dimensional,
dynamic drawing on a web page.
The difference is that an SVG image
is drawn with a structural markup
language and a canvas is drawn with
JavaScript commands. Both can
contain images, videos, animation,
and dynamic updates in real time.

canvas is better for quick redraws
on the fly (it’s only pixels, after
all), making it better suited for
designing games, editing images,
and saving images to bitmapped
formats. SVG offers advantages in
the ease of scripting, animation, and
accessibility; however, complicated
SVG documents require more
processing power than canvas
elements.

25. SVG

Features of SVG as XML

715

Animation
SVG is a popular choice for adding animated elements to a web page. FIGURE

25-11 is my attempt to capture some charming animation in a still image. For
more inspiration, I recommend going to codepen.io and searching for “SVG
animation.”

FIGURE 25-11.   An example of an animated SVG by Chris Gannon. You can see it in
action at codepen.io/chrisgannon/pen/emVgMg.

There are a number of ways to animate an SVG: animation elements in SVG,
CSS animation, and JavaScript:

SVG/SMIL

The SVG specification includes animation effects based on SMIL
(Synchronized Multimedia Integration Language), an XML language for
creating synchronized audio, video, and animated elements. Each ani-
mation effect is defined by an element, with attributes for fine-tuning.
Although the built-in SVG/SMIL animation elements provide good tools
for all sorts of animation tasks, lack of browser support means that it’s not
a great option if animation is critical to your message.

CSS animation

SVG elements can also be animated with CSS transitions and keyframes.
It should be noted that CSS can animate only CSS properties, not attri-
bute values, which may be limiting for SVG, which uses attributes for
most of the geometry and layout. This technique is also hampered by
limited browser support (see Note), although that continues to improve.
CSS animation is good for simple, non-critical animation effects.

JavaScript

With JavaScript, you can create complex, interactive animations that
compete with the functionality Flash once offered. There is much better
browser support, although there is always the possibility that some users
don’t have JavaScript enabled and will miss out. If you don’t want to
reinvent the wheel, you can take advantage of the many SVG Animation
JavaScript libraries (see the “SVG Animation JS Libaries” sidebar).

If you’d like to learn more about SVG animation, I recommend SVG
Animations by Sarah Drasner (O’Reilly) and Creating Web Animations by
Kirupa Chinnathambi (O’Reilly).

BROWSE R SU PPORT NOTE

No Microsoft browser (Internet Explorer
or Edge) supports SVG/SMIL animation.
Chrome temporarily deprecated it, which
sent a message to other browser vendors
to stop active development of SVG/SMIL
support. With CSS and JavaScript offer-
ing better animation options, this part
of the SVG spec may wither on the vine.

BROWSE R SU PPORT NOTE

CSS animation is not supported in Internet
Explorer 9 and earlier (at all, not just for
SVGs), and there is no SVG support (at
all) in IE8 and earlier. IE 10 and 11 sup-
port animation of CSS properties, but not
SVG-specific properties (fill, stroke,
etc.). In MSEdge and Firefox browsers
released prior to 2017, CSS animation
won’t work if the SVG is added with the
img element. Older Chrome and Safari
browsers require the -webkit- prefix.

Part V. Web Images

Features of SVG as XML

716

Data Visualization
SVGs have become a go-to tool of the data visualization (“dataviz”) world
because they can be generated dynamically with real data. For example, you
could make the temperature level on an SVG thermometer illustration rise
and fall with real weather data gathered in the user’s location, or you could
change progress bars or pie charts as data updates in real time. FIGURE 25-12
shows examples of SVG used for dataviz from the D3.js Gallery. D3.js is a
JavaScript library created specifically for “data-driven documents.” Find out
more at d3js.org.

FIGURE 25-12.   Examples of data-generated SVGs on the D3js.org site. See more at
github.com/d3/d3/wiki/Gallery.

The methods for generating SVGs with data are dependent on the type of
data and the programming language used. One option is to translate the
XML document that contains the data into the SVG by using XSLT. XSLT
(eXtensible Stylesheet Language Transformations) is an XML language that
provides structured instructions for translating one XML language into
another. Clearly, that is some advanced XML mojo that we will not be delving
into here, but I thought you ought to know. Other options include JavaScript
and server-side template languages (also more than we’ll take on here).

If you are eager to know more about data-generated SVGs, the book
Interactive Data Visualization for the Web by Scott Murray (O’Reilly) is a good
place to start.

SVG Animation
JS Libraries
These are just a few of the JavaScript
libraries available to help you add
animation effects to your SVGs more
efficiently:

Snap.svg (snapsvg.io)
This is a multipurpose SVG building
and animating library created
by Dmitry Baranovskiy. It is open
source and freely available.

SVG.js (svgjs.com)
SVG.js is an extremely lightweight
library (just 11 KB!) for basic SVG
animation. It is modular, too, so
you can use just what you need.

Velocity (velocityjs.org)
As the name says, Velocity makes
animations render very quickly,
and it has a jQuery-like syntax that
makes it easy to use.

Bonsai (bonsaijs.org)
Bonsai is a robust SVG animation
library that includes support for
fonts, audio, video, and images.

Path animators
Have you ever seen a graphic on
a web page that appears to get
drawn before your eyes? It was
likely an SVG animated with a path
animator. There are a number of
one-trick-pony JS libraries that
can animate the lines in your
SVG: Walkway (connoratherton.
com/walkway), LazyLinePainter
(lazylinepainter.info), and Vivus
(maxwellito.github.io/vivus).

25. SVG

Features of SVG as XML

717

Accessibility
Unlike text in bitmapped image formats, the text in SVGs can be accessed by
search engines and read by screen readers when labeled properly. There are a
few things you can do to make your SVGs more accessible to screen readers:

•	 Use the SVG title element to provide a short name for the svg element
itself or any container (such as g) or element it contains. The title ele-
ment should be the first child element of its parent.

•	 Use the SVG desc element to provide long text descriptions for elements.

•	 Add ARIA roles to the svg element and its components to ensure that
screen readers interpret them correctly and efficiently. Recommendations
include the following:

—— Add role="img" to the svg element, but only if you want it to be
treated as a single, non-interactive image. The child elements will not
be accessible separately.

—— Add aria-labelledby="title desc" to the svg element to improve
support for title and desc.

—— If parts of the SVG should be accessible (text, links, interactive ele-
ments, etc.), do not set a role on svg, but add role="presentation"
to shapes (such as circle) and paths to prevent screen readers from
announcing the occurrence of every shape in the graphic.

SVG TOOLS

Technically, all you need to create SVG graphics is a text editor (and genius
visualization skills plus heroic patience!), but you’ll be much happier having
a graphics program do the heavy lifting for you. It is also common for design-
ers to create the complex illustrations in a graphics program, and then bring
them into a text editor to clean up the code and add scripts and styles manu-
ally. It’s a matter of preference based on your skills and interests.

Vector Illustration Tools
The most appropriate tool for creating SVGs is a vector drawing tool such
as Adobe Illustrator, although even image editors like Photoshop and GIMP
use shapes that can be exported as SVG. These days, there are many vector
software options, ranging from pricey to free, and full-featured to bare-bones.

Adobe Illustrator
Illustrator is the granddaddy of vector illustration tools and is available today
as part of Adobe’s Creative Suite for a monthly fee. Illustrator is a vector tool,

Part V. Web Images

SVG Tools

718

but it uses PostScript natively and needs to translate those vectors to SVG.
Although it is possible to “Save” a drawing in SVG format, the better option
is to “Export As” because the resulting SVG will be web-optimized. If you use
Illustrator, it is worth doing a search for how to create optimized SVGs in
Illustrator because people have published all sorts of tips that will help your
design and production process.

Inkscape
Inkscape (inkscape.org) is an open source image editor made specifically for
SVG (SVG is its native format). It is available for Windows, Mac (see Note),
and Linux. Inkscape’s interface has evolved quite a bit over the last few years
(FIGURE 25-13), but if you are accustomed to Adobe tools, it may take a little
getting used to. You definitely can’t beat the price (free)!

FIGURE 25-13.   Inkscape was created for SVGs, so its interface features are SVG-
centric, including menu items for Fill and Stroke, Symbols, Clip, and Mask.

SVG-specific tools
There are a number of nifty little SVG-specific drawing tools available for
little or no investment. Because they are designed just for SVG, they have a
manageable number of tools and settings that map to SVG capabilities (no
wading through hundreds of tools you don’t need). Some of them allow you
to view and edit the underlying SVG code as well. Here are a couple of SVG
editors of note:

TO O L T I P

If you copy a shape in Illustrator, you
can paste it as code into a text editor.
This is a sweet shortcut if you are
doing most of your SVG work in code.

NOTE

The macOS version of Inkscape runs on
XQuartz, so Mac users need to download
and run that first (available at www.
xquartz.org). XQuartz is a version of the
X11 Unix windowing system for the Mac.

TO O L T I P

When saving an SVG in Inkscape,
choose Plain or Optimized. The
Inkscape SVG option contains a lot of
proprietary code that unnecessarily
drives up the file size. Be aware that
the Optimized version may strip out
more than you want it to, depending
on what you intend to do with the
graphic.

25. SVG

SVG Tools

719

http://www.xquartz.org
http://www.xquartz.org

Boxy (boxy-svg.com)

Boxy is a full-featured graphics program available for Mac, Windows,
and Linux for a modest US$10 (as of this writing). It has an easy-to-use
interface as well as a code inspector (FIGURE 25-14).

SVG-Edit (github.com/SVG-Edit/svgedit)

SVG-Edit works right in the browser (svg-edit.github.io/svgedit/releases/
svg-edit-2.8.1/svg-editor.html) or as a downloaded program. It provides
all the basic drawing tools, layers, and the ability to view and edit the
SVG source (FIGURE 25-14). You can also export to PNG, JPEG, BMP, and
WebP. And it’s free, so there’s no reason not to give it a try.

Boxy SVG-Edit

FIGURE 25-14.   SVG-creation tools Boxy and SVG-Edit.

Interface design tools
A whole slew of tools have recently emerged for designing web page and app
interfaces, such as Sketch, AdobeXD, and Affinity Designer. All of them are
vector-based and make it easy to export components in SVG format. As with
many visual design tools that export code, the results are not always as well
constructed as you might like, particularly if you intend to use the SVG pro-
grammatically with JavaScript, CSS, and animation.

Code Editors
If writing SVG by hand is your thing, or if you need to tinker with preexist-
ing SVGs, you should look to see if your code editor of choice has an SVG
preview extension that renders your code as you write. SVG previews are
available for these editors:

•	 Atom Editor (free from GitHub): Get the SVG Preview package at atom.
io/packages/svg-preview.

•	 Brackets (free from Adobe): Get the SVG extension by Peter Flynn at
github.com/peterflynn/svg-preview.

Part V. Web Images

SVG Tools

720

https://boxy-svg.com

SVG PRODUCTION TIPS

When you create an SVG drawing in a graphical tool, keep in mind that the
end result is a text file. As with any file that is being delivered on a web page,
you want that file to be as small as possible. If you have plans to style the
SVG with CSS or manipulate it with JavaScript, you want the markup to be
structured as well as possible.

The downside to using graphical tools is that you don’t have much control
over the code they output. Most of them export SVG code that is inefficient,
redundant, and full of proprietary cruft. There are measures you can take
while designing and after you export the SVG to ensure it is as lean and mean
as possible. Many a blog post has been written about SVG optimization, but
the following tips, although not comprehensive, should point you in the right
direction. In the end, you will need to get familiar with your chosen tool’s
quirks to anticipate and correct its shortcomings.

Pre-Export Best Practices
Decisions you make in the design space can improve your SVG output in
terms of organization and file size. Again, keeping in mind that the final
product is a text file is useful for optimization. Here are some production
tips that will help you create SVGs with the best quality at smallest file sizes:

Define the artboard or drawing size in pixels

The artboard dimensions correspond to the viewport (width and height
attributes) of the svg element.

Use layers to group elements logically

If you plan on animating or scripting your SVG, keeping your design
document well organized as you work will help with accessing the pieces
you need later. In Illustrator and most other tools, layers are converted to
group (g) elements, and nested layers are stored as nested groups.

Give elements and layers meaningful names

The names you give elements and layers are used as class and id values
in the SVG code, so make sure they are descriptive. Names should be all
lowercase and with no character spaces so they are appropriate as attri-
bute values.

Simplify paths

The more points and handles used to define a path, the more coordinates
appear in the SVG source. More coordinates means more characters and
a larger file size. Take advantage of any “simplify path” function your tool
offers. Also consider using methods that reduce the number of elements
in the file, such as merging objects that always appear as one unit and
using one wide stroke instead of two strokes and a fill. If possible, ensure
your tool uses shape elements like circle and rect instead of multipoint

25. SVG

SVG Production Tips

721

paths for simple shapes. If your tool does not provide a way to do this, it is
possible to replace the path code with the simple shape element manually.

Be aware of decimal places

Keeping in mind that more characters results in a larger file size, you
can shave bytes off your file by limiting the number of characters after
the decimal points in your designs. For example, an x, y coordinate
“100.3004598, 248.9998765” requires more data than simply “100.3, 249”.
Many tools allow you to limit the number of decimal places on export.
You may also choose to “snap to pixels” when you set up the document so
that points always fall on even integers. The general rule of thumb is that
the smaller the image, the more decimal places are required to accurately
define the points in objects. Large images can tolerate lower accuracy
without compromising quality. You may need to experiment to find the
right balance of decimal places and quality for the type of image.

Avoid raster effects inside the SVG

SVG’s efficiency lies in the fact that it is vector-based. When you introduce
raster (bitmapped) image material to the SVG, that file size advantage is
lost. In some cases, you may be adding a raster image deliberately for
manipulation in the SVG, which is fine. But be aware that certain effects
in drawing programs—such as blurs, drop shadows, glows, and so on—
often generate a raster image area when you may not be expecting it,
adding greatly to the file size. Some filter effects, such as drop shadows,
can be done in code after export more efficiently. If you find that your .svg
file is unusually large, unexpected raster image material is a likely suspect.

Pay attention to fonts

Like any font style suggestion on the web, there is no guarantee that your
chosen font will be available on the user’s machine, so the font you use in
your SVG may not display. Be sure to test and provide fallbacks. If there is
a small amount of text, and it doesn't need to be searchable or read aloud
by an assistive device, consider whether converting the text to paths is a
better option.

Use centered strokes

Although not related to file size, you will achieve better results if you
design with strokes set to be centered over the path because that is how
SVG handles strokes natively. Some tools, like Sketch, make adjustments
to compensate for an outside or inside stroke, but just centering your
strokes is a better starting point.

Of course, there are many tool-specific tips that I am not able to cover here.
Adobe offers tips for optimizing SVGs in Illustrator on its “About SVG”
page (helpx.adobe.com/illustrator/using/svg.html). If you use Sketch, you may
want to invest in Peter Nowell’s “SVG Workflows in Sketch” video course at
Sketchmaster.com.

Part V. Web Images

SVG Production Tips

722

Post-Export Optimization
Even with careful planning up front, exported SVGs have a lot of redundant
code, unnecessary metadata, hidden elements, and other fluff that can be
safely removed without affecting the way the SVG renders. It is a good idea
to run your SVGs through an optimizer to strip all that out and slim down
the file size.

SVGO
The best SVG optimizer in town as of this writing is SVGO (github.com/svg/
svgo). It uses plug-ins that affect individual tweaks—such as removing empty
attributes, removing the xmlns attribute (just fine if the SVG is used inline),
removing comments, and dozens more—so you can pick and choose how
you want to squeeze down the file depending on its end use.

The best thing about SVGO is that there are so many ways to use it! It is
Node.js-based, so you can use it as a Node.js module or incorporate it in
a Grunt or Gulp task. There are SVGO plug-ins for Illustrator (SVGNow),
Inkscape (SVGO-Inkscape), and Sketch (SVGO Compressor). It’s also avail-
able as a macOS folder action, whereby optimization is performed when you
drag files into it. The full list of options is listed on the SVGO site.

The easiest way to see SVGO in action is to use the web-based SVGOMG
tool, created by Jake Archibald, which provides a graphical user interface
(GUI) for SVGO (jakearchibald.github.io/svgomg/). SVGOMG lets you toggle
the various optimization plug-ins individually and view the results in the live
preview (FIGURE 25-15), which is a handy feature during development.

FIGURE 25-15.   SVGOMG provides a GUI for the SVGO optimizing tool (jakearchibald.
github.io/svgomg). You can toggle optimization methods to see the resulting image
quality and file size.

25. SVG

SVG Production Tips

723

File compression
Because they are text files, SVGs can be compressed with tools such as Gzip
or Brotli.

Gzip is a utility on the server that compresses text files with fancy algorithms.
Gzipped SVGs may result in files that are a mere 16–25% of their original
size. A gzipped SVG file uses the suffix .svgz. In order to use Gzip for SVG,
you must configure it on the server, which is beyond the scope of this chapter,
but you can find plenty of tutorials online. The file savings are well worth
the effort.

Brotli is an open source compression algorithm released by Google in 2015
that is giving Gzip a run for its money in terms of compression and perfor-
mance. Like Gzip, Brotli must be configured on the server. Browsers began
supporting Brotli content encoding in 2017. There is a nice explanation of
Brotli on the MaxCDN site at www.maxcdn.com/one/visual-glossary/brotli/.
The official Brotli GitHub page is at github.com/google/brotli.

RESPONSIVE SVGS

I’ve talked a lot about how the scalable nature of SVGs makes them great
for use in responsive layouts, where they can scale to fit changing element
widths with no loss of quality. Although that is absolutely true, the reality is
that there are a few hoops to jump through to ensure SVGs scale predictably
across all browsers.

In Responsive Web Design, we often want graphics to stretch or shrink to
fit the width of a text container. With bitmap images, this is easy. Just set the
width of the img to 100%, and its height is set to auto by default. The browser
automatically calculates the auto height based on the width you specify and
determines the aspect ratio (the ratio of its width to height) of the image
based on its dimensions in pixels. That allows the image to scale proportion-
ally, without being stretched or distorted.

With SVG, it’s a little more complicated. First, you have to give your graphic
an explicit aspect ratio. SVGs can be drawn at any size, and do not have
intrinsic aspect ratios by default. Second (in some cases), you have to work
around browser bugs involving automatic height calculations.

The Viewport and Viewbox
To understand how SVGs scale, you need to have a good grasp of the SVG
viewport and its viewbox. The viewport, defined by the width and height
attributes on the svg element (see Note), is like a window through which you
can see the drawing area. You can think of the viewport as a little browser
window (which we’ve also been referring to as the “viewport” throughout
this book) or an iframe element displaying an HTML document. Just as there

NOTE

When the SVG is embedded with img,
object, or iframe, the width and
height attributes on those elements set
up the viewport size.

Part V. Web Images

Responsive SVGs

724

https://www.maxcdn.com/one/visual-glossary/brotli/

is no guarantee that the entire HTML document will fit inside the browser
window or iframe, there is no guarantee that the entire SVG drawing will fit
perfectly within its viewport. It might be smaller; it might be bigger and get
cropped off. The dimensions of the drawing space (also called user space)
and the viewport dimensions are independent of one another.

Earlier in this chapter, we saw that the viewport uses a set of coordinates (the
viewport coordinate system) that start at 0 in the top-left corner and increase
to the right and downward. The drawing space has its own set of coordinates,
the user coordinate system, which is established with the viewBox attribute in
the svg element and works the same way. This viewBox attribute is the key to
making responsive scaling possible while preserving the aspect ratio of the
drawing.

The syntax for the viewBox attribute is as follows:

viewBox="x y width height"

The x and y values determine the position of the top-left corner of the view-
box within the viewport. The width and height attributes give it dimensions
and establish its aspect ratio. Values may be separated by space characters, as
shown, or by commas. The x and y coordinates may have negative values, but
width and height must always be positive integers.

The SVG in this example has both its viewport (width and height) and its
viewbox (viewBox) set to 400×500 pixels:

<svg width="400" height="500" viewBox="0 0 400 500">
 <!-- drawing content here -->
</svg>

The viewbox matches the viewport in this example (this is the default behav-
ior if viewBox is omitted), but let’s see what happens when we change the
viewbox dimensions. Keeping the viewport the same size, we can reduce the
size of the viewbox by half (viewBox="0 0 200 250"). The result is the drawing
scales up in the viewport by twice its size (FIGURE 25-16). The two coordinate
systems (user and viewport), which are the same by default, now have dif-
ferent scales: one user unit is now equal to two viewport units. The point of
this example is merely to demonstrate that the dimensions and coordinate
systems of the viewport and the viewbox work independently of one another
and can be used to adjust scale.

I could fill half a chapter describing the full capabilities and effects of the
viewBox attribute. I want you to know everything about it, but for the
sake of space, I will refer you to this wonderful tutorial by Sara Soueidan:
“Understanding SVG Coordinate Systems and Transformations (Part 1)—
The viewport, viewBox, and preserveAspectRatio” (www.sarasoueidan.com/
blog/svg-coordinate-systems/). You will also find thorough explanations in the
SVG books recommended at the end of the chapter.

The viewBox attribute
is the key to making
responsive scaling
possible while preserving
the aspect ratio of the
drawing.

25. SVG

Responsive SVGs

725

http://www.sarasoueidan.com/blog/svg-coordinate-systems/
http://www.sarasoueidan.com/blog/svg-coordinate-systems/

0
0

100

100

200

300

400

500

200 300 400 0
0

100

100

200

300

400

500

200 300 400

100

100

200

300

400

500

200 300 400
100

100

200

300

400

500

200 300 400

User coordinate system

User coordinate system

Viewport coordinate system

width=″400″ height=″500″

viewBox=″0 0 400 500″

viewBox=″0 0 200 250″

Viewport coordinate system

width=″400″ height=″500″

FIGURE 25-16.   The viewport (width and height) and the viewbox (viewBox).

For the purposes of this responsive SVG discussion, however, just keep in
mind that the viewBox attribute is the key to establishing the width and
height and the resulting user coordinate system of the SVG drawing itself,
independent of the viewport “window” it will be displayed in.

The preserveAspectRatio Attribute
The preserveAspectRatio attribute in the svg element is responsible for mak-
ing sure the drawing maintains its aspect ratio, so it is important to our goal
of creating a proportional responsive SVG. Conveniently, it is turned on by
default, which means you don’t need to include it if that is your desired effect.
Setting it to none means you can stretch and squish the drawing however you
like, just as you can a bitmapped image.

The preserveAspectRatio attribute also takes keyword values for how the
viewbox should be aligned in its viewport. They work a lot like percentage
values for the background-image-position CSS property.

<svg viewBox="0 0 300 200" preserveAspectRatio="xMaxYMax meet">

In this example, xMaxYMax places the viewbox all the way to the right and
against the bottom axis of the viewport (“Max” is equivalent to 100%). The
meet keyword says to size it until it meets either the height or the width of the
viewport (similar to contain for background images). The alternative is slice,
which sizes the drawing so that it covers the entire viewport, even if some of
the drawing is cut off (like cover for background images).

Part V. Web Images

Responsive SVGs

726

Again, I recommend you get to know the capabilities of preserveAspectRatio
on your own, but for now, know that it is the attribute that does the work of
keeping the aspect ratio intact, even if we take advantage of the default set-
ting and don’t include it explicitly.

