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by Chris Jesshope
Professor (emeritus) University of Amsterdam
Author of Parallel Computers (with R W Hockney), 1981 & 1988

Having been active in computer organization and architecture for many years, it is a pleas-
ure to write this foreword for the new edition of William Stallings’ comprehensive book on 
this subject. In doing this, I found myself reflecting on the trends and changes in this subject 
over the time that I have been involved in it. I myself became interested in computer archi-
tecture at a time of significant innovation and disruption. That disruption was brought about 
not only through advances in technology but perhaps more significantly through access to 
that technology. VLSI was here and VLSI design was available to students in the classroom. 
These were exciting times. The ability to integrate a mainframe style computer on a single 
silicon chip was a milestone, but that this was accomplished by an academic research team 
made the achievement quite unique. This period was characterized by innovation and diver-
sity in computer architecture with one of the main trends being in the area of parallelism. 
In the 1970s, I had  hands-  on experience of the Illiac IV, which was an early example of 
explicit parallelism in computer architecture and which incidentally pioneered all semicon-
ductor memory. This interaction, and it certainly was that,  kick-  started my own interest in 
computer architecture and organization, with particular emphasis on explicit parallelism in 
computer architecture.

Throughout the 1980s and early 1990s research flourished in this field and there was a 
great deal of innovation, much of which came to market through university  start-  ups. Iron-
ically however, it was the same technology that reversed this trend. Diversity was gradually 
replaced with a near monoculture in computer systems with advances in just a few instruc-
tion set architectures. Moore’s law, a  self-  fulfilling prediction that became an industry guide-
line, meant that basic device speeds and integration densities both grew exponentially, with 
the latter doubling every 18 months of so. The speed increase was the proverbial free lunch 
for computer architects and the integration levels allowed more complexity and innovation 
at the  micro-  architecture level. The free lunch of course did have a cost, that being the expo-
nential growth of capital investment required to fulfill Moore’s law, which once again limited 
the access to  state-  of-  the-  art technologies. Moreover, most users found it easier to wait for 
the next generation of mainstream processor than to invest in the innovations in parallel 
computers, with their pitfalls and difficulties. The exceptions to this were the few large insti-
tutions requiring ultimate performance; two topical examples being  large-  scale scientific 
simulation such as climate modeling and also in our security services for code breaking. For 
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everyone else, the name of the game was compatibility and two instruction set architectures 
that benefited from this were x86 and ARM, the latter in embedded systems and the former 
in just about everything else. Parallelism was still there in the implementation of these ISAs, 
it was just that it was implicit, harnessed by the architecture not in the instruction stream 
that drives it.

Throughout the late 1990s and early 2000s, this approach to implicitly exploiting con-
currency in  single-  core computer systems flourished. However, in spite of the exponential 
growth of logic density, it was the cost of the techniques exploited which brought this era to 
a close. In superscalar processors, the logic costs do not grow linearly with issue width (par-
allelism), while some components grow as the square or even the cube of the issue width. 
Although the exponential growth in logic could sustain this continued development, there 
were two major pitfalls: it was increasingly difficult to expose concurrency implicitly from 
imperative programs and hence efficiencies in the use of instruction issue slots decreased. 
Perhaps more importantly, technology was experiencing a new barrier to performance 
gains, namely that of power dissipation, and several superscalar developments were halted 
because the silicon in them would have been too hot. These constraints have mandated the 
exploitation of explicit parallelism, despite the compatibility challenges. So it seems that 
again innovation and diversity are opening up this area to new research.

Perhaps not since the 1980s has it been so interesting to study in this field. That diver-
sity is an economic reality can be seen by the decrease in issue width (implicit parallelism) 
and increase in the number of cores (explicit parallelism) in mainstream processors. How-
ever, the question is how to exploit this, both at the application and the system level. There 
are significant challenges here still to be solved. Superscalar processors rely on the processor 
to extract parallelism from a single instruction stream. What if we shifted the emphasis and 
provided an instruction stream with maximum parallelism, how can we exploit this in dif-
ferent configurations and/or generations of processors that require different levels of expli-
cit parallelism? Is it possible therefore to have a  micro-  architecture that sequentializes and 
schedules this maximum concurrency captured in the ISA to match the current configur-
ation of cores so that we gain the same compatibility in a world of explicit parallelism? Does 
this require operating systems in silicon for efficiency?

These are just some of the questions facing us today. To answer these questions and 
more requires a sound foundation in computer organization and architecture, and this book 
by William Stallings provides a very timely and comprehensive foundation. It gives a com-
plete introduction to the basics required, tackling what can be quite complex topics with 
apparent simplicity. Moreover, it deals with the more recent developments in this field, 
where innovation has in the past, and is, currently taking place. Examples are in superscalar 
issue and in explicitly parallel multicores. What is more, this latest edition includes two very 
recent topics in the design and use of GPUs for  general-  purpose use and the latest trends in 
cloud computing, both of which have become mainstream only recently. The book makes 
good use of examples throughout to highlight the theoretical issues covered, and most of 
these examples are drawn from developments in the two most widely used ISAs, namely the 
x86 and ARM. To reiterate, this book is complete and is a pleasure to read and hopefully 
will  kick-  start more young researchers down the same path that I have enjoyed over the last 
40 years!
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WHAT’S NEW IN THE TENTH EDITION 

Since the ninth edition of this book was published, the field has seen continued innovations 
and improvements. In this new edition, I try to capture these changes while maintaining a 
broad and comprehensive coverage of the entire field. To begin this process of revision, the 
ninth edition of this book was extensively reviewed by a number of professors who teach 
the subject and by professionals working in the field. The result is that, in many places, the 
narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and  user-  friendliness, there have been 
substantive changes throughout the book. Roughly the same chapter organization has been 
retained, but much of the material has been revised and new material has been added. The 
most noteworthy changes are as follows:

 ■ GPGPU [ General-  Purpose Computing on Graphics Processing Units (GPUs)]: One 
of the most important new developments in recent years has been the broad adoption 
of GPGPUs to work in coordination with traditional CPUs to handle a wide range of 
 applications involving large arrays of data. A new chapter is devoted to the topic of 
GPGPUs.

 ■ Heterogeneous multicore processors: The latest development in multicore architecture 
is the heterogeneous multicore processor. A new section in the chapter on multicore 
processors surveys the various types of heterogeneous multicore processors.

 ■ Embedded systems: The overview of embedded systems in Chapter 1 has been substan-
tially revised and expanded to reflect the current state of embedded technology.

 ■ Microcontrollers: In terms of numbers, almost all computers now in use are embedded 
microcontrollers. The treatment of embedded systems in Chapter 1 now includes cov-
erage of microcontrollers. The ARM  Cortex-  M3 microcontroller is used as an example 
system throughout the text.

 ■ Cloud computing: New to this edition is a discussion of cloud computing, with an over-
view in Chapter 1 and more detailed treatment in Chapter 17.

 ■ System performance: The coverage of system performance issues has been  
revised, expanded, and reorganized for a clearer and more thorough treatment.  
Chapter 2 is devoted to this topic, and the issue of system performance arises through-
out the book.
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xvi  PreFACe

 ■ Flash memory: The coverage of flash memory has been updated and expanded, and now 
includes a discussion of the technology and organization of flash memory for internal 
memory (Chapter 5) and external memory (Chapter 6).

 ■ Nonvolatile RAM: New to this edition is treatment of three important new nonvolatile 
 solid-  state RAM technologies that occupy different positions in the memory hierarchy: 
 STT-  RAM, PCRAM, and ReRAM.

 ■ Direct cache access (DCA): To meet the protocol processing demands for very high 
speed network connections, Intel and other manufacturers have developed DCA tech-
nologies that provide much greater throughput than traditional direct memory access 
(DMA) approaches. New to this edition, Chapter 7 explores DCA in some detail.

 ■ Intel Core Microarchitecture: As in the previous edition, the Intel x86 family is used as 
a major example system throughout. The treatment has been updated to reflect newer 
Intel systems, especially the Intel Core Microarchitecture, which is used on both PC and 
server products.

 ■ Homework problems: The number of supplemental homework problems, with solu-
tions, available for student practice has been expanded.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013 

The book is intended for both an academic and a professional audience. As a textbook, 
it is intended as a  one-   or  two-  semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. This edition is designed to support the 
recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013). CS2013 
divides all course work into three categories:  Core-  Tier 1 (all topics should be included 
in the curriculum);  Core-  Tier-  2 (all or almost all topics should be included); and Elective 
(desirable to provide breadth and depth). In the Architecture and Organization (AR) area, 
CS2013 includes five  Tier-  2 topics and three Elective topics, each of which has a number of 
subtopics. This text covers all eight topics listed by CS2013. Table P.1 shows the support for 
the AR Knowledge Area provided in this textbook.

Table P.1 Coverage of CS2013 Architecture and Organization (AR) Knowledge Area

IAS Knowledge Units Topics Textbook Coverage

Digital Logic and Digital 
Systems (Tier 2)

 ● Overview and history of computer architecture
 ● Combinational vs. sequential logic/Field program-

mable gate arrays as a fundamental combinational 
sequential logic building block

 ● Multiple representations/layers of interpretation 
(hardware is just another layer)

 ● Physical constraints (gate delays,  fan-  in,  fan-  out, 
energy/power)

—Chapter 1
—Chapter 11

Machine Level Represen-
tation of Data (Tier 2)

 ● Bits, bytes, and words
 ● Numeric data representation and number bases
 ●  Fixed-   and  floating-  point systems
 ● Signed and  twos-  complement representations
 ● Representation of  non-  numeric data (character 

codes, graphical data)

—Chapter 9
—Chapter 10
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IAS Knowledge Units Topics Textbook Coverage

Assembly Level Machine 
Organization (Tier 2)

 ● Basic organization of the von Neumann machine
 ● Control unit; instruction fetch, decode, and execution
 ● Instruction sets and types (data manipulation, 

 control, I/O)
 ● Assembly/machine language programming
 ● Instruction formats
 ● Addressing modes
 ● Subroutine call and return mechanisms ( cross-   

reference PL/Language Translation and Execution)
 ● I/O and interrupts
 ● Shared memory multiprocessors/multicore 

organization
 ● Introduction to SIMD vs. MIMD and the Flynn 

Taxonomy

—Chapter 1
—Chapter 7
—Chapter 12
—Chapter 13
—Chapter 17
—Chapter 18
—Chapter 20
—Chapter 21
—Appendix A

Memory System Organi-
zation and Architecture 
(Tier 2)

 ● Storage systems and their technology
 ● Memory hierarchy: temporal and spatial locality
 ● Main memory organization and operations
 ● Latency, cycle time, bandwidth, and interleaving
 ● Cache memories (address mapping, block size, 

replacement and store policy)
 ● Multiprocessor cache consistency/Using the memory 

system for  inter-  core synchronization/atomic mem-
ory operations

 ● Virtual memory (page table, TLB)
 ● Fault handling and reliability

—Chapter 4
—Chapter 5
—Chapter 6
—Chapter 8
—Chapter 17

Interfacing and Commu-
nication (Tier 2)

 ● I/O fundamentals: handshaking, buffering, pro-
grammed I/O,  interrupt-  driven I/O

 ● Interrupt structures: vectored and prioritized, inter-
rupt acknowledgment

 ● External storage, physical organization, and drives
 ● Buses: bus protocols, arbitration,  direct-  memory 

access (DMA)
 ● RAID architectures

—Chapter 3
—Chapter 6
—Chapter 7

Functional Organization 
(Elective)

 ● Implementation of simple datapaths, including 
instruction pipelining, hazard detection, and 
resolution

 ● Control unit: hardwired realization vs. micropro-
grammed realization

 ● Instruction pipelining
 ● Introduction to  instruction-  level parallelism (ILP)

—Chapter 14
—Chapter 16
—Chapter 20
—Chapter 21

Multiprocessing and 
Alternative Architectures 
(Elective)

 ● Example SIMD and MIMD instruction sets and 
architectures

 ● Interconnection networks
 ● Shared multiprocessor memory systems and memory 

consistency
 ● Multiprocessor cache coherence

—Chapter 12
—Chapter 13
—Chapter 17

Performance Enhance-
ments (Elective)

 ● Superscalar architecture
 ● Branch prediction, Speculative execution,  

 Out-  of-  order execution
 ● Prefetching
 ● Vector processors and GPUs
 ● Hardware support for multithreading
 ● Scalability

—Chapter 15
—Chapter 16
—Chapter 19
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OBJECTIVES 

This book is about the structure and function of computers. Its purpose is to present, as clearly 
and completely as possible, the nature and characteristics of  modern-  day computer systems.

This task is challenging for several reasons. First, there is a tremendous variety of prod-
ucts that can rightly claim the name of computer, from  single-  chip microprocessors costing 
a few dollars to supercomputers costing tens of millions of dollars. Variety is exhibited not 
only in cost but also in size, performance, and application. Second, the rapid pace of change 
that has always characterized computer technology continues with no letup. These changes 
cover all aspects of computer technology, from the underlying integrated circuit technology 
used to construct computer components to the increasing use of parallel organization con-
cepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental 
concepts apply consistently throughout. The application of these concepts depends on the 
current state of the technology and the price/performance objectives of the designer. The 
intent of this book is to provide a thorough discussion of the fundamentals of computer 
organization and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always 
been important to design computer systems to achieve high performance, but never has 
this requirement been stronger or more difficult to satisfy than today. All of the basic per-
formance characteristics of computer systems, including processor speed, memory speed, 
memory capacity, and interconnection data rates, are increasing rapidly. Moreover, they are 
increasing at different rates. This makes it difficult to design a balanced system that maxi-
mizes the performance and utilization of all elements. Thus, computer design increasingly 
becomes a game of changing the structure or function in one area to compensate for a per-
formance mismatch in another area. We will see this game played out in numerous design 
decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components. 
The system is best characterized in terms of  structure—  the way in which components are 
interconnected, and  function—  the operation of the individual components. Furthermore, a 
computer’s organization is hierarchical. Each major component can be further described by 
decomposing it into its major subcomponents and describing their structure and function. 
For clarity and ease of understanding, this hierarchical organization is described in this book 
from the top down:

 ■ Computer system: Major components are processor, memory, I/O.

 ■ Processor: Major components are control unit, registers, ALU, and instruction execu-
tion unit.

 ■ Control unit: Provides control signals for the operation and coordination of all proces-
sor components. Traditionally, a microprogramming implementation has been used, in 
which major components are control memory, microinstruction sequencing logic, and 
registers. More recently, microprogramming has been less prominent but remains an 
important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear 
context. This should minimize the chance that the reader will get lost and should provide 
better motivation than a  bottom-  up approach.
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Throughout the discussion, aspects of the system are viewed from the points of view of 
both architecture (those attributes of a system visible to a machine language programmer) and 
organization (the operational units and their interconnections that realize the architecture).

EXAMPLE SYSTEMS 

This text is intended to acquaint the reader with the design principles and implementation 
issues of contemporary operating systems. Accordingly, a purely conceptual or theoretical 
treatment would be inadequate. To illustrate the concepts and to tie them to  real-  world design 
choices that must be made, two processor families have been chosen as running examples:

 ■ Intel x86 architecture: The x86 architecture is the most widely used for nonembedded com-
puter systems. The x86 is essentially a complex instruction set computer (CISC) with some 
RISC features. Recent members of the x86 family make use of superscalar and multicore 
design principles. The evolution of features in the x86 architecture provides a unique case-
study of the evolution of most of the design principles in computer architecture.

 ■ ARM: The ARM architecture is arguably the most widely used embedded processor, 
used in cell phones, iPods, remote sensor equipment, and many other devices. The ARM 
is essentially a reduced instruction set computer (RISC). Recent members of the ARM 
family make use of superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer 
families. Numerous other systems, both contemporary and historical, provide examples of 
important computer architecture design features.

PLAN OF THE TEXT 

The book is organized into six parts:

 ■ Overview

 ■ The computer system

 ■ Arithmetic and logic

 ■ The central processing unit

 ■ Parallel organization, including multicore
 ■ The control unit

The book includes a number of pedagogic features, including the use of interactive sim-
ulations and numerous figures and tables to clarify the discussion. Each chapter includes a list 
of key words, review questions, homework problems, and suggestions for further reading. The 
book also includes an extensive glossary, a list of frequently used acronyms, and a bibliography.

INSTRUCTOR SUPPORT MATERIALS 

Support materials for instructors are available at the Instructor Resource Center (IRC) for 
this textbook, which can be reached through the publisher’s Web site www.pearsonhighered 
.com/stallings or by clicking on the link labeled “Pearson Resources for Instructors” at this 

http:\\www.pearsonhighered.com/
http:\\www.pearsonhighered.com/
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book’s Companion Web site at WilliamStallings.com/ComputerOrganization. To gain access 
to the IRC, please contact your local Pearson sales representative via pearsonhighered.com/
educator/replocator/requestSalesRep.page or call Pearson Faculty Services at 1-800-526-
0485. The IRC provides the following materials:

 ■ Projects manual: Project resources including documents and portable software, plus 
suggested project assignments for all of the project categories listed subsequently in this 
Preface.

 ■ Solutions manual: Solutions to  end-  of-  chapter Review Questions and Problems.

 ■ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

 ■ PDF files: Copies of all figures and tables from the book.

 ■ Test bank: A  chapter-  by-  chapter set of questions.
 ■ Sample syllabuses: The text contains more material than can be conveniently covered 
in one semester. Accordingly, instructors are provided with several sample syllabuses 
that guide the use of the text within limited time. These samples are based on  real-  world 
experience by professors with the first edition.

The Companion Web site, at WilliamStallings.com/ComputerOrganization (click on 
Instructor Resources link) includes the following:

 ■ Links to Web sites for other courses being taught using this book.
 ■  Sign-  up information for an Internet mailing list for instructors using this book to 
exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES 

For this new edition, a tremendous amount of original supporting material for 
students has been made available online, at two Web locations. The  Companion 
Web Site, at WilliamStallings.com/ComputerOrganization (click on Student 
Resources link), includes a list of relevant links organized by chapter and an 
errata sheet for the book.

Purchasing this textbook new grants the reader six months of access to the Premium 
Content Site, which includes the following materials:

 ■ Online chapters: To limit the size and cost of the book, two chapters of the book are 
provided in PDF format. The chapters are listed in this book’s table of contents.

 ■ Online appendices: There are numerous interesting topics that support material found 
in the text but whose inclusion is not warranted in the printed text. A total of 13 appen-
dices cover these topics for the interested student. The appendices are listed in this 
book’s table of contents.

 ■ Homework problems and solutions: To aid the student in understanding the material, a 
separate set of homework problems with solutions are available. Students can enhance 
their understanding of the material by working out the solutions to these problems and 
then checking their answers.
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To access the Premium Content site, click on the Premium Content link at 
the Companion Web site or at pearsonhighered.com/stallings and enter the stu-
dent access code found on the card in the front of the book.

Finally, I maintain the Computer Science Student Resource Site at 
 WilliamStallings.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES 

For many instructors, an important component of a computer organization and architec-
ture course is a project or set of projects by which the student gets  hands-  on experience to 
reinforce concepts from the text. This book provides an unparalleled degree of support for 
including a projects component in the course. The instructor’s support materials available 
through Prentice Hall not only includes guidance on how to assign and structure the projects 
but also includes a set of user’s manuals for various project types plus specific assignments, 
all written especially for this book. Instructors can assign work in the following areas:

 ■ Interactive simulation assignments: Described subsequently.

 ■ Research projects: A series of research assignments that instruct the student to research 
a particular topic on the Internet and write a report.

 ■ Simulation projects: The IRC provides support for the use of the two simulation pack-
ages: SimpleScalar can be used to explore computer organization and architecture 
design issues. SMPCache provides a powerful educational tool for examining cache 
design issues for symmetric multiprocessors.

 ■ Assembly language projects: A simplified assembly language, CodeBlue, is used and 
assignments based on the popular Core Wars concept are provided.

 ■ Reading/report assignments: A list of papers in the literature, one or more for each 
chapter, that can be assigned for the student to read and then write a short report.

 ■ Writing assignments: A list of writing assignments to facilitate learning the material.
 ■ Test bank: Includes T/F, multiple choice, and  fill-  in-  the-  blank questions and answers.

This diverse set of projects and other student exercises enables the instructor to use 
the book as one component in a rich and varied learning experience and to tailor a course 
plan to meet the specific needs of the instructor and students. See Appendix A in this book 
for details.

INTERACTIVE SIMULATIONS 

An important feature in this edition is the incorporation of interactive simulations. These 
simulations provide a powerful tool for understanding the complex design features of a 
modern computer system. A total of 20 interactive simulations are used to illustrate key 
functions and algorithms in computer organization and architecture design. At the relevant 
point in the book, an icon indicates that a relevant interactive simulation is available online 
for student use. Because the animations enable the user to set initial conditions, they can 
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serve as the basis for student assignments. The instructor’s supplement includes a set of 
assignments, one for each of the animations. Each assignment includes several specific prob-
lems that can be assigned to students.

For access to the animations, click on the rotating globe at this book’s Web site at 
http://williamstallings.com/ComputerOrganization.
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 1.1 OrganizatiOn and architecture

In describing computers, a distinction is often made between computer architec-
ture and computer organization. Although it is difficult to give precise definitions 
for these terms, a consensus exists about the general areas covered by each. For 
example, see [VRAN80], [SIEW82], and [BELL78a]; an interesting alternative view 
is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way, those attributes that have a direct impact on the 
logical execution of a program. A term that is often used interchangeably with com-
puter architecture is instruction set architecture (ISA). The ISA defines instruction 
formats, instruction opcodes, registers, instruction and data memory; the effect of 
executed instructions on the registers and memory; and an algorithm for control-
ling instruction execution. Computer organization refers to the operational units 
and their interconnections that realize the architectural specifications. Examples of 
architectural attributes include the instruction set, the number of bits used to repre-
sent various data types (e.g., numbers, characters), I/O mechanisms, and techniques 
for addressing memory. Organizational attributes include those hardware details 
transparent to the programmer, such as control signals; interfaces between the com-
puter and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have 
a multiply instruction. It is an organizational issue whether that instruction will be 
implemented by a special multiply unit or by a mechanism that makes repeated 
use of the add unit of the system. The organizational decision may be based on the 
anticipated frequency of use of the multiply instruction, the relative speed of the 
two approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organ-
ization has been an important one. Many computer manufacturers offer a family of 
computer models, all with the same architecture but with differences in organization. 
Consequently, the different models in the family have different price and perform-
ance characteristics. Furthermore, a particular architecture may span many years 
and encompass a number of different computer models, its organization changing 
with changing technology. A prominent example of both these phenomena is the 
IBM System/370 architecture. This architecture was first introduced in 1970 and 

Learning Objectives

After studying this chapter, you should be able to:

 r Explain the general functions and structure of a digital computer.
 r Present an overview of the evolution of computer technology from early 
digital computers to the latest microprocessors.

 r Present an overview of the evolution of the x86 architecture.
 r Define embedded systems and list some of the requirements and constraints 
that various embedded systems must meet.
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included a number of models. The customer with modest requirements could buy a 
cheaper, slower model and, if demand increased, later upgrade to a more expensive, 
faster model without having to abandon software that had already been developed. 
Over the years, IBM has introduced many new models with improved technology 
to replace older models, offering the customer greater speed, lower cost, or both. 
These newer models retained the same architecture so that the customer’s soft-
ware investment was protected. Remarkably, the System/370 architecture, with a 
few enhancements, has survived to this day as the architecture of IBM’s mainframe 
product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence 
organization but also result in the introduction of more powerful and more complex 
architectures. Generally, there is less of a requirement for  generation-  to-  generation 
compatibility for these smaller machines. Thus, there is more interplay between 
organizational and architectural design decisions. An intriguing example of this is 
the reduced instruction set computer (RISC), which we examine in Chapter 15.

This book examines both computer organization and computer architecture. 
The emphasis is perhaps more on the side of organization. However, because a 
computer organization must be designed to implement a particular architectural 
specification, a thorough treatment of organization requires a detailed examination 
of architecture as well.

 1.2 Structure and FunctiOn

A computer is a complex system; contemporary computers contain millions of 
elementary electronic components. How, then, can one clearly describe them? The 
key is to recognize the hierarchical nature of most complex systems, including the 
computer [SIMO96]. A hierarchical system is a set of interrelated subsystems, each 
of the latter, in turn, hierarchical in structure until we reach some lowest level of 
elementary subsystem.

The hierarchical nature of complex systems is essential to both their design 
and their description. The designer need only deal with a particular level of the 
system at a time. At each level, the system consists of a set of components and 
their interrelationships. The behavior at each level depends only on a simplified, 
abstracted characterization of the system at the next lower level. At each level, the 
designer is concerned with structure and function:

 ■ Structure: The way in which the components are interrelated.
 ■ Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the 
system into its subparts. Evidence from a number of fields suggests that the  top- 
 down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer 
system will be described from the top down. We begin with the major components 
of a computer, describing their structure and function, and proceed to successively 
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lower layers of the hierarchy. The remainder of this section provides a very brief 
overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general 
terms, there are only four basic functions that a computer can perform:

 ■ Data processing: Data may take a wide variety of forms, and the range of pro-
cessing requirements is broad. However, we shall see that there are only a few 
fundamental methods or types of data processing.

 ■ Data storage: Even if the computer is processing data on the fly (i.e., data 
come in and get processed, and the results go out immediately), the computer 
must temporarily store at least those pieces of data that are being worked on 
at any given moment. Thus, there is at least a  short-  term data storage function. 
Equally important, the computer performs a  long-  term data storage function. 
Files of data are stored on the computer for subsequent retrieval and update.

 ■ Data movement: The computer’s operating environment consists of devices 
that serve as either sources or destinations of data. When data are received 
from or delivered to a device that is directly connected to the computer, the 
process is known as  input–  output (I/O), and the device is referred to as a 
peripheral. When data are moved over longer distances, to or from a remote 
device, the process is known as data communications.

 ■ Control: Within the computer, a control unit manages the computer’s 
resources and orchestrates the performance of its functional parts in response 
to instructions.

The preceding discussion may seem absurdly generalized. It is certainly 
possible, even at a top level of computer structure, to differentiate a variety of func-
tions, but to quote [SIEW82]:

There is remarkably little shaping of computer structure to fit the 
function to be performed. At the root of this lies the  general-  purpose 
nature of computers, in which all the functional specialization occurs 
at the time of programming and not at the time of design.

Structure

We now look in a general way at the internal structure of a computer. We begin with 
a traditional computer with a single processor that employs a microprogrammed 
control unit, then examine a typical multicore structure.

simple  single-  processor computer Figure 1.1 provides a hierarchical view 
of the internal structure of a traditional  single-  processor computer. There are four 
main structural components:

 ■ Central processing unit (CPU): Controls the operation of the computer and 
performs its data processing functions; often simply referred to as processor.

 ■ Main memory: Stores data.
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 ■ I/O: Moves data between the computer and its external environment.
 ■ System interconnection: Some mechanism that provides for communication 

among CPU, main memory, and I/O. A common example of system intercon-
nection is by means of a system bus, consisting of a number of conducting 
wires to which all the other components attach.

There may be one or more of each of the aforementioned components. Tra-
ditionally, there has been just a single processor. In recent years, there has been 
increasing use of multiple processors in a single computer. Some design issues relat-
ing to multiple processors crop up and are discussed as the text proceeds; Part Five 
focuses on such computers.

Main
memory

I/O

CPU

COMPUTER

System
bus

ALU
Registers

Control
unit

CPU

Internal
bus

Control unit
registers and
decoders

CONTROL
UNIT

Sequencing
logic

Control
memory

Figure 1.1 The Computer:  Top-  Level Structure
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Each of these components will be examined in some detail in Part Two. How-
ever, for our purposes, the most interesting and in some ways the most complex 
component is the CPU. Its major structural components are as follows:

 ■ Control unit: Controls the operation of the CPU and hence the computer.
 ■ Arithmetic and logic unit (ALU): Performs the computer’s data processing 

functions.
 ■ Registers: Provides storage internal to the CPU.
 ■ CPU interconnection: Some mechanism that provides for communication 

among the control unit, ALU, and registers.

Part Three covers these components, where we will see that complexity is added by 
the use of parallel and pipelined organizational techniques. Finally, there are sev-
eral approaches to the implementation of the control unit; one common approach is 
a microprogrammed implementation. In essence, a microprogrammed control unit 
operates by executing microinstructions that define the functionality of the control 
unit. With this approach, the structure of the control unit can be depicted, as in 
 Figure 1.1. This structure is examined in Part Four.

multicore computer structure As was mentioned, contemporary 
computers generally have multiple processors. When these processors all reside 
on a single chip, the term multicore computer is used, and each processing unit 
(consisting of a control unit, ALU, registers, and perhaps cache) is called a core. To 
clarify the terminology, this text will use the following definitions.

 ■ Central processing unit (CPU): That portion of a computer that fetches and 
executes instructions. It consists of an ALU, a control unit, and registers. 
In a system with a single processing unit, it is often simply referred to as a 
processor.

 ■ Core: An individual processing unit on a processor chip. A core may be equiv-
alent in functionality to a CPU on a  single-  CPU system. Other specialized pro-
cessing units, such as one optimized for vector and matrix operations, are also 
referred to as cores.

 ■ Processor: A physical piece of silicon containing one or more cores. The 
processor is the computer component that interprets and executes instruc-
tions. If a processor contains multiple cores, it is referred to as a multicore 
processor.

After about a decade of discussion, there is broad industry consensus on this usage.
Another prominent feature of contemporary computers is the use of multiple 

layers of memory, called cache memory, between the processor and main memory. 
Chapter 4 is devoted to the topic of cache memory. For our purposes in this section, 
we simply note that a cache memory is smaller and faster than main memory and is 
used to speed up memory access, by placing in the cache data from main memory, 
that is likely to be used in the near future. A greater performance improvement may 
be obtained by using multiple levels of cache, with level 1 (L1) closest to the core 
and additional levels (L2, L3, and so on) progressively farther from the core. In this 
scheme, level n is smaller and faster than level n + 1.
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Figure 1.2 is a simplified view of the principal components of a typical mul-
ticore computer. Most computers, including embedded computers in smartphones 
and tablets, plus personal computers, laptops, and workstations, are housed on a 
motherboard. Before describing this arrangement, we need to define some terms. 
A printed circuit board (PCB) is a rigid, flat board that holds and interconnects 
chips and other electronic components. The board is made of layers, typically two 
to ten, that interconnect components via copper pathways that are etched into 
the board. The main printed circuit board in a computer is called a system board 
or motherboard, while smaller ones that plug into the slots in the main board are 
called expansion boards.

The most prominent elements on the motherboard are the chips. A chip is 
a single piece of semiconducting material, typically silicon, upon which electronic 
circuits and logic gates are fabricated. The resulting product is referred to as an 
integrated circuit.

MOTHERBOARD

PROCESSOR CHIP

CORE

Processor
chip

Main memory chips

I/O chips

Core

L3 cache

Instruction
logic

L1 I-cache

L2 instruction
cache

L2 data
cache

L1 data cache

Arithmetic
and logic

unit (ALU)

Load/
store logic

L3 cache

Core Core Core

Core Core Core Core

Figure 1.2 Simplified View of Major Elements of a Multicore Computer
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The motherboard contains a slot or socket for the processor chip, which typ-
ically contains multiple individual cores, in what is known as a multicore processor. 
There are also slots for memory chips, I/O controller chips, and other key computer 
components. For desktop computers, expansion slots enable the inclusion of more 
components on expansion boards. Thus, a modern motherboard connects only a 
few individual chip components, with each chip containing from a few thousand up 
to hundreds of millions of transistors.

Figure 1.2 shows a processor chip that contains eight cores and an L3 cache. 
Not shown is the logic required to control operations between the cores and the 
cache and between the cores and the external circuitry on the motherboard. The 
figure indicates that the L3 cache occupies two distinct portions of the chip surface. 
However, typically, all cores have access to the entire L3 cache via the aforemen-
tioned control circuits. The processor chip shown in Figure 1.2 does not represent 
any specific product, but provides a general idea of how such chips are laid out.

Next, we zoom in on the structure of a single core, which occupies a portion of 
the processor chip. In general terms, the functional elements of a core are:

 ■ Instruction logic: This includes the tasks involved in fetching instructions, 
and decoding each instruction to determine the instruction operation and the 
memory locations of any operands.

 ■ Arithmetic and logic unit (ALU): Performs the operation specified by an 
instruction.

 ■ Load/store logic: Manages the transfer of data to and from main memory via 
cache.

The core also contains an L1 cache, split between an instruction cache  
( I-  cache) that is used for the transfer of instructions to and from main memory, and 
an L1 data cache, for the transfer of operands and results. Typically, today’s pro-
cessor chips also include an L2 cache as part of the core. In many cases, this cache 
is also split between instruction and data caches, although a combined, single L2 
cache is also used.

Keep in mind that this representation of the layout of the core is only intended 
to give a general idea of internal core structure. In a given product, the functional 
elements may not be laid out as the three distinct elements shown in Figure 1.2, 
especially if some or all of these functions are implemented as part of a micropro-
grammed control unit.

examples It will be instructive to look at some  real-  world examples that 
illustrate the hierarchical structure of computers. Figure 1.3 is a photograph of the 
motherboard for a computer built around two Intel  Quad-  Core Xeon processor 
chips. Many of the elements labeled on the photograph are discussed subsequently 
in this book. Here, we mention the most important, in addition to the processor 
sockets:

 ■  PCI-  Express slots for a  high-  end display adapter and for additional peripher-
als (Section 3.6 describes PCIe).

 ■ Ethernet controller and Ethernet ports for network connections.
 ■ USB sockets for peripheral devices.
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Figure 1.3 Motherboard with Two Intel  Quad-  Core Xeon Processors
Source: Chassis Plans, www.chassis-plans.com

 ■ Serial ATA (SATA) sockets for connection to disk memory (Section  7.7 
 discusses Ethernet, USB, and SATA).

 ■ Interfaces for DDR (double data rate) main memory chips (Section  5.3 
 discusses DDR).

 ■ Intel 3420 chipset is an I/O controller for direct memory access operations 
between peripheral devices and main memory (Section 7.5 discusses DDR).

Following our  top-  down strategy, as illustrated in Figures 1.1 and 1.2, we can 
now zoom in and look at the internal structure of a processor chip. For variety, we 
look at an IBM chip instead of the Intel processor chip. Figure 1.4 is a photograph 
of the processor chip for the IBM zEnterprise EC12 mainframe computer. This chip 
has 2.75 billion transistors. The superimposed labels indicate how the silicon real 
estate of the chip is allocated. We see that this chip has six cores, or processors. 
In addition, there are two large areas labeled L3 cache, which are shared by all six 
processors. The L3 control logic controls traffic between the L3 cache and the cores 
and between the L3 cache and the external environment. Additionally, there is stor-
age control (SC) logic between the cores and the L3 cache. The memory controller 
(MC) function controls access to memory external to the chip. The GX I/O bus 
controls the interface to the channel adapters  accessing the I/O.

Going down one level deeper, we examine the internal structure of a single 
core, as shown in the photograph of Figure 1.5. Keep in mind that this is a portion 
of the silicon surface area making up a  single-  processor chip. The main  sub-  areas 
within this core area are the following:

 ■ ISU (instruction sequence unit): Determines the sequence in which instructions 
are executed in what is referred to as a superscalar architecture (Chapter 16).

 ■ IFU (instruction fetch unit): Logic for fetching instructions.

http:\\www.chassis-plans.com


10  Chapter 1 / BasiC ConCepts and Computer evolution 

 ■ IDU (instruction decode unit): The IDU is fed from the IFU buffers, and is 
responsible for the parsing and decoding of all z/Architecture operation codes.

 ■ LSU ( load-  store unit): The LSU contains the 96-kB L1 data cache,1 and man-
ages data traffic between the L2 data cache and the functional execution 
units. It is responsible for handling all types of operand accesses of all lengths, 
modes, and formats as defined in the z/Architecture.

 ■ XU (translation unit):  This unit translates logical addresses from instructions 
into physical addresses in main memory. The XU also contains a translation 
lookaside buffer (TLB) used to speed up memory access. TLBs are discussed 
in Chapter 8.

 ■ FXU ( fixed-  point unit): The FXU executes  fixed-  point arithmetic operations.
 ■ BFU (binary  floating-  point unit): The BFU handles all binary and hexadeci-

mal  floating-  point operations, as well as  fixed-  point multiplication operations.
 ■ DFU (decimal  floating-  point unit): The DFU handles both  fixed-  point and 

 floating-  point operations on numbers that are stored as decimal digits.
 ■ RU (recovery unit): The RU keeps a copy of the complete state of the sys-

tem that includes all registers, collects hardware fault signals, and manages the 
hardware recovery actions.

Figure 1.4 zEnterprise EC12 Processor Unit 
(PU) chip diagram
Source: IBM zEnterprise EC12 Technical Guide, 
December 2013, SG24-8049-01. IBM, Reprinted by 
Permission

Figure 1.5 zEnterprise EC12 Core layout
Source: IBM zEnterprise EC12 Technical Guide, 
December 2013, SG24-8049-01. IBM, Reprinted by 
Permission

1kB = kilobyte = 2048 bytes. Numerical prefixes are explained in a document under the “Other Useful” 
tab at ComputerScienceStudent.com.
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 ■ COP (dedicated  co-  processor): The COP is responsible for data compression 
and encryption functions for each core.

 ■  I-  cache: This is a 64-kB L1 instruction cache, allowing the IFU to prefetch 
instructions before they are needed.

 ■ L2 control: This is the control logic that manages the traffic through the two 
L2 caches.

 ■  Data-  L2: A 1-MB L2 data cache for all memory traffic other than instructions.
 ■  Instr-  L2: A 1-MB L2 instruction cache.

As we progress through the book, the concepts introduced in this section will 
become clearer.

 1.3 a BrieF hiStOry OF cOmputerS2

In this section, we provide a brief overview of the history of the development of 
computers. This history is interesting in itself, but more importantly, provides a basic 
introduction to many important concepts that we deal with throughout the book.

The First Generation: Vacuum Tubes

The first generation of computers used vacuum tubes for digital logic elements and 
memory. A number of research and then commercial computers were built using 
vacuum tubes. For our purposes, it will be instructive to examine perhaps the most 
famous  first-  generation computer, known as the IAS computer.

A fundamental design approach first implemented in the IAS computer is 
known as the  stored-  program concept. This idea is usually attributed to the mathem-
atician John von Neumann. Alan Turing developed the idea at about the same time. 
The first publication of the idea was in a 1945 proposal by von Neumann for a new 
computer, the EDVAC (Electronic Discrete Variable Computer).3

In 1946, von Neumann and his colleagues began the design of a new  stored- 
 program computer, referred to as the IAS computer, at the Princeton Institute for 
Advanced Studies. The IAS computer, although not completed until 1952, is the 
prototype of all subsequent  general-  purpose computers.4

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1). 
It consists of

 ■ A main memory, which stores both data and instructions5

 ■ An arithmetic and logic unit (ALU) capable of operating on binary data

2 This book’s Companion Web site (WilliamStallings.com/ComputerOrganization) contains several links 
to sites that provide photographs of many of the devices and components discussed in this section.

4A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It 
is available at box.com/COA10e.

3The 1945 report on EDVAC is available at box.com/COA10e.

5In this book, unless otherwise noted, the term instruction refers to a machine instruction that is directly 
interpreted and executed by the processor, in contrast to a statement in a  high-  level language, such as Ada 
or C++, which must first be compiled into a series of machine instructions before being executed.
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 ■ A control unit, which interprets the instructions in memory and causes them 
to be executed

 ■  Input–  output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann’s earlier proposal, which is worth 
quoting in part at this point [VONN45]:

2.2 First: Since the device is primarily a computer, it will 
have to perform the elementary operations of arithmetic most fre-
quently. These are addition, subtraction, multiplication, and divi-
sion. It is therefore reasonable that it should contain specialized 
organs for just these operations.

Control
circuits

Addresses

Control
signals

Instructions
and data

AC: Accumulator register
MQ: multiply-quotient register
MBR: memory buffer register
IBR: instruction buffer register
PC: program counter
MAR: memory address register
IR: insruction register

Instructions
and data

M(0)
M(1)
M(2)
M(3)
M(4)

M(4095)
M(4093)
M(4092)

MBR

Arithmetic-logic unit (CA)

Central processing unit (CPU)

Program control unit (CC)

Input-
output

equipment
(I, O)

Main
memory

(M)

AC MQ

Arithmetic-logic
circuits

IBRPC

IRMAR

Figure 1.6 IAS Structure



It must be observed, however, that while this principle as such 
is probably sound, the specific way in which it is realized requires 
close scrutiny. At any rate a central arithmetical part of the device will 
probably have to exist, and this constitutes the first specific part: CA.

2.3  Second: The logical control of the device, that is, the 
proper sequencing of its operations, can be most efficiently car-
ried out by a central control organ. If the device is to be elastic, 
that is, as nearly as possible all purpose, then a distinction must 
be made between the specific instructions given for and defining 
a particular problem, and the general control organs that see to it 
that these  instructions—  no matter what they  are—  are carried out. 
The former must be stored in some way; the latter are represented 
by definite operating parts of the device. By the central control we 
mean this latter function only, and the organs that perform it form 
the second specific part: CC.

2.4 Third: Any device that is to carry out long and compli-
cated sequences of operations (specifically of calculations) must 
have a considerable memory . . .

The instructions which govern a complicated problem may 
constitute considerable material, particularly so if the code is cir-
cumstantial (which it is in most arrangements). This material must 
be remembered.

At any rate, the total memory constitutes the third specific 
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M cor-
respond to the associative neurons in the human nervous system. It 
remains to discuss the equivalents of the sensory or afferent and the 
motor or efferent neurons. These are the input and output organs of 
the device.

The device must be endowed with the ability to maintain 
input and output (sensory and motor) contact with some specific 
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer informa-
tion from R into its specific parts C and M. These organs form its 
input, the fourth specific part: I. It will be seen that it is best to make 
all transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer from its 
specific parts C and M into R. These organs form its output, the 
fifth specific part: O. It will be seen that it is again best to make all 
transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure 
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46, 
GOLD54]. Following [HAYE98], the terminology and notation of von Neumann 
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are changed in the following to conform more closely to modern usage; the exam-
ples accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of 
40 binary digits (bits) each.6 Both data and instructions are stored there. Numbers are 
represented in binary form, and each instruction is a binary code. Figure 1.7 illustrates 
these formats. Each number is represented by a sign bit and a 39-bit value. A word 
may alternatively contain two 20-bit instructions, with each instruction consisting 
of an 8-bit operation code (opcode) specifying the operation to be performed and 
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory 
and executing them one at a time. We explain these operations with reference to 
 Figure 1.6. This figure reveals that both the control unit and the ALU contain stor-
age locations, called registers, defined as follows:

 ■ Memory buffer register (MBR):  Contains a word to be stored in memory or sent 
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

 ■ Memory address register (MAR): Specifies the address in memory of the word 
to be written from or read into the MBR.

 ■ Instruction register (IR):  Contains the 8-bit opcode instruction being executed.
 ■ Instruction buffer register (IBR): Employed to hold temporarily the  right- 

 hand instruction from a word in memory.
 ■ Program counter (PC): Contains the address of the next instruction pair to be 

fetched from memory.
 ■ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-

porarily operands and results of ALU operations. For example, the result 

6There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits 
that is the normal unit in which information may be stored, transmitted, or operated on within a given 
computer. Typically, if a processor has a  fixed-  length instruction set, then the instruction length equals 
the word length.

(a) Number wordsign bit

0 39

(b) Instruction word

opcode (8 bits) address (12 bits)

left instruction (20 bits)

0 8 20 28 39

1

right instruction (20 bits)

opcode (8 bits) address (12 bits)

Figure 1.7 IAS Memory Formats



of multiplying two 40-bit numbers is an 80-bit number; the most significant 
40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in 
Figure 1.8. Each instruction cycle consists of two subcycles. During the fetch cycle, 
the opcode of the next instruction is loaded into the IR and the address portion is 
loaded into the MAR. This instruction may be taken from the IBR, or it can be 
obtained from memory by loading a word into the MBR, and then down to the IBR, 
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry 
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write and only one 
register used for the source or destination.
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Once the opcode is in the IR, the execute cycle is performed. Control circuitry 
interprets the opcode and executes the instruction by sending out the appropri-
ate control signals to cause data to be moved or an operation to be performed by 
the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 1.1. 
These can be grouped as follows:

 ■ Data transfer: Move data between memory and ALU registers or between two 
ALU registers.

 ■ Unconditional branch: Normally, the control unit executes instructions in 
sequence from memory. This sequence can be changed by a branch instruc-
tion, which facilitates repetitive operations.

Table 1.1 The IAS Instruction Set

Instruction 
Type Opcode

Symbolic 
Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ

00100001 STOR M(X) Transfer contents of accumulator to memory location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional  
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional 
branch

00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next 
instruction from left half of M(X)

00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next 
instruction from right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result 
in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the 
remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left one bit position

00010101 RSH Divide accumulator by 2; that is, shift right one position

Address 
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits 
of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits 
of AC



 ■ Conditional branch: The branch can be made dependent on a condition, thus 
allowing decision points.

 ■ Arithmetic: Operations performed by the ALU.
 ■ Address modify: Permits addresses to be computed in the ALU and then 

inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.

Table 1.1 presents instructions (excluding I/O instructions) in a symbolic, 
 easy-  to-  read form. In binary form, each instruction must conform to the format of 
Figure 1.7b. The opcode portion (first 8 bits) specifies which of the 21 instructions is 
to be executed. The address portion (remaining 12 bits) specifies which of the 4,096 
memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit. 
Note that each operation requires several steps, some of which are quite elaborate. 
The multiplication operation requires 39 suboperations, one for each bit position 
except that of the sign bit.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the 
vacuum tube by the transistor. The transistor, which is smaller, cheaper, and gener-
ates less heat than a vacuum tube, can be used in the same way as a vacuum tube to 
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a 
glass capsule, and a vacuum, the transistor is a  solid-  state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched 
an electronic revolution. It was not until the late 1950s, however, that fully transis-
torized computers were commercially available. The use of the transistor defines 
the second generation of computers. It has become widely accepted to classify com-
puters into generations based on the fundamental hardware technology employed 
(Table 1.2). Each new generation is characterized by greater processing perfor-
mance, larger memory capacity, and smaller size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of 
 high-  level programming languages, and the provision of system software with the 
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Table 1.2 Computer Generations

Generation
Approximate 

Dates Technology
Typical Speed  

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1957–1964 Transistor 200,000

3 1965–1971  Small-   and  medium-  scale 
integration

1,000,000

4 1972–1977 Large scale integration 10,000,000

5 1978–1991 Very large scale integration 100,000,000

6 1991– Ultra large scale integration >1,000,000,000
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computer. In broad terms, system software provided the ability to load programs, 
move data to peripherals, and libraries to perform common computations, similar 
to what modern operating systems, such as Windows and Linux, do.

It will be useful to examine an important member of the second generation: the 
IBM 7094 [BELL71]. From the introduction of the 700 series in 1952 to the introduc-
tion of the last member of the 7000 series in 1964, this IBM product line underwent 
an evolution that is typical of computer products. Successive members of the product 
line showed increased performance, increased capacity, and/or lower cost.

The size of main memory, in multiples of 210 36-bit words, grew from  
2k (1k = 210) to 32k words,7 while the time to access one word of memory, the mem-
ory cycle time, fell from 30 ms to 1.4 ms. The number of opcodes grew from a modest 
24 to 185.

Also, over the lifetime of this series of computers, the relative speed of the 
CPU increased by a factor of 50. Speed improvements are achieved by improved 
electronics (e.g., a transistor implementation is faster than a vacuum tube imple-
mentation) and more complex circuitry. For example, the IBM 7094 includes an 
Instruction Backup Register, used to buffer the next instruction. The control unit 
fetches two adjacent words from memory for an instruction fetch. Except for the 
occurrence of a branching instruction, which is relatively infrequent (perhaps 10 to 
15%), this means that the control unit has to access memory for an instruction on 
only half the instruction cycles. This prefetching significantly reduces the average 
instruction cycle time.

Figure 1.9 shows a large (many peripherals) configuration for an IBM 7094, 
which is representative of  second-  generation computers. Several differences from 
the IAS computer are worth noting. The most important of these is the use of data 
channels. A data channel is an independent I/O module with its own processor and 
instruction set. In a computer system with such devices, the CPU does not execute 
detailed I/O instructions. Such instructions are stored in a main memory to be 
executed by a  special-  purpose processor in the data channel itself. The CPU initi-
ates an I/O transfer by sending a control signal to the data channel, instructing it to 
execute a sequence of instructions in memory. The data channel performs its task 
independently of the CPU and signals the CPU when the operation is complete. 
This arrangement relieves the CPU of a considerable processing burden.

Another new feature is the multiplexor, which is the central termination 
point for data channels, the CPU, and memory. The multiplexor schedules access 
to the memory from the CPU and data channels, allowing these devices to act 
independently.

The Third Generation: Integrated Circuits

A single,  self-  contained transistor is called a discrete component. Throughout  
the 1950s and early 1960s, electronic equipment was composed largely of discrete 
 components—  transistors, resistors, capacitors, and so on. Discrete components were 
manufactured separately, packaged in their own containers, and soldered or wired 

7A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.



together onto  Masonite-  like circuit boards, which were then installed in computers, 
oscilloscopes, and other electronic equipment. Whenever an electronic device called 
for a transistor, a little tube of metal containing a  pinhead-  sized piece of silicon had 
to be soldered to a circuit board. The entire manufacturing process, from transistor 
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early  second-  generation computers contained about 10,000 transistors. This 
figure grew to the hundreds of thousands, making the manufacture of newer, more 
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the 
era of microelectronics: the invention of the integrated circuit. It is the integrated 
circuit that defines the third generation of computers. In this section, we provide a 
brief introduction to the technology of integrated circuits. Then we look at perhaps 
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC  PDP-  8.

microelectronics Microelectronics means, literally, “small electronics.” Since the 
beginnings of digital electronics and the computer industry, there has been a persistent 
and consistent trend toward the reduction in size of digital electronic circuits. Before 
examining the implications and benefits of this trend, we need to say something about 
the nature of digital electronics. A more detailed discussion is found in Chapter 11.
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The basic elements of a digital computer, as we know, must perform data stor-
age, movement, processing, and control functions. Only two fundamental types of 
components are required (Figure 1.10): gates and memory cells. A gate is a device 
that implements a simple Boolean or logical function. For example, an AND gate 
with inputs A and B and output C implements the expression IF A AND B ARE 
TRUE THEN C IS TRUE. Such devices are called gates because they control data 
flow in much the same way that canal gates control the flow of water. The memory 
cell is a device that can store 1 bit of data; that is, the device can be in one of two 
stable states at any time. By interconnecting large numbers of these fundamental 
devices, we can construct a computer. We can relate this to our four basic functions 
as follows:

 ■ Data storage:  Provided by memory cells.
 ■ Data processing:  Provided by gates.
 ■ Data movement:  The paths among components are used to move data from 

memory to memory and from memory through gates to memory.
 ■ Control:  The paths among components can carry control signals. For example, 

a gate will have one or two data inputs plus a control signal input that activates 
the gate. When the control signal is ON, the gate performs its function on the 
data inputs and produces a data output. Conversely, when the control signal 
is OFF, the output line is null, such as the one produced by a high impedance 
state. Similarly, the memory cell will store the bit that is on its input lead when 
the WRITE control signal is ON and will place the bit that is in the cell on its 
output lead when the READ control signal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among 
these elements. The gates and memory cells are, in turn, constructed of simple elec-
tronic components, such as transistors and capacitors.

The integrated circuit exploits the fact that such components as transistors, 
resistors, and conductors can be fabricated from a semiconductor such as silicon. 
It is merely an extension of the  solid-  state art to fabricate an entire circuit in a tiny 
piece of silicon rather than assemble discrete components made from separate 
pieces of silicon into the same circuit. Many transistors can be produced at the same 
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.
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Figure 1.10 Fundamental Computer Elements



Figure 1.11 depicts the key concepts in an integrated circuit. A thin wafer of 
silicon is divided into a matrix of small areas, each a few millimeters square. The 
identical circuit pattern is fabricated in each area, and the wafer is broken up into 
chips. Each chip consists of many gates and/or memory cells plus a number of input 
and output attachment points. This chip is then packaged in housing that protects 
it and provides pins for attachment to devices beyond the chip. A number of these 
packages can then be interconnected on a printed circuit board to produce larger 
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured and 
packaged together. These early integrated circuits are referred to as  small-  scale 
integration (SSI). As time went on, it became possible to pack more and more com-
ponents on the same chip. This growth in density is illustrated in Figure 1.12; it is 
one of the most remarkable technological trends ever recorded.8 This figure reflects 
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of 
Intel, in 1965 [MOOR65]. Moore observed that the number of transistors that could 
be put on a single chip was doubling every year, and correctly predicted that this 
pace would continue into the near future. To the surprise of many, including Moore, 
the pace continued year after year and decade after decade. The pace slowed to a 
doubling every 18 months in the 1970s but has sustained that rate ever since.

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid 
growth in density. This means that the cost of computer logic and memory cir-
cuitry has fallen at a dramatic rate.

Wafer

Chip

Gate

Packaged
chip

Figure 1.11 Relationship among 
Wafer, Chip, and Gate
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8Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document 
at the Computer Science Student Resource Site at ComputerScienceStudent.com.
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2. Because logic and memory elements are placed closer together on more 
densely packed chips, the electrical path length is shortened, increasing oper-
ating speed.

3. The computer becomes smaller, making it more convenient to place in a vari-
ety of environments.

4. There is a reduction in power requirements.

5. The interconnections on the integrated circuit are much more reliable than 
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

ibm system/360 By 1964, IBM had a firm grip on the computer market with 
its 7000 series of machines. In that year, IBM announced the System/360, a new 
family of computer products. Although the announcement itself was no surprise, it 
contained some unpleasant news for current IBM customers: the 360 product line 
was incompatible with older IBM machines. Thus, the transition to the 360 would 
be difficult for the current customer base, but IBM felt this was necessary to break 
out of some of the constraints of the 7000 architecture and to produce a system 
capable of evolving with the new integrated circuit technology [PADE81, GIFF87]. 
The strategy paid off both financially and technically. The 360 was the success of 
the decade and cemented IBM as the overwhelmingly dominant computer vendor, 
with a market share above 70%. And, with some modifications and extensions, the 
architecture of the 360 remains to this day the architecture of IBM’s mainframe9 
computers. Examples using this architecture can be found throughout this text.

The System/360 was the industry’s first planned family of computers. The family 
covered a wide range of performance and cost. The models were compatible in the 
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9The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical 
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is 
used in a central data processing facility.



sense that a program written for one model should be capable of being executed by 
another model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and extremely 
successful. A customer with modest requirements and a budget to match could start 
with the relatively inexpensive Model 30. Later, if the customer’s needs grew, it was 
possible to upgrade to a faster machine with more memory without sacrificing the 
investment in  already-  developed software. The characteristics of a family are as follows:

 ■ Similar or identical instruction set: In many cases, the exact same set of 
machine instructions is supported on all members of the family. Thus, a pro-
gram that executes on one machine will also execute on any other. In some 
cases, the lower end of the family has an instruction set that is a subset of 
that of the top end of the family. This means that programs can move up but 
not down.

 ■ Similar or identical operating system: The same basic operating system is 
available for all family members. In some cases, additional features are added 
to the  higher-  end members.

 ■ Increasing speed: The rate of instruction execution increases in going from 
lower to higher family members.

 ■ Increasing number of I/O ports: The number of I/O ports increases in going 
from lower to higher family members.

 ■ Increasing memory size: The size of main memory increases in going from 
lower to higher family members.

 ■ Increasing cost: At a given point in time, the cost of a system increases in going 
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved 
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For 
example, greater speed in the execution of a given instruction could be gained by 
the use of more complex circuitry in the ALU, allowing suboperations to be car-
ried out in parallel. Another way of increasing speed was to increase the width of 
the data path between main memory and the CPU. On the Model 30, only 1 byte 
(8 bits) could be fetched from main memory at a time, whereas 8 bytes could be 
fetched at a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a pro-
found impact on the entire industry. Many of its features have become standard on 
other large computers.

dec  pdp-  8 In the same year that IBM shipped its first System/360, another 
momentous first shipment occurred:  PDP-  8 from Digital Equipment Corporation 
(DEC). At a time when the average computer required an  air-  conditioned room, 
the  PDP-  8 (dubbed a minicomputer by the industry, after the miniskirt of the day) 
was small enough that it could be placed on top of a lab bench or be built into 
other equipment. It could not do everything the mainframe could, but at $16,000, it 
was cheap enough for each lab technician to have one. In contrast, the System/360 
series of mainframe computers introduced just a few months before cost hundreds 
of thousands of dollars.

1.3 / a BrieF history oF Computers  23



24  Chapter 1 / BasiC ConCepts and Computer evolution 

The low cost and small size of the  PDP-  8 enabled another manufacturer to 
purchase a  PDP-  8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the 
OEM market became and remains a major segment of the computer marketplace.

In contrast to the  central-  switched architecture (Figure 1.9) used by IBM on its 
700/7000 and 360 systems, later models of the  PDP-  8 used a structure that became vir-
tually universal for microcomputers: the bus structure. This is illustrated in Figure 1.13. 
The  PDP-  8 bus, called the Omnibus, consists of 96 separate signal paths, used to carry 
control, address, and data signals. Because all system components share a common 
set of signal paths, their use can be controlled by the CPU. This architecture is highly 
flexible, allowing modules to be plugged into the bus to create various configurations. 
It is only in recent years that the bus structure has given way to a structure known as 
 point-  to-  point interconnect, described in Chapter 3.

Later Generations

Beyond the third generation there is less general agreement on defining generations 
of computers. Table 1.2 suggests that there have been a number of later generations, 
based on advances in integrated circuit technology. With the introduction of  large- 
 scale integration (LSI), more than 1,000 components can be placed on a single inte-
grated circuit chip.  Very-  large-  scale integration (VLSI) achieved more than 10,000 
components per chip, while current  ultra-  large-  scale integration (ULSI) chips can 
contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the 
classification by generation becomes less clear and less meaningful. In this section, 
we mention two of the most important of developments in later generations.

semiconductor memory The first application of integrated circuit technology 
to computers was the construction of the processor (the control unit and the 
arithmetic and logic unit) out of integrated circuit chips. But it was also found that 
this same technology could be used to construct memories.

In the 1950s and 1960s, most computer memory was constructed from tiny 
rings of ferromagnetic material, each about a sixteenth of an inch in diameter. 
These rings were strung up on grids of fine wires suspended on small screens inside 
the computer. Magnetized one way, a ring (called a core) represented a one; mag-
netized the other way, it stood for a zero.  Magnetic-  core memory was rather fast; 
it took as little as a millionth of a second to read a bit stored in memory. But it was 
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expensive and bulky, and used destructive readout: The simple act of reading a core 
erased the data stored in it. It was therefore necessary to install circuits to restore 
the data as soon as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor 
memory. This chip, about the size of a single core, could hold 256 bits of memory. It 
was nondestructive and much faster than core. It took only 70 billionths of a second 
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory 
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase in 
physical memory density. This has led the way to smaller, faster machines with mem-
ory sizes of larger and more expensive machines from just a few years earlier. Devel-
opments in memory technology, together with developments in processor technology 
to be discussed next, changed the nature of computers in less than a decade. Although 
bulky, expensive computers remain a part of the landscape, the computer has also 
been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1k, 4k, 
16k, 64k, 256k, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 8 Gb 
on a single chip (1 k = 210, 1 M = 220, 1 G = 230). Each generation has provided 
increased storage density, accompanied by declining cost per bit and declining 
access time. Densities are projected to reach 16 Gb by 2018 and 32 Gb by 2023 
[ITRS14].

microprocessors Just as the density of elements on memory chips has continued 
to rise, so has the density of elements on processor chips. As time went on, more 
and more elements were placed on each chip, so that fewer and fewer chips were 
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The 
4004 was the first chip to contain all of the components of a CPU on a single chip: 
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today’s standards, the 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.

This evolution can be seen most easily in the number of bits that the processor 
deals with at a time. There is no  clear-  cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent 
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of  general-  purpose registers. Often, these measures coincide, but 
not always. For example, a number of microprocessors were developed that operate 
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost 
twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the 
introduction in 1974 of the Intel 8080. This was the first  general-  purpose micropro-
cessor. Whereas the 4004 and the 8008 had been designed for specific applications, 
the 8080 was designed to be the CPU of a  general-  purpose microcomputer. Like the 
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Table 1.3 Evolution of Intel Microprocessors (page 1 of 2)

(a) 1970s Processors

4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2,300 3,500 6,000 29,000 29,000

Feature size (mm) 10 8 6 3 6

Addressable memory 640 bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6–12.5 MHz 16–33 MHz 16–33 MHz 25–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size ( µm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

(c) 1990s Processors

486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16–33 MHz 60–166 MHz, 150–200 MHz 200–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size ( µm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and  
1 MB L2

512 kB L2

8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer 
instruction set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. How-
ever, it was not until the end of the 1970s that powerful,  general-  purpose 16-bit 
microprocessors appeared. One of these was the 8086. The next step in this trend 
occurred in 1981, when both Bell Labs and  Hewlett-  Packard developed 32-bit, 
 single-  chip microprocessors. Intel introduced its own 32-bit microprocessor, the 
80386, in 1985 (Table 1.3).
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(d) Recent Processors

Pentium III Pentium 4 Core 2 Duo Core i7 EE 4960X

Introduced 1999 2000 2006 2013

Clock speeds 450–660 MHz 1.3–1.8 GHz 1.06–1.2 GHz 4 GHz

Bus width 64 bits 64 bits 64 bits 64 bits

Number of transistors 9.5 million 42 million 167 million 1.86 billion

Feature size (nm) 250 180 65 22

Addressable memory 64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/15 MB L3

Number of cores 1 1 2 6

 1.4 the evOlutiOn OF the intel x86 architecture

Throughout this book, we rely on many concrete examples of computer design and 
implementation to illustrate concepts and to illuminate  trade-  offs. Numerous sys-
tems, both contemporary and historical, provide examples of important computer 
architecture design features. But the book relies principally on examples from two 
processor families: the Intel x86 and the ARM architectures. The current x86 offer-
ings represent the results of decades of design effort on complex instruction set com-
puters (CISCs). The x86 incorporates the sophisticated design principles once found 
only on mainframes and supercomputers and serves as an excellent example of CISC 
design. An alternative approach to processor design is the reduced instruction set 
computer (RISC). The ARM architecture is used in a wide variety of embedded sys-
tems and is one of the most powerful and  best-  designed  RISC-  based systems on the 
market. In this section and the next, we provide a brief overview of these two systems.

In terms of market share, Intel has ranked as the number one maker of micro-
processors for  non-  embedded systems for decades, a position it seems unlikely to 
yield. The evolution of its flagship microprocessor product serves as a good indica-
tor of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown 
faster and much more complex, Intel has actually picked up the pace. Intel used 
to develop microprocessors one after another, every four years. But Intel hopes 
to keep rivals at bay by trimming a year or two off this development time, and has 
done so with the most recent x86 generations.10

10Intel refers to this as the  tick-  tock model. Using this model, Intel has successfully delivered  next- 
 generation silicon technology as well as new processor microarchitecture on alternating years for the 
past several years. See http://www.intel.com/content/www/us/en/ silicon- innovations/intel-tick-tock- 
model-general.html.

http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html
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It is worthwhile to list some of the highlights of the evolution of the Intel prod-
uct line:

 ■ 8080: The world’s first  general-  purpose microprocessor. This was an 8-bit 
machine, with an 8-bit data path to memory. The 8080 was used in the first 
personal computer, the Altair.

 ■ 8086: A far more powerful, 16-bit machine. In addition to a wider data path 
and larger registers, the 8086 sported an instruction cache, or queue, that 
prefetches a few instructions before they are executed. A variant of this pro-
cessor, the 8088, was used in IBM’s first personal computer, securing the suc-
cess of Intel. The 8086 is the first appearance of the x86 architecture.

 ■ 80286: This extension of the 8086 enabled addressing a 16-MB memory instead 
of just 1 MB.

 ■ 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With 
a 32-bit architecture, the 80386 rivaled the complexity and power of minicom-
puters and mainframes introduced just a few years earlier. This was the first 
Intel processor to support multitasking, meaning it could run multiple pro-
grams at the same time.

 ■ 80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also 
offered a  built-  in math coprocessor, offloading complex math operations from 
the main CPU.

 ■ Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

 ■ Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch 
prediction, data flow analysis, and speculative execution.

 ■ Pentium II: The Pentium II incorporated Intel MMX technology, which is 
designed specifically to process video, audio, and graphics data efficiently.

 ■ Pentium III: The Pentium III incorporates additional  floating-  point instruc-
tions: The Streaming SIMD Extensions (SSE) instruction set extension added 
70 new instructions designed to increase performance when exactly the same 
operations are to be performed on multiple data objects. Typical applications 
are digital signal processing and graphics processing.

 ■ Pentium 4: The Pentium 4 includes additional  floating-  point and other 
enhancements for multimedia.11

 ■ Core: This is the first Intel x86 microprocessor with a dual core, referring to 
the implementation of two cores on a single chip.

 ■ Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad 
provides four cores on a single chip. More recent Core offerings have up to 10 
cores per chip. An important addition to the architecture was the Advanced 
Vector Extensions instruction set that provided a set of 256-bit, and then 512-
bit, instructions for efficient processing of vector data.

11With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.
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Almost 40 years after its introduction in 1978, the x86 architecture continues to 
dominate the processor market outside of embedded systems. Although the organiza-
tion and technology of the x86 machines have changed dramatically over the decades, 
the instruction set architecture has evolved to remain backward compatible with ear-
lier versions. Thus, any program written on an older version of the x86 architecture 
can execute on newer versions. All changes to the instruction set architecture have 
involved additions to the instruction set, with no subtractions. The rate of change has 
been the addition of roughly one instruction per month added to the architecture 
[ANTH08], so that there are now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hard-
ware over the past 35 years. The 1978 8086 was introduced with a clock speed of 
5 MHz and had 29,000 transistors. A  six-  core Core i7 EE 4960X introduced in 2013 
operates at 4 GHz, a speedup of a factor of 800, and has 1.86 billion transistors, 
about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only a 
slightly larger package than the 8086 and has a comparable cost.

 1.5 emBedded SyStemS

The term embedded system refers to the use of electronics and software within a 
product, as opposed to a  general-  purpose computer, such as a laptop or desktop sys-
tem. Millions of computers are sold every year, including laptops, personal comput-
ers, workstations, servers, mainframes, and supercomputers. In contrast, billions of 
computer systems are produced each year that are embedded within larger devices. 
Today, many, perhaps most, devices that use electric power have an embedded com-
puting system. It is likely that in the near future virtually all such devices will have 
embedded computing systems.

Types of devices with embedded systems are almost too numerous to list. 
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, ther-
mostats, printers, various automotive systems (e.g., transmission control, cruise 
control, fuel injection,  anti-  lock brakes, and suspension systems), tennis rack-
ets, toothbrushes, and numerous types of sensors and actuators in automated 
systems.

Often, embedded systems are tightly coupled to their environment. This can 
give rise to  real-  time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of meas-
urement, and required time durations, dictate the timing of software operations. If 
multiple activities must be managed simultaneously, this imposes more complex 
 real-  time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addi-
tion to the processor and memory, there are a number of elements that differ from 
the typical desktop or laptop computer:

 ■ There may be a variety of interfaces that enable the system to measure, manip-
ulate, and otherwise interact with the external environment. Embedded sys-
tems often interact (sense, manipulate, and communicate) with external world 
through sensors and actuators and hence are typically reactive systems; a 
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reactive system is in continual interaction with the environment and executes 
at a pace determined by that environment.

 ■ The human interface may be as simple as a flashing light or as complicated as 
 real-  time robotic vision. In many cases, there is no human interface.

 ■ The diagnostic port may be used for diagnosing the system that is being 
 controlled—  not just for diagnosing the computer.

 ■  Special-  purpose field programmable (FPGA),  application-  specific (ASIC), or 
even nondigital hardware may be used to increase performance or reliability.

 ■ Software often has a fixed function and is specific to the application.
 ■ Efficiency is of paramount importance for embedded systems. They are opti-

mized for energy, code size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to  general-  purpose computer 
systems as well:

 ■ Even with nominally fixed function software, the ability to field upgrade to fix 
bugs, to improve security, and to add functionality, has become very important 
for embedded systems, and not just in consumer devices.

 ■ One comparatively recent development has been of embedded system plat-
forms that support a wide variety of apps. Good examples of this are smart-
phones and audio/visual devices, such as smart TVs.

The Internet of Things

It is worthwhile to separately callout  one of the major drivers in the  proliferation of 
embedded systems. The Internet of things (IoT) is a term that refers to the expanding 
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interconnection of smart devices, ranging from appliances to tiny sensors. A domi-
nant theme is the embedding of  short-  range mobile transceivers into a wide array of 
gadgets and everyday items, enabling new forms of communication between people 
and things, and between things themselves. The Internet now supports the intercon-
nection of billions of industrial and personal objects, usually through cloud systems. 
The objects deliver sensor information, act on their environment, and, in some cases, 
modify themselves, to create overall management of a larger system, like a factory 
or city.

The IoT is primarily driven by deeply embedded devices (defined below). 
These devices are  low-  bandwidth,  low-  repetition  data-  capture, and  low-  bandwidth 
 data-  usage appliances that communicate with each other and provide data via user 
interfaces. Embedded appliances, such as  high-  resolution video security cameras, 
video VoIP phones, and a handful of others, require  high-  bandwidth streaming 
capabilities. Yet countless products simply require packets of data to be intermit-
tently delivered.

With reference to the end systems supported, the Internet has gone through 
roughly four generations of deployment culminating in the IoT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought 
as IT devices by enterprise IT people and primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built 
by  non-  IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by 
enterprise OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT 
devices by consumers (employees) exclusively using wireless connectivity and 
often multiple forms of wireless connectivity.

4. Sensor/actuator technology:  Single-  purpose devices bought by consumers, IT, 
and OT people exclusively using wireless connectivity, generally of a single 
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and it is marked 
by the use of billions of embedded devices.

Embedded Operating Systems

There are two general approaches to developing an embedded operating system 
(OS). The first approach is to take an existing OS and adapt it for the embedded 
application. For example, there are embedded versions of Linux, Windows, and 
Mac, as well as other commercial and proprietary operating systems specialized for 
embedded systems. The other approach is to design and implement an OS intended 
solely for embedded use. An example of the latter is TinyOS, widely used in wireless 
sensor networks. This topic is explored in depth in [STAL15].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly 
found in the literature on embedded systems. Application processors are defined 
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by the processor’s ability to execute complex operating systems, such as Linux, 
Android, and Chrome. Thus, the application processor is  general-  purpose in nature. 
A good example of the use of an embedded application processor is the smartphone. 
The embedded system is designed to support numerous apps and perform a wide 
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name 
implies, is dedicated to one or a small number of specific tasks required by the host 
device. Because such an embedded system is dedicated to a specific task or tasks, 
the processor and associated components can be engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some 
sort of control unit or instruction processing logic. As transistor density increased, it 
became possible to increase the complexity of the instruction set architecture, and 
ultimately to add memory and more than one processor. Contemporary micropro-
cessor chips, as shown in Figure 1.2, include multiple cores and a substantial amount 
of cache memory.

A microcontroller chip makes a substantially different use of the logic space 
available. Figure 1.15 shows in general terms the elements typically found on a 
microcontroller chip. As shown, a microcontroller is a single chip that contains the 
processor,  non-  volatile memory for the program (ROM), volatile memory for input 
and output (RAM), a clock, and an I/O control unit. The processor portion of the 
microcontroller has a much lower silicon area than other microprocessors and much 
higher energy efficiency. We examine microcontroller organization in more detail 
in Section 1.6.

Also called a “computer on a chip,” billions of microcontroller units are 
embedded each year in myriad products from toys to appliances to automobiles. For 
example, a single vehicle can use 70 or more microcontrollers. Typically, especially 
for the smaller, less expensive microcontrollers, they are used as dedicated proces-
sors for specific tasks. For example, microcontrollers are heavily utilized in automa-
tion processes. By providing simple reactions to input, they can control machinery, 
turn fans on and off, open and close valves, and so forth. They are integral parts of 
modern industrial technology and are among the most inexpensive ways to produce 
machinery that can handle extremely complex functionalities.

Microcontrollers come in a range of physical sizes and processing power. Pro-
cessors range from 4-bit to 32-bit architectures. Microcontrollers tend to be much 
slower than microprocessors, typically operating in the MHz range rather than the 
GHz speeds of microprocessors. Another typical feature of a microcontroller is that 
it does not provide for human interaction. The microcontroller is programmed for a 
specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of 
embedded systems, and a quite numerous subset, is referred to as deeply embed-
ded systems. Although this term is widely used in the technical and commercial 
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literature, you will search the Internet in vain (or at least I did) for a straightfor-
ward definition. Generally, we can say that a deeply embedded system has a proces-
sor whose behavior is difficult to observe both by the programmer and the user.  
A deeply embedded system uses a microcontroller rather than a microprocessor, is 
not programmable once the program logic for the device has been burned into ROM 
( read-  only memory), and has no interaction with a user.

Deeply embedded systems are dedicated,  single-  purpose devices that detect 
something in the environment, perform a basic level of processing, and then do some-
thing with the results. Deeply embedded systems often have wireless capability and 
appear in networked configurations, such as networks of sensors deployed over a large 
area (e.g., factory, agricultural field). The Internet of things depends heavily on deeply 
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.

 1.6 arm architecture

The ARM architecture refers to a processor architecture that has evolved from 
RISC design principles and is used in embedded systems. Chapter  15 examines 
RISC design principles in detail. In this section, we give a brief overview of the 
ARM architecture.
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ARM Evolution

ARM is a family of  RISC-  based microprocessors and microcontrollers designed by 
ARM Holdings, Cambridge, England. The company doesn’t make processors but 
instead designs microprocessor and multicore architectures and licenses them to man-
ufacturers. Specifically, ARM Holdings has two types of licensable products: proces-
sors and processor architectures. For processors, the customer buys the rights to use 
 ARM-  supplied design in their own chips. For a processor architecture, the customer 
buys the rights to design their own processor compliant with ARM’s architecture.

ARM chips are  high-  speed processors that are known for their small die size 
and low power requirements. They are widely used in smartphones and other hand-
held devices, including game systems, as well as a large variety of consumer prod-
ucts. ARM chips are the processors in Apple’s popular iPod and iPhone devices, 
and are used in virtually all Android smartphones as well. ARM is probably the 
most widely used embedded processor architecture and indeed the most widely 
used processor architecture of any kind in the world [VANC14].

The origins of ARM technology can be traced back to the  British-  based Acorn 
Computers company. In the early 1980s, Acorn was awarded a contract by the Brit-
ish Broadcasting Corporation (BBC) to develop a new microcomputer architecture 
for the BBC Computer Literacy Project. The success of this contract enabled Acorn 
to go on to develop the first commercial RISC processor, the Acorn RISC Machine 
(ARM). The first version, ARM1, became operational in 1985 and was used for 
internal research and development as well as being used as a coprocessor in the 
BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual 
fabrication of the processor chips. VLSI was licensed to market the chip on its own 
and had some success in getting other companies to use the ARM in their products, 
particularly as an embedded processor.

The ARM design matched a growing commercial need for a  high-  performance, 
 low-  power-  consumption,  small-  size, and  low-  cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities. 
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Com-
puter as founding partners, known as ARM Ltd. The Acorn RISC Machine became 
Advanced RISC Machines.12

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of 
the processor and efficient execution. All instructions are 32 bits long and follow a 
regular format. This makes the ARM ISA suitable for implementation over a wide 
range of products.

Augmenting the basic ARM ISA is the Thumb instruction set, which is a  re- 
 encoded subset of the ARM instruction set. Thumb is designed to increase the per-
formance of ARM implementations that use a 16-bit or narrower memory data bus, 

12The company dropped the designation Advanced RISC Machines in the late 1990s. It is now simply 
known as the ARM architecture.
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and to allow better code density than provided by the ARM instruction set. The 
Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded 
into 16-bit instructions. The current defined version is  Thumb-  2.

The ARM and  Thumb-  2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related tech-
nologies, but the bulk of their product line is the Cortex family of microprocessor 
architectures. There are three Cortex architectures, conveniently labeled with the 
initials A, R, and M.

 cortex-  a/ cortex-  a50 The  Cortex-  A and  Cortex-  A50 are application 
processors, intended for mobile devices such as smartphones and eBook readers, 
as well as consumer devices such as digital TV and home gateways (e.g., DSL and 
cable Internet modems). These processors run at higher clock frequency (over  
1 GHz), and support a memory management unit (MMU), which is required for full 
feature OSs such as Linux, Android, MS Windows, and mobile OSs. An MMU is 
a hardware module that supports virtual memory and paging by translating virtual 
addresses into physical addresses; this topic is explored in Chapter 8.

The two architectures use both the ARM and  Thumb-  2 instruction sets; the 
principal difference is that the  Cortex-  A is a 32-bit machine, and the  Cortex-  A50 is 
a 64-bit machine.

 cortex-  r The  Cortex-  R is designed to support  real-  time applications, in which 
the timing of events needs to be controlled with rapid response to events. They can 
run at a fairly high clock frequency (e.g., 200MHz to 800MHz) and have very low 
response latency. The  Cortex-  R includes enhancements both to the instruction set 
and to the processor organization to support deeply embedded  real-  time devices. 
Most of these processors do not have MMU; the limited data requirements and 
the limited number of simultaneous processes eliminates the need for elaborate 
hardware and software support for virtual memory. The  Cortex-  R does have a 
Memory Protection Unit (MPU), cache, and other memory features designed for 
industrial applications. An MPU is a hardware module that prohibits one program 
in memory from accidentally accessing memory assigned to another active program. 
Using various methods, a protective boundary is created around the program, and 
instructions within the program are prohibited from referencing data outside of that 
boundary.

Examples of embedded systems that would use the  Cortex-  R are automotive 
braking systems, mass storage controllers, and networking and printing devices.

 cortex-  m  Cortex-  M series processors have been developed primarily for the 
microcontroller domain where the need for fast, highly deterministic interrupt 
management is coupled with the desire for extremely low gate count and 
lowest possible power consumption. As with the  Cortex-  R series, the  Cortex-  M 
architecture has an MPU but no MMU. The  Cortex-  M uses only the  Thumb-  2 
instruction set. The market for the  Cortex-  M includes IoT devices, wireless 
sensor/actuator networks used in factories and other enterprises, automotive 
body electronics, and so on.
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There are currently four versions of the  Cortex-  M series:

 ■  Cortex-  M0: Designed for 8- and 16-bit applications, this model emphasizes low 
cost, ultra low power, and simplicity. It is optimized for small silicon die size 
(starting from 12k gates) and use in the lowest cost chips.

 ■  Cortex-  M0+: An enhanced version of the M0 that is more energy efficient.
 ■  Cortex-  M3: Designed for 16- and 32-bit applications, this model emphasizes 

performance and energy efficiency. It also has comprehensive debug and trace 
features to enable software developers to develop their applications quickly.

 ■  Cortex-  M4: This model provides all the features of the  Cortex-  M3, with addi-
tional instructions to support digital signal processing tasks.

In this text, we will primarily use the ARM  Cortex-  M3 as our example embed-
ded system processor. It is the best suited of all ARM models for  general-  purpose 
microcontroller use. The  Cortex-  M3 is used by a variety of manufacturers of micro-
controller products. Initial microcontroller devices from lead partners already 
combine the  Cortex-  M3 processor with flash, SRAM, and multiple peripherals to 
provide a competitive offering at the price of just $1.

Figure 1.16 provides a block diagram of the EFM32 microcontroller from Sil-
icon Labs. The figure also shows detail of the  Cortex-  M3 processor and core com-
ponents. We examine each level in turn.

The  Cortex-  M3 core makes use of separate buses for instructions and data. 
This arrangement is sometimes referred to as a Harvard architecture, in contrast 
with the von Neumann architecture, which uses the same signal buses and mem-
ory for both instructions and data. By being able to read both an instruction and 
data from memory at the same time, the  Cortex-  M3 processor can perform many 
operations in parallel, speeding application execution. The core contains a decoder 
for Thumb instructions, an advanced ALU with support for hardware multiply and 
divide, control logic, and interfaces to the other components of the processor. In 
particular, there is an interface to the nested vector interrupt controller (NVIC) and 
the embedded trace macrocell (ETM) module.

The core is part of a module called the  Cortex-  M3 processor. This term is 
somewhat misleading, because typically in the literature, the terms core and pro-
cessor are viewed as equivalent. In addition to the core, the processor includes the 
following elements:

 ■ NVIC: Provides configurable interrupt handling abilities to the processor. It 
facilitates  low-  latency exception and interrupt handling, and controls power 
management.

 ■ ETM: An optional debug component that enables reconstruction of program 
execution. The ETM is designed to be a  high-  speed,  low-  power debug tool 
that only supports instruction trace.

 ■ Debug access port (DAP): This provides an interface for external debug 
access to the processor.

 ■ Debug logic: Basic debug functionality includes processor halt,  single-  step, 
processor core register access, unlimited software breakpoints, and full system 
memory access.
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 ■ ICode interface: Fetches instructions from the code memory space.
 ■ SRAM & peripheral interface: Read/write interface to data memory and 

peripheral devices.
 ■ Bus matrix: Connects the core and debug interfaces to external buses on the 

microcontroller.
 ■ Memory protection unit: Protects critical data used by the operating system 

from user applications, separating processing tasks by disallowing access 
to each other’s data, disabling access to memory regions, allowing memory 
regions to be defined as  read-  only, and detecting unexpected memory accesses 
that could potentially break the system.

The upper part of Figure 1.16 shows the block diagram of a typical micro-
controller built with the  Cortex-  M3, in this case the EFM32 microcontroller. This 
microcontroller is marketed for use in a wide variety of devices, including energy, 
gas, and water metering; alarm and security systems; industrial automation devices; 
home automation devices; smart accessories; and health and fitness devices. The sil-
icon chip consists of 10 main areas:13

 ■ Core and memory: This region includes the  Cortex-  M3 processor, static RAM 
(SRAM) data memory,14 and flash memory15 for storing program instructions 
and nonvarying application data. Flash memory is nonvolatile (data is not lost 
when power is shut off) and so is ideal for this purpose. The SRAM stores 
variable data. This area also includes a debug interface, which makes it easy to 
reprogram and update the system in the field.

 ■ Parallel I/O ports: Configurable for a variety of parallel I/O schemes.
 ■ Serial interfaces: Supports various serial I/O schemes.
 ■ Analog interfaces:  Analog-  to-  digital and  digital-  to-  analog logic to support 

sensors and actuators.
 ■ Timers and triggers: Keeps track of timing and counts events, generates out-

put waveforms, and triggers timed actions in other peripherals.
 ■ Clock management: Controls the clocks and oscillators on the chip. Multiple 

clocks and oscillators are used to minimize power consumption and provide 
short startup times.

 ■ Energy management: Manages the various  low-  energy modes of operation of 
the processor and peripherals to provide  real-  time management of the energy 
needs so as to minimize energy consumption.

 ■ Security: The chip includes a hardware implementation of the Advanced 
Encryption Standard (AES).

13This discussion does not go into details about all of the individual modules; for the interested reader, an 
 in-  depth discussion is provided in the document EFM32G200.pdf, available at box.com/COA10e.
14Static RAM (SRAM) is a form of  random-  access memory used for cache memory; see Chapter 5.
15Flash memory is a versatile form of memory used both in microcontrollers and as external memory; it 
is discussed in Chapter 6.
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 ■ 32-bit bus: Connects all of the components on the chip.
 ■ Peripheral bus: A network which lets the different peripheral module commu-

nicate directly with each other without involving the processor. This supports 
 timing-  critical operation and reduces software overhead.

Comparing Figure 1.16 with Figure 1.2, you will see many similarities and 
the same general hierarchical structure. Note, however, that the top level of a 
microcontroller computer system is a single chip, whereas for a multicore com-
puter, the top level is a motherboard containing a number of chips. Another note-
worthy difference is that there is no cache, neither in the  Cortex-  M3 processor 
nor in the microcontroller as a whole, which plays an important role if the code or 
data resides in external memory. Though the number of cycles to read the instruc-
tion or data varies depending on cache hit or miss, the cache greatly improves the 
performance when external memory is used. Such overhead is not needed for a 
microcontroller.

 1.7 clOud cOmputing

Although the general concepts for cloud computing go back to the 1950s, cloud 
computing services first became available in the early 2000s, particularly targeted 
at large enterprises. Since then, cloud computing has spread to small and medium 
size businesses, and most recently to consumers. Apple’s iCloud was launched in 
2012 and had 20 million users within a week of launch. Evernote, the  cloud-  based 
notetaking and archiving service, launched in 2008, approached 100 million users 
in less than 6 years. In this section, we provide a brief overview. Cloud computing is 
examined in more detail in Chapter 17.

Basic Concepts

There is an increasingly prominent trend in many organizations to move a substantial 
portion or even all information technology (IT) operations to an  Internet-  connected 
infrastructure known as enterprise cloud computing. At the same time, individual 
users of PCs and mobile devices are relying more and more on cloud computing 
services to backup data, synch devices, and share, using personal cloud computing. 
NIST defines cloud computing, in NIST  SP-  800-145 (The NIST Definition of Cloud 
Computing), as follows:

Cloud computing: A model for enabling ubiquitous, convenient,  on-  demand network 
access to a shared pool of configurable computing resources (e.g., networks, servers, 
storage, applications, and services) that can be rapidly provisioned and released with 
minimal management effort or service provider interaction.

Basically, with cloud computing, you get economies of scale, professional 
network management, and professional security management. These features can 
be attractive to companies large and small, government agencies, and individual 
PC and mobile users. The individual or company only needs to pay for the storage 
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capacity and services they need. The user, be it company or individual, doesn’t have 
the hassle of setting up a database system, acquiring the hardware they need, doing 
maintenance, and backing up the  data—  all these are part of the cloud service.

In theory, another big advantage of using cloud computing to store your data 
and share it with others is that the cloud provider takes care of security. Alas, the 
customer is not always protected. There have been a number of security failures 
among cloud providers. Evernote made headlines in early 2013 when it told all of its 
users to reset their passwords after an intrusion was discovered.

Cloud networking refers to the networks and network management function-
ality that must be in place to enable cloud computing. Most cloud computing solu-
tions rely on the Internet, but that is only a piece of the networking infrastructure. 
One example of cloud networking is the provisioning of  high-  performance and/or 
 high-  reliability networking between the provider and subscriber. In this case, some 
or all of the traffic between an enterprise and the cloud bypasses the Internet and 
uses dedicated private network facilities owned or leased by the cloud service pro-
vider. More generally, cloud networking refers to the collection of network capa-
bilities required to access a cloud, including making use of specialized services over 
the Internet, linking enterprise data centers to a cloud, and using firewalls and other 
network security devices at critical points to enforce access security policies.

We can think of cloud storage as a subset of cloud computing. In essence, cloud 
storage consists of database storage and database applications hosted remotely on 
cloud servers. Cloud storage enables small businesses and individual users to take 
advantage of data storage that scales with their needs and to take advantage of a 
variety of database applications without having to buy, maintain, and manage the 
storage assets.

Cloud Services

The essential purpose of cloud computing is to provide for the convenient rental 
of computing resources. A cloud service provider (CSP) maintains computing and 
data storage resources that are available over the Internet or private networks. 
Customers can rent a portion of these resources as needed. Virtually all cloud ser-
vice is provided using one of three models (Figure 1.17): SaaS, PaaS, and IaaS, which 
we examine in this section.

software as a service (saas) As the name implies, a SaaS cloud provides 
service to customers in the form of software, specifically application software, 
running on and accessible in the cloud. SaaS follows the familiar model of Web 
services, in this case applied to cloud resources. SaaS enables the customer to use 
the cloud provider’s applications running on the provider’s cloud infrastructure. The 
applications are accessible from various client devices through a simple interface 
such as a Web browser. Instead of obtaining desktop and server licenses for 
software products it uses, an enterprise obtains the same functions from the cloud 
service. SaaS saves the complexity of software installation, maintenance, upgrades, 
and patches. Examples of services at this level are Gmail, Google’s  e-  mail service, 
and Salesforce.com, which help firms keep track of their customers.

Common subscribers to SaaS are organizations that want to provide their 
employees with access to typical office productivity software, such as document 
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management and email. Individuals also commonly use the SaaS model to acquire 
cloud resources. Typically, subscribers use specific applications on demand. The 
cloud provider also usually offers  data-  related features such as automatic backup 
and data sharing between subscribers.

platform as a service (paas) A PaaS cloud provides service to customers in 
the form of a platform on which the customer’s applications can run. PaaS enables 
the customer to deploy onto the cloud infrastructure containing  customer-  created 
or acquired applications. A PaaS cloud provides useful software building blocks, 
plus a number of development tools, such as programming languages,  run-  time 
environments, and other tools that assist in deploying new applications. In effect, 
PaaS is an operating system in the cloud. PaaS is useful for an organization that 
wants to develop new or tailored applications while paying for the needed computing 
resources only as needed and only for as long as needed. Google App Engine and 
the Salesforce1 Platform from Salesforce.com are examples of PaaS.
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infrastructure as a service (iaas) With IaaS, the customer has access to the 
underlying cloud infrastructure. IaaS provides virtual machines and other abstracted 
hardware and operating systems, which may be controlled through a service 
application programming interface (API). IaaS offers the customer processing, 
storage, networks, and other fundamental computing resources so that the customer 
is able to deploy and run arbitrary software, which can include operating systems 
and applications. IaaS enables customers to combine basic computing services, 
such as number crunching and data storage, to build highly adaptable computer 
systems. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2) and 
Windows Azure.

 1.8 Key termS, review QueStiOnS, and prOBlemS

Key Terms

application processor
arithmetic and logic unit 

(ALU)
ARM
central processing unit  

(CPU)
chip
cloud computing
cloud networking
cloud storage
computer architecture
computer organization
control unit
core
dedicated processor
deeply embedded system
embedded system

gate
infrastructure as a service 

(IaaS)
 input–  output (I/O)
instruction set architecture 

(ISA)
integrated circuit
Intel x86
Internet of things (IoT)
main memory
memory cell
memory management unit 

(MMU)
memory protection unit  

(MPU)
microcontroller
microelectronics

microprocessor
motherboard
multicore
multicore processor
original equipment  

manufacturer (OEM)
platform as a service  

(PaaS)
printed circuit board
processor
registers
semiconductor
semiconductor memory
software as a service (SaaS)
system bus
system interconnection
vacuum tubes

Review Questions

 1.1 What, in general terms, is the distinction between computer organization and com-
puter architecture?

 1.2 What, in general terms, is the distinction between computer structure and computer 
function?

 1.3 What are the four main functions of a computer?
 1.4 List and briefly define the main structural components of a computer.
 1.5 List and briefly define the main structural components of a processor.
 1.6 What is a stored program computer?
 1.7 Explain Moore’s law.
 1.8 List and explain the key characteristics of a computer family.
 1.9 What is the key distinguishing feature of a microprocessor?
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Problems

 1.1 You are to write an IAS program to compute the results of the following equation.

Y = a
N

X = 1
X

Assume that the computation does not result in an arithmetic overflow and that X, Y, 
and N are positive integers with N ≥ 1. Note: The IAS did not have assembly language, 
only machine language.

a. Use the equation Sum(Y) =
N(N + 1)

2
 when writing the IAS program.

b. Do it the “hard way,” without using the equation from part (a).
 1.2 a.  On the IAS, what would the machine code instruction look like to load the con-

tents of memory address 2 to the accumulator?
  b.  How many trips to memory does the CPU need to make to complete this instruc-

tion during the instruction cycle?
 1.3 On the IAS, describe in English the process that the CPU must undertake to read a 

value from memory and to write a value to memory in terms of what is put into the 
MAR, MBR, address bus, data bus, and control bus.

 1.4 Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB

08B 010FA0F08D

08C 020FA210FB

show the assembly language code for the program, starting at address 08A. Explain 
what this program does.

 1.5 In Figure 1.6, indicate the width, in bits, of each data path (e.g., between AC and ALU).
 1.6 In the IBM 360 Models 65 and 75, addresses are staggered in two separate main mem-

ory units (e.g., all  even-  numbered words in one unit and all  odd-  numbered words in 
another). What might be the purpose of this technique?

 1.7 The relative performance of the IBM 360 Model 75 is 50 times that of the 360 Model 
30, yet the instruction cycle time is only 5 times as fast. How do you account for this 
discrepancy?

 1.8 While browsing at Billy Bob’s computer store, you overhear a customer asking Billy 
Bob what is the fastest computer in the store that he can buy. Billy Bob replies, “You’re 
looking at our Macintoshes. The fastest Mac we have runs at a clock speed of 1.2 GHz. 
If you really want the fastest machine, you should buy our 2.4-GHz Intel Pentium IV 
instead.” Is Billy Bob correct? What would you say to help this customer?

 1.9 The ENIAC, a precursor to the ISA machine, was a decimal machine, in which each 
register was represented by a ring of 10 vacuum tubes. At any time, only one vacuum 
tube was in the ON state, representing one of the 10 decimal digits. Assuming that 
ENIAC had the capability to have multiple vacuum tubes in the ON and OFF state 
simultaneously, why is this representation “wasteful” and what range of integer values 
could we represent using the 10 vacuum tubes?

 1.10 For each of the following examples, determine whether this is an embedded system, 
explaining why or why not.
a. Are programs that understand physics and/or hardware embedded? For example, 

one that uses  finite-  element methods to predict fluid flow over airplane wings?
b. Is the internal microprocessor controlling a disk drive an example of an embedded 

system?



44  Chapter 1 / BasiC ConCepts and Computer evolution 

c. I/O drivers control hardware, so does the presence of an I/O driver imply that the 
computer executing the driver is embedded?

d. Is a PDA (Personal Digital Assistant) an embedded system?
e. Is the microprocessor controlling a cell phone an embedded system?
f. Are the computers in a big  phased-  array radar considered embedded? These 

radars are 10-story buildings with one to three 100-foot diameter radiating patches 
on the sloped sides of the building.

g. Is a traditional flight management system (FMS) built into an airplane cockpit 
considered embedded?

h. Are the computers in a  hardware-  in-  the-  loop (HIL) simulator embedded?
i. Is the computer controlling a pacemaker in a person’s chest an embedded 

computer?
j. Is the computer controlling fuel injection in an automobile engine embedded?
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This chapter addresses the issue of computer system performance. We begin with a 
consideration of the need for balanced utilization of computer resources, which pro-
vides a perspective that is useful throughout the book. Next we look at contemporary 
computer organization designs intended to provide performance to meet current 
and projected demand. Finally, we look at tools and models that have been devel-
oped to provide a means of assessing comparative computer system performance.

 2.1 Designing for Performance

Year by year, the cost of computer systems continues to drop dramatically, while the 
performance and capacity of those systems continue to rise equally dramatically. 
Today’s laptops have the computing power of an IBM mainframe from 10 or 15 
years ago. Thus, we have virtually “free” computer power. Processors are so inexpen-
sive that we now have microprocessors we throw away. The digital pregnancy test is 
an example (used once and then thrown away). And this continuing technological 
revolution has enabled the development of applications of astounding complex-
ity and power. For example, desktop applications that require the great power of 
today’s microprocessor-based systems include

 ■ Image processing
 ■ Three-dimensional rendering
 ■ Speech recognition
 ■ Videoconferencing
 ■ Multimedia authoring
 ■ Voice and video annotation of files
 ■ Simulation modeling

Workstation systems now support highly sophisticated engineering and scientific 
applications and have the capacity to support image and video applications. In addi-
tion, businesses are relying on increasingly powerful servers to handle transaction 
and database processing and to support massive client/server networks that have 
replaced the huge mainframe computer centers of yesteryear. As well, cloud service 

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the key performance issues that relate to computer design.
 r Explain the reasons for the move to multicore organization, and understand 
the trade-off between cache and processor resources on a single chip.

 r Distinguish among multicore, MIC, and GPGPU organizations.
 r Summarize some of the issues in computer performance assessment.
 r Discuss the SPEC benchmarks.
 r Explain the differences among arithmetic, harmonic, and geometric means.
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providers use massive high-performance banks of servers to satisfy high-volume, 
high-transaction-rate applications for a broad spectrum of clients.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s 
computer miracles are virtually the same as those of the IAS computer from over 
50 years ago, while on the other hand, the techniques for squeezing the maximum 
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this 
book. As we progress through the various elements and components of a computer, 
two objectives are pursued. First, the book explains the fundamental functionality 
in each area under consideration, and second, the book explores those techniques 
required to achieve maximum performance. In the remainder of this section, we 
highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling 
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, described in Chapter 1. So 
long as this law holds, chipmakers can unleash a new generation of chips every three 
years—with four times as many transistors. In memory chips, this has quadrupled 
the capacity of dynamic random-access memory (DRAM), still the basic technology 
for computer main memory, every three years. In microprocessors, the addition of 
new circuits, and the speed boost that comes from reducing the distances between 
them, has improved performance four- or fivefold every three years or so since Intel 
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless 
it is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate 
chips of greater and greater density, the processor designers must come up with 
ever more elaborate techniques for feeding the monster. Among the techniques 
built into contemporary processors are the following:

 ■ Pipelining: The execution of an instruction involves multiple stages of oper-
ation, including fetching the instruction, decoding the opcode, fetching oper-
ands, performing a calculation, and so on. Pipelining enables a processor to 
work simultaneously on multiple instructions by performing a different phase 
for each of the multiple instructions at the same time. The processor over-
laps operations by moving data or instructions into a conceptual pipe with all 
stages of the pipe processing simultaneously. For example, while one instruc-
tion is being executed, the computer is decoding the next instruction. This is 
the same principle as seen in an assembly line.

 ■ Branch prediction: The processor looks ahead in the instruction code fetched 
from memory and predicts which branches, or groups of instructions, are 
likely to be processed next. If the processor guesses right most of the time, it 
can prefetch the correct instructions and buffer them so that the processor is 
kept busy. The more sophisticated examples of this strategy predict not just 
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the next branch but multiple branches ahead. Thus, branch prediction poten-
tially increases the amount of work available for the processor to execute.

 ■ Superscalar execution: This is the ability to issue more than one instruction 
in every processor clock cycle. In effect, multiple parallel pipelines are used.

 ■ Data flow analysis: The processor analyzes which instructions are dependent 
on each other’s results, or data, to create an optimized schedule of instruc-
tions. In fact, instructions are scheduled to be executed when ready, independ-
ent of the original program order. This prevents unnecessary delay.

 ■ Speculative execution: Using branch prediction and data flow analysis, some 
processors speculatively execute instructions ahead of their actual appearance 
in the program execution, holding the results in temporary locations. This ena-
bles the processor to keep its execution engines as busy as possible by execut-
ing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer 
power of the processor. Collectively they make it possible to execute many instruc-
tions per processor cycle, rather than to take many cycles per instruction.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance 
balance: an adjustment/tuning of the organization and architecture to compensate 
for the mismatch among the capabilities of the various components.

The problem created by such mismatches is particularly critical at the inter-
face between processor and main memory. While processor speed has grown rap-
idly, the speed with which data can be transferred between main memory and the 
processor has lagged badly. The interface between processor and main memory is 
the most crucial pathway in the entire computer because it is responsible for carry-
ing a constant flow of program instructions and data between memory chips and the 
processor. If memory or the pathway fails to keep pace with the processor’s insist-
ent demands, the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which 
are reflected in contemporary computer designs. Consider the following examples:

 ■ Increase the number of bits that are retrieved at one time by making DRAMs 
“wider” rather than “deeper” and by using wide bus data paths.

 ■ Change the DRAM interface to make it more efficient by including a cache1 
or other buffering scheme on the DRAM chip.

 ■ Reduce the frequency of memory access by incorporating increasingly com-
plex and efficient cache structures between the processor and main memory. 
This includes the incorporation of one or more caches on the processor chip as 
well as on an off-chip cache close to the processor chip.

1A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that 
accesses the larger memory. The cache holds recently accessed data and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.
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 ■ Increase the interconnect bandwidth between processors and memory by using 
higher-speed buses and a hierarchy of buses to buffer and structure data flow.

Another area of design focus is the handling of I/O devices. As computers 
become faster and more capable, more sophisticated applications are developed 
that support the use of peripherals with intensive I/O demands. Figure 2.1 gives 
some examples of typical peripheral devices in use on personal computers and 
workstations. These devices create tremendous data throughput demands. While 
the current generation of processors can handle the data pumped out by these 
devices, there remains the problem of getting that data moved between processor 
and peripheral. Strategies here include caching and buffering schemes plus the use 
of higher-speed interconnection buses and more elaborate interconnection struc-
tures. In addition, the use of multiple-processor configurations can aid in satisfying 
I/O demands.

The key in all this is balance. Designers constantly strive to balance the 
throughput and processing demands of the processor components, main memory, 
I/O devices, and the interconnection structures. This design must constantly be 
rethought to cope with two constantly evolving factors:

 ■ The rate at which performance is changing in the various technology areas 
(processor, buses, memory, peripherals) differs greatly from one type of ele-
ment to another.

 ■ New applications and new peripheral devices constantly change the nature of 
the demand on the system in terms of typical instruction profile and the data 
access patterns.

101 102 103 104 105 106 107 108 109 1010 1011

Data Rate (bps)

Graphics display

Ethernet modem
(max speed)

Wi-Fi modem
(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse

Keyboard

Figure 2.1 Typical I/O Device Data Rates



50  Chapter 2 / performanCe Issues

Thus, computer design is a constantly evolving art form. This book attempts to 
present the fundamentals on which this art form is based and to present a survey of 
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with 
that of main memory and other computer components, the need to increase pro-
cessor speed remains. There are three approaches to achieving increased processor 
speed:

 ■ Increase the hardware speed of the processor. This increase is fundamentally 
due to shrinking the size of the logic gates on the processor chip, so that more 
gates can be packed together more tightly and to increasing the clock rate. 
With gates closer together, the propagation time for signals is significantly 
reduced, enabling a speeding up of the processor. An increase in clock rate 
means that individual operations are executed more rapidly.

 ■ Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor 
chip itself to the cache, cache access times drop significantly.

 ■ Make changes to the processor organization and architecture that increase the 
effective speed of instruction execution. Typically, this involves using parallel-
ism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases 
in clock speed due and logic density. However, as clock speed and logic density 
increase, a number of obstacles become more significant [INTE04]:

 ■ Power: As the density of logic and the clock speed on a chip increase, so does 
the power density (Watts/cm2). The difficulty of dissipating the heat generated 
on high-density, high-speed chips is becoming a serious design issue [GIBB04, 
BORK03].

 ■ RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting 
them; specifically, delay increases as the RC product increases. As components 
on the chip decrease in size, the wire interconnects become thinner, increasing 
resistance. Also, the wires are closer together, increasing capacitance.

 ■ Memory latency and throughput: Memory access speed (latency) and transfer 
speed (throughput) lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural 
approaches to improving performance. These techniques are discussed in later 
chapters of the text.

Beginning in the late 1980s, and continuing for about 15 years, two main strat-
egies have been used to increase performance beyond what can be achieved simply 
by increasing clock speed. First, there has been an increase in cache capacity. There 
are now typically two or three levels of cache between the processor and main mem-
ory. As chip density has increased, more of the cache memory has been incorpor-
ated on the chip, enabling faster cache access. For example, the original Pentium 
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chip devoted about 10% of on-chip area to a cache. Contemporary chips devote 
over half of the chip area to caches. And, typically, about three-quarters of the 
other half is for pipeline-related control and buffering.

Second, the instruction execution logic within a processor has become increas-
ingly complex to enable parallel execution of instructions within the processor. Two 
noteworthy design approaches have been pipelining and superscalar. A pipeline 
works much as an assembly line in a manufacturing plant enabling different stages 
of execution of different instructions to occur at the same time along the pipeline. A 
superscalar approach in essence allows multiple pipelines within a single processor, 
so that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of 
diminishing returns. The internal organization of contemporary processors is 
exceedingly complex and is able to squeeze a great deal of parallelism out of the 
instruction stream. It seems likely that further significant increases in this direction 
will be relatively modest [GIBB04]. With three levels of cache on the processor 
chip, each level providing substantial capacity, it also seems that the benefits from 
the cache are reaching a limit.

However, simply relying on increasing clock rate for increased performance 
runs into the power dissipation problem already referred to. The faster the clock 
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

Figure 2.2 illustrates the concepts we have been discussing.2 The top line shows 
that, as per Moore’s Law, the number of transistors on a single chip continues to 

2I am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.
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grow exponentially.3 Meanwhile, the clock speed has leveled off, in order to prevent 
a further rise in power. To continue increasing performance, designers have had to 
find ways of exploiting the growing number of transistors other than simply building 
a more complex processor. The response in recent years has been the development 
of the multicore computer chip.

 2.2 multicore, mics, anD gPgPus

With all of the difficulties cited in the preceding section in mind, designers have 
turned to a fundamentally new approach to improving performance: placing multiple 
processors on the same chip, with a large shared cache. The use of multiple proces-
sors on the same chip, also referred to as multiple cores, or multicore, provides the 
potential to increase performance without increasing the clock rate. Studies indicate 
that, within a processor, the increase in performance is roughly proportional to the 
square root of the increase in complexity [BORK03]. But if the software can support 
the effective use of multiple processors, then doubling the number of processors 
almost doubles performance. Thus, the strategy is to use two simpler processors on 
the chip rather than one more complex processor.

In addition, with two processors, larger caches are justified. This is important 
because the power consumption of memory logic on a chip is much less than that of 
processing logic.

As the logic density on chips continues to rise, the trend for both more cores 
and more cache on a single chip continues. Two-core chips were quickly followed 
by four-core chips, then 8, then 16, and so on. As the caches became larger, it made 
performance sense to create two and then three levels of cache on a chip, with ini-
tially, the first-level cache dedicated to an individual processor and levels two and 
three being shared by all the processors. It is now common for the second-level 
cache to also be private to each core.

Chip manufacturers are now in the process of making a huge leap forward in 
the number of cores per chip, with more than 50 cores per chip. The leap in perform-
ance as well as the challenges in developing software to exploit such a large number 
of cores has led to the introduction of a new term: many integrated core (MIC).

The multicore and MIC strategy involves a homogeneous collection of general- 
purpose processors on a single chip. At the same time, chip manufacturers are 
 pursuing another design option: a chip with multiple general-purpose processors 
plus graphics processing units (GPUs) and specialized cores for video processing 
and other tasks. In broad terms, a GPU is a core designed to perform parallel oper-
ations on graphics data. Traditionally found on a plug-in graphics card (display 
adapter), it is used to encode and render 2D and 3D graphics as well as process 
video.

Since GPUs perform parallel operations on multiple sets of data, they are 
increasingly being used as vector processors for a variety of applications that 
require repetitive computations. This blurs the line between the GPU and the CPU 

3The observant reader will note that the transistor count values in this figure are significantly less than 
those of Figure 1.12. That latter figure shows the transistor count for a form of main memory known as 
DRAM (discussed in Chapter 5), which supports higher transistor density than processor chips.
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[AROR12, FATA08, PROP11]. When a broad range of applications are supported by 
such a processor, the term general-purpose computing on GPUs (GPGPU) is used.

We explore design characteristics of multicore computers in Chapter 18 and 
GPGPUs in Chapter 19.

 2.3 two laws that ProviDe insight: ahmDahl’s law 
anD little’s law

In this section, we look at two equations, called “laws.” The two laws are unrelated  
but both provide insight into the performance of parallel systems and multicore systems.

Amdahl’s Law

Computer system designers look for ways to improve system performance by 
advances in technology or change in design. Examples include the use of parallel 
processors, the use of a memory cache hierarchy, and speedup in memory access 
time and I/O transfer rate due to technology improvements. In all of these cases, it is 
important to note that a speedup in one aspect of the technology or design does not 
result in a corresponding improvement in performance. This limitation is succinctly 
expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 ([AMDA67], 
[AMDA13]) and deals with the potential speedup of a program using multiple pro-
cessors compared to a single processor. Consider a program running on a single 
processor such that a fraction (1 - f) of the execution time involves code that is 
inherently sequential, and a fraction f that involves code that is infinitely paralleliz-
able with no scheduling overhead. Let T be the total execution time of the program 
using a single processor. Then the speedup using a parallel processor with N pro-
cessors that fully exploits the parallel portion of the program is as follows:

 Speedup =
Time  to  execute  program  on  a  single  processor

Time  to  execute  program  on  N  parallel  processors

  =
T(1 - f ) + Tf

T(1 - f ) +
Tf

N

=
1

(1 - f ) +
f

N

This equation is illustrated in Figures 2.3 and 2.4. Two important conclusions 
can be drawn:

1. When f is small, the use of parallel processors has little effect.

2. As N approaches infinity, speedup is bound by 1/(1 - f ), so that there are 
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in 
[GUST88]. For example, a server can maintain multiple threads or multiple tasks 
to handle multiple clients and execute the threads or tasks in parallel up to the 
limit of the number of processors. Many database applications involve computa-
tions on massive amounts of data that can be split up into multiple parallel tasks. 
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Nevertheless, Amdahl’s law illustrates the problems facing industry in the develop-
ment of multicore machines with an ever-growing number of cores: The software 
that runs on such machines must be adapted to a highly parallel execution environ-
ment to exploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that 
results in a speedup. The speedup can be expressed as

Speedup =
Performance after enhancement

Performance before enhancement
=

Execution time before enhancement
Execution time after enhancement

 

 (2.1)

T

(1 – f )T 
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N

1 f 1
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N
T

Figure 2.3 Illustration of Amdahl’s Law
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Suppose that a feature of the system is used during execution a fraction of the 
time f, before enhancement, and that the speedup of that feature after enhancement 
is SUf. Then the overall speedup of the system is

Speedup =
1

(1 - f ) +
f

SUf

 ExAMPLE 2.1  Suppose that a task makes extensive use of floating-point operations, 
with 40% of the time consumed by floating-point operations. With a new hardware de-
sign, the floating-point module is sped up by a factor of K. Then the overall speedup is as 
follows:

Speedup =
1

0.6 +
0.4
K

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law [LITT61, 
LITT11].4 We can apply it to almost any system that is statistically in steady state, 
and in which there is no leakage. Specifically, we have a steady state system to which 
items arrive at an average rate of l items per unit time. The items stay in the system 
an average of W units of time. Finally, there is an average of L units in the system at 
any one time. Little’s Law relates these three variables as L = lW.

Using queuing theory terminology, Little’s Law applies to a queuing system. 
The central element of the system is a server, which provides some service to items. 
Items from some population of items arrive at the system to be served. If the server 
is idle, an item is served immediately. Otherwise, an arriving item joins a waiting 
line, or queue. There can be a single queue for a single server, a single queue for 
multiple servers, or multiples queues, one for each of multiple servers. When a ser-
ver has completed serving an item, the item departs. If there are items waiting in 
the queue, one is immediately dispatched to the server. The server in this model can 
represent anything that performs some function or service for a collection of items. 
Examples: A processor provides service to processes; a transmission line provides a 
transmission service to packets or frames of data; and an I/O device provides a read 
or write service for I/O requests.

To understand Little’s formula, consider the following argument, which 
focuses on the experience of a single item. When the item arrives, it will find on 

4The second reference is a retrospective article on his law that Little wrote 50 years after his original 
paper. That must be unique in the history of the technical literature, although Amdahl comes close, with 
a 46-year gap between [AMDA67] and [AMDA13].
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average L items ahead of it, one being serviced and the rest in the queue. When 
the item leaves the system after being serviced, it will leave behind on average the 
same number of items in the system, namely L, because L is defined as the average 
number of items waiting. Further, the average time that the item was in the system 
was W. Since items arrive at a rate of l, we can reason that in the time W, a total of 
lW items must have arrived. Thus w = lW.

To summarize, under steady state conditions, the average number of items in 
a queuing system equals the average rate at which items arrive multiplied by the 
average time that an item spends in the system. This relationship requires very few 
assumptions. We do not need to know what the service time distribution is, what 
the distribution of arrival times is, or the order or priority in which items are served. 
Because of its simplicity and generality, Little’s Law is extremely useful and has 
experienced somewhat of a revival due to the interest in performance problems 
related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might be 
applied. Consider a multicore system, with each core supporting multiple threads 
of execution. At some level, the cores share a common memory. The cores share a 
common main memory and typically share a common cache memory as well. In any 
case, when a thread is executing, it may arrive at a point at which it must retrieve a 
piece of data from the common memory. The thread stops and sends out a request 
for that data. All such stopped threads are in a queue. If the system is being used 
as a server, an analyst can determine the demand on the system in terms of the rate 
of user requests, and then translate that into the rate of requests for data from the 
threads generated to respond to an individual user request. For this purpose, each 
user request is broken down into subtasks that are implemented as threads. We 
then have l = the average rate of total thread processing required after all mem-
bers’ requests have been broken down into whatever detailed subtasks are required. 
Define L as the average number of stopped threads waiting during some relevant 
time. Then W = average response time. This simple model can serve as a guide to 
designers as to whether user requirements are being met and, if not, provide a quan-
titative measure of the amount of improvement needed.

 2.4 Basic measures of comPuter Performance

In evaluating processor hardware and setting requirements for new systems, per-
formance is one of the key parameters to consider, along with cost, size, security, 
reliability, and, in some cases, power consumption.

It is difficult to make meaningful performance comparisons among different 
processors, even among processors in the same family. Raw speed is far less import-
ant than how a processor performs when executing a given application. Unfortu-
nately, application performance depends not just on the raw speed of the processor 
but also on the instruction set, choice of implementation language, efficiency of the 
compiler, and skill of the programming done to implement the application.

In this section, we look at some traditional measures of processor speed. In 
the next section, we examine benchmarking, which is the most common approach 
to assessing processor and computer system performance. The following section 
discusses how to average results from multiple tests.
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Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the 
instruction, performing an arithmetic operation, and so on, are governed by a system 
clock. Typically, all operations begin with the pulse of the clock. Thus, at the most 
fundamental level, the speed of a processor is dictated by the pulse frequency pro-
duced by the clock, measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a 
constant sine wave while power is applied. This wave is converted into a digital 
voltage pulse stream that is provided in a constant flow to the processor circuitry 
(Figure 2.5). For example, a 1-GHz processor receives 1 billion pulses per second. 
The rate of pulses is known as the clock rate, or clock speed. One increment, or 
pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between 
pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical layout 
of the processor. Actions in the processor require signals to be sent from one pro-
cessor element to another. When a signal is placed on a line inside the processor, 
it takes some finite amount of time for the voltage levels to settle down so that an 
accurate value (logical 1 or 0) is available. Furthermore, depending on the physical 
layout of the processor circuits, some signals may change more rapidly than others. 
Thus, operations must be synchronized and paced so that the proper electrical sig-
nal (voltage) values are available for each operation.

The execution of an instruction involves a number of discrete steps, such as 
fetching the instruction from memory, decoding the various portions of the instruc-
tion, loading and storing data, and performing arithmetic and logical operations. 
Thus, most instructions on most processors require multiple clock cycles to com-
plete. Some instructions may take only a few cycles, while others require dozens. In 
addition, when pipelining is used, multiple instructions are being executed simulta-
neously. Thus, a straight comparison of clock speeds on different processors does 
not tell the whole story about performance.
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Figure 2.5 System Clock
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Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a con-
stant cycle time t, where t = 1/f. Define the instruction count, Ic, for a program as 
the number of machine instructions executed for that program until it runs to com-
pletion or for some defined time interval. Note that this is the number of instruction 
executions, not the number of instructions in the object code of the program. An 
important parameter is the average cycles per instruction (CPI) for a program. If all 
instructions required the same number of clock cycles, then CPI would be a constant 
value for a processor. However, on any given processor, the number of clock cycles 
required varies for different types of instructions, such as load, store, branch, and so 
on. Let CPIi be the number of cycles required for instruction type i, and Ii be the 
number of executed instructions of type i for a given program. Then we can calculate 
an overall CPI as follows:

 CPI = a n
i=1(CPIi * Ii)

Ic
 (2.2)

The processor time T needed to execute a given program can be expressed as

T = Ic * CPI * t

We can refine this formulation by recognizing that during the execution of 
an instruction, part of the work is done by the processor, and part of the time a 
word is being transferred to or from memory. In this latter case, the time to transfer 
depends on the memory cycle time, which may be greater than the processor cycle 
time. We can rewrite the preceding equation as

T = Ic * [p + (m * k)] * t

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between 
memory cycle time and processor cycle time. The five performance factors in the 
preceding equation (Ic,  p,  m,  k,  t) are influenced by four system attributes: the 
design of the instruction set (known as instruction set architecture); compiler tech-
nology (how effective the compiler is in producing an efficient machine language 
program from a high-level language program); processor implementation; and 
cache and memory hierarchy. Table 2.1 is a matrix in which one dimension shows 
the five performance factors and the other dimension shows the four system attri-
butes. An X in a cell indicates a system attribute that affects a performance factor.

Table 2.1 Performance Factors and System Attributes

Ic p m k t

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X
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A common measure of performance for a processor is the rate at which 
instructions are executed, expressed as millions of instructions per second (MIPS), 
referred to as the MIPS rate. We can express the MIPS rate in terms of the clock 
rate and CPI as follows:

 MIPS  rate  =
Ic

T * 106 =
f

CPI * 106 (2.3)

 ExAMPLE 2.2  Consider the execution of a program that results in the execution of 
2 million instructions on a 400-MHz processor. The program consists of four major types 
of instructions. The instruction mix and the CPI for each instruction type are given below, 
based on the result of a program trace experiment:

Instruction Type CPI Instruction Mix (%)

Arithmetic and logic 1 60

Load/store with cache hit 2 18

Branch 4 12

Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with the above 
trace results is CPI = 0.6 + (2 * 0.18) + (4 * 0.12) + (8 * 0.1) = 2.24. The corres-
ponding MIPS rate is (400 * 106)/(2.24 * 106) ≈ 178.

Another common performance measure deals only with floating-point instruc-
tions. These are common in many scientific and game applications. Floating-point 
performance is expressed as millions of floating-point operations per second 
(MFLOPS), defined as follows:

MFLOPS  rate =
Number  of  executed  floating - point  operations  in  a  program

Execution  time  * 106

 2.5 calculating the mean

In evaluating some aspect of computer system performance, it is often the case that a 
single number, such as execution time or memory consumed, is used to characterize 
performance and to compare systems. Clearly, a single number can provide only a 
very simplified view of a system’s capability. Nevertheless, and especially in the field 
of benchmarking, single numbers are typically used for performance comparison 
[SMIT88].

As is discussed in Section 2.6, the use of benchmarks to compare systems 
involves calculating the mean value of a set of data points related to execution 
time. It turns out that there are multiple alternative algorithms that can be used 
for calculating a mean value, and this has been the source of some controversy in 
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the benchmarking field. In this section, we define these alternative algorithms and 
comment on some of their properties. This prepares us for a discussion in the next 
section of mean calculation in benchmarking.

The three common formulas used for calculating a mean are arithmetic, geo-
metric, and harmonic. Given a set of n real numbers (x1, x2, …, xn), the three means 
are defined as follows:

Arithmetic mean

 AM =
x1 + g + xn

n
=

1
n a

n

i=1
xi (2.4)

Geometric mean 

 GM = n2x1 * g * xn = aq
n

i=1
xib

1/n

= e
a1

n a
n

i=1
ln(xi)b

 (2.5)

Harmonic mean

 HM =
n

a 1
x1

b + g + a 1
xn

b
=

n

a
n

i=1
a 1

xi
b

  xi 7 0  (2.6)

It can be shown that the following inequality holds:

AM … GM … HM

The values are equal only if x1 = x2 = c   xn.
We can get a useful insight into these alternative calculations by defining the 

functional mean. Let f(x) be a continuous monotonic function defined in the inter-
val 0 … y 6 ∞. The functional mean with respect to the function f(x) for n positive 
real numbers (x1, x2, …, xn) is defined as

Functional mean FM = f -1a f(x1) + g + f(xn)
n

b = f -1a1
n a

n

i=1
f(xi)b

where f -1(x) is the inverse of f(x). The mean values defined in Equations (2.1) 
through (2.3) are special cases of the functional mean, as follows:

 ■ AM is the FM with respect to f(x) = x
 ■ GM is the FM with respect to f(x) = ln x
 ■ HM is the FM with respect to f(x) = 1/x

 ExAMPLE 2.3  Figure 2.6 illustrates the three means applied to various data sets, each 
of which has eleven data points and a maximum data point value of 11. The median value 
is also included in the chart. Perhaps what stands out the most in this figure is that the HM 
has a tendency to produce a misleading result when the data is skewed to larger values or 
when there is a small-value outlier.
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Let us now consider which of these means are appropriate for a given per-
formance measure. As a preface to these remarks, it should be noted that a num-
ber of papers ([CITR06], [FLEM86], [GILA95], [JACO95], [JOHN04], [MASH04], 
[SMIT88]) and books ([HENN12], [HWAN93], [JAIN91], [LILJ00]) over the years 
have argued the pros and cons of the three means for performance analysis and 
come to conflicting conclusions. To simplify a complex controversy, we just note 
that the conclusions reached depend very much on the examples chosen and the 
way in which the objectives are stated.
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Figure 2.6 Comparison of Means on Various Data Sets (each set has a maximum data 
point value of 11)
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Arithmetic Mean

An AM is an appropriate measure if the sum of all the measurements is a meaningful 
and interesting value. The AM is a good candidate for comparing the execution time per-
formance of several systems. For example, suppose we were interested in using a system 
for large-scale simulation studies and wanted to evaluate several alternative products. 
On each system we could run the simulation multiple times with different input val-
ues for each run, and then take the average execution time across all runs. The use of 
multiple runs with different inputs should ensure that the results are not heavily biased 
by some unusual feature of a given input set. The AM of all the runs is a good measure of  
the system’s performance on simulations, and a good number to use for system comparison.

The AM used for a time-based variable (e.g., seconds), such as program exe-
cution time, has the important property that it is directly proportional to the total 
time. So, if the total time doubles, the mean value doubles.

Harmonic Mean

For some situations, a system’s execution rate may be viewed as a more useful mea-
sure of the value of the system. This could be either the instruction execution rate, 
measured in MIPS or MFLOPS, or a program execution rate, which measures the 
rate at which a given type of program can be executed. Consider how we wish the 
calculated mean to behave. It makes no sense to say that we would like the mean 
rate to be proportional to the total rate, where the total rate is defined as the sum of 
the individual rates. The sum of the rates would be a meaningless statistic. Rather, 
we would like the mean to be inversely proportional to the total execution time. For 
example, if the total time to execute all the benchmark programs in a suite of pro-
grams is twice as much for system C as for system D, we would want the mean value 
of the execution rate to be half as much for system C as for system D.

Let us look at a basic example and first examine how the AM performs. Sup-
pose we have a set of n benchmark programs and record the execution times of each 
program on a given system as t1, t2, …, tn. For simplicity, let us assume that each 
program executes the same number of operations Z; we could weight the individual 
programs and calculate accordingly but this would not change the conclusion of our 
argument. The execution rate for each individual program is Ri = Z/ti. We use the 
AM to calculate the average execution rate.

AM =
1
n a

n

i=1
Ri =

1
n a

n

i=1

Z
ti

=
Z
n a

n

i=1

1
ti

We see that the AM execution rate is proportional to the sum of the inverse 
execution times, which is not the same as being inversely proportional to the sum of 
the execution times. Thus, the AM does not have the desired property.

The HM yields the following result.

HM =
n

a
n

i=1
a 1

Ri
b

=
n

a
n

i=1
a 1

Z/ti
b

=
nZ

a
n

i=1
ti

The HM is inversely proportional to the total execution time, which is the 
desired property.
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The reader may wonder why go through all this effort. If we want to compare 
execution times, we could simply compare the total execution times of the three 
systems. If we want to compare rates, we could simply take the inverse of the total 
execution time, as shown in the table. There are two reasons for doing the individ-
ual calculations rather than only looking at the aggregate numbers:

Table 2.2 A Comparison of Arithmetic and Harmonic Means for Rates

Computer 
A time 
(secs)

Computer 
B time 
(secs)

Computer 
C time 
(secs)

Computer 
A rate 

(MFLOPS)

Computer 
B rate 

(MFLOPS)

Computer 
C rate 

(MFLOPS)

Program 1 
(108 FP ops)

2.0 1.0 0.75 50 100 133.33

Program 2 
(108 FP ops)

0.75 2.0 4.0 133.33 50 25

Total  
execution 
time

2.75 3.0 4.75 — — —

Arithmetic 
mean of 
times

1.38 1.5 2.38 — — —

Inverse  
of total  
execution 
time (1/sec)

0.36 0.33 0.21 — — —

Arithmetic 
mean of 
rates

— — — 91.67 75.00 79.17

Harmonic 
mean of 
rates

— — — 72.72 66.67 42.11

 ExAMPLE 2.4  A simple numerical example will illustrate the difference between the 
two means in calculating a mean value of the rates, shown in Table 2.2. The table compares 
the performance of three computers on the execution of two programs. For simplicity, we 
assume that the execution of each program results in the execution of 108 floating-point 
operations. The left half of the table shows the execution times for each computer running 
each program, the total execution time, and the AM of the execution times. Computer 
A executes in less total time than B, which executes in less total time than C, and this is 
reflected accurately in the AM.

The right half of the table provides a comparison in terms of rates, expressed 
in  MFLOPS.  The rate calculation is straightforward. For example, program 1 executes 
100 million floating-point operations. Computer A takes 2 seconds to execute the program 
for a MFLOPS rate of 100/2 = 50. Next, consider the AM of the rates. The greatest value 
is for computer A, which suggests that A is the fastest computer. In terms of total execu-
tion time, A has the minimum time, so it is the fastest computer of the three. But the AM 
of rates shows B as slower than C, whereas in fact B is faster than C. Looking at the HM 
values, we see that they correctly reflect the speed ordering of the computers. This confirms 
that the HM is preferred when calculating rates.
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1. A customer or researcher may be interested not only in the overall average 
performance but also performance against different types of benchmark pro-
grams, such as business applications, scientific modeling, multimedia appli-
cations, and systems programs. Thus, a breakdown by type of benchmark is 
needed as well as a total.

2. Usually, the different programs used for evaluation are weighted differently. 
In Table 2.2, it is assumed that the two test programs execute the same num-
ber of operations. If that is not the case, we may want to weight accordingly. 
Or different programs could be weighted differently to reflect importance or 
priority.

Let us see what the result is if test programs are weighted proportional to the 
number of operations. Following the preceding notation, each program i executes 
Zi instructions in a time ti. Each rate is weighted by the instructions count. The 
weighted HM is therefore:

 WHM =
1

a
n

i=1
£° Zi

a n
j=1Zj

 ¢a 1
Ri

b ≥ =
n

a
n

i=1
£° Zi

a n
j=1Zj

 ¢ a ti
Zi

b ≥ =
a n

j=1Zj

a
n

i=1
ti

 (2.7)

We see that the weighted HM is the quotient of the sum of the operation 
count divided by the sum of the execution times.

Geometric Mean

Looking at the equations for the three types of means, it is easier to get an intuitive 
sense of the behavior of the AM and the HM than that of the GM. Several observa-
tions, from [FEIT15], may be helpful in this regard. First, we note that with respect to 
changes in values, the GM gives equal weight to all of the values in the data set. For 
example, suppose the set of data values to be averaged includes a few large values 
and more small values. Here, the AM is dominated by the large values. A change of 
10% in the largest value will have a noticeable effect, while a change in the smallest 
value by the same factor will have a negligible effect. In contrast, a change in value 
by 10% of any of the data values results in the same change in the GM: 2n 1.1.

 ExAMPLE 2.5  This point is illustrated by data set (e) in Figure 2.6. Here are the effects 
of increasing either the maximum or the minimum value in the data set by 10%:

Geometric Mean Arithmetic Mean

Original value 3.37 4.45

Increase max value 
from 11 to 12.1 (+10%)

3.40 (+  0.87,) 4.55 (+  2.24,)

Increase min value 
from 1 to 1.1 (+10%)

3.40 (+  0.87,) 4.46 (+  0.20,)
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A second observation is that for the GM of a ratio, the GM of the ratios equals 
the ratio of the GMs:

 GM = aq
n

i=1

Zi

ti
b

1/n

=
aq

n

i=1
Zib

1/n

aq
n

i=1
tib

1/n  (2.8)

Compare this with Equation 2.4.
For use with execution times, as opposed to rates, one drawback of the GM 

is that it may be non-monotonic relative to the more intuitive AM. In other words 
there may be cases where the AM of one data set is larger than that of another set, 
but the GM is smaller.

 ExAMPLE 2.6  In Figure 2.6, the AM for data set d is larger than the AM for data set c, 
but the opposite is true for the GM.

Data set c Data set d

Arithmetic mean 7.00 7.55

Geometric mean 6.68 6.42

One property of the GM that has made it appealing for benchmark analy-
sis is that it provides consistent results when measuring the relative performance 
of machines. This is in fact what benchmarks are primarily used for: to compare 
one machine with another in terms of performance metrics. The results, as we have 
seen, are expressed in terms of values that are normalized to a reference machine.

 ExAMPLE 2.7  A simple example will illustrate the way in which the GM exhibits con-
sistency for normalized results. In Table 2.3, we use the same performance results as were 
used in Table 2.2. In Table 2.3a, all results are normalized to Computer A, and the means 
are calculated on the normalized values. Based on total execution time, A is faster than 
B, which is faster than C. Both the AMs and GMs of the normalized times reflect this. In 
Table 2.3b, the systems are now normalized to B. Again the GMs correctly reflect the rela-
tive speeds of the three computers, but now the AM produces a different ordering.

Sadly, consistency does not always produce correct results. In Table 2.4, some of the 
execution times are altered. Once again, the AM reports conflicting results for the two 
normalizations. The GM reports consistent results, but the result is that B is faster than A 
and C, which are equal.

It is examples like this that have fueled the “benchmark means wars” in the 
citations listed earlier. It is safe to say that no single number can provide all the 
information that one needs for comparing performance across systems. However, 
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Table 2.4 Another Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of 
normalized times

1.00 2.75 5.05

Geometric mean of 
normalized times

1.00 1.58 1.00

(b) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of 
normalized times

1.10 1.00 1.10

Geometric mean of 
normalized times

0.63 1.00 0.63

Table 2.3 A Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of 
normalized times

1.00 1.58 2.85

Geometric mean of 
normalized times

1.00 1.15 1.41

(b) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of 
normalized times

1.19 1.00 1.38

Geometric mean of 
normalized times

0.87 1.00 1.22
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despite the conflicting opinions in the literature, SPEC has chosen to use the GM, 
for several reasons:

1. As mentioned, the GM gives consistent results regardless of which system is 
used as a reference. Because benchmarking is primarily a comparison analysis, 
this is an important feature.

2. As documented in [MCMA93], and confirmed in subsequent analyses by SPEC 
analysts [MASH04], the GM is less biased by outliers than the HM or AM.

3. [MASH04] demonstrates that distributions of performance ratios are better 
modeled by lognormal distributions than by normal ones, because of the gen-
erally skewed distribution of the normalized numbers. This is confirmed in 
[CITR06]. And, as shown in Equation (2.5), the GM can be described as the 
back-transformed average of a lognormal distribution.

 2.6 Benchmarks anD sPec

Benchmark Principles

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the per-
formance of processors. Because of differences in instruction sets, the instruction execu-
tion rate is not a valid means of comparing the performance of different architectures.

 ExAMPLE 2.8  Consider this high-level language statement:

A = B + C   /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction 
set computer (CISC), this instruction can be compiled into one processor instruction:

add mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(1);
load mem(C), reg(2);
add reg(1), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), both ma-
chines may execute the original high-level language instruction in about the same time. If 
this example is representative of the two machines, then if the CISC machine is rated at 
1 MIPS, the RISC machine would be rated at 4 MIPS. But both do the same amount of 
high-level language work in the same amount of time.