Now that you have some familiarity with the SVG scaling mechanisms at
work behind the scenes, let’s look at the techniques for making SVGs in web
pages scale proportionally within a changing container size.

Responsive SVGs Embedded with img and object
If you embed your SVG in the source document with the img or object ele-
ments, the process for making it scale automatically is pretty straightforward.

First, in the SVG file itself, make sure the svg element includes the viewBox
attribute to establish the dimensions of the drawing. By default, the aspect
ratio will be preserved even if you don’t include the preserveAspectRatio
attribute. If you want the graphic to completely fill the width of its container,
omit the width and height attributes for the svg element because they default
to 100%, which is the behavior we are after (see Note).

Now let’s look at the img or object element that embeds it. The width and
height applied to the embedding element determines the size at which the
SVG appears in the layout. Because width and height properties are auto by
default, if you omit them, the dimensions of the SVG (100%) will be used. If
you specify just width or just height, the browser uses the aspect ratio of the
viewbox to calculate the unspecified dimension.

Relying on the default sizing of the img or object elements works in current
browsers, but you’ll get better results in older browsers (particularly Internet
Explorer; see Warning) if you explicitly set the width and height of the
embedding element. For example:

img {
 width: 100%;
 height: auto;
}

This approach leaves nothing to chance. The result is an SVG file with its
default width and height of 100% filling an img element set to fill the width
of its container proportionally.

In the following example, I embedded an SVG with an img element in a div
that is always set to 50% of the browser window width, as might occur in a
responsive layout (FIGURE 25-17). Note that there are no width and height
attributes in the SVG source, and the viewBox defines the aspect ratio. As the
window gets larger and smaller, the SVG scales with it, maintaining that crisp,
vector quality at all scales. An outline on the div reveals its boundaries, and
I’ve set its side margins to auto to keep it centered in the browser window:

NOTE

The width and height attributes should
be included when you want to set an
initial size for the SVG, such as for icons
that should stay icon-sized regardless of
the layout.

WARNING

When width and height values for the
embedding object are omitted, Internet
Explorer makes the SVG fill the container
width, but gives it a height of 150 pix-
els. The HTML5 specification defines the
default size of embedded media such as
img, object, and iframe elements to be
300 pixels wide by 150 pixels high. So IE’s
150-pixel height on SVGs is not entirely
random; they honored the height value
from the HTML5 spec.

25. SVG

Responsive SVGs

727

THE SVG MARKUP (flowers.svg)

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" viewBox="0 0 160 120">
 <!-- flower drawing -->
</svg>

THE HTML MARKUP

<div class="container">

</div>

THE STYLES

.container { 	
 width: 50%; 	
 outline: 1px solid gray; 	
 margin: 2em auto;
}

/* IE fix */
img {
 width: 100%;
 height: auto;
}

FIGURE 25-17.   The SVG scales automatically and proportionally with the size of its
container.

Responsive Inline SVGs
I’ll just let you know up front that preserving the aspect ratio of inline SVGs
placed in the source with the svg element is not as simple as the previous
example. You need to employ an interesting hack to get many browsers to
comply. I will explain the technique here as efficiently as possible.

First, as with embedded media, include the viewBox attribute and omit the
width and height attributes on the svg element if you want the width to be
100% of the container (taking advantage of their default values).

In the absence of a style rule specifically overriding the svg defaults, the
width will be 100%, and its aspect ratio will be preserved. Current browser

Part V. Web Images

Responsive SVGs

728

versions support this as expected—scaling the SVG in its container propor-
tionally. However, older browsers (including all versions of Internet Explorer)
do not, so we need to employ the “padding hack” to maintain the proportions
of the inline SVG.

The padding hack is a little tricky, but the steps are as follows (FIGURE 24-18):

1.	 Put the svg in a container div.

2.	 Set the height of that div to 0 or 1 pixel.

3.	 Apply an amount of padding to the top of the div that gives it the same
aspect ratio as the SVG (there is a bit of math involved here).

4.	 Once the div is expanded to the proper proportions with padding, abso-
lutely position the svg element in the top-left corner of the container div.

Height of div (0 pixels)

svg element gets pushed down.

padding = 75% of div width

svg is absolutely positioned in
top-le� corner of div.

The container is set to 100% width,
and the svg scales with it.

FIGURE 25-18.   How the padding hack works to make inline SVGs maintain their
aspect ratio on all browsers that support SVG.

It’s a little convoluted (they don’t call it a “hack” for nothing!), but it works.
The foundation of this hack is the defined behavior of padding. Padding,
when specified in percentage values, is always based on the width of the ele-
ment (even top and bottom values). That means that as the width of the con-
tainer div changes, so too does the amount of padding, always maintaining
the same relationship. That sets up a constant aspect ratio for the SVG to fill.

WARNING

Both the padding hack and normal
aspect ratio auto-height scaling can
break inside Grid and Flexbox layouts.
As of early 2018, there are important dif-
ferences between browsers, so be sure to
test your designs thoroughly.

25. SVG

Responsive SVGs

729

Here’s an example that shows how the padding hack works:

THE MARKUP

<div class="container">
 <svg version="1.1" viewBox="0 0 160 120">
 /* drawing contents */
 </svg>
</div>

THE STYLES
.container {
 width: 100%;
 height: 0;
 padding-top: 75%; /* (120/160)*100% */
 position: relative;
}
svg {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
}

In the markup, you see the svg element in its #container div and its viewbox
dimensions set to 160 × 120 pixels. The width of the container is set to 100%
(it could also be set to a different percentage) with a 0 height. The padding-
top declaration expands the div to the proper aspect ratio, which is calculated
by dividing the height of the SVG by its width, and multiplying the result by
the percentage width of the div:

(svg-height / svg-width) * div-width%

In our example, the padding is set to 75% [(120 / 160) × 100% = 75%], which
matches the 4:3 aspect ratio of the SVG. Notice also that the container is
relatively positioned to create the positioning context for the svg child ele-
ment (do you remember turning elements into positioning contexts with
position: relative from Chapter 15, Floating and Positioning?)

Additional Resources
This section cut to the chase and provided just what you need to know to
make SVGs scale in responsive layouts. Of course, there is a lot more to the
story, so I recommend these articles for additional background information
and techniques:

•	 “How to Scale SVG” by Amelia Bellamy-Royds for CSS-Tricks
(css-tricks.com/scale-svg/)

•	 “Making SVGs Responsive with CSS” by Sara Soueidan for Codrops
(tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/)

To provide an even more customized SVG experience in your user interface,
go beyond simple scaling and change the design of the icon with an adaptive
SVG (see the sidebar “Adaptive Icons”).

Part V. Web Images

Responsive SVGs

730

FURTHER SVG EXPLORATION

Obviously, I could only scratch the surface of Scalable Vector Graphics in
this chapter. When you are ready to use SVG on your site, you’ll have more
brushing up to do. There are many volumes and online tutorials written
about SVG, but these are the resources that helped me the most in my own
exploration. I recommend them heartily.

•	 SVG Essentials, 2nd Edition by J. David Eisenberg and Amelia Bellamy-
Royds (O’Reilly)

•	 Using SVG with CSS3 and HTML5 by Amelia Bellamy-Royds, Kurt Cagle,
and Dudley Storey (O’Reilly)

•	 Practical SVG by Chris Coyier (A Book Apart)

•	 Developer and SVG expert Sara Soueidan has written many useful SVG
articles on her blog at www.sarasoueidan.com.

TEST YOURSELF

I just threw a lot of SVG info at you. Try taking this quiz to see what stuck.
The answers appear in Appendix A.

The first four questions refer to this SVG element:

<rect x="0" y="0" width="600" height="400" />

1.	 What is rect?

Adaptive Icons
The problem with simply scaling SVGs (or any image, really)
smaller is that details may get lost at small sizes. One approach
to solving that problem is to provide simplified versions of
icons or logos when the image is very small. Adaptive (or
responsive) icons use media queries to test the viewport size
and some clever styling in the SVG to deliver the appropriate
amount of detail at various sizes. FIGURE 25-19 shows a
set of icons created by Joe Harrison, with an explanation at
responsiveicons.co.uk.

There are several methods for achieving the effect. Joe’s house
icon was done with an SVG sprite. You could also reveal and
hide groups of drawing elements in the SVG based on viewport
size. These articles provide some how-tos:

•	 “Making SVGs Responsive with CSS” by Sara Soueidan
includes a section at the end on making adaptive SVGs with

media queries (tympanus.net/codrops/2014/08/19/making-
svgs-responsive-with-css/).

•	 “Rethinking Responsive SVG” by Ilya Pukhalski outlines
several adaptive SVG approaches (www.smashingmagazine.
com/2014/03/rethinking-responsive-svg/).

FIGURE 25-19.   An example of adaptive icons by Joe
Harrison.

25. SVG

Test Yourself

731

http://www.sarasoueidan.com
http://responsiveicons.co.uk/

2.	 What do x and y do?

3.	 What do width and height do?

4.	 Explain the / character.

Now back to our regularly scheduled questions:

5.	 What is the primary difference between SVG clipping and masking?

6.	 Name three ways to reduce the file size of an SVG.

7.	 What is the most widely supported version of SVG?

a.	 SVGTiny

b.	 SVG 1.1

c.	 SVG 2

d.	 SVG, Electric Boogaloo

8.	 Name three of the five ways you can style elements in an SVG.

9.	 Which of the following can be used to animate elements in an SVG?

a.	 Special SVG elements for animation

b.	 JavaScript

c.	 CSS transitions and keyframe animation

d.	 All of the above

Part V. Web Images

Test Yourself

732

AND...WE’RE DONE!

Hey! Here we are at the end of the book! I hope that you’ve enjoyed this
detailed tour through HTML, CSS, JavaScript, and image production. I know
the content here is pretty dense, but remember that you don’t have to learn it
all at once, and you don’t need to keep it all in your head. Heck, I wrote this
book, and I still go back to it to look up attributes, properties, and values.
With practice, however, a lot of it will become second-nature to you.

I hope that you will find plenty of opportunities to put your new knowledge
to use. Best of luck in your web endeavors!

25. SVG

And...We’re Done!

733

VI
APPENDICES

Chapter 1: Getting Started in Web Design
1.	 b, d, a, c

2.	 The W3C guides the development of web-related technologies.

3.	 c, d, a, b

4.	 Frontend development is concerned with aspects of the site that appear in
or are related to the browser. Backend development involves the applica-
tions and databases required on the server for site functionality.

5.	 An FTP tool is used to transfer files between computers over the internet,
such as between your local machine and the server. You may use an FTP
tool provided by your hosting company, built into a code editor, or as a
standalone application.

Chapter 2: How the Web Works
1. c; 2. j; 3. h; 4. g; 5. f; 6. i; 7. b; 8. a; 9. d; 10. e

Chapter 3: Some Big Concepts You Need to Know
1.	 There are a number of unknown factors when you’re developing a site.

Some that were addressed in this chapter include:

—— The size of the screen or browser window

—— The user’s internet connection speed

—— Whether JavaScript is enabled

—— Whether the browser supports specific features

—— Whether the user is at a desk or on the go (context and attention span)

ANSWERS A
APPENDIX

737

2.	 1. c; 2. d; 3. e; 4. a; 5. b

3.	 The four general disability categories include:

—— Sight impairment: make sure the content is semantic and in logical
order for when it is read by a screen reader.

—— Hearing impairment: provide transcripts for audio and video content.

—— Mobility impairment: use measures that help users without a mouse
or keyboard.

—— Cognitive impairment: content should be simple and clearly organized.

4.	 You would use a waterfall chart to evaluate your site’s performance in the
optimization process.

Chapter 4: Creating a Simple Page
1.	 A tag is part of the markup (brackets and element name) used to delimit

an element. An element consists of the content and its tags.

2.	 The recommended markup for a minimal HTML5 document is as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf8">
 <title>Title</title>
 </head>
 <body>
 </body>
</html>

3.	 a.	 Sunflower.html—Yes.

b.	 index.doc—No, it must end in .html or .htm.

c.	 cooking home page.html—No, there may be no character spaces.

d.	 Song_Lyrics.html—Yes.

e.	 games/rubix.html—No, there may be no slashes in the name.

f.	 %whatever.html—No, there may be no percent symbols.

4.	 a.	 It is missing the src attribute:

b.	 The slash in the end tag is missing: Congratulations!

c.	 There should be no attribute in the end tag:

	 linked text

d.	 The slash should be a forward slash:

	 <p>This is a new paragraph</p>

5.	 Make it a comment:

<!-- product list begins here -->

Part VI. Appendices

﻿

738

Chapter 5: Marking Up Text
1.	 Here is the markup for a thematic break between these paragraphs:

<p>People who know me know that I love to cook.</p>
<hr>
<p>I've created this site to share some of my favorite recipes.</p>

2.	 A blockquote is a block-level element used for long quotations or quoted
material that may consist of other block elements. The q (quote) element
is for short quotations that go in the flow of text and do not cause line
breaks.

3.	 The pre element.

4.	 The ul element is an unordered list element. It is used for lists that don’t
need to appear in a particular sequence. They display with bullets by
default. The ol element is an ordered list in which sequence matters. The
browser automatically inserts numbers for ordered lists.

5.	 Use a style sheet to remove bullets from an unordered list.

6.	  <abbr title="World Wide Web Consortium">W3C</abbr>

7.	 dl is the element used to identify an entire description list. The dt ele-
ment is used to identify just one term within that list.

8.	 The id attribute is used to identify a unique element in a document, and
the name in its value may appear only once in a document. class is used
to classify multiple elements into conceptual groups.

9.	 An article element is intended for a self-contained body of content that
would be appropriate for syndication or might appear in a different con-
text. A section element divides content into thematically related chunks.

Chapter 6: Adding Links

Exercise 6-7
1.	 <p>Go to the tapenade recipe</p>

2.	 <p>Try this with Garlic Salmon.</p>

3.	 <p>Try the Linguine with Clam
Sauce</p>

4.	 <p>About Jen's Kitchen</p>

5.	 <p>Go to Allrecipes.com</p>

A. Answers

﻿

739

Test Yourself
1.	 ...

2.	 ...

3.	 ...

4.	 ...

5.	 ...

6.	 ...

7.	 ...

8.	 ...

9.	

10.	

11.	

Chapter 7: Adding Images
1.	 The src and alt attributes are required for the document to be valid.

If the src attribute is omitted, the browser won’t know which image to
use. You may leave the value of the alt attribute empty if alternative text
would be meaningless or clumsy when read in context.

2.	

3.	 a) Because HTML documents are not valid if the alt attribute is omitted,
and b) alt improves accessibility by providing a description of the image
if it is not available or not viewable.

4.	 The three likely causes for a missing image are a) the URL is incorrect,
so the browser is looking in the wrong place or for the wrong filename
(names are case-sensitive); b) the image file is not in an acceptable format;
and c) the image file is not named with the proper suffix (.gif, .jpg, or .png,
as appropriate).

5.	 x-descriptors specify the screen resolution used for targeting high-resolu-
tion monitors. The w-descriptor provides the actual size of the image file
that the browser uses to make the best selection based on viewport width.

6.	 A device pixel is the square of colored light that makes up the screen
display. CSS pixels (also called “reference pixels”) make up the grid that
devices use to lay out what appears on the screen. The CSS pixel may be
made up of multiple device pixels.

7.	 b, c, d, a, d, b

8.	 The picture element provides a set of images for the browser to choose
from. When the viewport is 480 pixels or wider, the image will appear at

Part VI. Appendices

﻿

740

80% of the viewport width. For smaller viewport sizes, it fills 100% of
the viewport. There is a set of images in WebP format for browsers that
support them; otherwise, the browser will choose from the set of JPEGs.

9.	 Disk cache is where browsers temporarily store files downloaded over
the network so they can be reused. Taking advantage of cached resources
eliminates the need for repeated server requests for the same file and can
increase performance.

10.	 Advantages include simple and familiar markup, excellent browser sup-
port, image caching, and available fallbacks. Disadvantages include the
inability to manipulate the parts of the SVG with style sheets or JavaScript.

11.	 Advantages of inline SVGs include the ability to take advantage of all
of SVG’s features (animation, scripting, and applying CSS style rules),
good browser support, and fewer server requests. Disadvantages include
potentially unwieldy amounts of code in the HTML document, more
complicated image maintenance, and lack of caching.

12.	 When it is purely presentational and not part of the editorial content of
the page.

13.	 image/svg+xml is the MIME type of an SVG file. You may need to include
it as the value of the type attribute in the picture element or use it to
configure your server to recognize SVG files as images.

14.	 http://www.w3.org/2000/svg is the pointer to the SVG namespace as
standardized by the W3C. It appears as the value of the xmlns (XML
namespace) attribute in svg elements.

Chapter 8: Table Markup
1.	 The table itself (table), rows (tr), header cells (th), data cells (td), and an

optional caption (caption).

2.	 The table element can directly contain tr, caption, colgroup, thead,
tbody, and tfoot elements.

3.	 The tr element can contain only some number of th and td elements.

4.	 Use the col element if you want to include additional information about
the structure of a table, to specify widths to speed up display, or to add
certain style properties to a column of cells.

5.	 a) The caption should be the first element inside the table element;

b) There may not be text directly in the table element; it must go in a
th or td;

c) The th elements must go inside the tr element;

d) The second tr element is missing a closing tag;

e) There is no colspan element; it should be a td with a colspan attribute.

A. Answers

﻿

741

Chapter 9: Forms
1.	 a.	 POST (because of security issues)

b.	 POST (because it uses the file selection input type)

c.	 GET (because you may want to bookmark search results)

d.	 POST (because it is likely to have a lengthy text entry)

2.	 a.	 Drop-down menu: <select>

b.	 Radio buttons: <input type="radio">

c.	 <textarea>

d.	 Eight checkboxes: <input type="checkbox">

e.	 Scrolling menu: <select multiple="multiple">

3.	 a.	 The type attribute is missing.

b.	 checkbox is not an element name; it is a value of the type attribute in
the input element.

c.	 The option element is not empty. It should contain the value for each
option (for example, <option>Orange</option>).

d.	 The required name attribute is missing.

e.	 The width and height of a text area are specified with the cols and
rows attributes, respectively.

Chapter 10: Embedded Media
1.	 A nested browsing context works like a browser window inside another

browser window. You can create one with an iframe element or an object
element (bonus points if you got both).

2.	 The sandbox attribute allows developers to set limitations on what nested
content can do, and is important for security reasons.

3.	 To specify it with the required type attribute in a source element and to
configure the server to recognize the media type.

4.	 a. container, b. video codec, c. video codec, d. audio codec, e. container,
f. video codec, g. audio codec, h. container

5.	 The poster attribute specifies an image that appears in the video player
until the video is played.

6.	 A .vtt file is a text file in the WebVTT format that contains subtitles, cap-
tions, descriptions, chapter titles, or metadata that are synchronized to a
video or audio file.

Part VI. Appendices

﻿

742

7.	 SVG is a vector format, and canvas is pixel-based (raster). SVGs can scale
without loss of quality, but canvas is resolution-dependent and does not
scale well. You can style the elements in an SVG with CSS and affect them
with JavaScript, but canvas can be manipulated with JavaScript only.

8.	 strokeRect() and fill()

Chapter 11: Introducing Cascading Style Sheets
1.	 selector: blockquote; property: line-height; value: 1.5; declaration:

line-height: 1.5;

2.	 The paragraph text will be gray because when there are conflicting rules
of identical weight, the last one listed in the style sheet will be used.

3.	 a.	 Use one rule with multiple declarations applied to the p element.

	 p {
	 font-family: sans-serif;
	 font-size: 1em;
 line-height: 1.2em;
 }

b.	 The semicolons are missing.

	 blockquote {
	 font-size: 1em;
	 line-height: 150%;
	 color: gray;
 }

c.	 There should not be curly brackets around every declaration, only
around the entire declaration block.

	 body {background-color: black;
	 color: #666;
	 margin-left: 12em;
	 margin-right: 12em;
 }

d.	 This could be handled with a single rule with a grouped element type
selector.

	 p, blockquote, li {
 color: white;
 }

e.	 This inline style is missing the property name.

	 <strong style="color: red">Act now!

A. Answers

﻿

743

4.	 html

head body

title style h1 p

p

img strong

h2 pp h2ul

li li li

div id="intro" div id="main"

NOTE: color styles applied to the img element are displayed on the border only (if there is one).

FIGURE A-1. Answer to Chapter 11, question 4.

Chapter 12: Formatting Text
1.	 a. 4; b. 1; c. 7; d. 3; e. 2; f. 9; g. 8; h. 5; i. 6

2.	 a.	 body {color: red;}

b.	 h2 {color: red;}

c.	 h1, p {color: red;}

d.	 .special {color: red; }

e.	 #intro {color: red;}

f.	 #main strong {color: red;}

g.	 h2 + p {color: red;}

Chapter 13: Colors and Backgrounds
1.	 g. a, b, and c

2.	 d. rgb(FF, FF, FF)

3.	 a. 5; b. 1; c. 4; d. 6; e. 2; f. 3

4.	 a. 1; b. 3; c. 2; d. 6; e. 5; f. 4

Part VI. Appendices

﻿

744

Chapter 14: Thinking Inside the Box
A.	border: double black medium;

B.	padding: 2em;

C.	padding: 2em; border: 4px solid red;

D.	border: 4px solid red; margin: 2em;

E.	padding: 1em 1em 1em 6em; border: 4px dashed black; margin: 1em 6em;

or

padding: 1em; padding-left: 6em; border: 4px dashed; margin: 1em 6em;

F.	padding: 1em 50px; border: 2px solid black; margin: 0 auto;

Chapter 15: Floating and Positioning
1.	 b is not true. Floats are positioned against the content edge, not the pad-

ding edge.

2.	 c is incorrect. Floats do not use offset properties, so there is no reason to
include right.

3.	 Clear the footer to make it start below a floated sidebar on either side:
footer {clear: both;}

4.	 a) absolute; b) absolute, fixed; c) fixed; d) relative, absolute, fixed; e)
static; f) relative; g) absolute, fixed h) relative, absolute, fixed; i) relative

Chapter 16: CSS Layout with Flexbox and Grid
1.	 Turn its parent element into a flex container by setting display to flex.

The child element becomes a flex item automatically with no extra code.

2.	 a. 2; b. 4; c. 1; d. 3

3.	 The align-items property positions items relative to their flex line, while
align-content distributes space around and within multiple lines. Both
properties are applied to the container, and both are concerned with posi-
tioning along the cross axis.

4.	 a. 4; b. 1; c. 3; d. 2

5.	 a. 4; b. 3; c. 2; d. 5; e. 1	

6.	 Style rules for displaying the items in the order shown in FIGURE 16-49.

.box6 {order: -1;}

.box1, .box2, .box3 {order: 1;}

7.	 The key difference between Grid Layout and Flexbox is that Grid creates
layouts in two dimensions—rows and columns—but Flexbox arranges
elements on one axis. (Continued...)

A. Answers

﻿

745

Similarities between Grid and Flexbox include:

—— For both Grid and Flexbox, making an element a container automati-
cally turns its direct children into items.

—— They are both based on the language direction of the document.

—— Both can create whole-page layouts (although Grid is better suited to
the task).

—— You can change the order of the items with the order property.