Another consideration is that the performance of a given processor on a given 
program may not be useful in determining how that processor will perform on a 
very different type of application. Accordingly, beginning in the late 1980s and 
early 1990s, industry and academic interest shifted to measuring the performance of 
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systems using a set of benchmark programs. The same set of programs can be run on 
different machines and the execution times compared. Benchmarks provide guid-
ance to customers trying to decide which system to buy, and can be useful to ven-
dors and designers in determining how to design systems to meet benchmark goals.

[WEIC90] lists the following as desirable characteristics of a benchmark program:

1. It is written in a high-level language, making it portable across different machines.

2. It is representative of a particular kind of programming domain or paradigm, such 
as systems programming, numerical programming, or commercial programming.

3. It can be measured easily.

4. It has wide distribution.

SPEC Benchmarks

The common need in industry and academic and research communities for generally 
accepted computer performance measurements has led to the development of stan-
dardized benchmark suites. A benchmark suite is a collection of programs, defined 
in a high-level language, that together attempt to provide a representative test of a 
computer in a particular application or system programming area. The best known 
such collection of benchmark suites is defined and maintained by the Standard 
Performance Evaluation Corporation (SPEC), an industry consortium. This orga-
nization defines several benchmark suites aimed at evaluating computer systems. 
SPEC performance measurements are widely used for comparison and research 
purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the 
industry standard suite for processor-intensive applications. That is, SPEC CPU2006 
is appropriate for measuring performance for applications that spend most of their 
time doing computation rather than I/O.

Other SPEC suites include the following:

 ■ SPECviewperf: Standard for measuring 3D graphics performance based on 
professional applications.

 ■ SPECwpc: benchmark to measure all key aspects of workstation performance 
based on diverse professional applications, including media and entertain-
ment, product development, life sciences, financial services, and energy.

 ■ SPECjvm2008: Intended to evaluate performance of the combined hardware 
and software aspects of the Java Virtual Machine (JVM) client platform.

 ■ SPECjbb2013 (Java Business Benchmark): A benchmark for evaluating serv-
er-side Java-based electronic commerce applications.

 ■ SPECsfs2008: Designed to evaluate the speed and request-handling capabili-
ties of file servers.

 ■ SPECvirt_sc2013: Performance evaluation of datacenter servers used in vir-
tualized server consolidation. Measures the end-to-end performance of all 
system components including the hardware, virtualization platform, and the 
virtualized guest operating system and application software. The benchmark 
supports hardware virtualization, operating system virtualization, and hard-
ware partitioning schemes.
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The CPU2006 suite is based on existing applications that have already been 
ported to a wide variety of platforms by SPEC industry members. In order to make 
the benchmark results reliable and realistic, the CPU2006 benchmarks are drawn 
from real-life applications, rather than using artificial loop programs or synthetic 
benchmarks. The suite consists of 12 integer benchmarks written in C and C++, and 
17 floating-point benchmarks written in C, C++, and Fortran (Tables 2.5 and 2.6).  
The suite contains over 3  million lines of code. This is the fifth generation of 

Table 2.5 SPEC CPU2006 Integer Benchmarks

Benchmark
Reference  

time (hours)
Instr count 

(billion) Language
Application 

Area Brief Description

400.perlbench 2.71 2378 C Programming 
Language

PERL programming lan-
guage interpreter, applied 
to a set of three programs.

401.bzip2 2.68 2472 C Compression General-purpose data 
compression with most 
work done in memory, 
rather than doing I/O.

403.gcc 2.24 1064 C C Compiler Based on gcc Version 3.2, 
generates code for Opteron.

429.mcf 2.53 327 C Combinatorial 
Optimization

Vehicle scheduling 
algorithm.

445.gobmk 2.91 1603 C Artificial 
Intelligence

Plays the game of Go, 
a simply described but 
deeply complex game.

456.hmmer 2.59 3363 C Search Gene 
Sequence

Protein sequence analysis 
using profile-hidden 
Markov models.

458.sjeng 3.36 2383 C Artificial 
Intelligence

A highly ranked chess 
program that also plays 
several chess variants.

462.libquantum 5.76 3555 C Physics / 
Quantum 
Computing

Simulates a quantum 
computer, running Shor’s 
polynomial-time factor-
ization algorithm.

464.h264ref 6.15 3731 C Video 
Compression

H.264/AVC (Advanced 
Video Coding) video 
compression.

471.omnetpp 1.74 687 C++ Discrete 
Event 
Simulation

Uses the OMNet++ 
discrete event simulator 
to model a large Ethernet 
campus network.

473.astar 1.95 1200 C++ Path-finding 
Algorithms

Pathfinding library for 2D 
maps.

483.xalancbmk 1.92 1184 C++ XML 
Processing

A modified version of 
Xalan-C++, which trans-
forms XML documents to 
other document types.
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Table 2.6 SPEC CPU2006 Floating-Point Benchmarks

Benchmark
Reference 

time (hours)
Instr count 

(billion) Language
Application 

Area Brief Description

410.bwaves 3.78 1176 Fortran Fluid 
Dynamics

Computes 3D transonic 
transient laminar viscous 
flow.

416.gamess 5.44 5189 Fortran Quantum 
Chemistry

Quantum chemical 
computations.

433.milc 2.55 937 C Physics / 
Quantum 
Chromody-
namics

Simulates behavior of 
quarks and gluons.

434.zeusmp 2.53 1566 Fortran Physics / 
CFD

Computational fluid 
dynamics simulation of 
astrophysical phenomena.

435.gromacs 1.98 1958 C, Fortran Biochemistry 
/ Molecular 
Dynamics

Simulates Newtonian 
equations of motion for 
hundreds to millions of 
particles.

436.
cactusADM

3.32 1376 C, Fortran Physics / 
General 
Relativity

Solves the Einstein evolu-
tion equations.

437.leslie3d 2.61 1273 Fortran Fluid 
Dynamics

Models fuel injection 
flows.

444.namd 2.23 2483 C++ Biology / 
Molecular 
Dynamics

Simulates large biomolecu-
lar systems.

447.dealII 3.18 2323 C++ Finite 
Element 
Analysis

Program library targeted 
at adaptive finite elements 
and error estimation.

450.soplex 2.32 703 C++ Linear Pro-
gramming, 
Optimization

Test cases include railroad 
planning and military 
airlift models.

453.povray 1.48 940 C++ Image 
Ray-Tracing

3D image rendering.

454.calculix 2.29 3,04 C, Fortran Structural 
Mechanics

Finite element code for 
linear and nonlinear 3D 
structural applications.

459.
GemsFDTD

2.95 1320 Fortran Computa-
tional Elec-
tromagnetics

Solves the Maxwell equa-
tions in 3D.

465.tonto 2.73 2392 Fortran Quantum 
Chemistry

Quantum chemistry pack-
age, adapted for crystallo-
graphic tasks.

470.lbm 3.82 1500 C Fluid 
Dynamics

Simulates incompressible 
fluids in 3D.

481.wrf 3.10 1684 C, Fortran Weather Weather forecasting model.

482.sphinx3 5.41 2472 C Speech 
Recognition

Speech recognition 
software.
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processor-intensive suites from SPEC, replacing SPEC CPU2000, SPEC CPU95, 
SPEC CPU92, and SPEC CPU89 [HENN07].

To better understand published results of a system using CPU2006, we define 
the following terms used in the SPEC documentation:

 ■ Benchmark: A program written in a high-level language that can be compiled 
and executed on any computer that implements the compiler.

 ■ System under test: This is the system to be evaluated.
 ■ Reference machine: This is a system used by SPEC to establish a baseline per-

formance for all benchmarks. Each benchmark is run and measured on this 
machine to establish a reference time for that benchmark. A system under test 
is evaluated by running the CPU2006 benchmarks and comparing the results 
for running the same programs on the reference machine.

 ■ Base metric: These are required for all reported results and have strict guide-
lines for compilation. In essence, the standard compiler with more or less 
default settings should be used on each system under test to achieve compar-
able results.

 ■ Peak metric: This enables users to attempt to optimize system performance 
by optimizing the compiler output. For example, different compiler options 
may be used on each benchmark, and feedback-directed optimization is 
allowed.

 ■ Speed metric: This is simply a measurement of the time it takes to execute a 
compiled benchmark. The speed metric is used for comparing the ability of a 
computer to complete single tasks.

 ■ Rate metric: This is a measurement of how many tasks a computer can accom-
plish in a certain amount of time; this is called a throughput, capacity, or rate 
measure. The rate metric allows the system under test to execute simultaneous 
tasks to take advantage of multiple processors.

SPEC uses a historical Sun system, the “Ultra Enterprise 2,” which was intro-
duced in 1997, as the reference machine. The reference machine uses a 296-MHz 
UltraSPARC II processor. It takes about 12 days to do a rule-conforming run of 
the base metrics for CINT2006 and CFP2006 on the CPU2006 reference machine. 
Tables 2.5 and 2.6 show the amount of time to run each benchmark using the refer-
ence machine. The tables also show the dynamic instruction counts on the reference 
machine, as reported in [PHAN07]. These values are the actual number of instruc-
tions executed during the run of each program.

We now consider the specific calculations that are done to assess a system. We 
consider the integer benchmarks; the same procedures are used to create a floating- 
point benchmark value. For the integer benchmarks, there are 12 programs in the 
test suite. Calculation is a three-step process (Figure 2.7):

1. The first step in evaluating a system under test is to compile and run each pro-
gram on the system three times. For each program, the runtime is measured 
and the median value is selected. The reason to use three runs and take the 
median value is to account for variations in execution time that are not intrin-
sic to the program, such as disk access time variations, and OS kernel execu-
tion variations from one run to another.
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2. Next, each of the 12 results is normalized by calculating the runtime ratio of the 
reference run time to the system run time. The ratio is calculated as follows:

 ri =
Trefi

Tsuti
 (2.9)

where Trefi is the execution time of benchmark program i on the reference 
system and Tsuti is the execution time of benchmark program i on the system 
under test. Thus, ratios are higher for faster machines.

3. Finally, the geometric mean of the 12 runtime ratios is calculated to yield the 
overall metric:

rG = aq
12

i=1
rib

1/12

For the integer benchmarks, four separate metrics can be calculated:

 ■ SPECint2006: The geometric mean of 12 normalized ratios when the bench-
marks are compiled with peak tuning.

 ■ SPECint_base2006: The geometric mean of 12 normalized ratios when the 
benchmarks are compiled with base tuning.

 ■ SPECint_rate2006: The geometric mean of 12 normalized throughput ratios 
when the benchmarks are compiled with peak tuning.

 ■ SPECint_rate_base2006: The geometric mean of 12 normalized throughput 
ratios when the benchmarks are compiled with base tuning.

Start

Get next
program 

Run program
three times 

Select
median value 

Ratio(prog) =
Tref(prog)/TSUT(prog)

More
programs? 

Compute geometric
mean of all ratios

End

Yes No

Figure 2.7 SPEC Evaluation Flowchart



2.6 / BenChmarks anD speC  73

 ExAMPLE 2.9  The results for the Sun Blade 1000 are shown in Table 2.7a. One of the SPEC 
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of H.264/
AVC (Advanced Video Coding), the latest state-of-the-art video compression standard. The 
Sun Blade 1000 executes this program in a median time of 5,259 seconds. The reference 
implementation requires 22,130  seconds. The ratio is calculated as: 22,130/5,259 = 4.21.  
The speed metric is calculated by taking the twelfth root of the product of the ratios:

(3.18 * 2.96 * 2.98 * 3.91 * 3.17 * 3.61 * 3.51 * 2.01 *

4.21 * 2.43 * 2.75 * 3.42)1/12 = 3.12

The rate metrics take into account a system with multiple processors. To test 
a machine, a number of copies N is selected—usually this is equal to the number of 
processors or the number of simultaneous threads of execution on the test system. 
Each individual test program’s rate is determined by taking the median of three 
runs. Each run consists of N copies of the program running simultaneously on the 
test system. The execution time is the time it takes for all the copies to finish (i.e., 
the time from when the first copy starts until the last copy finishes). The rate metric 
for that program is calculated by the following formula:

ratei = N *
Trefi

Tsuti

The rate score for the system under test is determined from a geometric mean of 
rates for each program in the test suite.

 ExAMPLE 2.10  The results for the Sun Blade X6250 are shown in Table 2.7b. This sys-
tem has two processor chips, with two cores per chip, for a total of four cores. To get the 
rate metric, each benchmark program is executed simultaneously on all four cores, with 
the execution time being the time from the start of all four copies to the end of the slowest 
run. The speed ratio is calculated as before, and the rate value is simply four times the 
speed ratio. The final rate metric is found by taking the geometric mean of the rate values:

(78.63 * 62.97 * 60.87 * 77.29 * 65.87 * 83.68 * 76.70 * 134.98 *

106.65 * 40.39 * 48.41 * 65.40)1/12 = 71.59

Table 2.7 Some SPEC CINT2006 Results

(a) Sun Blade 1000

Benchmark
Execution 
time (secs)

Execution 
time (secs)

Execution 
time (secs)

Reference 
time (secs) Ratio

400.perlbench 3077 3076 3080 9770 3.18

401.bzip2 3260 3263 3260 9650 2.96

403.gcc 2711 2701 2702 8050 2.98

429.mcf 2356 2331 2301 9120 3.91

445.gobmk 3319 3310 3308 10,490 3.17

456.hmmer 2586 2587 2601 9330 3.61

(Continued)
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Table 2.7 (Continued)

(a) Sun Blade 1000

Benchmark
Execution 
time (secs)

Execution 
time (secs)

Execution 
time (secs)

Reference 
time (secs) Ratio

458.sjeng 3452 3449 3449 12,100 3.51

462.libquantum 10,318 10,319 10,273 20,720 2.01

464.h264ref 5246 5290 5259 22,130 4.21

471.omnetpp 2565 2572 2582 6250 2.43

473.astar 2522 2554 2565 7020 2.75

483.xalancbmk 2014 2018 2018 6900 3.42

(b) Sun Blade x6250

Benchmark
Execution 
time (secs)

Execution 
time (secs)

Execution 
time (secs)

Reference 
time (secs) Ratio Rate

400.perlbench 497 497 497 9770 19.66 78.63

401.bzip2 613 614 613 9650 15.74 62.97

403.gcc 529 529 529 8050 15.22 60.87

429.mcf 472 472 473 9120 19.32 77.29

445.gobmk 637 637 637 10,490 16.47 65.87

456.hmmer 446 446 446 9330 20.92 83.68

458.sjeng 631 632 630 12,100 19.18 76.70

462.libquantum 614 614 614 20,720 33.75 134.98

464.h264ref 830 830 830 22,130 26.66 106.65

471.omnetpp 619 620 619 6250 10.10 40.39

473.astar 580 580 580 7020 12.10 48.41

483.xalancbmk 422 422 422 6900 16.35 65.40
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Key Terms

Amdahl’s law
arithmetic mean (AM)
base metric
benchmark
clock cycle
clock cycle time
clock rate
clock speed
clock tick
cycles per instruction (CPI)

functional mean (FM)
general-purpose computing 

on GPU (GPGPU)
geometric mean (GM)
graphics processing unit 

(GPU)
harmonic mean (HM)
instruction execution rate
Little’s law
many integrated core (MIC)

microprocessor
MIPS rate
multicore
peak metric
rate metric
reference machine
speed metric
SPEC
system under test
throughput
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Review Questions

 2.1 List and briefly define some of the techniques used in contemporary processors to 
increase speed.

 2.2 Explain the concept of performance balance.
 2.3 Explain the differences among multicore systems, MICs, and GPGPUs.
 2.4 Briefly characterize Amdahl’s law.
 2.5 Briefly characterize Little’s law.
 2.6 Define MIPS and FLOPS.
 2.7 List and define three methods for calculating a mean value of a set of data values.
 2.8 List the desirable characteristics of a benchmark program.
 2.9 What are the SPEC benchmarks?
 2.10 What are the differences among base metric, peak metric, speed metric, and rate 

metric?

Problems

 2.1 A benchmark program is run on a 40 MHz processor. The executed program consists 
of 100,000 instruction executions, with the following instruction mix and clock cycle 
count:

Instruction Type Instruction Count Cycles per Instruction

Integer arithmetic 45,000 1

Data transfer 32,000 2

Floating point 15,000 2

Control transfer    8000 2

Determine the effective CPI, MIPS rate, and execution time for this program.
 2.2 Consider two different machines, with two different instruction sets, both of which 

have a clock rate of 200 MHz. The following measurements are recorded on the two 
machines running a given set of benchmark programs:

Instruction Type
Instruction  

Count (millions)
Cycles per  
Instruction

Machine A

Arithmetic and logic 8 1

Load and store 4 3

Branch 2 4

Others 4 3

Machine A

Arithmetic and logic 10 1

Load and store 8 2

Branch 2 4

Others 4 3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.
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 2.3 Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000, 
respectively. Using a typical benchmark program, the following machine characteris-
tics result:

Processor
Clock Frequency 

(MHz)
Performance  

(MIPS)
CPU Time  

(secs)

VAX 11/780  5  1 12 x

IBM RS/6000 25 18 x

The final column shows that the VAX required 12 times longer than the IBM mea-
sured in CPU time.
a. What is the relative size of the instruction count of the machine code for this 

benchmark program running on the two machines?
b. What are the CPI values for the two machines?

 2.4 Four benchmark programs are executed on three computers with the following results:

Computer A Computer B Computer C

Program 1 1 10  20

Program 2 1000 100  20

Program 3 500 1000  50

Program 4 100 800 100

The table shows the execution time in seconds, with 100,000,000 instructions exe-
cuted in each of the four programs. Calculate the MIPS values for each computer 
for each program. Then calculate the arithmetic and harmonic means assuming equal 
weights for the four programs, and rank the computers based on arithmetic mean and 
harmonic mean.

 2.5 The following table, based on data reported in the literature [HEAT84], shows the 
execution times, in seconds, for five different benchmark programs on three machines.

Benchmark
Processor

R M Z

E 417 244 134

F 83 70 70

H 66 153 135

I 39,449 35,527 66,000

K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to 
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated 
using Equation (2.5) with R treated as the reference system. Then compute the 
arithmetic mean value for each system using Equation (2.3). This is the approach 
taken in [HEAT84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried 
in [HEAT84].

c. Which machine is the slowest based on each of the preceding two calculations?
d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in 

Equation (2.6). Which machine is the slowest based on the two calculations?
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 2.6 To clarify the results of the preceding problem, we look at a simpler example.

Benchmark
Processor

x Y Z

1 20 10 40

2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference 
machine and then using Y as the reference machine. Argue that intuitively the 
three machines have roughly equivalent performance and that the arithmetic 
mean gives misleading results.

b. Compute the geometric mean value for each system using X as the reference 
machine and then using Y as the reference machine. Argue that the results are 
more realistic than with the arithmetic mean.

 2.7 Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate, 
which yielded the result of CPI = 2.24 and MIPS rate = 178. Now assume that the 
program can be executed in eight parallel tasks or threads with roughly equal num-
ber of instructions executed in each task. Execution is on an 8-core system with each 
core (processor) having the same performance as the single processor originally used. 
Coordination and synchronization between the parts adds an extra 25,000 instruction 
executions to each task. Assume the same instruction mix as in the example for each 
task, but increase the CPI for memory reference with cache miss to 12 cycles due to 
contention for memory.
a. Determine the average CPI.
b. Determine the corresponding MIPS rate.
c. Calculate the speedup factor.
d. Compare the actual speedup factor with the theoretical speedup factor deter-

mined by Amdhal’s law.
 2.8 A processor accesses main memory with an average access time of T2. A smaller cache 

memory is interposed between the processor and main memory. The cache has a sig-
nificantly faster access time of T1 6 T2. The cache holds, at any time, copies of some 
main memory words and is designed so that the words more likely to be accessed 
in the near future are in the cache. Assume that the probability that the next word 
accessed by the processor is in the cache is H, known as the hit ratio.
a. For any single memory access, what is the theoretical speedup of accessing the 

word in the cache rather than in main memory?
b. Let T be the average access time. Express T as a function of T1,  T2, and H. What is 

the overall speedup as a function of H?
c. In practice, a system may be designed so that the processor must first access the 

cache to determine if the word is in the cache and, if it is not, then access main 
memory, so that on a miss (opposite of a hit), memory access time is T1 + T2. 
Express T as a function of T1,  T2, and H. Now calculate the speedup and compare 
to the result produced in part (b).

 2.9 The owner of a shop observes that on average 18 customers per hour arrive and there 
are typically 8 customers in the shop. What is the average length of time each cus-
tomer spends in the shop?

 2.10 We can gain more insight into Little’s law by considering Figure 2.8a. Over a period 
of time T, a total of C items arrive at a system, wait for service, and complete service.  
The upper solid line shows the time sequence of arrivals, and the lower solid line 
shows the time sequence of departures. The shaded area bounded by the two lines 
represents the total “work” done by the system in units of job-seconds; let A be the 
total work. We wish to derive the relationship among L, W, and λ.



78  Chapter 2 / performanCe Issues

a. Figure 2.8b divides the total area into horizontal rectangles, each with a height of 
one job. Picture sliding all these rectangles to the left so that their left edges line 
up at t = 0. Develop an equation that relates A, C, and W.

b. Figure 2.8c divides the total area into vertical rectangles, defined by the vertical 
transition boundaries indicated by the dashed lines. Picture sliding all these rect-
angles down so that their lower edges line up at N(t) = 0. Develop an equation 
that relates A, T, and L.

c. Finally, derive L = lW from the results of (a) and (b).
 2.11 In Figure 2.8a, jobs arrive at times t = 0, 1, 1.5, 3.25, 5.25, and 7.75. The corresponding 

completion times are t = 2, 3, 3.5, 4.25, 8.25, and 8.75.
a. Determine the area of each of the six rectangles in Figure 2.8b and sum to get the 

total area A. Show your work.
b. Determine the area of each of the 10 rectangles in Figure 2.8c and sum to get the 

total area A. Show your work.
 2.12 In Section 2.6, we specified that the base ratio used for comparing a system under test 

to a reference system is:

ri =
Trefi

Tsuti

N(t)

t

C

T
0

0
(c) Viewed as vertical rectangles

N(t)

t

C

T
0

0

Total completions

(a) Arrival and completion of jobs

N(t)

t

C

T
0

0
(b) Viewed as horizontal rectangles

Total arrivals

Figure 2.8 Illustration of Little’s Law
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a. The preceding equation provides a measure of the speedup of the system under 
test compared to the reference system. Assume that the number of floating-point 
operations executed in the test program is Ii. Now show the speedup as a function 
of the instruction execution rate FLOPSi.

b. Another technique for normalizing performance is to express the performance 
of a system as a percent change relative to the performance of another system. 
Express this relative change first as a function of instruction execution rate, and 
then as a function of execution times.

 2.13 Assume that a benchmark program executes in 480  seconds on a reference 
machine  A.  The same program executes on systems B, C, and D in 360, 540, and 
210 seconds, respectively.
a. Show the speedup of each of the three systems under test relative to A.
b. Now show the relative speedup of the three systems. Comment on the three ways 

of comparing machines (execution time, speedup, relative speedup).
 2.14 Repeat the preceding problem using machine D as the reference machine. How does 

this affect the relative rankings of the four systems?
 2.15 Recalculate the results in Table 2.2 using the computer time data of Table 2.4 and 

comment on the results.
 2.16 Equation 2.5 shows two different formulations of the geometric mean, one using a 

product operator and one using a summation operator.
a. Show that the two formulas are equivalent.
b. Why would the summation formulation be preferred for calculating the geometric 

mean?
 2.17 Project. Section  2.5 lists a number of references that document the “benchmark 

means wars.” All of the referenced papers are available at box.com/COA10e. Read 
these papers and summarize the case for and against the use of the geometric mean 
for SPEC calculations.
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At a top level, a computer consists of CPU (central processing unit), memory, and 
I/O components, with one or more modules of each type. These components are 
interconnected in some fashion to achieve the basic function of the computer, 
which is to execute programs. Thus, at a top level, we can characterize a computer 
system by describing (1) the external behavior of each component, that is, the data 
and control signals that it exchanges with other components, and (2) the intercon-
nection structure and the controls required to manage the use of the interconnec-
tion structure.

This top-level view of structure and function is important because of its 
explanatory power in understanding the nature of a computer. Equally important is 
its use to understand the increasingly complex issues of performance evaluation. A 
grasp of the top-level structure and function offers insight into system bottlenecks, 
alternate pathways, the magnitude of system failures if a component fails, and the 
ease of adding performance enhancements. In many cases, requirements for greater 
system power and fail-safe capabilities are being met by changing the design rather 
than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component 
interconnection. As background, the chapter begins with a brief examination of the 
basic components and their interface requirements. Then a functional overview is 
provided. We are then prepared to examine the use of buses to interconnect system 
components.

 3.1 Computer Components

As discussed in Chapter 1, virtually all contemporary computer designs are based 
on concepts developed by John von Neumann at the Institute for Advanced Studies, 
Princeton. Such a design is referred to as the von Neumann architecture and is based 
on three key concepts:

 ■ Data and instructions are stored in a single read–write memory.
 ■ The contents of this memory are addressable by location, without regard to 

the type of data contained there.

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the basic elements of an instruction cycle and the role of 
interrupts.

 r Describe the concept of interconnection within a computer system.
 r Assess the relative advantages of point-to-point interconnection compared to 
bus interconnection.

 r Present an overview of QPI.
 r Present an overview of PCIe.
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 ■ Execution occurs in a sequential fashion (unless explicitly modified) from one 
instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth 
summarizing here. There is a small set of basic logic components that can be com-
bined in various ways to store binary data and perform arithmetic and logical 
operations on that data. If there is a particular computation to be performed, a con-
figuration of logic components designed specifically for that computation could be 
constructed. We can think of the process of connecting the various components in 
the desired configuration as a form of programming. The resulting “program” is in 
the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose con-
figuration of arithmetic and logic functions. This set of hardware will perform vari-
ous functions on data depending on control signals applied to the hardware. In the 
original case of customized hardware, the system accepts data and produces results 
(Figure 3.1a). With general-purpose hardware, the system accepts data and control 
signals and produces results. Thus, instead of rewiring the hardware for each new 
program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The 
entire program is actually a sequence of steps. At each step, some arithmetic or 
logical operation is performed on some data. For each step, a new set of control sig-
nals is needed. Let us provide a unique code for each possible set of control signals, 

Sequence of
arithmetic
and logic
functions

Data Results

(a) Programming in hardware

Data Results

Instruction
codes

General-purpose
arithmetic
and logic
functions

Control
signals

(b) Programming in software

Instruction
interpreter

Figure 3.1 Hardware and Software Approaches
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and let us add to the general-purpose hardware a segment that can accept a code 
and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each 
new program, all we need to do is provide a new sequence of codes. Each code is, in 
effect, an instruction, and part of the hardware interprets each instruction and gen-
erates control signals. To distinguish this new method of programming, a sequence 
of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction 
interpreter and a module of general-purpose arithmetic and logic functions. These 
two constitute the CPU. Several other components are needed to yield a function-
ing computer. Data and instructions must be put into the system. For this we need 
some sort of input module. This module contains basic components for accepting 
data and instructions in some form and converting them into an internal form 
of signals usable by the system. A means of reporting results is needed, and this 
is in the form of an output module. Taken together, these are referred to as I/O 
components.

One more component is needed. An input device will bring instructions and 
data in sequentially. But a program is not invariably executed sequentially; it may 
jump around (e.g., the IAS jump instruction). Similarly, operations on data may 
require access to more than just one element at a time in a predetermined sequence. 
Thus, there must be a place to temporarily store both instructions and data. That 
module is called memory, or main memory, to distinguish it from external storage or 
peripheral devices. Von Neumann pointed out that the same memory could be used 
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interac-
tions among them. The CPU exchanges data with memory. For this purpose, it typ-
ically makes use of two internal (to the CPU) registers: a memory address register 
(MAR), which specifies the address in memory for the next read or write, and a 
memory buffer register (MBR), which contains the data to be written into memory 
or receives the data read from memory. Similarly, an I/O address register (I/OAR) 
specifies a particular I/O device. An I/O buffer register (I/OBR) is used for the 
exchange of data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as 
either an instruction or data. An I/O module transfers data from external devices to 
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview 
of how these components function together to execute programs.

 3.2 Computer FunCtion

The basic function performed by a computer is execution of a program, which con-
sists of a set of instructions stored in memory. The processor does the actual work by 
executing instructions specified in the program. This section provides an overview of 
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the key elements of program execution. In its simplest form, instruction processing 
consists of two steps: The processor reads (fetches) instructions from memory one 
at a time and executes each instruction. Program execution consists of repeating 
the process of instruction fetch and instruction execution. The instruction execution 
may involve several operations and depends on the nature of the instruction (see, for 
example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle. 
Using the simplified two-step description given previously, the instruction cycle is 
depicted in Figure 3.3. The two steps are referred to as the fetch cycle and the  execute 
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from 
memory. In a typical processor, a register called the program counter (PC) holds the 
address of the instruction to be fetched next. Unless told otherwise, the processor 

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main memory

System
bus

I/O Module

Buffers

Instruction

0
1
2

n – 2
n – 1

Data

Data

Data

Data

Instruction

Instruction

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

Figure 3.2 Computer Components: Top-Level View
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always increments the PC after each instruction fetch so that it will fetch the next 
instruction in sequence (i.e., the instruction located at the next higher memory 
address). So, for example, consider a computer in which each instruction occupies 
one 16-bit word of memory. Assume that the program counter is set to memory loca-
tion 300, where the location address refers to a 16-bit word. The processor will next 
fetch the instruction at location 300. On succeeding instruction cycles, it will fetch 
instructions from locations 301, 302, 303, and so on. This sequence may be altered, as 
explained presently.

The fetched instruction is loaded into a register in the processor known as 
the instruction register (IR). The instruction contains bits that specify the action 
the processor is to take. The processor interprets the instruction and performs the 
required action. In general, these actions fall into four categories:

 ■ Processor-memory: Data may be transferred from processor to memory or 
from memory to processor.

 ■ Processor-I/O: Data may be transferred to or from a peripheral device by 
transferring between the processor and an I/O module.

 ■ Data processing: The processor may perform some arithmetic or logic oper-
ation on data.

 ■ Control: An instruction may specify that the sequence of execution be altered. 
For example, the processor may fetch an instruction from location 149, which 
specifies that the next instruction be from location 182. The processor will 
remember this fact by setting the program counter to 182. Thus, on the next 
fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical machine that includes the 

characteristics listed in Figure 3.4. The processor contains a single data register, 
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is 
convenient to organize memory using 16-bit words. The instruction format provides 
4 bits for the opcode, so that there can be as many as 24 = 16 different opcodes, and 
up to 212 = 4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers.1 The program fragment shown adds the 
contents of the memory word at address 940 to the contents of the memory word at 

START HALTFetch next
instruction

Fetch cycle Execute cycle

Execute
instruction

Figure 3.3 Basic Instruction Cycle

1Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient nota-
tion for representing the contents of memory and registers when the word length is a multiple of 4. See 
 Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).
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Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(a) Instruction format

Opcode Address

(b) Integer format

(c) Internal CPU registers

Magnitude

0 1543

10 15

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine
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Figure 3.5 Example of Program Execution (contents of memory and 
registers in hexadecimal)
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address 941 and stores the result in the latter location. Three instructions, which can 
be described as three fetch and three execute cycles, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the 
value 1940 in hexadecimal) is loaded into the instruction register IR, and 
the PC is incremented. Note that this process involves the use of a memory 
address register and a memory buffer register. For simplicity, these intermedi-
ate registers are ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be 
loaded. The remaining 12 bits (three hexadecimal digits) specify the address 
(940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301, and the PC is 
incremented.

4. The old contents of the AC and the contents of location 941 are added, and 
the result is stored in the AC.

5. The next instruction (2941) is fetched from location 302, and the PC is 
incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an 
execute cycle, are needed to add the contents of location 940 to the contents of 941. 
With a more complex set of instructions, fewer cycles would be needed. Some older 
processors, for example, included instructions that contain more than one memory 
address. Thus, the execution cycle for a particular instruction on such processors 
could involve more than one reference to memory. Also, instead of memory refer-
ences, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symboli-
cally as ADD B,A, that stores the sum of the contents of memory locations B and A 
into memory location A. A single instruction cycle with the following steps occurs:

 ■ Fetch the ADD instruction.
 ■ Read the contents of memory location A into the processor.
 ■ Read the contents of memory location B into the processor. In order that the 

contents of A are not lost, the processor must have at least two registers for 
storing memory values, rather than a single accumulator.

 ■ Add the two values.
 ■ Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one 
reference to memory. Also, instead of memory references, an instruction may specify 
an I/O operation. With these additional considerations in mind, Figure 3.6 provides a 
more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the form 
of a state diagram. For any given instruction cycle, some states may be null and others 
may be visited more than once. The states can be described as follows:

 ■ Instruction address calculation (iac): Determine the address of the next 
instruction to be executed. Usually, this involves adding a fixed number to 



88  Chapter 3 / a top-LeveL view of  Computer funCtion and interConneCtion

the address of the previous instruction. For example, if each instruction is 16 
bits long and memory is organized into 16-bit words, then add 1 to the previ-
ous address. If, instead, memory is organized as individually addressable 8-bit 
bytes, then add 2 to the previous address.

 ■ Instruction fetch (if): Read instruction from its memory location into the 
processor.

 ■ Instruction operation decoding (iod): Analyze instruction to determine type 
of operation to be performed and operand(s) to be used.

 ■ Operand address calculation (oac): If the operation involves reference to an 
operand in memory or available via I/O, then determine the address of the 
operand.

 ■ Operand fetch (of): Fetch the operand from memory or read it in from I/O.
 ■ Data operation (do): Perform the operation indicated in the instruction.
 ■ Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the pro-
cessor and either memory or an I/O module. States in the lower part of the diagram 
involve only internal processor operations. The oac state appears twice, because 
an instruction may involve a read, a write, or both. However, the action performed 
during that state is fundamentally the same in both cases, and so only a single state 
identifier is needed.

Also note that the diagram allows for multiple operands and multiple results, 
because some instructions on some machines require this. For example, the PDP-11 
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of, 
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional 
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array) of characters. As Figure 3.6 indicates, this would involve repetitive operand 
fetch and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory) 
may interrupt the normal processing of the processor. Table 3.1 lists the most com-
mon classes of interrupts. The specific nature of these interrupts is examined later in 
this book, especially in Chapters 7 and 14. However, we need to introduce the concept 
now to understand more clearly the nature of the instruction cycle and the impli-
cations of interrupts on the interconnection structure. The reader need not be con-
cerned at this stage about the details of the generation and processing of interrupts, 
but only focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency. 
For example, most external devices are much slower than the processor. Suppose 
that the processor is transferring data to a printer using the instruction cycle scheme 
of Figure 3.3. After each write operation, the processor must pause and remain 
idle until the printer catches up. The length of this pause may be on the order of 
many hundreds or even thousands of instruction cycles that do not involve memory. 
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a ser-
ies of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to 
sequences of instructions that do not involve I/O. The WRITE calls are to an I/O 
program that is a system utility and that will perform the actual I/O operation. The 
I/O program consists of three sections:

 ■ A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O 
operation. This may include copying the data to be output into a special buffer 
and preparing the parameters for a device command.

 ■ The actual I/O command. Without the use of interrupts, once this command 
is issued, the program must wait for the I/O device to perform the requested 
 function (or periodically poll the device). The program might wait by simply 
repeatedly performing a test operation to determine if the I/O operation is done.

 ■ A sequence of instructions, labeled 5 in the figure, to complete the operation. 
This may include setting a flag indicating the success or failure of the operation.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction 
execution, such as arithmetic overflow, division by zero, attempt to exe-
cute an illegal machine instruction, or reference outside a user’s allowed 
memory space.

Timer Generated by a timer within the processor. This allows the operating 
system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an 
operation, request service from the processor, or to signal a variety of 
error conditions.

Hardware Failure Generated by a failure such as power failure or memory parity error.
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Because the I/O operation may take a relatively long time to complete, the I/O 
program is hung up waiting for the operation to complete; hence, the user program 
is stopped at the point of the WRITE call for some considerable period of time.

interrupts and the instruction cycle With interrupts, the processor can 
be engaged in executing other instructions while an I/O operation is in progress. 
Consider the flow of control in Figure 3.7b. As before, the user program reaches a 
point at which it makes a system call in the form of a WRITE call. The I/O program 
that is invoked in this case consists only of the preparation code and the actual I/O 
command. After these few instructions have been executed, control returns to the 
user program. Meanwhile, the external device is busy accepting data from computer 
memory and printing it. This I/O operation is conducted concurrently with the 
execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is 
ready to accept more data from the processor—the I/O module for that external 
device sends an interrupt request signal to the processor. The processor responds by 
suspending operation of the current program, branching off to a program to service 
that particular I/O device, known as an interrupt handler, and resuming the original 
execution after the device is serviced. The points at which such interrupts occur are 
indicated by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program 
that contains two WRITE commands. There is a segment of code at the beginning, 
then one WRITE command, then a second segment of code, then a second WRITE 
command, then a third and final segment of code. The WRITE command invokes 
the I/O program provided by the OS. Similarly, the I/O program consists of a seg-
ment of code, followed by an I/O command, followed by another segment of code. 
The I/O command invokes a hardware I/O operation.
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From the point of view of the user program, an interrupt is just that: an interrup-
tion of the normal sequence of execution. When the interrupt processing is completed, 
execution resumes (Figure 3.8). Thus, the user program does not have to contain any 
special code to accommodate interrupts; the processor and the operating system are 
responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction 
cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if 
any interrupts have occurred, indicated by the presence of an interrupt signal. If no 
interrupts are pending, the processor proceeds to the fetch cycle and fetches the 
next instruction of the current program. If an interrupt is pending, the processor 
does the following:

 ■ It suspends execution of the current program being executed and saves its 
context. This means saving the address of the next instruction to be executed 
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(current contents of the program counter) and any other data relevant to the 
processor’s current activity.

 ■ It sets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction 
in the interrupt handler program, which will service the interrupt. The interrupt 
handler program is generally part of the operating system. Typically, this program 
determines the nature of the interrupt and performs whatever actions are needed. 
In the example we have been using, the handler determines which I/O module gen-
erated the interrupt and may branch to a program that will write more data out to 
that I/O module. When the interrupt handler routine is completed, the processor 
can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the inter-
rupt and to decide on the appropriate action. Nevertheless, because of the relatively 
large amount of time that would be wasted by simply waiting on an I/O operation, 
the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing 
diagram based on the flow of control in Figures 3.7a and 3.7b. In this figure, user 
program code segments are shaded green, and I/O program code segments are 
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shaded gray. Figure 3.10a shows the case in which interrupts are not used. The pro-
cessor must wait while an I/O operation is performed.

Figures 3.7b and 3.10b assume that the time required for the I/O operation is rela-
tively short: less than the time to complete the execution of instructions between write 
operations in the user program. In this case, the segment of code labeled code segment 2 
is interrupted. A portion of the code (2a) executes (while the I/O operation is performed) 
and then the interrupt occurs (upon the completion of the I/O operation). After the inter-
rupt is serviced, execution resumes with the remainder of code segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the 
I/O operation will take much more time than executing a sequence of user instruc-
tions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches 
the second WRITE call before the I/O operation spawned by the first call is com-
plete. The result is that the user program is hung up at that point. When the preced-
ing I/O operation is completed, this new WRITE call may be processed, and a new 
I/O operation may be started. Figure 3.11 shows the timing for this situation with 

4

1

5

2

5

3

4

Time

4

2

1

5

4

(a) Without interrupts

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with
processor executing;
then processor
waits

I/O operation
concurrent with
processor executing;
then processor
waits

Figure 3.11 Program Timing: Long I/O Wait



3.2 / Computer funCtion  95

and without the use of interrupts. We can see that there is still a gain in efficiency 
because part of the time during which the I/O operation is under way overlaps with 
the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing.

multiple interrupts The discussion so far has focused only on the occurrence 
of a single interrupt. Suppose, however, that multiple interrupts can occur. For 
example, a program may be receiving data from a communications line and 
printing results. The printer will generate an interrupt every time it completes 
a print operation. The communication line controller will generate an interrupt 
every time a unit of data arrives. The unit could either be a single character or a 
block, depending on the nature of the communications discipline. In any case, it is 
possible for a communications interrupt to occur while a printer interrupt is being 
processed.

Two approaches can be taken to dealing with multiple interrupts. The first 
is to disable interrupts while an interrupt is being processed. A disabled interrupt 
simply means that the processor can and will ignore that interrupt request signal. 
If an interrupt occurs during this time, it generally remains pending and will be 
checked by the processor after the processor has enabled interrupts. Thus, when a 
user program is executing and an interrupt occurs, interrupts are disabled immedi-
ately. After the interrupt handler routine completes, interrupts are enabled before 
resuming the user program, and the processor checks to see if additional interrupts 
have occurred. This approach is nice and simple, as interrupts are handled in strict 
sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account 
relative priority or time-critical needs. For example, when input arrives from the 
communications line, it may need to be absorbed rapidly to make room for more 
input. If the first batch of input has not been processed before the second batch 
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an  interrupt 
of higher priority to cause a lower-priority interrupt handler to be itself interrupted 
(Figure 3.13b). As an example of this second approach, consider a system with three 
I/O devices: a printer, a disk, and a communications line, with increasing priori-
ties of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible sequence. A user 
program begins at t = 0. At t = 10, a printer interrupt occurs; user information is 
placed on the system stack and execution continues at the printer interrupt  service 
routine (ISR). While this routine is still executing, at t = 15, a communications inter-
rupt occurs. Because the communications line has higher priority than the printer, 
the interrupt is honored. The printer ISR is interrupted, its state is pushed onto the 
stack, and execution continues at the communications ISR. While this routine is exe-
cuting, a disk interrupt occurs (t = 20). Because this interrupt is of lower priority, it 
is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (t = 25), the previous proces-
sor state is restored, which is the execution of the printer ISR. However, before 
even a single instruction in that routine can be executed, the processor honors the 
higher-priority disk interrupt and control transfers to the disk ISR. Only when that 
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routine is complete (t = 35) is the printer ISR resumed. When that routine com-
pletes (t = 40), control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the pro-
cessor, and we have looked primarily at the interaction of processor and memory. 
The discussion has only alluded to the role of the I/O component. This role is dis-
cussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the 
processor. Just as the processor can initiate a read or write with memory, desig-
nating the address of a specific location, the processor can also read data from or 
write data to an I/O module. In this latter case, the processor identifies a specific 
device that is controlled by a particular I/O module. Thus, an instruction sequence 
similar in form to that of Figure 3.5 could occur, with I/O instructions rather than 
 memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with 
memory. In such a case, the processor grants to an I/O module the authority to read 
from or write to memory, so that the I/O-memory transfer can occur without tying 
up the processor. During such a transfer, the I/O module issues read or write com-
mands to memory, relieving the processor of responsibility for the exchange. This 
operation is known as direct memory access (DMA) and is examined in Chapter 7.
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 3.3 interConneCtion struCtures

A computer consists of a set of components or modules of three basic types (pro-
cessor, memory, I/O) that communicate with each other. In effect, a computer is a 
network of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the intercon-
nection structure. The design of this structure will depend on the exchanges that 
must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the 
major forms of input and output for each module type2:

 ■ Memory: Typically, a memory module will consist of N words of equal length. 
Each word is assigned a unique numerical address (0,  1,  c ,  N-1). A word of 
data can be read from or written into the memory. The nature of the operation 

2The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each 
narrow arrow represents a single signal line.
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is indicated by read and write control signals. The location for the operation is 
specified by an address.

 ■ I/O module: From an internal (to the computer system) point of view, I/O is 
functionally similar to memory. There are two operations; read and write. Fur-
ther, an I/O module may control more than one external device. We can refer 
to each of the interfaces to an external device as a port and give each a unique 
address (e.g.,  0,  1,  c ,  M-1). In addition, there are external data paths for 
the input and output of data with an external device. Finally, an I/O module 
may be able to send interrupt signals to the processor.

 ■ Processor: The processor reads in instructions and data, writes out data after 
processing, and uses control signals to control the overall operation of the sys-
tem. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection 
structure must support the following types of transfers:

 ■ Memory to processor: The processor reads an instruction or a unit of data 
from memory.

 ■ Processor to memory: The processor writes a unit of data to memory.
 ■ I/O to processor: The processor reads data from an I/O device via an I/O 

module.
 ■ Processor to I/O: The processor sends data to the I/O device.
 ■ I/O to or from memory: For these two cases, an I/O module is allowed to 

exchange data directly with memory, without going through the processor, 
using direct memory access.

Over the years, a number of interconnection structures have been tried. By far 
the most common are (1) the bus and various multiple-bus structures, and (2) point-
to-point interconnection structures with packetized data transfer. We devote the 
remainder of this chapter for a discussion of these structures.

 3.4 Bus interConneCtion

The bus was the dominant means of computer system component interconnection 
for decades. For general-purpose computers, it has gradually given way to various 
point-to-point interconnection structures, which now dominate computer system 
design. However, bus structures are still commonly used for embedded systems, par-
ticularly microcontrollers. In this section, we give a brief overview of bus structure. 
Appendix C provides more detail.

A bus is a communication pathway connecting two or more devices. A key 
characteristic of a bus is that it is a shared transmission medium. Multiple devices 
connect to the bus, and a signal transmitted by any one device is available for recep-
tion by all other devices attached to the bus. If two devices transmit during the same 
time period, their signals will overlap and become garbled. Thus, only one device at 
a time can successfully transmit.
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Typically, a bus consists of multiple communication pathways, or lines. Each 
line is capable of transmitting signals representing binary 1 and binary 0. Over time, 
a sequence of binary digits can be transmitted across a single line. Taken together, 
several lines of a bus can be used to transmit binary digits simultaneously (in paral-
lel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways 
between components at various levels of the computer system hierarchy. A bus that 
connects major computer components (processor, memory, I/O) is called a system 
bus. The most common computer interconnection structures are based on the use of 
one or more system buses.

A system bus consists, typically, of from about fifty to hundreds of separate 
lines. Each line is assigned a particular meaning or function. Although there are 
many different bus designs, on any bus the lines can be classified into three func-
tional groups (Figure 3.16): data, address, and control lines. In addition, there may 
be power distribution lines that supply power to the attached modules.

The data lines provide a path for moving data among system modules. These 
lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128, 
or even more separate lines, the number of lines being referred to as the width of 
the data bus. Because each line can carry only one bit at a time, the number of 
lines determines how many bits can be transferred at a time. The width of the data 
bus is a key factor in determining overall system performance. For example, if the 
data bus is 32 bits wide and each instruction is 64 bits long, then the processor must 
access the memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on 
the data bus. For example, if the processor wishes to read a word (8, 16, or 32 bits) 
of data from memory, it puts the address of the desired word on the address lines. 
Clearly, the width of the address bus determines the maximum possible memory capac-
ity of the system. Furthermore, the address lines are generally also used to address I/O 
ports. Typically, the higher-order bits are used to select a particular module on the 
bus, and the lower-order bits select a memory location or I/O port within the module. 
For example, on an 8-bit address bus, address 01111111 and below might reference 
locations in a memory module (module 0) with 128 words of memory, and address 
10000000 and above refer to devices attached to an I/O module (module 1).

The control lines are used to control the access to and the use of the data and 
address lines. Because the data and address lines are shared by all components, 
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there must be a means of controlling their use. Control signals transmit both com-
mand and timing information among system modules. Timing signals indicate the 
validity of data and address information. Command signals specify operations to be 
performed. Typical control lines include:

 ■ Memory write: causes data on the bus to be written into the addressed location.
 ■ Memory read: causes data from the addressed location to be placed on the bus.
 ■ I/O write: causes data on the bus to be output to the addressed I/O port.
 ■ I/O read: causes data from the addressed I/O port to be placed on the bus.
 ■ Transfer ACK: indicates that data have been accepted from or placed on the 

bus.
 ■ Bus request: indicates that a module needs to gain control of the bus.
 ■ Bus grant: indicates that a requesting module has been granted control of the 

bus.
 ■ Interrupt request: indicates that an interrupt is pending.
 ■ Interrupt ACK: acknowledges that the pending interrupt has been recognized.
 ■ Clock: is used to synchronize operations.
 ■ Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to 
another, it must do two things: (1) obtain the use of the bus, and (2) transfer data 
via the bus. If one module wishes to request data from another module, it must 
(1) obtain the use of the bus, and (2) transfer a request to the other module over the 
appropriate control and address lines. It must then wait for that second module to 
send the data.

 3.5 point-to-point interConneCt

The shared bus architecture was the standard approach to interconnection between 
the processor and other components (memory, I/O, and so on) for decades. But con-
temporary systems increasingly rely on point-to-point interconnection rather than 
shared buses.

The principal reason driving the change from bus to point-to-point intercon-
nect was the electrical constraints encountered with increasing the frequency of wide 
synchronous buses. At higher and higher data rates, it becomes increasingly diffi-
cult to perform the synchronization and arbitration functions in a timely fashion. 
Further, with the advent of multicore chips, with multiple processors and significant 
memory on a single chip, it was found that the use of a conventional shared bus on 
the same chip magnified the difficulties of increasing bus data rate and reducing bus 
latency to keep up with the processors. Compared to the shared bus, the point-to-
point interconnect has lower latency, higher data rate, and better scalability.

In this section, we look at an important and representative example of the 
point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which 
was introduced in 2008.
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The following are significant characteristics of QPI and other point-to-point 
interconnect schemes:

 ■ Multiple direct connections: Multiple components within the system enjoy 
direct pairwise connections to other components. This eliminates the need for 
arbitration found in shared transmission systems.

 ■ Layered protocol architecture: As found in network environments, such as 
TCP/IP-based data networks, these processor-level interconnects use a lay-
ered protocol architecture, rather than the simple use of control signals found 
in shared bus arrangements.

 ■ Packetized data transfer: Data are not sent as a raw bit stream. Rather, data 
are sent as a sequence of packets, each of which includes control headers and 
error control codes.

Figure 3.17 illustrates a typical use of QPI on a multicore computer. The QPI 
links (indicated by the green arrow pairs in the figure) form a switching fabric that 
enables data to move throughout the network. Direct QPI connections can be estab-
lished between each pair of core processors. If core A in Figure 3.17 needs to access 
the memory controller in core D, it sends its request through either cores B or C, 
which must in turn forward that request on to the memory controller in core D. 
Similarly, larger systems with eight or more processors can be built using processors 
with three links and routing traffic through intermediate processors.

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH). 
The IOH acts as a switch directing traffic to and from I/O devices. Typically in newer 
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systems, the link from the IOH to the I/O device controller uses an interconnect 
 technology called PCI Express (PCIe), described later in this chapter. The IOH 
 translates between the QPI protocols and formats and the PCIe protocols and for-
mats. A core also links to a main memory module (typically the memory uses dynamic 
access random memory (DRAM) technology) using a dedicated memory bus.

QPI is defined as a four-layer protocol architecture,3 encompassing the fol-
lowing layers (Figure 3.18):

 ■ Physical: Consists of the actual wires carrying the signals, as well as circuitry 
and logic to support ancillary features required in the transmission and receipt 
of the 1s and 0s. The unit of transfer at the Physical layer is 20 bits, which is 
called a Phit (physical unit).

 ■ Link: Responsible for reliable transmission and flow control. The Link layer’s 
unit of transfer is an 80-bit Flit (flow control unit).

 ■ Routing: Provides the framework for directing packets through the fabric.
 ■ Protocol: The high-level set of rules for exchanging packets of data between 

devices. A packet is comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.19 shows the physical architecture of a QPI port. The QPI port consists of 
84 individual links grouped as follows. Each data path consists of a pair of wires that 
transmits data one bit at a time; the pair is referred to as a lane. There are 20 data 
lanes in each direction (transmit and receive), plus a clock lane in each direction. 
Thus, QPI is capable of transmitting 20 bits in parallel in each direction. The 20-bit 
unit is referred to as a phit. Typical signaling speeds of the link in current products 
calls for operation at 6.4 GT/s (transfers per second). At 20 bits per transfer, that 
adds up to 16 GB/s, and since QPI links involve dedicated bidirectional pairs, the 
total capacity is 32 GB/s.

3 The reader unfamiliar with the concept of a protocol architecture will find a brief overview in Appendix D.
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The lanes in each direction are grouped into four quadrants of 5 lanes each. 
In some applications, the link can also operate at half or quarter widths in order to 
reduce power consumption or work around failures.

The form of transmission on each lane is known as differential signaling, or 
balanced transmission. With balanced transmission, signals are transmitted as a cur-
rent that travels down one conductor and returns on the other. The binary value 
depends on the voltage difference. Typically, one line has a positive voltage value 
and the other line has zero voltage, and one line is associated with binary 1 and one 
line is associated with binary 0. Specifically, the technique used by QPI is known as 
low-voltage differential signaling (LVDS). In a typical implementation, the trans-
mitter injects a small current into one wire or the other, depending on the logic 
level to be sent. The current passes through a resistor at the receiving end, and then 
returns in the opposite direction along the other wire. The receiver senses the polar-
ity of the voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the trans-
lation between 80-bit flits and 20-bit phits using a technique known as multilane 
distribution. The flits can be considered as a bit stream that is distributed across the 
data lanes in a round-robin fashion (first bit to first lane, second bit to second lane, 
etc.), as illustrated in Figure 3.20. This approach enables QPI to achieve very high 
data rates by implementing the physical link between two ports as multiple parallel 
channels.

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These 
functions are performed as part of the QPI link layer protocol, and operate on the 
level of the flit (flow control unit). Each flit consists of a 72-bit message payload and 
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an 8-bit error control code called a cyclic redundancy check (CRC). We discuss error 
control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits 
transfer the actual bits of data between cores or between a core and an IOH. The 
message flits are used for such functions as flow control, error control, and cache 
coherence. We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does 
not overwhelm a receiving QPI entity by sending data faster than the receiver can 
process the data and clear buffers for more incoming data. To control the flow of 
data, QPI makes use of a credit scheme. During initialization, a sender is given a set 
number of credits to send flits to a receiver. Whenever a flit is sent to the receiver, 
the sender decrements its credit counters by one credit. Whenever a buffer is freed 
at the receiver, a credit is returned to the sender for that buffer. Thus, the receiver 
controls that pace at which data is transmitted over a QPI link.

Occasionally, a bit transmitted at the physical layer is changed during trans-
mission, due to noise or some other phenomenon. The error control function at the 
link layer detects and recovers from such bit errors, and so isolates higher layers 
from experiencing bit errors. The procedure works as follows for a flow of data 
from system A to system B:

1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a func-
tion of the value of the remaining 72 bits. On transmission, A calculates a 
CRC value for each flit and inserts that value into the flit.

2. When a flit is received, B calculates a CRC value for the 72-bit payload and 
compares this value with the value of the incoming CRC value in the flit. If the 
two CRC values do not match, an error has been detected.

3. When B detects an error, it sends a request to A to retransmit the flit that is 
in error. However, because A may have had sufficient credit to send a stream 
of flits, so that additional flits have been transmitted after the flit in error and 

#2n+1 #2n #n+2 #n+1 #n #2 #1

bit stream of �its

#2n+1 #n+1 #1 QPI
lane 0

#2n+2 #n+2 #2 QPI
lane 1

#3n #2n #n QPI
lane 19

Figure 3.20 QPI Multilane Distribution
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before A receives the request to retransmit. Therefore, the request is for A to 
back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The routing layer is used to determine the course that a packet will traverse across 
the available system interconnects. Routing tables are defined by firmware and 
describe the possible paths that a packet can follow. In small configurations, such as 
a two-socket platform, the routing options are limited and the routing tables quite 
simple. For larger systems, the routing table options are more complex, giving the 
flexibility of routing and rerouting traffic depending on how (1) devices are popu-
lated in the platform, (2) system resources are partitioned, and (3) reliability events 
result in mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents definition 
is standardized with some flexibility allowed to meet differing market segment require-
ments. One key function performed at this level is a cache coherency protocol, which 
deals with making sure that main memory values held in multiple caches are consistent. 
A typical data packet payload is a block of data being sent to or from a cache.

 3.6 pCi express

The peripheral component interconnect (PCI) is a popular high-bandwidth, 
 processor-independent bus that can function as a mezzanine or peripheral bus. 
Compared with other common bus specifications, PCI delivers better system perfor-
mance for high-speed I/O subsystems (e.g., graphic display adapters, network inter-
face controllers, and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon 
released all the patents to the public domain and promoted the creation of an 
industry association, the PCI Special Interest Group (SIG), to develop further and 
maintain the compatibility of the PCI specifications. The result is that PCI has been 
widely adopted and is finding increasing use in personal computer, workstation, and 
server systems. Because the specification is in the public domain and is supported 
by a broad cross-section of the microprocessor and peripheral industry, PCI prod-
ucts built by different vendors are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI 
scheme has not been able to keep pace with the data rate demands of attached 
devices. Accordingly, a new version, known as PCI Express (PCIe) has been devel-
oped. PCIe, as with QPI, is a point-to-point interconnect scheme intended to replace 
bus-based schemes such as PCI.

A key requirement for PCIe is high capacity to support the needs of higher 
data rate I/O devices, such as Gigabit Ethernet. Another requirement deals with 
the need to support time-dependent data streams. Applications such as video-on- 
demand and audio redistribution are putting real-time constraints on servers too. 
Many communications applications and embedded PC control systems also pro-
cess data in real-time. Today’s platforms must also deal with multiple concurrent 
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transfers at ever-increasing data rates. It is no longer acceptable to treat all data as 
equal—it is more important, for example, to process streaming data first since late 
real-time data is as useless as no data. Data needs to be tagged so that an I/O system 
can prioritize its flow throughout the platform.

PCI Physical and Logical Architecture

Figure  3.21 shows a typical configuration that supports the use of PCIe. A root 
 complex device, also referred to as a chipset or a host bridge, connects the processor 
and memory subsystem to the PCI Express switch fabric comprising one or more 
PCIe and PCIe switch devices. The root complex acts as a buffering device, to deal 
with difference in data rates between I/O controllers and memory and processor 
components. The root complex also translates between PCIe transaction formats and 
the processor and memory signal and control requirements. The chipset will typically 
support multiple PCIe ports, some of which attach directly to a PCIe device, and one 
or more that attach to a switch that manages multiple PCIe streams. PCIe links from 
the chipset may attach to the following kinds of devices that implement PCIe:

 ■ Switch: The switch manages multiple PCIe streams.
 ■ PCIe endpoint: An I/O device or controller that implements PCIe, such as 

a Gigabit ethernet switch, a graphics or video controller, disk interface, or a 
communications controller.
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 ■ Legacy endpoint: Legacy endpoint category is intended for existing designs 
that have been migrated to PCI Express, and it allows legacy behaviors such 
as use of I/O space and locked transactions. PCI Express endpoints are not 
permitted to require the use of I/O space at runtime and must not use locked 
transactions. By distinguishing these categories, it is possible for a system 
designer to restrict or eliminate legacy behaviors that have negative impacts 
on system performance and robustness.

 ■ PCIe/PCI bridge: Allows older PCI devices to be connected to PCIe-based 
systems.

As with QPI, PCIe interactions are defined using a protocol architecture. The 
PCIe protocol architecture encompasses the following layers (Figure 3.22):

 ■ Physical: Consists of the actual wires carrying the signals, as well as circuitry 
and logic to support ancillary features required in the transmission and receipt 
of the 1s and 0s.

 ■ Data link: Is responsible for reliable transmission and flow control. Data pack-
ets generated and consumed by the DLL are called Data Link Layer Packets 
(DLLPs).

 ■ Transaction: Generates and consumes data packets used to implement load/
store data transfer mechanisms and also manages the flow control of those 
packets between the two components on a link. Data packets generated and 
consumed by the TL are called Transaction Layer Packets (TLPs).

Above the TL are software layers that generate read and write requests that 
are transported by the transaction layer to the I/O devices using a packet-based 
transaction protocol.

PCIe Physical Layer

Similar to QPI, PCIe is a point-to-point architecture. Each PCIe port consists of a 
number of bidirectional lanes (note that in QPI, the lane refers to transfer in one 
direction only). Transfer in each direction in a lane is by means of differential signal-
ing over a pair of wires. A PCI port can provide 1, 4, 6, 16, or 32 lanes. In what follows, 
we refer to the PCIe 3.0 specification, introduced in late 2010.

As with QPI, PCIe uses a multilane distribution technique. Figure 3.23 shows 
an example for a PCIe port consisting of four lanes. Data are distributed to the four 
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Figure 3.22 PCIe Protocol Layers



B1B2B3B4B5B6B7 B0

byte stream

PCIe
lane 0

B4 B0

B5 B1

B6 B2

B7 B3

128b/
130b

PCIe
lane 1

128b/
130b

PCIe
lane 2

128b/
130b

PCIe
lane 3

128b/
130b

Figure 3.23 PCIe Multilane Distribution

110



3.6 / pCi express  111

lanes 1 byte at a time using a simple round-robin scheme. At each physical lane, 
data are buffered and processed 16 bytes (128 bits) at a time. Each block of 128 bits 
is encoded into a unique 130-bit codeword for transmission; this is referred to as 
128b/130b encoding. Thus, the effective data rate of an individual lane is reduced by 
a factor of 128/130.

To understand the rationale for the 128b/130b encoding, note that unlike QPI, 
PCIe does not use its clock line to synchronize the bit stream. That is, the clock line 
is not used to determine the start and end point of each incoming bit; it is used for 
other signaling purposes only. However, it is necessary for the receiver to be syn-
chronized with the transmitter, so that the receiver knows when each bit begins and 
ends. If there is any drift between the clocks used for bit transmission and reception 
of the transmitter and receiver, errors may occur. To compensate for the possibil-
ity of drift, PCIe relies on the receiver synchronizing with the transmitter based on 
the transmitted signal. As with QPI, PCIe uses differential signaling over a pair of 
wires. Synchronization can be achieved by the receiver looking for transitions in 
the data and synchronizing its clock to the transition. However, consider that with 
a long string of 1s or 0s using differential signaling, the output is a constant voltage 
over a long period of time. Under these circumstances, any drift between the clocks 
of transmitter and receiver will result in loss of synchronization between the two.

A common approach, and the one used in PCIe 3.0, to overcoming the prob-
lem of a long string of bits of one value is scrambling. Scrambling, which does not 
increase the number of bits to be transmitted, is a mapping technique that tends to 
make the data appear more random. The scrambling tends to spread out the num-
ber of transitions so that they appear at the receiver more uniformly spaced, which 
is good for synchronization. Also, other transmission properties, such as spectral 
properties, are enhanced if the data are more nearly of a random nature rather than 
constant or repetitive. For more discussion of scrambling, see Appendix E.

Another technique that can aid in synchronization is encoding, in which add-
itional bits are inserted into the bit stream to force transitions. For PCIe 3.0, each 
group of 128 bits of input is mapped into a 130-bit block by adding a 2-bit block sync 
header. The value of the header is 10 for a data block and 01 for what is called an 
ordered set block, which refers to a link-level information block.

Figure 3.24 illustrates the use of scrambling and encoding. Data to be trans-
mitted are fed into a scrambler. The scrambled output is then fed into a 128b/130b 
encoder, which buffers 128 bits and then maps the 128-bit block into a 130-bit block. 
This block then passes through a parallel-to-serial converter and transmitted one bit 
at a time using differential signaling.

At the receiver, a clock is synchronized to the incoming data to recover the bit 
stream. This then passes through a serial-to-parallel converter to produce a stream 
of 130-bit blocks. Each block is passed through a 128b/130b decoder to recover the 
original scrambled bit pattern, which is then descrambled to produce the original 
bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final 
detail to mention; each transmission of a block of data over a PCI link begins and 
ends with an 8-bit framing sequence intended to give the receiver time to synchro-
nize with the incoming physical layer bit stream.
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PCIe Transaction Layer

The transaction layer (TL) receives read and write requests from the software above 
the TL and creates request packets for transmission to a destination via the link 
layer. Most transactions use a split transaction technique, which works in the follow-
ing fashion. A request packet is sent out by a source PCIe device, which then waits 
for a response, called a completion packet. The completion following a request is 
initiated by the completer only when it has the data and/or status ready for delivery. 
Each packet has a unique identifier that enables completion packets to be directed 
to the correct originator. With the split transaction technique, the completion is sep-
arated in time from the request, in contrast to a typical bus operation in which both 
sides of a transaction must be available to seize and use the bus. Between the request 
and the completion, other PCIe traffic may use the link.

TL messages and some write transactions are posted transactions, meaning 
that no response is expected.

The TL packet format supports 32-bit memory addressing and extended 
64-bit memory addressing. Packets also have attributes such as “no-snoop,” 
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“relaxedordering,” and “priority,” which may be used to optimally route these 
packets through the I/O subsystem.

address spaces and transaction types The TL supports four address spaces:

 ■ Memory: The memory space includes system main memory. It also includes 
PCIe I/O devices. Certain ranges of memory addresses map into I/O devices.

 ■ I/O: This address space is used for legacy PCI devices, with reserved memory 
address ranges used to address legacy I/O devices.

 ■ Configuration: This address space enables the TL to read/write configuration 
registers associated with I/O devices.

 ■ Message: This address space is for control signals related to interrupts, error 
handling, and power management.

Table 3.2 shows the transaction types provided by the TL. For memory, I/O, and 
configuration address spaces, there are read and write transactions. In the case of 
memory transactions, there is also a read lock request function. Locked operations 
occur as a result of device drivers requesting atomic access to registers on a PCIe 
device. A device driver, for example, can atomically read, modify, and then write 
to a device register. To accomplish this, the device driver causes the processor to 
execute an instruction or set of instructions. The root complex converts these pro-
cessor instructions into a sequence of PCIe transactions, which perform individual 
read and write requests for the device driver. If these transactions must be executed 
atomically, the root complex locks the PCIe link while executing the transactions. 
This locking prevents transactions that are not part of the sequence from occur-
ring. This sequence of transactions is called a locked operation. The particular set 

Table 3.2 PCIe TLP Transaction Types

Address Space TLP Type Purpose

Memory

Memory Read Request
Transfer data to or from a location in the system 
memory map.

Memory Read Lock Request

Memory Write Request

I/O
I/O Read Request Transfer data to or from a location in the system 

memory map for legacy devices.I/O Write Request

Configuration

Config Type 0 Read Request

Transfer data to or from a location in the configura-
tion space of a PCIe device.

Config Type 0 Write Request

Config Type 1 Read Request

Config Type 1 Write Request

Message
Message Request

Provides in-band messaging and event reporting.
Message Request with Data

Memory, I/O, 
Configuration

Completion

Returned for certain requests.
Completion with Data

Completion Locked

Completion Locked with Data
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of processor instructions that can cause a locked operation to occur depends on the 
system chip set and processor architecture.

To maintain compatibility with PCI, PCIe supports both Type 0 and Type 1 con-
figuration cycles. A Type 1 cycle propagates downstream until it reaches the bridge 
interface hosting the bus (link) that the target device resides on. The configuration 
transaction is converted on the destination link from Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O, 
and configuration transactions.

tlp packet assembly PCIe transactions are conveyed using transaction layer 
packets, which are illustrated in Figure 3.25a. A TLP originates in the transaction layer 
of the sending device and terminates at the transaction layer of the receiving device.
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Upper layer software sends to the TL the information needed for the TL to 
create the core of the TLP, which consists of the following fields:

 ■ Header: The header describes the type of packet and includes information 
needed by the receiver to process the packet, including any needed routing 
information. The internal header format is discussed subsequently.

 ■ Data: A data field of up to 4096 bytes may be included in the TLP. Some TLPs 
do not contain a data field.

 ■ ECRC: An optional end-to-end CRC field enables the destination TL layer to 
check for errors in the header and data portions of the TLP.

PCIe Data Link Layer

The purpose of the PCIe data link layer is to ensure reliable delivery of packets 
across the PCIe link. The DLL participates in the formation of TLPs and also trans-
mits DLLPs.

data link layer packets Data link layer packets originate at the data link 
layer of a transmitting device and terminate at the DLL of the device on the 
other end of the link. Figure 3.25b shows the format of a DLLP. There are three 
important groups of DLLPs used in managing a link: flow control packets, power 
management packets, and TLP ACK and NAK packets. Power management 
packets are used in managing power platform budgeting. Flow control packets 
regulate the rate at which TLPs and DLLPs can be transmitted across a link. The 
ACK and NAK packets are used in TLP processing, discussed in the following 
paragraphs.

transaction layer packet processing The DLL adds two fields to the 
core of the TLP created by the TL (Figure 3.25a): a 16-bit sequence number and a 
32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only 
used at the destination TL, the two fields added by the DLL are processed at each 
intermediate node on the way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and 
LCRC fields and checks the LCRC. There are two possibilities:

1. If no errors are detected, the core portion of the TLP is handed up to the local 
transaction layer. If this receiving device is the intended destination, then the 
TL processes the TLP. Otherwise, the TL determines a route for the TLP and 
passes it back down to the DLL for transmission over the next link on the way 
to the destination.

2. If an error is detected, the DLL schedules an NAK DLL packet to return back 
to the remote transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives 
an NAK for the TLP with this sequence number, it retransmits the TLP. When it 
receives an ACK, it discards the buffered TLP.
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 3.7 Key terms, review Questions, and proBlems

Key Terms

address bus
address lines
arbitration
balanced transmission
bus
control lines
data bus
data lines
differential signaling
disabled interrupt
distributed arbitration
error control function

execute cycle
fetch cycle
flit
flow control function
instruction cycle
interrupt
interrupt handler
interrupt service routine (ISR)
lane
memory address register 

(MAR)
memory buffer register (MBR)

multilane distribution
packets
PCI Express (PCIe)
peripheral component 

 interconnect (PCI)
phit
QuickPath Interconnect  

(QPI)
root complex
system bus

Review Questions

 3.1 What general categories of functions are specified by computer instructions?
 3.2 List and briefly define the possible states that define an instruction execution.
 3.3 List and briefly define two approaches to dealing with multiple interrupts.
 3.4 What types of transfers must a computer’s interconnection structure (e.g., bus) 

support?
 3.5 List and briefly define the QPI protocol layers.
 3.6 List and briefly define the PCIe protocol layers.

Problems

 3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

 0011 = Load AC from I/O

 0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program 
execution (using the format of Figure 3.5) for the following program:

1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains 
a value of 2.

 3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand 
this description to show the use of the MAR and MBR.
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 3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of 
two fields: the first byte contains the opcode and the remainder the immediate oper-
and or an operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has:

1. 32-bit local address bus and a 16-bit local data bus, or
2. 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?
 3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example, 

assume that the program counter and the address registers are 16 bits wide) and hav-
ing a 16-bit data bus.
a. What is the maximum memory address space that the processor can access directly 

if it is connected to a “16-bit memory”?
b. What is the maximum memory address space that the processor can access directly 

if it is connected to an “8-bit memory”?
c. What architectural features will allow this microprocessor to access a separate 

“I/O space”?
d. If an input and an output instruction can specify an 8-bit I/O port number, how 

many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O ports? 
Explain.

 3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz 
input clock. Assume that this microprocessor has a bus cycle whose minimum dura-
tion equals four input clock cycles. What is the maximum data transfer rate across the 
bus that this microprocessor can sustain, in bytes/sec? To increase its performance, 
would it be better to make its external data bus 32 bits or to double the external clock 
frequency supplied to the microprocessor? State any other assumptions you make, 
and explain. Hint: Determine the number of bytes that can be transferred per bus 
cycle.

 3.6 Consider a computer system that contains an I/O module controlling a simple key-
board/printer teletype. The following registers are contained in the processor and con-
nected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit
FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled 
by the I/O module. The teletype is able to encode an alphanumeric symbol to an 8-bit 
word and decode an 8-bit word into an alphanumeric symbol.
a. Describe how the processor, using the first four registers listed in this problem, can 

achieve I/O with the teletype.
b. Describe how the function can be performed more efficiently by also 

employing IEN.
 3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, respec-

tively. The two processors are identical otherwise and their bus cycles take just as long.
a. Suppose all instructions and operands are two bytes long. By what factor do the 

maximum data transfer rates differ?
b. Repeat assuming that half of the operands and instructions are one byte long.

 3.8 Figure 3.26 indicates a distributed arbitration scheme that can be used with an obso-
lete bus scheme known as Multibus I. Agents are daisy-chained physically in priority 
order. The left-most agent in the diagram receives a constant bus priority in (BPRN) 
signal indicating that no higher-priority agent desires the bus. If the agent does not 
require the bus, it asserts its bus priority out (BPRO) line. At the beginning of a clock 
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cycle, any agent can request control of the bus by lowering its BPRO line. This lowers 
the BPRN line of the next agent in the chain, which is in turn required to lower its 
BPRO line. Thus, the signal is propagated the length of the chain. At the end of this 
chain reaction, there should be only one agent whose BPRN is asserted and whose 
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not 
busy (BUSY inactive), the agent that has priority may seize control of the bus by 
asserting the BUSY line.

It takes a certain amount of time for the BPR signal to propagate from the 
 highest-priority agent to the lowest. Must this time be less than the clock cycle?  Explain.

 3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI 
device (i.e., processor, memory, I/O module) has a unique priority and is assigned a 
unique transfer request (TR) line. The SBI has 16 such lines (TR0, TR1, . . ., TR15), 
with TR0 having the highest priority. When a device wants to use the bus, it places a 
reservation for a future time slot by asserting its TR line during the current time slot. 
At the end of the current time slot, each device with a pending reservation examines 
the TR lines; the highest-priority device with a reservation uses the next time slot.

A maximum of 17 devices can be attached to the bus. The device with priority 
16 has no TR line. Why not?

 3.10 On the VAX SBI, the lowest-priority device usually has the lowest average wait time. 
For this reason, the processor is usually given the lowest priority on the SBI. Why 
does the priority 16 device usually have the lowest average wait time? Under what 
circumstances would this not be true?

 3.11 For a synchronous read operation (Figure 3.18), the memory module must place the 
data on the bus sufficiently ahead of the falling edge of the Read signal to allow for 
signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read 
signal begins to fall in the middle of the second half of T3.
a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the 

settling of data lines.
 3.12 Consider a microprocessor that has a memory read timing as shown in Figure 3.18. 

After some analysis, a designer determines that the memory falls short of providing 
read data on time by about 180 ns.
a. How many wait states (clock cycles) need to be inserted for proper system opera-

tion if the bus clocking rate is 8 MHz?
b. To enforce the wait states, a Ready status line is employed. Once the processor 

has issued a Read command, it must wait until the Ready line is asserted before 
attempting to read data. At what time interval must we keep the Ready line low in 
order to force the processor to insert the required number of wait states?

Bus
terminator

Bus
terminator

BPRN BPRO BPRN BPRO BPRN BPRO

(highest priority)

Master 1 Master 2 Master 3

(lowest priority)

Figure 3.26 Multibus I Distributed Arbitration
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 3.13 A microprocessor has a memory write timing as shown in Figure 3.18. Its manufac-
turer specifies that the width of the Write signal can be determined by T-50, where T 
is the clock period in ns.
a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?
b. The data sheet for the microprocessor specifies that the data remain valid for 20 ns 

after the falling edge of the Write signal. What is the total duration of valid data 
presentation to memory?

c. How many wait states should we insert if memory requires valid data presentation 
for at least 190 ns?

 3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the 
value in a memory location. The instruction has five stages: fetch opcode (four bus 
clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1 
to operand (three cycles), and store operand (three cycles).
a. By what amount (in percent) will the duration of the instruction increase if we have 

to insert two bus wait states in each memory read and memory write operation?
b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

 3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.18, but 
requires four processor clock cycles. The valid data is on the bus for an amount of time 
that extends into the fourth processor clock cycle. Assume a processor clock rate of 
8 MHz.
a. What is the maximum data transfer rate?
b. Repeat, but assume the need to insert one wait state per byte transferred.

 3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086 
uses a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order 
byte has an even address. However, the 8086 allows both even- and odd-aligned word 
operands. If an odd-aligned word is referenced, two memory cycles, each consisting of 
four bus cycles, are required to transfer the word. Consider an instruction on the 8086 
that involves two 16-bit operands. How long does it take to fetch the operands? Give 
the range of possible answers. Assume a clocking rate of 4 MHz and no wait states.

 3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a 
16-bit microprocessor. Assume that, on average, 20% of the operands and instruc-
tions are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate 
the improvement achieved when fetching instructions and operands with the 32-bit 
microprocessor.

 3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the incre-
ment memory direct instruction at the same time that a keyboard actives an interrupt 
request line. After how long does the processor enter the interrupt processing cycle? 
Assume a bus clocking rate of 10 MHz.
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Although seemingly simple in concept, computer memory exhibits perhaps the wid-
est range of type, technology, organization, performance, and cost of any feature 
of a computer system. No single technology is optimal in satisfying the memory 
requirements for a computer system. As a consequence, the typical computer system 
is equipped with a hierarchy of memory subsystems, some internal to the system 
(directly accessible by the processor) and some external (accessible by the processor 
via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6 
is devoted to external memory. To begin, the first section examines key character-
istics of computer memories. The remainder of the chapter examines an essential 
element of all modern computer systems: cache memory.

 4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify 
memory systems according to their key characteristics. The most important of these 
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal or exter-
nal to the computer. Internal memory is often equated with main memory, but there 
are other forms of internal memory. The processor requires its own local memory, 
in the form of registers (e.g., see Figure 2.3). Further, as we will see, the control unit 
portion of the processor may also require its own internal memory. We will defer 
discussion of these latter two types of internal memory to later chapters. Cache is 
another form of internal memory. External memory consists of peripheral storage 
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this 
is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word 
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in 
terms of bytes.

Learning Objectives

After studying this chapter, you should be able to:

 r Present an overview of the main characteristics of computer memory systems 
and the use of a memory hierarchy.

 r Describe the basic concepts and intent of cache memory.
 r Discuss the key elements of cache design.
 r Distinguish among direct mapping, associative mapping, and  set-  associative 
mapping.

 r Explain the reasons for using multiple levels of cache.
 r Understand the performance implications of multiple levels of memory.
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A related concept is the unit of transfer. For internal memory, the unit 
of transfer is equal to the number of electrical lines into and out of the memory 
module. This may be equal to the word length, but is often larger, such as 64, 128, or 
256 bits. To clarify this point, consider three related concepts for internal memory:

 ■ Word: The “natural” unit of organization of memory. The size of a word is typically 
equal to the number of bits used to represent an integer and to the instruction 
length. Unfortunately, there are many exceptions. For example, the CRAY C90 
(an older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit 
integer representation. The Intel x86 architecture has a wide variety of instruction 
lengths, expressed as multiples of bytes, and a word size of 32 bits.

 ■ Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the byte level. In any case, the rela-
tionship between the length in bits A of an address and the number N of 
addressable units is 2A = N.

 ■ Unit of transfer: For main memory, this is the number of bits read out of or 
written into memory at a time. The unit of transfer need not equal a word or 
an addressable unit. For external memory, data are often transferred in much 
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of 
data. These include the following:

 ■ Sequential access: Memory is organized into units of data, called records. 
Access must be made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared 
 read–  write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record. 
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

 ■ Direct access: As with sequential access, direct access involves a shared 
 read–  write mechanism. However, individual blocks or records have a unique 

Table 4.1 Key Characteristics of Computer Memory Systems

Location
  Internal (e.g., processor registers, cache, main  
   memory)
  External (e.g., optical disks, magnetic  
   disks, tapes)
Capacity
  Number of words
  Number of bytes
Unit of Transfer
  Word
  Block
Access Method
  Sequential
  Direct
  Random
  Associative

Performance
  Access time
  Cycle time
  Transfer rate
Physical Type
  Semiconductor
  Magnetic
  Optical
   Magneto-  optical
Physical Characteristics
  Volatile/nonvolatile
  Erasable/nonerasable
Organization
  Memory modules
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address based on physical location. Access is accomplished by direct access 
to reach a general vicinity plus sequential searching, counting, or waiting to 
reach the final location. Again, access time is variable. Disk units, discussed in 
Chapter 6, are direct access.

 ■ Random access: Each addressable location in memory has a unique, physically 
 wired-  in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location 
can be selected at random and directly addressed and accessed. Main memory 
and some cache systems are random access.

 ■ Associative: This is a random access type of memory that enables one to make 
a comparison of desired bit locations within a word for a specified match, and 
to do this for all words simultaneously. Thus, a word is retrieved based on a 
portion of its contents rather than its address. As with ordinary  random-  access 
memory, each location has its own addressing mechanism, and retrieval time 
is constant independent of location or prior access patterns. Cache memories 
may employ associative access.

From a user’s point of view, the two most important characteristics of memory are 
capacity and performance. Three performance parameters are used:

 ■ Access time (latency): For  random-  access memory, this is the time it takes 
to perform a read or write operation, that is, the time from the instant that 
an address is presented to the memory to the instant that data have been 
stored or made available for use. For  non-  random-  access memory, access 
time is the time it takes to position the  read–  write mechanism at the desired 
location.

 ■ Memory cycle time: This concept is primarily applied to  random-  access memory 
and consists of the access time plus any additional time required before a second 
access can commence. This additional time may be required for transients to die 
out on signal lines or to regenerate data if they are read destructively. Note that 
memory cycle time is concerned with the system bus, not the processor.

 ■ Transfer rate: This is the rate at which data can be transferred into or out of 
a memory unit. For  random-  access memory, it is equal to 1/(cycle time). For 
 non-  random-  access memory, the following relationship holds:

 Tn = TA +
n
R

 (4.1)

where

  Tn = Average time to read or write  n  bits

 TA = Average access time

    n = Number of bits

   R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and 
tape, and optical and  magneto-  optical.
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Several physical characteristics of data storage are important. In a volatile 
memory, information decays naturally or is lost when electrical power is switched 
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion.  Magnetic-  surface memories are nonvolatile. Semiconductor memory (memory 
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory 
cannot be altered, except by destroying the storage unit. Semiconductor memory of 
this type is known as  read-  only memory (ROM). Of necessity, a practical nonerasa-
ble memory must also be nonvolatile.

For  random-  access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The 
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there, 
applications will likely be developed to use it. The question of how fast is, in a sense, 
easier to answer. To achieve greatest performance, the memory must be able to 
keep up with the processor. That is, as the processor is executing instructions, we 
would not want it to have to pause waiting for instructions or operands. The final 
question must also be considered. For a practical system, the cost of memory must 
be reasonable in relationship to other components.

As might be expected, there is a  trade-  off among the three key characteristics 
of memory: capacity, access time, and cost. A variety of technologies are used to 
implement memory systems, and across this spectrum of technologies, the following 
relationships hold:

 ■ Faster access time, greater cost per bit;
 ■ Greater capacity, smaller cost per bit;
 ■ Greater capacity, slower access time.

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for  large-  capacity memory, both because the cap-
acity is needed and because the cost per bit is low. However, to meet performance 
requirements, the designer needs to use expensive, relatively  lower-  capacity mem-
ories with short access times.

The way out of this dilemma is not to rely on a single memory component or 
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in 
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit;

b. Increasing capacity;

c. Increasing access time;

d. Decreasing frequency of access of the memory by the processor.

Thus, smaller, more expensive, faster memories are supplemented by 
larger, cheaper, slower memories. The key to the success of this organization 
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is item (d): decreasing frequency of access. We examine this concept in greater 
detail when we discuss the cache, later in this chapter, and virtual memory in 
Chapter 8. A brief explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through 
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of 
reference [DENN68]. During the course of execution of a program, memory ref-
erences by the processor, for both instructions and data, tend to cluster. Programs 
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Simi-
larly, operations on tables and arrays involve access to a clustered set of data words. 
Over a long period of time, the clusters in use change, but over a short period of 
time, the processor is primarily working with fixed clusters of memory references.
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Off-linestorage
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Magnetic disk
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Figure 4.1 The Memory Hierarchy
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Accordingly, it is possible to organize data across the hierarchy such that the 
percentage of accesses to each successively lower level is substantially less than that 
of the level above. Consider the  two-  level example already presented. Let level 2 

 EXAMPLE 4.1  Suppose that the processor has access to two levels of memory. Level 1 
contains 1000 words and has an access time of 0.01  ms; level 2 contains 100,000 words and 
has an access time of 0.1  ms. Assume that if a word to be accessed is in level 1, then the 
processor accesses it directly. If it is in level 2, then the word is first transferred to level 1 
and then accessed by the processor. For simplicity, we ignore the time required for the pro-
cessor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the general 
shape of the curve that covers this situation. The figure shows the average access time to 
a  two-  level memory as a function of the hit ratio H, where H is defined as the fraction of 
all memory accesses that are found in the faster memory (e.g., the cache), T1 is the access 
time to level 1, and T2 is the access time to level 2.1 As can be seen, for high percentages 
of level 1 access, the average total access time is much closer to that of level 1 than that 
of level 2.

In our example, suppose 95% of the memory accesses are found in level 1. Then the 
average time to access a word can be expressed as

(0.95)(0.01  ms) + (0.05)(0.01  ms + 0.1  ms) = 0.0095 + 0.0055 = 0.015  ms

The average access time is much closer to 0.01  ms than to 0.1  ms, as desired.

1If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed 
word is not found in the faster memory.
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memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have 
to be swapped back to level 2 to make room for a new cluster coming in to level 1. 
On average, however, most references will be to instructions and data contained in 
level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a 
processor will contain a few dozen such registers, although some machines contain 
hundreds of registers. Main memory is the principal internal memory system of the 
computer. Each location in main memory has a unique address. Main memory is usu-
ally extended with a  higher-  speed, smaller cache. The cache is not usually visible to 
the programmer or, indeed, to the processor. It is a device for staging the movement 
of data between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ 
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are 
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape, 
and optical storage. External, nonvolatile memory is also referred to as secondary 
memory or auxiliary memory. These are used to store program and data files and 
are usually visible to the programmer only in terms of files and records, as opposed 
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large 
IBM mainframes include a form of internal memory known as expanded storage. 
This uses a semiconductor technology that is slower and less expensive than that 
of main memory. Strictly speaking, this memory does not fit into the hierarchy but 
is a side branch: Data can be moved between main memory and expanded storage 
but not between expanded storage and external memory. Other forms of secondary 
memory include optical and  magneto-  optical disks. Finally, additional levels can be 
effectively added to the hierarchy in software. A portion of main memory can be 
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,2 improves performance in two ways:

 ■ Disk writes are clustered. Instead of many small transfers of data, we have 
a few large transfers of data. This improves disk performance and minimizes 
processor involvement.

 ■ Some data destined for  write-  out may be referenced by a program before the 
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory 
structures.

2 Disk cache is generally a purely software technique and is not examined in this book. See [STAL15] for 
a discussion.
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 4.2 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive,  high- 
 speed memory combined with the large memory size of less expensive,  lower-  speed 
memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow 
main memory together with a smaller, faster cache memory. The cache contains a 
copy of portions of main memory. When the processor attempts to read a word of 
memory, a check is made to determine if the word is in the cache. If so, the word is 
delivered to the processor. If not, a block of main memory, consisting of some fixed 
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is 
fetched into the cache to satisfy a single memory reference, it is likely that there will 
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower 
and typically larger than the L1 cache, and the L3 cache is slower and typically 
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/ main-  memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique  n-  bit 
address. For mapping purposes, this memory is considered to consist of a number 
of  fixed-  length blocks of K words each. That is, there are M = 2n/K blocks in main 
memory. The cache consists of m blocks, called lines.3 Each line contains K words, 
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Word transfer
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Fastest Fast
Less
fast
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Block transfer

Cache Main memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Slow

Figure 4.3 Cache and Main Memory

3In referring to the basic unit of the cache, the term line is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as 
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block, 
but also includes tag and control bits.
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plus a tag of a few bits. Each line also includes control bits (not shown), such as a 
bit to indicate whether the line has been modified since being loaded into the cache. 
The length of a line, not including tag and control bits, is the line size. The line size 
may be as small as 32 bits, with each “word” being a single byte; in this case the 
line size is 4 bytes. The number of lines is considerably less than the number of 
main memory blocks (m V M). At any time, some subset of the blocks of mem-
ory resides in lines in the cache. If a word in a block of memory is read, that block 
is transferred to one of the lines of the cache. Because there are more blocks than 
lines, an individual line cannot be uniquely and permanently dedicated to a par-
ticular block. Thus, each line includes a tag that identifies which particular block is 
currently being stored. The tag is usually a portion of the main memory address, as 
described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read 
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the 
cache, and the word is delivered to the processor. Figure 4.5 shows these last two 
operations occurring in parallel and reflects the organization shown in Figure 4.6, 
which is typical of contemporary cache organizations. In this organization, the cache 
connects to the processor via data, control, and address lines. The data and address 
lines also attach to data and address buffers, which attach to a system bus from 
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which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no 
system bus traffic. When a cache miss occurs, the desired address is loaded onto the 
system bus and the data are returned through the data buffer to both the cache and 
the processor. In other organizations, the cache is physically interposed between 
the processor and the main memory for all data, address, and control lines. In this 
latter case, for a cache miss, the desired word is first read into the cache and then 
transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained 
in Appendix 4A.
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to CPU

DONE
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START
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Figure 4.5 Cache Read Operation
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 4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typi-
cal results. We occasionally refer to the use of caches in  high-  performance computing 
(HPC). HPC deals with supercomputers and their software, especially for scientific 
applications that involve large amounts of data, vector and matrix computation, and the 
use of parallel algorithms. Cache design for HPC is quite different than for other hard-
ware platforms and applications. Indeed, many researchers have found that HPC appli-
cations perform poorly on computer architectures that employ caches [BAIL93]. Other 
researchers have since shown that a cache hierarchy can be useful in improving perfor-
mance if the application software is tuned to exploit the cache [WANG99, PRES01].4

Although there are a large number of cache implementations, there are a few 
basic design elements that serve to classify and differentiate cache architectures. 
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without 
regard to the amount of main memory physically available. When virtual memory is 
used, the address fields of machine instructions contain virtual addresses. For reads 
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Figure 4.6 Typical Cache Organization

4For a general discussion of HPC, see [DOWD98].
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to and writes from main memory, a hardware memory management unit (MMU) 
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the 
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using 

Table 4.2 Elements of Cache Design

Cache Addresses
  Logical
  Physical
Cache Size
Mapping Function
  Direct
  Associative
  Set associative
Replacement Algorithm
  Least recently used (LRU)
  First in first out (FIFO)
  Least frequently used (LFU)
  Random

Write Policy
  Write through
  Write back
Line Size
Number of Caches
  Single or two level
  Unified or split

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical cache

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical cache

Figure 4.7 Logical and Physical Caches
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virtual addresses. The processor accesses the cache directly, without going through 
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster 
than for a physical cache, because the cache can respond before the MMU performs 
an address translation. The disadvantage has to do with the fact that most virtual 
memory systems supply each application with the same virtual memory address 
space. That is, each application sees a virtual memory that starts at address 0. Thus, 
the same virtual address in two different applications refers to two different phys-
ical addresses. The cache memory must therefore be completely flushed with each 
application context switch, or extra bits must be added to each line of the cache to 
identify which virtual address space this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the 
scope of this book. For a more  in-  depth discussion, see [CEKL97] and [JACO08].

Cache Size

The second item in Table 4.2, cache size, has already been discussed. We would 
like the size of the cache to be small enough so that the overall average cost per 
bit is close to that of main memory alone and large enough so that the overall 
average access time is close to that of the cache alone. There are several other 
motivations for minimizing cache size. The larger the cache, the larger the num-
ber of gates involved in addressing the cache. The result is that large caches tend 
to be slightly slower than small  ones—  even when built with the same integrated 
circuit technology and put in the same place on chip and circuit board. The avail-
able chip and board area also limits cache size. Because the performance of the 
cache is very sensitive to the nature of the workload, it is impossible to arrive at 
a single “optimum” cache size. Table 4.3 lists the cache sizes of some current and 
past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is 
needed for mapping main memory blocks into cache lines. Further, a means is 
needed for determining which main memory block currently occupies a cache 
line. The choice of the mapping function dictates how the cache is organized. 
Three techniques can be used: direct, associative, and set-associative. We examine 
each of these in turn. In each case, we look at the general structure and then a 
specific example.

 EXAMPLE 4.2  For all three cases, the example includes the following elements:

 ■ The cache can hold 64 kB.
 ■ Data are transferred between main memory and the cache in blocks of 4 bytes 

each. This means that the cache is organized as 16K = 214 lines of 4 bytes each.
 ■ The main memory consists of 16 MB, with each byte directly addressable by a 

24-bit address (224 = 16M). Thus, for mapping purposes, we can consider main 
memory to consist of 4M blocks of 4 bytes each.
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direct mapping The simplest technique, known as direct mapping, maps each block 
of main memory into only one possible cache line. The mapping is expressed as

i = j  modulo  m

where

  i = cache line number

  j = main memory block number

 m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each 
block of main memory maps into one unique line of the cache. The next m blocks 

Table 4.3 Cache Sizes of Some Processors

 
Processor

 
Type

Year of 
Introduction

 
L1 Cachea

 
L2 Cache

 
L3 Cache

IBM 360/85 Mainframe 1968 16–32 kB — —

 PDP-  11/70 Minicomputer 1975 1 kB — —

VAX 11/780 Minicomputer 1978 16 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128–256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256–512 kB —

PowerPC 601 PC 1993 32 kB — —

PowerPC 620 PC 1996 32 kB/32 kB — —

PowerPC G4 PC/server 1999 32 kB/32 kB 256 kB to 1 MB 2 MB

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —

IBM SP
 High-  end server/
supercomputer

2000 64 kB/32 kB 8 MB —

CRAY MTAb Supercomputer 2000 8 kB 2 MB —

Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 2002 32 kB 256 kB 6 MB

IBM POWER5  High-  end server 2003 64 kB 1.9 MB 36 MB

CRAY  XD-  1 Supercomputer 2004 64 kB/64 kB 1 MB —

IBM POWER6 PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24–48 MB

Intel Core i7 EE 990
Workstation/ 

server
2011

6 * 32 kB/ 
32 kB

1.5 MB 12 MB

IBM zEnterprise 196
Mainframe/ 

server
2011

24 * 64 kB/ 
128 kB

24 * 1.5 MB
24 MB L3
192 MB L4

Notes: a Two values separated by a slash refer to instruction and data caches. b Both caches are instruction only; 
no data caches.
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of main memory map into the cache in the same fashion; that is, block Bm of main 
memory maps into line L0 of cache, block Bm+1 maps into line L1, and so on.

The mapping function is easily implemented using the main memory address. 
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each 
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most 
contemporary machines, the address is at the byte level. The remaining s bits specify 
one of the 2s blocks of main memory. The cache logic interprets these s bits as a tag 
of s - r bits (most significant portion) and a line field of r bits. This latter field iden-
tifies one of the m = 2r lines of the cache. To summarize,

 ■ Address length = (s + w) bits
 ■ Number of addressable units = 2s+w words or bytes
 ■ Block size = line size = 2w words or bytes

 ■ Number of blocks in main memory =
2s + w

2w = 2s

 ■ Number of lines in cache = m = 2r

 ■ Size of cache = 2r+w words or bytes
 ■ Size of tag = (s - r) bits

(a) Direct mapping

First m blocks of
main memory

(equal to size of cache)

b

L0

Lm–1

L0

Lm–1

Bm–1

B0

b = length of block in bits
t = length of tag in bits

Cache memory

m
 li

ne
s

b

bt

bt

(b) Associative mapping

One block of
main memory

Cache memory

Figure 4.8 Mapping from Main Memory to Cache: Direct and Associative



136  CHApter 4 / CACHe memory

 EXAMPLE 4.2a  Figure 4.10 shows our example system using direct mapping.5 In the example, 
m = 16K = 214 and i = j modulo 214. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

f f

214 - 1 00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus, 
blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00, 01, …, FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is presented 
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a particular 
line. If the 8-bit tag number matches the tag number currently stored in that line, then the 2-bit word 
number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit  tag-  plus-  line field is 
used to fetch a block from main memory. The actual address that is used for the fetch is the 22-bit 
 tag-  plus-  line concatenated with two 0 bits, so that 4 bytes are fetched starting on a block boundary.

WordLineTag
W0
W1
W2
W3

Compare

1 if match
0 if no match

0 if match
1 if no match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

L0

Li

Memory address

(Miss in cache)

(Hit in cache)

w

s – r

wr

s + w

Main memory

Bj

B0

s

w

Lm–1

s – r

Figure 4.9  Direct-  Mapping Cache Organization

5In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9 
for a basic refresher on number systems (decimal, binary, hexadecimal).
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The effect of this mapping is that blocks of main memory are assigned to lines 
of the cache as follows:

Cache line Main memory blocks assigned

0 0, m, 2m, c , 2s - m

1 1, m + 1, 2m + 1, c , 2s - m + 1

f f

m - 1 m - 1, 2m - 1, 3m - 1, c , 2s - 1

Thus, the use of a portion of the address as a line number provides a unique 
mapping of each block of main memory into the cache. When a block is actually 

111111111111111111111100
111111111111111111111000

111111110000000000000000

000101101111111111111100

000101100011001110011100

111111110000000000000100

000101100000000000000100
000101100000000000000000

000000001111111111111100

000000000000000000000000
000000000000000000000100

000000001111111111111000

00
00

FF
FF

FF
FF

16

16

16
16

00
00

13579246

TagTag
(hex)

Main memory address (binary)

Tag Data

32 bits

16K line cache

8 bits

8 bits 2 bits

Tag

Main memory address =

Line Word

Line
number

Line + Word
Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

1357924600
16

FF
16

16

0000
0001

0CE7

3FFE
3FFF

11235813

FEDCBA98

11223344
12345678

14 bits

32 bits

16-Mb main memory

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.10 Direct Mapping Example
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read into its assigned line, it is necessary to tag the data to distinguish it from other 
blocks that can fit into that line. The most significant s - r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its 
main disadvantage is that there is a fixed cache location for any given block. Thus, 
if a program happens to reference words repeatedly from two different blocks that 
map into the same line, then the blocks will be continually swapped in the cache, 
and the hit ratio will be low (a phenomenon known as thrashing).

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded in 
case it is needed again. Since the discarded data has already been fetched, it can be 
used again at a small cost. Such recycling is possible using a victim cache. Victim cache 
was originally proposed as an approach to reduce the conflict misses of direct mapped 
caches without affecting its fast access time. Victim cache is a fully associative cache, 
whose size is typically 4 to 16 cache lines, residing between a direct mapped L1 cache 
and the next level of memory. This concept is explored in Appendix F.

associative mapping Associative mapping overcomes the disadvantage of direct 
mapping by permitting each main memory block to be loaded into any line of the 
cache (Figure 4.8b). In this case, the cache control logic interprets a memory address 
simply as a Tag and a Word field. The Tag field uniquely identifies a block of main 
memory. To determine whether a block is in the cache, the cache control logic must 
simultaneously examine every line’s tag for a match. Figure 4.11 illustrates the logic.

Tag Word
W0
W1
W2
W3

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

Memory address

(Miss in cache)

(Hit in cache)

w

w

s

s+w

Main memory

s

w

s
1 if match
0 if no match

0 if match
1 if no match

L0

Lj

B0

Bj

Lm–1

Figure 4.11 Fully Associative Cache Organization



4.3 / elementS of CACHe DeSign  139

111111111111111111111100
111111111111111111111000
111111111111111111110100

000101100011001110011000
000101100011001110011100
000101100011001110100000

000000000000000000000100
000000000000000000000000 13579246

FEDCBA98

Tag Data

32 bits

16K line cache

22 bits

Tag

Main memory address =

Word

Line
number

Data

24682468
11223344
33333333

112233443FFFFE
058CE7

000000
3FFFFF

0000
0001

3FFE
3FFF

FEDCBA98

13579246
3FFFFD 3FFD33333333

24682468

32 bits

16-Mb main memory

2 bits22 bits

000000
000001

Tag (hex)

058CE7
058CE8

058CE6

3FFFFE
3FFFFD

3FFFFF

Tag

Main memory address (binary)

Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.12 Associative Mapping Example

 EXAMPLE  4.2b  Figure  4.12 shows our example using associative mapping. A main 
memory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be 
stored with the 32-bit block of data for each line in the cache. Note that it is the leftmost 
(most significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal 
address 16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

Memory address 0001 0110 0011 0011 1001 1100 (binary)

 1 6 3 3 9 C (hex)

Tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary) 

 0 5 8 C E 7 (hex)
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Note that no field in the address corresponds to the line number, so that the number 
of lines in the cache is not determined by the address format. To summarize,

 ■ Address length = (s + w) bits
 ■ Number of addressable units = 2s+w words or bytes
 ■ Block size = line size = 2w words or bytes

 ■ Number of blocks in main memory =
2s + w

2w = 2s

 ■ Number of lines in cache = undetermined
 ■ Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when 
a new block is read into the cache. Replacement algorithms, discussed later in this 
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache 
lines in parallel.

Cache Time Analysis Simulator

 set-  associative mapping  Set-  associative mapping is a compromise that 
exhibits the strengths of both the direct and associative approaches while reducing 
their disadvantages.

In this case, the cache consists of number sets, each of which consists of a num-
ber of lines. The relationships are

m = v * k

i = j  modulo v

where

   i = cache set number

   j = main memory block number

 m = number of lines in the cache

     v = number of sets

   k = number of lines in each set

This is referred to as  k-  way  set-  associative mapping. With  set-  associative map-
ping, block Bj can be mapped into any of the lines of set j. Figure 4.13a illustrates 
this mapping for the first v blocks of main memory. As with associative mapping, 
each word maps into multiple cache lines. For  set-  associative mapping, each word 
maps into all the cache lines in a specific set, so that main memory block B0 maps 
into set 0, and so on. Thus, the  set-  associative cache can be physically implemented 
as v associative caches. It is also possible to implement the  set-  associative cache as 
k direct mapping caches, as shown in Figure 4.13b. Each  direct-  mapped cache is 
referred to as a way, consisting of v lines. The first v lines of main memory are direct 
mapped into the v lines of each way; the next group of v lines of main memory are 
similarly mapped, and so on. The  direct-  mapped implementation is typically used 
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for small degrees of associativity (small values of k) while the  associative-  mapped 
implementation is typically used for higher degrees of associativity [JACO08].

For  set-  associative mapping, the cache control logic interprets a memory 
address as three fields: Tag, Set, and Word. The d set bits specify one of v = 2d sets. 
The s bits of the Tag and Set fields specify one of the 2s blocks of main memory. 
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the 
tag in a memory address is quite large and must be compared to the tag of every line 
in the cache. With  k-  way  set-  associative mapping, the tag in a memory address is 
much smaller and is only compared to the k tags within a single set. To summarize,

 ■ Address length = (s + w) bits
 ■ Number of addressable units = 2s+w words or bytes

First v blocks of
main memory

(equal to number of sets)

Cache memory—way 1 Cache memory—way k

One
set

(b) k direct–mapped caches

v 
lin

es

Bv–1

B0 L0

L v–1

(a) v associative–mapped caches

First v blocks of
main memory

(equal to number of sets)

Cache memory–set 0

Cache memory–set v–1

k 
lin

es

Bv–1

B0 L0

Lk–1

Figure 4.13 Mapping from Main Memory to Cache:  k-  Way Set Associative
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 ■ Block size = line size = 2w words or bytes

 ■ Number of blocks in main memory =
2s + w

2w = 2s

 ■ Number of lines in set = k
 ■ Number of sets = v = 2d

 ■ Number of lines in cache = m = kv = k * 2d

 ■ Size of cache = k * 2d + w words or bytes
 ■ Size of tag = (s - d) bits

WordSetTag

Compare

Tag Data
Cache

F0

Memory address

(Hit in cache)

s – d

wds – d

s + w

Main memory

s + w

F1

Fk–1

Fk

Fk+i

F2k–1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match

(Miss in cache)

Figure 4.14  k-  Way Set-Associative Cache Organization

 EXAMPLE  4.2c  Figure  4.15 shows our example using  set-  associative mapping with 
two lines in each set, referred to as  two-  way  set-  associative. The 13-bit set number iden-
tifies a unique set of two lines within the cache. It also gives the number of the block in 
main memory, modulo 213. This determines the mapping of blocks into lines. Thus, blocks 
000000, 008000, …, FF8000 of main memory map into cache set 0. Any of those blocks can 
be loaded into either of the two lines in the set. Note that no two blocks that map into the 
same cache set have the same tag number. For a read operation, the 13-bit set number is 
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.



000101100111111111111100

111111111111111111111000

111111111000000000000000

000101100011001110011100

000101100000000000000000

000000001111111111111000

000000000000000000000000 13579246000
000

000
000

Tag
(hex)

Tag Data

32 bits
16K line cache

9 bits

Tag

Main memory address =
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Tag Data
Set

number

Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

02C
02C
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1FF
1FF
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7777777713579246000
02C

1FF
02C
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0000
0001

0CE7

1FFE
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02C

246824681FF
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12345678
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16–Mb main memory

32 bits9 bits

FEDCBA98

2 bits13 bits9 bits

111111111111111111111100
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000000000000000000000100
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Main memory address (binary)

Set + Word

Note: Memory address values are
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other values are in hexadecimal.

Figure 4.15  Two-  Way  Set-  Associative Mapping Example143
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In the extreme case of v = m,  k = 1, the  set-  associative technique reduces to 
direct mapping, and for v = 1,  k = m, it reduces to associative mapping. The use of 
two lines per set (v = m/2,  k = 2) is the most common  set-  associative organization. 
It significantly improves the hit ratio over direct mapping.  Four-  way set associative 
(v = m/4,  k = 4) makes a modest additional improvement for a relatively small 
additional cost [MAYB84, HILL89]. Further increases in the number of lines per 
set have little effect.

Figure 4.16 shows the results of one simulation study of  set-  associative cache 
performance as a function of cache size [GENU04]. The difference in performance 
between direct and  two-  way set associative is significant up to at least a cache size of 
64 kB. Note also that the difference between  two-  way and  four-  way at 4 kB is much 
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity 
of the cache increases in proportion to the associativity, and in this case would not 
be justifiable against increasing cache size to 8 or even 16 kB. A final point to note 
is that beyond about 32 kB, increase in cache size brings no significant increase in 
performance.

The results of Figure 4.16 are based on simulating the execution of a GCC 
compiler. Different applications may yield different results. For example, [CANT01] 
reports on the results for cache performance using many of the CPU2000 SPEC 
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow 
the same pattern as Figure 4.16, but the specific values are somewhat different.
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Multitask Cache Simulator
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Figure 4.16 Varying Associativity over Cache Size
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Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of 
the existing blocks must be replaced. For direct mapping, there is only one possible 
line for any particular block, and no choice is possible. For the associative and  set- 
 associative techniques, a replacement algorithm is needed. To achieve high speed, 
such an algorithm must be implemented in hardware. A number of algorithms have 
been tried. We mention four of the most common. Probably the most effective is least 
recently used (LRU): Replace that block in the set that has been in the cache longest 
with no reference to it. For  two-  way set associative, this is easily implemented. Each 
line includes a USE bit. When a line is referenced, its USE bit is set to 1 and the 
USE bit of the other line in that set is set to 0. When a block is to be read into the 
set, the line whose USE bit is 0 is used. Because we are assuming that more recently 
used memory locations are more likely to be referenced, LRU should give the best 
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The 
cache mechanism maintains a separate list of indexes to all the lines in the cache. 
When a line is referenced, it moves to the front of the list. For replacement, the line 
at the back of the list is used. Because of its simplicity of implementation, LRU is the 
most popular replacement algorithm.

Another possibility is  first-  in-  first-  out (FIFO): Replace that block in the set that 
has been in the cache longest. FIFO is easily implemented as a  round-  robin or circu-
lar buffer technique. Still another possibility is least frequently used (LFU): Replace 
that block in the set that has experienced the fewest references. LFU could be imple-
mented by associating a counter with each line. A technique not based on usage (i.e., 
not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the 
candidate lines. Simulation studies have shown that random replacement provides 
only slightly inferior performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to 
consider. If the old block in the cache has not been altered, then it may be over-
written with a new block without first writing out the old block. If at least one write 
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before 
bringing in the new block. A variety of write policies, with performance and eco-
nomic  trade-  offs, is possible. There are two problems to contend with. First, more 
than one device may have access to main memory. For example, an I/O module 
may be able to  read-  write directly to memory. If a word has been altered only in 
the cache, then the corresponding memory word is invalid. Further, if the I/O device 
has altered main memory, then the cache word is invalid. A more complex problem 
occurs when multiple processors are attached to the same bus and each processor 
has its own local cache. Then, if a word is altered in one cache, it could conceivably 
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write 
operations are made to main memory as well as to the cache, ensuring that main 
memory is always valid. Any other  processor–  cache module can monitor traffic to 
main memory to maintain consistency within its own cache. The main disadvantage 
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of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes. 
With write back, updates are made only in the cache. When an update occurs, a 
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it 
is written back to main memory if and only if the dirty bit is set. The problem with 
write back is that portions of main memory are invalid, and hence accesses by I/O 
modules can be allowed only through the cache. This makes for complex circuitry 
and a potential bottleneck. Experience has shown that the percentage of memory 
references that are writes is on the order of 15% [SMIT82]. However, for HPC 
applications, this number may approach 33% ( vector-  vector multiplication) and can 
go as high as 50% (matrix transposition).

 EXAMPLE 4.3  Consider a cache with a line size of 32 bytes and a main memory that 
requires 30 ns to transfer a 4-byte word. For any line that is written at least once before 
being swapped out of the cache, what is the average number of times that the line must be 
written before being swapped out for a  write-  back cache to be more efficient that a  write- 
 through cache?

For the  write-  back case, each dirty line is written back once, at  swap-  out time, taking 
8 * 30 = 240 ns. For the  write-  through case, each update of the line requires that one 
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets 
written at least once gets written more than 8 times before swap out, then write back is 
more efficient.

In a bus organization in which more than one device (typically a processor) 
has a cache and main memory is shared, a new problem is introduced. If data in one 
cache are altered, this invalidates not only the corresponding word in main memory, 
but also that same word in other caches (if any other cache happens to have that 
same word). Even if a  write-  through policy is used, the other caches may contain 
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

 ■ Bus watching with write through:  Each cache controller monitors the address 
lines to detect write operations to memory by other bus masters. If another 
master writes to a location in shared memory that also resides in the cache 
memory, the cache controller invalidates that cache entry. This strategy 
depends on the use of a  write-  through policy by all cache controllers.

 ■ Hardware transparency:  Additional hardware is used to ensure that all 
updates to main memory via cache are reflected in all caches. Thus, if one pro-
cessor modifies a word in its cache, this update is written to main memory. In 
addition, any matching words in other caches are similarly updated.

 ■ Noncacheable memory:  Only a portion of main memory is shared by more 
than one processor, and this is designated as noncacheable. In such a system, 
all accesses to shared memory are cache misses, because the shared memory 
is never copied into the cache. The noncacheable memory can be identified 
using  chip-  select logic or  high-  address bits.
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Cache coherency is an active field of research. This topic is explored further 
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed 
in the cache, not only the desired word but also some number of adjacent words are 
retrieved. As the block size increases from very small to larger sizes, the hit ratio 
will at first increase because of the principle of locality, which states that data in the 
vicinity of a referenced word are likely to be referenced in the near future. As the 
block size increases, more useful data are brought into the cache. The hit ratio will 
begin to decrease, however, as the block becomes even bigger and the probability of 
using the newly fetched information becomes less than the probability of reusing the 
information that has to be replaced. Two specific effects come into play:

 ■ Larger blocks reduce the number of blocks that fit into a cache. Because each 
block fetch overwrites older cache contents, a small number of blocks results 
in data being overwritten shortly after they are fetched.

 ■ As a block becomes larger, each additional word is farther from the requested 
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on 
the locality characteristics of a particular program, and no definitive optimum value 
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum 
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache 
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More 
recently, the use of multiple caches has become the norm. Two aspects of this design 
issue concern the number of levels of caches and the use of unified versus split caches.

multilevel caches As logic density has increased, it has become possible to 
have a cache on the same chip as the processor: the  on-  chip cache. Compared with 
a cache reachable via an external bus, the  on-  chip cache reduces the processor’s 
external bus activity and therefore speeds up execution times and increases overall 
system performance. When the requested instruction or data is found in the  on- 
 chip cache, the bus access is eliminated. Because of the short data paths internal 
to the processor, compared with bus lengths,  on-  chip cache accesses will complete 
appreciably faster than would even  zero-  wait state bus cycles. Furthermore, during 
this period the bus is free to support other transfers.

The inclusion of an  on-  chip cache leaves open the question of whether an 
 off-  chip, or external, cache is still desirable. Typically, the answer is yes, and most 
contemporary designs include both  on-  chip and external caches. The simplest such 
organization is known as a  two-  level cache, with the internal level 1 (L1) and the 
external cache designated as level 2 (L2). The reason for including an L2 cache is 
the following: If there is no L2 cache and the processor makes an access request for 
a memory location not in the L1 cache, then the processor must access DRAM or 
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ROM memory across the bus. Due to the typically slow bus speed and slow memory 
access time, this results in poor performance. On the other hand, if an L2 SRAM 
(static RAM) cache is used, then frequently the missing information can be quickly 
retrieved. If the SRAM is fast enough to match the bus speed, then the data can be 
accessed using a  zero-  wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an  off-  chip L2 cache, many designs do not use the system bus as 
the path for transfer between the L2 cache and the processor, but use a separate 
data path, so as to reduce the burden on the system bus. Second, with the continued 
shrinkage of processor components, a number of processors now incorporate the L2 
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates 
in both the L1 and L2 caches. Several studies have shown that, in general, the use 
of a  second-  level cache does improve performance (e.g., see [AZIM92], [NOVI93], 
[HAND98]). However, the use of multilevel caches does complicate all of the design 
issues related to caches, including size, replacement algorithm, and write policy; see 
[HAND98] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of  two-  level cache perfor-
mance as a function of cache size [GENU04]. The figure assumes that both caches have 
the same line size and shows the total hit ratio. That is, a hit is counted if the desired data 
appears in either the L1 or the L2 cache. The figure shows the impact of L2 on total hits 
with respect to L1 size. L2 has little effect on the total number of cache hits until it is at 
least double the L1 cache size. Note that the steepest part of the slope for an L1 cache 
of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the steepest part 
of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little, 
if any, impact on total cache performance. The need for the L2 cache to be larger than 
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the L1 cache to affect performance makes sense. If the L2 cache has the same line size 
and capacity as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of  on-  chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and 
added an L3 cache. Originally, the L3 cache was accessible over the external bus. 
More recently, most microprocessors have incorporated an  on-  chip L3 cache. In 
either case, there appears to be a performance advantage to adding the third level 
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3  on-  chip cache levels and a fourth level of cache 
shared across multiple chips [CURR11].

unified versus split caches When the  on-  chip cache first made an appearance, 
many of the designs consisted of a single cache used to store references to both data 
and instructions. More recently, it has become common to split the cache into two: 
one dedicated to instructions and one dedicated to data. These two caches both exist 
at the same level, typically as two L1 caches. When the processor attempts to fetch an 
instruction from main memory, it first consults the instruction L1 cache, and when the 
processor attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

 ■ For a given cache size, a unified cache has a higher hit rate than split caches 
because it balances the load between instruction and data fetches automatically. 
That is, if an execution pattern involves many more instruction fetches than data 
fetches, then the cache will tend to fill up with instructions, and if an execution 
pattern involves relatively more data fetches, the opposite will occur.

 ■ Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels, 
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the 
split cache design is that it eliminates contention for the cache between the instruction 
fetch/decode unit and the execution unit. This is important in any design that relies on 
the pipelining of instructions. Typically, the processor will fetch instructions ahead of 
time and fill a buffer, or pipeline, with instructions to be executed. Suppose now that 
we have a unified instruction/data cache. When the execution unit performs a memory 
access to load and store data, the request is submitted to the unified cache. If, at the 
same time, the instruction prefetcher issues a read request to the cache for an instruc-
tion, that request will be temporarily blocked so that the cache can service the execu-
tion unit first, enabling it to complete the currently executing instruction. This cache 
contention can degrade performance by interfering with efficient use of the instruction 
pipeline. The split cache structure overcomes this difficulty.

 4.4 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an  on-  chip cache. The 80486 
includes a single  on-  chip cache of 8 kB, using a line size of 16 bytes and a  four-  way 
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 set-  associative organization. All of the Pentium processors include two  on-  chip 
L1 caches, one for data and one for instructions. For the Pentium 4, the L1 data 
cache is 16 kB, using a line size of 64 bytes and a  four-  way  set-  associative organi-
zation. The Pentium 4 instruction cache is described subsequently. The Pentium II 
also includes an L2 cache that feeds both of the L1 caches. The L2 cache is  eight- 
 way set associative with a size of 512 kB and a line size of 128 bytes. An L3 cache 
was added for the Pentium III and became  on-  chip with  high-  end versions of the 
Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major 
components:

 ■ Fetch/decode unit:  Fetches program instructions in order from the L2 cache, 
decodes these into a series of  micro-  operations, and stores the results in the L1 
instruction cache.

 ■  Out-  of-  order execution logic:  Schedules execution of the  micro-  operations 
subject to data dependencies and resource availability; thus,  micro-  operations 
may be scheduled for execution in a different order than they were fetched 
from the instruction stream. As time permits, this unit schedules speculative 
execution of  micro-  operations that may be required in the future.

Table 4.4 Intel Cache Evolution

Problem Solution
Processor on Which 

Feature First Appears

External memory slower than the system 
bus.

Add external cache using faster 
memory technology.

386

Increased processor speed results in 
external bus becoming a bottleneck for 
cache access.

Move external cache  on-  chip, 
operating at the same speed as the 
processor.

486

Internal cache is rather small, due to 
limited space on chip.

Add external L2 cache using faster 
technology than main memory.

486

Contention occurs when both the 
Instruction Prefetcher and the Execution 
Unit simultaneously require access to 
the cache. In that case, the Prefetcher is 
stalled while the Execution Unit’s data 
access takes place.

Create separate data and instruc-
tion caches.

Pentium

Increased processor speed results in 
external bus becoming a bottleneck for 
L2 cache access.

Create separate  back-  side bus that 
runs at higher speed than the main 
( front-  side) external bus. The BSB 
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the 
processor chip.

Pentium II

Some applications deal with massive 
databases and must have rapid access 
to large amounts of data. The  on-  chip 
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache  on-  chip. Pentium 4
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 ■ Execution units:  These units execute  micro-  operations, fetching the required 
data from the L1 data cache and temporarily storing results in registers.

 ■ Memory subsystem:  This unit includes the L2 and L3 caches and the system 
bus, which is used to access main memory when the L1 and L2 caches have a 
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most 
other processors, the Pentium 4 instruction cache sits between the instruction 
decode logic and the execution core. The reasoning behind this design decision is 
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or 
translates, Pentium machine instructions into simple  RISC-  like instructions called 
 micro-  operations. The use of simple,  fixed-  length  micro-  operations enables the use 
of superscalar pipelining and scheduling techniques that enhance performance. 
However, the Pentium machine instructions are cumbersome to decode; they have 
a variable number of bytes and many different options. It turns out that perform-
ance is enhanced if this decoding is done independently of the scheduling and pipe-
lining logic. We return to this topic in Chapter 16.

The data cache employs a  write-  back policy: Data are written to main memory 
only when they are removed from the cache and there has been an update. The Pen-
tium 4 processor can be dynamically configured to support  write-  through caching.

The L1 data cache is controlled by two bits in one of the control registers, labe-
led the CD (cache disable) and NW (not  write-  through) bits (Table 4.5). There are 
also two Pentium 4 instructions that can be used to control the data cache: INVD 
invalidates (flushes) the internal cache memory and signals the external cache (if 
any) to invalidate. WBINVD writes back and invalidates internal cache and then 
writes back and invalidates external cache.

Both the L2 and L3 caches are  eight-  way  set-  associative with a line size of 128 
bytes.

 4.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

access time
associative mapping
cache hit

cache line
cache memory
cache miss

cache set
data cache
direct access
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Review Questions

 4.1 What are the differences among sequential access, direct access, and random access?
 4.2 What is the general relationship among access time, memory cost, and capacity?
 4.3 How does the principle of locality relate to the use of multiple memory levels?
 4.4 What are the differences among direct mapping, associative mapping, and  set- 

 associative mapping?
 4.5 For a  direct-  mapped cache, a main memory address is viewed as consisting of three 

fields. List and define the three fields.
 4.6 For an associative cache, a main memory address is viewed as consisting of two fields. 

List and define the two fields.
 4.7 For a  set-  associative cache, a main memory address is viewed as consisting of three 

fields. List and define the three fields.
 4.8 What is the distinction between spatial locality and temporal locality?
 4.9 In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems

 4.1 A  set-  associative cache consists of 64 lines, or slots, divided into  four-  line sets. Main 
memory contains 4K blocks of 128 words each. Show the format of main memory 
addresses.

 4.2 A  two-  way  set-  associative cache has lines of 16 bytes and a total size of 8 kB. The 
64-MB main memory is byte addressable. Show the format of main memory addresses.

 4.3 For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the 
following information, in hexadecimal format:
a. Tag, Line, and Word values for a  direct-  mapped cache, using the format of 

Figure 4.10
b. Tag and Word values for an associative cache, using the format of Figure 4.12
c. Tag, Set, and Word values for a  two-  way  set-  associative cache, using the format of 

Figure 4.15
 4.4 List the following values:

a. For the direct cache example of Figure 4.10: address length, number of addressable 
units, block size, number of blocks in main memory, number of lines in cache, size 
of tag

b. For the associative cache example of Figure  4.12: address length, number of 
addressable units, block size, number of blocks in main memory, number of lines 
in cache, size of tag

direct mapping
 high-  performance computing 

(HPC)
hit
hit ratio
instruction cache
L1 cache
L2 cache
L3 cache
line
locality

logical cache
memory hierarchy
miss
multilevel cache
physical address
physical cache
random access
replacement algorithm
secondary memory
sequential access
 set-  associative mapping

spatial locality
split cache
tag
temporal locality
unified cache
virtual address
virtual cache
write back
write through
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c. For the  two-  way  set-  associative cache example of Figure 4.15: address length, num-
ber of addressable units, block size, number of blocks in main memory, number of 
lines in set, number of sets, number of lines in cache, size of tag

 4.5 Consider a 32-bit microprocessor that has an  on-  chip 16-kB  four-  way  set-  associative 
cache. Assume that the cache has a line size of four 32-bit words. Draw a block dia-
gram of this cache showing its organization and how the different address fields are 
used to determine a cache hit/miss. Where in the cache is the word from memory 
location ABCDE8F8 mapped?

 4.6 Given the following specifications for an external cache memory:  four-  way set asso-
ciative; line size of two 16-bit words; able to accommodate a total of 4K 32-bit words 
from main memory; used with a 16-bit processor that issues 24-bit addresses. Design 
the cache structure with all pertinent information and show how it interprets the pro-
cessor’s addresses.

 4.7 The Intel 80486 has an  on-  chip, unified cache. It contains 8 kB and has a  four-  way 
 set-  associative organization and a block length of four 32-bit words. The cache is orga-
nized into 128 sets. There is a single “line valid bit” and three bits, B0, B1, and B2 (the 
“LRU” bits), per line. On a cache miss, the 80486 reads a 16-byte line from main mem-
ory in a bus memory read burst. Draw a simplified diagram of the cache and show how 
the different fields of the address are interpreted.

 4.8 Consider a machine with a byte addressable main memory of 216 bytes and block size 
of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this 
machine.
a. How is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What 
are the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?

 4.9 For its  on-  chip cache, the Intel 80486 uses a replacement algorithm referred to as 
pseudo least recently used. Associated with each of the 128 sets of four lines (labeled 
L0, L1, L2, L3) are three bits B0, B1, and B2. The replacement algorithm works as 
follows: When a line must be replaced, the cache will first determine whether the most 
recent use was from L0 and L1 or L2 and L3. Then the cache will determine which 
of the pair of blocks was least recently used and mark it for replacement. Figure 4.19 
illustrates the logic.
a. Specify how the bits B0, B1, and B2 are set and then describe in words how they 

are used in the replacement algorithm depicted in Figure 4.19.
b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Con-

sider the case in which the most recent order of usage is L0, L2, L3, L1.
c. Demonstrate that a true LRU algorithm would require 6 bits per set.

 4.10 A  set-  associative cache has a block size of four 16-bit words and a set size of 2. The 
cache can accommodate a total of 4096 words. The main memory size that is cacheable 
is 64K * 32 bits. Design the cache structure and show how the processor’s addresses 
are interpreted.

 4.11 Consider a memory system that uses a 32-bit address to address at the byte level, plus 
a cache that uses a 64-byte line size.
a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the 

address format and determine the following parameters: number of addressable 
units, number of blocks in main memory, number of lines in cache, size of tag.
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b. Assume an associative cache. Show the address format and determine the follow-
ing parameters: number of addressable units, number of blocks in main memory, 
number of lines in cache, size of tag.

c. Assume a  four-  way  set-  associative cache with a tag field in the address of 9 bits. 
Show the address format and determine the following parameters: number of 
addressable units, number of blocks in main memory, number of lines in set, num-
ber of sets in cache, number of lines in cache, size of tag.

 4.12 Consider a computer with the following characteristics: total of 1 MB of main mem-
ory; word size of 1 byte; block size of 16 bytes; and cache size of 64 kB.
a. For the main memory addresses of F0010, 01234, and CABBE, give the corre-

sponding tag, cache line address, and word offsets for a  direct-  mapped cache.
b. Give any two main memory addresses with different tags that map to the same 

cache slot for a  direct-  mapped cache.
c. For the main memory addresses of F0010 and CABBE, give the corresponding tag 

and offset values for a  fully-  associative cache.
d. For the main memory addresses of F0010 and CABBE, give the corresponding 

tag, cache set, and offset values for a  two-  way  set-  associative cache.
 4.13 Describe a simple technique for implementing an LRU replacement algorithm in a 

 four-  way  set-  associative cache.
 4.14 Consider again Example 4.3. How does the answer change if the main memory uses a 

block transfer capability that has a  first-  word access time of 30 ns and an access time 
of 5 ns for each word thereafter?

 4.15 Consider the following code:

for (i = 0; i 6 20; i+ +)

 for (j = 0; j 6 10; j+ +)

  a[i] = a[i]*j

a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

 4.16 Generalize Equations (4.2) and (4.3), in Appendix 4A, to  N-  level memory hierarchies.
 4.17 A computer system contains a main memory of 32K 16-bit words. It also has a 4K 

word cache divided into  four-  line sets with 64 words per line. Assume that the cache 
is initially empty. The processor fetches words from locations 0, 1, 2, . . . , 4351 in that 
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Figure 4.19 Intel 80486  On-  Chip Cache Replacement Strategy
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order. It then repeats this fetch sequence nine more times. The cache is 10 times faster 
than main memory. Estimate the improvement resulting from the use of the cache. 
Assume an LRU policy for block replacement.

 4.18 Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of 
16 bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now 
consider a program that accesses memory in the following sequence of addresses:
Once: 63 through 70.
Loop ten times: 15 through 32; 80 through 95.
a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on 

are assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit 
ratio.

b. Suppose the cache is organized as  two-  way set associative, with two sets of two 
lines each.  Even-  numbered blocks are assigned to set 0 and  odd-  numbered blocks 
are assigned to set 1. Compute the hit ratio for the  two-  way  set-  associative cache 
using the least recently used replacement scheme.

 4.19 Consider a memory system with the following parameters:

 Tc = 100 ns          Cc = 10-4  $/bit

 Tm = 1200 ns       Cm = 10-5  $/bit

a. What is the cost of 1 MB of main memory?
b. What is the cost of 1 MB of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the 

hit ratio H?
 4.20 a.   Consider an L1 cache with an access time of 1 ns and a hit ratio of H = 0.95. Sup-

pose that we can change the cache design (size of cache, cache organization) such 
that we increase H to 0.97, but increase access time to 1.5 ns. What conditions must 
be met for this change to result in improved performance?

d. Explain why this result makes intuitive sense.
 4.21 Consider a  single-  level cache with an access time of 2.5 ns, a line size of 64 bytes, and 

a hit ratio of H = 0.95. Main memory uses a block transfer capability that has a  first- 
 word (4 bytes) access time of 50 ns and an access time of 5 ns for each word thereafter.
a. What is the access time when there is a cache miss? Assume that the cache waits 

until the line has been fetched from main memory and then  re-  executes for a hit.
b. Suppose that increasing the line size to 128 bytes increases the H to 0.97. Does this 

reduce the average memory access time?
 4.22 A computer has a cache, main memory, and a disk used for virtual memory. If a ref-

erenced word is in the cache, 20 ns are required to access it. If it is in main memory 
but not in the cache, 60 ns are needed to load it into the cache, and then the refer-
ence is started again. If the word is not in main memory, 12 ms are required to fetch 
the word from disk, followed by 60 ns to copy it to the cache, and then the reference 
is started again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6. What 
is the average time in nanoseconds required to access a referenced word on this 
system?

 4.23 Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines 
in the cache are dirty. A word consists of 8 bytes.
a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main 

memory traffic, in terms of bytes per instruction for both  write-  through and  write- 
 back policies. Memory is read into cache one line at a time. However, for write 
back, a single word can be written from cache to main memory.

b. Repeat part a for a 5% rate.
c. Repeat part a for a 7% rate.
d. What conclusion can you draw from these results?

 4.24 On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data 
access from main memory over the bus to the processor takes three clock cycles in the 
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case of no wait state insertion; the data are delivered to the processor in parallel with 
delivery to the cache.
a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a 

clocking rate of 16.67 MHz.
b. Repeat the calculations assuming insertion of two wait states of one cycle each per 

memory cycle. What conclusion can you draw from the results?
 4.25 Assume a processor having a memory cycle time of 300 ns and an instruction process-

ing rate of 1 MIPS. On average, each instruction requires one bus memory cycle for 
instruction fetch and one for the operand it involves.
a. Calculate the utilization of the bus by the processor.
b. Suppose the processor is equipped with an instruction cache and the associated hit 

ratio is 0.5. Determine the impact on bus utilization.
 4.26 The performance of a  single-  level cache system for a read operation can be character-

ized by the following equation:

Ta = Tc + (1 - H)Tm

where Ta is the average access time, Tc is the cache access time, Tm is the memory 
access time (memory to processor register), and H is the hit ratio. For simplicity, we 
assume that the word in question is loaded into the cache in parallel with the load to 
processor register. This is the same form as Equation (4.2).
a. Define Tb = time to transfer a line between cache and main memory, and 

W = fraction of write references. Revise the preceding equation to account for 
writes as well as reads, using a  write-  through policy.

b. Define Wb as the probability that a line in the cache has been altered. Provide an 
equation for Ta for the  write-  back policy.

 4.27 For a system with two levels of cache, define Tc1
= first - level cache access time; 

Tc2
= second - level cache access time; Tm = memory access time;  H1 = first - level 

cache hit ratio; H2 = combined first/second level cache hit ratio. Provide an equation 
for Ta for a read operation.

 4.28 Assume the following performance characteristics on a cache read miss: one clock 
cycle to send an address to main memory and four clock cycles to access a 32-bit word 
from main memory and transfer it to the processor and cache.
a. If the cache line size is one word, what is the miss penalty (i.e., additional time 

required for a read in the event of a read miss)?
b. What is the miss penalty if the cache line size is four words and a multiple, non-

burst transfer is executed?
c. What is the miss penalty if the cache line size is four words and a transfer is exe-

cuted, with one clock cycle per word transfer?
 4.29 For the cache design of the preceding problem, suppose that increasing the line size 

from one word to four words results in a decrease of the read miss rate from 3.2% to 
1.1%. For both the nonburst transfer and the burst transfer case, what is the average 
miss penalty, averaged over all reads, for the two different line sizes?

 APPENDIX 4A  PERFORMANCE CHARACTERISTICS 
OF  TWO-  LEVEL MEMORIES

In this chapter, reference is made to a cache that acts as a buffer between main mem-
ory and processor, creating a  two-  level internal memory. This  two-  level architecture 
exploits a property known as locality to provide improved performance over a com-
parable  one-  level memory.
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The main memory cache mechanism is part of the computer architecture, 
implemented in hardware and typically invisible to the operating system. There are 
two other instances of a  two-  level memory approach that also exploit locality and 
that are, at least partially, implemented in the operating system: virtual memory and 
the disk cache (Table 4.6). Virtual memory is explored in Chapter 8; disk cache is 
beyond the scope of this book but is examined in [STAL15]. In this appendix, we 
look at some of the performance characteristics of  two-  level memories that are com-
mon to all three approaches.