—— They both use the Box Alignment Module for item and content align-
ment.

8.	 Grid template for the layout shown in FIGURE 16-50:

grid-template-rows: 12em min-content 100px;
grid-template-columns: 300px 2fr 1fr;

Using the grid shorthand property:

grid: 12em min-content 100px / 300px 2fr 1fr;

(Note: auto could be used instead of min-content in both examples.)

9.	 a. E; b. D; c. C; d. A; e. B

10.	 #gallery:
 column-gap: 1em;
}

11.	 d, a, c, b, e

Chapter 17: Responsive Web Design
1.	 A responsive site delivers the same HTML source at the same URL regard-

less of the device used. An m-dot site sends a document at a separate URL
when it receives a request from a mobile device. Mobile-specific sites also
tend to reduce the number of options and content on the first screen.

2.	 It sets the size of the viewport the mobile browser uses to render the page
to the same size as the screen.

3.	 img { max-width: 100%; }

4.	 It sets the margin on the left and right side of the page to 10% if the view-
port is 60em or wider.

5.	 If the layout is created with CSS Grid Layout, use fr and minmax() units
to make columns and rows flexible while setting limits. If you have page
elements in Flexbox, use the flex properties to let them grow and shrink
as needed. Otherwise, use percentage values for page elements so they
resize proportionally. Avoid fixed pixel measurements.

Part VI. Appendices

﻿

746

6.	 When you use ems for media queries, the page elements stay proportional
to the size of the type. This can help keep line lengths consistent.

7.	 In an @media rule in a style sheet, in @import rules that call in external
style sheets, and in the link element to an external style sheet.

8.	 Use a legible font, make the size slightly smaller, use a tighter line height,
and use smaller margins.

9.	 You could use an accordion to hide and reveal the submenu options, or
put the submenu on a separate landing page and link to it from the main
navigation.

10.	 Test it on real devices, use an emulator, or use a third-party testing service.

Chapter 18: Transitions, Transforms, and Animation
1.	 Tweening is the process in animation in which frames are generated

between two end point states.

2.	 A transition would have two keyframes, one for the beginning state and
one for the end.

3.	 a.	 transition-delay: 0.5s;

b.	 transition-timing-function: linear;

c.	 transition-duration: 0.5s;

d.	 transition-property: line-height;

4.	 c. text-transform is not an animatable property.

5.	 ease is the default timing function. It starts out slowly, speeds up quickly,
and then slows down again at the very end.

6.	 .2s is the transition-duration value (how long the animation lasts).

7.	 Trick question! They will arrive at the same time, 300ms after the transi-
tion begins. The timing function has no effect on the total amount of
time it takes.

8.	 a.	 transform: rotate(7deg);

b.	 transform: translate(-50px, -25px);

c.	 transform-origin: right bottom;

d.	 transform: scale(1.25);

9.	 The 3 value indicates that the element should be resized three times larger
than its original height.

10.	 perspective: 250; because lower number values indicate closer distance
and are more dramatic.

A. Answers

﻿

747

11.	 The border is 3 pixels wide at 50% through the animation.

12.	 a.	 animation-direction: reverse;

b.	 animation-duration: 5s;

c.	 animation-delay: 2s;

d.	 animation-iteration-count: 3;

e.	 animation-fill-mode: forwards;

Chapter 19: More CSS Techniques
1.	 d. All of the above.

2.	 d. a and c

3.	 e. b and d

4.	 Use Flexbox or floats.

5.	 a. 2; b. 5; c. 1; d .4; e. 3

6.	 a. no; b. yes; c. no (if the .border class is required for styles to appear)

7.	 As of this writing, Modernizr has better browser support than CSS feature
detection. Once all browsers support CSS feature detection, CSS will be
faster and more reliable than a solution that requires JavaScript.

Chapter 20: Modern Web Development Tools
1.	 It is the program that interprets commands you type into a command-

line tool.

2.	 d. All of the above.

3.	 A string of characters that indicates the computer is ready to receive a
command.

4.	 You’d create a new directory (folder) in the current directory with the
name “newsite”.

5.	 Providing a more efficient syntax for authoring (traditionally known as
“preprocessing”) and optimizing (known as “postprocessing”) standard
CSS files.

6.	 Once you learn the syntax, Sass (or LESS and Stylus) can make writing
styles less redundant and easier to edit. You may also be required to know
Sass for some web development jobs.

7.	 Common CSS postprocessor tasks include error checking, adding vendor
prefixes, inserting hacks that fix bugs in old versions of IE, including fall-
backs for newer CSS features, converting rems to pixels, converting color
formats to RGB, and analyzing the structure of your CSS code. This is
by no means an exhaustive list, so you may come up with other features.

Part VI. Appendices

﻿

748

8.	 It is anything you might do manually from the command line.

9.	 It means that the task runner, Grunt, has been configured to “watch” the
file so that when it detects any changes to that file, it automatically per-
forms a series of tasks.

10.	 Each user has a local copy of the shared repository that they can work on
even offline.

11.	 When a file is staged, it means that it has been added to the Git index, and
Git is tracking it, but it has not yet been committed.

12.	 A branch is a sequential series of commits and reflects a thread of devel-
opment. A fork is a copy of somebody else’s repository that you can work
on and that is not linked to the original.

13.	 Pulling refers to merging the recent copy of the remote master repo into
your local version. You should pull in a fresh copy to be sure you have
the most up-to-date version before you push your changes to the master.
This helps prevent conflicts if other users have been making changes to
the same files.

14.	 A pull request is when you ask the owner of a repo you forked to merge
in your changes.

Chapter 21: Introduction to JavaScript

Exercise 21-1
1.	 var friends = ["name", "othername", "thirdname", "lastname"];

2.	 alert(friends[2]);

3.	 var name = "yourName";

4.	 if(name === Jennifer) { alert("That's my name too! ");}

5.	 var myVariable = #;|
if(myVariable > 5) {
 alert ("upper");
} else {
 alert ("lower");
}

Exercise 21-2
<script>
var originalTitle = document.title;
function showUnreadCount(unread) {
 document.title = originalTitle + " (" + unread + "new
message!");
}
showUnreadCount(3);
</script>

A. Answers

﻿

749

Test Yourself
1.	 When you link to an external .js file, you can reuse the same scripts for

multiple documents. The downside is that it requires an additional HTTP
request.

2.	 a. 1; b. 1two; c. 34; d. 2

3.	 a. 10; b. 6; c. “2 remaining”; d. “Jennifer is longer.”; e. false

4.	 It loops through a number of items by starting at the first one in the array
and ending when there are no more left.

5.	 Globally scoped variables may “collide” with variables with the same
names in other scripts. It is best to use the var keyword in functions to
keep your variables scoped locally.

6.	 a. 2; b. 5; c. 4; d. 3; e. 1

Chapter 22: Using JavaScript
1.	 Ajax is a combination of HTML, CSS, and JavaScript (with the

XMLHttpRequest JavaScript method used to get data in the background).

2.	 It accesses the element that has the id value “main”.

3.	 It creates a nodeList of all the section elements in the element with the
id of “main”.

4.	 It sets the background color of the page (body element) to “papayawhip”.

5.	 It creates a new text node that says, “Hey, I’m walking here!”, inserts it in
a newly created p element, and puts the new p element in the element
with the id “main”.

6.	 d. All of the above.

Chapter 23: Web Image Basics
1.	 You can get a license to have exclusive rights to an image so that your

competitor doesn’t use the same photo on their site. You also know the
source of the image is verified (i.e., it’s not stolen).

2.	 ppi stands for “pixels per inch” and is a measure of resolution.

3.	 Indexed color is a mode for storing pixel color information. GIF and
PNG-8 formats are indexed color images.

4.	 There are 256 colors in an 8-bit graphic, and 32 colors in a 5-bit graphic.

5.	 GIF can contain animation and transparency. JPEG cannot.

6.	 GIF can contain animation. Regular PNGs cannot (although APNG for-
mat can).

Part VI. Appendices

﻿

750

7.	 PNGs can have multiple levels of transparency. GIF has only binary
(on/off) transparency.

8.	 Cumulative lossy compression means you lose image data every time
you save an image as a JPEG. If you open a JPEG and save it as a JPEG
again, even more image information is thrown out than the first time you
saved it. Be sure to keep your full-quality original and save JPEG copies
as needed.

9.	 In binary transparency, a pixel is either entirely transparent or entirely
opaque. Alpha transparency allows up to 256 levels of transparency.

10.	A GIF or PNG-8 because it is text, flat colors, and hard edges. B JPEG
because it is a photograph. C GIF or PNG-8 because although it has
some photographic areas, most of the image is flat colors with hard edges.
D GIF or PNG-8 because it is a flat graphical image. E JPEG because it
is a photograph.

Chapter 24: Image Asset Production
1.	 PNG-24 or PNG-8+alpha are the best supported. The WebP and JPEG

2000 formats also include alpha transparency, but lack tool and browser
support.

2.	 Adjusting the Quality setting is the most effective tool for optimizing a
JPEG.

3.	 Reducing the number of colors in the color palette has the greatest effect
on the size of indexed color images.

4.	 The pattern in the dithering breaks up solid areas of color and results in
larger files. Dithering should be turned off or limited.

5.	 Because JPEG compression works well on smooth transitions of color and
less well on hard edges, blurring the image slightly improves compression
and results in a smaller file.

6.	 sRGB: Yes, because it is the RGB encoding used by the web.

7.	 If the image needs to look crisp on high-density screens.

8.	 If your site has a lot of images, companies like Cloudinary and Akamai
generate and host multiple, optimized versions of every image automati-
cally. They keep you from doing all the image creation manually.

Chapter 25: SVG
1.	 rect is the SVG element that creates a rectangle.

2.	 The x and y coordinates position the rectangle element in the top-left
corner of the SVG viewport.

A. Answers

﻿

751

3.	 The width and height attributes establish the dimensions of the SVG
viewport, the area on which the drawing will be rendered.

4.	 In XML, all elements must be closed. When the element is a standalone
element (without an opening and closing tag), it is closed with a forward
slash (/) character before the closing bracket.

5.	 Clipping uses a vector shape to reveal or hide portions of an image.
Masking is pixel-based, using the lightness and darkness of a raster image
to hide and reveal the masked image.

6.	 Ways to reduce the size of an SVG include:

—— Simplifing paths.

—— Reducing the number of decimal places.

—— Using shapes instead of complex paths when possible.

—— Avoiding raster images and effects in the SVG.

—— Running it through an optimizer like SVGO.

—— Enabling Gzip compression on the server.

7.	 b. SVG 1.1 (and for the record, SVG Electric Boogaloo isn’t a thing).

8.	 You can style SVGs in the following ways:

—— SVG presentation attributes

—— The inline style attribute

—— A style sheet in the SVG itself (style element)

—— An external style sheet called into the SVG (for SVGs placed with the
img element)

—— If the SVG is inline, the style sheet in the HTML document in which
it appears

9.	 d. All of the above.

Part VI. Appendices

﻿

752

The following attributes may be used with any HTML element.

Attribute Values Description

accesskey single text character Assigns an access key (shortcut key command) to the link. Access
keys are also used for form fields. Users may access the element
by pressing Alt-<key> (PC) or Ctrl-<key> (Mac). Example:
accesskey="B"

class text string Assigns one or more classification names to the element. Multiple
values are separated by spaces.

contenteditable true | false Indicates the user can edit the element. If the value is an empty
string, it is the same as “true.” By default, the element inherits the
edit setting from its parent.

dir ltr | rtl | auto Specifies the inline text direction of the element (“left to right” or
“right to left”) and scopes bidirectional reordering, isolating the
text from influencing surrounding content. When set to auto, it
uses the first letter to determine direction.

draggable true | false A true value indicates the element is draggable in the UI (an event
configured with JavaScript), meaning the user can move it by
clicking and holding it, and then moving it to a new position in
the window.

hidden In HTML, list value only: hidden

In XHTML, include attribute
name: hidden="hidden"

Prevents the element and its descendants from being rendered in
the user agent (browser). Any scripts or form controls in hidden
sections will still execute but will not be presented to the user.

id text string (may not contain
spaces)

Assigns a unique identifying name to the element.

lang ISO language code
(see www.loc.gov/standards/
iso639-2/php/code_list.php)

Specifies the primary language for the content of an element and
its attribute values. When lang is omitted, the language of the ele-
ment is the same as the language of the parent element.

HTML5 GLOBAL
ATTRIBUTES

B
APPENDIX

753

Attribute Values Description

spellcheck true | false Indicates whether the element is to have its spelling and grammar
checked. When spellcheck is omitted, the element follows the
default behavior for that element, possibly inheriting the parent’s
spellcheck state.

style Semicolon-separated list of style
rules (property: value pairs)

Associates style information with an element. For example:
<h1 style="color: red; border: 1px solid">Heading</h1>

tabindex number Indicates that the element is focusable, and specifies its position
in the tabbing order for the current document. The value must
be between 0 and 32,767. It is used for tabbing through links on a
page or fields in a form and is useful for assistive browsing devices.
A value of –1 is allowable to remove elements from the tabbing
flow and make them focusable only by JavaScript.

title text string Provides a title or advisory information about the element, typi-
cally displayed as a tooltip. If a title is not specified, an element
inherits the title from its nearest ancestor element with a title.

translate yes | no Specifies whether an element’s attribute values and the values
of its Text node children are to be translated when the page is
localized, or whether to leave them unchanged. If it is not speci-
fied, the element inherits the translate state from its parent.

Part VI. Appendices

﻿

754

The following table lists the selectors in the Selectors Level 4 Editor’s Draft
(drafts.csswg.org/selectors-4/, December 2017).

Note that selectors marked “(Level 4)” are new and may not yet be imple-
mented by browsers. Check CanIUse.com and be sure to test well if you use
them. All other selectors are part of CSS3 and are generally well supported.

Selector Type of selector Description

Simple selectors and combinators

* Universal selector Matches any element.

A Type selector Matches the name of an element.

A, B Compound selector Matches elements A and B.

A B Descendant combinator Matches element B only if it is a descendant of element A.

A>B Child combinator Matches any element B that is a child of element A.

A+B Next-sibling combinator Matches any element B that immediately follows any element A,
where A and B share the same parent.

A~B Subsequent-sibling combinator Matches any element B that is preceded by A, where A and B share
the same parent.

Class and ID selectors

.classname
A.classname

Class selector Matches the value of the class attribute in all elements or in a
specified element.

#idname
A#idname

ID selector Matches the value of the id attribute in an element.

CSS SELECTORS,
LEVELS 3 AND 4

C
APPENDIX

755

Selector Type of selector Description

Attribute selectors

A[att] Simple attribute selector Matches any element A that has the given attribute defined,
whatever its value.

A[att="val"] Exact attribute value selector Matches any element A that has the specified attribute set to the
specified value.

A[att="val" i]
(Level 4)

Case-insensitive attribute value
selector

Matches any element A that has the specified attribute set to the
specified value, even if it does not match its capitalization (even in
XML languages that may be case-sensitive). This example matches
images named Icon.png, ICON.png, icon.png, and so on.

img[src="Icon.png" i] {border: 1px solid yellow;}

A[att~="val"] Partial attribute value selector Matches any element A that has the specified value as one of the
values in a list given to the specified attribute.

table[class~="example"] {background: yellow;}

A[att|="val"] Hyphenated prefix attribute
selector

Matches any element A that has the specified attribute with a value
that is equal to or begins with the provided value. It is most often
used to select languages, as shown here.

a[lang|="en"] {background-image: url(en_icon.png);}

A[att^="val"] Beginning substring attribute
selector

Matches any element A that has the specified attribute and its
value begins with the provided string.

img[src^="/images/icons"] {border: 3px solid;}

A[att$="val"] Ending substring attribute
selector

Matches any element A that has the specified attribute and its
value ends with the provided string.

img[src$=".svg"] {border: 3px solid;}

A[att*="val"] Arbitrary substring attribute
selector

Matches any element A that has the specified attribute and its
value contains the provided string.

img[title*="July"] {border: 3px solid;}

Pseudo-class selectors

:any-link
(Level 4)

Link pseudo-class selector Specifies a style for a link regardless of whether it has been visited.

:link Link pseudo-class selector Specifies a style for links that have not yet been visited.

:target Target pseudo-class selector Selects an element that is used as a fragment identifier.

:target-within
(Level 4)

Generalized target pseudo-class
selector

Selects an element that is used as a fragment identifier or contains
an element that does.

:visited Link pseudo-class selector Specifies a style for links that have already been visited.

:active User action pseudo-class selector Selects any element that has been activated by the user, such as a
link as it is being clicked.

:hover User-action pseudo-class selector Specifies a style for elements (typically links) that appear when the
mouse is placed over them.

:focus User action pseudo-class selector Selects any element that currently has the input focus, such as a
selected form input.

:focus-within
(Level 4)

Generalized input pseudo-class
selector

Selects any element that has user-input focus or contains an ele-
ment that has input focus.

Part VI. Appendices

﻿

756

Selector Type of selector Description

:focus-visible
(Level 4)

User action pseudo-class selector Selects any element that has user-input focus and the user agent
has determined that a focus ring or other indicator should be
drawn for that element.

:drop(active)
(Level 4)

Drag-and-drop pseudo-class
selector

Selects an element that is the current drop target for the item being
dragged.

:drop(valid)
(Level 4)

Drag-and-drop pseudo-class
selector

Selects an element that could receive the item currently being
dragged.

:drop(invalid)
(Level 4)

Drag-and-drop pseudo-class
selector

Selects an element that cannot receive the item currently being
dragged but could receive some other item.

:dir(ltr)
(Level 4)

Directionality pseudo-class Selects an element with a particular writing direction. In this
example, the direction is left to right. The document language
determines how directionality is determined.

:lang(xx) Language pseudo-class selector Selects an element that matches the two-character language code.
a:lang(de) {color: green;}

:nth-child() Structural pseudo-class selector Selects an element that is the nth child of its parent. The notation
can include a number, a notation, or the keywords odd or even.

:nth-last-child() Structural pseudo-class selector Selects an element that is the nth child of its parent, counting from
the last one.

:nth-of-type() Structural pseudo-class selector Selects the nth element of its type.

:nth-last-of-type() Structural pseudo-class selector Selects the nth element of its type, counting from the last one.

:first-child Structural pseudo-class selector Selects an element that is the first child of its parent element.

:last-child Structural pseudo-class selector Selects an element that is the last child of its parent element.

:only-child Structural pseudo-class selector Selects an element that is the only child of its parent.

:first-of-type Structural pseudo-class selector Selects an element that is the first sibling of its type.

:last-of-type Structural pseudo-class selector Selects an element that is the last sibling of its type.

:only-of-type Structural pseudo-class selector Selects an element that is the only sibling of its type.

:root Tree-structural pseudo-class
selector

Selects an element that is the root of the document. In HTML, it is
the html element.

:empty Tree-structural pseudo-class
selector

Selects an element that has no text and no child elements.

:blank Tree-structural pseudo-class
selector

Selects an element that has no content except maybe whitespace.

:enabled UI pseudo-class selector Selects a UI element if it is enabled.

:disabled UI pseudo-class selector Selects a UI element if it is disabled.

:checked UI pseudo-class selector Selects a UI element (radio button or checkbox) that is checked.

:read-write
(Level 4)

Mutability pseudo-class selector Selects a UI element if it is user alterable.

:read-only
(Level 4)

Mutability pseudo-class selector Selects a UI element if it is not user alterable.

:placeholder-shown
(Level 4)

Mutability pseudo-class selector Selects an input control currently showing placeholder text.

C. CSS Selectors, Levels 3 and 4

﻿

757

Selector Type of selector Description

:default
(Level 4)

Default-option pseudo-class
selector

Selects a UI element that is the default item in a group of related
choices.

:indeterminate
(Level 4)

Indeterminate-value pseudo-class
selector

Selects a UI element that is an indeterminate state (neither checked
nor unchecked).

:valid
(Level 4)

Validity pseudo-class selector Selects a UI element that meets its data validity semantics.

:invalid
(Level 4)

Validity pseudo-class selector Selects a UI element that does not meet its data validity semantics.

:in-range
(Level 4)

Range pseudo-class selector Selects a UI element whose value is in a specified range.

:out-of-range
(Level 4)

Range pseudo-class selector Selects a UI element whose value is not in a specified range.

:required
(Level 4)

Optionality pseudo-class selector Selects a UI element that requires input.

:optional
(Level 4)

Optionality pseudo-class selector Selects a UI element that does not require input.

:not(A) Negation pseudo-class selector Selects an element that does not match the simple selector A.

Can also be used with compound selectors, in which case it selects
an element that does not match either A or B.

:not(A, B) { color: #ccc; }

:matches(A, B)
(Level 4)

Matches-any pseudo-class selector Selects an element that matches A and/or B.
:matches(h2, h3) { color: #ccc;}

E:has(rA, rB)
(Level 4)

Relational pseudo-class selector Selects an element E if either of the relative selectors rA or rB, when
evaluated with the element as the :scope elements, matches an ele-
ment. The following example matches only a elements that contain
an img:

a:has(> img) { margin: .5em 0; }

Pseudo-element selectors

::first-letter Pseudo-element selector Selects the first letter of the specified element.

::first-line Pseudo-element selector Selects the first letter of the specified element.

::before Pseudo-element selector Inserts generated text at the beginning of the specified element and
applies a style to it.

::after Pseudo-element selector Inserts generated content at the end of the specified element and
applies a style to it.

Grid-structural selectors

A || B
(Level 4)

Grid-structural selector Selects an element B that represents a cell in a grid/table belonging
to a column represented by an element A.

Part VI. Appendices

﻿

758

I’m not sure any HTML specification has had such fanfare as HTML5. It
offers so many promising possibilities, in fact, that it has become something
of a buzzword with connotations far beyond the spec itself. When marketers
and journalists use the term “HTML5,” they are sometimes referring to any
new web technology that replaces Flash. Throughout this book, you have
gotten familiar with the elements of HTML5, and in this appendix, I’ll tell
you a bit more about the spec itself, so you can join those of us who are irked
when we hear “HTML5” used incorrectly. The important thing, however, is
that mainstream awareness of web standards is certainly a win and makes
our job easier when we’re communicating with clients.

But first, I think it’s important to know how we got here and what makes
HTML5 a breakthrough. I’ll start with a brief history of HTML, and then
point out some unique qualities of HTML5, including its APIs.

AN ABBREVIATED HISTORY OF HTML

Understanding where we’ve been provides useful context for where we are
going. Our journey to HTML5 passes through the frontier of the early web,
the dangerous battlegrounds of the Browser Wars, and a flirtatious fling with
XML.

The Wild Frontier
The story of HTML, from Tim Berners-Lee’s initial draft in 1991 to the
HTML5 standard in development today, is both fascinating and tumultuous.
Early versions of HTML (HTML+ in 1994 and HTML 2.0 in 1995) built on
Tim’s early work with the intent of making it a viable publishing option.

FROM HTML+ TO
HTML5

D
APPENDIX

F U RT H E R R E A D I N G

For a detailed history of HTML from
1989 to 1998, read David Raggett’s
account from his book Raggett on
HTML4 (Addison-Wesley), available on
the W3C site (www.w3.org/People/
Raggett/book4/ch02.html).