Locality

The basis for the performance advantage of a  two-  level memory is a principle known 
as locality of reference [DENN68]. This principle states that memory references 
tend to cluster. Over a long period of time, the clusters in use change, but over a 
short period of time, the processor is primarily working with fixed clusters of mem-
ory references.

Intuitively, the principle of locality makes sense. Consider the following line of 
reasoning:

1. Except for branch and call instructions, which constitute only a small fraction of 
all program instructions, program execution is sequential. Hence, in most cases, 
the next instruction to be fetched immediately follows the last instruction fetched.

2. It is rare to have a long uninterrupted sequence of procedure calls followed 
by the corresponding sequence of returns. Rather, a program remains con-
fined to a rather narrow window of  procedure-  invocation depth. Thus, over 
a short period of time references to instructions tend to be localized to a few 
procedures.

3. Most iterative constructs consist of a relatively small number of instructions 
repeated many times. For the duration of the iteration, computation is there-
fore confined to a small contiguous portion of a program.

4. In many programs, much of the computation involves processing data struc-
tures, such as arrays or sequences of records. In many cases, successive refer-
ences to these data structures will be to closely located data items.

Table 4.6  Characteristics of  Two-  Level Memories

Main Memory 
Cache

Virtual Memory  
(paging) Disk Cache

Typical access time 
ratios

5:1 (main memory vs. 
cache)

106:1 (main memory vs. 
disk)

106:1 (main memory vs. 
disk)

Memory management 
system

Implemented by 
special hardware

Combination of hardware 
and system software

System software

Typical block or page 
size

4 to 128 bytes 
(cache block)

64 to 4096 bytes (virtual 
memory page)

64 to 4096 bytes (disk 
block or pages)

Access of processor to 
second level

Direct access Indirect access Indirect access
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This line of reasoning has been confirmed in many studies. With reference to 
point 1, a variety of studies have analyzed the behavior of  high-  level language pro-
grams. Table 4.7 includes key results, measuring the appearance of various statement 
types during execution, from the following studies. The earliest study of program-
ming language behavior, performed by Knuth [KNUT71], examined a collection of 
FORTRAN programs used as student exercises. Tanenbaum [TANE78] published 
measurements collected from over 300 procedures used in  operating-  system pro-
grams and written in a language that supports structured programming (SAL). Pat-
terson and Sequein [PATT82a] analyzed a set of measurements taken from compilers 
and programs for typesetting,  computer-  aided design (CAD), sorting, and file com-
parison. The programming languages C and Pascal were studied. Huck [HUCK83] 
analyzed four programs intended to represent a mix of  general-  purpose scientific 
computing, including fast Fourier transform and the integration of systems of differ-
ential equations. There is good agreement in the results of this mixture of languages 
and applications that branching and call instructions represent only a fraction of 
statements executed during the lifetime of a program. Thus, these studies confirm 
assertion 1.

With respect to assertion 2, studies reported in [PATT85a] provide confirma-
tion. This is illustrated in Figure 4.20, which shows  call-  return behavior. Each call is 
represented by the line moving down and to the right, and each return by the line 
moving up and to the right. In the figure, a window with depth equal to 5 is defined. 
Only a sequence of calls and returns with a net movement of 6 in either direction 
causes the window to move. As can be seen, the executing program can remain 
within a stationary window for long periods of time. A study by the same analysts of 
C and Pascal programs showed that a window of depth 8 will need to shift only on 
less than 1% of the calls or returns [TAMI83].

A distinction is made in the literature between spatial locality and temporal 
locality. Spatial locality refers to the tendency of execution to involve a number of 
memory locations that are clustered. This reflects the tendency of a processor to 
access instructions sequentially. Spatial location also reflects the tendency of a pro-
gram to access data locations sequentially, such as when processing a table of data. 
Temporal locality refers to the tendency for a processor to access memory locations 
that have been used recently. For example, when an iteration loop is executed, the 
processor executes the same set of instructions repeatedly.

Table 4.7  Relative Dynamic Frequency of  High-  Level Language Operations

Study 
Language 
Workload

[HUCK83] 
Pascal 

Scientific

[KNUT71] 
FORTRAN 

Student

[PATT82a]
 Pascal C  
 System System

[TANE78]  
SAL  

System

Assign 74 67 45 38 42

Loop 4 3 5 3 4

Call 1 3 15 12 12

IF 20 11 29 43 36

GOTO 2 9 — 3 —

Other — 7 6 1 6
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Traditionally, temporal locality is exploited by keeping recently used 
instruction and data values in cache memory and by exploiting a cache hierarchy. 
Spatial locality is generally exploited by using larger cache blocks and by incor-
porating prefetching mechanisms (fetching items of anticipated use) into the 
cache control logic. Recently, there has been considerable research on refining 
these techniques to achieve greater performance, but the basic strategies remain 
the same.

Operation of  Two-  Level Memory

The locality property can be exploited in the formation of a  two-  level memory. The 
 upper-  level memory (M1) is smaller, faster, and more expensive (per bit) than the 
 lower-  level memory (M2). M1 is used as a temporary store for part of the contents 
of the larger M2. When a memory reference is made, an attempt is made to access 
the item in M1. If this succeeds, then a quick access is made. If not, then a block of 
memory locations is copied from M2 to M1 and the access then takes place via M1. 
Because of locality, once a block is brought into M1, there should be a number of 
accesses to locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the 
speeds of the two levels of memory, but also the probability that a given reference 
can be found in M1. We have

  Ts = H * T1 + (1 - H) * (T1 + T2)

  = T1 + (1 - H) * T2  
(4.2)

where

 Ts = average (system) access time
 T1 = access time of M1 (e.g ., cache, disk cache)
 T2 = access time of M2 (e.g ., main memory, disk)
 H = hit ratio (fraction of time reference is found in M1)

w = 5

t = 33

Time
(in units of calls/returns)

Nesting
depth

Return

Call

Figure 4.20 Example  Call-  Return Behavior of a Program
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Figure 4.2 shows average access time as a function of hit ratio. As can be seen, 
for a high percentage of hits, the average total access time is much closer to that of 
M1 than M2.

Performance

Let us look at some of the parameters relevant to an assessment of a  two-  level mem-
ory mechanism. First consider cost. We have

 Cs =
C1S1 + C2S2

S1 + S2
 (4.3)

where

 Cs = average cost per bit for the combined two@level memory
 C1 = average cost per bit of upper@level memory M1
 C2 = average cost per bit of lower@level memory M2
 S1 = size of M1  
 S2 = size of M2

We would like Cs ≈ C2. Given that C1 W C2, this requires S1 6 S2. Figure 4.21 
shows the relationship.
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Next, consider access time. For a  two-  level memory to provide a significant 
performance improvement, we need to have Ts approximately equal to T1(Ts ≈ T1). 
Given that T1 is much less than T2(T1 66 T2), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the 
hit ratio and therefore the performance. Is there a size of M1 that satisfies both 
requirements to a reasonable extent? We can answer this question with a series of 
subquestions:

 ■ What value of hit ratio is needed so that Ts ≈ T1?
 ■ What size of M1 will assure the needed hit ratio?
 ■ Does this size satisfy the cost requirement?

To get at this, consider the quantity T1/Ts, which is referred to as the access effi-
ciency. It is a measure of how close average access time (Ts) is to M1 access time 
(T1). From Equation (4.2),

 
T1

Ts
=

1

1 + (1 - H) 
T2

T1

 (4.4)

Figure 4.22 plots T1/Ts as a function of the hit ratio H, with the quantity T2/T1 as 
a parameter. Typically,  on-  chip cache access time is about 25 to 50 times faster 
than main memory access time (i.e., T2/T1 is 25 to 50),  off-  chip cache access time 
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is about 5 to 15 times faster than main memory access time (i.e., T2/T1 is 5 to 15), 
and main memory access time is about 1000 times faster than disk access time 
(T2/T1 = 1000). Thus, a hit ratio in the range of near 0.9 would seem to be needed 
to satisfy the performance requirement.

We can now phrase the question about relative memory size more exactly. Is a 
hit ratio of, say, 0.8 or better reasonable for S1 66 S2? This will depend on a number 
of factors, including the nature of the software being executed and the details of the 
design of the  two-  level memory. The main determinant is, of course, the degree of 
locality. Figure 4.23 suggests the effect that locality has on the hit ratio. Clearly, if 
M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are 
always also stored in M1. Now suppose that there is no locality; that is, references are 
completely random. In that case the hit ratio should be a strictly linear function of 
the relative memory size. For example, if M1 is half the size of M2, then at any time 
half of the items from M2 are also in M1 and the hit ratio will be 0.5. In practice, 
however, there is some degree of locality in the references. The effects of moderate 
and strong locality are indicated in the figure. Note that Figure 4.23 is not derived 
from any specific data or model; the figure suggests the type of performance that is 
seen with various degrees of locality.

So if there is strong locality, it is possible to achieve high values of hit ratio 
even with relatively small  upper-  level memory size. For example, numerous studies 
have shown that rather small cache sizes will yield a hit ratio above 0.75 regardless 
of the size of main memory (e.g., [AGAR89], [PRZY88], [STRE83], and [SMIT82]). 
A  cache in the range of 1K to 128K words is generally adequate, whereas main 
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memory is now typically in the gigabyte range. When we consider virtual memory 
and disk cache, we will cite other studies that confirm the same phenomenon, namely 
that a relatively small M1 yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the 
two memories satisfy the cost requirement? The answer is clearly yes. If we need 
only a relatively small  upper-  level memory to achieve good performance, then the 
average cost per bit of the two levels of memory will approach that of the cheaper 
 lower-  level memory.

Please note that with L2 cache, or even L2 and L3 caches, involved, analysis is 
much more complex. See [PEIR99] and [HAND98] for discussions.
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We begin this chapter with a survey of semiconductor main memory subsystems, 
including ROM, DRAM, and SRAM memories. Then we look at error control tech-
niques used to enhance memory reliability. Following this, we look at more advanced 
DRAM architectures.

 5.1 Semiconductor main memory

In earlier computers, the most common form of random-access storage for computer 
main memory employed an array of doughnut-shaped ferromagnetic loops referred 
to as cores. Hence, main memory was often referred to as core, a term that persists to 
this day. The advent of, and advantages of, microelectronics has long since vanquished 
the magnetic core memory. Today, the use of semiconductor chips for main memory is 
almost universal. Key aspects of this technology are explored in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a vari-
ety of electronic technologies are used, all semiconductor memory cells share certain 
properties:

 ■ They exhibit two stable (or semistable) states, which can be used to represent 
binary 1 and 0.

 ■ They are capable of being written into (at least once), to set the state.
 ■ They are capable of being read to sense the state.

Figure 5.1 depicts the operation of a memory cell. Most commonly, the cell 
has three functional terminals capable of carrying an electrical signal. The select ter-
minal, as the name suggests, selects a memory cell for a read or write operation. The 
control terminal indicates read or write. For writing, the other terminal provides an 
electrical signal that sets the state of the cell to 1 or 0. For reading, that terminal is 
used for output of the cell’s state. The details of the internal organization, function-
ing, and timing of the memory cell depend on the specific integrated circuit tech-
nology used and are beyond the scope of this book, except for a brief summary. For 
our purposes, we will take it as given that individual cells can be selected for reading 
and writing operations.

Learning Objectives

After studying this chapter, you should be able to:

 r Present an overview of the principle types of semiconductor main memory.
 r Understand the operation of a basic code that can detect and correct 
single-bit errors in 8-bit words.

 r Summarize the properties of contemporary DDR DRAM organizations.
 r Understand the difference between NOR and NAND flash memory.
 r Present an overview of the newer nonvolatile solid-state memory technologies.
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DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That 
is, individual words of memory are directly accessed through wired-in addressing 
logic.

Table 5.1 lists the major types of semiconductor memory. The most common is 
referred to as random-access memory (RAM). This is, in fact, a misuse of the term, 
because all of the types listed in the table are random access. One distinguishing 
characteristic of memory that is designated as RAM is that it is possible both to read 
data from the memory and to write new data into the memory easily and rapidly. 
Both the reading and writing are accomplished through the use of electrical signals.

The other distinguishing characteristic of traditional RAM is that it is volatile. 
A RAM must be provided with a constant power supply. If the power is interrupted, 
then the data are lost. Thus, RAM can be used only as temporary storage. The two 
traditional forms of RAM used in computers are DRAM and SRAM. Newer forms 
of RAM, discussed in Section 5.5, are nonvolatile.

dynamic ram RAM technology is divided into two technologies: dynamic and 
static. A dynamic RAM (DRAM) is made with cells that store data as charge on 
capacitors. The presence or absence of charge in a capacitor is interpreted as a 
binary 1 or 0. Because capacitors have a natural tendency to discharge, dynamic 
RAMs require periodic charge refreshing to maintain data storage. The term 

Cell
Select Data in

Control

(a) Write

Cell
Select Sense

Control

(b) Read

Figure  5.1 Memory Cell Operation

Table 5.1 Semiconductor Memory Types

Memory Type Category Erasure
Write 

Mechanism Volatility

Random-access memory (RAM)
Read-write 
memory

Electrically, 
byte-level

Electrically Volatile

Read-only memory (ROM) Read-only 
memory

Not possible
Masks

Nonvolatile

Programmable ROM (PROM)

Electrically

Erasable PROM (EPROM)
UV light, 
chip-level

Electrically Erasable PROM 
(EEPROM)

Read-mostly 
memory

Electrically, 
byte-level

Flash memory
Electrically, 
block-level
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dynamic refers to this tendency of the stored charge to leak away, even with power 
continuously applied.

Figure 5.2a is a typical DRAM structure for an individual cell that stores one 
bit. The address line is activated when the bit value from this cell is to be read or 
written. The transistor acts as a switch that is closed (allowing current to flow) if a 
voltage is applied to the address line and open (no current flows) if no voltage is 
present on the address line.

For the write operation, a voltage signal is applied to the bit line; a high volt-
age represents 1, and a low voltage represents 0. A signal is then applied to the 
address line, allowing a charge to be transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns 
on and the charge stored on the capacitor is fed out onto a bit line and to a sense 
amplifier. The sense amplifier compares the capacitor voltage to a reference value 
and determines if the cell contains a logic 1 or a logic 0. The readout from the cell 
discharges the capacitor, which must be restored to complete the operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially 
an analog device. The capacitor can store any charge value within a range; a thresh-
old value determines whether the charge is interpreted as 1 or 0.

static ram In contrast, a static RAM (SRAM) is a digital device that uses the 
same logic elements used in the processor. In a SRAM, binary values are stored 
using traditional flip-flop logic-gate configurations (see Chapter 11 for a description 
of flip-flops). A static RAM will hold its data as long as power is supplied to it.

Figure 5.2b is a typical SRAM structure for an individual cell. Four transistors 
(T1,  T2,  T3,  T4) are cross connected in an arrangement that produces a stable logic 

Bit line
B

Address line

Ground

dc voltage

Address
line

(b) Static RAM (SRAM) cell(a) Dynamic RAM (DRAM) cell

Bit line
B

T5 T6

T3 T4

T1 T2

C1 C2

Bit line
B

Transistor

Ground

Storage
capacitor

Figure  5.2 Typical Memory Cell Structures
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state. In logic state 1, point C1 is high and point C2 is low; in this state, T1 and T4 are 
off and T2 and T3 are on.1 In logic state 0, point C1 is low and point C2 is high; in this 
state, T1 and T4 are on and T2 and T3 are off. Both states are stable as long as the direct 
current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain data.

As in the DRAM, the SRAM address line is used to open or close a switch. 
The address line controls two transistors (T5 and T6). When a signal is applied to 
this line, the two transistors are switched on, allowing a read or write operation. For 
a write operation, the desired bit value is applied to line B, while its complement 
is applied to line B. This forces the four transistors (T1,  T2,  T3,  T4) into the proper 
state. For a read operation, the bit value is read from line B.

sram versus dram Both static and dynamic RAMs are volatile; that is, power 
must be continuously supplied to the memory to preserve the bit values. A dynamic 
memory cell is simpler and smaller than a static memory cell. Thus, a DRAM 
is more dense (smaller cells = more cells per unit area) and less expensive than 
a corresponding SRAM. On the other hand, a DRAM requires the supporting 
refresh circuitry. For larger memories, the fixed cost of the refresh circuitry is more 
than compensated for by the smaller variable cost of DRAM cells. Thus, DRAMs 
tend to be favored for large memory requirements. A final point is that SRAMs are 
somewhat faster than DRAMs. Because of these relative characteristics, SRAM is 
used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern 
of data that cannot be changed. A ROM is nonvolatile; that is, no power source is 
required to maintain the bit values in memory. While it is possible to read a ROM, it 
is not possible to write new data into it. An important application of ROMs is micro-
programming, discussed in Part Four. Other potential applications include

 ■ Library subroutines for frequently wanted functions
 ■ System programs
 ■ Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program 
is permanently in main memory and need never be loaded from a secondary storage 
device.

A ROM is created like any other integrated circuit chip, with the data actually 
wired into the chip as part of the fabrication process. This presents two problems:

 ■ The data insertion step includes a relatively large fixed cost, whether one or 
thousands of copies of a particular ROM are fabricated.

 ■ There is no room for error. If one bit is wrong, the whole batch of ROMs must 
be thrown out.

When only a small number of ROMs with a particular memory content is 
needed, a less expensive alternative is the programmable ROM (PROM). Like the 

1The circles associated with T3 and T4 in Figure 5.2b indicate signal negation.
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ROM, the PROM is nonvolatile and may be written into only once. For the PROM, 
the writing process is performed electrically and may be performed by a supplier 
or customer at a time later than the original chip fabrication. Special equipment is 
required for the writing or “programming” process. PROMs provide flexibility and 
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is 
useful for applications in which read operations are far more frequent than write 
operations but for which nonvolatile storage is required. There are three common 
forms of read-mostly memory: EPROM, EEPROM, and flash memory.

The optically erasable programmable read-only memory (EPROM) is read and 
written electrically, as with PROM. However, before a write operation, all the stor-
age cells must be erased to the same initial state by exposure of the packaged chip 
to ultraviolet radiation. Erasure is performed by shining an intense ultraviolet light 
through a window that is designed into the memory chip. This erasure process can be 
performed repeatedly; each erasure can take as much as 20 minutes to perform. Thus, 
the EPROM can be altered multiple times and, like the ROM and PROM, holds its 
data virtually indefinitely. For comparable amounts of storage, the EPROM is more 
expensive than PROM, but it has the advantage of the multiple update capability.

A more attractive form of read-mostly memory is electrically erasable 
 programmable read-only memory (EEPROM). This is a read-mostly memory that 
can be written into at any time without erasing prior contents; only the byte or bytes 
addressed are updated. The write operation takes considerably longer than the read 
operation, on the order of several hundred microseconds per byte. The EEPROM 
combines the advantage of nonvolatility with the flexibility of being updatable in 
place, using ordinary bus control, address, and data lines. EEPROM is more expen-
sive than EPROM and also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because of 
the speed with which it can be reprogrammed). First introduced in the mid-1980s, flash 
memory is intermediate between EPROM and EEPROM in both cost and functional-
ity. Like EEPROM, flash memory uses an electrical erasing technology. An entire flash 
memory can be erased in one or a few seconds, which is much faster than EPROM. In 
addition, it is possible to erase just blocks of memory rather than an entire chip. Flash 
memory gets its name because the microchip is organized so that a section of memory 
cells are erased in a single action or “flash.” However, flash memory does not provide 
byte-level erasure. Like EPROM, flash memory uses only one transistor per bit, and so 
achieves the high density (compared with EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in pack-
aged chips (Figure 1.11). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among 
speed, density, and cost. These trade-offs also exist when we consider the organiza-
tion of memory cells and functional logic on a chip. For semiconductor memories, 
one of the key design issues is the number of bits of data that may be read/written 
at a time. At one extreme is an organization in which the physical arrangement of 
cells in the array is the same as the logical arrangement (as perceived by the pro-
cessor) of words in memory. The array is organized into W words of B bits each. 
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For example, a 16-Mbit chip could be organized as 1M 16-bit words. At the other 
extreme is the so-called 1-bit-per-chip organization, in which data are read/written 
one bit at a time. We will illustrate memory chip organization with a DRAM; ROM 
organization is similar, though simpler.

Figure 5.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits 
are read or written at a time. Logically, the memory array is organized as four square 
arrays of 2048 by 2048 elements. Various physical arrangements are possible. In any 
case, the elements of the array are connected by both horizontal (row) and vertical 
(column) lines. Each horizontal line connects to the Select terminal of each cell in its 
row; each vertical line connects to the Data-In/Sense terminal of each cell in its column.

Address lines supply the address of the word to be selected. A total of log2 W 
lines are needed. In our example, 11 address lines are needed to select one of 2048 
rows. These 11 lines are fed into a row decoder, which has 11 lines of input and 2048 
lines for output. The logic of the decoder activates a single one of the 2048 outputs 
depending on the bit pattern on the 11 input lines (211 = 2048).

An additional 11 address lines select one of 2048 columns of 4 bits per column. 
Four data lines are used for the input and output of 4 bits to and from a data buffer. 
On input (write), the bit driver of each bit line is activated for a 1 or 0 according to 
the value of the corresponding data line. On output (read), the value of each bit line 
is passed through a sense amplifier and presented to the data lines. The row line 
selects which row of cells is used for reading or writing.

Column decoder

Refresh circuitry

Memory array
(2048 * 2048 * 4)

Row
de-

coder
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A10
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address
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address
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Timing and control
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Data output
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Figure  5.3 Typical 16-Mbit DRAM (4M * 4)
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Because only 4 bits are read/written to this DRAM, there must be multiple 
DRAMs connected to the memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0–A10), half the number you 
would expect for a 2048 * 2048 array. This is done to save on the number of pins. 
The 22 required address lines are passed through select logic external to the chip 
and multiplexed onto the 11 address lines. First, 11 address signals are passed to the 
chip to define the row address of the array, and then the other 11 address signals are 
presented for the column address. These signals are accompanied by row address 
select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a 
write or read operation is performed. Two other pins, not shown in Figure 5.3, are 
ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a 
quadrupling of memory size with each new generation of memory chips. One more 
pin devoted to addressing doubles the number of rows and columns, and so the size 
of the chip memory grows by a factor of 4.

Figure 5.3 also indicates the inclusion of refresh circuitry. All DRAMs require 
a refresh operation. A simple technique for refreshing is, in effect, to disable the 
DRAM chip while all data cells are refreshed. The refresh counter steps through all 
of the row values. For each row, the output lines from the refresh counter are sup-
plied to the row decoder and the RAS line is activated. The data are read out and 
written back into the same location. This causes each cell in the row to be refreshed.

Chip Packaging

As was mentioned in Chapter 2, an integrated circuit is mounted on a package that 
contains pins for connection to the outside world.

Figure 5.4a shows an example EPROM package, which is an 8-Mbit chip 
organized as 1M * 8. In this case, the organization is treated as a one-word-per-
chip package. The package includes 32 pins, which is one of the standard chip pack-
age sizes. The pins support the following signal lines:

 ■ The address of the word being accessed. For 1M words, a total of 20  (220 = 1M) 
pins are needed (A0–A19).

 ■ The data to be read out, consisting of 8 lines (D0–D7).
 ■ The power supply to the chip (Vcc).
 ■ A ground pin (Vss).
 ■ A chip enable (CE) pin. Because there may be more than one memory chip, 

each of which is connected to the same address bus, the CE pin is used to indi-
cate whether or not the address is valid for this chip. The CE pin is activated 
by logic connected to the higher-order bits of the address bus (i.e., address bits 
above A19). The use of this signal is illustrated presently.

 ■ A program voltage (Vpp) that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 5.4b, for a 16-Mbit chip 
organized as 4M * 4. There are several differences from a ROM chip. Because 
a RAM can be updated, the data pins are input/output. The write enable (WE) 
and output enable (OE) pins indicate whether this is a write or read operation. 



5.1 / SeMIConduCtor MaIn MeMory  173

Because the DRAM is accessed by row and column, and the address is multi-
plexed, only 11 address pins are needed to specify the 4M row/column combinations 
(211 * 211 = 222 = 4M). The functions of the row address select (RAS) and col-
umn address select (CAS) pins were discussed previously. Finally, the no connect 
(NC) pin is provided so that there are an even number of pins.

Module Organization

If a RAM chip contains only one bit per word, then clearly we will need at least a 
number of chips equal to the number of bits per word. As an example, Figure 5.5 shows 
how a memory module consisting of 256K 8-bit words could be organized. For 256K 
words, an 18-bit address is needed and is supplied to the module from some external 
source (e.g., the address lines of a bus to which the module is attached). The address is 
presented to 8 256K * 1@bit chips, each of which provides the input/output of one bit.

This organization works as long as the size of memory equals the number of 
bits per chip. In the case in which larger memory is required, an array of chips is 
needed. Figure 5.6 shows the possible organization of a memory consisting of 1M 
word by 8 bits per word. In this case, we have four columns of chips, each column 
containing 256K words arranged as in Figure 5.5. For 1M word, 20 address lines are 
needed. The 18 least significant bits are routed to all 32 modules. The high-order 
2 bits are input to a group select logic module that sends a chip enable signal to one 
of the four columns of modules.

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of chips 
can be grouped together to form a memory bank. It is possible to organize the memory 
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banks in a way known as interleaved memory. Each bank is independently able to ser-
vice a memory read or write request, so that a system with K banks can service K 
requests simultaneously, increasing memory read or write rates by a factor of K. If con-
secutive words of memory are stored in different banks, then the transfer of a block of 
memory is speeded up. Appendix G explores the topic of interleaved memory.

 5.2 error correction

A semiconductor memory system is subject to errors. These can be categorized as 
hard failures and soft errors. A hard failure is a permanent physical defect so that the 
memory cell or cells affected cannot reliably store data but become stuck at 0 or 1 or 
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switch erratically between 0 and 1. Hard errors can be caused by harsh environmen-
tal abuse, manufacturing defects, and wear. A soft error is a random, nondestructive 
event that alters the contents of one or more memory cells without damaging the 
memory. Soft errors can be caused by power supply problems or alpha particles. 
These particles result from radioactive decay and are distressingly common because 
radioactive nuclei are found in small quantities in nearly all materials. Both hard and 
soft errors are clearly undesirable, and most modern main memory systems include 
logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried out. When 
data are to be written into memory, a calculation, depicted as a function f, is per-
formed on the data to produce a code. Both the code and the data are stored. Thus, 
if an M-bit word of data is to be stored and the code is of length K bits, then the 
actual size of the stored word is M + K bits.

When the previously stored word is read out, the code is used to detect and 
possibly correct errors. A new set of K code bits is generated from the M data bits 
and compared with the fetched code bits. The comparison yields one of three results:

 ■ No errors are detected. The fetched data bits are sent out.
 ■ An error is detected, and it is possible to correct the error. The data bits plus 

error correction bits are fed into a corrector, which produces a corrected set of 
M bits to be sent out.

 ■ An error is detected, but it is not possible to correct it. This condition is 
reported.

Codes that operate in this fashion are referred to as error-correcting codes. A 
code is characterized by the number of bit errors in a word that it can correct and 
detect.
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The simplest of the error-correcting codes is the Hamming code devised by 
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illus-
trate the use of this code on 4-bit words (M = 4). With three intersecting circles, 
there are seven compartments. We assign the 4 data bits to the inner compartments 
( Figure 5.8a). The remaining compartments are filled with what are called parity 
bits. Each parity bit is chosen so that the total number of 1s in its circle is even 
( Figure 5.8b). Thus, because circle A includes three data 1s, the parity bit in that 
circle is set to 1. Now, if an error changes one of the data bits (Figure 5.8c), it is eas-
ily found. By checking the parity bits, discrepancies are found in circle A and circle 
C but not in circle B. Only one of the seven compartments is in A and C but not B 
(Figure 5.8d). The error can therefore be corrected by changing that bit.

To clarify the concepts involved, we will develop a code that can detect and 
correct single-bit errors in 8-bit words.

To start, let us determine how long the code must be. Referring to Figure 5.7, 
the comparison logic receives as input two K-bit values. A bit-by-bit comparison 
is done by taking the exclusive-OR of the two inputs. The result is called the syn-
drome word. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not 
a match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and 
2K-1. The value 0 indicates that no error was detected, leaving 2K-1 values to indi-
cate, if there is an error, which bit was in error. Now, because an error could occur 
on any of the M data bits or K check bits, we must have

2K-1 Ú M + K

This inequality gives the number of bits needed to correct a single bit error in 
a word containing M data bits. For example, for a word of 8 data bits (M = 8), we 
have

 ■ K = 3:  23-1 6 8 + 3
 ■ K = 4: 24-1 7 8 + 4
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Figure  5.7 Error-Correcting Code Function
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Thus, eight data bits require four check bits. The first three columns of Table 5.2 
lists the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data 
word with the following characteristics:

 ■ If the syndrome contains all 0s, no error has been detected.
 ■ If the syndrome contains one and only one bit set to 1, then an error has 

occurred in one of the 4 check bits. No correction is needed.
 ■ If the syndrome contains more than one bit set to 1, then the numerical value 

of the syndrome indicates the position of the data bit in error. This data bit is 
inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a 
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12. 
Those bit positions whose position numbers are powers of 2 are designated as check 
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bits. The check bits are calculated as follows, where the symbol ⊕  designates the 
exclusive-OR operation:

 C1 = D1 ⊕ D2 ⊕   D4 ⊕ D5 ⊕   D7

 C2 = D1 ⊕   D3 ⊕ D4 ⊕   D6 ⊕ D7

 C4 =    D2 ⊕ D3 ⊕ D4 ⊕           D8

 C8 =            ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8

Each check bit operates on every data bit whose position number contains a 1 
in the same bit position as the position number of that check bit. Thus, data bit pos-
itions 3, 5, 7, 9, and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit 
of their position number as does C1; bit positions 3, 6, 7, 10, and 11 all contain a 1 in 
the second bit position, as does C2; and so on. Looked at another way, bit position n 
is checked by those bits Ci such that a i = n. For example, position 7 is checked by 
bits in position 4, 2, and 1; and 7 = 4 + 2 + 1.

Let us verify that this scheme works with an example. Assume that the 8-bit 
input word is 00111001, with data bit D1 in the rightmost position. The calculations 
are as follows:

 C1 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1

 C2 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1

 C4 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1

 C8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
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Figure  5.9 Layout of Data Bits and Check Bits

Table 5.2 Increase in Word Length with Error Correction

Single-Error Correction
Single-Error Correction/ 
Double-Error Detection

Data Bits Check Bits % Increase Check Bits % Increase

8 4 50.0 5 62.5

16 5 31.25 6 37.5

32 6 18.75 7 21.875

64 7 10.94 8 12.5

128 8 6.25 9 7.03

256 9 3.52 10 3.91
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Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the 
check bits are recalculated, we have

 C1 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1

 C2 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 0

 C4 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0

 C8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

When the new check bits are compared with the old check bits, the syndrome word 
is formed:

 C8 C4 C2 C1 

 0 1 1 1 

 ⊕ 0 0 0 1 

 0 1 1 0 

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.
Figure 5.10 illustrates the preceding calculation. The data and check bits are 

positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded 
in the table), and their bit position values are XORed to produce the Hamming 
code 0111, which forms the four check digits. The entire block that is stored is 
001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is 
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of 
0001. An XOR of the Hamming code and all of the bit position values for nonzero 
data bits results in 0110. The nonzero result detects an error and indicates that the 
error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code. 
More commonly, semiconductor memory is equipped with a single-error-correcting, 
double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require 
one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word. 
The sequence shows that if two errors occur (Figure 5.11c), the checking procedure 
goes astray (d) and worsens the problem by creating a third error (e). To overcome 
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the problem, an eighth bit is added that is set so that the total number of 1s in the 
diagram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost 
of added complexity. With a 1-bit-per-chip organization, an SEC-DED code is gen-
erally considered adequate. For example, the IBM 30xx implementations used an 
8-bit SEC-DED code for each 64 bits of data in main memory. Thus, the size of 
main memory is actually about 12% larger than is apparent to the user. The VAX 
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead. 
Contemporary DRAM systems may have anywhere from 7% to 20% overhead 
[SHAR03].

 5.3 ddr dram

As discussed in Chapter 1, one of the most critical system bottlenecks when using 
high-performance processors is the interface to internal main memory. This inter-
face is the most important pathway in the entire computer system. The basic building 
block of main memory remains the DRAM chip, as it has for decades; until recently, 
there had been no significant changes in DRAM architecture since the early 1970s. 
The traditional DRAM chip is constrained both by its internal architecture and by 
its interface to the processor’s memory bus.

We have seen that one attack on the performance problem of DRAM main 
memory has been to insert one or more levels of high-speed SRAM cache between 
the DRAM main memory and the processor. But SRAM is much costlier than 
DRAM, and expanding cache size beyond a certain point yields diminishing returns.

In recent years, a number of enhancements to the basic DRAM architecture 
have been explored. The schemes that currently dominate the market are SDRAM 
and DDR-DRAM. We examine each of these in turn.
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Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM (SDRAM). 
Unlike the traditional DRAM, which is asynchronous, the SDRAM exchanges data 
with the processor synchronized to an external clock signal and running at the full 
speed of the processor/memory bus without imposing wait states.

In a typical DRAM, the processor presents addresses and control levels to 
the memory, indicating that a set of data at a particular location in memory should 
be either read from or written into the DRAM. After a delay, the access time, the 
DRAM either writes or reads the data. During the access-time delay, the DRAM 
performs various internal functions, such as activating the high capacitance of the row 
and column lines, sensing the data, and routing the data out through the output buff-
ers. The processor must simply wait through this delay, slowing system performance.

With synchronous access, the DRAM moves data in and out under control of 
the system clock. The processor or other master issues the instruction and address 
information, which is latched by the DRAM. The DRAM then responds after a set 
number of clock cycles. Meanwhile, the master can safely do other tasks while the 
SDRAM is processing the request.

Figure  5.12 shows the internal logic of a typical 256-Mb SDRAM typical 
of SDRAM organization, and Table 5.3 defines the various pin assignments. The 
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SDRAM employs a burst mode to eliminate the address setup time and row and 
column line precharge time after the first access. In burst mode, a series of data bits 
can be clocked out rapidly after the first bit has been accessed. This mode is useful 
when all the bits to be accessed are in sequence and in the same row of the array as 
the initial access. In addition, the SDRAM has a multiple-bank internal architecture 
that improves opportunities for on-chip parallelism.

The mode register and associated control logic is another key feature differen-
tiating SDRAMs from conventional DRAMs. It provides a mechanism to custom-
ize the SDRAM to suit specific system needs. The mode register specifies the burst 
length, which is the number of separate units of data synchronously fed onto the 
bus. The register also allows the programmer to adjust the latency between receipt 
of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data sequen-
tially, such as for applications like word processing, spreadsheets, and multimedia.

Figure 5.13 shows an example of SDRAM operation. In this case, the burst 
length is 4 and the latency is 2. The burst read command is initiated by having CS 
and CAS low while holding RAS and WE high at the rising edge of the clock. The 
address inputs determine the starting column address for the burst, and the mode 
register sets the type of burst (sequential or interleave) and the burst length (1, 2, 
4, 8, full page). The delay from the start of the command to when the data from the 
first cell appears on the outputs is equal to the value of the CAS latency that is set 
in the mode register.

Table 5.3 SDRAM Pin Assignments

A0 to A13 Address inputs

BA0, BA1 Bank address lines

CLK Clock input

CKE Clock enable

CS Chip select

RAS Row address strobe

CAS Column address strobe

WE Write enable

DQ0 to DQ7 Data input/output

DQM Data mask

T0

CLK

COMMAND

DQs

T1 T2 T3 T4 T5 T6 T7 T8

DOUT A0

NOP NOP NOP NOP NOP NOP NOP NOP

DOUT A1 DOUT A2 DOUT A3

READ A

Figure  5.13 SDRAM Read Timing (burst length = 4, CAS latency = 2)
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DDR SDRAM

Although SDRAM is a significant improvement on asynchronous RAM, it still has 
shortcomings that unnecessarily limit that I/O data rate that can be achieved. To 
address these shortcomings a newer version of SDRAM, referred to as double- 
data-rate DRAM (DDR DRAM) provides several features that dramatically 
increase the data rate. DDR DRAM was developed by the JEDEC Solid State Tech-
nology Association, the Electronic Industries Alliance’s semiconductor-engineering- 
standardization body. Numerous companies make DDR chips, which are widely used 
in desktop computers and servers.

DDR achieves higher data rates in three ways. First, the data transfer is syn-
chronized to both the rising and falling edge of the clock, rather than just the rising 
edge. This doubles the data rate; hence the term double data rate. Second, DDR 
uses higher clock rate on the bus to increase the transfer rate. Third, a buffering 
scheme is used, as explained subsequently.

JEDEC has thus far defined four generations of the DDR technology (Table 5.4). 
The initial DDR version makes use of a 2-bit prefetch buffer. The prefetch buffer is 
a memory cache located on the SDRAM chip. It enables the SDRAM chip to pre-
position bits to be placed on the data bus as rapidly as possible. The DDR I/O bus 
uses the same clock rate as the memory chip, but because it can handle two bits per 
cycle, it achieves a data rate that is double the clock rate. The 2-bit prefetch buffer 
enables the SDRAM chip to keep up with the I/O bus.

To understand the operation of the prefetch buffer, we need to look at it from 
the point of view of a word transfer. The prefetch buffer size determines how many 
words of data are fetched (across multiple SDRAM chips) every time a column com-
mand is performed with DDR memories. Because the core of the DRAM is much 
slower than the interface, the difference is bridged by accessing information in par-
allel and then serializing it out the interface through a multiplexor (MUX). Thus, 
DDR prefetches two words, which means that every time a read or a write operation 
is performed, it is performed on two words of data, and bursts out of, or into, the 
SDRAM over one clock cycle on both clock edges for a total of two consecutive 
operations. As a result, the DDR I/O interface is twice as fast as the SDRAM core.

Although each new generation of SDRAM results is much greater capacity, 
the core speed of the SDRAM has not changed significantly from generation to 
generation. To achieve greater data rates than those afforded by the rather modest 
increases in SDRAM clock rate, JEDEC increased the buffer size. For DDR2, a 
4-bit buffer is used, allowing for words to be transferred in parallel, increasing the 
effective data rate by a factor of 4. For DDR3, an 8-bit buffer is used and a factor of 
8 speedup is achieved (Figure 5.14).

Table 5.4 DDR Characteristics

DDR1 DDR2 DDR3 DDR4

Prefetch buffer (bits) 2 4 8 8

Voltage level (V) 2.5 1.8 1.5 1.2

Front side bus data rates (Mbps) 200—400 400—1066 800—2133 2133—4266
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The downside to the prefetch is that it effectively determines the minimum 
burst length for the SDRAMs. For example, it is very difficult to have an efficient 
burst length of four words with DDR3’s prefetch of eight. Accordingly, the JEDEC 
designers chose not to increase the buffer size to 16 bits for DDR4, but rather to 
introduce the concept of a bank group [ALLA13]. Bank groups are separate enti-
ties such that they allow a column cycle to complete within a bank group, but that 
column cycle does not impact what is happening in another bank group. Thus, 
two prefetches of eight can be operating in parallel in the two bank groups. This 
arrangement keeps the prefetch buffer size the same as for DDR3, while increasing 
performance as if the prefetch is larger.

Figure 5.14 shows a configuration with two bank groups. With DDR4, up to 4 
bank groups can be used.
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 5.4 FlaSh memory

Another form of semiconductor memory is flash memory. Flash memory is used 
both for internal memory and external memory applications. Here, we provide a 
technical overview and look at its use for internal memory.

First introduced in the mid-1980s, flash memory is intermediate between 
EPROM and EEPROM in both cost and functionality. Like EEPROM, flash mem-
ory uses an electrical erasing technology. An entire flash memory can be erased in 
one or a few seconds, which is much faster than EPROM. In addition, it is possible 
to erase just blocks of memory rather than an entire chip. Flash memory gets its 
name because the microchip is organized so that a section of memory cells are 
erased in a single action or “flash.” However, flash memory does not provide byte-
level erasure. Like EPROM, flash memory uses only one transistor per bit, and so 
achieves the high density (compared with EEPROM) of EPROM.

Operation

Figure 5.15 illustrates the basic operation of a flash memory. For comparison, Fig-
ure 5.15a depicts the operation of a transistor. Transistors exploit the properties of 
semiconductors so that a small voltage applied to the gate can be used to control the 
flow of a large current between the source and the drain.

In a flash memory cell, a second gate—called a floating gate, because it is insu-
lated by a thin oxide layer—is added to the transistor. Initially, the floating gate does 
not interfere with the operation of the transistor (Figure 5.15b). In this state, the cell is 
deemed to represent binary 1. Applying a large voltage across the oxide layer causes 
electrons to tunnel through it and become trapped on the floating gate, where they 
remain even if the power is disconnected (Figure 5.15c). In this state, the cell is deemed 
to represent binary 0. The state of the cell can be read by using external circuitry to 
test whether the transistor is working or not. Applying a large voltage in the opposite 
direction removes the electrons from the floating gate, returning to a state of binary 1.

(a) Transistor structure

(b) Flash memory cell in one state (c) Flash memory cell in zero state
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An important characteristic of flash memory is that it is persistent memory, 
which means that it retains data when there is no power applied to the memory. 
Thus, it is useful for secondary (external) storage, and as an alternative to random 
access memory in computers.

NOR and NAND Flash Memory

There are two distinctive types of flash memory, designated as NOR and NAND 
(Figure 5.16). In NOR flash memory, the basic unit of access is a bit, referred to as a 
memory cell. Cells in NOR flash are connected in parallel to the bit lines so that each 
cell can be read/write/erased individually. If any memory cell of the device is turned 
on by the corresponding word line, the bit line goes low. This is similar in function to 
a NOR logic gate.2

NAND flash memory is organized in transistor arrays with 16 or 32 transistors 
in series. The bit line goes low only if all the transistors in the corresponding word 
lines are turned on. This is similar in function to a NAND logic gate.

Although the specific quantitative values of various characteristics of NOR 
and NAND are changing year by year, the relative differences between the two 
types has remained stable. These differences are usefully illustrated by the Kiviat 
graphs3 shown in Figure 5.17.

(a) NOR �ash structure

(b) NAND �ash structure
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Figure  5.16 Flash Memory Structures

2The circles associated with and in Figure 5.2b indicate signal negation.
3A Kiviat graph provides a pictorial means of comparing systems along multiple variables [MORR74]. 
The variables are laid out at as lines of equal angular intervals within a circle, each line going from the 
center of the circle to the circumference. A given system is defined by one point on each line; the closer 
to the circumference, the better the value. The points are connected to yield a shape that is characteristic 
of that system. The more area enclosed in the shape, the “better” is the system.
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NOR flash memory provides high-speed random access. It can read and write 
data to specific locations, and can reference and retrieve a single byte. NAND reads 
and writes in small blocks. NAND provides higher bit density than NOR and greater 
write speed. NAND flash does not provide a random-access external address bus so 
the data must be read on a blockwise basis (also known as page access), where each 
block holds hundreds to thousands of bits.

For internal memory in embedded systems, NOR flash memory has tradition-
ally been preferred. NAND memory has made some inroads, but NOR remains the 
dominant technology for internal memory. It is ideally suited for microcontrollers 
where the amount of program code is relatively small and a certain amount of appli-
cation data does not vary. For example, the flash memory in Figure 1.16 is NOR 
memory.

NAND memory is better suited for external memory, such as USB flash 
drives, memory cards (in digital cameras, MP3 players, etc.), and in what are known 
as solid-state disks (SSDs). We discuss SSDs in Chapter 6.

 5.5 newer nonvolatile Solid-State memory 
technologieS

The traditional memory hierarchy has consisted of three levels (Figure 5.18):

 ■ Static RAM (SRAM): SRAM provides rapid access time, but is the most expen-
sive and the least dense (bit density). SRAM is suitable for cache memory.

 ■ Dynamic RAM (DRAM): Cheaper, denser, and slower than SRAM, DRAM 
has traditionally been the choice off-chip main memory.

 ■ Hard disk: A magnetic disk provides very high bit density and very low cost 
per bit, with relatively slow access times. It is the traditional choice for exter-
nal storage as part of the memory hierarchy.
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Into this mix, as we have seen, as been added flash memory. Flash memory has the 
advantage over traditional memory that it is nonvolatile. NOR flash is best suited 
to storing programs and static application data in embedded systems, while NAND 
flash has characteristics intermediate between DRAM and hard disks.

Over time, each of these technologies has seen improvements in scaling: higher 
bit density, higher speed, lower power consumption, and lower cost. However, for 
semiconductor memory, it is becoming increasingly difficult to continue the pace of 
improvement [ITRS14].

Recently, there have been breakthroughs in developing new forms of non-
volatile semiconductor memory that continue scaling beyond flash memory. The 
most promising technologies are spin-transfer torque RAM (STT-RAM), phase-
change RAM (PCRAM), and resistive RAM (ReRAM) ([ITRS14], [GOER12]). 
All of these are in volume production. However, because NAND Flash and to some 
extent NOR Flash are still dominating the applications, these emerging memories 
have been used in specialty applications and have not yet fulfilled their original 
promise to become dominating mainstream high-density nonvolatile memory. This 
is likely to change in the next few years.

Figure 5.18 shows how these three technologies are likely to fit into the mem-
ory hierarchy.

SRAM
STT-RAM

PCRAM

ReRAM
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HARD DISK

Figure  5.18 Nonvolatile RAM within the Memory Hierarchy
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STT-RAM

STT-RAM is a new type of magnetic RAM (MRAM), which features non- volatility, 
fast writing/reading speed (6   10 ns), and high programming endurance (7   1015 cycles) 
and zero standby power [KULT13]. The storage capability or programmability of 
MRAM arises from magnetic tunneling junction (MTJ), in which a thin tunneling 
dielectric is sandwiched between two ferromagnetic layers. One ferromagnetic layer 
(pinned or reference layer) is designed to have its magnetization pinned, while the 
magnetization of the other layer (free layer) can be flipped by a write event. An MTJ 
has a low (high) resistance if the magnetizations of the free layer and the pinned layer 
are parallel (anti-parallel). In first-generation MRAM design, the magnetization of the 
free layer is changed by the current-induced magnetic field. In STT-RAM, a new write 
mechanism, called polarization-current-induced magnetization switching, is intro-
duced. For STT-RAM, the magnetization of the free layer is flipped by the electrical 
current directly. Because the current required to switch an MTJ resistance state is pro-
portional to the MTJ cell area, STT-RAM is believed to have a better scaling property 
than the first-generation MRAM. Figure 5.19a illustrates the general configuration.

STT-RAM is a good candidate for either cache or main memory.

PCRAM

Phase-change RAM (pcram) is the most mature or the new technologies, with an 
extensive technical literature ([RAOU09], [ZHOU09], [LEE10]).

PCRAM technology is based on a chalcogenide alloy material, which is similar 
to those commonly used in optical storage media (compact discs and digital versa-
tile discs). The data storage capability is achieved from the resistance differences 
between an amorphous (high-resistance) and a crystalline (low-resistance) phase 
of the chalcogenide-based material. In SET operation, the phase change material is 
crystallized by applying an electrical pulse that heats a significant portion of the cell 
above its crystallization temperature. In RESET operation, a larger electrical current 
is applied and then abruptly cut off in order to melt and then quench the material, 
leaving it in the amorphous state. Figure 5.19b illustrates the general configuration.

PCRAM is a good candidate to replace or supplement DRAM for main 
memory.

ReRAM

ReRAM (also known as RRAM) works by creating resistance rather than directly 
storing charge. An electric current is applied to a material, changing the resistance 
of that material. The resistance state can then be measured and a 1 or 0 is read as 
the result. Much of the work done on ReRAM to date has focused on finding appro-
priate materials and measuring the resistance state of the cells. ReRAM designs 
are low voltage, endurance is far superior to flash memory, and the cells are much 
smaller—at least in theory. Figure 5.19c shows one ReRam configuration.

ReRAM is a good candidate to replace or supplement both secondary storage 
and main memory.
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 5.6 Key termS, review QueStionS, and ProblemS

Key Terms

(a) STT-RAM

(b) PCRAM

Bit line

Free
layer

Reference
layer

Base electrode

Interface layer
Direction of
magnetization

Electric
current

binary 0

Interface layer
Insulating layer

Perpendicular
magnetic layer

Perpendicular
magnetic layer

Bit line

Free
layer

Reference
layer

Base electrode

Interface layer
Direction of
magnetization

Electric
current

binary 1

Interface layer
Insulating layer

Perpendicular
magnetic layer

Perpendicular
magnetic layer

Top electrode

Bottom electrode

Polycrystaline
chalcogenide

Heater

Insulator

Filament

Metal oxide

Insulator

Metal oxide

Insulator

(c) ReRAM

Top electrode

Bottom electrode

Filament

Oxidation:
high resistance

Reduction:
low resistance

Top electrode

Bottom electrode

Top electrode

Bottom electrode

Polycrystaline
chalcogenideAmorphous

chalcogenide

Heater

Insulator

Figure  5.19 Nonvolatile RAM Technologies

bank group
double data rate DRAM 

(DDR DRAM)
dynamic RAM  

(DRAM)

electrically erasable 
programmable ROM 
(EEPROM)

erasable programmable 
ROM (EPROM)

error correcting code (ECC)
error correction
flash memory
Hamming code
hard failure



5.6 / Key terMS, revIew QueStIonS, and probleMS  191

Review Questions

 5.1 What are the key properties of semiconductor memory?
 5.2 What are two interpretations of the term random-access memory?
 5.3 What is the difference between DRAM and SRAM in terms of application?
 5.4 What is the difference between DRAM and SRAM in terms of characteristics such as 

speed, size, and cost?
 5.5 Explain why one type of RAM is considered to be analog and the other digital.
 5.6 What are some applications for ROM?
 5.7 What are the differences among EPROM, EEPROM, and flash memory?
 5.8 Explain the function of each pin in Figure 5.4b.
 5.9 What is a parity bit?
 5.10 How is the syndrome for the Hamming code interpreted?
 5.11 How does SDRAM differ from ordinary DRAM?
 5.12 What is DDR RAM?
 5.13 What is the difference between NAND and NOR flash memory?
 5.14 List and briefly define three newer nonvolatile solid-state memory technologies.

Problems

 5.1 Suggest reasons why RAMs traditionally have been organized as only one bit per chip 
whereas ROMs are usually organized with multiple bits per chip.

 5.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each 
refresh operation requires 150 ns; a memory cycle requires 250 ns. What percentage of 
the memory’s total operating time must be given to refreshes?

 5.3 Figure 5.20 shows a simplified timing diagram for a DRAM read operation over a bus. 
The access time is considered to last from t1 to t2. Then there is a recharge time, lasting 
from t2 to t3, during which the DRAM chips will have to recharge before the processor 
can access them again.
a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the 

memory cycle time? What is the maximum data rate this DRAM can sustain, 
assuming a 1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data 
transfer rate?

 5.4 Figure 5.6 indicates how to construct a module of chips that can store 1 MB based on 
a group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a single 
1-MB chip, where the word size is 1 byte. Give a high-level chip diagram of how to 
construct an 8-MB computer memory using eight 1-MB chips. Be sure to show the 
address lines in your diagram and what the address lines are used for.

magnetic RAM (MRAM)
NAND flash memory
nonvolatile memory
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phase-change RAM 
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random access memory 
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 5.5 On a typical Intel 8086-based system, connected via system bus to DRAM memory, 
for a read operation, RAS is activated by the trailing edge of the Address Enable 
signal (Figure C.1 in Appendix C). However, due to propagation and other delays, 
RAS does not go active until 50 ns after Address Enable returns to a low. Assume the 
latter occurs in the middle of the second half of state T1 (somewhat earlier than in 
Figure C.1). Data are read by the processor at the end of T3. For timely presentation to 
the processor, however, data must be provided 60 ns earlier by memory. This interval 
accounts for propagation delays along the data paths (from memory to processor) and 
processor data hold time requirements. Assume a clocking rate of 10 MHz.
a. How fast (access time) should the DRAMs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the 

access time of the DRAMs is 150 ns?
 5.6 The memory of a particular microcomputer is built from 64K * 1  DRAMs. Accord-

ing to the data sheet, the cell array of the DRAM is organized into 256 rows. Each 
row must be refreshed at least once every 4 ms. Suppose we refresh the memory on a 
strictly periodic basis.
a. What is the time period between successive refresh requests?
b. How long a refresh address counter do we need?

 5.7 Figure  5.21 shows one of the early SRAMs, the 16 * 4 Signetics 7489 chip, which 
stores 16 4-bit words.
a. List the mode of operation of the chip for each CS input pulse shown in Figure 5.21c.
b. List the memory contents of word locations 0 through 6 after pulse n.
c. What is the state of the output data leads for the input pulses h through m?

 5.8 Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size 64 * 1 
bit. Give the array configuration of the chips on the memory board showing all 
required input and output signals for assigning this memory to the lowest address 
space. The design should allow for both byte and 16-bit word accesses.

 5.9 A common unit of measure for failure rates of electronic components is the  Failure 
unIT (FIT), expressed as a rate of failures per billion device hours. Another well 
known but less used measure is mean time between failures (MTBF), which is the 
average time of operation of a particular component until it fails. Consider a 1 MB 
memory of a 16-bit microprocessor with 256K * 1 DRAMs.  Calculate its MTBF 
assuming 2000 FITS for each DRAM.
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Figure  5.20 Simplified DRAM Read Timing
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 5.10 For the Hamming code shown in Figure 5.10, show what happens when a check bit 
rather than a data bit is in error?

 5.11 Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming algo-
rithm, determine what check bits would be stored in memory with the data word. 
Show how you got your answer.

 5.12 For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose 
when the word is read from memory, the check bits are calculated to be 1101. What is 
the data word that was read from memory?

 5.13 How many check bits are needed if the Hamming error correction code is used to 
detect single bit errors in a 1024-bit data word?

 5.14 Develop an SEC code for a 16-bit data word. Generate the code for the data word 
0101000000111001. Show that the code will correctly identify an error in data bit 5.

(b) Truth table

(c) Pulse train
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This chapter examines a range of external memory devices and systems. We begin 
with the most important device, the magnetic disk. Magnetic disks are the founda-
tion of external memory on virtually all computer systems. The next section exam-
ines the use of disk arrays to achieve greater performance, looking specifically at 
the family of systems known as RAID (Redundant Array of Independent Disks). 
An increasingly important component of many computer systems is the solid state 
disk, which is discussed next. Then, external optical memory is examined. Finally, 
magnetic tape is described.

 6.1 MAGNETIC DISK

A disk is a circular platter constructed of nonmagnetic material, called the substrate, 
coated with a magnetizable material. Traditionally, the substrate has been an alumi-
num or aluminum alloy material. More recently, glass substrates have been intro-
duced. The glass substrate has a number of benefits, including the following:

 ■ Improvement in the uniformity of the magnetic film surface to increase disk 
reliability.

 ■ A significant reduction in overall surface defects to help reduce  read-  write 
errors.

 ■ Ability to support lower fly heights (described subsequently).
 ■ Better stiffness to reduce disk dynamics.
 ■ Greater ability to withstand shock and damage.

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named 
the head; in many systems, there are two heads, a read head and a write head. During 
a read or write operation, the head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil 
produces a magnetic field. Electric pulses are sent to the write head, and the result-
ing magnetic patterns are recorded on the surface below, with different patterns for 
positive and negative currents. The write head itself is made of easily magnetizable 

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the key properties of magnetic disks.
 r Understand the performance issues involved in magnetic disk access.
 r Explain the concept of RAID and describe the various levels.
 r Compare and contrast hard disk drives and solid disk drives.
 r Describe in general terms the operation of flash memory.
 r Understand the differences among the different optical disk storage media.
 r Present an overview of magnetic tape storage technology.
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material and is in the shape of a rectangular doughnut with a gap along one side and 
a few turns of conducting wire along the opposite side (Figure 6.1). An electric cur-
rent in the wire induces a magnetic field across the gap, which in turn magnetizes a 
small area of the recording medium. Reversing the direction of the current reverses 
the direction of the magnetization on the recording medium.

The traditional read mechanism exploits the fact that a magnetic field moving 
relative to a coil produces an electrical current in the coil. When the surface of the 
disk rotates under the head, it generates a current of the same polarity as the one 
already recorded. The structure of the head for reading is in this case essentially the 
same as for writing and therefore the same head can be used for both. Such single 
heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring 
a separate read head, positioned for convenience close to the write head. The read 
head consists of a partially shielded magnetoresistive (MR) sensor. The MR mate-
rial has an electrical resistance that depends on the direction of the magnetization of 
the medium moving under it. By passing a current through the MR sensor, resistance 
changes are detected as voltage signals. The MR design allows  higher-  frequency 
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion 
of the platter rotating beneath it. This gives rise to the organization of data on the 
platter in a concentric set of rings, called tracks. Each track is the same width as the 
head. There are thousands of tracks per surface.

N
S

S
N

N
S

S
N

N
S

S
N

N
S

Track width

Recording
medium

Inductive
write element

Shield

Magnetization

MR
sensor

Read
current

Write current
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Figure 6.2 depicts this data layout. Adjacent tracks are separated by intertrack 
gaps. This prevents, or at least minimizes, errors due to misalignment of the head 
or simply interference of magnetic fields. Data are transferred to and from the disk 
in sectors. There are typically hundreds of sectors per track, and these may be of 
either fixed or variable length. In most contemporary systems,  fixed-  length sectors 
are used, with 512 bytes being the nearly universal sector size. To avoid imposing 
unreasonable precision requirements on the system, adjacent sectors are separated 
by intersector gaps.

A bit near the center of a rotating disk travels past a fixed point (such as a  read– 
 write head) slower than a bit on the outside. Therefore, some way must be found to com-
pensate for the variation in speed so that the head can read all the bits at the same rate. 
This can be done by defining a variable spacing between bits of information recorded in 

Inter-sector gap

Inter-track gap

Sector

Platter

Read-write head
(1 per surface)

Track
Rotation

Cylinder Spindle Boom
Direction of
arm motion

Track sector

S4

S4

S4

S3

S3

S3

S2

S2

S2 S1

S1

S1

• • •

• • •

• • •S5

S5

S5

S6

S6

S6

SN

SN

SN

Figure 6.2 Disk Data Layout



198  cHaPteR 6 / exteRnal MeMoRy

locations on the disk, in a way that the outermost tracks has sectors with bigger spacing. 
The information can then be scanned at the same rate by rotating the disk at a fixed 
speed, known as the constant angular velocity (CAV). Figure 6.3a shows the layout of 
a disk using CAV. The disk is divided into a number of  pie-  shaped sectors and into a 
series of concentric tracks. The advantage of using CAV is that individual blocks of data 
can be directly addressed by track and sector. To move the head from its current loca-
tion to a specific address, it only takes a short movement of the head to a specific track 
and a short wait for the proper sector to spin under the head. The disadvantage of CAV 
is that the amount of data that can be stored on the long outer tracks is the only same as 
what can be stored on the short inner tracks.

Because the density, in bits per linear inch, increases in moving from the outer-
most track to the innermost track, disk storage capacity in a straightforward CAV 
system is limited by the maximum recording density that can be achieved on the 
innermost track. To maximize storage capacity, it would be preferable to have the 
same linear bit density on each track. This would require unacceptably complex cir-
cuitry. Modern hard disk systems use simpler technique, which approximates equal 
bit density per track, known as multiple zone recording (MZR), in which the surface 
is divided into a number of concentric zones (16 is typical). Each zone contains a 
number of contiguous tracks, typically in the thousands. Within a zone, the number 
of bits per track is constant. Zones farther from the center contain more bits (more 
sectors) than zones closer to the center. Zones are defined in such a way that the lin-
ear bit density is approximately the same on all tracks of the disk. MZR allows for 
greater overall storage capacity at the expense of somewhat more complex circuitry. 
As the disk head moves from one zone to another, the length (along the track) of 
individual bits changes, causing a change in the timing for reads and writes.

Figure 6.3b is a simplified MZR layout, with 15 tracks organized into 5 zones. 
The innermost two zones have two tracks each, with each track having nine sectors; 
the next zone has 3 tracks, each with 12 sectors; and the outermost 2 zones have 4 
tracks each, with each track having 16 sectors.

(a) Constant angular velocity (b) Multiple zone recording

Track
Sector

Zone

Figure 6.3 Comparison of Disk Layout Methods
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Some means is needed to locate sector positions within a track. Clearly, there 
must be some starting point on the track and a way of identifying the start and end 
of each sector. These requirements are handled by means of control data recorded 
on the disk. Thus, the disk is formatted with some extra data used only by the disk 
drive and not accessible to the user.

An example of disk formatting is shown in Figure 6.4. In this case, each track 
contains 30  fixed-  length sectors of 600 bytes each. Each sector holds 512 bytes of 
data plus control information useful to the disk controller. The ID field is a unique 
identifier or address used to locate a particular sector. The SYNCH byte is a spe-
cial bit pattern that delimits the beginning of the field. The track number identi-
fies a track on a surface. The head number identifies a head, because this disk has 
multiple surfaces (explained presently). The ID and data fields each contain an 
 error-  detecting code.

Physical Characteristics

Table 6.1 lists the major characteristics that differentiate among the various types 
of magnetic disks. First, the head may either be fixed or movable with respect to the 
radial direction of the platter. In a  fixed-  head disk, there is one  read-  write head per 
track. All of the heads are mounted on a rigid arm that extends across all tracks; 
such systems are rare today. In a  movable-  head disk, there is only one  read-  write 
head. Again, the head is mounted on an arm. Because the head must be able to be 
positioned above any track, the arm can be extended or retracted for this purpose.

The disk itself is mounted in a disk drive, which consists of the arm, a spindle 
that rotates the disk, and the electronics needed for input and output of binary data. 
A nonremovable disk is permanently mounted in the disk drive; the hard disk in 
a personal computer is a nonremovable disk. A removable disk can be removed 
and replaced with another disk. The advantage of the latter type is that unlimited 
amounts of data are available with a limited number of disk systems. Furthermore, 
such a disk may be moved from one computer system to another. Floppy disks and 
ZIP cartridge disks are examples of removable disks.
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For most disks, the magnetizable coating is applied to both sides of the plat-
ter, which is then referred to as double sided. Some less expensive disk systems use 
 single-  sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction 
of an inch apart. Multiple arms are provided (Figure 6.2).  Multiple–  platter disks 
employ a movable head, with one  read-  write head per platter surface. All of the 
heads are mechanically fixed so that all are at the same distance from the center of 
the disk and move together. Thus, at any time, all of the heads are positioned over 
tracks that are of equal distance from the center of the disk. The set of all the tracks 
in the same relative position on the platter is referred to as a cylinder. This is illus-
trated in Figure 6.2.

Finally, the head mechanism provides a classification of disks into three types. 
Traditionally, the  read-  write head has been positioned a fixed distance above the 
platter, allowing an air gap. At the other extreme is a head mechanism that actually 
comes into physical contact with the medium during a read or write operation. This 
mechanism is used with the floppy disk, which is a small, flexible platter and the 
least expensive type of disk.

To understand the third type of disk, we need to comment on the relation-
ship between data density and the size of the air gap. The head must generate or 
sense an electromagnetic field of sufficient magnitude to write and read properly. 
The narrower the head is, the closer it must be to the platter surface to function. A 
narrower head means narrower tracks and therefore greater data density, which is 
desirable. However, the closer the head is to the disk, the greater the risk of error 
from impurities or imperfections. To push the technology further, the Winchester 
disk was developed. Winchester heads are used in sealed drive assemblies that are 
almost free of contaminants. They are designed to operate closer to the disk’s sur-
face than conventional rigid disk heads, thus allowing greater data density. The 
head is actually an aerodynamic foil that rests lightly on the platter’s surface when 
the disk is motionless. The air pressure generated by a spinning disk is enough 
to make the foil rise above the surface. The resulting noncontact system can be 
engineered to use narrower heads that operate closer to the platter’s surface than 
conventional rigid disk heads.

Table 6.2 gives disk parameters for typical contemporary  high-  performance 
disks.

Table 6.1 Physical Characteristics of Disk Systems

Head Motion
Fixed head (one per track)

Movable head (one per surface)

Platters
Single platter

Multiple platter

Disk Portability
Nonremovable disk

Removable disk

Head Mechanism
Contact (floppy)

Fixed gap

Sides
Single sided

Double sided

Aerodynamic gap (Winchester)
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Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the oper-
ating system, and the nature of the I/O channel and disk controller hardware. A 
general timing diagram of disk I/O transfer is shown in Figure 6.5.

When the disk drive is operating, the disk is rotating at constant speed. To 
read or write, the head must be positioned at the desired track and at the beginning 
of the desired sector on that track. Track selection involves moving the head in a 
 movable-  head system or electronically selecting one head on a  fixed-  head system. 
On a  movable-  head system, the time it takes to position the head at the track is 
known as seek time. In either case, once the track is selected, the disk controller 
waits until the appropriate sector rotates to line up with the head. The time it takes 
for the beginning of the sector to reach the head is known as rotational delay, or 
rotational latency. The sum of the seek time, if any, and the rotational delay equals 
the access time, which is the time it takes to get into position to read or write. Once 
the head is in position, the read or write operation is then performed as the sector 
moves under the head; this is the data transfer portion of the operation; the time 
required for the transfer is the transfer time.

In addition to the access time and transfer time, there are several queuing 
delays normally associated with a disk I/O operation. When a process issues an I/O 

Table 6.2 Typical Hard Disk Drive Parameters

Characteristics
Seagate 

Enterprise
Seagate  

Barracuda XT
Seagate Cheetah 

NS
Seagate Laptop 

HDD

Application Enterprise Desktop  Network-  attached 
storage, application 

servers

Laptop

Capacity 6 TB 3 TB 600 GB 2 TB

Average seek time 4.16 ms N/A 3.9 ms read
4.2 ms write

13 ms

Spindle speed 7200 rpm 7200 rpm 10,075 rpm 5400 rpm

Average latency 4.16 ms 4.16 ms 2.98 5.6 ms

Maximum sustained 
transfer rate

216 MB/sec 149 MB/sec 97 MB/sec 300 MB/sec

Bytes per sector 512/4096 512 512 4096

Tracks per cylinder 
(number of platter 
surfaces)

8 10 8 4

Cache 128 MB 64 MB 16 MB 8 MB

Wait for
device

Wait for
channel

Seek Rotational
delay

Data
transfer

Device busy

Figure 6.5 Timing of a Disk I/O Transfer
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request, it must first wait in a queue for the device to be available. At that time, the 
device is assigned to the process. If the device shares a single I/O channel or a set 
of I/O channels with other disk drives, then there may be an additional wait for the 
channel to be available. At that point, the seek is performed to begin disk access.

In some  high-  end systems for servers, a technique known as rotational pos-
itional sensing (RPS) is used. This works as follows: When the seek command has 
been issued, the channel is released to handle other I/O operations. When the seek 
is completed, the device determines when the data will rotate under the head. As 
that sector approaches the head, the device tries to reestablish the communication 
path back to the host. If either the control unit or the channel is busy with another 
I/O, then the reconnection attempt fails and the device must rotate one whole 
revolution before it can attempt to reconnect, which is called an RPS miss. This is 
an extra delay element that must be added to the timeline of Figure 6.5.

seek time Seek time is the time required to move the disk arm to the required track. 
It turns out that this is a difficult quantity to pin down. The seek time consists of two 
key components: the initial startup time, and the time taken to traverse the tracks that 
have to be crossed once the access arm is up to speed. Unfortunately, the traversal 
time is not a linear function of the number of tracks, but includes a settling time (time 
after positioning the head over the target track until track identification is confirmed).

Much improvement comes from smaller and lighter disk components. Some 
years ago, a typical disk was 14 inches (36 cm) in diameter, whereas the most com-
mon size today is 3.5  inches (8.9 cm), reducing the distance that the arm has to 
travel. A typical average seek time on contemporary hard disks is under 10 ms.

rotational delay Disks, other than floppy disks, rotate at speeds ranging from 
3600 rpm (for handheld devices such as digital cameras) up to, as of this writing, 
20,000 rpm; at this latter speed, there is one revolution per 3 ms. Thus, on the 
average, the rotational delay will be 1.5 ms.

transfer time The transfer time to or from the disk depends on the rotation 
speed of the disk in the following fashion:

T =
b

rN
where

 T = transfer  time
 b = number  of bytes to be transferred
 N = number  of bytes on a track
 r = rotation  speed, in revolutions per second

Thus the total average read or write time Ttotal can be expressed as

 Ttotal = Ts +
1
2r

+
b

rN
 (6.1)

where Ts is the average seek time. Note that on a zoned drive, the number of bytes 
per track is variable, complicating the calculation.1

1Compare the two preceding equations to Equation (4.1).
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a timing comparison With the foregoing parameters defined, let us look at 
two different I/O operations that illustrate the danger of relying on average values. 
Consider a disk with an advertised average seek time of 4 ms, rotation speed of 
15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish 
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to 
estimate the total time for the transfer.

First, let us assume that the file is stored as compactly as possible on 
the disk. That is, the file occupies all of the sectors on 5 adjacent tracks 
(5  tracks * 500  sectors/track = 2500  sectors). This is known as sequential organ-
ization. Now, the time to read the first track is as follows:

Average seek   4 ms

Average rotational delay   2 ms

Read 500 sectors  4  ms
10  ms

Suppose that the remaining tracks can now be read with essentially no seek 
time. That is, the I/O operation can keep up with the flow from the disk. Then, at 
most, we need to deal with rotational delay for the four remaining tracks. Thus each 
successive track is read in 2 + 4 = 6  ms. To read the entire file,

Total  time = 10 + (4 * 6) = 34  ms = 0.034  seconds

Now let us calculate the time required to read the same data using random 
access rather than sequential access; that is, accesses to the sectors are distributed 
randomly over the disk. For each sector, we have

Average seek 4      ms

Rotational delay 2      ms

Read 1 sectors 0.008  ms
6.008  ms

Total  time = 2500 * 6.008 = 15,020  ms = 15.02  seconds

It is clear that the order in which sectors are read from the disk has a tre-
mendous effect on I/O performance. In the case of file access in which multiple 
sectors are read or written, we have some control over the way in which sectors 
of data are deployed. However, even in the case of a file access, in a multipro-
gramming environment, there will be I/O requests competing for the same disk. 
Thus, it is worthwhile to examine ways in which the performance of disk I/O 
can be improved over that achieved with purely random access to the disk. This 
leads to a consideration of disk scheduling algorithms, which is the province of 
the operating system and beyond the scope of this book (see [STAL15] for a 
discussion).

RAID Simulator
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 6.2 RAID

As discussed earlier, the rate in improvement in secondary storage performance has 
been considerably less than the rate for processors and main memory. This mismatch 
has made the disk storage system perhaps the main focus of concern in improving 
overall computer system performance.

As in other areas of computer performance, disk storage designers recognize 
that if one component can only be pushed so far, additional gains in performance 
are to be had by using multiple parallel components. In the case of disk storage, this 
leads to the development of arrays of disks that operate independently and in par-
allel. With multiple disks, separate I/O requests can be handled in parallel, as long 
as the data required reside on separate disks. Further, a single I/O request can be 
executed in parallel if the block of data to be accessed is distributed across multiple 
disks.

With the use of multiple disks, there is a wide variety of ways in which the data 
can be organized and in which redundancy can be added to improve reliability. This 
could make it difficult to develop database schemes that are usable on a number of 
platforms and operating systems. Fortunately, industry has agreed on a standard-
ized scheme for  multiple-  disk database design, known as RAID (Redundant Array 
of Independent Disks). The RAID scheme consists of seven levels,2 zero through 
six. These levels do not imply a hierarchical relationship but designate different 
design architectures that share three common characteristics:

1. RAID is a set of physical disk drives viewed by the operating system as a 
single logical drive.

2. Data are distributed across the physical drives of an array in a scheme known 
as striping, described subsequently.

3. Redundant disk capacity is used to store parity information, which guarantees 
data recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID 
levels. RAID 0 and RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers 
at the University of California at Berkeley [PATT88].3 The paper outlined vari-
ous RAID configurations and applications and introduced the definitions of the 
RAID levels that are still used. The RAID strategy employs multiple disk drives 
and distributes data in such a way as to enable simultaneous access to data from 
multiple drives, thereby improving I/O performance and allowing easier incremen-
tal increases in capacity.

2Additional levels have been defined by some researchers and some companies, but the seven levels 
described in this section are the ones universally agreed on.
3In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpen-
sive was used to contrast the small relatively inexpensive disks in the RAID array to the alternative, a 
single large expensive disk (SLED). The SLED is essentially a thing of the past, with similar disk technol-
ogy being used for both RAID and  non-  RAID configurations. Accordingly, the industry has adopted the 
term independent to emphasize that the RAID array creates significant performance and reliability gains.
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The unique contribution of the RAID proposal is to address effectively the 
need for redundancy. Although allowing multiple heads and actuators to operate 
simultaneously achieves higher I/O and transfer rates, the use of multiple devices 
increases the probability of failure. To compensate for this decreased reliability, 
RAID makes use of stored parity information that enables the recovery of data lost 
due to a disk failure.

We now examine each of the RAID levels. Table 6.3 provides a rough guide 
to the seven levels. In the table, I/O performance is shown both in terms of data 
transfer capacity, or ability to move data, and I/O request rate, or ability to satisfy 
I/O requests, since these RAID levels inherently perform differently relative to 
these two metrics. Each RAID level’s strong point is highlighted by darker shad-
ing. Figure 6.6 illustrates the use of the seven RAID schemes to support a data 
capacity requiring four disks with no redundancy. The figures highlight the layout 
of user data and redundant data and indicates the relative storage requirements of 
the various levels. We refer to these figures throughout the following discussion. 
Of the seven RAID levels described, only four are commonly used: RAID levels 
0, 1, 5, and 6.

RAID Level 0

RAID level 0 is not a true member of the RAID family because it does not include 
redundancy to improve performance. However, there are a few applications, such as 
some on supercomputers in which performance and capacity are primary concerns 
and low cost is more important than improved reliability.

For RAID 0, the user and system data are distributed across all of the disks in 
the array. This has a notable advantage over the use of a single large disk: If  two- 
 different I/O requests are pending for two different blocks of data, then there is a 
good chance that the requested blocks are on different disks. Thus, the two requests 
can be issued in parallel, reducing the I/O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distribut-
ing the data across a disk array: The data are striped across the available disks. This 
is best understood by considering Figure 6.7. All of the user and system data are 
viewed as being stored on a logical disk. The logical disk is divided into strips; these 
strips may be physical blocks, sectors, or some other unit. The strips are mapped 
round robin to consecutive physical disks in the RAID array. A set of logically con-
secutive strips that maps exactly one strip to each array member is referred to as a 
stripe. In an  n-  disk array, the first n logical strips are physically stored as the first 
strip on each of the n disks, forming the first stripe; the second n strips are distributed 
as the second strips on each disk; and so on. The advantage of this layout is that if a 
single I/O request consists of multiple logically contiguous strips, then up to n strips 
for that request can be handled in parallel, greatly reducing the I/O transfer time.

Figure 6.7 indicates the use of array management software to map between 
logical and physical disk space. This software may execute either in the disk subsys-
tem or in a host computer.

raid 0 for high data transfer capacity The performance of any of the 
RAID levels depends critically on the request patterns of the host system and on the 
layout of the data. These issues can be most clearly addressed in RAID 0, where the 



Table 6.3 RAID Levels

Category Level Description
Disks 

Required Data Availability
Large I/O Data  

Transfer Capacity
Small I/O  

Request Rate

Striping 0 Nonredundant N Lower than single disk Very high
Very high for both read and 
write

Mirroring 1 Mirrored 2N
Higher than RAID 2, 
3, 4, or 5; lower than 
RAID 6

Higher than single disk 
for read; similar to single 
disk for write

Up to twice that of a single 
disk for read; similar to 
single disk for write

Parallel 
access

2
Redundant via 
Hamming code

N + m
Much higher than 
single disk; comparable 
to RAID 3, 4, or 5

Highest of all listed 
alternatives

Approximately twice that 
of a single disk

3
 Bit-  interleaved 
parity

N + 1
Much higher than 
single disk; comparable 
to RAID 2, 4, or 5

Highest of all listed 
alternatives

Approximately twice that 
of a single disk

Independent 
access

4
 Block-  interleaved 
parity

N + 1
Much higher than 
single disk; comparable 
to RAID 2, 3, or 5

Similar to RAID 0 for 
read; significantly lower 
than single disk for write

Similar to RAID 0 for read; 
significantly lower than 
single disk for write

5
 Block-  interleaved 
distributed parity

N + 1
Much higher than 
single disk; comparable 
to RAID 2, 3, or 4

Similar to RAID 0 for 
read; lower than single 
disk for write

Similar to RAID 0 for read; 
generally lower than single 
disk for write

6
 Block-  interleaved 
dual distributed 
parity

N + 2
Highest of all listed 
alternatives

Similar to RAID 0 for 
read; lower than RAID 5 
for write

Similar to RAID 0 for read; 
significantly lower than 
RAID 5 for write

Note: N = number of data disks; m proportional to log N

206
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impact of redundancy does not interfere with the analysis. First, let us consider the 
use of RAID 0 to achieve a high data transfer rate. For applications to experience 
a high transfer rate, two requirements must be met. First, a high transfer capacity 
must exist along the entire path between host memory and the individual disk 
drives. This includes internal controller buses, host system I/O buses, I/O adapters, 
and host memory buses.

The second requirement is that the application must make I/O requests that 
drive the disk array efficiently. This requirement is met if the typical request is for 
large amounts of logically contiguous data, compared to the size of a strip. In this 
case, a single I/O request involves the parallel transfer of data from multiple disks, 
increasing the effective transfer rate compared to a  single-  disk transfer.

raid 0 for high i/o request rate In a  transaction-  oriented environment, 
the user is typically more concerned with response time than with transfer rate. For 
an individual I/O request for a small amount of data, the I/O time is dominated by 
the motion of the disk heads (seek time) and the movement of the disk (rotational 
latency).

In a transaction environment, there may be hundreds of I/O requests per sec-
ond. A disk array can provide high I/O execution rates by balancing the I/O load 
across multiple disks. Effective load balancing is achieved only if there are typically 
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multiple I/O requests outstanding. This, in turn, implies that there are multiple inde-
pendent applications or a single  transaction-  oriented application that is capable of 
multiple asynchronous I/O requests. The performance will also be influenced by the 
strip size. If the strip size is relatively large, so that a single I/O request only involves 
a single disk access, then multiple waiting I/O requests can be handled in parallel, 
reducing the queuing time for each request.
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Figure 6.7 Data Mapping for a RAID Level 0 Array

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is 
achieved. In these other RAID schemes, some form of parity calculation is used to 
introduce redundancy, whereas in RAID 1, redundancy is achieved by the simple 
expedient of duplicating all the data. As Figure 6.6b shows, data striping is used, as in 
RAID 0. But in this case, each logical strip is mapped to two separate physical disks 
so that every disk in the array has a mirror disk that contains the same data. RAID 1 
can also be implemented without data striping, though this is less common.

There are a number of positive aspects to the RAID 1 organization:

1. A read request can be serviced by either of the two disks that contains the 
requested data, whichever one involves the minimum seek time plus rota-
tional latency.

2. A write request requires that both corresponding strips be updated, but this 
can be done in parallel. Thus, the write performance is dictated by the slower 
of the two writes (i.e., the one that involves the larger seek time plus rotational 
latency). However, there is no “write penalty” with RAID 1. RAID levels 
2 through 6 involve the use of parity bits. Therefore, when a single strip is 
updated, the array management software must first compute and update the 
parity bits as well as updating the actual strip in question.

3. Recovery from a failure is simple. When a drive fails, the data may still be 
accessed from the second drive.
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The principal disadvantage of RAID 1 is the cost; it requires twice the disk 
space of the logical disk that it supports. Because of that, a RAID 1 configuration 
is likely to be limited to drives that store system software and data and other 
highly critical files. In these cases, RAID 1 provides  real-  time copy of all data 
so that in the event of a disk failure, all of the critical data are still immediately 
available.

In a  transaction-  oriented environment, RAID 1 can achieve high I/O request 
rates if the bulk of the requests are reads. In this situation, the performance of 
RAID 1 can approach double of that of RAID 0. However, if a substantial fraction 
of the I/O requests are write requests, then there may be no significant performance 
gain over RAID 0. RAID 1 may also provide improved performance over RAID 
0 for data transfer intensive applications with a high percentage of reads. Improve-
ment occurs if the application can split each read request so that both disk members 
participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access 
array, all member disks participate in the execution of every I/O request. Typically, 
the spindles of the individual drives are synchronized so that each disk head is in the 
same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2 
and 3, the strips are very small, often as small as a single byte or word. With RAID 2, 
an  error-  correcting code is calculated across corresponding bits on each data disk, 
and the bits of the code are stored in the corresponding bit positions on multiple par-
ity disks. Typically, a Hamming code is used, which is able to correct  single-  bit errors 
and detect  double-  bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. 
The number of redundant disks is proportional to the log of the number of data 
disks. On a single read, all disks are simultaneously accessed. The requested data 
and the associated  error-  correcting code are delivered to the array controller. If 
there is a  single-  bit error, the controller can recognize and correct the error instantly, 
so that the read access time is not slowed. On a single write, all data disks and parity 
disks must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many 
disk errors occur. Given the high reliability of individual disks and disk drives, 
RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 
3 requires only a single redundant disk, no matter how large the disk array. RAID 
3 employs parallel access, with data distributed in small strips. Instead of an  error- 
 correcting code, a simple parity bit is computed for the set of individual bits in the 
same position on all of the data disks.

redundancy In the event of a drive failure, the parity drive is accessed 
and data is reconstructed from the remaining devices. Once the failed drive 
is replaced, the missing data can be restored on the new drive and operation 
resumed.
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Data reconstruction is simple. Consider an array of five drives in which X0 through 
X3 contain data and X4 is the parity disk. The parity for the ith bit is calculated as follows:

X4(i) = X3(i)  ⊕   X2(i)  ⊕   X1(i)  ⊕   X0(i)

where ⊕  is  exclusive-  OR function.
Suppose that drive X1 has failed. If we add X4(i)  ⊕   X1(i) to both sides of the 

preceding equation, we get

X1(i) = X4(i)  ⊕   X3(i)  ⊕   X2(i)  ⊕   X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents 
of the corresponding strips on the remaining disks in the array. This principle is true 
for RAID levels 3 through 6.

In the event of a disk failure, all of the data are still available in what is referred 
to as reduced mode. In this mode, for reads, the missing data are regenerated on the 
fly using the  exclusive-  OR calculation. When data are written to a reduced RAID 3 
array, consistency of the parity must be maintained for later regeneration. Return to 
full operation requires that the failed disk be replaced and the entire contents of the 
failed disk be regenerated on the new disk.

performance Because data are striped in very small strips, RAID 3 can achieve 
very high data transfer rates. Any I/O request will involve the parallel transfer of 
data from all of the data disks. For large transfers, the performance improvement is 
especially noticeable. On the other hand, only one I/O request can be executed at a 
time. Thus, in a  transaction-  oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an inde-
pendent access array, each member disk operates independently, so that separate 
I/O requests can be satisfied in parallel. Because of this, independent access arrays 
are more suitable for applications that require high I/O request rates and are rela-
tively less suited for applications that require high data transfer rates.

As in the other RAID schemes, data striping is used. In the case of RAID 
4 through 6, the strips are relatively large. With RAID 4, a  bit-  by-  bit parity strip 
is calculated across corresponding strips on each data disk, and the parity bits are 
stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is per-
formed. Each time that a write occurs, the array management software must update 
not only the user data but also the corresponding parity bits. Consider an array of 
five drives in which X0 through X3 contain data and X4 is the parity disk. Suppose 
that a write is performed that only involves a strip on disk X1. Initially, for each bit i, 
we have the following relationship:

 X4(i) = X3(i)  ⊕   X2(i)  ⊕   X1(i)  ⊕   X0(i) (6.2)

After the update, with potentially altered bits indicated by a prime symbol:

 X4′(i) = X3(i)  ⊕   X2(i)  ⊕   X1′(i)X0(i)
 = X3(i)  ⊕   X2(i)  ⊕   X1′(i)  ⊕   X0(i)  ⊕   X1(i)  ⊕   X1(i)
 = X3(i)  ⊕   X2(i)  ⊕   X1(i)  ⊕   X0(i)  ⊕   X1(i)  ⊕   X1′(i)
 = X4(i)  ⊕   X1(i)  ⊕   X1′(i)
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The preceding set of equations is derived as follows. The first line shows that a 
change in X1 will also affect the parity disk X4. In the second line, we add the terms 
⊕   X1(i)  ⊕   X1(i)]. Because the  exclusive-  OR of any quantity with itself is 0, this 

does not affect the equation. However, it is a convenience that is used to create 
the third line, by reordering. Finally, Equation (6.2) is used to replace the first four 
terms by X4(i).

To calculate the new parity, the array management software must read the old user 
strip and the old parity strip. Then it can update these two strips with the new data and 
the newly calculated parity. Thus, each strip write involves two reads and two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity 
is easily computed by calculation using only the new data bits. Thus, the parity drive 
can be updated in parallel with the data drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which there-
fore can become a bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID 
5 distributes the parity strips across all disks. A typical allocation is a  round-  robin 
scheme, as illustrated in Figure 6.6f. For an  n-  disk array, the parity strip is on a differ-
ent disk for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O 
 bottle-  neck found in RAID 4.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers 
[KATZ89]. In the RAID 6 scheme, two different parity calculations are carried out 
and stored in separate blocks on different disks. Thus, a RAID 6 array whose user 
data require N disks consists of N + 2 disks.

Figure 6.6g illustrates the scheme. P and Q are two different data check algo-
rithms. One of the two is the  exclusive-  OR calculation used in RAID 4 and 5. But 
the other is an independent data check algorithm. This makes it possible to regener-
ate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability. 
Three disks would have to fail within the MTTR (mean time to repair) interval to 
cause data to be lost. On the other hand, RAID 6 incurs a substantial write penalty, 
because each write affects two parity blocks. Performance benchmarks [EISC07] 
show a RAID 6 controller can suffer more than a 30% drop in overall write per-
formance compared with a RAID 5 implementation. RAID 5 and RAID 6 read 
performance is comparable.

Table 6.4 is a comparative summary of the seven levels.

 6.3 SOLID STATE DRIVES

One of the most significant developments in computer architecture in recent years is 
the increasing use of solid state drives (SSDs) to complement or even replace hard 
disk drives (HDDs), both as internal and external secondary memory. The term solid 



Table 6.4 RAID Comparison

Level Advantages Disadvantages Applications

0

I/O performance is greatly improved 
by spreading the I/O load across many 
channels and drives

No parity calculation overhead is involved

Very simple design

Easy to implement

The failure of just one 
drive will result in all data 
in an array being lost

Video production and 
editing

Image Editing

 Pre-  press applications

Any application requiring 
high bandwidth

1

100% redundancy of data means no 
rebuild is necessary in case of a disk fail-
ure, just a copy to the replacement disk

Under certain circumstances, RAID 1 
can sustain multiple simultaneous drive 
failures

Simplest RAID storage subsystem design

Highest disk overhead 
of all RAID types 
(100%)—inefficient

Accounting

Payroll

Financial

Any application requiring 
very high availability

2

Extremely high data transfer rates possible

The higher the data transfer rate 
required, the better the ratio of data 
disks to ECC disks

Relatively simple controller design com-
pared to RAID levels 3, 4, & 5

Very high ratio of ECC 
disks to data disks 
with smaller word 
 sizes—  inefficient

Entry level cost very  high— 
 requires very high transfer 
rate requirement to justify

No commercial imple-
mentations exist/not 
commercially viable

3

Very high read data transfer rate

Very high write data transfer rate

Disk failure has an insignificant impact 
on throughput

Low ratio of ECC (parity) disks to data 
disks means high efficiency

Transaction rate equal to 
that of a single disk drive 
at best (if spindles are 
synchronized)

Controller design is fairly 
complex

Video production and live 
streaming

Image editing

Video editing

Prepress applications

Any application requiring 
high throughput

4

Very high Read data transaction rate

Low ratio of ECC (parity) disks to data 
disks means high efficiency

Quite complex controller 
design

Worst write transaction 
rate and Write aggregate 
transfer rate

Difficult and inefficient 
data rebuild in the event 
of disk failure

No commercial imple-
mentations exist/not 
commercially viable

5

Highest Read data transaction rate

Low ratio of ECC (parity) disks to data 
disks means high efficiency

Good aggregate transfer rate

Most complex controller 
design

Difficult to rebuild in the 
event of a disk failure 
(as compared to RAID 
level 1)

File and application servers

Database servers

Web,  e-  mail, and news 
servers

Intranet servers

Most versatile RAID level

6

Provides for an extremely high data 
fault tolerance and can sustain multiple 
simultaneous drive failures

More complex controller 
design

Controller overhead to 
compute parity addresses 
is extremely high

Perfect solution for mis-
sion critical applications
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state refers to electronic circuitry built with semiconductors. An SSD is a memory 
device made with solid state components that can be used as a replacement to a 
hard disk drive. The SSDs now on the market and coming on line use NAND flash 
memory, which is described in Chapter 5.

SSD Compared to HDD

As the cost of  flash-  based SSDs has dropped and the performance and bit density 
increased, SSDs have become increasingly competitive with HDDs. Table 6.5 shows 
typical measures of comparison at the time of this writing.

SSDs have the following advantages over HDDs:

 ■  High-  performance input/output operations per second (IOPS):  Significantly 
increases performance I/O subsystems.

 ■ Durability: Less susceptible to physical shock and vibration.
 ■ Longer lifespan: SSDs are not susceptible to mechanical wear.
 ■ Lower power consumption: SSDs use considerably less power than 

 comparable-  size HDDs.
 ■ Quieter and cooler running capabilities: Less space required, lower energy 

costs, and a greener enterprise.
 ■ Lower access times and latency rates: Over 10 times faster than the spinning 

disks in an HDD.

Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but 
these differences are shrinking.

SSD Organization

Figure 6.8 illustrates a general view of the common architectural system component 
associated with any SSD system. On the host system, the operating system invokes 
file system software to access data on the disk. The file system, in turn, invokes I/O 
driver software. The I/O driver software provides host access to the particular SSD 
product. The interface component in Figure 6.8 refers to the physical and electrical 
interface between the host processor and the SSD peripheral device. If the device is 
an internal hard drive, a common interface is PCIe. For external devices, one com-
mon interface is USB.

Table 6.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives Seagate Laptop Internal HDD

File copy/write speed 200–550 Mbps 50–120 Mbps

Power draw/battery life Less power draw, averages 2–3 watts, 
resulting in 30+  minute battery boost

More power draw, averages 6–7 watts 
and therefore uses more battery

Storage capacity Typically not larger than 512 GB for 
notebook size drives; 1 TB max for 
desktops

Typically around 500 GB and 2 TB 
max for notebook size drives; 4 TB 
max for desktops

Cost Approx. $0.50 per GB for a 1-TB drive Approx. $0.15 per GB for a 4-TB 
drive
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Figure 6.8 Solid State Drive Architecture

In addition to the interface to the host system, the SSD contains the following 
components:

 ■ Controller: Provides SSD device level interfacing and firmware execution.
 ■ Addressing: Logic that performs the selection function across the flash 

memory components.
 ■ Data buffer/cache: High speed RAM memory components used for speed 

matching and to increased data throughput.
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 ■ Error correction: Logic for error detection and correction.
 ■ Flash memory components: Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First, 
SSD performance has a tendency to slow down as the device is used. To under-
stand the reason for this, you need to know that files are stored on disk as a set of 
pages, typically 4 KB in length. These pages are not necessarily, and indeed not typ-
ically, stored as a contiguous set of pages on the disk. The reason for this arrange-
ment is explained in our discussion of virtual memory in Chapter 8. However, flash 
memory is accessed in blocks, with a typical block size of 512 KB, so that there are 
typically 128 pages per block. Now consider what must be done to write a page 
onto a flash memory.

1. The entire block must be read from the flash memory and placed in a RAM 
buffer. Then the appropriate page in the RAM buffer is updated.

2. Before the block can be written back to flash memory, the entire block of flash 
memory must be  erased—  it is not possible to erase just one page of the flash 
memory.

3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the pages 
of that file are written on to the drive contiguously, so that one or only a few blocks 
are affected. However, over time, because of the way virtual memory works, files 
become fragmented, with pages scattered over multiple blocks. As the drive become 
more occupied, there is more fragmentation, so the writing of a new file can affect 
multiple blocks. Thus, the writing of multiple pages from one block becomes slower, 
the more fully occupied the disk is. Manufacturers have developed a variety of 
techniques to compensate for this property of flash memory, such as setting aside 
a substantial portion of the SSD as extra space for write operations (called over-
provisioning), then to erase inactive pages during idle time used to defragment the 
disk. Another technique is the TRIM command, which allows an operating system 
to inform an SSD which blocks of data are no longer considered in use and can be 
wiped internally.4

A second practical issue with flash memory drives is that a flash memory 
becomes unusable after a certain number of writes. As flash cells are stressed, 
they lose their ability to record and retain values. A typical limit is 100,000 writes 
[GSOE08]. Techniques for prolonging the life of an SSD drive include  front-  ending 
the flash with a cache to delay and group write operations, using  wear-  leveling 
algorithms that evenly distribute writes across block of cells, and sophisticated  bad- 
 block management techniques. In addition, vendors are deploying SSDs in RAID 
configurations to further reduce the probability of data loss. Most flash devices are 
also capable of estimating their own remaining lifetimes so systems can anticipate 
failure and take preemptive action.

4While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.
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Table 6.6 Optical Disk Products

CD
Compact Disk. A nonerasable disk that stores digitized audio information. The standard system uses 
12-cm disks and can record more than 60 minutes of uninterrupted playing time.

 CD-  ROM
Compact Disk  Read-  Only Memory. A nonerasable disk used for storing computer data. The standard 
system uses 12-cm disks and can hold more than 650 Mbytes.

 CD-  R
CD Recordable. Similar to a  CD-  ROM. The user can write to the disk only once.

 CD-  RW
CD Rewritable. Similar to a  CD-  ROM. The user can erase and rewrite to the disk multiple times.

DVD
Digital Versatile Disk. A technology for producing digitized, compressed representation of video 
information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used, with a 
 double-  sided capacity of up to 17 Gbytes. The basic DVD is  read-  only ( DVD-  ROM).

 DVD-  R
DVD Recordable. Similar to a  DVD-  ROM. The user can write to the disk only once. Only  one-  sided 
disks can be used.

 DVD-  RW
DVD Rewritable. Similar to a  DVD-  ROM. The user can erase and rewrite to the disk multiple times. 
Only  one-  sided disks can be used.

 Blu-  ray DVD
 High-  definition video disk. Provides considerably greater data storage density than DVD, using a 405-nm 
( blue-  violet) laser. A single layer on a single side can store 25 Gbytes.

 6.4 OPTICAL MEMORY

In 1983, one of the most successful consumer products of all time was introduced: 
the compact disk (CD) digital audio system. The CD is a nonerasable disk that can 
store more than 60 minutes of audio information on one side. The huge commercial 
success of the CD enabled the development of  low-  cost  optical-  disk storage technol-
ogy that has revolutionized computer data storage. A variety of  optical-  disk systems 
have been introduced (Table 6.6). We briefly review each of these.

Compact Disk

cd-rom Both the audio CD and the  CD-  ROM (compact disk  read-  only memory) 
share a similar technology. The main difference is that  CD-  ROM players are more 
rugged and have error correction devices to ensure that data are properly transferred 
from disk to computer. Both types of disk are made the same way. The disk is formed 
from a resin, such as polycarbonate. Digitally recorded information (either music 
or computer data) is imprinted as a series of microscopic pits on the surface of the 
polycarbonate. This is done, first of all, with a finely focused,  high-  intensity laser to 
create a master disk. The master is used, in turn, to make a die to stamp out copies 
onto polycarbonate. The pitted surface is then coated with a highly reflective surface, 
usually aluminum or gold. This shiny surface is protected against dust and scratches by 
a top coat of clear acrylic. Finally, a label can be silkscreened onto the acrylic.
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Information is retrieved from a CD or  CD-  ROM by a  low-  powered laser 
housed in an  optical-  disk player, or drive unit. The laser shines through the clear 
polycarbonate while a motor spins the disk past it (Figure 6.9). The intensity of the 
reflected light of the laser changes as it encounters a pit. Specifically, if the laser 
beam falls on a pit, which has a somewhat rough surface, the light scatters and a low 
intensity is reflected back to the source. The areas between pits are called lands. A 
land is a smooth surface, which reflects back at higher intensity. The change between 
pits and lands is detected by a photosensor and converted into a digital signal. The 
sensor tests the surface at regular intervals. The beginning or end of a pit represents 
a 1; when no change in elevation occurs between intervals, a 0 is recorded.

Recall that on a magnetic disk, information is recorded in concentric tracks. 
With the simplest constant angular velocity (CAV) system, the number of bits per 
track is constant. An increase in density is achieved with multiple zone recording, 
in which the surface is divided into a number of zones, with zones farther from the 
center containing more bits than zones closer to the center. Although this technique 
increases capacity, it is still not optimal.

To achieve greater capacity, CDs and  CD-  ROMs do not organize information 
on concentric tracks. Instead, the disk contains a single spiral track, beginning near 
the center and spiraling out to the outer edge of the disk. Sectors near the outside 
of the disk are the same length as those near the inside. Thus, information is packed 
evenly across the disk in segments of the same size and these are scanned at the 
same rate by rotating the disk at a variable speed. The pits are then read by the laser 
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near 
the outer edge than for those near the center. Thus, the capacity of a track and the 
rotational delay both increase for positions nearer the outer edge of the disk. The 
data capacity for a  CD-  ROM is about 680 MB.

Data on the  CD-  ROM are organized as a sequence of blocks. A typical block 
format is shown in Figure 6.10. It consists of the following fields:

 ■ Sync: The sync field identifies the beginning of a block. It consists of a byte of 
all 0s, 10 bytes of all 1s, and a byte of all 0s.

 ■ Header: The header contains the block address and the mode byte. Mode 0 
specifies a blank data field; mode 1 specifies the use of an  error-  correcting 
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Figure 6.9 CD Operation
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Figure 6.10  CD-  ROM Block Format

code and 2048 bytes of data; mode 2 specifies 2336 bytes of user data with 
no  error-  correcting code.

 ■ Data: User data.
 ■ Auxiliary: Additional user data in mode 2. In mode 1, this is a 288-byte  error- 

 correcting code.

With the use of CLV, random access becomes more difficult. Locating a spe-
cific address involves moving the head to the general area, adjusting the rotation 
speed and reading the address, and then making minor adjustments to find and 
access the specific sector.

 CD-  ROM is appropriate for the distribution of large amounts of data to a 
large number of users. Because of the expense of the initial writing process, it is not 
appropriate for individualized applications. Compared with traditional magnetic 
disks, the  CD-  ROM has two advantages:

 ■ The optical disk together with the information stored on it can be mass repli-
cated  inexpensively—  unlike a magnetic disk. The database on a magnetic disk 
has to be reproduced by copying one disk at a time using two disk drives.

 ■ The optical disk is removable, allowing the disk itself to be used for archi-
val storage. Most magnetic disks are nonremovable. The information on non-
removable magnetic disks must first be copied to another storage medium 
before the disk drive/disk can be used to store new information.

The disadvantages of  CD-  ROM are as follows:
 ■ It is  read-  only and cannot be updated.
 ■ It has an access time much longer than that of a magnetic disk drive, as much 

as half a second.

cd recordable To accommodate applications in which only one or a small 
number of copies of a set of data is needed, the  write-  once  read-  many CD, known 
as the CD recordable ( CD-  R), has been developed. For  CD-  R, a disk is prepared 
in such a way that it can be subsequently written once with a laser beam of  
modest-intensity. Thus, with a somewhat more expensive disk controller than for 
 CD-  ROM, the customer can write once as well as read the disk.

The  CD-  R medium is similar to but not identical to that of a CD or  CD- 
 ROM. For CDs and  CD-  ROMs, information is recorded by the pitting of the surface 
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of the medium, which changes reflectivity. For a  CD-  R, the medium includes a dye 
layer. The dye is used to change reflectivity and is activated by a  high-  intensity laser. 
The resulting disk can be read on a  CD-  R drive or a  CD-  ROM drive.

The  CD-  R optical disk is attractive for archival storage of documents and files. 
It provides a permanent record of large volumes of user data.

cd rewritable The  CD-  RW optical disk can be repeatedly written and overwritten, 
as with a magnetic disk. Although a number of approaches have been tried, the only 
pure optical approach that has proved attractive is called phase change. The phase 
change disk uses a material that has two significantly different reflectivities in two 
different phase states. There is an amorphous state, in which the molecules exhibit 
a random orientation that reflects light poorly; and a crystalline state, which has a 
smooth surface that reflects light well. A beam of laser light can change the material 
from one phase to the other. The primary disadvantage of phase change optical disks 
is that the material eventually and permanently loses its desirable properties. Current 
materials can be used for between 500,000 and 1,000,000 erase cycles.

The  CD-  RW has the obvious advantage over  CD-  ROM and  CD-  R that it can 
be rewritten and thus used as a true secondary storage. As such, it competes with 
magnetic disk. A key advantage of the optical disk is that the engineering tolerances 
for optical disks are much less severe than for  high-  capacity magnetic disks. Thus, 
they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last 
found an acceptable replacement for the analog VHS video tape. The DVD has 
replaced the videotape used in video cassette recorders (VCRs) and, more import-
ant for this discussion, replaced the  CD-  ROM in personal computers and servers. 
The DVD takes video into the digital age. It delivers movies with impressive picture 
quality, and it can be randomly accessed like audio CDs, which DVD machines can 
also play. Vast volumes of data can be crammed onto the disk, currently seven times 
as much as a  CD-  ROM.  With DVD’s huge storage capacity and vivid quality, PC 
games have become more realistic and educational software incorporates more video. 
Following in the wake of these developments has been a new crest of traffic over the 
Internet and corporate intranets, as this material is incorporated into Web sites.

The DVD’s greater capacity is due to three differences from CDs (Figure 6.11):

1. Bits are packed more closely on a DVD. The spacing between loops of a spiral 
on a CD is 1.6 mm and the minimum distance between pits along the spiral is 
0.834 mm.

The DVD uses a laser with shorter wavelength and achieves a loop spacing 
of 0.74 mm and a minimum distance between pits of 0.4 mm. The result of these 
two improvements is about a  seven-  fold increase in capacity, to about 4.7 GB.

2. The DVD employs a second layer of pits and lands on top of the first layer. A 
 dual-  layer DVD has a semireflective layer on top of the reflective layer, and 
by adjusting focus, the lasers in DVD drives can read each layer separately. 
This technique almost doubles the capacity of the disk, to about 8.5 GB. The 
lower reflectivity of the second layer limits its storage capacity so that a full 
doubling is not achieved.
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Figure 6.11 CD-  ROM and  DVD-  ROM

3. The  DVD-  ROM can be two sided, whereas data are recorded on only one side 
of a CD. This brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as  read-  only versions 
(Table 6.6).

 High-  Definition Optical Disks

 High-  definition optical disks are designed to store  high-  definition videos and to pro-
vide significantly greater storage capacity compared to DVDs. The higher bit density 
is achieved by using a laser with a shorter wavelength, in the  blue-  violet range. The 
data pits, which constitute the digital 1s and 0s, are smaller on the  high-  definition 
optical disks compared to DVD because of the shorter laser wavelength.

Two competing disk formats and technologies initially competed for market 
acceptance: HD DVD and  Blu-  ray DVD. The  Blu-  ray scheme ultimately achieved 
market dominance. The HD DVD scheme can store 15 GB on a single layer on a 
single side.  Blu-  ray positions the data layer on the disk closer to the laser (shown on 
the  right-  hand side of each diagram in Figure 6.12). This enables a tighter focus and 
less distortion and thus smaller pits and tracks.  Blu-  ray can store 25 GB on a single 
layer. Three versions are available: read only ( BD-  ROM), recordable once ( BD-  R), 
and rerecordable ( BD-  RE).
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 6.5 MAGNETIC TAPE

Tape systems use the same reading and recording techniques as disk systems. The 
medium is flexible polyester (similar to that used in some clothing) tape coated with 
magnetizable material. The coating may consist of particles of pure metal in special 
binders or  vapor-  plated metal films. The tape and the tape drive are analogous to a 
home tape recorder system. Tape widths vary from 0.38 cm (0.15 inch) to 1.27 cm 
(0.5 inch). Tapes used to be packaged as open reels that have to be threaded through 
a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running length-
wise. Earlier tape systems typically used nine tracks. This made it possible to store 
data one byte at a time, with an additional parity bit as the ninth track. This was 
followed by tape systems using 18 or 36 tracks, corresponding to a digital word or 
double word. The recording of data in this form is referred to as parallel recording. 
Most modern systems instead use serial recording, in which data are laid out as a 
sequence of bits along each track, as is done with magnetic disks. As with the disk, 
data are read and written in contiguous blocks, called physical records, on a tape. 
Blocks on the tape are separated by gaps referred to as interrecord gaps. As with the 
disk, the tape is formatted to assist in locating physical records.

The typical recording technique used in serial tapes is referred to as serpen-
tine recording. In this technique, when data are being recorded, the first set of bits 
is recorded along the whole length of the tape. When the end of the tape is reached, 
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Figure 6.12 Optical Memory Characteristics
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Figure 6.13 Typical Magnetic Tape Features

the heads are repositioned to record a new track, and the tape is again recorded on 
its whole length, this time in the opposite direction. That process continues, back 
and forth, until the tape is full (Figure 6.13a). To increase speed, the  read-  write head 
is capable of reading and writing a number of adjacent tracks simultaneously (typ-
ically two to eight tracks). Data are still recorded serially along individual tracks, 
but blocks in sequence are stored on adjacent tracks, as suggested by Figure 6.13b.

A tape drive is a  sequential-  access device. If the tape head is positioned at 
record 1, then to read record N, it is necessary to read physical records 1 through 
N-1, one at a time. If the head is currently positioned beyond the desired record, it 
is necessary to rewind the tape a certain distance and begin reading forward. Unlike 
the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a  direct-  access device. A 
disk drive need not read all the sectors on a disk sequentially to get to the desired 
one. It must only wait for the intervening sectors within one track and can make 
successive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as 
the  lowest-  cost,  slowest-  speed member of the memory hierarchy.
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The dominant tape technology today is a cartridge system known as linear 
 tape-  open (LTO). LTO was developed in the late 1990s as an  open-  source alterna-
tive to the various proprietary systems on the market. Table 6.7 shows parameters 
for the various LTO generations. See Appendix J for details.

 6.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Table 6.7 LTO Tape Drives

 LTO-  1  LTO-  2  LTO-  3  LTO-  4  LTO-  5  LTO-  6  LTO-  7  LTO-  8

Release date 2000 2003 2005 2007 2010 2012 TBA TBA

Compressed 
capacity

200 GB 400 GB 800 GB 1600 GB 3.2 TB 8 TB 16 TB 32 TB

Compressed 
transfer rate

40 
MB/s

80 
MB/s

160 
MB/s

240  
MB/s

280 
MB/s

400 
MB/s

788 
MB/s

1.18 
GB/s

Linear density 
(bits/mm)

4880 7398 9638 13,250 15,142 15,143

Tape tracks 384 512 704 896 1280 2176

Tape length (m) 609 609 680 820 846 846

Tape width 
(cm)

1.27 1.27 1.27 1.27 1.27 1.27

Write elements 8 8 16 16 16 16

WORM? No No Yes Yes Yes Yes Yes Yes

Encryption 
Capable?

No No No Yes Yes Yes Yes Yes

Partitioning? No No No No Yes Yes Yes Yes

access time
 Blu-  ray
CD
 CD-  R
 CD-  ROM
 CD-  RW
constant angular velocity 

(CAV)
constant linear velocity  

(CLV)
cylinder
DVD
 DVD-  R
 DVD-  ROM

 DVD-  RW
 fixed-  head disk
flash memory
floppy disk
gap
hard disk drive (HDD)
head
land
magnetic disk
magnetic tape
magnetoresistive
 movable-  head disk
multiple zone recording
nonremovable disk

optical memory
pit
platter
RAID
removable disk
rotational delay
sector
seek time
serpentine recording
solid state drive (SSD)
striped data
substrate
track
transfer time
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Review Questions

 6.1 What are the advantages of using a glass substrate for a magnetic disk?
 6.2 How are data written onto a magnetic disk?
 6.3 How are data read from a magnetic disk?
 6.4 Explain the difference between a simple CAV system and a multiple zone recording 

system.
 6.5 Define the terms track, cylinder, and sector.
 6.6 What is the typical disk sector size?
 6.7 Define the terms seek time, rotational delay, access time, and transfer time.
 6.8 What common characteristics are shared by all RAID levels?
 6.9 Briefly define the seven RAID levels.
 6.10 Explain the term striped data.
 6.11 How is redundancy achieved in a RAID system?
 6.12 In the context of RAID, what is the distinction between parallel access and indepen-

dent access?
 6.13 What is the difference between CAV and CLV?
 6.14 What differences between a CD and a DVD account for the larger capacity of the 

latter?
 6.15 Explain serpentine recording.

Problems

 6.1 Justify Equation 6.1. That is, explain how each of the three terms on the  right-  hand 
side of the equation contributes to the value on the  left-  hand side.

 6.2 Consider a disk with N tracks numbered from 0 to (N - 1) and assume that requested 
sectors are distributed randomly and evenly over the disk. We want to calculate the 
average number of tracks traversed by a seek.
a. First, calculate the probability of a seek of length j when the head is currently 

positioned over track t. Hint: This is a matter of determining the total number of 
combinations, recognizing that all track positions for the destination of the seek 
are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: This involves the sum-
ming over all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for 
expected value

E[x] = a
N - 1

i=0
i * Pr[x = i]

Hint: Use the equalities: a
n

i=1
i =

n(n + 1)

2
;  a

n

i=1
i2 =

n(n + 1)(2n + 1)

6
.

d. Show that for large values of N, the average number of tracks traversed by a seek 
approaches N/3.

 6.3 Define the following for a disk system:

 ts = seek time; average time to position head over track
 r = rotation speed of the disk, in revolutions per second
 n = number of bits per sector
 N = capacity of a track, in bits
 tsector = time to access a sector

Develop a formula for tsector as a function of the other parameters.
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 6.4 Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors 
per track. Sector size is 1 kB. The average seek time is 8 ms, the  track-  to-  track access 
time is 1.5 ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be 
read without head movement.
a. What is the disk capacity?
b. What is the average access time? Assume this file is stored in successive sectors 

and tracks of successive cylinders, starting at sector 0, track 0, of cylinder i.
c. Estimate the time required to transfer a 5-MB file.
d. What is the burst transfer rate?

 6.5 Consider a  single-  platter disk with the following parameters: rotation speed: 7200 
rpm; number of tracks on one side of platter: 30,000; number of sectors per track: 600; 
seek time: one ms for every hundred tracks traversed. Let the disk receive a request to 
access a random sector on a random track and assume the disk head starts at track 0.
a. What is the average seek time?
b. What is the average rotational latency?
c. What is the transfer time for a sector?
d. What is the total average time to satisfy a request?

 6.6 A distinction is made between physical records and logical records. A logical record 
is a collection of related data elements treated as a conceptual unit, independent of 
how or where the information is stored. A physical record is a contiguous area of 
storage space that is defined by the characteristics of the storage device and operating 
system. Assume a disk system in which each physical record contains thirty 120-byte 
logical records. Calculate how much disk space (in sectors, tracks, and surfaces) will be 
required to store 300,000 logical records if the disk is  fixed-  sector with 512 bytes/sec-
tor, with 96 sectors/track, 110 tracks per surface, and 8 usable surfaces. Ignore any file 
header record(s) and track indexes, and assume that records cannot span two sectors.

 6.7 Consider a disk that rotates at 3600 rpm. The seek time to move the head between 
adjacent tracks is 2 ms. There are 32 sectors per track, which are stored in linear order 
from sector 0 through sector 31. The head sees the sectors in ascending order. Assume 
the read/write head is positioned at the start of sector 1 on track 8. There is a main 
memory buffer large enough to hold an entire track. Data is transferred between disk 
locations by reading from the source track into the main memory buffer and then 
writing the data from the buffer to the target track.
a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?
b. How long will it take to transfer all the sectors of track 8 to the corresponding 

sectors of track 9?
 6.8 It should be clear that disk striping can improve data transfer rate when the strip size 

is small compared to the I/O request size. It should also be clear that RAID 0 provides 
improved performance relative to a single large disk, because multiple I/O requests 
can be handled in parallel. However, in this latter case, is disk striping necessary? That 
is, does disk striping improve I/O request rate performance compared to a comparable 
disk array without striping?

 6.9 Consider a 4-drive, 200  GB-  per-  drive RAID array. What is the available data storage 
capacity for each of the RAID levels 0, 1, 3, 4, 5, and 6?

 6.10 For a compact disk, audio is converted to digital with 16-bit samples, and is treated a 
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct 
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is 
expanded into a 14-bit binary number. It turns out that exactly 256 (28) of the total of 
16,134 (214) 14-bit numbers have at least two 0s between every pair of 1s, and these are 
the numbers selected for the expansion from 8 to 14 bits. The optical system detects 
the presence of 1s by detecting a transition for pit to land or land to pit. It detects 0s 
by measuring the distances between intensity changes. This scheme requires that there 
are no 1s in succession; hence the use of the 8- to-  14 code.
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The advantage of this scheme is as follows. For a given laser beam diameter, 
there is a  minimum-  pit size, regardless of how the bits are represented. With this 
scheme, this  minimum-  pit size stores 3 bits, because at least two 0s follow every 1. 
With direct recording, the same pit would be able to store only one bit. Considering 
both the number of bits stored per pit and the 8- to-  14 bit expansion, which scheme 
stores the most bits and by what factor?

 6.11 Design a backup strategy for a computer system. One option is to use  plug-  in external 
disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for 
$2500, and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical 
backup strategy is to have two sets of backup media onsite, with backups alternately 
written on them so in case the system fails while making a backup, the previous ver-
sion is still intact. There’s also a third set kept offsite, with the offsite set periodically 
swapped with an  on-  site set.
a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk 

backup system cost?
b. How much would a tape backup system cost for 1 TB?
c. How large would each backup have to be in order for a tape strategy to be less 

expensive?
d. What kind of backup strategy favors tapes?
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I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element 
of a computer system is a set of I/O modules. Each module interfaces to the system 
bus or central switch and controls one or more peripheral devices. An I/O module 
is not simply a set of mechanical connectors that wire a device into the system bus. 
Rather, the I/O module contains logic for performing a communication function 
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the 
system bus. The reasons are as follows:

 ■ There are a wide variety of peripherals with various methods of operation. It 
would be impractical to incorporate the necessary logic within the processor to 
control a range of devices.

 ■ The data transfer rate of peripherals is often much slower than that of the 
memory or processor. Thus, it is impractical to use the  high-  speed system bus 
to communicate directly with a peripheral.

 ■ On the other hand, the data transfer rate of some peripherals is faster than 
that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

 ■ Peripherals often use different data formats and word lengths than the com-
puter to which they are attached.

 ■ Thus, an I/O module is required. This module has two major functions (Figure 7.1):
 ■ Interface to the processor and memory via the system bus or central switch.
 ■ Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed 
by an overview of the structure and function of an I/O module. Then we look at 
the various ways in which the I/O function can be performed in cooperation with 
the processor and memory: the internal I/O interface. Next, we examine in some 

Learning Objectives

After studying this chapter, you should be able to:

 r Explain the use of I/O modules as part of a computer organization.
 r Understand the difference between programmed I/O and  interrupt-  driven 
I/O and discuss their relative merits.

 r Present an overview of the operation of direct memory access.
 r Present an overview of direct cache access.
 r Explain the function and use of I/O channels.
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detail direct memory access and the more recent innovation of direct cache access. 
Finally, we examine the external I/O interface, between the I/O module and the 
outside world.

 7.1 ExtErnal DEvicEs

I/O operations are accomplished through a wide assortment of external devices 
that provide a means of exchanging data between the external environment and the 
computer. An external device attaches to the computer by a link to an I/O module 
(Figure 7.1). The link is used to exchange control, status, and data between the I/O 
module and the external device. An external device connected to an I/O module is 
often referred to as a peripheral device or, simply, a peripheral.

We can broadly classify external devices into three categories:

 ■ Human readable: Suitable for communicating with the computer user;
 ■ Machine readable: Suitable for communicating with equipment;
 ■ Communication: Suitable for communicating with remote devices.

Examples of  human-  readable devices are video display terminals (VDTs) and 
printers. Examples of  machine-  readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note 
that we are viewing disk and tape systems as I/O devices in this chapter, whereas 
in Chapter 6 we viewed them as memory devices. From a functional point of view, 
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by 
I/O modules and are hence to be considered in this chapter.

I/O module

Links to
peripheral
devices

Control lines

Data lines

Address lines

System
bus

Figure 7.1 Generic Model of an I/O Module
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Communication devices allow a computer to exchange data with a remote 
device, which may be a  human-  readable device, such as a terminal, a  machine- 
 readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 7.2. 
The interface to the I/O module is in the form of control, data, and status signals. Con-
trol signals determine the function that the device will perform, such as send data to 
the I/O module (INPUT or READ), accept data from the I/O module (OUTPUT or 
WRITE), report status, or perform some control function particular to the device (e.g., 
position a disk head). Data are in the form of a set of bits to be sent to or received from 
the I/O module. Status signals indicate the state of the device. Examples are READY/ 
NOT-  READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s operation in 
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical 
during input. Typically, a buffer is associated with the transducer to temporarily 
hold data being transferred between the I/O module and the external environment. 
A buffer size of 8 to 16 bits is common for serial devices, whereas  block-  oriented 
devices such as disk drive controllers may have much larger buffers.

The interface between the I/O module and the external device will be exam-
ined in Section 7.7. The interface between the external device and the environment 
is beyond the scope of this book, but several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor 
arrangement. The user provides input through the keyboard, the input is then trans-
mitted to the computer and may also be displayed on the monitor. In addition, the 
monitor displays data provided by the computer.

Buffer

Transducer

Control
logic

Control
signals from
I/O module

Status
signals to
I/O module

Data bits
to and from
I/O module

Data (device-unique)
to and from
environment

Figure 7.2 Block Diagram of an External Device
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The basic unit of exchange is the character. Associated with each charac-
ter is a code, typically 7 or 8 bits in length. The most commonly used text code 
is the International Reference Alphabet (IRA).1 Each character in this code is 
represented by a unique 7-bit binary code; thus, 128 different characters can be 
 represented. Characters are of two types: printable and control. Printable char-
acters are the alphabetic, numeric, and special characters that can be printed on 
paper or displayed on a screen. Some of the control characters have to do with 
controlling the printing or displaying of characters; an example is carriage return. 
Other control characters are concerned with communications procedures. See 
Appendix H for details.

For keyboard input, when the user depresses a key, this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard and translated 
into the bit pattern of the corresponding IRA code. This bit pattern is then trans-
mitted to the I/O module in the computer. At the computer, the text can be stored 
in the same IRA code. On output, IRA code characters are transmitted to an exter-
nal device from the I/O module. The transducer at the device interprets this code 
and sends the required electronic signals to the output device either to display the 
indicated character or perform the requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with 
an I/O module plus the electronics for controlling the disk read/write mechanism. 
In a  fixed-  head disk, the transducer is capable of converting between the magnetic 
patterns on the moving disk surface and bits in the device’s buffer (Figure 7.2). A 
 moving-  head disk must also be able to cause the disk arm to move radially in and 
out across the disk’s surface.

 7.2 i/O MODulEs

Module Function

The major functions or requirements for an I/O module fall into the following 
categories:

 ■ Control and timing
 ■ Processor communication
 ■ Device communication
 ■ Data buffering
 ■ Error detection

During any period of time, the processor may communicate with one or more 
external devices in unpredictable patterns, depending on the program’s need for 

1IRA is defined in  ITU-  T Recommendation T.50 and was formerly known as International Alphabet 
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for 
Information Interchange (ASCII).
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I/O. The internal resources, such as main memory and the system bus, must be shared 
among a number of activities, including data I/O. Thus, the I/O function includes a 
control and timing requirement, to coordinate the flow of traffic between internal 
resources and external devices. For example, the control of the transfer of data from 
an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached 
device.

2. The I/O module returns the device status.

3. If the device is operational and ready to transmit, the processor requests the 
transfer of data, by means of a command to the I/O module.

4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external 
device.

5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must 
communicate with the processor and with the external device. Processor communi-
cation involves the following:

 ■ Command decoding: The I/O module accepts commands from the processor, 
typically sent as signals on the control bus. For example, an I/O module for a 
disk drive might accept the following commands: READ SECTOR, WRITE 
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

 ■ Data: Data are exchanged between the processor and the I/O module over the 
data bus.

 ■ Status reporting: Because peripherals are so slow, it is important to know the 
status of the I/O module. For example, if an I/O module is asked to send data 
to the processor (read), it may not be ready to do so because it is still working 
on the previous I/O command. This fact can be reported with a status signal. 
Common status signals are BUSY and READY. There may also be signals to 
report various error conditions.

 ■ Address recognition: Just as each word of memory has an address, so does 
each I/O device. Thus, an I/O module must recognize one unique address for 
each peripheral it controls.

On the other side, the I/O module must be able to perform device communication. 
This communication involves commands, status information, and data (Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.1. Whereas the transfer rate into and out of main 
memory or the processor is quite high, the rate is orders of magnitude lower for 
many peripheral devices and covers a wide range. Data coming from main memory 
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module 
and then sent to the peripheral device at its data rate. In the opposite direction, data 
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the 
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I/O module must be able to operate at both device and memory speeds. Similarly, if 
the I/O device operates at a rate higher than the memory access rate, then the I/O 
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical 
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track). 
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of  error-  detecting code is often used 
to detect transmission errors. A simple example is the use of a parity bit on each 
character of data. For example, the IRA character code occupies 7 bits of a byte. 
The eighth bit is set so that the total number of 1s in the byte is even (even parity) 
or odd (odd parity). When a byte is received, the I/O module checks the parity to 
determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices 
that they control. We will attempt only a very general description here. (One 
specific device, the Intel 8255A, is described in Section 7.4.) Figure 7.3 provides a 
general block diagram of an I/O module. The module connects to the rest of the 
computer through a set of signal lines (e.g., system bus lines). Data transferred to 
and from the module are buffered in one or more data registers. There may also 
be one or more status registers that provide current status information. A status 
register may also function as a control register, to accept detailed control informa-
tion from the processor. The logic within the module interacts with the processor 
via a set of control lines. The processor uses the control lines to issue commands 
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Figure 7.3 Block Diagram of an I/O Module
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to the I/O module. Some of the control lines may be used by the I/O module (e.g., 
for arbitration and status signals). The module must also be able to recognize and 
generate addresses associated with the devices it controls. Each I/O module has 
a unique address or, if it controls more than one external device, a unique set of 
addresses. Finally, the I/O module contains logic specific to the interface with each 
device that it controls.

An I/O module functions to allow the processor to view a wide range of devices 
in a  simple-  minded way. There is a spectrum of capabilities that may be provided. 
The I/O module may hide the details of timing, formats, and the electromechanics 
of an external device so that the processor can function in terms of simple read and 
write commands, and possibly open and close file commands. In its simplest form, 
the I/O module may still leave much of the work of controlling a device (e.g., rewind 
a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a  high-  level interface to the processor, is usually referred to as an I/O channel or 
I/O processor. An I/O module that is quite primitive and requires detailed control 
is usually referred to as an I/O controller or device controller. I/O controllers are 
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion 
results and will use more specific terms where necessary.

 7.3 PrOgraMMED i/O

Three techniques are possible for I/O operations. With programmed I/O, data are 
exchanged between the processor and the I/O module. The processor executes a 
program that gives it direct control of the I/O operation, including sensing device 
status, sending a read or write command, and transferring the data. When the pro-
cessor issues a command to the I/O module, it must wait until the I/O operation is 
complete. If the processor is faster than the I/O module, this is waste of processor 
time. With  interrupt-  driven I/O, the processor issues an I/O command, continues 
to execute other instructions, and is interrupted by the I/O module when the latter 
has completed its work. With both programmed and interrupt I/O, the processor is 
responsible for extracting data from main memory for output and storing data in 
main memory for input. The alternative is known as direct memory access (DMA). 
In this mode, the I/O module and main memory exchange data directly, without 
processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this sec-
tion, we explore programmed I/O. Interrupt I/O and DMA are explored in the fol-
lowing two sections, respectively.

Table 7.1 I/O Techniques

No Interrupts Use of Interrupts

I/ O-  to-  memory transfer through processor Programmed I/O  Interrupt-  driven I/O

Direct I/ O-  to-  memory transfer Direct memory access (DMA)
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Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relating to 
I/O, it executes that instruction by issuing a command to the appropriate I/O module. 
With programmed I/O, the I/O module will perform the requested action and then 
set the appropriate bits in the I/O status register (Figure 7.3). The I/O module takes 
no further action to alert the processor. In particular, it does not interrupt the pro-
cessor. Thus, it is the responsibility of the processor to periodically check the status 
of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of 
view of the I/O commands issued by the processor to the I/O module, and then from 
the point of view of the I/O instructions executed by the processor.

I/O Commands

To execute an I/ O-  related instruction, the processor issues an address, specifying 
the particular I/O module and external device, and an I/O command. There are four 
types of I/O commands that an I/O module may receive when it is addressed by a 
processor:

 ■ Control: Used to activate a peripheral and tell it what to do. For example, a 
 magnetic-  tape unit may be instructed to rewind or to move forward one record. 
These commands are tailored to the particular type of peripheral device.

 ■ Test: Used to test various status conditions associated with an I/O module and 
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most 
recent I/O operation is completed and if any errors occurred.

 ■ Read: Causes the I/O module to obtain an item of data from the peripheral 
and place it in an internal buffer (depicted as a data register in Figure 7.3). The 
processor can then obtain the data item by requesting that the I/O module 
place it on the data bus.

 ■ Write: Causes the I/O module to take an item of data (byte or word) from the 
data bus and subsequently transmit that data item to the peripheral.

Figure 7.4a gives an example of the use of programmed I/O to read in a block of 
data from a peripheral device (e.g., a record from tape) into memory. Data are read 
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must 
remain in a  status-  checking cycle until it determines that the word is available in the 
I/O module’s data register. This flowchart highlights the main disadvantage of this 
technique: it is a  time-  consuming process that keeps the processor busy needlessly.

I/O Instructions

With programmed I/O, there is a close correspondence between the I/ O-  related 
instructions that the processor fetches from memory and the I/O commands that the 
processor issues to an I/O module to execute the instructions. That is, the instructions 
are easily mapped into I/O commands, and there is often a simple  one-  to-  one rela-
tionship. The form of the instruction depends on the way in which external devices 
are addressed.
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Typically, there will be many I/O devices connected through I/O modules to 
the system. Each device is given a unique identifier or address. When the processor 
issues an I/O command, the command contains the address of the desired device. 
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.

When the processor, main memory, and I/O share a common bus, two modes 
of addressing are possible: memory mapped and isolated. With  memory-  mapped 
I/O, there is a single address space for memory locations and I/O devices. The pro-
cessor treats the status and data registers of I/O modules as memory locations and 
uses the same machine instructions to access both memory and I/O devices. So, for 
example, with 10 address lines, a combined total of 210 = 1024 memory locations 
and I/O addresses can be supported, in any combination.

With  memory-  mapped I/O, a single read line and a single write line are needed 
on the bus. Alternatively, the bus may be equipped with memory read and write plus 
input and output command lines. The command line specifies whether the address 
refers to a memory location or an I/O device. The full range of addresses may be 
available for both. Again, with 10 address lines, the system may now support both 
1024 memory locations and 1024 I/O addresses. Because the address space for I/O is 
isolated from that for memory, this is referred to as isolated I/O.
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Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows 
how the interface for a simple input device such as a terminal keyboard might appear 
to a programmer using  memory-  mapped I/O. Assume a 10-bit address, with a 512-bit 
memory (locations 0–511) and up to 512 I/O addresses (locations 512–1023). Two 
addresses are dedicated to keyboard input from a particular terminal. Address 516 
refers to the data register and address 517 refers to the status register, which also func-
tions as a control register for receiving processor commands. The program shown will 
read 1 byte of data from the keyboard into an accumulator register in the processor. 
Note that the processor loops until the data byte is available.

With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special 
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O 
instructions. Thus, an advantage of  memory-  mapped I/O is that this large repertoire 
of instructions can be used, allowing more efficient programming. A disadvantage is 
that valuable memory address space is used up. Both  memory-  mapped and isolated 
I/O are in common use.

7 6 5

516 Keyboard input data register

4 3 2 1 0

7 6 5

517

(a) Memory-mapped I/O

Keyboard input status
and control register

1 = ready
0 = busy

4 3 2 1 0

Set to 1 to
start read

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load AC “1” Load accumulator
  Store AC 517 Initiate keyboard read
 202 Load AC 517 Get status byte
  Branch if Sign = 0 202 Loop until ready
  Load AC 516 Load data byte

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load I/O 5 Initiate keyboard read
 201 Test I/O 5 Check for completion
  Branch Not Ready 201 Loop until complete
  In 5 Load data byte

Figure 7.5 Memory-  Mapped and Isolated I/O
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 7.4  intErruPt-  DrivEn i/O

The problem with programmed I/O is that the processor has to wait a long time 
for the I/O module of concern to be ready for either reception or transmission of 
data. The processor, while waiting, must repeatedly interrogate the status of the I/O 
module. As a result, the level of the performance of the entire system is severely 
degraded.

An alternative is for the processor to issue an I/O command to a module and 
then go on to do some other useful work. The I/O module will then interrupt the 
processor to request service when it is ready to exchange data with the processor. 
The processor then executes the data transfer, as before, and then resumes its for-
mer processing.

Let us consider how this works, first from the point of view of the I/O module. 
For input, the I/O module receives a READ command from the processor. The I/O 
module then proceeds to read data in from an associated peripheral. Once the data 
are in the module’s data register, the module signals an interrupt to the processor 
over a control line. The module then waits until its data are requested by the pro-
cessor. When the request is made, the module places its data on the data bus and is 
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The pro-
cessor issues a READ command. It then goes off and does something else (e.g., the 
processor may be working on several different programs at the same time). At the 
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When 
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the 
interrupt. In this case, the processor reads the word of data from the I/O module 
and stores it in memory. It then restores the context of the program it was working 
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data. 
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed 
I/O because it eliminates needless waiting. However, interrupt I/O still consumes 
a lot of processor time, because every word of data that goes from memory to I/O 
module or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in  interrupt-  driven I/O in more detail. The 
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in software. Figure 7.6 shows a typical sequence. When an I/O device com-
pletes an I/O operation, the following sequence of hardware events occurs:

 1. The device issues an interrupt signal to the processor.

 2. The processor finishes execution of the current instruction before responding 
to the interrupt, as indicated in Figure 3.9.

 3. The processor tests for an interrupt, determines that there is one, and sends an 
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.
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 4. The processor now needs to prepare to transfer control to the interrupt rou-
tine. To begin, it needs to save information needed to resume the current pro-
gram at the point of interrupt. The minimum information required is (a) the 
status of the processor, which is contained in a register called the program 
status word (PSW); and (b) the location of the next instruction to be executed, 
which is contained in the program counter. These can be pushed onto the sys-
tem control stack.2

 5. The processor now loads the program counter with the entry location of the 
 interrupt-  handling program that will respond to this interrupt. Depending on 
the computer architecture and operating system design, there may be a single 
program; one program for each type of interrupt; or one program for each 
device and each type of interrupt. If there is more than one  interrupt-  handling 
routine, the processor must determine which one to invoke. This information 
may have been included in the original interrupt signal, or the processor may 
have to issue a request to the device that issued the interrupt to get a response 
that contains the needed information.