759

http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html

But when the World Wide Web (as it was adorably called back in the day)
took the world by storm, browser creators, most notably Mosaic Netscape
and later Microsoft Internet Explorer, each said, “We ain’t waitin’ for no
stinkin’ standards!” They gave the people what they wanted by creating a
slew of browser-specific elements for improving the look of pages on their
respective browsers. This divisive one-upping is what has come to be known
as the Browser Wars. As a result, it became common in the late 1990s to cre-
ate two entirely separate versions of a site that targeted each of the Big Two
browsers. Signs on sites reading “Best viewed in Netscape” were the norm. I
shudder just thinking about it.

A Call for Reason
In 1996, the newly formed W3C put a stake in the ground and released its
first Recommendation: HTML 3.2. It is a snapshot of all the HTML elements
in common use at the time, and includes many presentational extensions to
HTML (such as the font and center elements) that were the result of the
Netscape/IE feud and the lack of a style sheet alternative. HTML 4.0 (1998)
and HTML 4.01 (the slight revision that superseded it in 1999) aimed to get
HTML back on track by emphasizing the separation of structure and presen-
tation and improving accessibility. All matters of presentation were handed
over to the newly minted Cascading Style Sheets standard that was gaining
support.

HTML 4.01—along with XHTML 1.0, its stricter XML-based sibling (dis-
cussed next)—became the cornerstone of the web standards movement (see
the sidebar “The Web Standards Project”).

Enter XML and XHTML
Around the same time that HTML 4.01 was in development, folks at the
W3C became aware that one limited markup language wasn’t going to cut
it for describing all the sorts of information (chemical notation, mathemati-
cal equations, multimedia presentations, financial information, and so on)
that might be shared over the web. Their solution: XML (eXtensible Markup
Language), a metalanguage for creating markup languages. XML was a sim-
plification of SGML (Standardized Generalized Markup Language), the big
kahuna of metalanguages that Tim Berners-Lee used to create his original
HTML application. But SGML itself proved to be more complex than the
web required.

The W3C had a vision of an XML-based web with many specialized markup
languages working together—even within a single document. Of course, to
pull that off, everyone would have to mark up documents very carefully,
strictly abiding by XML syntax, to rule out potential confusion.

The Web Standards
Project
In 1998, at the height of the Browser
Wars, a grassroots coalition called
the Web Standards Project (WaSP
for short) began to put pressure on
browser creators (primarily Netscape
and Microsoft at the time) to start
sticking to the open standards
as documented by the W3C. Not
stopping there, it educated the
web developer community on the
many benefits of developing with
standards. Its efforts revolutionized
the way sites are created and
supported. Now browsers (even
Microsoft) brag of standards support
while continuing to innovate.

In 2013, WaSP declared, “Our work
here is done,” and disbanded. You
can still read its mission statement,
history, and reference materials on
the WaSP site (webstandards.org).

Part VI. Appendices

An Abbreviated History of HTML

760

Their first step was to rewrite HTML according to the rules of XML so that
it could play well with others. The result is XHTML (eXtensible HTML).
The first version, XHTML 1.0, is nearly identical to HTML 4.01, sharing the
same elements and attributes, but with stricter syntax requirements (see the
“XHTML Markup Requirements” sidebar).

But the W3C didn’t stop there. With a vision of an XML-based web in mind,
they began work on XHTML 2.0, an even bolder attempt to make things
work “right” than HTML 4.01 had been. The problem was that it was not
backward-compatible with old standards and browser behavior. The writing
and approval process dragged on for years with no browser implementation.
Without browser implementation, XHTML 2.0 was stuck.

XHTML Markup Requirements
XHTML syntax follows the strict markup requirements of XML, as follows:

•	 Element and attribute names must be lowercase. In HTML, element and attribute
names are not case-sensitive.

•	 All elements must be closed (terminated). You close empty elements by adding a
slash before the closing bracket (for example,
).

•	 Attribute values must be in quotation marks. Single or double quotation marks
are acceptable as long as they are used consistently. Furthermore, there must be
no extra whitespace (character spaces or line returns) before or after the attribute
value inside the quotation marks.

•	 All attributes must have explicit attribute values. XML (and therefore XHTML) does
not support attribute minimization, the SGML practice in which certain attributes
can be reduced to just the attribute value. So, while in HTML you can write
checked to indicate that a form button should be checked when the form loads, in
XHTML you need to explicitly write out checked="checked".

•	 Proper nesting of elements is strictly enforced. Some exisiting elements got new
nesting restrictions.

•	 Start tags and end tags are required.

•	 Special characters must always be represented by character entities (e.g., &
for the & symbol).

•	 Scripts must be contained in a CDATA section so they will be treated as simple text
characters and not parsed as XML markup. Here is an example of the syntax:

<script type="type/javascript">
 // <![CDATA[
 ... JavaScript goes here...
 //]]>
</script>

While HTML parsers are forgiving of incorrect markup, errors in XHTML syntax stop the
parser in its tracks. Running your XHTML code through a validator is a good idea to
catch syntax errors before pages get launched.

D. From HTML+ to HTML5

An Abbreviated History of HTML

761

Hello HTML5!
Meanwhile…

In 2004, members of Apple, Mozilla, and Opera formed the Web Hypertext
Application Technology Working Group (WHATWG, whatwg.org), separate
from the W3C. The goal of the WHATWG was to further the development
of HTML to meet new demands in a way that was consistent with real-world
authoring practices and browser behavior (in contrast to the start-from-
scratch ideal that XHTML 2.0 described). Their initial documents, Web
Applications 1.0 and Web Forms 1.0, were rolled together into HTML5. Today,
the WHATWG maintains an unnumbered, “living” HTML standard.

The W3C eventually established its own HTML5 Working Group based on
the work done by the WHATWG. HTML5 reached formal Recommendation
status in October 2014. As of early 2018, the latest version is HTML 5.2, which
is a “Proposed Recommendation.”

Work on the HTML5 specification is happening in both organizations in
tandem, sometimes with slight inconsistencies. For the most part, browser
vendors use the WHATWG copy as their implementation reference.

And XHTML 2.0? At the end of 2009, the W3C officially put it out of its
misery, pulling the plug on the Working Group and putting its resources and
efforts into HTML5.

So that’s how we got here. Now let’s get to know HTML5 a little better.

HTML5: MORE THAN MARKUP

Prior HTML versions concerned themselves mainly with elements for mark-
ing up content to be viewed on web pages. HTML5 is a bundle of new meth-
ods for accomplishing tasks that previously required special programming or
proprietary plug-in technology such as Flash or Silverlight. Solutions include
both markup and scripting components, including APIs for things like put-
ting audio and video on the page, storing data locally, working offline, taking
advantage of location information, and more. With HTML5 for common
tasks, developers can rely on built-in browser capabilities and not reinvent
the wheel for every application.

Much of what’s new in HTML5 requires advanced web development skills,
so it’s unlikely you’ll use those features right away (if ever), but as always, I
think it is beneficial to everyone to have a basic familiarity with what can be
done. And “basic familiarity” is what I’m aiming at here. For more in-depth
discussions of HTML5 features, see the “Further Reading” sidebar.

F U RT H E R R E A D I N G

The following books will help fill out
your knowledge of HTML5:

•	 HTML5 for Web Designers, 2e by
Rachel Andrew and Jeremy Keith
(A Book Apart)

•	 HTML5: Up and Running by Mark
Pilgrim (O’Reilly and Google Press)

•	 Introducing HTML5, 2e by Bruce
Lawson and Remy Sharp (New
Riders)

Part VI. Appendices

HTML5: More Than Markup

762

HTML5 Markup Component
You’ve been learning the elements and attributes of HTML5 throughout this
book.

HTML5 is based on HTML 4.01 Strict, the version of HTML that did not
include any presentation-based or other deprecated elements and attributes.
That means the vast majority of HTML5 is made up of the same elements
that were used for years, and browsers know what to do with them.

HTML5 introduced a number of new elements, form input types, and global
attributes. It also made many deprecated elements and attributes in HTML
4.01 officially obsolete.

One departure from previous HTML versions is that HTML5 is the first
specification that includes detailed instructions for how browsers should
handle malformed and legacy markup. It bases the instructions on legacy
browser behavior, but for once, there is a standard protocol for browser mak-
ers to follow when browsers encounter incorrect or non-standard markup.

A DTD-Free DOCTYPE
As we saw in Chapter 4, Creating a Simple Page, HTML documents should
begin with a Document Type (DOCTYPE) declaration that identifies which
version of HTML the document follows. The HTML5 declaration is short
and sweet:

<!DOCTYPE html>

Compare that to a declaration for a Strict HTML 4.01 document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/HTML4.01/strict.dtd">

Why so complicated? For documents written in HTML 4.01 and XHTML
1.0 and 1.1, the declaration must point to the public DTD (Document Type
Definition), a document that defines all of the elements in a markup lan-
guage as well as the rules for using them. DTDs are a remnant of SGML and
proved to be less helpful on the web than originally thought, so the authors
of HTML5 simply didn’t use one. As a result, the DOCTYPE declaration is
much simpler.

Validators—software that checks that all the markup in a document is cor-
rect (see Note)—use the DOCTYPE declaration to make sure the document
abides by the rules of the specification it claims to follow.

Both HTML 4.01 and XHTML 1.0 had three separate DTDs (for Traditional,
Strict, and Frameset versions of each spec), so there were a lot of little details
to keep track of. For a full list of DOCTYPE declarations (including DTD
references) for HTML 4.01, XHTML, SVG, and other document types, go to
www.w3.org/QA/2002/04/valid-dtd-list.html.

HTML5 in XML
HTML5 can also be written according
to the stricter syntax of XML (called
the XML serialization of HTML5).
Some developers have come to prefer
the tidiness of well-formed XHTML
(lowercase element names, quoted
attribute values, closing all elements,
and so on), so that way of writing is
still an option, although not required.
In edge cases, an HTML5 document
may be required to be served as
XML in order to work with other XML
applications, in which case it can use
the XML syntax and be ready to go.

NOTE

To check whether your HTML document
is valid, use the online validator at the
W3C (validator.w3.org). An HTML5-
specific validator is also available at
html5.validator.nu.

D. From HTML+ to HTML5

HTML5: More Than Markup

763

Meet the APIs
HTML specifications prior to HTML5 included only documentation of the
elements, attributes, and values permitted in the language. That’s fine for
simple text documents, but the creators of HTML5 had their minds set on
making it easier to create web-based applications that require scripting and
programming. For that reason, HTML5 also defines a number of new APIs
for making it easier to communicate with an application.

An API (application programming interface) is a documented set of com-
mands, data names, and so on, that lets one software application commu-
nicate with another. For example, the developers of Twitter documented the
names of each data type (users, tweets, timestamps, etc.) and the methods
for accessing them in an API document (dev.twitter.com/docs) that lets other
developers include Twitter feeds and elements in their programs. That is why
there are so many Twitter programs and widgets available. Amazon.com also
opens up its product data via an API. In fact, publishers of every ilk are rec-
ognizing the power of having their content available via an API.

But let’s bring it back to HTML5, which includes APIs for tasks that tradi-
tionally required proprietary plug-ins (like Flash) or custom programming.
The idea is that if browsers offer those features natively—with standardized
sets of hooks for accessing them—developers can do all sorts of nifty things
and count on them working in all browsers, just as we count on the ability
to embed an image on a page today. Of course, we have a way to go before
there is ubiquitous support of these cutting-edge features, but we’re getting
there steadily. Some APIs have a markup component, such as embedding
multimedia with the new HTML5 video and audio elements. Others happen
entirely behind the scenes with JavaScript or server-side components, such as
creating web applications that work even when there is no internet connec-
tion (Offline Web Application API).

The W3C and WHATWG are working on lots and lots of APIs for use with
web applications, all in varying stages of completion and implementation.
Most have their own specifications, separate from the HTML5 spec itself,
but they are generally included under the wide HTML5 umbrella that covers
web-based applications. HTML5 includes specifications for these APIs:

Media Player API

For controlling audio and video players embedded on a web page, used
with the new video and audio elements.

Editing API

Provides a set of commands that could be used to create in-browser text
editors, allowing users to insert and delete text; format text as bold, italic,
or hypertext; and more. In addition, there is a new contenteditable attri-
bute that allows any content element to be editable right on the page.

NOTE

For a list of all the APIs, see the“HTML5
Overview” by Erik Wilde (html5-overview.
net). The W3C lists all the documents
they maintain, many of which are APIs,
at www.w3.org/TR/tr-title-all.

HTML5 aims to make
HTML more useful for
creating web applications.

Part VI. Appendices

HTML5: More Than Markup

764

https://dev.twitter.com/docs

Session History API

Exposes the browser history for better control over the Back button.

Drag and Drop API

Adds the ability to drag a text selection or file to a target area on the page
or another web page. The draggable attribute indicates the element can
be selected and dragged.

The following are just a handful of the APIs in development at the W3C with
specifications of their own:

Canvas API

The canvas element adds a dynamic, two-dimensional drawing space to
a page. The canvas element is discussed in Chapter 10, Embedded Media.

Service Workers API

This specification describes a method that enables web applications to
work while offline.

Web Storage API

Allows data to be stored in the browser’s cache so that an application
can use it later. Traditionally, that has been done with “cookies,” but the
Web Storage API allows more data to be stored. It also controls whether
the data is limited to one session (sessionStorage: when the window is
closed, the data is cleared) or based on domain (localStorage: all open
windows pointed to that domain have access to the data).

Geolocation API

Lets users share their geographical location (longitude and latitude) so
that it is accessible to scripts in a web application. This allows the app to
provide location-aware features such as suggesting a nearby restaurant or
finding other users in your area.

Web Sockets API

Creates a socket, which is an open connection between the browser client
and the server. This allows information to flow between the client and
the server in real time, with no lags for the traditional HTTP requests.
You can think of a web socket as an ongoing telephone call between the
browser and server compared to the walkie-talkie, one-at-a-time style of
traditional browser/server communication. (A hat tip to Jen Simmons for
this analogy.) It is useful for multiplayer games, chat, or data streams that
update constantly, such as sports or stock tickers or social media streams.

WHERE WE GO FROM HERE

With a system in place that seems to be working, all indications are that the
HTML specification will continue to undergo minor revisions in order to

D. From HTML+ to HTML5

Where We Go From Here

765

keep up with the changing demands of how we use the web and the devices
we use it on. Minor revisions generally include adding attributes, elements,
and APIs and putting to rest features that were never implemented. In other
words, I have not heard talk of another seismic shift such as the switch from
XHTML to HTML5.

At the W3C, HTML 5.2 (the 5th major version and second minor revision
of HTML) became a Recommendation on December 14, 2017. As this book
goes to press, there is already a Working Draft of HTML 5.3. Meanwhile, the
WHATWG maintains its “living” (unnumbered) version of HTML that is
continually updated and forms the basis for most browser vendors’ imple-
mentation.

So know that HTML is always changing, and as a web designer or developer,
you will need to keep your ear to the ground. There is always something new
to learn.

Part VI. Appendices

Where We Go From Here

766

INDEX

% (percent sign) 413
+ (plus sign) 601–602, 604
" (quotation marks). See quotation

marks
® (registered trademark) 108
; (semicolon) 105–106, 243, 245, 599
/ (slash). See slash (/)
~ (tilde) 569
™ (trademark) 108
_ (underscore) 54, 569, 601

A
AAC audio codec 220–221
a (anchor) element

about 89, 113, 130
applying styles to 318–319
href attribute 84, 114–128, 132
target attribute 127

abbr (abbreviation) element 89, 92, 112
abbr attribute, th element 176
absolute flex 441
absolute pathnames 24–25, 114–115, 135
absolute positioning

about 393, 405, 408–409
columned layouts 408
containing blocks 409–411
specifying position 411–414
stacking order 414–415

absolute URLs 24–25, 114–115, 135, 351
absolute values 253–254
Abstract Syntax Tree (AST) 577
accept attribute, input element types

198, 212–213

accept-charset attribute, form element
209

accessibility
about 42
alternate text 136–137
assistive technology for 23
color-blind-friendly pages 314
form considerations 181, 184, 187, 192,

203–205
government requirements 43
improving with ARIA 102–105
SVG and 718
tables 169–171
web design considerations 42–45

Accessible Rich Internet Applications
(ARIA) 102–105, 205, 718

accesskey global attribute 101, 753
acronym element 89, 92
action attribute, form element 180–181,

209
:active selector 317–319, 518, 756
Active Server Pages (ASP) 180
adaptive icons 731
addEventListener() method 615
address element 82, 87, 112
Adobe

Animate software 228
code editors 16, 50
Creative Cloud tool suite 17–18, 672
Dreamweaver 16, 307
Flash Player 218
Illustrator 17, 142, 642, 687, 718
Photoshop. See Photoshop
RGB color space 672, 675
Typekit service 265, 280

Symbols
$ (dollar sign) 323, 569
£ (pound) 108
¥ (yen) 108
€ (euro) 108
& (ampersand) 105–106
<> (angle brackets) 27, 30, 56
‘ (apostrophe) 106
* (asterisk) 187, 285, 601
\ (backslash) 56, 116
: (colon) 316, 320
, (comma) 263
/* */ (comments) 245
© (copyright) 108
{} (curly brackets) 243, 491, 573, 604,

608–609
:: (double colons) 320
... (ellipsis) 108
— (em dash) 108
– (en dash) 108
= (equals sign) 64
== (equal to) operator 603–604
>= (greater than or equal to) operator

603
> (greater than sign) 106, 603
=== (identical to) operator 603–604
<= (less than or equal to) operator 603
< (less than sign) 106, 603
- (minus sign) 601
!= (not equal to) operator 603
!== (not identical to) operator 603
(octothorpe symbol) 124, 282–283, 325
() (parentheses) 608–610

767

attributes
about 63
ARIA specification 102–105
Boolean 64
event handlers as 614
form support for 209–213
HTML5 global 101–102, 753–754
syntax for 63–64
values in 64
XHTML markup requirements 56, 761
XML requirements 706

attribute selectors 323–324, 755–756
Audacity audio software 222
audio. See embedded media
Audio Converter tool 222
audio element

about 219, 225
browser support 219
Media Player API 764
src attribute 225, 234

audio formats 221
auditory impairment 42
authoring (preprocessing). See prepro-

cessing
author style sheets 249
autocomplete attribute

form element 209
input element types 212–213
textarea element 211

autofocus attribute
button element 209
input element 210, 212–213
select element 211
textarea element 211

autoplay attribute
audio element 234
video element 223, 235

Autoprefixer postprocessor 346, 446,
518, 577

Avery, Justin 515

B
backend development 10
backend processing 23, 32
backface-visibility property 536, 545
background-attachment property 326,

335–336, 354
background-clip property 314, 326, 333,

354
background-color property

about 312–313, 326, 354, 520
tiling background images 327
usage tips 338

animation-direction property 539–540,
545

animation-duration property 539, 545
animation-fill-mode property 539, 545
Animation Inspector 541
animation-iteration-count property 539,

545
animation-name property 539–540, 545
animation-play-state property 540, 545
animation property 540, 545
animation-timing-function property 539,

545
anonymous function 615
anti-aliasing 677
any-hover media feature 493
:any-link selector 756
any-pointer media feature 493
Apache server software 22, 133, 141, 220
API (application programming interface)

219, 577, 621, 764–765
APNG (Animated PNG) format 652
apostrophe (‘) 106
appendChild() method 628
applet element 89
application programming interface (API)

219, 577, 621, 764–765
Arbé, Eric 506
arbitrary substring attribute value selec-

tor 324, 756
arc() function 232
arguments

in commands 571, 575
in functions 608, 610–611

ARIA (Accessible Rich Internet
Applications) 102–105, 205, 718

arrays 603, 606
art-direction-based selection 153–155,

686
article element 82–87, 112
artifacts (color) 646
ASCII character set 57
aside element 82–84, 86–87, 112
ASP (Active Server Pages) 180
aspect-ratio media feature 493
ASP.NET 180
AST (Abstract Syntax Tree) 577
asterisk (*) 187, 285, 601
Asynchronous JavaScript and XML

(AJAX) 11–12, 102, 632–633
asynchronous loading 632
Atom code editor 16, 720
at-rules 265, 560
attribute minimization 761
attribute nodes 622–624

Affinity Designer 16, 687–690, 720
::after selector 321–322, 398, 758
Aguilar, Justin 538
AJAX (Asynchronous JavaScript and

XML) 11–12, 102, 632–633
Akamai.com service 664, 690
alert ARIA role 102
alert() function 598, 608–609, 613
align-content property 431–432, 437, 475,

478, 482, 484
align-items property 430–431, 437, 474–

475, 478, 482, 484
alignment

in FlexBox 428–433
in Grid 472–475
horizontal text 289–290

align-self property 431, 437, 473–474, 478,
483–484

A List Apart (online magazine) 259
all media type 492
Alman, Ben 612
alpha channel 651
alpha transparency 651, 676, 678–679, 694
alt attribute

img element 63–65, 134, 136, 149, 162,
556

input element, image type 212
alternate text 136–137
Amazon.com, on site performance 44
ampersand (&) 105–106
ancestor elements 247
and operator 561
Andrew, Rachel 398, 448–449, 478, 762
angle brackets (<>) 27, 30, 56
AngryTools.com website 538
Animated PNG (APNG) format 652
Animate software (Adobe) 228
animation

about 536–538
animated PNGs 652
animation tools 538, 541
browser support 539, 541
CSS properties 539–540, 545
disposal method 654
establishing keyframes 538–539
frame delay in 654
GIF format and 654
path animators 717
setting delays 523
SVG images and 140, 541, 716–717
timing functions 520–522
when to use 540–542

animation-delay property 539, 545

Index

﻿

768

borders
about 366
animatable properties 520
border color 369–370
border styles 366–367, 371
border width 368, 371
collapsed in tables 552–553
combining style, width, color 371
rounded corners 371–374, 662
separated in tables 551–552

border-spacing property 520, 551, 566
border-style property 366–367, 386
border-top-color property 369, 384, 520
border-top-left-radius property 371, 386
border-top property 371, 384
border-top-right-radius property 371,

386
border-top-style property 366–367, 386
border-top-width property 368, 386, 520
border-width property 368, 386
Bos, Wes 421
Botelho, Pedro 542
bottom property 406–407, 418, 521
bounding box 530
Bourbon tool 576
box model

about 251–252, 355
assigning display types 380–382
borders 356, 366–375
box drop shadows 382–383
box properties list 384–386
margins 356, 376–380
padding 356, 361–365
parts of an element box 355–356
specifying box dimensions 356–361

box-shadow property 382–383, 386
box-sizing property 357, 386, 548
Boxy editor 720
Brackets editor 16, 720
breakpoints (media queries) 495–498
Brekardin, Nelly 320
br (line break) element 62, 89, 96, 112
Brotli algorithm 724–725
Brown, Ethan 617
Brown, Tim 280
browsers

alternate text 136–137
Browser Wars 630
color model support 309
default margins 376
default styles 61–62
displaying linked text 113
element support limitations 81
embedded media and 218–232

bitmapped images
about 132–133, 147, 645, 657
canvas drawing area and 228
choosing best file format for 656, 663