Device controller or
other system hardware
issues an interrupt

Processor 
nishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 7.6 Simple Interrupt Processing

2See Appendix I for a discussion of stack operation.
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Once the program counter has been loaded, the processor proceeds to the 
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that 
control is transferred to the  interrupt-  handler program. The execution of this pro-
gram results in the following operations:

6. At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In 
particular, the contents of the processor registers need to be saved, because 
these registers may be used by the interrupt handler. So, all of these values, 
plus any other state information, need to be saved. Typically, the interrupt 
handler will begin by saving the contents of all registers on the stack. Fig-
ure 7.7a shows a simple example. In this case, a user program is interrupted 
after the instruction at location N. The contents of all of the registers plus the 
address of the next instruction (N + 1) are pushed onto the stack. The stack 
pointer is updated to point to the new top of stack, and the program counter is 
updated to point to the beginning of the interrupt service routine.

7. The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the I/O operation or other event that 
caused an interrupt. It may also involve sending additional commands or 
acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved 
from the stack and restored to the registers (e.g., see Figure 7.7b).

9. The final act is to restore the PSW and program counter values from the stack. 
As a result, the next instruction to be executed will be from the previously 
interrupted program.

Note that it is important to save all the state information about the interrupted 
program for later resumption. This is because the interrupt is not a routine called 
from the program. Rather, the interrupt can occur at any time and therefore at any 
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as 
we will see in the next chapter, the two programs may not have anything in common 
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O.  First, because there will 
almost invariably be multiple I/O modules, how does the processor determine which 
device issued the interrupt? And second, if multiple interrupts have occurred, how 
does the processor decide which one to process?

Let us consider device identification first. Four general categories of tech-
niques are in common use:

 ■ Multiple interrupt lines
 ■ Software poll
 ■ Daisy chain (hardware poll, vectored)
 ■ Bus arbitration (vectored)
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The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to 
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently, 
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.

One alternative is the software poll. When the processor detects an interrupt, 
it branches to an  interrupt-  service routine that polls each I/O module to determine 
which module caused the interrupt. The poll could be in the form of a separate com-
mand line (e.g., TESTI/O). In this case, the processor raises TESTI/O and places the 
address of a particular I/O module on the address lines. The I/O module responds 
positively if it set the interrupt. Alternatively, each I/O module could contain an 
addressable status register. The processor then reads the status register of each I/O 
module to identify the interrupting module. Once the correct module is identified, 
the processor branches to a  device-  service routine specific to that device.
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The disadvantage of the software poll is that it is time consuming. A more 
efficient technique is to use a daisy chain, which provides, in effect, a hardware poll. 
An example of a  daisy-  chain configuration is shown in Figure 3.26. For interrupts, 
all I/O modules share a common interrupt request line. The interrupt acknowledge 
line is daisy chained through the modules. When the processor senses an interrupt, 
it sends out an interrupt acknowledge. This signal propagates through a series of 
I/O modules until it gets to a requesting module. The requesting module typically 
responds by placing a word on the data lines. This word is referred to as a vector and 
is either the address of the I/O module or some other unique identifier. In either 
case, the processor uses the vector as a pointer to the appropriate  device-  service 
routine. This avoids the need to execute a general  interrupt-  service routine first. 
This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is 
bus arbitration. With bus arbitration, an I/O module must first gain control of the 
bus before it can raise the interrupt request line. Thus, only one module can raise the 
line at a time. When the processor detects the interrupt, it responds on the interrupt 
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O module. 
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line 
with the highest priority. With software polling, the order in which modules are 
polled determines their priority. Similarly, the order of modules on a daisy chain 
determines their priority. Finally, bus arbitration can employ a priority scheme, as 
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt 
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and 
priority structures, it is usually configured with an external interrupt arbiter, the 
82C59A. External devices are connected to the 82C59A, which in turn connects to 
the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for 
the 80386. A single 82C59A can handle up to eight modules. If control for more 
than eight modules is required, a cascade arrangement can be used to handle up to 
64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts 
interrupt requests from attached modules, determines which interrupt has the 
highest priority, and then signals the processor by raising the INTR line. The pro-
cessor acknowledges via the INTA line. This prompts the 82C59A to place the 
appropriate vector information on the data bus. The processor can then proceed 
to process the interrupt and to communicate directly with the I/O module to read 
or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be 
used by setting a control word in the 82C59A. The following interrupt modes are possible:

 ■ Fully nested: The interrupt requests are ordered in priority from 0 (IR0) 
through 7 (IR7).
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 ■ Rotating: In some applications a number of interrupting devices are of equal 
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

 ■ Special mask: This allows the processor to inhibit interrupts from certain 
devices.
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Figure 7.8 Use of the 82C59A Interrupt Controller
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The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and  interrupt-  driven 
I/O, we consider the Intel 8255A Programmable Peripheral Interface. The 8255A is 
a  single-  chip,  general-  purpose I/O module originally designed for use with the Intel 
80386 processor. It has since been cloned by other manufacturers and is a widely 
used peripheral controller chip. Its uses include as a controller for simple I/O devices 
for microprocessors and in embedded systems, including microcontroller systems.

architecture and operation Figure 7.9 shows a general block diagram plus 
the pin assignment for the 40-pin package in which it is housed. As shown on the pin 
layout, the 8255A includes the following lines:

 ■ D0–D7: These are the data I/O lines for the device. All information read from 
and written to the 8255A occurs via these eight data lines.

 ■ CS (Chip Select Input): If this line is a logical 0, the microprocessor can read 
and write to the 8255A.

 ■ RD (Read Input): If this line is a logical 0 and the CS input is a logical 0, the 
8255A data outputs are enabled onto the system data bus.

 ■ WR (Write Input): If this input line is a logical 0 and the CS input is a logical 
0, data are written to the 8255A from the system data bus.

 ■ RESET: The 8255A is placed into its reset state if this input line is a logical 1. 
All peripheral ports are set to the input mode.
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Figure 7.9 The Intel 8255A Programmable Peripheral Interface
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 ■ PA0–PA7, PB0–PB7, PC0–PC7: These signal lines are used as 8-bit I/O ports. 
They can be connected to peripheral devices.

 ■ A0, A1: The logical combination of these two input lines determine which 
internal register of the 8255A data are written to or read from.

The right side of the block diagram of Figure 7.9a is the external interface 
of the 8255A. The 24 I/O lines are divided into three 8-bit groups (A, B, C). Each 
group can function as an 8-bit I/O port, thus providing connection for three periph-
eral devices. In addition, group C is subdivided into 4-bit groups (CA and CB), which 
may be used in conjunction with the A and B I/O ports. Configured in this manner, 
group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microproces-
sor system bus. It includes an 8-bit bidirectional data bus (D0 through D7), used to 
transfer data between the microprocessor and the I/O ports and to transfer control 
information.

The processor controls the 8255A by means of an 8-bit control register in the 
processor. The processor can set the value of the control register to specify a variety 
of operating modes and configurations. From the processor point of view, there is 
a control port, and the control register bits are set in the processor and then sent to 
the control port over lines D0–D7. The two address lines specify one of the three 
I/O ports or the control register, as follows:

A1 A2 Selects

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control register

Thus, when the processor sets both A1 and A2 to 1, the 8255A interprets the 
8-bit value on the data bus as a control word. When the processor transfers an 8-bit 
control word with line D7 set to 1 (Figure 7.10a), the control word is used to config-
ure the operating mode of the 24 I/O lines. The three modes are:

 ■ Mode 0: This is the basic I/O mode. The three groups of eight external lines 
function as three 8-bit I/O ports. Each port can be designated as input or out-
put. Data may only be sent to a port if the port is defined as output, and data 
may only be read from a port if the port is set to input.

 ■ Mode 1: In this mode, ports A and B can be configured as either input or 
output, and lines from port C serve as control lines for A and B. The control 
signals serve two principal purposes: “handshaking” and interrupt request. 
Handshaking is a simple timing mechanism. One control line is used by the 
sender as a DATA READY line, to indicate when the data are present on the 
I/O data lines. Another line is used by the receiver as an ACKNOWLEDGE, 
indicating that the data have been read and the data lines may be cleared. 
Another line may be designated as an INTERRUPT REQUEST line and tied 
back to the system bus.
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 ■ Mode 2: This is a bidirectional mode. In this mode, port A can be configured 
as either the input or output lines for bidirectional traffic on port B, with the 
port B lines providing the opposite direction. Again, port C lines are used for 
control signaling.

When the processor sets D7 to 0 (Figure 7.10b), the control word is used to 
program the bit values of port C individually. This feature is rarely used.

keyboard/display example Because the 8255A is programmable via the 
control register, it can be used to control a variety of simple peripheral devices. 
Figure 7.11 illustrates its use to control a keyboard/display terminal. The keyboard 
provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special 
meaning to the  keyboard-  handling program executing in the processor. However, 
this interpretation is transparent to the 8255A, which simply accepts the 8 bits of 
data and presents them on the system data bus. Two handshaking control lines are 
provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have 
special meanings that are transparent to the 8255A. In addition to two handshaking 
lines, two lines provide additional control functions.
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 7.5 DirEct MEMOry accEss

Drawbacks of Programmed and  Interrupt-  Driven I/O

 Interrupt-  driven I/O, though more efficient than simple programmed I/O, still 
requires the active intervention of the processor to transfer data between memory 
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of I/O suffer from two inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test 
and service a device.

A0
A1
A2
A3
A4
A5
A6
A7

C3

Interrupt
request

Interrupt
request

C0

INPUT
PORT

KEYBOARD

OUTPUT
PORT

82C55A

B0
B1
B2
B3
B4
B5
B6
B7

C1
C2
C6
C7

C4
C5

R0
R1
R2
R3
R4
R5
Shift
Control

Data ready
Acknowledge

DISPLAY

S0
S1
S2
S3
S4
S5
Backspace
Clear

Data ready
Acknowledge
Blanking
Clear line

Figure 7.11 Keyboard/Display Interface to 8255A
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2. The processor is tied up in managing an I/O transfer; a number of instructions 
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a  trade-  off between these two drawbacks. Consider the 
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing 
nothing else. Interrupt I/O frees up the processor to some extent at the expense of 
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both 
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is 
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module 
(Figure 7.12) is capable of mimicking the processor and, indeed, of taking over con-
trol of the system from the processor. It needs to do this to transfer data to and from 
memory over the system bus. For this purpose, the DMA module must use the bus 
only when the processor does not need it, or it must force the processor to suspend 
operation temporarily. The latter technique is more common and is referred to as 
cycle stealing, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a command 
to the DMA module, by sending to the DMA module the following information:

 ■ Whether a read or write is requested, using the read or write control line 
between the processor and the DMA module.

 ■ The address of the I/O device involved, communicated on the data lines.
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Figure 7.12 Typical DMA Block Diagram
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 ■ The starting location in memory to read from or write to, communicated on 
the data lines and stored by the DMA module in its address register.

 ■ The number of words to be read or written, again communicated via the data 
lines and stored in the data count register.

The processor then continues with other work. It has delegated this I/O oper-
ation to the DMA module. The DMA module transfers the entire block of data, 
one word at a time, directly to or from memory, without going through the proces-
sor. When the transfer is complete, the DMA module sends an interrupt signal to 
the processor. Thus, the processor is involved only at the beginning and end of the 
transfer (Figure 7.4c).

Figure 7.13 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus. 
The DMA module then transfers one word and returns control to the processor. 
Note that this is not an interrupt; the processor does not save a context and do 
something else. Rather, the processor pauses for one bus cycle. The overall effect 
is to cause the processor to execute more slowly. Nevertheless, for a  multiple-  word 
I/O transfer, DMA is far more efficient than  interrupt-  driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.14. In the first example, all modules share the same system 
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to 
exchange data between memory and an I/O module through the DMA module. This 
configuration, while it may be inexpensive, is clearly inefficient. As with  processor- 
 controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the 
DMA and I/O functions. As Figure 7.14b indicates, this means that there is a path 
between the DMA module and one or more I/O modules that does not include 
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the system bus. The DMA logic may actually be a part of an I/O module, or it may 
be a separate module that controls one or more I/O modules. This concept can 
be taken one step further by connecting I/O modules to the DMA module using 
an I/O bus (Figure 7.14c). This reduces the number of I/O interfaces in the DMA 
module to one and provides for an easily expandable configuration. In both of 
these cases (Figures 7.14b and c), the system bus that the DMA module shares with 
the processor and memory is used by the DMA module only to exchange data with 
memory. The exchange of data between the DMA and I/O modules takes place off 
the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 * 86 family of processors and 
to DRAM memory to provide a DMA capability. Figure 7.15 indicates the location 
of the DMA module. When the DMA module needs to use the system buses (data, 
address, and control) to transfer data, it sends a signal called HOLD to the processor. 
The processor responds with the HLDA (hold acknowledge) signal, indicating that 
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the DMA module can use the buses. For example, if the DMA module is to transfer 
a block of data from memory to disk, it will do the following:

1. The peripheral device (such as the disk controller) will request the service of 
DMA by pulling DREQ (DMA request) high.

2. The DMA will put a high on its HRQ (hold request), signaling the CPU 
through its HOLD pin that it needs to use the buses.

3. The CPU will finish the present bus cycle (not necessarily the present instruc-
tion) and respond to the DMA request by putting high on its HDLA (hold 
acknowledge), thus telling the 8237 DMA that it can go ahead and use the 
buses to perform its task. HOLD must remain active high as long as DMA is 
performing its task.

4. DMA will activate DACK (DMA acknowledge), which tells the peripheral 
device that it will start to transfer the data.

5. DMA starts to transfer the data from memory to peripheral by putting the 
address of the first byte of the block on the address bus and activating MEMR, 
thereby reading the byte from memory into the data bus; it then activates IOW 
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero 
and the task is finished.

6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU 
that it can regain control over its buses.

CPU

DACK = DMA acknowledge
DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Data bus
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DREQ
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Figure 7.15 8237 DMA Usage of System Bus
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While the DMA is using the buses to transfer data, the processor is idle. Simi-
larly, when the processor is using the bus, the DMA is idle. The 8237 DMA is known 
as a  fly-  by DMA controller. This means that the data being moved from one location 
to another does not pass through the DMA chip and is not stored in the DMA chip. 
Therefore, the DMA can only transfer data between an I/O port and a memory address, 
and not between two I/O ports or two memory locations. However, as explained subse-
quently, the DMA chip can perform a  memory-  to-  memory transfer via a register.

The 8237 contains four DMA channels that can be programmed inde-
pendently, and any one of the channels may be active at any moment. These chan-
nels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control 
DMA operation over one of its channels (Table 7.2):

 ■ Command: The processor loads this register to control the operation of 
the DMA. D0 enables a  memory-  to-  memory transfer, in which channel 0 is 
used to transfer a byte into an 8237 temporary register and channel 1 is used 
to transfer the byte from the register to memory. When  memory-  to-  memory 
is enabled, D1 can be used to disable increment/decrement on channel 0 
so that a fixed value can be written into a block of memory. D2 enables or 
disables DMA.

 ■ Status: The processor reads this register to determine DMA status. Bits 
D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal 
count). Bits D4–D7 are used by the processor to determine if any channel has 
a DMA request pending.

 ■ Mode: The processor sets this register to determine the mode of operation of 
the DMA. Bits D0 and D1 are used to select a channel. The other bits select 
various operation modes for the selected channel. Bits D2 and D3 determine 
if the transfer is from an I/O device to memory (write) or from memory to 
I/O (read), or a verify operation. If D4 is set, then the memory address regis-
ter and the count register are reloaded with their original values at the end of 
a DMA data transfer. Bits D6 and D7 determine the way in which the 8237 is 
used. In single mode, a single byte of data is transferred. Block and demand 
modes are used for a block transfer, with the demand mode allowing for 
premature ending of the transfer. Cascade mode allows multiple 8237s to be 
cascaded to expand the number of channels to more than 4.

 ■ Single Mask: The processor sets this register. Bits D0 and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or 
unmasked (enabled). While the command register can be used to disable the 
whole DMA chip, the single mask register allows the programmer to disable 
or enable a specific channel.

 ■ All Mask: This register is similar to the single mask register except that all four 
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register 
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.
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Table 7.2 Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask

D0  Memory-  to- 
 memory E/D

Channel 0 has 
reached TC

Channel select
Select channel 
mask bit

Clear/set chan-
nel 0 mask bit

D1 Channel 0 
address hold E/D

Channel 1 has 
reached TC

Clear/set chan-
nel 1 mask bit

D2 Controller E/D Channel 2 has 
reached TC

Verify/write/read 
transfer

Clear/set 
mask bit

Clear/set chan-
nel 2 mask bit

D3 Normal/com-
pressed timing

Channel 3 has 
reached TC

Not used

Clear/set chan-
nel 3 mask bit

D4 Fixed/rotating 
priority

Channel 0 request  Auto-  initialization 
E/D

Not used

D5 Late/extended 
write selection

Channel 0 request Address increment/
decrement select

D6 DREQ sense 
active high/low

Channel 0 request

D7 DACK sense 
active high/low

Channel 0 request Demand/single/
block/cascade mode 
select

E/D = enable/disable
TC = terminal count

 7.6 DirEct cachE accEss

DMA has proved an effective means of enhancing performance of I/O with periph-
eral devices and network I/O traffic. However, for the dramatic increases in data 
rates for network I/O, DMA is not able to scale to meet the increased demand. 
This demand is coming primarily from the widespread deployment of 10-Gbps and 
 100-Gbps Ethernet switches to handle massive amounts of data transfer to and from 
database servers and other  high-  performance systems [STAL14a]. A secondary 
but increasingly important source of traffic comes from  Wi-  Fi in the gigabit range. 
Network  Wi-  Fi devices that handle 3.2 Gbps and 6.76 Gbps are becoming widely 
available and producing demand on enterprise systems [STAL14b].

In this section, we will show how enabling the I/O function to have direct 
access to the cache can enhance performance, a technique known as direct cache 
access (DCA). Throughout this section, we are concerned only with the cache that 
is closest to main memory, referred to as the  last-  level cache. In some systems, this 
will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use 
 on-  chip shared cache to enhance DMA performance. This approach involves ena-
bling the DMA function to have direct access to the  last-  level cache. Next we exam-
ine  cache-  related performance issues that manifest when  high-  speed network traffic 
is processed. From there, we look at several different strategies for DCA that are 
designed to enhance network protocol processing performance. Finally, this section 
describes a DCA approach implemented by Intel, referred to as Direct Data I/O.
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DMA Using Shared  Last-  Level Cache

As was discussed in Chapter  1 (see Figure  1.2), contemporary multicore systems 
include both cache dedicated to each core and an additional level of shared cache, 
either L2 or L3. With the increasing size of available  last-  level cache, system design-
ers have enhanced the DMA function so that the DMA controller has access to the 
shared cache in a manner similar to the cores. To clarify the interaction of DMA and 
cache, it will be useful to first describe a specific system architecture. For this pur-
pose, the following is an overview of the Intel Xeon system.

xeon multicore processor Intel Xeon is Intel’s  high-  end,  high-  performance 
processor family, used in servers,  high-  performance workstations, and 
supercomputers. Many of the members of the Xeon family use a ring interconnect 
system, as illustrated for the Xeon E5-2600/4600 in Figure 7.16.

The E5-2600/4600 can be configured with up to eight cores on a single chip. 
Each core has dedicated L1 and L2 caches. There is a shared L3 cache of up to 
20 MB. The L3 cache is divided into slices, one associated with each core although 
each core can address the entire cache. Further, each slice has its own cache pipe-
line, so that requests can be sent in parallel to the slices.

The bidirectional  high-  speed ring interconnect links cores,  last-  level cache, 
PCIe, and integrated memory controller (IMC).

In essence, the ring operates as follows:

1. Each component that attaches to the bidirectional ring (QPI, PCIe, L3 cache, 
L2 cache) is considered a ring agent, and implements ring agent logic.

2. The ring agents cooperate via a distributed protocol to request and allocate 
access to the ring, in the form of time slots.

3. When an agent has data to send, it chooses the ring direction that results in the 
shortest path to the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple 
cores, up to a point. For systems with a greater number of cores, multiple rings are 
used, with each ring supporting some of the cores.

dma use of the cache In traditional DMA operation, data are exchanged 
between main memory and an I/O device by means of the system interconnection 
structure, such as a bus, ring, or QPI  point-  to-  point matrix. So, for example, if the 
Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as 
follows. An I/O driver running on a core would send an I/O command to the I/O 
controller (labeled PCIe in Figure 7.16) with the location and size of the buffer in 
main memory containing the data to be transferred. The I/O controller issues a read 
request that is routed to the memory controller hub (MCH), which accesses the data 
on DDR3 memory and puts it on the system ring for delivery to the I/O controller. 
The L3 cache is not involved in this transaction and one or more  off-  chip memory 
reads are required. Similarly, for input, data arrive from the I/O controller and is 
delivered over the system ring to the MCH and written out to main memory. The 
MCH must also invalidate any L3 cache lines corresponding to the updated memory 
locations. In this case, one or more  off-  chip memory writes are required. Further, if 
an application wants to access the new data, a main memory read is required.



256  Chapter 7 / Input/Output

With the availability of large amounts of  last-  level cache, a more efficient 
technique is possible, and is used by the Xeon E5-2600/4600. For output, when the 
I/O controller issues a read request, the MCH first checks to see if the data are in 
the L3 cache. This is likely to be the case, if an application has recently written data 
into the memory block to be output. In that case, the MCH directs data from the L3 
cache to the I/O controller; no main memory accesses are needed. However, it also 
causes the data to be evicted from cache, that is, the act of reading by an I/O device 
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causes data to be evicted. Thus, the I/O operation proceeds efficiently because it 
does not require main memory access. But, if an application does need that data 
in the future, it must be read back into the L3 cache from main memory. The input 
operation on the Xeon E5-2600/4600 operates as described in the previous para-
graph; the L3 cache is not involved. Thus, the performance improvement involves 
only output operations.

A final point. Although the output transfer is directly from cache to the I/O 
controller, the term direct cache access is not used for this feature. Rather, the term 
is reserved for the I/O protocol application, as described in the remainder of this 
section.

 Cache-  Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called 
packets or protocol data units. The lowest, or link, level protocol is typically 
Ethernet, so that each arriving and departing block of data consists of an Ethernet 
packet containing as payload the  higher-  level protocol packet. The  higher-  level pro-
tocols are usually the Internet Protocol (IP), operating on top of Ethernet, and 
the Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the 
Ethernet payload consists of a block of data with a TCP header and an IP header. 
For outgoing data, Ethernet packets are formed in a peripheral component, such 
as an I/O controller or network interface controller (NIC). Similarly, for incoming 
traffic, the I/O controller strips off the Ethernet information and delivers the TCP/
IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache 
are all involved. In a DMA scheme, when an application wishes to transmit data, it 
places that data in an  application-  assigned buffer in main memory. The core trans-
fers this to a system buffer in main memory and creates the necessary TCP and IP 
headers, which are also buffered in system memory. The packet is then picked up 
via DMA for transfer via the NIC. This activity engages not only main memory but 
also the cache. For incoming traffic, similar transfers between system and applica-
tion buffers are required.

When large volumes of protocol traffic are processed, two factors in this sce-
nario degrade performance. First, the core consumes valuable clock cycles in copy-
ing data between system and application buffers. Second, because memory speeds 
have not kept up with CPU speeds, the core loses time waiting on memory reads 
and writes. In this traditional way of processing protocol traffic, the cache does not 
help because the data and protocol headers are constantly changing and thus the 
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way 
of improving performance, let us look at the processing of protocol traffic in more 
detail for incoming traffic. In general terms, the following steps occur:

1. Packet arrives:  The NIC receives an incoming Ethernet packet. The NIC pro-
cesses and strips off the Ethernet control information. This includes doing an 
error detection calculation. The remaining TCP/IP packet is then transferred 
to the system’s DMA module, which generally is part of the NIC. The NIC 
also creates a packet descriptor with information about the packet, such as its 
buffer location in memory.
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2. DMA:  The DMA module transfers data, including the packet descriptor, to 
main memory. It must also invalidate the corresponding cache lines, if any.

3. NIC interrupts host:  After a number of packets have been transferred, the 
NIC issues an interrupt to the host processor.

4. Retrieve descriptors and headers:  The core processes the interrupt, invoking 
an interrupt handling procedure, which reads the descriptor and header of the 
received packets.

5. Cache miss occurs:  Because this is new data coming in, the cache lines corre-
sponding to the system buffer containing the new data are invalidated. Thus, 
the core must stall to read the data from main memory into cache, and then to 
core registers.

6. Header is processed:  The protocol software executes on the core to analyze 
the contents of the TCP and IP headers. This will likely include accessing a 
transport control block (TCB), which contains context information related 
to TCP. The TCB access may or may not trigger a cache miss, necessitating a 
main memory access.

7. Payload transferred:  The data portion of the packet is transferred from the 
system buffer to the appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are 
some differences that affect how the cache is managed. For outgoing traffic, the 
following steps occur:

1. Packet transfer requested:  When an application has a block of data to transfer 
to a remote system, it places the data in an application buffer and alerts the 
OS with some type of system call.

2. Packet created:  The OS invokes a TCP/IP process to create the TCP/IP packet 
for transmission. The TCP/IP process accesses the TCB (which may involve a 
cache miss) and creates the appropriate headers. It also reads the data from 
the application buffer, and then places the completed packet (headers plus 
data) in a system buffer. Note that the data that is written into the system buf-
fer also exists in the cache. The TCP/IP process also creates a packet descrip-
tor that is placed in memory shared with the DMA module.

3. Output operation invoked:  This uses a device driver program to signal the 
DMA module that output is ready for the NIC.

4. DMA transfer:  The DMA module reads the packet descriptor, then a 
DMA transfer is performed from main memory or the  last-  level cache to 
the NIC. Note that DMA transfers invalidate the cache line in cache even in 
the case of a read (by the DMA module). If the line is modified, this causes a 
write back. The core does not do the invalidates. The invalidates happen when 
the DMA module reads the data.

5. NIC signals completion:  After the transfer is complete, the NIC signals the 
driver on the core that originated the send signal.

6. Driver frees buffer:  Once the driver receives the completion notice, it frees 
up the buffer space for reuse. The core must also invalidate the cache lines 
containing the buffer data.
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As can be seen, network I/O involves a number of accesses to cache and main 
memory and the movement of data between an application buffer and a system 
buffer. The heavy involvement of main memory becomes a bottleneck, as both core 
and network performance outstrip gains in memory access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for 
network I/O, with the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number 
of Intel Xeon processors between 2006 and 2010 [KUMA07, INTE08]. This form 
of DCA applies only to incoming network traffic. The DCA function in the mem-
ory controller sends a prefetch hint to the core as soon as the data are available in 
system memory. This enables the core to prefetch the data packet from the system 
buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more 
substantial gains can be realized by avoiding the system buffer in main memory 
altogether. For the specific function of protocol processing, note that the packet 
and packet descriptor information are accessed only once in the system buffer by 
the core. For incoming packets, the core reads the data from the buffer and trans-
fers the packet payload to an application buffer. It has no need to access that data 
in the system buffer again. Similarly, for outgoing packets, once the core has placed 
the data in the system buffer, it has no need to access that data again. Suppose, 
therefore, that the I/O system were equipped not only with the capability of directly 
accessing main memory, but also of accessing the cache, both for input and output 
operations. Then it would be possible to use the  last-  level cache instead of the main 
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGG05]. It has 
also been described as cache injection [LEON06]. A version of this more complete 
form of DCA is implemented in Intel’s Xeon processor line, referred to as Direct 
Data I/O [INTE12].

Direct Data I/O

Intel Direct Data I/O (DDIO) is implemented on all of the Xeon E5 family of pro-
cessors. Its operation is best explained with a  side-  by-  side comparison of transfers 
with and without DDIO.

packet input First, we look at the case of a packet arriving at the NIC from the 
network. Figure 7.17a shows the steps involved for a DMA operation. The NIC 
initiates a memory write (1). Then the NIC invalidates the cache lines corresponding 
to the system buffer (2). Next, the DMA operation is performed, depositing the 
packet directly into main memory (3). Finally, after the appropriate core receives a 
DMA interrupt signal, the core can read the packet data from memory through the 
cache (4).

Before discussing the processing of an incoming packet using DDIO, we need 
to summarize the discussion of cache write policy from Chapter 4, and introduce a 
new technique. For the following discussion, there are issues relating to cache coher-
ency that arise in a multiprocessor or multicore environment. These are discussed 
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in Chapter 17 but the details need not concern us here. Recall that there are two 
techniques for dealing with an update to a cache line:

 ■ Write through: All write operations are made to main memory as well as to 
the cache, ensuring that main memory is always valid. Any other  core–  cache 
module can monitor traffic to main memory to maintain consistency within its 
own local cache.

 ■ Write back: Updates are made only in the cache. When an update occurs, a 
dirty bit associated with the line is set. Then, when a block is replaced, it is 
written back to main memory if and only if the dirty bit is set.

DDIO uses the  write-  back strategy in the L3 cache.
A cache write operation may encounter a cache miss, which is dealt with by 

one of two strategies:

 ■ Write allocate: The required line is loaded into the cache from main memory. 
Then, the line in the cache is updated by the write operation. This scheme is 
typically used with the  write-  back method.

 ■  Non-  write allocate: The block is modified directly in main memory. No change is 
made to the cache. This scheme is typically used with the  write-  through method.

With the above in mind, we can describe the DDIO strategy for inbound 
transfers initiated by the NIC.

1. If there is a cache hit, the cache line is updated, but not main memory; this is 
simply the  write-  back strategy for a cache hit. The Intel literature refers to this 
as write update.
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2. If there is a cache miss, the write operation occurs to a line in the cache that will not 
be written back to main memory. Subsequent writes update the cache line, again 
with no reference to main memory or no future action that writes this data to main 
memory. The Intel documentation [INTE12] refers to this as write allocate, which 
unfortunately is not the same meaning for the term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the 
incoming data need not be retained for future use. The protocol application is going 
to write the data to an application buffer, and there is no need to temporarily store 
it in a system buffer.

Figure 7.17b shows the operation for DDIO input. The NIC initiates a memory 
write (1). Then the NIC invalidates the cache lines corresponding to the system buffer 
and deposits the incoming data in the cache (2). Finally, after the appropriate core 
receives a DCA interrupt signal, the core can read the packet data from the cache (3).

packet output Figure 7.17c shows the steps involved for a DMA operation for 
outbound packet transmission. The TCP/IP protocol handler executing on the core reads 
data in from an application buffer and writes it out to a system buffer. These data access 
operations result in cache misses and cause data to be read from memory and into the L3 
cache (1). When the NIC receives notification for starting a transmit operation, it reads 
the data from the L3 cache and transmits it (2). The cache access by the NIC causes the 
data to be evicted from the cache and written back to main memory (3).

Figure 7.17d shows the steps involved for a DDIO operation for packet trans-
mission. The TCP/IP protocol handler creates the packet to be transmitted and 
stores it in allocated space in the L3 cache (1), but not in main memory (2). The 
read operation initiated by the NIC is satisfied by data from the cache, without 
causing evictions to main memory.

It should be clear from these  side-  by-  side comparisons that DDIO is more 
efficient than DMA for both incoming and outgoing packets and is therefore better 
able to keep up with the high packet traffic rate.

 7.7 i/O channEls anD PrOcEssOrs

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than 
in the I/O function. We have already seen part of that evolution. The evolutionary 
steps can be summarized as follows:

1. The CPU directly controls a peripheral device. This is seen in simple 
 microprocessor-  controlled devices.

2. A controller or I/O module is added. The CPU uses programmed I/O without 
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

3. The same configuration as in step 2 is used, but now interrupts are employed. 
The CPU need not spend time waiting for an I/O operation to be performed, 
thus increasing efficiency.
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4. The I/O module is given direct access to memory via DMA. It can now move 
a block of data to or from memory without involving the CPU, except at the 
beginning and end of the transfer.

5. The I/O module is enhanced to become a processor in its own right, with a 
specialized instruction set tailored for I/O. The CPU directs the I/O processor 
to execute an I/O program in memory. The I/O processor fetches and executes 
these instructions without CPU intervention. This allows the CPU to specify a 
sequence of I/O activities and to be interrupted only when the entire sequence 
has been performed.

6. The I/O module has a local memory of its own and is, in fact, a computer in its 
own right. With this architecture, a large set of I/O devices can be controlled, 
with minimal CPU involvement. A common use for such an architecture has 
been to control communication with interactive terminals. The I/O processor 
takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without CPU involvement. The CPU is increasingly relieved of 
I/ O-  related tasks, improving performance. With the last two steps (5–6), a major 
change occurs with the introduction of the concept of an I/O module capable of 
executing a program. For step 5, the I/O module is often referred to as an I/O 
channel. For step 6, the term I/O processor is often used. However, both terms are 
on occasion applied to both situations. In what follows, we will use the term I/O 
channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O channel 
has the ability to execute I/O instructions, which gives it complete control over 
I/O operations. In a computer system with such devices, the CPU does not execute 
I/O instructions. Such instructions are stored in main memory to be executed by a 
 special-  purpose processor in the I/O channel itself. Thus, the CPU initiates an I/O 
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory for storage, 
priority, and actions to be taken for certain error conditions. The I/O channel follows 
these instructions and controls the data transfer.

Two types of I/O channels are common, as illustrated in Figure  7.18. A 
selector channel controls multiple  high-  speed devices and, at any one time, is 
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of 
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU 
in controlling these I/O controllers. A multiplexor channel can handle I/O with 
multiple devices at the same time. For  low-  speed devices, a byte multiplexor 
accepts or transmits characters as fast as possible to multiple devices. For example, 
the resultant character stream from three devices with different rates and indi-
vidual streams A1A2A3A4  c ,  B1B2B3B4  c ,  and  C1C2C3C4  c  might be 
A1B1C1A2C2A3B2C3A4, and so on. For  high-  speed devices, a block multiplexor 
interleaves blocks of data from several devices.



7.8 / external InterCOnneCtIOn stanDarDs  263

 7.8 ExtErnal intErcOnnEctiOn stanDarDs

In this section, we provide a brief overview of the most widely used external inter-
face standards to support I/O. Two of these, Thunderbolt and InfiniBand, are exam-
ined in detail in Appendix J.

Universal Serial Bus (USB)

USB is widely used for peripheral connections. It is the default interface for slower- 
speed devices, such as keyboard and pointing devices, but is also commonly used for 
 high-  speed I/O, including printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0, 
defined a Low Speed data rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB 
2.0 provides a data rate of 480 Mbps. USB 3.0 includes a new, higher speed bus 
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called SuperSpeed in parallel with the USB 2.0 bus. The signaling speed of Super-
Speed is 5 Gbps, but due to signaling overhead, the usable data rate is up to 4 Gbps. 
The most recent specification is USB 3.1, which includes a faster transfer mode 
called SuperSpeed+. This transfer mode achieves a signaling rate of 10 Gbps and a 
theoretical usable data rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices 
to create a local network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface 
(SCSI) to be used on smaller systems, such as personal computers, workstations, 
and servers. The objective was to meet the increasing demands for high I/O rates 
on these systems, while avoiding the bulky and expensive I/O channel technologies 
developed for mainframe and supercomputer systems. The result is the IEEE stan-
dard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a  daisy-  chain configuration, with up to 63 devices connected 
off a single port. Moreover, up to 1022 FireWire buses can be interconnected using 
bridges, enabling a system to support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible 
to connect and disconnect peripherals without having to power the computer system 
down or reconfigure the system. Also, FireWire provides for automatic configur-
ation; it is not necessary manually to set device IDs or to be concerned with the rela-
tive position of devices. With FireWire, there are no terminations, and the system 
automatically performs a configuration function to assign addresses. A FireWire bus 
need not be a strict daisy chain. Rather, a  tree-  structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three 
layers of protocols to standardize the way in which the host system interacts with the 
peripheral devices over the serial bus. The physical layer defines the transmission media 
that are permissible under FireWire and the electrical and signaling characteristics of 
each. Data rates from 25 Mbps to 3.2 Gbps are defined. The link layer describes the 
transmission of data in the packets. The transaction layer defines a  request–  response 
protocol that hides the  lower-  layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SCSI is a once common standard for connecting peripheral devices (disks, modems, 
printers, etc.) to small and  medium-  sized computers. Although SCSI has evolved to 
higher data rates, it has lost popularity to such competitors as USB and FireWire 
in smaller systems. However,  high-  speed versions of SCSI remain popular for mass 
memory support on enterprise systems. For example, the IBM zEnterprise EC12 
and other IBM mainframes offer support for SCSI, and a number of Seagate hard 
drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16 
or 32 devices, depending on the generation of the standard. The bus provides for 
parallel transmission rather than serial, with a bus width of 16 bits on earlier gener-
ations and 32 bits on later generations. Speeds range from 5 Mbps on the original 
 SCSI-  1 specification to 160 Mbps on  SCSI-  3 U3.



Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become 
available for  general-  purpose use is Thunderbolt, developed by Intel with collabora-
tion from Apple. One Thunderbolt cable can manage the work previously required 
of multiple cables. The technology combines data, video, audio, and power into a 
single  high-  speed connection for peripherals such as hard drives, RAID (Redundant 
Array of Independent Disks) arrays,  video-  capture boxes, and network interfaces. It 
provides up to 10 Gbps throughput in each direction and up to 10 watts of power to 
connected peripherals.

Thunderbolt is described in detail in Appendix J.

InfiniBand

InfiniBand is an I/O specification aimed at the  high-  end server market. The first 
version of the specification was released in early 2001 and has attracted numerous 
vendors. For example, IBM zEnterprise series of mainframes has relied heavily on 
InfiniBand for a number of years. The standard describes an architecture and speci-
fications for data flow among processors and intelligent I/O devices. InfiniBand has 
become a popular interface for storage area networking and other large storage con-
figurations. In essence, InfiniBand enables servers, remote storage, and other network 
devices to be attached in a central fabric of switches and links. The  switch-  based archi-
tecture can connect up to 64,000 servers, storage systems, and networking devices.

Infiniband is described in detail in Appendix J.

PCI Express

PCI Express is a  high-  speed bus system for connecting peripherals of a wide variety 
of types and speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk stor-
age systems. It provides data rates of up to 6 Gbps, with a maximum per device of 
300 Mbps. SATA is widely used in desktop computers, and in industrial and embed-
ded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices, 
data centers, enterprises, and  wide-  area networks. As Ethernet has evolved to sup-
port data rates up to 100 Gbps and distances from a few meters to tens of km, it 
has become essential for supporting personal computers, workstations, servers, and 
massive data storage devices in organizations large and small.

Ethernet began as an experimental  bus-  based 3-Mbps system. With a bus sys-
tem, all of the attached devices, such as PCs, connect to a common coaxial cable, 
much like residential cable TV systems. The first  commercially-  available Ether-
net, and the first version of IEEE 802.3, were  bus-  based systems operating at 10 
Mbps. As technology has advanced, Ethernet has moved from  bus-  based to  switch- 
 based, and the data rate has periodically increased by an order of magnitude. With 
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 switch-  based systems, there is a central switch, with all of the devices connected 
directly to the switch. Currently, Ethernet systems are available at speeds up to 100 
Gbps. Here is a brief chronology.

 ■ 1983: 10 Mbps (megabit per second, million bits per second)
 ■ 1995: 100 Mbps
 ■ 1998: 1 Gbps (gigabit per second, billion bits per second)
 ■ 2003: 10 Gbps
 ■ 2010: 40 Gbps and 100 Gbps

 Wi-  Fi

 Wi-  Fi is the predominant wireless Internet access technology, used in homes, offices, 
and public spaces.  Wi-  Fi in the home now connects computers, tablets, smart phones, 
and a host of electronic devices, such as video cameras, TVs, and thermostats.  Wi-  Fi 
in the enterprise has become an essential means of enhancing worker productivity 
and network effectiveness. And public  Wi-  Fi hotspots have expanded dramatically 
to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless 
protocol design has evolved, the IEEE 802.11 committee has been able to introduce 
standards for new versions of  Wi-  Fi at  ever-  higher speeds. Once the standard is 
issued, industry quickly develops the products. Here is a brief chronology, starting 
with the original standard, which was simply called IEEE 802.11, and showing the 
maximum data rate for each version:

 ■ 802.11 (1997): 2 Mbps (megabit per second, million bits per second)
 ■ 802.11a (1999): 54 Mbps
 ■ 802.11b (1999): 11 Mbps
 ■ 802.11n (1999): 600 Mbps
 ■ 802.11g (2003): 54 Mbps
 ■ 802.11ad (2012): 6.76 Gbps (billion bits per second)
 ■ 802.11ac (2014): 3.2 Gbps

 7.9 iBM zEntErPrisE Ec12 i/O structurE

The zEnterprise EC12 is IBM’s latest mainframe computer offering (at the time of 
this writing). The system is based on the use of the zEC12 processor chip, which is a 
5.5-GHz multicore chip with six cores. The zEC12 architecture can have a maximum 
of 101 processor chips for a total of 606 cores. In this section, we look at the I/O 
structure of the zEnterprise EC12.

Channel Structure

The zEnterprise EC12 has a dedicated I/O subsystem that manages all I/O oper-
ations, completely  off-  loading this processing and memory burden from the main 



processors. Figure 7. 21 shows the logical structure of the I/O subsystem. Of the 96 
core processors, up to 4 of these can be dedicated for I/O use, creating 4 channel 
subsystems (CSS). Each CSS is made up of the following elements:

 ■ System assist processor (SAP): The SAP is a core processor configured for I/O 
operation. Its role is to offload I/O operations and manage channels and the 
I/O operations queues. It relieves the other processors of all I/O tasks, allowing 
them to be dedicated to application logic.

 ■ Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of 
32 GB is reserved, which is not part of the  customer-  purchased memory. This 
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

 ■ Logical partitions: A logical partition is a form of virtual machine, which is in 
essence, a logical processor defined at the operating system level.3 Each CSS 
supports up to 16 logical partitions.
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Figure 7.19 IBM zEC12 I/O Channel Subsystem Structure

3A virtual machine is an instance of an operating system along with one or more applications running in 
an isolated memory partition within the computer. It enables different operating systems to run in the 
same computer at the same time as well as prevents applications from interfering with each other. See 
[STAL12] for a discussion of virtual machines.
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 ■ Subchannels: A subchannel appears to a program as a logical device and con-
tains the information required to perform an I/O operation. One subchannel 
exists for each I/O device addressable by the CSS. A subchannel is used by the 
channel subsystem code running on a partition to pass an I/O request to the 
channel subsystem. A subchannel is assigned for each device defined to the 
logical partition. Up to 196k subchannels are supported per CSS.

 ■ Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent 
across a channel path to perform I/O requests. Each CSS can have up to 256 
channel paths.

 ■ Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the 
external devices.

This elaborate structure enables the mainframe to manage a massive num-
ber of I/O devices and communication links. All I/O processing is offloaded from 
the application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage 
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they 
interface.

I/O System Organization

To explain the I/O system organization, we need to first briefly explain the  physical 
layout of the zEnterprise EC12. Figure 7. 20 is a front view of the  water-  cooled  version 
of the machine (there is also an  air-  cooled version). The system has the  following 
characteristics:

 ■ Weight: 2430 kg (5358 lbs)
 ■ Width: 1.568 m (5.14 ft)
 ■ Depth: 1.69 m (6.13 ft)
 ■ Height: 2.015 m (6.6 ft)

Not exactly a laptop.
The system consists of two large bays, called frames, that house the various 

components of the zEnterprise EC12. The right-hand A frame includes two large 
cages, plus room for cabling and other components. The upper cage is a processor 
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O 
cage connections. Each MCM is a board that houses six multicore chips and two 
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware, 
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to 
the customer specifications at the factory.

The left-hand Z frame contains internal batteries and power supplies and 
room for one or more support elements, which are used by a system manager for 
platform management. The Z frame also contains slots for two or more I/O drawers. 



An I/O drawer contains similar components to an I/O cage. The differences are that 
the drawer is smaller and easily swapped in and out at the customer site to meet 
changing requirements.

With this background, we now show a typical configuration of the zEnterprise 
EC12 I/O system structure (Figure 7.21). Each zEC12 processor book supports two 
internal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for 
I/O cages and I/O drawers, and PCI Express (PCIe) for I/O drawers. These channel 
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and 
I/O drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand 
links to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multi-
plexors are used to interconnect servers, communications infrastructure equipment, 
storage, and embedded systems. In addition to using InfiniBand to interconnect 
systems, all of which use InfiniBand, the InfiniBand multiplexor supports other I/O 
technologies. ESCON (Enterprise Systems Connection) supports connectivity to 
disks, tapes, and printer devices using a proprietary  fiber-  based technology. Eth-
ernet connections provide 1-Gbps and 10-Gbps connections to a variety of devices 
that support this popular local area network technology. One noteworthy use of 
Ethernet is to construct large server farms, particularly to interconnect blade serv-
ers with each other and with other mainframes.4
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Figure 7.20 IBM zEC12 I/O  Frames–  Front View

4A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It 
is widely used in data centers to save space and improve system management. Either  self-  standing or rack 
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.
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The PCIe connections from the processor book to the I/O drawers are via a 
PCIe fanout to PCIe switches. The PCIe switches can connect to a number of I/O 
device controllers. Typical examples for zEnterprise EC12 are 1-Gbps and 10-Gbps 
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCIe 
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256 
connections per processor book, each connection controlled by a channel processor.

 7.10 KEy tErMs, rEviEw QuEstiOns, anD PrOBlEMs
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Review Questions

 7.1 List three broad classifications of external, or peripheral, devices.
 7.2 What is the International Reference Alphabet?
 7.3 What are the major functions of an I/O module?
 7.4 List and briefly define three techniques for performing I/O.
 7.5 What is the difference between  memory-  mapped I/O and isolated I/O?
 7.6 When a device interrupt occurs, how does the processor determine which device 

issued the interrupt?
 7.7 When a DMA module takes control of a bus, and while it retains control of the bus, 

what does the processor do?

Problems

 7.1 On a typical microprocessor, a distinct I/O address is used to refer to the I/O data 
registers and a distinct address for the control and status registers in an I/O controller 
for a given device. Such registers are referred to as ports. In the Intel 8088, two I/O 
instruction formats are used. In one format, the 8-bit opcode specifies an I/O opera-
tion; this is followed by an 8-bit port address. Other I/O opcodes imply that the port 
address is in the 16-bit DX register. How many ports can the 8088 address in each I/O 
addressing mode?

 7.2 A similar instruction format is used in the Zilog Z8000 microprocessor family. In this 
case, there is a direct port addressing capability, in which a 16-bit port address is part 
of the instruction, and an indirect port addressing capability, in which the instruction 
references one of the 16-bit general purpose registers, which contains the port address. 
How many ports can the Z8000 address in each I/O addressing mode?

 7.3 The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the 
direct control of the processor. The block transfer instructions specify a port address 
register (Rp), a count register (Rc), and a destination register (Rd). Rd contains 
the main memory address at which the first byte read from the input port is to be 
stored. Rc is any of the 16-bit general purpose registers. How large a data block can be 
transferred?

 7.4 Consider a microprocessor that has a block I/O transfer instruction such as that found 
on the Z8000. Following its first execution, such an instruction takes five clock cycles 
to  re-  execute. However, if we employ a nonblocking I/O instruction, it takes a total 
of 20 clock cycles for fetching and execution. Calculate the increase in speed with the 
block I/O instruction when transferring blocks of 128 bytes.

 7.5 A system is based on an 8-bit microprocessor and has two I/O devices. The I/O con-
trollers for this system use separate control and status registers. Both devices handle 
data on a 1- byte-  at-  a-  time basis. The first device has two status lines and three control 
lines. The second device has three status lines and four control lines.
a. How many 8-bit I/O control module registers do we need for status reading and 

control of each device?
b. What is the total number of needed control module registers given that the first 

device is an  output-  only device?
c. How many distinct addresses are needed to control the two devices?

 7.6 For programmed I/O, Figure 7.5 indicates that the processor is stuck in a wait loop 
doing status checking of an I/O device. To increase efficiency, the I/O software could 
be written so that the processor periodically checks the status of the device. If the 
device is not ready, the processor can jump to other tasks. After some timed interval, 
the processor comes back to check status again.
a. Consider the above scheme for outputting data one character at a time to a printer 

that operates at 10 characters per second (cps). What will happen if its status is 
scanned every 200 ms?
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b. Next consider a keyboard with a single character buffer. On average, characters 
are entered at a rate of 10 cps. However, the time interval between two consecu-
tive key depressions can be as short as 60 ms. At what frequency should the key-
board be scanned by the I/O program?

 7.7 A microprocessor scans the status of an output I/O device every 20 ms. This is accom-
plished by means of a timer alerting the processor every 20 ms. The interface of the 
device includes two ports: one for status and one for data output. How long does it 
take to scan and service the device, given a clocking rate of 8 MHz? Assume for sim-
plicity that all pertinent instruction cycles take 12 clock cycles.

 7.8 In Section 7.3, one advantage and one disadvantage of  memory-  mapped I/O, compared 
with isolated I/O, were listed. List two more advantages and two more disadvantages.

 7.9 A particular system is controlled by an operator through commands entered from a 
keyboard. The average number of commands entered in an 8-hour interval is 60.
a. Suppose the processor scans the keyboard every 100 ms. How many times will the 

keyboard be checked in an 8-hour period?
b. By what fraction would the number of processor visits to the keyboard be reduced 

if  interrupt-  driven I/O were used?
 7.10 Suppose that the 8255A shown in Figure 7.9 is configured as follows: port A as input, 

port B as output, and all the bits of port C as output. Show the bits of the control reg-
ister to define this configuration.

 7.11 Consider a system employing  interrupt-  driven I/O for a particular device that trans-
fers data at an average of 8 KB/s on a continuous basis.
a. Assume that interrupt processing takes about 100 µs (i.e., the time to jump to 

the interrupt service routine (ISR), execute it, and return to the main program). 
Determine what fraction of processor time is consumed by this I/O device if it 
interrupts for every byte.

b. Now assume that the device has two 16-byte buffers and interrupts the proces-
sor when one of the buffers is full. Naturally, interrupt processing takes longer, 
because the ISR must transfer 16 bytes. While executing the ISR, the processor 
takes about 8 µs for the transfer of each byte. Determine what fraction of proces-
sor time is consumed by this I/O device in this case.

c. Now assume that the processor is equipped with a block transfer I/O instruction 
such as that found on the Z8000. This permits the associated ISR to transfer each 
byte of a block in only 2 µs. Determine what fraction of processor time is con-
sumed by this I/O device in this case.

 7.12 In virtually all systems that include DMA modules, DMA to main memory is given 
higher priority than CPU access to main memory. Why?

 7.13 A DMA module is transferring characters to memory using cycle stealing, from a 
device transmitting at 9600 bps. The processor is fetching instructions at the rate of 
1 million instructions per second (1 MIPS). By how much will the processor be slowed 
down due to the DMA activity?

 7.14 Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either 
direction, from processor to I/O device or vice versa, takes 250 ns. One of the I/O 
devices has a data transfer rate of 50 KB/s and employs DMA. Data are transferred 1 
byte at a time.
a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus 

mastership prior to the start of a block transfer and maintains control of the bus 
until the whole block is transferred. For how long would the device tie up the bus 
when transferring a block of 128 bytes?

b. Repeat the calculation for  cycle-  stealing mode.
 7.15 Examination of the timing diagram of the 8237A indicates that once a block transfer 

begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the 
8237A transfers one byte of information between memory and I/O device.
a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer 

one byte?
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b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states 

per DMA cycle. What will be the actual data transfer rate?
 7.16 Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To 

what value could we reduce the clocking rate of the bus without effect on the attain-
able data transfer rate?

 7.17 A DMA controller serves four  receive-  only telecommunication links (one per DMA 
channel) having a speed of 64 Kbps each.
a. Would you operate the controller in burst mode or in  cycle-  stealing mode?
b. What priority scheme would you employ for service of the DMA channels?

 7.18 A 32-bit computer has two selector channels and one multiplexor channel. Each selec-
tor channel supports two magnetic disk and two magnetic tape units. The multiplexor 
channel has two line printers, two card readers, and 10 VDT terminals connected to it. 
Assume the following transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate I/O transfer rate in this system.
 7.19 A computer consists of a processor and an I/O device D connected to main mem-

ory M via a shared bus with a data bus width of one word. The processor can exe-
cute a maximum of 106 instructions per second. An average instruction requires five 
machine cycles, three of which use the memory bus. A memory read or write operation 
uses one machine cycle. Suppose that the processor is continuously executing “back-
ground” programs that require 95% of its instruction execution rate but not any I/O 
instructions. Assume that one processor cycle equals one bus cycle. Now suppose the 
I/O device is to be used to transfer very large blocks of data between M and D.
a. If programmed I/O is used and each  one-  word I/O transfer requires the processor 

to execute two instructions, estimate the maximum I/O  data-  transfer rate, in words 
per second, possible through D.

b. Estimate the same rate if DMA is used.
 7.20 A data source produces 7-bit IRA characters, to each of which is appended a parity 

bit. Derive an expression for the maximum effective data rate (rate of IRA data bits) 
over an  R-  bps line for the following:
a. Asynchronous transmission, with a 1.5-unit stop bit;
b.  Bit-  synchronous transmission, with a frame consisting of 48 control bits and 128 

information bits;
c. Same as (b), with a 1024-bit information field;
d.  Character-  synchronous, with nine control characters per frame and 16 information 

characters;
e. Same as (d), with 128 information characters.

 7.21 Two women are on either side of a high fence. One of the women, named  Apple- 
 server, has a beautiful apple tree loaded with delicious apples growing on her side of 
the fence; she is happy to supply apples to the other woman whenever needed. The 
other woman, named  Apple-  eater, loves to eat apples but has none. In fact, she must 
eat her apples at a fixed rate (an apple a day keeps the doctor away). If she eats them 
faster than that rate, she will get sick. If she eats them slower, she will suffer malnutri-
tion. Neither woman can talk, and so the problem is to get apples from  Apple-  server 
to  Apple-  eater at the correct rate.
a. Assume that there is an alarm clock sitting on top of the fence and that the clock 

can have multiple alarm settings. How can the clock be used to solve the problem? 
Draw a timing diagram to illustrate the solution.
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b. Now assume that there is no alarm clock. Instead  Apple-  eater has a flag that she 
can wave whenever she needs an apple. Suggest a new solution. Would it be help-
ful for  Apple-  server also to have a flag? If so, incorporate this into the solution. 
Discuss the drawbacks of this approach.

c. Now take away the flag and assume the existence of a long piece of string. Suggest 
a solution that is superior to that of (b) using the string.

 7.22 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system 
bus. The following details are given:
1. All microprocessors have the hardware features necessary for any type of data 

transfer: programmed I/O,  interrupt-  driven I/O, and DMA.
2. All microprocessors have a 16-bit address bus.
3. Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The 

designer wishes to use a shared memory that is as large as possible.
4. The system bus supports a maximum of four interrupt lines and one DMA line. 

Make any other assumptions necessary, and:
a. Give the system bus specifications in terms of number and types of lines.
b. Describe a possible protocol for communicating on the bus (i.e.,  read-  write, 

interrupt, and DMA sequences).
c. Explain how the aforementioned devices are interfaced to the system bus.
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Although the focus of this text is computer hardware, there is one area of software 
that needs to be addressed: the computer’s OS. The OS is a program that manages 
the computer’s resources, provides services for programmers, and schedules the exe-
cution of other programs. Some understanding of operating systems is essential to 
appreciate the mechanisms by which the CPU controls the computer system. In par-
ticular, explanations of the effect of interrupts and of the management of the mem-
ory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems. The 
bulk of the chapter looks at the two OS functions that are most relevant to the study 
of computer organization and architecture: scheduling and memory management.

 8.1 Operating SyStem Overview

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as 
an interface between applications and the computer hardware. It can be thought of 
as having two objectives:

 ■ Convenience: An OS makes a computer more convenient to use.
 ■ Efficiency: An OS allows the computer system resources to be used in an 

 efficient manner.

Let us examine these two aspects of an OS in turn.

the operating system as a user/computer interface The hardware 
and software used in providing applications to a user can be viewed in a layered 
or hierarchical fashion, as depicted in Figure 8.1. The user of those applications, 
the end user, generally is not concerned with the computer’s architecture. Thus 
the end user views a computer system in terms of an application. That application 
can be expressed in a programming language and is developed by an application 
programmer. To develop an application program as a set of processor instructions 

Learning Objectives

After studying this chapter, you should be able to:

 r Summarize, at a top level, the key functions of an operating system (OS).
 r Discuss the evolution of operating systems for early simple batch systems to 
modern complex systems.

 r Explain the differences among  long-,  medium-, and  short-  term scheduling.
 r Understand the reason for memory partitioning and explain the various tech-
niques that are used.

 r Assess the relative advantages of paging and segmentation.
 r Define virtual memory.
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that is completely responsible for controlling the computer hardware would be an 
overwhelmingly complex task. To ease this task, a set of system programs is provided. 
Some of these programs are referred to as utilities. These implement frequently 
used functions that assist in program creation, the management of files, and the 
control of I/O devices. A programmer makes use of these facilities in developing an 
application, and the application, while it is running, invokes the utilities to perform 
certain functions. The most important system program is the OS. The OS masks the 
details of the hardware from the programmer and provides the programmer with a 
convenient interface for using the system. It acts as mediator, making it easier for 
the programmer and for application programs to access and use those facilities and 
services.

Briefly, the OS typically provides services in the following areas:

 ■ Program creation: The OS provides a variety of facilities and services, such as 
editors and debuggers, to assist the programmer in creating programs. Typi-
cally, these services are in the form of utility programs that are not actually 
part of the OS but are accessible through the OS.

 ■ Program execution: A number of steps need to be performed to execute a 
program. Instructions and data must be loaded into main memory, I/O devices 
and files must be initialized, and other resources must be prepared. The OS 
handles all of this for the user.

 ■ Access to I/O devices: Each I/O device requires its own specific set of instruc-
tions or control signals for operation. The OS takes care of the details so that 
the programmer can think in terms of simple reads and writes.

 ■ Controlled access to files: In the case of files, control must include an under-
standing of not only the nature of the I/O device (disk drive, tape drive) but 
also the file format on the storage medium. Again, the OS worries about the 
details. Further, in the case of a system with multiple simultaneous users, the 
OS can provide protection mechanisms to control access to the files.

I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction set
architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Application programs

Application
binary interface

Operating system

Libraries/utilities

Figure 8.1 Computer Hardware and Software Structure
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 ■ System access: In the case of a shared or public system, the OS controls access 
to the system as a whole and to specific system resources. The access function 
must provide protection of resources and data from unauthorized users and 
must resolve conflicts for resource contention.

 ■ Error detection and response: A variety of errors can occur while a computer 
system is running. These include internal and external hardware errors, such 
as a memory error, or a device failure or malfunction; and various software 
errors, such as arithmetic overflow, attempt to access forbidden memory loca-
tion, and inability of the OS to grant the request of an application. In each 
case, the OS must make the response that clears the error condition with the 
least impact on running applications. The response may range from ending the 
program that caused the error, to retrying the operation, to simply reporting 
the error to the application.

 ■ Accounting: A good OS collects usage statistics for various resources and 
monitors performance parameters such as response time. On any system, this 
information is useful in anticipating the need for future enhancements and in 
tuning the system to improve performance. On a multiuser system, the infor-
mation can be used for billing purposes. Figure 8.1 also indicates three key 
interfaces in a typical computer system:

 ■ Instruction set architecture (ISA): The ISA defines the repertoire of 
machine language instructions that a computer can follow. This interface 
is the boundary between hardware and software. Note that both appli-
cation programs and utilities may access the ISA directly. For these pro-
grams, a subset of the instruction repertoire is available (user ISA). The 
OS has access to additional machine language instructions that deal with 
managing system resources (system ISA).

 ■ Application binary interface (ABI): The ABI defines a standard for bin-
ary portability across programs. The ABI defines the system call inter-
face to the operating system and the hardware resources and services 
available in a system through the user ISA.

 ■ Application programming interface (API): The API gives a program 
access to the hardware resources and services available in a system 
through the user ISA supplemented with  high-  level language (HLL) 
library calls. Any system calls are usually performed through libraries. 
Using an API enables application software to be ported easily, through 
recompilation, to other systems that support the same API.

the operating system as resource manager A computer is a set of 
resources for the movement, storage, and processing of data and for the control of 
these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of 
data? From one point of view, the answer is yes: By managing the computer’s 
resources, the OS is in control of the computer’s basic functions. But this control is 
exercised in a curious way. Normally, we think of a control mechanism as something 
external to that which is controlled, or at least as something that is a distinct and 
separate part of that which is controlled. (For example, a residential heating system 
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is controlled by a thermostat, which is completely distinct from the  heat-  generation 
and  heat-  distribution apparatus.) This is not the case with the OS, which as a control 
mechanism is unusual in two respects:

 ■ The OS functions in the same way as ordinary computer software; that is, it is a 
program executed by the processor.

 ■ The OS frequently relinquishes control and must depend on the processor to 
allow it to regain control.

Like other computer programs, the OS provides instructions for the proces-
sor. The key difference is in the intent of the program. The OS directs the processor 
in the use of the other system resources and in the timing of its execution of other 
programs. But in order for the processor to do any of these things, it must cease 
executing the OS program and execute other programs. Thus, the OS relinquishes 
control for the processor to do some “useful” work and then resumes control long 
enough to prepare the processor to do the next piece of work. The mechanisms 
involved in all this should become clear as the chapter proceeds.

Figure 8.2 suggests the main resources that are managed by the OS. A portion 
of the OS is in main memory. This includes the kernel, or nucleus, which contains 
the most frequently used functions in the OS and, at a given time, other portions of 
the OS currently in use. The remainder of main memory contains user programs and 
data. The allocation of this resource (main memory) is controlled jointly by the OS 
and  memory-  management hardware in the processor, as we will see. The OS decides 
when an I/O device can be used by a program in execution, and controls access to and 
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use of files. The processor itself is a resource, and the OS must determine how much 
processor time is to be devoted to the execution of a particular user program. In the 
case of a  multiple-  processor system, this decision must span all of the processors.

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating systems. 
The characteristics fall along two independent dimensions. The first dimension spec-
ifies whether the system is batch or interactive. In an interactive system, the user/pro-
grammer interacts directly with the computer, usually through a keyboard/display 
terminal, to request the execution of a job or to perform a transaction. Furthermore, 
the user may, depending on the nature of the application, communicate with the 
computer during the execution of the job. A batch system is the opposite of interac-
tive. The user’s program is batched together with programs from other users and sub-
mitted by a computer operator. After the program is completed, results are printed 
out for the user. Pure batch systems are rare today, however, it will be useful to the 
description of contemporary operating systems to briefly examine batch systems.

An independent dimension specifies whether the system employs multipro-
gramming or not. With multiprogramming, the attempt is made to keep the pro-
cessor as busy as possible, by having it work on more than one program at a time. 
Several programs are loaded into memory, and the processor switches rapidly 
among them. The alternative is a uniprogramming system that works only one pro-
gram at a time.

early systems With the earliest computers, from the late 1940s to the  mid- 
 1950s, the programmer interacted directly with the computer hardware; there was 
no OS. These processors were run from a console, consisting of display lights, toggle 
switches, some form of input device, and a printer. Programs in processor code were 
loaded via the input device (e.g., a card reader). If an error halted the program, 
the error condition was indicated by the lights. The programmer could proceed 
to examine registers and main memory to determine the cause of the error. If the 
program proceeded to a normal completion, the output appeared on the printer.

These early systems presented two main problems:

 ■ Scheduling: Most installations used a  sign-  up sheet to reserve processor time. 
Typically, a user could sign up for a block of time in multiples of a half hour 
or so. A user might sign up for an hour and finish in 45 minutes; this would 
result in wasted computer idle time. On the other hand, the user might run into 
problems, not finish in the allotted time, and be forced to stop before resolving 
the problem.

 ■ Setup time: A single program, called a job, could involve loading the com-
piler plus the  high-  level language program (source program) into memory, 
saving the compiled program (object program), and then loading and linking 
together the object program and common functions. Each of these steps could 
involve mounting or dismounting tapes, or setting up card decks. If an error 
occurred, the hapless user typically had to go back to the beginning of the 
setup sequence. Thus a considerable amount of time was spent just in setting 
up the program to run.
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This mode of operation could be termed serial processing, reflecting the fact 
that users have access to the computer in series. Over time, various system software 
tools were developed to attempt to make serial processing more efficient. These 
include libraries of common functions, linkers, loaders, debuggers, and I/O driver 
routines that were available as common software for all users.

simple batch systems Early processors were very expensive, and therefore it 
was important to maximize processor utilization. The wasted time due to scheduling 
and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With 
such a system, also called a monitor, the user no longer has direct access to the pro-
cessor. Rather, the user submits the job on cards or tape to a computer operator, 
who batches the jobs together sequentially and places the entire batch on an input 
device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of 
view: that of the monitor and that of the processor. From the point of view of the 
monitor, the monitor controls the sequence of events. For this to be so, much of the 
monitor must always be in main memory and available for execution (Figure 8.3). 
That portion is referred to as the resident monitor. The rest of the monitor consists 
of utilities and common functions that are loaded as subroutines to the user pro-
gram at the beginning of any job that requires them. The monitor reads in jobs one 
at a time from the input device (typically a card reader or magnetic tape drive). As it 
is read in, the current job is placed in the user program area, and control is passed to 
this job. When the job is completed, it returns control to the monitor, which imme-
diately reads in the next job. The results of each job are printed out for delivery to 
the user.
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Now consider this sequence from the point of view of the processor. At a certain 
point in time, the processor is executing instructions from the portion of main mem-
ory containing the monitor. These instructions cause the next job to be read in to 
another portion of main memory. Once a job has been read in, the processor will 
encounter in the monitor a branch instruction that instructs the processor to con-
tinue execution at the start of the user program. The processor will then execute 
the instruction in the user’s program until it encounters an ending or error condi-
tion. Either event causes the processor to fetch its next instruction from the monitor 
program. Thus the phrase “control is passed to a job” simply means that the pro-
cessor is now fetching and executing instructions in a user program, and “control is 
returned to the monitor” means that the processor is now fetching and executing 
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of 
jobs is queued up, and jobs are executed as rapidly as possible, with no intervening 
idle time.