:blank selector 757
Blink rendering engine 24
block axis 450–451
block elements 61, 72, 391–393
blockquote element 78–79, 112
BMP format 132, 645, 699, 720
body element

about 57–59, 70
background-color property 327
in document structure 246–248
script element and 598

boldness. See font-weight property
Bolles, Brendan 655
Bonsai library 717
Boolean attributes 64
Boolean data type 602, 605
border-bottom-color property 369, 384,

520
border-bottom-left-radius property 371,

386
border-bottom property 371, 384
border-bottom-right-radius property

371, 386
border-bottom-style property 366–367,

386
border-bottom-width property 368, 386,

520
border-box model 358–360, 548
border-collapse property 551, 566
border-color property 281, 312, 317, 369,

384
border (element box) 356
border-image-outset property 375
border-image property 251, 340, 375, 384
border-image-repeat property 375
border-image-slice property 375
border-image-source property 375
border-image-width property 375
border-left-color property 369, 384, 520
border-left property 371, 384
border-left-style property 366–367, 386
border-left-width property 368, 386, 520
border property 321, 326, 371, 384
border-radius property 372–375, 386,

562, 575, 662
border-right-color property 369, 384, 520
border-right property 371, 384
border-right-style property 366–367, 386
border-right-width property 368, 386,

520

background-image property 143, 324–
327, 338–341, 354

background images
adding 324–327
background attachment 335
background position 331–333
background position origin 333–334
background repeating 328–330
background size 336–337
multiple 339–340
positioning 334
tiling 326–327

background-origin property 333, 354
background-position property 326,

331–334, 354, 520, 558–559
background property 321, 326, 338–340,

354
background-repeat property 326, 328–

330, 354
backgrounds

background painting area 314
clipping 314
color considerations 312–314, 491
CSS properties 354, 520
playing with opacity 315
specifying styles in one declaration

338–340
transparent border colors and 369

background-size property 326, 336–337,
354

backslash (\) 56, 116
Baranovskiy, Dmitry 717
basefont element 89
baseline 287
bash (shell program) 568–569
Baumgartner, Stefan 572
b (bold) element 89–91, 112, 204–205
bdi (bidirectional isolation) element 89,

112
bdo (bidirectional override) element 89,

112
Beanstalk service 581
Beer, Brent 588
::before selector 321–322, 758
beginning substring attribute value

selector 323, 756
beginPath() function 230–231
Bellamy-Royd, Amelia 144, 730
Benyon, David 9
Berners-Lee, Tim 11, 22, 93, 760
big element 89
binary transparency 676–678
Bitbucket service 581
bit depth 696

Index 769

Index

close() method, window object 613
closePath() function 231
closing (end) tags 56, 72
Cloud Four blog 685
Cloudinary.com service 159, 664, 685–

686, 690
Cloud Typography service 265
cm (centimeters) unit 253–254
CMSs (content management systems)

32, 159, 664
CMYK color model 307, 647, 675
Coady, Geri 314
Coda editor 16
codec (code/decode) 219–221
coded character sets 57
code editors

about 15–16
built-in Git support 588
built-in validators and 69
SVG support 705, 720–721

code element 89, 93, 112
CodeKit editor 16, 572
codepen.io website 662, 716
code points 57, 108
Codrops blog 542
cognitive impairment 42
col element 173, 176
colgroup element 166, 173, 176
collapsed table border model 552–553
collapsing margins 378, 422
collections (nodeLists) 624
colon (:) 316, 320
color blindness 314
color-gamut media feature 493
color-index media feature 493
color media feature 493
color models 307–311
color names 304–305
color palettes 648–650
color pickers 201–202, 210, 213, 307–311
color profiles (ICC) 652, 655, 698
color property

about 301, 354, 520
changing text color 280–281
color names and 304
foreground color and 311

colors
adding to documents 325
background 312–314
changing text color 280–281
foreground 311–312
gradients 340–348
HSL color model 307, 309–311, 317
indexed 648, 653

Cascading Style Sheets. See CSS
case sensitivity

HTML tags 56
JavaScript 599, 601, 609, 613

Catlin, Hampton 573
CDATA section (XML) 597, 706–707,

715, 761
cd command 571
Cederholm, Dan 573
cellpadding attribute 169
cellspacing attribute 169
center element 89
Chacon, Scott 587
character encoding 57–58, 69, 349
character entity references 105–108
character escapes 105–108
charset attribute, meta element 57–58
@charset rule 349
checkbox buttons

about 192, 194, 210, 212
labels and 203
style considerations 548

checked attribute, input element types
193, 212–213

:checked selector 320, 757
checking out files (Git) 584
child elements 247, 449
child selector 283, 316, 755
Chinnathambi, Kirupa 716
Chisholm, Wendy 43
ch (zero width) unit 253
circle element (SVG) 139, 141–142, 705,

708
circle() function 399, 401
cite attribute

blockquote element 112
del element 112
ins element 112
q element 112

cite (citation) element 89, 93, 112
Clark, David 572
Clark, Josh 506
Clark, Keith 631
class global attribute 99–103, 625, 753
class selector 284, 316, 323, 755
clearfix technique 398
clear property 393–394, 418, 422
client-side processing 23, 593
Clipart.com service 644
clipPath element (SVG) 705
clipping backgrounds 314
clipping (SVG) 709–711
clip property 521
cloning repositories 586

favicons 665–666
feature detection 559–562
Flexbox support 444–447
form controls and 185, 188–189
Grid support 448–449, 454
history of 22
HTML5 support 82
JavaScript window object 612–613
links opening in new windows 126–

127
mobile devices and 23
parsing HTML documents 30, 32, 105
rendering engines 24, 30–31
standards compliance 38
SVG support 140–144, 705
testing on 18
vendor prefixes 345–347, 382
viewport display tools 498

BrowserStack testing service 514
BrowserSynch software 513
Budd, Andy 378
build process 578–579
bullets 77, 187, 296–298
Bushell, David 507
button ARIA role 102
button (custom) controls 190, 209–210,

212, 548
button element 190, 209

C
caching image files 136
Cagle, Kurt 731
Cailliau, Robert 22
Caliman, Razvan 403
camel-case capitalization 627
Camen, Kroc 224
CanIUse.com website 156, 399, 449, 504
Canvas API 230–232, 765
canvas element

about 228–230
Canvas API and 230–232, 765
SVG versus 715
transforms and 527

capitalization
camel-case 627
changing for text via CSS 291
in font names 263
in font-variant properties 275–276, 301
in HTML 56

caption element 166, 170, 176
carriage returns. See line breaks
Carter, Matthew 79, 92
cascade 249–251

Index770

Index

crossorigin attribute
audio element 234
video element 235

Cross-Origin Resource Sharing (CORS)
400

cross size (flex containers) 424
CSS3 Patterns Gallery 348
CSS (Cascading Style Sheets)

additional information 258–259
benefits of 239–240
box model 355–386
browser developer tools for 256–258
concepts to know 246–253
designer familiarity with 10
feature query/detection 399, 449,

559–564
history of 252
how style sheets work 240–246
inheritance 246–248
modern web development tools 567–

590
postprocessors for 576–578
preprocessors for 572–576
resets 554–556
rule order 250
rule specificity 249
site performance and 44
sprites 557–559
style sheet priority 249
troubleshooting conflicting styles for

the cascade 249–251
units of measurement 253–256,

269–272
CSS Font Stack website 267
CSS Gradient Generator 347
CSSNext plug-in 577
CSS processors

postprocessors. See postprocessing
preprocessors. See preprocessing

CSS reset style rule collection 554–556
CSS shapes 399–405
CSSsprites website 559
CSS-Tricks website

about 258
on border images 375
on font feature settings 280
on HSL color 310
on ICC color profiles 652
on multi-step animations and transi-

tions 521
on scaling SVGs 730
on SVGs 731
on vendor prefixes 346

CSS Zen Garden 240–241

content for web pages
basic document structure 56–58
content-based sizing 456–457
generated content 321–322
naming conventions for files 54
in responsive layouts 499–500
saving documents 53–54
semantic markup 59–61

content management systems (CMSs)
32, 159, 664

“content out” design 497
content parity 499–500
content property 322
Content Strategist 5
Content-Type header 32, 133
contextual selectors 281, 283
controls attribute

audio element 234
video element 223, 235

controls, form. See form controls
Cooper, Alan 8
Cope, Rachel 538
copyright (©) 108
Corel Draw tool 17, 642
CORS (Cross-Origin Resource Sharing)

400
@counter-style rule 296
Coyier, Chris

on button element 190
on color blindness 314
CSS-Tricks blog 258
FitVids.js plug-in 491
on Flexbox features 421
on gradients 343
on HSLa Explorer 310
on ICC color profiles 652
on inheritance 360
on one-element shapes 662
on sprites 713
on SVGs 144, 731

cp command 571
crawling the DOM 623
createElement() method, document

object 627
createTextNode() method, document

object 627
Creative Cloud tool suite (Adobe) 17–18,

672
Creative Commons license 643–644
Cronin, David 8
crop property 521
cross axis 423–424, 430–431
CrossBrowserTesting service 514

inheriting 281, 311–312
RGB color model 303, 306–309
specifying values 303–311
standard color names 281
Truecolor specification 306, 646, 651
usage tips 314

color stops in gradients 341
color table (color map) 648
Colorzilla website 347–348
cols attribute, textarea element 186, 211
colspan attribute

td element 168, 176
th element 168, 176

column-gap property 472
column spans (tables) 168
comma (,) 263
command line

about 567–568
cautions using 571
getting started with commands 569–

571
preprocessors running via 573
shell programs 568–569
Terminal tool 19, 568

comments
browsers ignoring text in 55
in HTML 61
JavaScript 599–600
in style sheets 245

commits (Git) 582–585
comparison operators 603–604
Compass tool 576
compilers. See processing
compound selector 755
compression

Brotli 724–725
Gzip 724
image formats 646–647, 651, 653, 693
lossless 647, 651, 653
lossy 646
LZW 653
SVG 724

concatenation 579, 602
conditional loading 500
conditional statements 604–606
confirm() function 598, 609, 613
conflicts (Git) 585–586
container formats (media) 219–221, 224
containing blocks for positioning

409–411
content area (element box) 356
content-box model 357–358, 413
contenteditable global attribute 101, 753,

764

Index 771

Index

document type declarations.
See DOCTYPE declarations

Document Type Definition (DTD) 763
Dojo library 633
dollar sign ($) 323, 569
domain names 23, 25, 33, 114
Domain Name System (DNS) 22–23
DOM (Document Object Model)

about 11–12, 59, 150, 595, 621–622
accessing nodes 623–625
adding and removing elements 627–

630
capitalization in 627
manipulating nodes 626–627
node tree 622–623
polyfills and 630–632

DOM scripting 10–12, 621, 623–630
Don’t Repeat Yourself (DRY) coding 712
dot-dot-slash pathname convention

120–121
dotfiles 570
dots per inch (dpi) 657
double colons (::) 320
DP (Device Independent Pixels) 147,

659–660
dpi (dots per inch) 657
Drag and Drop API 765
draggable global attribute 101, 753, 765
Drasner, Sarah 716
Dreamweaver (Adobe) 16, 307
drop-down menus 189, 195, 549
:drop() selector 757
DRY (Don’t Repeat Yourself) coding 712
DTD (Document Type Definition) 763
dt (description term) element 77–78, 112
Dunham, Ethan 264–265
dwebp command 656
dynamic programming languages

593–594
dynamic websites 32

E
easing (timing) function 520
East Asian languages 97, 279–283, 301
ECMAScript 594
Eden, Daniel 538
EdgeHTML rendering engine 24
Editing API 764–765
Eich, Brendan 594
Eisenberg, J. David 731
element box

about 355–356
animatable properties 520–521

DiP (device-independent pixels) 147,
659–660

dir (directory) element 89
direction property 294
directories

about 116
changing via command line 571
linking to a file in a directory 118
linking to a higher directory 120–121
linking to a lower directory 118–119
linking within a directory 117
linking with site root relative path-

names 122
user directory 569, 571
working directory 569, 583
writing pathnames to images 123

directory names 25–26
dir global attribute 97, 101, 753
dirname attribute, textarea element 211
:dir() selector 757
disabilities 42–43. See also accessibility
disabled attribute

button element 209
fieldset element 209
input element 210
input element types 187, 212–213
optgroup element 210
option element 210
select element 211
textarea element 211

:disabled selector 320, 757
display property

about 357, 380–382, 386
assigning display types 380–383
block value 550
flex value 482
grid value 449, 451, 478, 483
inline-grid value 451, 478, 483
list items and 297
table-related values 553

distributed version control system 582
dithering 697
div element

about 85, 98–99, 112
custom widgets 205
input element types and 180

dl (description list) element 77–78, 112
DNS (Domain Name System) 22–23
DNS servers 23
DOCTYPE declarations 57–59, 69, 763
document object 623–625
Document Object Model. See DOM
document outlines 72–73, 87

Cubic-Bezier.com website 521
Cunningham, Katie 43
curly brackets {} 243, 491, 573, 604,

608–609
cursive fonts 266–267
custom functions 609
cwebp command-line tool 656
Cygwin emulator 19, 569
CYMK color model 307

D
D3.js library 717
data attribute, object element 218, 234
database software 12
data element 89, 95, 112
datalist element 189, 202, 209, 549
data types (JavaScript) 601–602
data visualization 717–718
date and time controls 198–200, 210, 213
Date() function 609
datetime attribute

del element 112
ins element 112
time element 94–95, 112

dd (description definition) element
77–78, 112

declaration block 243
declarations 242–244
deep linking 226
default attribute, track element 226, 235
default (index) file 26–27
:default selector 758
defs element 708
del (delete text) element 89, 96, 112
Demaree, David 576, 587
DeSandro, David 535
descendant elements 247, 313
descendant selector 281–282, 316, 755
description lists 74, 77–78
details element 87
development environment. See web

design and development
device-aspect-ratio media feature 493
device-height media feature 493
device-independent pixels (DiP) 147,

659–660
device (physical) pixels 147–148
device-pixel-ratios 147–148
device-width media feature 493
Devlin, Ian 224
dfn (defining term) element 89, 93, 112
dialog ARIA role 102
dialog element 87

Index772

Index

applying as methods 615
applying with addEventListener()

method 615
common events 613–614
event binding 613, 615

exact attribute value selector 323, 756
explicit animation 537. See animation
explicit association (form labels) 203
eXtensible HTML (XHTML)

about 706
history of 760–761
markup requirements 56, 63, 761
script element and 597

eXtensible Markup Language (XML)
about 706
CDATA section 597, 706, 715, 761
DOM support 621
history of 760–761
serialization of HTML5 763
syntax requirements 706

eXtensible Stylesheet Language
Transformations (XSLT) 717–718

external images 132–133
external links 114–115
external scripts 597
external style sheets

about 348–349
adding SVG styles 714
importing 350
link element and 31, 245, 349–350
media queries and 494–495
modular 351

extranets 23
ex (x-height) unit 253

F
fallbacks with rule order 251
false value 602, 605
fantasy fonts 266–267
Favic-o-matic favicon generator 667
favicons 665–667
feature (query) detection 399, 449,

559–562
FFmpeg video tool 222
fieldset element

attributes for 209
form accessibility and 180, 187, 192,

204–205
tips and techniques 549

figcaption element 78, 80–81, 112
figure element 78, 80–81, 112
Filament Group 507, 512
file command 679

Embedded Open Type (EOT) format
264

embedded scripts 597
embedded style sheets 245, 251, 348
embed element 143, 218, 234
em dash (—) 108
em (emphasis) element 88–89, 112,

311–312
Emerge Interactive website 667
em (M-width) unit

about 253–255
breakpoints and 497–498
font sizes and 269–272
line heights and 288
track sizes and 455

empty-cells property 552, 566
empty elements 30, 56, 62–63, 134
:empty selector 320, 757
empty strings 602
em space 107
emulators for testing 513
:enabled selector 320, 757
encoding

character 57–58, 69, 349
form data 178
media 219, 222
sRGB 306

enctype attribute, form element 209
en dash(–) 108
end (closing) tags 56, 72
ending substring attribute value selector

323, 756
end tag. See closing tag
End User License Agreement (EULA)

264–265
Enkoder Form (Hivelogic) 127
en space 107
Envato Tuts+ website 229, 572, 578
EOT (Embedded Open Type) format

264
EPS format 132, 645
equals sign (=) 64
equal to (==) operator 603–604
equipment, web development 14–15
error handling. See troubleshooting
error messages 32
Etsy.com website 495–496, 512
EULA (End User License Agreement)

264–265
euro (€) 108
event property, window object 613
events and event handlers

about 613–614
applying as HTML attributes 614

assigning display types 380–382
content-box model 357–358, 413
handling overflow 360–361
specifying dimensions 356–360

element collages 9
element nodes 622–623
elements

about 56
anatomy of 55–56
applying styles 245
block 61
defining in documents 60
DOM-related 622–630
empty 30, 56, 62–63, 134
floating 387–405
generic 98–102
global attributes 101–102, 753–754
Google study on names 82
grouping content 78–81
HTML5 standard 72
in HTML documents 27–30, 69
identifying 59–62
inheritance and 247, 285
inline 61, 72, 88–98
nesting 92, 179, 203, 706
non-replaced 135, 357, 379, 390–391
placement of attributes in 63
positioning 405–416
replaced 135–136
required attributes in 63–64
semantic markup 59–61
SVG-based 705–708
syntax for 55
XHTML markup requirements 56, 63,

761
XML requirements 706

element type selectors 243, 249, 281, 284,
316

ellipse element (SVG) 705, 711
ellipse() function 399, 401–402
ellipsis.(...) 108
elliptical corners 372–373
email address input control 188, 213, 548
embedded media

about 215
adding audio to pages 225
adding text tracks to video 225–227
adding videos to pages 222–224
canvas (scriptable drawing area)

228–232
custom video players 224
iframe (window-in-a-window) 215–218
media formats 219–221, 224
multipurpose embedders 218–219
scaling responsively 490–491

Index 773

Index

:focus-within selector 756
folders. See directories
Fong, Priscilla 161
font attribute (Canvas API) 230, 232
font element 89
font embedding services 265
@font-face Generator 265
@font-face rule 263–265
font-family property 243, 263–268, 277,

301
font-feature-settings property 263,

279–280, 301
@font-features-values rule 279
font-kerning property 263, 279, 301
font-language-override property 263,

280, 301
font property 263, 276–277, 301, 320–321
fonts

animatable properties 520
cursive 266–267
fantasy 266–267
font and text properties 261–280, 294,

301–302
monospace 79, 93, 266–267
sans-serif 266–267
serif 266–267
system 277
typography pointers 502–503
variable 503
web fonts 264–265, 268, 364, 503

Fonts.com website 265
font-size-adjust property 263, 279, 301
font-size property

about 91, 263, 277, 301
as animatable property 520
preferred values 269
in shorthand font property 276
sizing with relative values 270–272
specifying 269–274
working with keywords 272, 277

Fonts Live service 265
Fontspring service 264
Font Squirrel website 264–265
font stack 263–264, 267–268
font-stretch property 263, 276, 301
font-style property 263, 274–276, 301
font-synthesis property 274, 301
font-variant-alternates property 263, 279,

301
font-variant-caps property 263, 278, 301
font-variant-east-asian property 263,

279, 301
font-variant-ligatures property 263, 278,

301

nested flexbox 422
properties listed 437, 482
setting up 421–422
specifying flow direction 423–424
unordered lists as 433
wrapping items onto multiple lines

424–426
flex-direction property 423, 426–427,

437, 482
flex-flow property 426–427, 482
flex-grow property 437–438, 441, 483
flexible grids (fluid layouts) 488–489
flex items

about 421
aligning with margins 432–433
changing order of items in containers

442–444
controlling alignment within contain-

ers 428–435
controlling flow within containers

422–427
determining how items flex in contain-

ers 436–441
expanding 437–438
properties listed 437, 483
providing initial sizes for 439–440
shrinking 438–439
specifying flow direction 423–424
wrapping onto multiple lines 424–426

flex lines 421
flex property 436–441, 483, 489
flex-shrink property 437–439, 483
flex-wrap property 425–428, 437, 482
Flickr Creative Commons 643
float containment 397
floating elements

about 387–390
adding shapes around 404
clearing floated elements 393–394
containing floats 397–399
CSS shapes 399–405
float-based layouts 394
floating block elements 391–393
floating images 395
floating inline text elements 390–391
floating multiple elements 394–396
properties listed 418

float property 321, 388–389, 418, 422
flow-root method 398
fluid layouts (flexible grids) 488–489
Flynn, Peter 720
focus() method, window object 613
:focus selector 317–319, 518, 756
:focus-visible selector 757

file management
caching image files 136
dotfiles 570
file naming conventions 54
file organization 116
linking within websites 116–126
staging files (Git) 584
tools supporting 18–19

filenames 54, 117
file selection control 197–198, 210, 212
File Transfer Protocol (FTP) 18–19
fill attribute 713–714
fill() function 232
fillStyle attribute (Canvas API) 230, 232
fillText() function 232
filter element (SVG) 705, 711–712
filter function 345
filter primitives effect (SVG) 711
Finn, Teri 447
Firefogg Firefox extension 222
Firefox Grid Inspector tool 461–462
firewalls 23
:first-child selector 320, 757
::first-letter selector 321, 758
::first-line selector 320–321, 758
:first-of-type selector 320, 757
Firtman, Maximiliano 46, 513
Fitvids.js plug-in 491
fixed positioning 406, 416
fixed-width layouts 489
Fixie plug-in 577
flags, command 570
Flanagan, David 598
FlashCanvas JavaScript library 228
Flash Player (Adobe) 218
flex-basis property 437, 439–441, 483
Flexbox Module

about 419–421
browser support for 444–447
formatting forms with 549–550
language direction dependence 422
making navigation bar with 427
properties listed 482–483
setting up Flexbox container 421–422

Flexbox Playground website 421
Flexbugs web page 447
flex containers

about 421
changing order of flex items in 442–

444
controlling flow within 422–427
controlling item alignment within

428–435
determining how items flex in 436–441

Index774

Index

Fulton, Jeff 232
Fulton, Steve 232
functional notation 324
functions

about 608–609
anonymous 615
arguments in 608, 610–611
custom 609
managing variable scope 611–612
returning a value 610–611

G
Gabriel, Sebastien 660
Gallagher, Nicolas 555
gamma correction 652
Gannon, Chris 716
gap property 472
Garrett, Jesse James 8, 633
Gasston, Peter 535
Gaussian blur 642, 693, 711–712
Geary, David 232
Gecko rendering engine 24
generated content 321–322
generic font families 266–267
Geolocation API 765
geolocation, mobile devices and 40, 41
getAttribute() method 625
getElementById() method, document

object 624
getElementsByClassName() method,

document object 625
getElementsByTagName() method, docu-

ment object 624
GET method 181–182
Getty Images website 643
g (grouping) element (SVG) 705
Ghostlab software 513
GIF format

about 132, 645, 653–654, 657
GIMP support 674
intrinsic proportions 336
optimizing 695–698
Photoshop support 672
transparency and 676, 680

GIMP
about 17, 672–674
color palettes in 648–650
image dithering 697
reducing number of colors 696
saving images in 671, 673–674
transparent images and 676, 678, 680
viewing color table 648–649

Giraudel, Hugo 662

reset buttons 182, 190–192, 210, 212, 548
specialized text entry fields 187–189,

210, 212–213
submit buttons 182, 190–192, 210, 212,

548
text entry controls 184–189, 210–212,

548
form element

about 179–180
attributes for 179–182, 209
nesting 179

formenctype attribute
button element 209
input element types 212

formmethod attribute
button element 209
input element types 212

formnovalidate attribute
button element 209
input element types 212

forms
accessibility considerations 181, 184,

187, 192, 203–205
behind-the-scenes processing 178–179
blocking submission of 595–596
components of 177–178
custom widgets 205
elements and attributes listed 209–213
encoding form data 178
government accessibility requirements

43
HTTPS (security) 25–26
input element types 183–202
JavaScript and 31
layout and design 206–207
responsive 506–507
styling 207, 547–550
usability considerations 205–206
validating 190
variables and content 182–183

formtarget attribute
button element 209
input element types 212

for() statement 606–607
fragment identifier 124–125
fragments, linking to document 124–126
Freemake video tool 222
fr (fractional) units 455–456, 458, 489
Friedman, Vitaly 285
frontend development 10–12
frontend processing 23
Frost, Brad 36, 506, 515
FTP (File Transfer Protocol) 18–19
full-stack developers 12

font-variant-numeric property 263,
278–279, 301

font-variant-position property 263, 278,
301

font-variant property 263, 275–276, 301
font-weight property 263, 273–276, 301,

520
footer element 82–85, 112
for attribute

label element 210
output element 210

foreground 311–312, 314
 281

forking repositories 586–587
formaction attribute

button element 209
input element types 212

formats, image. See image formats
formats, video and audio 219–221, 224
formatting text

advanced typography with CSS3
277–280

changing capitalization 291
changing list bullets and numbers

296–298
changing text color 280–281
font and text properties 261–280, 294,

301–302
spacing considerations 292
table considerations 166
text line adjustments 287–290
text shadow 293–294
underlines and decorations 290–291

form attribute
button element 209
fieldset element 209
input element types 210, 212–213
object element 235
output element 210
select element 211
textarea element 211

form controls
about 183–184
checkbox buttons 192, 194, 203, 210,

212, 548
color selector 201–202, 210, 213
date and time controls 198–200, 210,

213
file selection control 197–198, 210, 212
hidden controls 198, 210, 212
menus 189, 195–197
name attribute 182
naming considerations 183
radio buttons 192–193, 203, 210, 212,

548

Index 775

Index

online resources 478
properties listed 483–484
setting up the grid 451–462
terminology for 449–451

grid lines
about 450
numbers and names 453–454, 457–459,

462–464
positioning items using 463–465

grid media feature 493
grid property 459–460, 471, 478, 483
grid-row-end property 463–464, 478,

484
grid-row-gap property 472, 478, 483
grid-row property 465, 478, 484
grid rows

about 450
implicit grid behavior 468–471
spacing between tracks 472
spanning 464

grid-row-start property 463–464, 478,
484

grid-structural selector 758
grid-template-areas property 458–459,

465, 478, 483
grid-template-columns property 452–

460, 478, 483
grid-template property 460, 478, 483
grid-template-rows property 452–455,

457–461, 478, 483
grid tracks

about 450–451
aligning 475–476
content-based sizing 456–457
defining 452–454
repeating track sizes 457–458
spacing between 472
specifying track size values 455–457

Grigsby, Jason 159, 507, 664, 685, 690
grouped selectors 252–253, 281, 316
Grunt task runner 346, 577–579, 699
Gulp task runner 577–579, 699
Gustafson, Aaron 39, 190
Gzip tool 724

H
h1 (heading level 1) element 62, 72–73,

112
h2 (heading level 2) element 72–73, 112
h3 (heading level 3) element 72–73, 112
h4 (heading level 4) element 72–73, 112
h5 (heading level 5) element 72, 112
h6 (heading level 6) element 72, 112

setting display property 451
setting up 451–462
spacing between tracks 472–478
terminology for 449–451
tools supporting 461–462

grid-area property 465–467, 478, 484
grid areas

about 450
aligning items within 473–474
defining 458–459, 466
positioning items by 465–468

grid-auto-columns property 468–469,
478, 483

grid-auto-flow property 470–471, 478,
483

grid-auto-rows property 468–470, 478,
483

grid cells
about 450–451
aligning items in 472–474
items flowing into 453, 463, 470–471
items spanning 463
margins and 474

grid-column-end property 463–465, 478,
484

grid-column-gap property 472–473, 478,
483

grid-column property 465, 478, 484
grid columns

about 450
implicit grid behavior 468–471
spacing between tracks 472
spanning 464

grid-column-start property 463–465,
478, 484

grid-gap property 472, 478, 483
Grid Inspector 453–454, 461–462
grid items

about 449–451
aligning 472–476
changing order of 469
flow direction and density 470
implicit grid behavior 468–470
margins and 474
overlapping 469
placing 463–468
properties listed 478, 484

Grid Layout Module
about 394, 447–448
browser support 448–449
declaring grid display 451
how Grid Layout works 449
implicit grid behavior 468–471
language direction dependence 422

GitHub Desktop tool 588
GitHub service 581–582, 588
GitLab service 581
Git program

about 581
additional resources 583, 587–588
how Git works 582–587
reasons for using 581–582
terminology for 582–586

Glide script 664
global attributes (HTML5) 101–102,

753–754
globally scoped variables 611–612
GMT (Greenwich Mean Time) 94
Google

Brotli algorithm 724–725
color picker 307–308, 310, 325
element names study 82
Make the Web Faster information 46
PageSpeedInsights tool 46
site performance survey 44
Web Fonts service 265, 268, 364

graceful degradation 38
gradient line 341
gradient ray 343
gradients

about 311, 340–341, 662
browser support 345–347
designing 347–348
linear 341–343
processor power 383
radial 340, 343–344
repeating 345

Graham, Geoff 521
graphic (visual) design 9–10, 17–18
greater than or equal to (>=) operator

603
greater than sign (>) 106, 603
Green, Tom 220
Greenwich Mean Time (GMT) 94
grid and grid containers

about 449, 451–452
analysis tools for 454
defining grid areas 458–459
defining grid tracks 452–457
flexible grids 488–489
grid shorthand property 459–460, 471,

478, 483
implicit grid behavior 468–471
nesting 449
placing grid items 463–468
properties listed 478, 483–484
repeating track sizes 457–458
RWD and 487–489

Index776

Index

adding links 113–130
browser rendering engines 24, 30–31
capitalization in 56
checking browser support 156
creating simple pages 49–70
designer familiarity with 10
DOM support 621
embedded media 215–235
forms 31, 43, 177–213
frontend development 10–11
history of 759–762
obsolete elements 89
table markup 163–176
text markup 71–112
web standards 38

HTML tags. See tags
HTTP headers 32, 57
HTTP (HyperText Transfer Protocol)

about 21
browsers and 23–24
server software and 22–23
URLs and 24–27

HTTP requests/responses 32–33, 44, 133
HTTPS protocol 25–26, 181
HTTP status codes 32
HTTP Streaming Video (HLS) 221
HTTP (web) servers 22
hub model (Git) 582
hue (HSL color model) 309
hypertext links. See a (anchor) element
Hypertext Markup Language.

See HTML
HyperText Transfer Protocol. See HTTP
hyphen-separated attribute value selector

323, 756
hyphens property 294, 301

I
i18n (internationalization) 97
IANA.org website 226
ICC color profiles 652, 655, 698
icons

adaptive 731
creating 667
favicons 665–667
finding for web pages 644

Icon Slate tool 666
identical to (===) operator 603–604
id global attribute

about 100–102, 753
accessing nodes by 624
datalist element and 189
explicitly assigned form labels 203

HLS (HTTP Streaming Video) 221
Hogan, Lara 46, 512
home directory 571
horizontal rule (thematic breaks) 62, 74
horizontal text alignment 289–290
hostname 25
hotlinking images 135
hover media feature 493
:hover selector

about 317–319, 756
SVG and 141
transforms and 527
triggering transitions 518

href attribute
a element 84, 114–128, 130, 132
link element 350

hr (horizontal rule) element 62, 74, 112
HSB color model 307, 310
HSLa color model 309, 311
HSL color model 307, 309–311, 317
htaccess file 133
HTML5

API support 764–765
browser support 82
global attributes 101–102, 753–754
history of 29, 762
markup component 763
organizing page content 82–87
validating 763
web standards 71, 83
XML serialization of 763

HTML5 Shiv script 82–83, 631
HTML documents

anatomy of 27–33
attaching styles to 241–243
creating in Notepad 51
creating in TextEdit 52
inheritance considerations 246–247
marking up by hand 50
parsing 30, 32
recommended minimal structure

56–58
Responsive Web Design 40–41
site performance and 44
structuring 11, 31, 55–59, 241–242
SVG considerations 141–142
validating 68–69, 763

html element
about 57–59, 70
in document structure 246–247
lang attribute 97

HTML (Hypertext Markup Language)
about 29
adding images 62–65, 131–162

H.264 video codec 220, 224
halos 677–678
Halvorson, Kristina 5, 500
Handbrake video tool 222
Handlebars tool 580
hanging indent 288–289
hanging-punctuation property 294, 301
hardware pixels 147–148
Hartl, Michael 571–572
hashes (Git ID) 583
:has() selector 758
Hay, Stephen 37, 515
head commit (Git) 584
head element

about 70
in document structure 57–59, 246–247
style element and 245, 268–269

header element 82–84, 112
headers

table 167, 170–171
web pages 82–84

headers attribute
td element 171, 176
th element 176

headings 72–74
Head, Val 538
hearing impairment 42
height attribute

canvas element 234
embed element 234
iframe element 216, 234
img element 137, 162, 490
input element types 212
object element 235
svg element 707, 724–726
video element 223, 235

height media feature 493
height property 357, 386, 520
HEVC (High Efficiency Video Coding)

220
hexadecimal numbering system 308–

309
Hicks, John 667
hidden global attribute 101, 753
hidden input control 198, 210, 212
high attribute, meter element 202, 210
high-density displays 147–149, 658–659,

686–690
High Efficiency Video Coding (HEVC)

220
highlighted text 89, 94
history property, window object 613
Hivelogic Enkoder Form 127
Hixon, Jeremy 576

Index 777

Index

Immediately Invoked Functional
Expression (IIFE) 612

implicit animation 537. See transitions
implicit association (form labels) 203
!important indicator 250
importing external style sheets 350
@import rule 245, 251, 349–350
:indeterminate selector 758
index (default) file 26–27, 584
indexed color 648, 653, 697
indexed numbers (arrays) 603
index of files (Git) 584
Information Architect 5
Information Designer 5
inheritance

about 246
box-sizing attribute and 360
color and 281, 311–312
document structure and 246–247
parents and children 247
properties and 247–248

in (inch) unit 253–254
initial containing block 409
initial-scale attribute, meta element 488
Inkscape editor 719
inline (horizontal) axis 450–451
inline (phrasing) elements

about 61, 72, 134
backstory of 89
as containing blocks 410
floating 390–391
lists of supported 88–98
margins on 379
non-replaced 135, 357, 379, 390–391

inline styles 245–246, 251, 284, 713
inner edges (element box) 356
innerHTML property 626
input controls. See form controls
input element

type="button" 190, 209–210, 212
type="checkbox" 192, 194, 203, 210, 212
type="color" 201–202, 210, 213
type="date" 198–199, 210, 213
type="datetime-local" 198–199, 210, 213
type="email" 210, 213
type="file" 197–198, 210, 212
type="hidden" 198, 210, 212
type="image" 210, 212
type="month" 198–200, 210, 213
type="number" 200–201, 210, 213
type="password" 210, 212
type="radio" 192–193, 203, 210, 212
type="range" 200–201, 210, 213
type="reset" 182, 190–192, 210, 212

saving images in Photoshop CC
671–673

SVG. See SVG
transparency and 647, 650–651, 653,

678–680
WebP 132, 645, 654–656

image markup 134–137. See also respon-
sive images

imagemin plug-in 699
ImageOptim tool 699
image resolution 657–658
images

accessibility considerations 136
adding 62–65, 131–162
adding SVGs 139–145
background 324–340
background origin 331–333
caching image files 136
CSS sprites 557–559
external 132–133
favicons 665–667
image asset production. See image

asset production
image-based text wraps 400
image formats. See image formats
image replacement techniques 556–557
image size and resolution 657–660
image sources 641–644
optimizing 9, 691–700
permissions for using 135
providing dimensions for 137
resizing 137, 664, 684
responsive image markup 146–158
rotating 528–529
RWD and 487, 490–491
site performance and 44
SVG. See SVG
transparent 400
writing pathnames to 123

img (image) element
about 30–32, 134–135
alt attribute 136, 149, 162, 556
default image alignment 135–136
as empty element 56, 62–63, 134
as replaced element 135–136
required attributes in 134
src attribute 134–135, 149, 162
srcset attribute 148–150, 152, 162
SVG considerations 140–141, 144, 709,

714, 727–728
troubleshooting problems 68
usemap 162
width attribute 137, 162, 490

fragment identifier 124–125
ID selector and 243, 282
Microformat standard and 103

idiomatic JavaScript 605
id reference 282
ID selectors

about 243, 282–284, 316, 755
jQuery and 636
specificity and 249, 284–285

if/else statements 604–606
iframe (inline frame) element

about 215–216
embedding videos with 217
sandbox attribute 217, 234
SVG considerations 143, 727

IIFE (Immediately Invoked Functional
Expression) 612

IIS (Internet Information Services) 22,
180

i (italic) element 89–91, 106, 112
Ilic, Manoela 542
Illustrator (Adobe) 17, 142, 642, 687–688,

718
ImageAlpha tool 694–695
image asset production

about 9
flowchart strategy for 660–665
image optimization 9, 691–700
responsive image production tips

680–690
saving images in web formats 671–676
working with transparency 676–680

image buttons 190, 212
image editors

image format support 672–674
image resolution 657–658
optimizing file sizes 693–698
resizing images 672, 684
RGB color mode 306–307, 675
saving images in web formats 671–672
vector illustration tools 718–720
web-based 17

image formats
about 132–133, 644–645
choosing best 656
compression and 646–647, 651, 653, 693
cumulative image quality loss 646
GIF. See GIF format
JPEG. See JPEG format
Photoshop support 672
PNG. See PNG format
providing alternative 155
RGB color model and 644, 675
saving images in GIMP 671, 673–674

Index778

Index

form accessibility and 180, 184, 192, 203
label attribute and 196

lang global attribute 97, 101, 753
:lang() selector 320, 757
language codes (IANA) 226
Larson, Rob 39
:last-child selector 320, 757
:last-of-type selector 320, 757
Lawson, Bruce 762
layout patterns 501–502
layout (rendering) engines 24
Lazaris, Louis 322
LazyLinePainter library 717
left property 406–407, 418, 521
legend element 180, 204–205, 210, 549
length property 607, 610, 623
Lesiński, Kornel 694–695
LESS preprocessor 346, 351, 572–573, 576
less than or equal to (<=) operator 603
less than sign (<) 106, 603
letter-spacing property 292, 301, 520
ligatures 278
lightboxes 596–597
lightness (HSL color model) 309
li (list item) element 75–77, 112, 115
linearGradient element (SVG) 705
linear-gradient() function 341–343, 662
line-box 287
line-break property 294, 301
line breaks (carriage returns)

br element 62, 89, 96, 112
browser behavior regarding 55
declaration blocks and 243
JavaScript and 599

line element (SVG) 705
line-height property 277, 287–288, 301,

520
lineWidth attribute (Canvas API) 230,

232
link element

about 349–350
external style sheets and 31, 245,

349–350
href attribute 350
media attribute 494
rel attribute 350, 666

links
adding 113–130
altering appearance of 316
browsers displaying linked text 113
deep linking 226
external links 114–115
href attribute 84, 114–128
hypertext links 21–22, 26
JavaScript and 31

polyfills and 630–632
pop-up windows 126
premade custom widgets 205
progressive enhancement 39
site performance and 44
SVG support 140, 715–718
validating forms 190
what JavaScriptS can do 595–597
window object 612–613

JavaScript Object Notation (JSON) 633
JavaServer Pages 180
Jehl, Scott 39, 156, 495, 632
Jones, Alex 161
JPEG format

about 132, 645–647, 657
GIMP support 674
optimizing 693–694
Photoshop support 672
transparency and 676, 710

JPEGmini program 699
jQuery library 205, 633–636
JSON (JavaScript Object Notation) 633
JSON-LD standard 103
justify-content property

about 428–429, 437, 475, 478, 482, 483
aligning items with margins 433

justify-items property 474–475, 478, 483
justify-self property 473–474, 478, 484

K
Kadlec, Tim 515
Kanouni, Hasma 161
kbd (keyboard) element 89, 93, 112
Keith, Jeremy 630, 762
Kellum, Scott 559
kerning 279
keyframe animation. See animation
@keyframes rule 538–539
kind attribute, track element 226, 235
Kleinfeld, Sanders 230
Koblentz, Thierry 398, 491–492
Koch, Peter-Paul 126
Kraken.io service 159, 664, 690, 699
Krug, Steve 8

L
label attribute

optgroup element 196, 210
option element 210
track element 226, 235

label element
attributes for 210

type="search" 210, 213
type="submit" 182, 190–192, 210, 212
type="tel" 210, 213
type="text" 184, 210, 212
type="time" 198–199, 210, 213
type="url" 210, 213
type="week" 198–200, 210, 213

inputmode attribute, textarea element
211

:in-range selector 758
insertBefore() method 628–629
ins (insert text) element 89, 96, 112
Interaction Design (IxD) 6–9
interlacing 652–653
internationalization (i18n) 97
International Standard Book Numbers

(ISBNs) 100
internet

about 21
history of 22

Internet Information Services (IIS) 22,
180

intranets 23
:invalid selector 758
invisible characters 107
IP addresses 22–23
Irish, Paul 630
ISBNs (International Standard Book

Numbers) 100
isindex element 89
iStockPhoto website 643
italics. See font-style property
IxD (Interaction Design) 6–9

J
JavaScript. See also scripts and scripting

about 593–597
adding behaviors with 31
adding to web pages 597–598
additional resources 617
animation support 540–541
browser object 612–613
canvas drawing area 228–232
capitalization in 627
case sensitivity 599, 601, 609, 613
data types 601–602
DOM and. See DOM
drop-down functionality 189
events 613–616
frontend development 10–11
idiomatic 605
libraries 632–637
libraries supported 717

Index 779

Index

MathML language 706
matrix3d() function 536
matrix() function 527
matte color 677–678, 683
max attribute

input element types 200, 202, 212–213
meter element 210
progress element 211

Max audio converter 222
MaxCDN website 724
max-height property 360, 386, 520
maximum-scale attribute, meta element

488
maxlength attribute

input element types 185, 186–187,
212–213

textarea element 211
max-width media feature 492, 495
max-width property 152, 360, 386, 490,

520
May, Matt 43
McGrane, Karen 500
MDN Web Docs site

on addEventListener() method 615
adding captions and subtitles to HTML

video 227
on CSS 259
on iframe embedding 217
on sticky positioning 406

m-dot sites 40, 41
measurement, units of. See units of mea-

surement
media attribute

link element 494
source element 154, 162

media conditions 152
MediaHuman Audio Converter 222
Media.io service 222
Media Player API 224, 764
media queries

about 350, 488
browser support 495
choosing breakpoints 495–498
by feature 491–493
how to use 494–495
media types 491–492
MQTest.io tool 498
RWD and 487, 491–495
structure of 491

Media Queries gallery site 40
@media rule 492–493
media types 492
menu attribute, button element 209
menubar ARIA role 102

M
machine-readable information 95, 103
Macintosh environment

command-line tool 568–571
creating HTML documents 52
dotfiles 570
file organization 116
Git/GitHub tools 588
image editors 672, 719
server software and 22
web development and 14–15

Maia, Renata 161
mailto links 127
main axis 423–424, 428–429
main element 82–83, 112
main size (flex containers) 424
Mall, Dan 9
man command 571
Mangialardi, Michael 662
Marcotte, Ethan

on “content out” design 497
on flexible grids 514
on media queries 514
on preserving element integrity 499
on responsive web design 40, 271,

487–488
margin-bottom property 376–378, 386,

520
margin-left property 376–378, 386, 520
margin property 376–378, 386, 389
margin-right property 376–378, 386, 521
margins

about 356, 376–378
aligning flex items with 432–433
centering with 376, 508–511
collapsing 378, 422
default for browsers 376
on inline elements 379
negative 379–380
percentage values for 376, 422
typography pointers 503–504

margin-top property 376–378, 386, 521
mark element 89, 94, 112
markup languages 10. See also HTML
Marquis, Mat

introduction to JavaScript 593–620
using JavaScript 621–638

mask element (SVG) 705
masking (SVG) 694, 705, 709–711
master (Git) 584
:matches() selector 758
mathematical operators 604
Mathis, Brandon 310

linking to a file in a directory 118
linking to a fragment in another docu-

ment 125–126
linking to a higher directory 120–121
linking to a lower directory 118–119
linking to specific point in a page

124–125
linking within a directory 117
linking with site root relative path-

names 122
mailto links 127
opening in new browser windows

126–127
telephone links 128
underlining 290
using images as links 132, 135, 138
using images as llinks 113
within websites 116–126

:link selector 316–320, 756
Linux environment

about 581
command-line tools 568–571
Cygwin tool 19, 569
image editors 719
web development and 14

list attribute, input element types 189,
212–213

lists
changing bullets and numbering 77,

296–298
description 74, 77–78
nesting 77
ordered 74, 76–77, 180
unordered 74–77, 205, 433

List-selectors plug-in 577
list-style-image property 298, 302, 340
list-style-position property 297, 302
list-style property 298
list-style-type property 77, 296–298, 302
LiveReload plug-in 579
locally scoped variables 611–612
localStorage property 765
location property, window object 613
look-and-feel sketches 9
loop attribute

audio element 234
video element 223, 235

loops (JavaScript) 606–608
lossless compression 647, 651, 653
lossy compression 646
low attribute, meter element 202, 210
ls command 569–571
Lynda.com website 538–539
LZW compression scheme 653

Index780

Index

named entity 105–106
namespaces 707
naming conventions

for files 54
for input element types 183
for JavaScript variables 600
for pathnames 120–122

navigation
optimizing in viewports 499, 504–506
organizing page content 87

nav (navigation) element 82–84, 87, 112
Neal, Jonathan 555
negative margins 379–380
negative values

in background positions 331
in margins 379–380
in numerical inputs 200
in ordering flex items 443
in text shadows 293

nesting
curly brackets 491
elements 92, 179, 203, 706
grids 449–450
lists 77
nested browsing context 216, 218
nested flexboxes 422
nested styles 573

Netscape
Browser Wars 630
embed element 218
HTML and 760
JavaScript and 594
Web Standards Project 760

Network tool (browsers) 45–46
next-sibling selector 283, 755
Node.js framework 573, 577, 579, 723
nodeLists (collections) 624
nodes

about 622–625
adding and removing elements 627–

630
manipulating 626–627

Noessel, Christopher 8
non-breaking space 107
non-replaced elements 135, 357, 379,

390–391
non-Western languages 97
Normalize.css 555–556
Norman, Donald 6, 8
Notepad (Windows) 50–51
not equal to (!=) operator 603
not identical to (!==) operator 603
not operator 561
:not() selector 320, 758

mobile devices
alternate text 136–137
browsers on 23
device width 487
embedded media on 218, 221
hover effects and 318
image markup for 146–158
multitude of 36–37
plug-in support 218
Responsive Web Design and 40–41,

485–516
testing on 15, 512–514
touch screens and 318, 506, 596
viewports. See viewports

“Mobile First” approach 501
mobility impairment 42
Modernizr polyfill 82, 562–564, 655
modular external style sheets 351
module-based breakpoints 497
monochrome media feature 493
monospace fonts 79, 93, 266–267
Montague, Destiny 512
MooTools library 633
Mosley, Marie 557
Mozilla Foundation 346, 478
Mozilla vendor prefix 346
MP3 format 221
MPEG-4 container 220–221, 224
MQTest.io tool 498
Multi-column Layout Module (W3C)

420
multiple attribute

input element types 196, 198, 212–213
select element 211

Murray, Scott 717
muted attribute

audio element 234
video element 223, 235

mv command 571

N
name attribute

about 182–183, 185
button element 209
fieldset element 209
form element 209
iframe element 234
input element types 212–213
object element 235
output element 210
param element 235
select element 211
textarea element 211

menu element 89
menus (form control)

about 195
drop-down 189, 195
grouping options 196–197
scrolling 195–196

menus (navigation) 432, 504–506, 509
merging commits (Git) 585
metadata 57–59, 582, 655
meta element 57–59, 62, 70, 487–488
meter element 202, 210, 549
method attribute, form element 181–182,

209
methods, event handlers as 615
Meyer, Eric

on collapsing margins 378
on CSS 258, 448
on CSS reset 554
on CSS shapes 403
on em unit 255
on gradients 343
on specificity 285

Michalek, Martin 343
Microdata standard 103
Microformats standard 100, 103
Microsoft

Active Server Pages 180
ASP.NET 180
Browser Wars 630
developer tools for CSS 257
Internet Information Services 22, 180
vendor prefix 346
Visual Studio 16, 244
Web Standards Project 760

Mills, Chris 224
MIME types 133, 155, 218, 220
min attribute

input element types 200, 202, 212–213
meter element 210

min-height property 360, 386, 520
minlength attribute

input element types 185, 186–187,
212–213

textarea element 211
minmax() function 455–458, 489
Minns, Drew 578
minus sign (-) 601
min-width media feature 492, 495
min-width property 360, 386, 520
Miracle Tutorials website 227
mix-blend-mode property 560
mixins convention 575–576
mkdir command 571
mm (millimeters) unit 253–254

Index 781

Index

partial attribute value selector 323, 756
password input control 187, 212, 548
path animators 717
path element (SVG) 139, 705, 708
pathnames

about 116
absolute 24–25, 114–115, 135
relative 114, 116–126
site root relative 122, 324–326
Unix conventions 120–122

pattern attribute, input element types
212–213

pc (picas) unit 253–254
percentage values

about 272
for background positioning 331–332
for background size 331–332
converting from pixels 489
flexbox mode and 422
for flexible grids 489
for font sizes 269
for grid track sizes 455
HSL color model and 309–310
for image positioning 413
for keyframe animations 538
for line heights 288
for margins 376, 422
for padding 362, 422, 729
for page layouts 253
for properties 253
for radial gradients 343
RGB color model and 307
for rounded corners 372
for text indents 288
for track sizes 455
for transforms 529–531
for viewboxes 726

percent sign (%) 413
permissions for image usage 135
personas 8
perspective-origin property 536, 545
perspective property 535, 545
Peterson, Clarissa 500–501, 515
Pettit, Nick 667
Pfeiffer, Silvia 220
Phark technique 556–557
Photoshop

about 17–18, 672–673, 687–688
animation and 654
color palettes in 648–650
creating WebP files 655
Gaussian Blur filter 642
image dithering 697
images for high-density displays 687

optimizing CSS (postprocessing).
See postprocessing

optimizing images 9, 691–700
optimum attribute, meter element 202,

210
:optional selector 758
option element 189, 195, 210, 549
Opus audio codec 221
Oracle VirtualBox 15
ordered lists 74, 76–77, 180
order property

about 437, 478, 483–484
changing order of items 442–445, 469

orientation media feature 493
origin image 331–333
or operator 562
OTF (OpenType) format 264
outer edge (element box) 356
outline-color property 317, 370, 386, 520
outline-offset property 370, 386
outline property 370, 386
outline-style property 370, 386
outline-width property 370, 386, 520
:out-of-range selector 758
output element 202, 210
overflow-block media feature 493
overflow-inline media feature 493
overflow property 360–361, 386
overflow-wrap property 294, 302

P
padding

about 361–363
as element box component 356
percentage values for 362, 422, 729

padding-bottom property 361–362, 386,
521

padding-left property 361–362, 386, 521
padding property 326, 362–363, 386
padding-right property 361–362, 386,

521
padding-top property 361–362, 386, 521
PageSpeedInsights tool (Google) 46
PaintShop Pro 650
Parallels Desktop for Mac 15
param element 218, 235
parent elements 247, 313
parentheses () 608–610
parent() method 636
Parker, Todd 39
Park, Thomas 478
parseInt() function 609
parsing HTML documents 30, 32

novalidate attribute, form element 209
Nowell, Peter 660
:nth-child() selector 320, 757
:nth-last-child() selector 320, 757
:nth-last-of-type() selector 320, 757
:nth-of-type() selector 320, 757
null data type 136, 601–602
number input control 213
numbers and numbering

changing for lists 77, 296–298
font variants 263, 278–279, 301
JavaScript-related 601–602
as scaling factors 288

numeric entity 105–106

O
object element

about 218–219
embedding SVG image with 142–144,

714
SVG considerations 727–728

octothorpe symbol (#) 124, 282–283, 325
offset properties 406–407, 411–413
Ogg container 220–221
ol (ordered list) element 76–77, 112
onblur event handler 614
onchange event handler 614
onclick event handler 613–614
onerror event handler 614
onfocus event handler 614
onkeydown event handler 614
onkeypress event handler 614
onkeyup event handler 614
onload event handler 613–614
:only-child selector 320, 757
:only-of-type selector 320, 757
onmousedown event handler 614
onmousemove event handler 614
onmouseout event handler 614
onmouseover event handler 613–614
onmouseup event handler 614
onsubmit event handler 614
opacity

animatable properties 520
HSLa color model and 311
RGBa color model and 309

opacity property 315, 354, 520
open source software 22, 346
OpenType Font Variations 503
OpenType (OTF) format 264
Opera Software vendor prefix 346
optgroup element 195–197, 210, 549
Optimizilla tool 699

Index782

Index

preprocessing
about 10, 572–576
modular style sheets and 351

presentation (presentation layer). See
also CSS

about 11, 31, 239, 242
JavaScript and 595
semantic markup and 59

preserveAspectRatio attribute, svg ele-
ment 726–727

print media type 492
priority (style rules) 249
product managers 13
progress element 202, 211, 549
progressive enhancement 38–39
project managers 13
prompt, command-line 569
prompt() function 598, 609
properties

about 242–243
ARIA-related 104–105
inheritance of 246–248
property listings key 262
values of 244

protocols 21, 24–27
Prototype library 633
pseudo-class selectors 316–320, 756–758
pseudo-element selectors 320–322, 758
pt (points) unit 253–254, 487
pubdate attribute, time element 112
pull-down menus 189, 195
pull (Git) 586
pull requests (Git) 587
PunyPNG Pro tool 695, 699
push (Git) 586
pwd command 569–570
px unit 253–254, 455, 489
Python scripting language 180

Q
q (1/4 millimeter) unit 253
q (quit) command 571
q (quote) element 79, 89, 92, 112
querySelectorAll() method, document

object 625
quotation marks

curly 108
escaping quote characters 106
font names and 263
string data type and 602
wrapping attribute values in 64

quotations in text 78–79, 92

Photoshop support 672
transparency and 647, 650–651, 676,

678–680
PNGGauntlet tool 699
pngquant compression library 695
pointer media feature 493
points (reference pixels) 147–148,

659–660
polyfills (shims)

about 156, 596, 621, 630–631
HTML5 Shiv script 82–83, 631
JavaScript libraries 632–634
Modernizr polyfill 82, 562–564, 655
Picturefill polyfill 156, 632
Respond.js polyfill 495
Selectivizr polyfill 320, 631–632

polygon element (SVG) 705
polygon() function 399, 401, 403
polyline element (SVG) 705
pop-up windows 126
Portis, Eric 686
positioning elements, input element

types
absolute positioning 405, 408–415
CSS properties 418
fixed positioning 406, 416
relative positioning 405, 407–408
specifying 406–407
static positioning 405
sticky positioning 406
types of 405–406

positioning elements (positioning con-
text)

CSS properties 521
position property 405–406, 409, 418
PostCSS postprocessor 572, 576–578
poster attribute, video element 223, 235
POST method 181–182
postprocessing

about 572, 576–578
plug-ins 577–578
plug-ins supporting 723
vendor prefixing tools 346, 446

pound (£) 108
p (paragraph) element 71–72, 112
ppi (pixels per inch) 147, 657
PreCSS plug-in 577
preload attribute

audio element 234
video element 223, 235

preloaders 150
pre (preformatted text) element 78–80,

112

layers in 339, 560
quantization in 648
reducing number of colors 696
resizing images 684
saving images in 671–673
transparent images and 676–678, 680
viewing color table 648–649

PHP scripting language 180–181
phrasing elements. See inline elements
physical (device) pixels 147–148
picture element

about 144, 162
art-direction-based selection 153–155,

686
image-format-based selection 155
SVG considerations 144

Picturefill polyfill 156, 632
Pilgrim, Mark 762
pixels (px)

about 147
CSS 147–148, 253–254
device 147
dimensions for images 137
hardware 147
image resolution 657–658
physical 147
reference 147–148
screen resolution 658–660
SVG 707–708, 721, 725

Pixir editor 17
Pixrem plug-in 577
placeholder attribute

input element types 185–187, 212–213
textarea element 211

:placeholder-shown selector 757
Platz, Brian 259
Pleeease framework 578
plug-ins

about 218–219
accessibility requirements 43
animation effects 538
build tools as 578–579
postprocessing 577–578, 723
task runners and 699
WebP for Photoshop 655–656

plus sign (+) 601–602, 604
PNG format

about 132, 155, 645, 647–653, 657
animated PNGs 652
bitmap format comparison 656
creating favicons in 666–667
GIMP support 674
optimizing images 694–698

Index 783

Index

root element. See html element
:root selector 320, 757
Rose, Dan 680
rotate3d() function 536
rotate() function 230, 527–529, 531–532
rotateX() function 536
rotateY() function 536
rotateZ() function 536
rounded corners 371–374, 662
row-gap property 472
rows attribute, textarea element 186, 211
rowspan attribute

td element 168–169, 176
th element 168–169, 176

row spans (tables) 169
royalty-free images 643
rp (ruby phrasing) element 89, 97, 112
RSS (Really Simple Syndication) 706
rt (ruby text) element 89, 97, 112
ruby annotation 97
ruby element 89, 97, 112
Ruby on Rails platform 180
rule order (style rules) 250–251
rules, style. See style rules
Rundle, Mike 556
Rutter, Richard 503
RWD. See see Responsive Web Design

S
Salminen, Viljami 498
Sambells, Jeffrey 630
samp (sample) element 89, 93, 112
sandbox attribute, iframe element 217,

234
sans-serif fonts 266–267
Sass preprocessor 351, 572–576
saturation (HSL color model) 309
Scalable Vector Graphics. See SVG
scale3d() function 536
scale() function 230, 527–528, 530–532
scaleZ() function 536
scan media feature 493
Schema.org vocabulary 103
Schmitt, Christopher 258
scope attribute, th element 171, 176
scope of variables 611–612
screen designers 657
screen media type 492
screen readers

about 59
alternate text for images 136
conveying stressed content 88, 90
describing table content 171

resolution
about 657
image 657–658
screen 147–149, 658–660

resolution media feature 493
Respond.js polyfill 495
Responsive Image Breakpoints Generator

685
responsive images

adding 156–158
alternative image formats 155
art direction 153–155
browser support 155–156
high-density displays 147–149
image asset strategies for 663–664
markup for 131–132, 146–156
production tips 680–690
server considerations 159
variable-width images 150–152

Responsive Images Community Group
146

responsive SVGs 724–731
Responsive Web Design (RWD)

about 40–41, 485–487
additional resources 514–515
choosing breakpoints 495–498
designing responsively 499–511
flexible grids 488–489
flexible images 490–491
setting the viewport 487–488

return keyword 610–611
reuse and recycle feature (SVG) 712–713
reversed attribute, ol element 112
Rework framework 578
RGBa color model 309
RGB color model

about 303, 306
color property and 280–281, 307–309
color selector form control and 201
hexadecimal values 308–309
image formats and 646, 651, 675
specifying RGB values 307–308

Rhöse, Niklas 161
Rich, Melissa 5, 500
rich-text documents 52, 102
Riethmuller, Michael 504
right property 406–407, 418, 521
rights-managed images 642–643
Rizzo, Davide 507
rm command 571
Rodney, Dan 689
Roelof, Greg 679
roles 4–14, 102–104, 205, 718
root directory 122, 133, 569

R
radialGradient element 708
radial-gradient() function 343–344, 662
radio buttons 192–194, 203, 210, 212, 548
Raggett, David 759
Ragusa, Davide 161
range input control 213
raster images. See bitmapped images
Rathi, Baljeet 382
r attribute, circle element 141
RDFa standard 103
reader (user) style sheets 249
readonly attribute

input element types 187, 212–213
textarea element 211

:read-only selector 757
:read-write selector 757
ready event 635
Really Simple Syndication (RSS) 706
rect element (SVG) 139, 705, 708–709
reference pixels 147–148, 659–660
registered trademark (®) 108
registering domain names 33
Reimann, Robert 8
relative flex 441
relative pathnames 114, 116–126
relative positioning 405, 407–408, 409
relative unit values 253–256, 269–272
relative URLs

about 114, 116–123
importing style sheets 350
linking to images 135

rel attribute
a element 103
link element 350, 666

remote repositories (Git) 586
removeChild() method 629–630
rem (root em) unit 253–254, 269–271
rendering engines 24, 30–31
Rendle, Robin 280
repeat() function 455, 457–458
repeating-linear-gradient() function 345
repeating-radial-gradient() function 345
replaceChild() method 629
replaced elements 135–136, 379
repositories (Git) 582–583, 586
required attribute

input element types 198, 212–213
select element 211
textarea element 211

:required selector 758
reset buttons 182, 190–192, 210, 212, 548
Resig, John 633

Index784

Index

site performance 44–46
site root relative pathname 122, 324–326
Sitnik, Andrey 577
size attribute

input element types 186, 188, 195,
212–213

select element 211
sizes attribute

img element 150–152, 162
source element 154, 162

Sketch interface design tool 16–17, 642,
687–688, 720

skew() function 527–528, 531
skewX() function 531
skewY() function 531
slash (/)

backslash versus 56
in comments 600
for division 601
in tags 56–57, 67
in URLs 25–26, 116, 119–122, 326
XHTML requirements 63

slider ARIA role 102
small caps characters 275–276, 278, 301
small element 89–91, 112
Smashing Magazine 285, 319, 504, 515,

685
SMIL (Synchronized Multimedia

Integration Language) 716
Snap.svg library 717
sockets 765
Soferman, Nadav 685
software, web development 10–12, 15–19
Soueidan, Sara 730
source documents 27–29, 61
source element

audio format options and 225
responsive images 153–156
SVG considerations 144
track element and 226
video format options and 224

spacing
formatting text and 292
Grid Layout Module 472–477

spam-bots and email addresses 127
span attribute

col element 173, 176
colgroup element 173, 176

span element 89, 98–100, 112
spanning cells (tables) 168–169
special characters 107–108, 601, 706
special content, viewports and 506–507
specialized text entry fields 187–189, 210,

212–213

class 284, 316, 323, 755
compound 755
conflicting styles and 249
contextual 281, 283
descendant 281–282, 316, 755
element type 243, 249, 281, 284, 316
grid-structural 758
grouped 252–253, 281, 316
ID 243, 249, 282–284, 316, 636, 755
list of Level 3 and 4 755–758
pseudo-class 316–320, 756–758
pseudo-element 320–322, 758
specificity 249–250
type 755
universal 285, 316, 755

semantic markup 59–61
semicolon (;) 105–106, 243, 245, 599
SEO (Search Engine Optimization) 13,

226
SEO specialists 13
serif fonts 266–267
servers and server-side processing

about 22–23
alternatives to responsive images 159
backend development and 12
handling image formats 132–133
HTTP status codes 32
index files and 26
site performance and 44
site root relative pathnames and 122

Service Workers API 765
Session History API 765
sessionStorage property 765
setAttribute() method 626
setTimeout() function 609
SGML (Standardized Generalized

Markup Language) 760
SHA-1 hash 583
shape-image-threshold property 400, 418
shape-margin property 400, 418
shape-outside property 399, 418
Sharp, Remy 82, 572, 630–631, 762
Shea, David 240
shell (visual interface) 568
Shepherd, Eric 224
shims. See polyfills (shims)
sibling elements 247
sidebars 86
sight impairment 42
Simmons, Jen 403, 448–449, 478, 765
simple attribute selector 323, 756
Simple Things 515
SiteBuilder website 4
site name (URLs) 24–26

document outlines and 72
SVG considerations 718

screen resolution 147–149, 658–660
Screen Sizes website 497
script element 597–598, 635, 715
scripts and scripting. See also JavaScript

anatomy of scripts 598–612
arrays 603
case sensitivity 599
comments 599–600
comparison operators 603–604
custom form widgets 205
data types 601–602
embedded scripts 597
external scripts 597
forms and 180
functions 608–611
government accessibility requirements

43
if/else statements 604–606
loops 606–608
mathematical operators 604
script placement 598
site performance and 44
statements 599
variables 600–603
variable scope 611–612
var keyword 611–612
XML requirements 706

scrolling mechanisms
for background images 335
element box 360–361
for menus 195–196

SCSS (Sassy CSS) 573, 578
Search Engine Optimization (SEO) 13,

226
search field input control 188, 213, 548
section element 82, 84–87, 112
Secure Socket Layer (SSL) 26
security

Cross-Origin Resource Sharing 400
HTTPS and 25–26, 181
index files and 26–27
visited links and 317

selected attribute, option element 196,
210

select element 195, 205, 211, 549
Selectivizr polyfill 320, 631–632
selector engine (jQuery) 635–636
selectors

about 242–243, 281
accessing nodes by 625
attribute 323–324, 755–756
child 283, 316, 755

Index 785

Index

SVG (Scalar Vector Graphics)
about 132, 139–140, 645, 703–706, 713
accessibility 718
adding styles to 713–714
adding to web pages 139–145, 714
animation and 140, 541, 716–717
as background image 143
browser support 705
clipping and masking 709–711
coordinates in 708, 725
data visualization 717–718
elements and attributes 705
embedded bitmap images 709–710
embedding with img element 140–141
embedding with object element

142–143
features as XML 713–719
filtering effects 711–712
history of 705
image asset strategies for 663
inline in HTML documents 141–142
interactivity with JavaScript 715–716
JavaScript support 140, 715–718
optimization 723–724
Photoshop support 672
responsive 724–731
reuse and recycle feature 712–713
standalone SVGs 140–141
tool support for 718–721

SVN version control 582
symbol element (SVG) 705, 712
Synchronized Multimedia Integration

Language (SMIL) 716
syntax

for attributes 63–64
for elements 55
HTML syntax characters 106
XML requirements 706

system fonts 277

T
tabindex global attribute 101, 754
table element

about 165–166, 176
elements supported within 166

table-layout property 553
tables

about 163–165
accessibility 169–171
collapsed borders 552–553
column group elements 171–173
creating 167, 174
display values for 553

stroke-width attribute 713–714
strong element 88–91, 112, 275
structured data 103
structure (structural layer)

about 11, 31, 242
HTML. See HTML
HTML5. See HTML5
HTML documents. See HTML docu-

ments
inheritance and 246–247
inline styles and 245
JavaScript and 595
semantic markup and 59

style element
about 244, 348
embedding style sheets in documents

245
formatting menus 268–269
SVG considerations 140, 143

style global attribute 101, 245, 348, 754
Stylelint plug-in 577
style property 626–627
style rules. See also rules

assigning importance to 250
components of 242–244
handling conflicting styles (cascade)

249–251
hierarchy of 249–251
priority of 249
rule order 250–251
specificity of 249–250, 284–285

style sheets. See CSS
style tiles 9
Stylus preprocessor 346, 572–573, 576
subdomains 25
Sublime Text editor 15–16
submit buttons 182, 190, 210, 212, 548
subscript characters 89, 93, 278
subsequent-sibling selector 283, 755
sub (subscript) element 89, 93
SumoPaint editor 17
superscript characters 89, 93, 278
@supports rule 399, 560–562
sup (superscript) element 89, 93
SVG-Edit editor 720
svg element

adding SVG to pages 141–142, 714
height attribute 707, 724–726
preserveAspectRatio attribute 726–727
viewBox attribute 708, 725–726
width attribute 707, 724–726
xmlns attribute 707

SVG.js library 717
SVGO program 723

specificity (style rules) 249–250, 285–
286

speech media type 492
spellcheck global attribute 101, 754
sprites 557–559, 712, 731
Squarespace website 4
src attribute

audio element 225, 234
embed element 218, 234
iframe element 216, 234
img element 63–65, 123, 134–135, 149,

162
input element types 212–213
script element 597
source element 162, 235
track element 226, 235
video element 222, 235

srcdoc attribute, iframe element 234
srclang attribute, track element 235
srcset attribute

img element 148–150, 152, 162
source element 154, 162

sRGB encoding 306, 672
SSL (Secure Socket Layer) 26
s (strike-through) element 89–91, 112
stack of commits (Git) 584
Stack Overflow forum 318
staging files (Git) 584
standalone SVG 140–141
Standardized Generalized Markup

Language (SGML) 760
standards compliance 38
start attribute, ol element 112
start tags 56
statements (JavaScript) 599, 604–606
states, ARIA specification on 104
static positioning 405
static websites 32
status property, window object 613
step attribute, input element types 201,

212–213
sticky positioning 406
Stint web font 364
stock photography and illustrations

642–643
Storey, Dudley 731
storyboards 8–9
Straub, Ben 587
strike element 89
string data type 602
stroke() function 232
strokeRect() function 230–231
strokeStyle attribute (Canvas API) 230,

232

Index786

Index

Tidwell, Jenifer 8
TIFF format 132, 645, 647, 699
tilde (~) 569
tiling background images 326–327
time (and date) controls 198–200, 210,

213
time element 84, 89, 94–95, 112
timing (easing) function 520
TinyPNG tool 695, 699
title element 56–59, 70
title global attribute 101, 754
Toland, Patty 39
top property 406–407, 418, 521
Torvalds, Linus 581
touch devices

designing for fingers 506
hover effects and 318

track element 225–226, 235
trademark (™) 108
transform-origin property 521, 529, 545
transform property 521, 527–532, 545
transforms

about 527–528
browser support 528
CSS properties 521, 545
producing smooth 532
skewing 531
3-D 534–536
transforming angles 528–529
transforming position 529–530
transforming size 530

transform-style property 545
transition-delay property 518, 523, 545
transition-duration property 518–519,

524, 545
transition property 523–524, 545
transition-property property 518–519,

525, 545
transitions

about 517–519
applying multiple transitions 523–525
applying values to all 525
browser support 518
properties listed 545
setting delays 523
setting time to complete 519–520
shorthand property 523
specifying the property 519
timing functions 520–522

transition-timing-function property 518,
520–522, 545

translate3d() function 536
translate() function 527–532
translate global attribute 101, 754

text element (SVG) 705, 708
text-entry controls

about 184, 548
attributes available for each input type

210–212
multiline text entry fields 184, 186–187,

211
single-line text entry field 184–186
specialized text entry fields 187–189,

210, 212–213
text-indent property 288–289, 302, 520,

557
text-justify property 294, 302
text-level semantic elements. See inline

elements
text markup

character escapes 105–108
figures 78, 80–81
frontend development 10–11
generic elements 98–102
government accessibility requirements

43
by hand 50
headings 72–74
HTML5 component 763
improving accessibility with ARIA

102–105
inline elements 61, 72, 88–98
list of text elements 112
lists 74–78
long quotations 64, 78–79
organizing page content 82–87
paragraphs 71–72
preformatted text 78–80
semantic markup 59–61
short quotations 92
site performance and 44
thematic breaks 62, 74
unrecognized by browsers 55
XHTML requirements 56, 761

text nodes 622, 627–630
text-shadow property 293–294, 302, 520
text-transform property 291, 302,

320–321
text wrap shapes 399–405
tfoot element 166, 172, 176
Thain, Toby 655
thead element 166, 172, 176
thematic breaks (horizontal rule) 62, 74
The Noun Project 644
Theora video codec 220
third-party testing services 514
3-D transforms 534–536
th (table header) element 165–167

elements listed 176
headers 167, 170–171
minimal structure 165–167
responsive 507
row group elements 171–172
separated borders 551–552
spanning cells 168–169
style considerations 166, 551–553

Tablesaw plug-ins 507
tabs, browsers ignoring 55
tab-size property 294, 302
tags (HTML)

about 27, 56–57
in HTML documents 27–30, 69
slash in 56–57, 67

target attribute
a element 127, 130
form element 209

target/context=result (formula) 271–272,
489

:target selector 320, 756
:target-within selector 756
task runners 346, 577–579, 699
tasks 578–579
tbody element 166, 172, 176
td (table data) element 165–166, 176
tel: protocol 128
tel (telephone number) input control

188, 213, 548
template-generated site 580
Terminal command-line tool 19, 568
testing

on browsers 18
building device labs 512–513
emulator considerations 513
on mobile devices 15
pages for color-blind-friendly design

314
RWD considerations 512–514
site root relative URLs 326
third-party services 514

text
changing text color 280–281
formatting. See formatting text
marking up. See text markup
quotations in 78–79, 92
SVG considerations 140

text-align-last property 294, 302
text-align property 289–290, 294, 302
textarea element 184, 187–188, 211, 548
text-decoration property 290–291, 302,

317, 320–321
TextEdit editor (macOS) 50, 52
text editors 15, 50–52, 719

Index 787

Index

:valid selector 758
value attribute

button element 209
data element 95
input element types 185, 188, 195, 199,

212–213
li element 112
meter element 210
option element 210
param element 235
progress element 211

values
absolute units 253–254, 269
for attributes 64
Boolean 602, 605
for colors 303–311
CSS declarations 242, 243
functions returning 610–611
for properties 244
relative units 253–256, 269–272, 288
variables for 574–575

variable fonts 503
variables

about 182
JavaScript-related 600–603, 606–607
LESS-supported 576
naming form variables 182–183
as program code elements 93
Sass-supported 574–576
scope of 611–612
var keyword 611–612

variable-width images (responsive imag-
es) 150–152

var keyword 611–612
var (variable) element 89, 93
vector illustration tools 718–720
vector images 132, 140, 645, 657, 689–690
Velocity library 717
vendor prefixes 345–347, 382, 575
Verou, Lea 348
version control 581–587
vertical-align property 294, 302, 320–321,

422, 520
vh (viewport height) unit 253, 255–256,

504
video element

about 219, 223
adding video to pages 222–224
attributes listed 223, 235
browser support 219
Media Player API 224, 764
WebVTT and 227

video formats 220
VideoSWS website 224

underlines 290–291
underscore (_) 54, 569, 601
unicode-bidi property 294, 302
Unicode (Universal Character Set)

57–58, 97, 108
Uniform Resource Identifiers (URIs) 25
Uniform Resource Locators. See URLs
Uniform Resource Names (URNs) 25
units of measurement

about 253
absolute units 253–254, 269, 272
relative units 253–256, 269–272, 288

Universal Character Set (Unicode)
57–58

universal selectors 285, 316, 755
Unix environment

directory names 25
extended color names 304
file management and transfer tools 19
pathname conventions 120–122
server software and 22
VM produccts 15

unordered lists 74–77, 205, 433
Unsplash website 643
update-frequency media feature 493
URIs (Uniform Resource Identifiers) 25
url() function 321, 351, 399–400, 714
url (location) input control 188, 213
URLs (Uniform Resource Locators)

absolute 24–25, 114–115, 135, 351
parts of 24–25, 114
recommendations for copying 114
relative 114, 116–126, 135, 350
URIs versus 25

URNs (Uniform Resource Names) 25
use element (SVG) 705, 712
usemap attribute, img element 162
user agents 23, 172. See also browsers
user agent style sheets 62, 249, 554–555
User-Centered Design (UCD) 6
user coordinate system 725
user directory 569, 571
User Experience (UX) design 6–9
User Interface (UI) design 6–9, 16–17
user (reader) style sheets 249
user space 725
u (underline) element 89–91, 112
UX (User Experience) design 6–9

V
validating

forms 190
HTML documents 68–69, 763

translateX() function 529–530
translateY() function 529–530
translateZ() function 536
transparency

alpha 651, 676, 678–679, 694
binary 676–678
HSLa color model 311
image formats 647, 650–651, 653,

678–680, 710
linear gradients and 341
RGBa color model 309
wrapped text and 400

traversing the DOM 623
Trident rendering engine 24
Trimage tool 699
troubleshooting

Git conflicts 585
image element 68
relative pathnames 116, 129
web page problems 67–68

tr (table row) element 165–166, 176
Truecolor specification 306, 646, 651
TrueType (TTF) format 264
true value 602, 605
tt element 89
TTF (TrueType) format 264
Tuck, Michael 267
tweening 518
type attribute

button element 209
embed element 218, 234
input element 184, 189–190, 210,

212–213
object element 218, 234
picture element 155
source element 162, 224, 235

Typekit service (Adobe) 265, 280
typemustmatch attribute, object element

235
type selectors 755
typography

CSS3 support 277–280
in responsive layouts 499, 502–504

Typotheque service 265

U
UCD (User-Centered Design) 6
Uggedal, Eivind 515
UI (User Interface) design 6–9, 16–17
Ultimate CSS Gradient Generator

347–348
ul (unordered list) element 75, 112, 115
undefined data type 601–602

Index788

Index

color-blind-friendly design 314
content for. See content for web pages
creating simple 49–70
embedded media and 215–232
government accessibility requirements

43
HTML overview 49
identifying text elements 59–62
links to 115–127
organizing content for 82–87
page load times 44
structuring HTML documents 55–59
troubleshooting problems 67–68
validating documents 68–69
viewing source 29
visual presentation 9–10
web fonts for 264–265

WebPageTest tool 46
web palette 307
WebP format 132, 645, 654–657, 676
websites

building with data and templates 580
linking within 116–126
website creation roles 4–14
website diagrams 7
website name in URLs 24–26
website performance 44–46

Web Sockets API 765
Web Standards Project (WaSP) 760
Web Storage API 765
WebVTT (Web Video Text Tracks) for-

mat 227
Weebly website 4
weight

of style rules 249–251
of variable fonts 503

Weinschenk, Susan 9
Weizenbaum, Nathan 573
Wennington, Jay 161
Weyl, Estelle

on animations 537
on CSS 258, 448
on em unit 255
on gradients 343
on specificity 285
on transitions 537

WHATWG (Web Hypertext Application
Technology Working Group) 103,
762

whitespace 55, 243, 450, 599
white-space property

about 294, 302
nowrap value 100
pre value 79

WAI (Web Accessibility Initiative) 42–43,
102

Walkway library 717
Walsh, David 229
Walton, Philip 447
Warren, Samantha 9
WaSP (Web Standards Project) 760
waterfall charts 45–46
Waterhouse, Tom 538
WAV format 221
wbr (word break) element 89, 97, 112
WCAG (Web Content Accessibility

Guidelines) 42, 137
w-descriptor 150–152
Web Accessibility Initiative (WAI) 42–43
WebAIM website 43, 137, 171
web application languages 12
web browsers. See browsers
Web Content Accessibility Guidelines

(WCAG) 42, 137
web design and development. See

also Responsive Web Design
accessibility considerations 42–45
concepts to know 35–46
equipment considerations 14–15
how the web works 21–34
modern web development tools 567–

590
web production software 10–12, 15–19
website creation roles 4–14

web fonts
about 264–265
Google Web Fonts service 265, 268,

364
typography considerations 503

web forms. See forms
web (HTTP) servers 22
Web Hypertext Application Technology

Working Group (WHATWG) 103,
762

web images. See images
Web Inspector 376
WebKit rendering engine 24
webkit vendor prefix 346
WebM container 220–221
Web Open Font Format 1 and 2 (WOFF/

WOFF2) 264
web pages

adding images 62–65, 131–162
adding JavaScript to 597–598
adding SVG to 144–145, 714
adding video to 222–224
anatomy of 27–33
changing look with style sheets 66–67

viewBox attribute, svg element 708,
725–726

viewboxes 725–726
viewport coordinate system (SVG) 708,

725
viewport height (vh) unit 253, 255–256,

504
viewports

about 40, 150, 487
browser display tools 498
fluid typography 504
positioning basics 405–409
responsive images 685
selection based on 150
setting 487–488
SVG-based 724–725
variable-width images and 150–152

viewport width (vw) unit 151, 253,
255–256, 504

View Source function 29
Virtuosoft website 347
visibility property 520
visible element box 357
vision impairment 42
:visited selector 316–320, 756
visual (graphic) design 9–10, 17–18
Visual Studio 16, 244
Vivus library 717
vmax (viewport max) unit 253, 256, 504
VMFusion VM product 15
vmin (viewport min) unit 253, 256, 504
vocabulary 103
Vorbis audio codec 220–221
VP8 video codec 220
vw (viewport width) unit 151, 253,

255–256, 504

W
W3C (World Wide Web Consortium)

API development 219
CSS specifications 258
DOM standard 630
history of 11, 22, 760–761
HTML5 Canvas 2D Context specifica-

tion 232
HTML5 Working Group 762
internationalization efforts 97
SVG history 705
web standards 38, 71, 83
WebVTT specification 227

Wachs, Maggie Costello 39
WAI-ARIA (Accessible Rich Internet

Applications) 43–44, 102, 105

Index 789

Index

history of 760–761
serialization of HTML5 763
syntax requirements 706

XMLHttpRequest method 633
xmlns attribute, svg element 707
XSLT (eXtensible Stylesheet Language

Transformations) 717–718

Y
Yahoo! YSlow tool 46
YAML language 580
y-axis 536
yen (¥) 108
YSlow tool (Yahoo!) 46

Z
z-axis 414, 536
Zea, Ricardo 319
Zeldman, Jeffrey 38, 259
zero-width joiner 107
zero-width non-joiner 107
zero-width space 107
z-index property

about 418, 478, 484, 521
stacking order and 414–415, 469

ZURB Studios 507

Wix website 4
WOFF/ WOFF2 (Web Open Font

Format 1 and 2) 264
Wolf, Zach 556
word-break property 294, 302
Wordpress website 4
word-spacing property 292, 302, 320–

321, 520
word-wrap property 302
working directory 570, 583
World Wide Web Consortium. See W3C
wrap attribute, textarea element 186, 211
wrapped text 399–405
Wroblewski, Luke 37, 206, 501–502

X
X11 color names 304
x-axis 536
XCF format 673
x-descriptor 147–149
XHTML (eXtensible HTML)

about 706
history of 760–761
markup requirements 56, 63, 761
script element and 597

XML (eXtensible Markup Language)
about 706
CDATA section 597, 706, 715, 761
DOM support 621

widgets 205
width attribute

canvas element 229, 234
embed element 234
iframe element 216, 234
img element 137, 162, 490
input element types 212–213
object element 235
svg element 707, 724–726
video element 223, 235

width media feature 493
width property 356–357, 386, 391–393,

520
Wikimedia Commons 643
Wilde, Erik 764
window object, properties and methods

612–613
Windows environment

color palettes 650
command-line tool 568–571
creating HTML documents 51
file organization 116
font considerations 267
Git/GitHub tools 588
image editors 672, 719
media queries in 495
server software and 22
web development and 14–15
web palette and 307

wireframe diagrams 6–7

Index790

Index

	CONTENTS
	FOREWORD
	PREFACE
	PART I: GETTING STARTED
	CHAPTER 1: GETTING STARTED IN WEB DESIGN
	WHERE DO I START?
	IT TAKES A VILLAGE (WEBSITE CREATION ROL
	GEARING UP FOR WEB DESIGN
	WHAT YOU’VE LEARNED
	TEST YOURSELF

	CHAPTER 2: HOW THE WEB WORKS
	THE INTERNET VERSUS THE WEB
	SERVING UP YOUR INFORMATION
	A WORD ABOUT BROWSERS
	WEB PAGE ADDRESSES (URLS)
	THE ANATOMY OF A WEB PAGE
	PUTTING IT ALL TOGETHER
	TEST YOURSELF

	CHAPTER 3: SOME BIG CONCEPTS YOU NEED TO KNOW
	A MULTITUDE OF DEVICES
	STICKING WITH THE STANDARDS
	PROGRESSIVE ENHANCEMENT
	RESPONSIVE WEB DESIGN
	ONE WEB FOR ALL (ACCESSIBILITY)
	THE NEED FOR SPEED (SITE PERFORMANCE)
	TEST YOURSELF

	PART II: HTML FOR STRUCTURE
	CHAPTER 4: CREATING A SIMPLE PAGE
	A WEB PAGE, STEP-BY-STEP
	LAUNCH A TEXT EDITOR
	STEP 1: START WITH CONTENT
	STEP 2: GIVE THE HTML DOCUMENT STRUCTURE
	STEP 3: IDENTIFY TEXT ELEMENTS
	STEP 4: ADD AN IMAGE
	STEP 5: CHANGE THE LOOK WITH A STYLE SHE
	WHEN GOOD PAGES GO BAD
	VALIDATING YOUR DOCUMENTS
	TEST YOURSELF
	ELEMENT REVIEW: HTML DOCUMENT SETUP

	CHAPTER 5: MARKING UP TEXT
	PARAGRAPHS
	HEADINGS
	THEMATIC BREAKS (HORIZONTAL RULE)
	LISTS
	MORE CONTENT ELEMENTS
	ORGANIZING PAGE CONTENT
	THE INLINE ELEMENT ROUNDUP
	GENERIC ELEMENTS (DIV AND SPAN)
	IMPROVING ACCESSIBILITY WITH ARIA
	CHARACTER ESCAPES
	PUTTING IT ALL TOGETHER
	TEST YOURSELF
	ELEMENT REVIEW: TEXT ELEMENTS

	CHAPTER 6: ADDING LINKS
	THE HREF ATTRIBUTE
	LINKING TO PAGES ON THE WEB
	LINKING WITHIN YOUR OWN SITE
	TARGETING A NEW BROWSER WINDOW
	MAIL LINKS
	TELEPHONE LINKS
	TEST YOURSELF
	ELEMENT REVIEW: LINKS

	CHAPTER 7: ADDING IMAGES
	FIRST, A WORD ON IMAGE FORMATS
	THE IMG ELEMENT
	ADDING SVG IMAGES
	RESPONSIVE IMAGE MARKUP
	WHEW! WE’RE FINISHED
	TEST YOURSELF
	ELEMENT REVIEW: IMAGES

	CHAPTER 8: TABLE MARKUP
	HOW TO USE TABLES
	MINIMAL TABLE STRUCTURE
	TABLE HEADERS
	SPANNING CELLS
	TABLE ACCESSIBILITY
	ROW AND COLUMN GROUPS
	WRAPPING UP TABLES
	TEST YOURSELF
	ELEMENT REVIEW: TABLES

	CHAPTER 9: FORMS
	HOW FORMS WORK
	THE FORM ELEMENT
	VARIABLES AND CONTENT
	THE GREAT FORM CONTROL ROUNDUP
	FORM ACCESSIBILITY FEATURES
	FORM LAYOUT AND DESIGN
	TEST YOURSELF
	ELEMENT REVIEW: FORMS

	CHAPTER 10: EMBEDDED MEDIA
	WINDOW-IN-A-WINDOW (IFRAME)
	MULTIPURPOSE EMBEDDER (OBJECT)
	VIDEO AND AUDIO
	CANVAS
	TEST YOURSELF
	ELEMENT REVIEW: EMBEDDED MEDIA

	PART III: CSS FOR PRESENTATION
	CHAPTER 11: INTRODUCING CASCADING STYLE SHEETS
	THE BENEFITS OF CSS
	HOW STYLE SHEETS WORK
	THE BIG CONCEPTS
	CSS UNITS OF MEASUREMENT
	DEVELOPER TOOLS RIGHT IN YOUR BROWSER
	MOVING FORWARD WITH CSS
	TEST YOURSELF

	CHAPTER 12: FORMATTING TEXT
	BASIC FONT PROPERTIES
	ADVANCED TYPOGRAPHY WITH CSS3
	CHANGING TEXT COLOR
	A FEW MORE SELECTOR TYPES
	TEXT LINE ADJUSTMENTS
	UNDERLINES AND OTHER “DECORATIONS”
	CHANGING CAPITALIZATION
	SPACED OUT
	TEXT SHADOW
	CHANGING LIST BULLETS AND NUMBERS
	TEST YOURSELF
	CSS REVIEW: FONT AND TEXT PROPERTIES

	CHAPTER 13: COLORS AND BACKGROUNDS
	SPECIFYING COLOR VALUES
	FOREGROUND COLOR
	BACKGROUND COLOR
	CLIPPING THE BACKGROUND
	PLAYING WITH OPACITY
	PSEUDO-CLASS SELECTORS
	PSEUDO-ELEMENT SELECTORS
	ATTRIBUTE SELECTORS
	BACKGROUND IMAGES
	THE SHORTHAND BACKGROUND PROPERTY
	LIKE A RAINBOW (GRADIENTS)
	FINALLY, EXTERNAL STYLE SHEETS
	WRAPPING IT UP
	TEST YOURSELF
	CSS REVIEW: COLOR AND BACKGROUND PROPERT

	CHAPTER 14: THINKING INSIDE THE BOX
	THE ELEMENT BOX
	SPECIFYING BOX DIMENSIONS
	PADDING
	BORDERS
	MARGINS
	ASSIGNING DISPLAY TYPES
	BOX DROP SHADOWS
	TEST YOURSELF
	CSS REVIEW: BOX PROPERTIES

	CHAPTER 15: FLOATING AND POSITIONING
	NORMAL FLOW
	FLOATING
	FANCY TEXT WRAP WITH CSS SHAPES
	POSITIONING BASICS
	RELATIVE POSITIONING
	ABSOLUTE POSITIONING
	FIXED POSITIONING
	TEST YOURSELF
	CSS REVIEW: FLOATING AND POSITIONING PRO

	CHAPTER 16: CSS LAYOUT WITH FLEXBOX AND GRID
	FLEXIBLE BOXES WITH CSS FLEXBOX
	CSS GRID LAYOUT
	TEST YOURSELF
	CSS REVIEW: LAYOUT PROPERTIES

	CHAPTER 17: RESPONSIVE WEB DESIGN
	WHY RWD?
	THE RESPONSIVE RECIPE
	CHOOSING BREAKPOINTS
	DESIGNING RESPONSIVELY
	A FEW WORDS ABOUT TESTING
	MORE RWD RESOURCES
	TEST YOURSELF

	CHAPTER 18: TRANSITIONS, TRANSFORMS, AND ANIMATION
	EASE-Y DOES IT (CSS TRANSITIONS)
	CSS TRANSFORMS
	KEYFRAME ANIMATION
	WRAPPING UP
	TEST YOURSELF
	CSS REVIEW: TRANSITIONS, TRANSFORMS, AND

	CHAPTER 19: MORE CSS TECHNIQUES
	STYLING FORMS
	STYLING TABLES
	A CLEAN SLATE (RESET AND NORMALIZE.CSS)
	IMAGE REPLACEMENT TECHNIQUES
	CSS SPRITES
	CSS FEATURE DETECTION
	WRAPPING UP STYLE SHEETS
	TEST YOURSELF
	CSS REVIEW: TABLE PROPERTIES

	CHAPTER 20: MODERN WEB DEVELOPMENT TOOLS
	GETTING COZY WITH THE COMMAND LINE
	CSS POWER TOOLS (PROCESSORS)
	BUILD TOOLS (GRUNT AND GULP)
	VERSION CONTROL WITH GIT AND GITHUB
	CONCLUSION
	TEST YOURSELF

	PART IV: JAVASCRIPT FOR BEHAVIOR
	CHAPTER 21: INTRODUCTION TO JAVASCRIPT
	WHAT IS JAVASCRIPT?
	ADDING JAVASCRIPT TO A PAGE
	THE ANATOMY OF A SCRIPT
	THE BROWSER OBJECT
	EVENTS
	PUTTING IT ALL TOGETHER
	LEARNING MORE ABOUT JAVASCRIPT
	TEST YOURSELF

	CHAPTER 22: USING JAVASCRIPT
	MEET THE DOM
	POLYFILLS
	JAVASCRIPT LIBRARIES
	BIG FINISH
	TEST YOURSELF

	PART V: WEB IMAGES
	CHAPTER 23: WEB IMAGE BASICS
	IMAGE SOURCES
	MEET THE FORMATS
	IMAGE SIZE AND RESOLUTION
	IMAGE ASSET STRATEGY
	FAVICONS
	SUMMING UP IMAGES
	TEST YOURSELF

	CHAPTER 24: IMAGE ASSET PRODUCTION
	SAVING IMAGES IN WEB FORMATS
	WORKING WITH TRANSPARENCY
	RESPONSIVE IMAGE PRODUCTION TIPS
	IMAGE OPTIMIZATION
	TEST YOURSELF

	CHAPTER 25: SVG
	DRAWING WITH XML
	FEATURES OF SVG AS XML
	SVG TOOLS
	SVG PRODUCTION TIPS
	RESPONSIVE SVGS
	FURTHER SVG EXPLORATION
	TEST YOURSELF
	AND...WE’RE DONE!

	PART VI: APPENDICES
	APPENDIX A: ANSWERS
	APPENDIX B: HTML5 GLOBAL ATTRIBUTES
	APPENDIX C: CSS SELECTORS, LEVELS 3 AND 4
	APPENDIX D: FROM HTML+ TO HTML5

	INDEX