How about the job setup time? The monitor handles this as well. With each 
job, instructions are included in a job control language (JCL). This is a special type 
of programming language used to provide instructions to the monitor. A simple 
example is that of a user submitting a program written in FORTRAN plus some 
data to be used by the program. Each FORTRAN instruction and each item of data 
is on a separate punched card or a separate record on tape. In addition to FOR-
TRAN and data lines, the job includes job control instructions, which are denoted 
by the beginning “$”. The overall format of the job looks like this:

$JOB
$FTN
f                          6   FORTRAN instructions
$LOAD
$RUN
f                           6   Data
$END

To execute this job, the monitor reads the $FTN line and loads the appropri-
ate compiler from its mass storage (usually tape). The compiler translates the user’s 
program into object code, which is stored in memory or mass storage. If it is stored 
in memory, the operation is referred to as “compile, load, and go.” If it is stored 
on tape, then the $LOAD instruction is required. This instruction is read by the 
monitor, which regains control after the compile operation. The monitor invokes 
the loader, which loads the object program into memory in place of the compiler 
and transfers control to it. In this manner, a large segment of main memory can 
be shared among different subsystems, although only one such subsystem could be 
resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies 
on the ability of the processor to fetch instructions from various portions of main 
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memory in order to seize and relinquish control alternately. Certain other hardware 
features are also desirable:

 ■ Memory protection: While the user program is executing, it must not alter the 
memory area containing the monitor. If such an attempt is made, the proces-
sor hardware should detect an error and transfer control to the monitor. The 
monitor would then abort the job, print out an error message, and load the 
next job.

 ■ Timer: A timer is used to prevent a single job from monopolizing the system. 
The timer is set at the beginning of each job. If the timer expires, an interrupt 
occurs, and control returns to the monitor.

 ■ Privileged instructions: Certain instructions are designated privileged and can 
be executed only by the monitor. If the processor encounters such an instruc-
tion while executing a user program, an error interrupt occurs. Among the 
privileged instructions are I/O instructions, so that the monitor retains con-
trol of all I/O devices. This prevents, for example, a user program from acci-
dentally reading job control instructions from the next job. If a user program 
wishes to perform I/O, it must request that the monitor perform the operation 
for it. If a privileged instruction is encountered by the processor while it is 
executing a user program, the processor hardware considers this an error and 
transfers control to the monitor.

 ■ Interrupts: Early computer models did not have this capability. This feature 
gives the OS more flexibility in relinquishing control to and regaining control 
from user programs.

Processor time alternates between execution of user programs and execution 
of the monitor. There have been two sacrifices: Some main memory is now given 
over to the monitor and some processor time is consumed by the monitor. Both 
of these are forms of overhead. Even with this overhead, the simple batch system 
improves utilization of the computer.

multiprogrammed batch systems Even with the automatic job sequencing 
provided by a simple batch OS, the processor is often idle. The problem is that 
I/O devices are slow compared to the processor. Figure 8.4 details a representative 
calculation. The calculation concerns a program that processes a file of records and 
performs, on average, 100 processor instructions per record. In this example the 
computer spends over 96% of its time waiting for I/O devices to finish transferring 
data! Figure 8.5a illustrates this situation. The processor spends a certain amount of 

Read one record from �le 15
Execute 100 instructions 1
Write one record to �le 15
TOTAL 31

Percent CPU utilization = 1
31

= 0.032 = 3.2%

Figure 8.4 System Utilization Example
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time executing, until it reaches an I/O instruction. It must then wait until that I/O 
instruction concludes before proceeding.

This inefficiency is not necessary. We know that there must be enough memory 
to hold the OS (resident monitor) and one user program. Suppose that there is room 
for the OS and two user programs. Now, when one job needs to wait for I/O, the pro-
cessor can switch to the other job, which likely is not waiting for I/O (Figure 8.5b). 
Furthermore, we might expand memory to hold three, four, or more programs and 
switch among all of them (Figure 8.5c). This technique is known as multiprogram-
ming, or multitasking.1 It is the central theme of modern operating systems.

1The term multitasking is sometimes reserved to mean multiple tasks within the same program that may 
be handled concurrently by the OS, in contrast to multiprogramming, which would refer to multiple 
processes from multiple programs. However, it is more common to equate the terms multitasking and 
multiprogramming, as is done in most standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE 
Standard Dictionary of Electrical and Electronics Terms).
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As with a simple batch system, a multiprogramming batch system must 
rely on certain computer hardware features. The most notable additional feature 
that is useful for multiprogramming is the hardware that supports I/O interrupts 

 ExAMPLE 8.1  This example illustrates the benefit of multiprogramming. Consider a 
computer with 250 Mbytes of available memory (not used by the OS), a disk, a terminal, 
and a printer. Three programs, JOB1, JOB2, and JOB3, are submitted for execution at the 
same time, with the attributes listed in Table 8.1. We assume minimal processor require-
ments for JOB1 and JOB2 and continuous disk and printer use by JOB3. For a simple 
batch environment, these jobs will be executed in sequence. Thus, JOB1 completes in  
5 minutes. JOB2 must wait until the 5 minutes is over and then completes 15 minutes 
 after that. JOB3 begins after 20 minutes and completes at 30 minutes from the time it was 
initially submitted. The average resource utilization, throughput, and response times are 
shown in the uniprogramming column of Table 8.2.  Device-  by-  device utilization is illus-
trated in Figure 8.6a. It is evident that there is gross underutilization for all resources when 
averaged over the required 30-minute time period.

Now suppose that the jobs are run concurrently under a multiprogramming OS. Be-
cause there is little resource contention between the jobs, all three can run in nearly min-
imum time while coexisting with the others in the computer (assuming that JOB2 and 
JOB3 are allotted enough processor time to keep their input and output operations ac-
tive). JOB1 will still require 5 minutes to complete but at the end of that time, JOB2 will be 
 one-  third finished, and JOB3 will be half finished. All three jobs will have finished within 
15 minutes. The improvement is evident when examining the multiprogramming column 
of Table 8.2, obtained from the histogram shown in Figure 8.6b.

Table 8.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration (min) 5 15 10

Memory required (M) 50 100 80

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 8.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use (%) 20 40

Memory use (%) 33 67

Disk use (%) 33 67

Printer use (%) 33 67

Elapsed time (min) 30 15

Throughput rate (jobs/hr) 6 12

Mean response time (min) 18 10
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and DMA. With  interrupt-  driven I/O or DMA, the processor can issue an I/O com-
mand for one job and proceed with the execution of another job while the I/O is car-
ried out by the device controller. When the I/O operation is complete, the processor 
is interrupted and control is passed to an  interrupt-  handling program in the OS. The 
OS will then pass control to another job.

Multiprogramming operating systems are fairly sophisticated compared to 
 single-  program, or uniprogramming, systems. To have several jobs ready to run, the 
jobs must be kept in main memory, requiring some form of memory management. 
In addition, if several jobs are ready to run, the processor must decide which one 
to run, which requires some algorithm for scheduling. These concepts are discussed 
later in this chapter.

 time-  sharing systems With the use of multiprogramming, batch processing 
can be quite efficient. However, for many jobs, it is desirable to provide a mode in 
which the user interacts directly with the computer. Indeed, for some jobs, such as 
transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often 
is, met by the use of a dedicated microcomputer. That option was not available in the 
1960s, when most computers were big and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs 
at a time, multiprogramming can be used to handle multiple interactive jobs. In 
this latter case, the technique is referred to as time sharing, because the proces-
sor’s time is shared among multiple users. In a  time-  sharing system, multiple users 
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simultaneously access the system through terminals, with the OS interleaving the 
execution of each user program in a short burst or quantum of computation. Thus, 
if there are n users actively requesting service at one time, each user will only see on 
the average 1/n of the effective computer speed, not counting OS overhead. How-
ever, given the relatively slow human reaction time, the response time on a properly 
designed system should be comparable to that on a dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The 
key differences are listed in Table 8.3.

 8.2 Scheduling

The key to multiprogramming is scheduling. In fact, four types of scheduling are 
typically involved (Table 8.4). We will explore these presently. But first, we introduce 
the concept of process. This term was first used by the designers of the Multics OS in 
the 1960s. It is a somewhat more general term than job. Many definitions have been 
given for the term process, including

 ■ A program in execution
 ■ The “animated spirit” of a program
 ■ That entity to which a processor is assigned

This concept should become clearer as we proceed.

 Long-  Term Scheduling

The  long-  term scheduler determines which programs are admitted to the system for 
processing. Thus, it controls the degree of multiprogramming (number of processes 
in memory). Once admitted, a job or user program becomes a process and is added 
to the queue for the  short-  term scheduler. In some systems, a newly created pro-
cess begins in a  swapped-  out condition, in which case it is added to a queue for the 
 medium-  term scheduler.

Table 8.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to 
operating system

Job control language commands 
provided with the job

Commands entered at the 
terminal

Table 8.4 Types of Scheduling

 Long-  term scheduling The decision to add to the pool of processes to be executed.

 Medium-  term scheduling The decision to add to the number of processes that are partially or 
fully in main memory.

 Short-  term scheduling The decision as to which available process will be executed by the 
processor.

I/O scheduling The decision as to which process’s pending I/O request shall be han-
dled by an available I/O device.
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In a batch system, or for the batch portion of a  general-  purpose OS, newly submit-
ted jobs are routed to disk and held in a batch queue. The  long-  term scheduler creates 
processes from the queue when it can. There are two decisions involved here. First, 
the scheduler must decide that the OS can take on one or more additional processes. 
Second, the scheduler must decide which job or jobs to accept and turn into processes. 
The criteria used may include priority, expected execution time, and I/O requirements.

For interactive programs in a  time-  sharing system, a process request is gen-
erated when a user attempts to connect to the system.  Time-  sharing users are not 
simply queued up and kept waiting until the system can accept them. Rather, the 
OS will accept all authorized comers until the system is saturated, using some pre-
defined measure of saturation. At that point, a connection request is met with a 
message indicating that the system is full and the user should try again later.

 Medium-  Term Scheduling

 Medium-  term scheduling is part of the swapping function, described in Section 8.3. 
Typically, the  swapping-  in decision is based on the need to manage the degree of 
multiprogramming. On a system that does not use virtual memory, memory man-
agement is also an issue. Thus, the  swapping-  in decision will consider the memory 
requirements of the  swapped-  out processes.

 Short-  Term Scheduling

The  long-  term scheduler executes relatively infrequently and makes the  coarse- 
 grained decision of whether or not to take on a new process, and which one to take. 
The  short-  term scheduler, also known as the dispatcher, executes frequently and 
makes the  fine-  grained decision of which job to execute next.

process states To understand the operation of the  short-  term scheduler, we need to 
consider the concept of a process state. During the lifetime of a process, its status will 
change a number of times. Its status at any point in time is referred to as a state. The 
term state is used because it connotes that certain information exists that defines the 
status at that point. At minimum, there are five defined states for a process (Figure 8.7):

 ■ New: A program is admitted by the  high-  level scheduler but is not yet ready to 
execute. The OS will initialize the process, moving it to the ready state.

New Ready

Blocked

Running Exit
Admit

Dispatch

Timeout

Release

Event
wait

Event
occurs

Figure 8.7  Five-  State Process Model
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 ■ Ready: The process is ready to execute and is awaiting access to the processor.
 ■ Running: The process is being executed by the processor.
 ■ Waiting: The process is suspended from execution waiting for some system 

resource, such as I/O.
 ■ Halted: The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicat-
ing the state of the process and other information necessary for process execution. 
For this purpose, each process is represented in the OS by a process control block 
 (Figure 8.8), which typically contains:

 ■ Identifier: Each current process has a unique identifier.
 ■ State: The current state of the process (new, ready, and so on).
 ■ Priority: Relative priority level.
 ■ Program counter: The address of the next instruction in the program to be 

executed.
 ■ Memory pointers: The starting and ending locations of the process in memory.
 ■ Context data: These are data that are present in registers in the processor 

while the process is executing, and they will be discussed in Part Three. For 
now, it is enough to say that these data represent the “context” of the process. 
The context data plus the program counter are saved when the process leaves 
the running state. They are retrieved by the processor when it resumes execu-
tion of the process.

Identi�er

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

•
•
•

Figure 8.8 Process Control Block
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 ■ I/O status information: Includes outstanding I/O requests, I/O devices (e.g., 
tape drives) assigned to this process, a list of files assigned to the process, and 
so on.

 ■ Accounting information: May include the amount of processor time and clock 
time used, time limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates 
a blank process control block and places the associated process in the new state. 
After the system has properly filled in the process control block, the process is 
transferred to the ready state.

scheduling techniques To understand how the OS manages the scheduling 
of the various jobs in memory, let us begin by considering the simple example in 
Figure 8.9. The figure shows how main memory is partitioned at a given point in time. 
The kernel of the OS is, of course, always resident. In addition, there are a number of 
active processes, including A and B, each of which is allocated a portion of memory.
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Figure 8.9 Scheduling Example
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We begin at a point in time when process A is running. The processor is exe-
cuting instructions from the program contained in A’s memory partition. At some 
later point in time, the processor ceases to execute instructions in A and begins exe-
cuting instructions in the OS area. This will happen for one of three reasons:

1. Process A issues a service call (e.g., an I/O request) to the OS. Execution of A 
is suspended until this call is satisfied by the OS.

2. Process A causes an interrupt. An interrupt is a  hardware-  generated signal to 
the processor. When this signal is detected, the processor ceases to execute A 
and transfers to the interrupt handler in the OS. A variety of events related 
to A will cause an interrupt. One example is an error, such as attempting to 
execute a privileged instruction. Another example is a timeout; to prevent any 
one process from monopolizing the processor, each process is only granted the 
processor for a short period at a time.

3. Some event unrelated to process A that requires attention causes an interrupt. 
An example is the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context 
data and the program counter for A in A’s process control block and then begins 
executing in the OS. The OS may perform some work, such as initiating an I/O 
operation. Then the  short-  term-  scheduler portion of the OS decides which process 
should be executed next. In this example, B is chosen. The OS instructs the proces-
sor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the  short-  term sched-
uler. Figure 8.10 shows the major elements of the OS involved in the multiprogram-
ming and scheduling of processes. The OS receives control of the processor at the 
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interrupt handler if an interrupt occurs and at the  service-  call handler if a service 
call occurs. Once the interrupt or service call is handled, the  short-  term scheduler is 
invoked to select a process for execution.

To do its job, the OS maintains a number of queues. Each queue is simply a 
waiting list of processes waiting for some resource. The  long-  term queue is a list of 
jobs waiting to use the system. As conditions permit, the  high-  level scheduler will 
allocate memory and create a process for one of the waiting items. The  short-  term 
queue consists of all processes in the ready state. Any one of these processes could 
use the processor next. It is up to the  short-  term scheduler to pick one. Generally, 
this is done with a  round-  robin algorithm, giving each process some time in turn. 
Priority levels may also be used. Finally, there is an I/O queue for each I/O device. 
More than one process may request the use of the same I/O device. All processes 
waiting to use each device are lined up in that device’s queue.

Figure 8.11 suggests how processes progress through the computer under the 
control of the OS. Each process request (batch job,  user-  defined interactive job) is 
placed in the  long-  term queue. As resources become available, a process request 
becomes a process and is then placed in the ready state and put in the  short-  term 
queue. The processor alternates between executing OS instructions and executing 
user processes. While the OS is in control, it decides which process in the  short-  term 
queue should be executed next. When the OS has finished its immediate tasks, it 
turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for 
a variety of reasons. If it is suspended because the process requests I/O, then it 
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is placed in the appropriate I/O queue. If it is suspended because of a timeout or 
because the OS must attend to pressing business, then it is placed in the ready state 
and put into the  short-  term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O 
operation is completed, the OS removes the satisfied process from that I/O queue 
and places it in the  short-  term queue. It then selects another waiting process (if any) 
and signals for the I/O device to satisfy that process’s request.

 8.3 memOry management

In a uniprogramming system, main memory is divided into two parts: one part for 
the OS (resident monitor) and one part for the program currently being executed. 
In a multiprogramming system, the “user” part of memory is subdivided to accom-
modate multiple processes. The task of subdivision is carried out dynamically by the 
OS and is known as memory management.

Effective memory management is vital in a multiprogramming system. If only 
a few processes are in memory, then for much of the time all of the processes will be 
waiting for I/O and the processor will be idle. Thus, memory needs to be allocated 
efficiently to pack as many processes into memory as possible.

Swapping

Referring back to Figure 8.11, we have discussed three types of queues: the  long- 
 term queue of requests for new processes, the  short-  term queue of processes ready 
to use the processor, and the various I/O queues of processes that are not ready to 
use the processor. Recall that the reason for this elaborate machinery is that I/O 
activities are much slower than computation and therefore the processor in a unipro-
gramming system is idle most of the time.

But the arrangement in Figure 8.11 does not entirely solve the problem. It is 
true that, in this case, memory holds multiple processes and that the processor can 
move to another process when one process is waiting. But the processor is so much 
faster than I/O that it will be common for all the processes in memory to be waiting 
on I/O. Thus, even with multiprogramming, a processor could be idle most of the 
time.

What to do? Main memory could be expanded, and so be able to accommo-
date more processes. But there are two flaws in this approach. First, main memory 
is expensive, even today. Second, the appetite of programs for memory has grown 
as fast as the cost of memory has dropped. So larger memory results in larger pro-
cesses, not more processes.

Another solution is swapping, depicted in Figure 8.12. We have a  long-  term 
queue of process requests, typically stored on disk. These are brought in, one at a 
time, as space becomes available. As processes are completed, they are moved out 
of main memory. Now the situation will arise that none of the processes in mem-
ory are in the ready state (e.g., all are waiting on an I/O operation). Rather than 
remain idle, the processor swaps one of these processes back out to disk into an 
intermediate queue. This is a queue of existing processes that have been temporarily 
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kicked out of memory. The OS then brings in another process from the intermedi-
ate queue, or it honors a new process request from the  long-  term queue. Execution 
then continues with the newly arrived process.

Swapping, however, is an I/O operation, and therefore there is the potential 
for making the problem worse, not better. But because disk I/O is generally the 
fastest I/O on a system (e.g., compared with tape or printer I/O), swapping will usu-
ally enhance performance. A more sophisticated scheme, involving virtual memory, 
improves performance over simple swapping. This will be discussed shortly. But 
first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use  fixed-  size partitions, 
as shown in Figure  8.13. Note that, although the partitions are of fixed size, they 
need not be of equal size. When a process is brought into memory, it is placed in the 
smallest available partition that will hold it.

Even with the use of unequal  fixed-  size partitions, there will be wasted mem-
ory. In most cases, a process will not require exactly as much memory as provided 
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by the partition. For example, a process that requires 3M bytes of memory would 
be placed in the 4M partition of Figure 8.13b, wasting 1M that could be used by 
another process.

A more efficient approach is to use  variable-  size partitions. When a process is 
brought into memory, it is allocated exactly as much memory as it requires and no more.
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Figure 8.13 Example of Fixed Partitioning of a 64-Mbyte Memory

 ExAMPLE 8.2  An example, using 64 Mbytes of main memory, is shown in Figure 8.14. 
Initially, main memory is empty, except for the OS (a). The first three processes are loaded 
in, starting where the OS ends and occupying just enough space for each process (b, c, d). 
This leaves a “hole” at the end of memory that is too small for a fourth process. At some 
point, none of the processes in memory is ready. The OS swaps out process 2 (e), which 
leaves sufficient room to load a new process, process 4 (f). Because process 4 is smaller 
than process 2, another small hole is created. Later, a point is reached at which none of the 
processes in main memory is ready, but process 2, in the  ready-  suspend state, is available. 
Because there is insufficient room in memory for process 2, the OS swaps process 1 out (g) 
and swaps process 2 back in (h).
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As this example shows, this method starts out well, but eventually it leads to a 
situation in which there are a lot of small holes in memory. As time goes on, mem-
ory becomes more and more fragmented, and memory utilization declines. One 
technique for overcoming this problem is compaction: From time to time, the OS 
shifts the processes in memory to place all the free memory together in one block. 
This is a  time-  consuming procedure, wasteful of processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we 
must clear up one loose end. Consider Figure 8.14; it should be obvious that a pro-
cess is not likely to be loaded into the same place in main memory each time it is 
swapped in. Furthermore, if compaction is used, a process may be shifted while in 
main memory. A process in memory consists of instructions plus data. The instruc-
tions will contain addresses for memory locations of two types:

 ■ Addresses of data items
 ■ Addresses of instructions, used for branching instructions
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But these addresses are not fixed. They will change each time a process is 
swapped in. To solve this problem, a distinction is made between logical addresses 
and physical addresses. A logical address is expressed as a location relative to the 
beginning of the program. Instructions in the program contain only logical addresses. 
A physical address is an actual location in main memory. When the processor exe-
cutes a process, it automatically converts from logical to physical address by adding 
the current starting location of the process, called its base address, to each logical 
address. This is another example of a processor hardware feature designed to meet 
an OS requirement. The exact nature of this hardware feature depends on the mem-
ory management strategy in use. We will see several examples later in this chapter.

Paging

Both unequal  fixed-  size and  variable-  size partitions are inefficient in the use of mem-
ory. Suppose, however, that memory is partitioned into equal  fixed-  size chunks that 
are relatively small, and that each process is also divided into small  fixed-  size chunks 
of some size. Then the chunks of a program, known as pages, could be assigned to 
available chunks of memory, known as frames, or page frames. At most, then, the 
wasted space in memory for that process is a fraction of the last page.

Figure 8.15 shows an example of the use of pages and frames. At a given point 
in time, some of the frames in memory are in use and some are free. The list of free 
frames is maintained by the OS. Process A, stored on disk, consists of four pages. 
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When it comes time to load this process, the OS finds four free frames and loads the 
four pages of the process A into the four frames.

Now suppose, as in this example, that there are not sufficient unused con-
tiguous frames to hold the process. Does this prevent the OS from loading A? 
The answer is no, because we can once again use the concept of logical address. A 
simple base address will no longer suffice. Rather, the OS maintains a page table 
for each process. The page table shows the frame location for each page of the 
process. Within the program, each logical address consists of a page number and 
a relative address within the page. Recall that in the case of simple partitioning, a 
logical address is the location of a word relative to the beginning of the program; 
the processor translates that into a physical address. With paging, the  logical-  to- 
 physical address translation is still done by processor hardware. The processor 
must know how to access the page table of the current process. Presented with a 
logical address (page number, relative address), the processor uses the page table 
to produce a physical address (frame number, relative address). An example is 
shown in Figure 8.16.

This approach solves the problems raised earlier. Main memory is divided 
into many small  equal-  size frames. Each process is divided into  frame-  size pages: 
smaller processes require fewer pages, larger processes require more. When a 
process is brought in, its pages are loaded into available frames, and a page table 
is set up.
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Virtual Memory

demand paging With the use of paging, truly effective multiprogramming 
systems came into being. Furthermore, the simple tactic of breaking a process up 
into pages led to the development of another important concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging 
scheme just discussed. That refinement is demand paging, which simply means that 
each page of a process is brought in only when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays 
of data. Over any short period of time, execution may be confined to a small section 
of the program (e.g., a subroutine), and perhaps only one or two arrays of data are 
being used. This is the principle of locality, which we introduced in Appendix 4A. It 
would clearly be wasteful to load in dozens of pages for that process when only a 
few pages will be used before the program is suspended. We can make better use of 
memory by loading in just a few pages. Then, if the program branches to an instruc-
tion on a page not in main memory, or if the program references data on a page not 
in memory, a page fault is triggered. This tells the OS to bring in the desired page.

Thus, at any one time, only a few pages of any given process are in memory, 
and therefore more processes can be maintained in memory. Furthermore, time is 
saved because unused pages are not swapped in and out of memory. However, the 
OS must be clever about how it manages this scheme. When it brings one page in, it 
must throw another page out; this is known as page replacement. If it throws out a 
page just before it is about to be used, then it will just have to go get that page again 
almost immediately. Too much of this leads to a condition known as thrashing: the 
processor spends most of its time swapping pages rather than executing instructions. 
The avoidance of thrashing was a major research area in the 1970s and led to a var-
iety of complex but effective algorithms. In essence, the OS tries to guess, based on 
recent history, which pages are least likely to be used in the near future.

Page Replacement Algorithm Simulators

A discussion of page replacement algorithms is beyond the scope of this chap-
ter. A potentially effective technique is least recently used (LRU), the same algo-
rithm discussed in Chapter 4 for cache replacement. In practice, LRU is difficult 
to implement for a virtual memory paging scheme. Several alternative approaches 
that seek to approximate the performance of LRU are in use; see Appendix K for 
details.

With demand paging, it is not necessary to load an entire process into main 
memory. This fact has a remarkable consequence: It is possible for a process to be 
larger than all of main memory. One of the most fundamental restrictions in pro-
gramming has been lifted. Without demand paging, a programmer must be acutely 
aware of how much memory is available. If the program being written is too large, 
the programmer must devise ways to structure the program into pieces that can be 
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loaded one at a time. With demand paging, that job is left to the OS and the hard-
ware. As far as the programmer is concerned, he or she is dealing with a huge mem-
ory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to 
as real memory. But a programmer or user perceives a much larger  memory—  that 
which is allocated on the disk. This latter is therefore referred to as virtual memory. 
Virtual memory allows for very effective multiprogramming and relieves the user of 
the unnecessarily tight constraints of main memory.

page table structure The basic mechanism for reading a word from memory 
involves the translation of a virtual, or logical, address, consisting of page number 
and offset, into a physical address, consisting of frame number and offset, using a 
page table. Because the page table is of variable length, depending on the size of the 
process, we cannot expect to hold it in registers. Instead, it must be in main memory 
to be accessed. Figure 8.16 suggests a hardware implementation of this scheme. 
When a particular process is running, a register holds the starting address of the 
page table for that process. The page number of a virtual address is used to index 
that table and look up the corresponding frame number. This is combined with the 
offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can occupy 
huge amounts of virtual memory. For example, in the VAX architecture, each pro-
cess can have up to 231 = 2 Gbytes of virtual memory. Using 29 = 512 - byte pages, 
that means that as many as 222 page table entries are required per process. Clearly, 
the amount of memory devoted to page tables alone could be unacceptably high. To 
overcome this problem, most virtual memory schemes store page tables in virtual 
memory rather than real memory. This means that page tables are subject to paging 
just as other pages are. When a process is running, at least a part of its page table must 
be in main memory, including the page table entry of the currently executing page. 
Some processors make use of a  two-  level scheme to organize large page tables. In this 
scheme, there is a page directory, in which each entry points to a page table. Thus, if 
the length of the page directory is X, and if the maximum length of a page table is Y, 
then a process can consist of up to X * Y pages. Typically, the maximum length of a 
page table is restricted to be equal to one page. We will see an example of this  two- 
 level approach when we consider the Intel x86 later in this chapter.

An alternative approach to the use of  one-   or  two-  level page tables is the use 
of an inverted page table structure (Figure 8.17). Variations on this approach are 
used on the PowerPC, UltraSPARC, and the  IA-  64 architecture. An implementa-
tion of the Mach OS on the  RT-  PC also uses this technique.

In this approach, the page number portion of a virtual address is mapped into 
a hash value using a simple hashing function.2 The hash value is a pointer to the 
inverted page table, which contains the page table entries. There is one entry in the 

2A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where 
M 7 N. The output of the hash function is used as an index into the hash table. Since more than one input 
maps into the same output, it is possible for an input item to map to a hash table entry that is already 
occupied. In that case, the new item must overflow into another hash table location. Typically, the new 
item is placed in the first succeeding empty space, and a pointer from the original location is provided to 
chain the entries together. See Appendix L for more information on hash functions.
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inverted page table for each real memory page frame rather than one per virtual 
page. Thus a fixed proportion of real memory is required for the tables regardless of 
the number of processes or virtual pages supported. Because more than one virtual 
address may map into the same hash table entry, a chaining technique is used for 
managing the overflow. The hashing technique results in chains that are typically 
 short—  between one and two entries. The page table’s structure is called inverted 
because it indexes page table entries by frame number rather than by virtual page 
number.

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical mem-
ory accesses: one to fetch the appropriate page table entry, and one to fetch the 
desired data. Thus, a straightforward virtual memory scheme would have the effect 
of doubling the memory access time. To overcome this problem, most virtual mem-
ory schemes make use of a special cache for page table entries, usually called a 
translation lookaside buffer (TLB). This cache functions in the same way as a 
memory cache and contains those page table entries that have been most recently 
used. Figure 8.18 is a flowchart that shows the use of the TLB. By the principle of 
locality, most virtual memory references will be to locations in recently used pages. 
Therefore, most references will involve page table entries in the cache. Studies of 
the VAX TLB have shown that this scheme can significantly improve performance 
[CLAR85, SATY81].
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Note that the virtual memory mechanism must interact with the cache system 
(not the TLB cache, but the main memory cache). This is illustrated in Figure 8.19. 
A virtual address will generally be in the form of a page number, offset. First, the 
memory system consults the TLB to see if the matching page table entry is present. 
If it is, the real (physical) address is generated by combining the frame number with 
the offset. If not, the entry is accessed from a page table. Once the real address is 
generated, which is in the form of a tag and a remainder, the cache is consulted to 
see if the block containing that word is present (see Figure 4.5). If so, it is returned 
to the processor. If not, the word is retrieved from main memory.

The reader should be able to appreciate the complexity of the processor hard-
ware involved in a single memory reference. The virtual address is translated into 
a real address. This involves reference to a page table, which may be in the TLB, in 
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main memory, or on disk. The referenced word may be in cache, in main memory, 
or on disk. In the latter case, the page containing the word must be loaded into main 
memory and its block loaded into the cache. In addition, the page table entry for 
that page must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as 
segmentation. Whereas paging is invisible to the programmer and serves the purpose 
of providing the programmer with a larger address space, segmentation is usually 
visible to the programmer and is provided as a convenience for organizing programs 
and data and as a means for associating privilege and protection attributes with 
instructions and data.

Segmentation allows the programmer to view memory as consisting of multiple 
address spaces or segments. Segments are of variable, indeed dynamic, size. Typi-
cally, the programmer or the OS will assign programs and data to different segments. 
There may be a number of program segments for various types of programs as well as 
a number of data segments. Each segment may be assigned access and usage rights. 
Memory references consist of a (segment number, offset) form of address.

This organization has a number of advantages to the programmer over a  non- 
 segmented address space:
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1. It simplifies the handling of growing data structures. If the programmer does 
not know ahead of time how large a particular data structure will become, it 
is not necessary to guess. The data structure can be assigned its own segment, 
and the OS will expand or shrink the segment as needed.

2. It allows programs to be altered and recompiled independently without 
requiring that an entire set of programs be relinked and reloaded. Again, this 
is accomplished using multiple segments.

3. It lends itself to sharing among processes. A programmer can place a utility 
program or a useful table of data in a segment that can be addressed by other 
processes.

4. It lends itself to protection. Because a segment can be constructed to contain a 
 well-  defined set of programs or data, the programmer or a system administra-
tor can assign access privileges in a convenient fashion.

These advantages are not available with paging, which is invisible to the pro-
grammer. On the other hand, we have seen that paging provides for an efficient 
form of memory management. To combine the advantages of both, some systems 
are equipped with the hardware and OS software to provide both.

 8.4 intel x86 memOry management

Since the introduction of the 32-bit architecture, microprocessors have evolved 
sophisticated memory management schemes that build on the lessons learned with 
 medium-   and  large-  scale systems. In many cases, the microprocessor versions are 
superior to their  larger-  system antecedents. Because the schemes were developed by 
the microprocessor hardware vendor and may be employed with a variety of operat-
ing systems, they tend to be quite general purpose. A representative example is the 
scheme used on the Intel x86 architecture.

Address Spaces

The x86 includes hardware for both segmentation and paging. Both mechanisms can 
be disabled, allowing the user to choose from four distinct views of memory:

 ■ Unsegmented unpaged memory: In this case, the virtual address is the same 
as the physical address. This is useful, for example, in  low-  complexity,  high- 
 performance controller applications.

 ■ Unsegmented paged memory: Here memory is viewed as a paged linear 
address space. Protection and management of memory is done via paging. 
This is favored by some operating systems (e.g., Berkeley UNIX).

 ■ Segmented unpaged memory: Here memory is viewed as a collection of 
logical address spaces. The advantage of this view over a paged approach is 
that it affords protection down to the level of a single byte, if necessary. Fur-
thermore, unlike paging, it guarantees that the translation table needed (the 
segment table) is  on-  chip when the segment is in memory. Hence, segmented 
unpaged memory results in predictable access times.



 ■ Segmented paged memory: Segmentation is used to define logical memory 
partitions subject to access control, and paging is used to manage the alloca-
tion of memory within the partitions. Operating systems such as UNIX System 
V favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in the x86 
documentation) consists of a 16-bit segment reference and a 32-bit offset. Two bits 
of the segment reference deal with the protection mechanism, leaving 14 bits for 
specifying a particular segment. Thus, with unsegmented memory, the user’s virtual 
memory is 232 = 4 Gbytes. With segmented memory, the total virtual memory space 
as seen by a user is 246 = 64 terabytes (Tbytes). The physical address space employs 
a 32-bit address for a maximum of 4 Gbytes.

The amount of virtual memory can actually be larger than the 64 Tbytes. This 
is because the processor’s interpretation of a virtual address depends on which pro-
cess is currently active. Virtual address space is divided into two parts.  One-  half of 
the virtual address space (8K segments *   4 Gbytes) is global, shared by all pro-
cesses; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and 
access attribute. There are four privilege levels, from most protected (level 0) to least 
protected (level 3). The privilege level associated with a data segment is its “classifica-
tion”; the privilege level associated with a program segment is its “clearance.” An exe-
cuting program may only access data segments for which its clearance level is lower than 
(more privileged) or equal to (same privilege) the privilege level of the data segment.

The hardware does not dictate how these privilege levels are to be used; this 
depends on the OS design and implementation. It was intended that privilege level 
1 would be used for most of the OS, and level 0 would be used for that small portion 
of the OS devoted to memory management, protection, and access control. This 
leaves two levels for applications. In many systems, applications will reside at level 
3, with level 2 being unused. Specialized application subsystems that must be pro-
tected because they implement their own security mechanisms are good candidates 
for level 2. Some examples are database management systems, office automation 
systems, and software engineering environments.

In addition to regulating access to data segments, the privilege mechanism limits 
the use of certain instructions. Some instructions, such as those dealing with  memory- 
 management registers, can only be executed in level 0. I/O instructions can only be 
executed up to a certain level that is designated by the OS; typically, this will be level 1.

The access attribute of a data segment specifies whether read/write or  read- 
 only accesses are permitted. For program segments, the access attribute specifies 
read/execute or  read-  only access.

The address translation mechanism for segmentation involves mapping a vir-
tual address into what is referred to as a linear address (Figure 8.20b). A virtual 
address consists of the 32-bit offset and a 16-bit segment selector (Figure 8.20a). An 
instruction fetching or storing an operand specifies the offset and a register contain-
ing the segment selector. The segment selector consists of the following fields:

 ■ Table Indicator (TI): Indicates whether the global segment table or a local 
segment table should be used for translation.
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 ■ Segment Number: The number of the segment. This serves as an index into 
the segment table.

 ■ Requested Privilege Level (RPL): The privilege level requested for this 
access.

Each entry in a segment table consists of 64 bits, as shown in Figure 8.20c. The 
fields are defined in Table 8.5.
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Table 8.5 x86 Memory Management Parameters

Segment Descriptor (Segment Table Entry)

Base

Defines the starting address of the segment within the 4-Gbyte linear address space.

D/B bit

In a code segment, this is the D bit and indicates whether operands and addressing modes are 16 or 32 bits.

Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.

Granularity bit (G)

Indicates whether the Limit field is to be interpreted in units by one byte or 4 Kbytes.

Limit

Defines the size of the segment. The processor interprets the limit field in one of two ways, depending on 
the granularity bit: in units of one byte, up to a segment size limit of 1 Mbyte, or in units of 4 Kbytes, up to a 
segment size limit of 4 Gbytes.

S bit

Determines whether a given segment is a system segment or a code or data segment.

Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment is present in main memory. For paged 
 systems, this bit is always set to 1.

Type

Distinguishes between various kinds of segments and indicates the access attributes.

Page Directory Entry and Page Table Entry

Accessed bit (A)

This bit is set to 1 by the processor in both levels of page tables when a read or write operation to the 
corresponding page occurs.

Dirty bit (D)

This bit is set to 1 by the processor when a write operation to the corresponding page occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit is set. Since page frames are aligned 
on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are included in the entry. In a page direc-
tory, the address is that of a page table.

Page Cache Disable bit (PCD)

Indicates whether data from page may be cached.

Page Size bit (PS)

Indicates whether page size is 4 Kbyte or 4 Mbyte.

Page Write Through bit (PWT)

Indicates whether  write-  through or  write-  back caching policy will be used for data in the corresponding page.

Present bit (P)

Indicates whether the page table or page is in main memory.

Read/Write bit (RW)

For  user-  level pages, indicates whether the page is  read-  only access or read/write access for  user-  level 
programs.

User/Supervisor bit (US)

Indicates whether the page is available only to the operating system (supervisor level) or is available to 
both operating system and applications (user level).
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Paging

Segmentation is an optional feature and may be disabled. When segmentation is in 
use, addresses used in programs are virtual addresses and are converted into linear 
addresses, as just described. When segmentation is not in use, linear addresses are 
used in programs. In either case, the following step is to convert that linear address 
into a real 32-bit address.

To understand the structure of the linear address, you need to know that the x86 
paging mechanism is actually a  two-  level table lookup operation. The first level is a page 
directory, which contains up to 1024 entries. This splits the 4-Gbyte linear memory space 
into 1024 page groups, each with its own page table, and each 4 Mbytes in length. Each 
page table contains up to 1024 entries; each entry corresponds to a single 4-Kbyte page. 
Memory management has the option of using one page directory for all processes, one 
page directory for each process, or some combination of the two. The page directory for 
the current task is always in main memory. Page tables may be in virtual memory.

Figure 8.20 shows the formats of entries in page directories and page tables, 
and the fields are defined in Table 8.5. Note that access control mechanisms can be 
provided on a page or page group basis.

The x86 also makes use of a translation lookaside buffer. The buffer can hold 32 
page table entries. Each time that the page directory is changed, the buffer is cleared.

Figure 8.21 illustrates the combination of segmentation and paging mechanisms. For 
clarity, the translation lookaside buffer and memory cache mechanisms are not shown.
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Finally, the x86 includes a new extension not found on the earlier 80386 or 
80486, the provision for two page sizes. If the PSE (page size extension) bit in con-
trol register 4 is set to 1, then the paging unit permits the OS programmer to define 
a page as either 4 Kbyte or 4 Mbyte in size.

When 4-Mbyte pages are used, there is only one level of table lookup for 
pages. When the hardware accesses the page directory, the page directory entry 
(Figure 8.20d) has the PS bit set to 1. In this case, bits 9 through 21 are ignored and 
bits 22 through 31 define the base address for a 4-Mbyte page in memory. Thus, 
there is a single page table.

The use of 4-Mbyte pages reduces the  memory-  management storage require-
ments for large main memories. With 4-Kbyte pages, a full 4-Gbyte main memory 
requires about 4 Mbytes of memory just for the page tables. With 4-Mbyte pages, a 
single table, 4 Kbytes in length, is sufficient for page memory management.

 8.5 arm memOry management

ARM provides a versatile virtual memory system architecture that can be tailored to 
the needs of the embedded system designer.

Memory System Organization

Figure 8.22 provides an overview of the memory management hardware in the ARM 
for virtual memory. The virtual memory translation hardware uses one or two levels 
of tables for translation from virtual to physical addresses, as explained subsequently. 
The translation lookaside buffer (TLB) is a cache of recent page table entries. If an 
entry is available in the TLB, then the TLB directly sends a physical address to main 
memory for a read or write operation. As explained in Chapter 4, data is exchanged 
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between the processor and main memory via the cache. If a logical cache organization 
is used (Figure 4.7a), then the ARM supplies that address directly to the cache as well 
as supplying it to the TLB when a cache miss occurs. If a physical cache organization 
is used (Figure 4.7b), then the TLB must supply the physical address to the cache.

Entries in the translation tables also include access control bits, which deter-
mine whether a given process may access a given portion of memory. If access is 
denied, access control hardware supplies an abort signal to the ARM processor.

Virtual Memory Address Translation

The ARM supports memory access based on either sections or pages:

 ■ Supersections (optional): Consist of 16-MB blocks of main memory.
 ■ Sections: Consist of 1-MB blocks of main memory.
 ■ Large pages: Consist of 64-kB blocks of main memory.
 ■ Small pages: Consist of 4-kB blocks of main memory.

Sections and supersections are supported to allow mapping of a large region 
of memory while using only a single entry in the TLB. Additional access control 
mechanisms are extended within small pages to 1kB subpages, and within large 
pages to 16kB subpages. The translation table held in main memory has two levels:

 ■ Level 1 table: Holds level 1 descriptors that contain the base address and 
translation properties for a Section and Supersection; and translation proper-
ties and pointers to a level 2 table for a large page or a small page.

 ■ Level 2 table: Holds level 2 descriptors that contain the base address and trans-
lation properties for a Small page or a Large page. A level 2 table requires 1 
kB of memory.

The  memory-  management unit (MMU) translates virtual addresses generated 
by the processor into physical addresses to access main memory, and also derives 
and checks the access permission. Translations occur as the result of a TLB miss, 
and start with a  first-  level fetch. A  section-  mapped access only requires a  first-  level 
fetch, whereas a  page-  mapped access also requires a  second-  level fetch.

Figure 8.23 shows the  two-  level address translation process for small pages. 
There is a single level 1 (L1) page table with 4K 32-bit entries. Each L1 entry points 
to a level 2 (L2) page table with 256 32-bit entries. Each of the L2 entry points to a 
4-kB page in main memory. The 32-bit virtual address is interpreted as follows: The 
most significant 12 bits are an index into the L1 page table. The next 8 bits are an 
index into the relevant L2 page table. The least significant 12 bits index a byte in the 
relevant page in main memory.

A similar  two-  page lookup procedure is used for large pages. For sections and 
supersection, only the L1 page table lookup is required.

 Memory-  Management Formats

To get a better understanding of the ARM memory management scheme, we con-
sider the key formats, as shown in Figure 8.24. The control bits shown in this figure 
are defined in Table 8.6.
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For the L1 table, each entry is a descriptor of how its associated 1-MB virtual 
address range is mapped. Each entry has one of four alternative formats:

 ■ Bits [1:0] = 00:  The associated virtual addresses are unmapped, and attempts 
to access them generate a translation fault.

 ■ Bits [1:0] = 01:  The entry gives the physical address of an L2 page table, 
which specifies how the associated virtual address range is mapped.

 ■ Bits [1:0] = 01: and bit 19 = 0:  The entry is a section descriptor for its asso-
ciated virtual addresses.

 ■ Bits [1:0] = 01: and bit 19 = 1:  The entry is a supersection descriptor for its 
associated virtual addresses.

Entries with bits [1:0] = 11 are reserved.
For memory structured into pages, a  two-  level page table access is required. 

Bits [31:10] of the L1 page entry contain a pointer to a L2 page table. For small 
pages, the L2 entry contains a 20-bit pointer to the base address of a 4-kB page in 
main memory.

For large pages, the structure is more complex. As with virtual addresses for 
small pages, a virtual address for a large page structure includes a 12-bit index into 
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the level one table and an 8-bit index into the L2 table. For the 64-kB large pages, 
the page index portion of the virtual address must be 16 bits. To accommodate all 
of these bits in a 32-bit format, there is a 4-bit overlap between the page index field 
and the L2 table index field. ARM accommodates this overlap by requiring that each 
page table entry in a L2 page table that supports large pages be replicated 16 times. 
In effect, the size of the L2 page table is reduced from 256 entries to 16 entries, if all 
of the entries refer to large pages. However, a given L2 page can service a mixture of 
large and small pages, hence the need for the replication for large page entries.
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For memory structured into sections or supersections, a  one-  level page table 
access is required. For sections, bits [31:20] of the L1 entry contain a 12-bit pointer 
to the base of the 1-MB section in main memory.

For supersections, bits [31:24] of the L1 entry contain an 8-bit pointer to the 
base of the 16-MB section in main memory. As with large pages, a page table entry 
replication is required. In the case of supersections, the L1 table index portion of 
the virtual address overlaps by 4 bits with the supersection index portion of the vir-
tual address Therefore, 16 identical L1 page table entries are required.

The range of physical address space can be expanded by up to eight additional 
address bits (bits [23:20] and [8:5]). The number of additional bits is implementation 
dependent. These additional bits can be interpreted as extending the size of phys-
ical memory by as much as a factor of 28 = 256. Thus, physical memory may in fact 
be as much as 256 times as large as the memory space available to each individual 
process.

Access Control

The AP access control bits in each table entry control access to a region of memory 
by a given process. A region of memory can be designated as no access, read only, or 
 read-  write. Further, the region can be designated as privileged access only, reserved 
for use by the OS and not by applications.

ARM also employs the concept of a domain, which is a collection of sec-
tions and/or pages that have particular access permissions. The ARM architecture 

Table 8.6 ARM  Memory-  Management Parameters

Access Permission (AP), Access Permission Extension (APx)

These bits control access to the corresponding memory region. If an access is made to an area of memory 
without the required permissions, a Permission Fault is raised.

Bufferable (B) bit

Determines, with the TEX bits, how the write buffer is used for cacheable memory.

Cacheable (C) bit

Determines whether this memory region can be mapped through the cache.

Domain

Collection of memory regions. Access control can be applied on the basis of domain.

not Global (nG)

Determines whether the translation should be marked as global (0), or process specific (1).

Shared (S)

Determines whether the translation is for  not-  shared (0), or shared (1) memory.

SBZ

Should be zero.

Type Extension (TEx)

These bits, together with the B and C bits, control accesses to the caches, how the write buffer is used, and 
if the memory region is shareable and therefore must be kept coherent.

Execute Never (xN)

Determines whether the region is executable (0) or not executable (1).
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Review Questions

 8.1 What is an operating system?
 8.2 List and briefly define the key services provided by an OS.
 8.3 List and briefly define the major types of OS scheduling.
 8.4 What is the difference between a process and a program?
 8.5 What is the purpose of swapping?
 8.6 If a process may be dynamically assigned to different locations in main memory, what 

is the implication for the addressing mechanism?
 8.7 Is it necessary for all of the pages of a process to be in main memory while the process 

is executing?

supports 16 domains. The domain feature allows multiple processes to use the same 
translation tables while maintaining some protection from each other.

Each page table entry and TLB entry contains a field that specifies which 
domain the entry is in. A 2-bit field in the Domain Access Control Register controls 
access to each domain. Each field allows the access to an entire domain to be ena-
bled and disabled very quickly, so that whole memory areas can be swapped in and 
out of virtual memory very efficiently. Two kinds of domain access are supported:

 ■ Clients: Users of domains (execute programs and access data) that must 
observe the access permissions of the individual sections and/or pages that 
make up that domain.

 ■ Managers: Control the behavior of the domain (the current sections and pages 
in the domain, and the domain access), and bypass the access permissions for 
table entries in that domain.

One program can be a client of some domains, and a manager of some other 
domains, and have no access to the remaining domains. This allows very flexible 
memory protection for programs that access different memory resources.

 8.6 Key termS, review QueStiOnS, and prOblemS

Key Terms

batch system
demand paging
interactive operating system
interrupt
job control language (JCL)
kernel
logical address
 long-  term scheduling
 medium-  term scheduling
memory management
memory protection
multiprogramming

multitasking
nucleus
operating system (OS)
page table
paging
partitioning
physical address
privileged instruction
process
process control block
process state
real memory

resident monitor
segmentation
 short-  term scheduling
swapping
thrashing
 time-  sharing system
translation lookaside  

buffer (TLB)
utility
virtual memory
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 8.8 Must the pages of a process in main memory be contiguous?
 8.9 Is it necessary for the pages of a process in main memory to be in sequential order?
 8.10 What is the purpose of a translation lookaside buffer?

Problems

 8.1 Suppose that we have a multiprogrammed computer in which each job has identical 
characteristics. In one computation period, T, for a job, half the time is spent in I/O 
and the other half in processor activity. Each job runs for a total of N periods. Assume 
that a simple  round-  robin priority is used, and that I/O operations can overlap with 
processor operation. Define the following quantities:

 ■ Turnaround time = actual to complete a job.
 ■ Throughput = average number of jobs completed per time period T.
 ■ Processor utilization = percentage of time that the processor is active (not waiting).

Compute these quantities for one, two, and four simultaneous jobs, assuming that the 
period T is distributed in each of the following ways:
a. I/O first half, processor second half;
b. I/O first and fourth quarters, processor second and third quarters.

 8.2 An I/ O-  bound program is one that, if run alone, would spend more time waiting for 
I/O than using the processor. A  processor-  bound program is the opposite. Suppose a 
 short-  term scheduling algorithm favors those programs that have used little processor 
time in the recent past. Explain why this algorithm favors I/ O-  bound programs and 
yet does not permanently deny processor time to  processor-  bound programs.

 8.3 A program computes the row sums

Ci = a
n

j=1
aij

of an array A that is 100 by 100. Assume that the computer uses demand paging with a 
page size of 1000 words, and that the amount of main memory allotted for data is five 
page frames. Is there any difference in the page fault rate if A were stored in virtual 
memory by rows or columns? Explain.

 8.4 Consider a fixed partitioning scheme with  equal-  size partitions of 216 bytes and a total 
main memory size of 224 bytes. A process table is maintained that includes a pointer to 
a partition for each resident process. How many bits are required for the pointer?

 8.5 Consider a dynamic partitioning scheme. Show that, on average, the memory contains 
half as many holes as segments.

 8.6 Suppose the page table for the process currently executing on the processor looks like 
the following. All numbers are decimal, everything is numbered starting from zero, 
and all addresses are memory byte addresses. The page size is 1024 bytes.

Virtual page 
number Valid bit Reference bit Modify bit

Page frame 
number

0 1 1 0 4

1 1 1 1 7

2 0 0 0 —

3 1 0 0 2

4 0 0 0 —

5 1 0 1 0
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a. Describe exactly how, in general, a virtual address generated by the CPU is trans-
lated into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses corre-
spond to? (Do not try to handle any page faults, if any.)

i. 1052
ii. 2221

iii. 5499
 8.7 Give reasons that the page size in a virtual memory system should be neither very 

small nor very large.
 8.8 A process references five pages, A, B, C, D, and E, in the following order:

A; B; C; D; A; B; E; A; B; C; D; E
Assume that the replacement algorithm is  first-  in-  first-  out and find the number of 
page transfers during this sequence of references starting with an empty main mem-
ory with three page frames. Repeat for four page frames.

 8.9 The following sequence of virtual page numbers is encountered in the course of exe-
cution on a computer with virtual memory:

3 4 2 6 4 7 1 3 2 6 3 5 1 2 3
Assume that a least recently used page replacement policy is adopted. Plot a graph of 
page hit ratio (fraction of page references in which the page is in main memory) as a 
function of  main-  memory page capacity n for 1 … n … 8. Assume that main memory 
is initially empty.

 8.10 In the VAX computer, user page tables are located at virtual addresses in the system 
space. What is the advantage of having user page tables in virtual rather than main 
memory? What is the disadvantage?

 8.11 Suppose the program statement

 for (i = 1; i 6 = n; i + )

 a[i] = b[i] + c[i];

is executed in a memory with page size of 1000 words. Let n = 1000. Using a machine 
that has a full range of  register-  to-  register instructions and employs index registers, 
write a hypothetical program to implement the foregoing statement. Then show the 
sequence of page references during execution.

 8.12 The IBM System/370 architecture uses a  two-  level memory structure and refers to the 
two levels as segments and pages, although the segmentation approach lacks many 
of the features described earlier in this chapter. For the basic 370 architecture, the 
page size may be either 2 Kbytes or 4 Kbytes, and the segment size is fixed at either 
64 Kbytes or 1 Mbyte. For the 370/XA and 370/ESA architectures, the page size is 4 
Kbytes and the segment size is 1 Mbyte. Which advantages of segmentation does this 
scheme lack? What is the benefit of segmentation for the 370?

 8.13 Consider a computer system with both segmentation and paging. When a segment is 
in memory, some words are wasted on the last page. In addition, for a segment size s 
and a page size p, there are s/p page table entries. The smaller the page size, the less 
waste in the last page of the segment, but the larger the page table. What page size 
minimizes the total overhead?

 8.14 A computer has a cache, main memory, and a disk used for virtual memory. If a refer-
enced word is in the cache, 20 ns are required to access it. If it is in main memory but 
not in the cache, 60 ns are needed to load it into the cache, and then the reference is 
started again. If the word is not in main memory, 12 ms are required to fetch the word 
from disk, followed by 60 ns to copy it to the cache, and then the reference is started 
again. The cache hit ratio is 0.9 and the  main-  memory hit ratio is 0.6. What is the aver-
age time in ns required to access a referenced word on this system?

 8.15 Assume a task is divided into four  equal-  sized segments and that the system builds an 
 eight-  entry page descriptor table for each segment. Thus, the system has a combina-
tion of segmentation and paging. Assume also that the page size is 2 Kbytes.
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a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task. 

What is the format of the logical address that the task generates for it? What is the 
maximum physical address space for the system?

 8.16 Assume a microprocessor capable of accessing up to 232 bytes of physical main mem-
ory. It implements one segmented logical address space of maximum size 231 bytes. 
Each instruction contains the whole  two-  part address. External memory management 
units (MMUs) are used, whose management scheme assigns contiguous blocks of 
physical memory of fixed size 222 bytes to segments. The starting physical address of a 
segment is always divisible by 1024. Show the detailed interconnection of the external 
mapping mechanism that converts logical addresses to physical addresses using the 
appropriate number of MMUs, and show the detailed internal structure of an MMU 
(assuming that each MMU contains a 128-entry directly mapped segment descriptor 
cache) and how each MMU is selected.

 8.17 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each) 
mapped into a 1-Mbyte physical memory space.
a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights” bits)?
c. What is the effect on the page table if the physical memory space is reduced by 

half?
 8.18 In IBM’s mainframe operating system, OS/390, one of the major modules in the ker-

nel is the System Resource Manager (SRM). This module is responsible for the alloca-
tion of resources among address spaces (processes). The SRM gives OS/390 a degree 
of sophistication unique among operating systems. No other mainframe OS, and cer-
tainly no other type of OS, can match the functions performed by SRM. The concept 
of resource includes processor, real memory, and I/O channels. SRM accumulates sta-
tistics pertaining to utilization of processor, channel, and various key data structures. 
Its purpose is to provide optimum performance based on performance monitoring 
and analysis. The installation sets forth various performance objectives, and these 
serve as guidance to the SRM, which dynamically modifies installation and job perfor-
mance characteristics based on system utilization. In turn, the SRM provides reports 
that enable the trained operator to refine the configuration and parameter settings to 
improve user service.

This problem concerns one example of SRM activity. Real memory is divided 
into  equal-  sized blocks called frames, of which there may be many thousands. Each 
frame can hold a block of virtual memory referred to as a page. SRM receives control 
approximately 20 times per second and inspects each and every page frame. If the 
page has not been referenced or changed, a counter is incremented by 1. Over time, 
SRM averages these numbers to determine the average number of seconds that a 
page frame in the system goes untouched. What might be the purpose of this and what 
action might SRM take?

 8.19 For each of the ARM virtual address formats shown in Figure 8.24, show the physical 
address format.

 8.20 Draw a figure similar to Figure 8.23 for ARM virtual memory translation when main 
memory is divided into sections.
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 9.1 THE DECIMAL SYSTEM

In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to 
represent numbers, and refer to the system as the decimal system. Consider what the 
number 83 means. It means eight tens plus three:

83 = (8 * 10) + 3

The number 4728 means four thousands, seven hundreds, two tens, plus eight:

4728 = (4 * 1000) + (7 * 100) + (2 * 10) + 8

The decimal system is said to have a base, or radix, of 10. This means that each digit 
in the number is multiplied by 10 raised to a power corresponding to that digit’s 
position:

 83 = (8 * 101) + (3 * 100)
 4728 = (4 * 103) + (7 * 102) + (2 * 101) + (8 * 100)

The same principle holds for decimal fractions, but negative powers of 10 are 
used. Thus, the decimal fraction 0.256 stands for 2 tenths plus 5 hundredths plus 6 
thousandths:

0.256 = (2 * 10-1) + (5 * 10-2) + (6 * 10-3)

A number with both an integer and fractional part has digits raised to both 
positive and negative powers of 10:

442.256 = (4 * 102) + (4 + 101) + (2 * 100) + (2 * 10-1) + (5 * 10-2)

+ (6 * 10-3)

In any number, the leftmost digit is referred to as the most significant digit, 
because it carries the highest value. The rightmost digit is called the least significant 
digit. In the preceding decimal number, the 4 on the left is the most significant digit 
and the 6 on the right is the least significant digit.

Table 9.1 shows the relationship between each digit position and the value 
assigned to that position. Each position is weighted 10 times the value of the  position 
to the right and one-tenth the value of the position to the left. Thus, positions rep-
resent successive powers of 10. If we number the positions as indicated in Table 9.1, 
then position i is weighted by the value 10i.

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the basic concepts and terminology of positional number 
systems.

 r Explain the techniques for converting between decimal and binary for both 
integers and fractions.

 r Explain the rationale for using hexadecimal notation.
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In general, for the decimal representation of X = 5c d2d1d0.d-1d-2d-3 c6, the 
value of X is

 X = a
i

(di * 10i) (9.1)

One other observation is worth making. Consider the number 509 and ask 
how many tens are in the number. Because there is a 0 in the tens position, you 
might be tempted to say there are no tens. But there are in fact 50 tens. What the 0 
in the tens position means is that there are no tens left over that cannot be lumped 
into the hundreds, or thousands, and so on. Therefore, because each position holds 
only the leftover numbers that cannot be lumped into higher positions, each digit 
position needs to have a value of no greater than nine. Nine is the maximum value 
that a position can hold before it flips over into the next higher position.

 9.2 POSITIONAL NUMBER SYSTEMS

In a positional number system, each number is represented by a string of digits in 
which each digit position i has an associated weight ri, where r is the radix, or base, 
of the number system. The general form of a number in such a system with radix r is

(c a3a2a1a0.a-1a-2a-3c)r

where the value of any digit ai is an integer in the range 0 … ai 6 r. The dot between 
a0 and a-1 is called the radix point. The number is defined to have the value

c+ a3r
3 + a2r

2 + a1r
1 + a0r

0 + a-1r
-1 + a-2r

-2 + a-3r
-3 + c

 = a
i

(ai * bi) (9.2)

The decimal system, then, is a special case of a positional number system with 
radix 10 and with digits in the range 0 through 9.

As an example of another positional system, consider the system with base 7. 
Table 9.2 shows the weighting value for positions -1 through 4. In each position, 
the digit value ranges from 0 through 6.

Table 9.1 Positional Interpretation of a Decimal Number

4 7 2 2 5 6

100s 10s 1s tenths hundredths thousandths

102 101 100 10-1 10-2 10-3

position 2 position 1 position 0 position –1 position –2 position –3

Table 9.2 Positional Interpretation of a Number in Base 7

Position 4 3 2 1 0 -1

Value in Exponential Form 74 73 72 71 70 7-1

Decimal Value 2401 343 49 7 1 1/7
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 9.3 THE BINARY SYSTEM

In the decimal system, 10 different digits are used to represent numbers with a base 
of 10. In the binary system, we have only two digits, 1 and 0. Thus, numbers in the 
binary system are represented to base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate 
its base. For example, 8310 and 472810 are numbers represented in decimal notation 
or, more briefly, decimal numbers. The digits 1 and 0 in binary notation have the 
same meaning as in decimal notation:

 02 = 010

 12 = 110

To represent larger numbers, as with decimal notation, each digit in a binary num-
ber has a value depending on its position:

 102 = (1 * 21) + (0 * 20) = 210

 112 = (1 * 21) + (1 * 20) = 310

 1002 = (1 * 22) + (0 * 21) + (0 * 20) = 410

and so on. Again, fractional values are represented with negative powers of the 
radix:

1001.101 = 23 + 20 + 2-1 + 2-3 = 9.62510

In general, for the binary representation of Y = 5c b2b1b0.b-1b-2b-3c6 , the 
value of Y is

 Y = a
i

(bi * 2i) (9.3)

 9.4 CONVERTING BETWEEN BINARY AND DECIMAL

It is a simple matter to convert a number from binary notation to decimal notation. 
In fact, we showed several examples in the previous subsection. All that is required 
is to multiply each binary digit by the appropriate power of 2 and add the results.

To convert from decimal to binary, the integer and fractional parts are han-
dled separately.

Integers

For the integer part, recall that in binary notation, an integer represented by

bm - 1bm - 2 cb2b1b0            bi = 0  or  1

has the value

(bm - 1 * 2m - 1) + (bm - 2 * 2m - 2) + c+ (b1 * 21) + b0
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Suppose it is required to convert a decimal integer N into binary form. If we 
divide N by 2, in the decimal system, and obtain a quotient N1 and a remainder R0, 
we may write

N = 2 * N1 + R0           R0 = 0  or  1

Next, we divide the quotient N1 by 2. Assume that the new quotient is N2 and the 
new remainder R1. Then

N1 = 2 * N2 + R1           R1 = 0  or  1

so that

N = 2(2N2 + R1) + R0 = (N2 * 22) + (R1 * 21) + R0

If next

N2 = 2N3 + R2

we have

N = (N3 * 23) + (R2 * 22) + (R1 * 21) + R0

Because N 7 N1 7 N2 c , continuing this sequence will eventually produce 
a quotient Nm - 1 = 1 (except for the decimal integers 0 and 1, whose binary 
equivalents are 0 and 1, respectively) and a remainder Rm - 2, which is 0 or 1. 
Then

N = (1 * 2m - 1) + (Rm - 2 * 2m - 2) + c + (R2 * 22) + (R1 * 21) + R0

which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated 
divisions by 2. The remainders and the final quotient, 1, give us, in order of increas-
ing significance, the binary digits of N. Figure 9.1 shows two examples.

Fractions

For the fractional part, recall that in binary notation, a number with a value between 
0 and 1 is represented by

0.b-1b-2b-3 c                bi = 0  or  1

and has the value

(b-1 * 2-1) + (b-2 * 2-2) + (b-3 * 2-3) c

This can be rewritten as

2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 +  c) c))

This expression suggests a technique for conversion. Suppose we want to con-
vert the number F(0 6 F 6 1) from decimal to binary notation. We know that F 
can be expressed in the form

F = 2-1 * (b-1 + 2-1 * (b-2 + 2-1 * (b-3 +  c)  c))

If we multiply F by 2, we obtain,

2 * F = b-1 + 2-1 * (b-2 + 2-1 * (b-3 + c) c)
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From this equation, we see that the integer part of (2 * F ), which must be 
either 0 or 1 because 0 6 F 6 1, is simply b-1. So we can say (2 * F ) = b-1 + F1, 
where 0 6 F1 6 1 and where

F1 = 2-1 * (b-2 + 2-1 * (b-3 + 2-1 * (b-4 + c) c))

To find b-2, we repeat the process. Therefore, the conversion algorithm involves 
repeated multiplication by 2. At each step, the fractional part of the number from 
the previous step is multiplied by 2. The digit to the left of the decimal point in the 
product will be 0 or 1 and contributes to the binary representation, starting with the 
most significant digit. The fractional part of the product is used as the multiplicand 
in the next step. Figure 9.2 shows two examples.

This process is not necessarily exact; that is, a decimal fraction with a finite 
number of digits may require a binary fraction with an infinite number of digits. In 
such cases, the conversion algorithm is usually halted after a prespecified number of 
steps, depending on the desired accuracy.

(a) 1110

Quotient
5= 1

Remainder
11
2

2= 1
5
2

1= 0
2
2

0= 1

10112 = 1110

1
2

(b) 2110

Quotient

5= 0

Remainder

10
2

2= 1
5
2

1= 0
2
2

0= 1

101012 = 2110

1
2

10= 1
21
2

Figure 9.1 Examples of Converting from Decimal 
Notation to Binary Notation for Integers
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 9.5 HEXADECIMAL NOTATION

Because of the inherent binary nature of digital computer components, all forms of 
data within computers are represented by various binary codes. However, no matter 
how convenient the binary system is for computers, it is exceedingly cumbersome 
for human beings. Consequently, most computer professionals who must spend time 
working with the actual raw data in the computer prefer a more compact notation.

What notation to use? One possibility is the decimal notation. This is certainly 
more compact than binary notation, but it is awkward because of the tediousness of 
converting between base 2 and base 10.

Instead, a notation known as hexadecimal has been adopted. Binary digits are 
grouped into sets of four bits, called a nibble. Each possible combination of four 
binary digits is given a symbol, as follows:

 0000 = 0       0100 = 4       1000 = 8       1100 = C

 0001 = 1       0101 = 5       1001 = 9       1101 = D

 0010 = 2       0110 = 6       1010 = A       1110 = E

 0011 = 3       0111 = 7       1011 = B       1111 = F

Product

0.81  2 = 1.62 1

Integer Part

0.62  2 = 1.24 1

0.24  2 = 0.48 0

0.48  2 = 0.96

0.96  2 = 1.92

0.92  2 = 1.84

0

1

1

0.1100112

(a) 0.8110 = 0.1100112  (approximately)

Product

0.25  2 = 0.5 0

Integer Part

0.5   2 = 1.0 1

0.012

(b) 0.2510 = 0.012 (exactly)

*

*

*

*

*

*

*

*

Figure 9.2 Examples of Converting from Decimal 
Notation to Binary Notation for Fractions
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Because 16 symbols are used, the notation is called hexadecimal, and the 16 symbols 
are the hexadecimal digits.

A sequence of hexadecimal digits can be thought of as representing an integer 
in base 16 (Table 9.3). Thus,

 2C16 = (216 * 161) + (C16 * 160)

 = (210 * 161) + (1210 * 160) = 44

Thus, viewing hexadecimal numbers as numbers in the positional number sys-
tem with base 16, we have

 Z = a
i

(hi * 16i) (9.4)

where 16 is the base and each hexadecimal digit hi is in the decimal range 0 … hi 6 15, 
equivalent to the hexadecimal range 0 … hi … F.

Table 9.3 Decimal, Binary, and Hexadecimal

Decimal (base 10) Binary (base 2) Hexadecimal (base 16)

  0 0000 0

  1 0001 1

  2 0010 2

  3 0011 3

  4 0100 4

  5 0101 5

  6 0110 6

  7 0111 7

  8 1000 8

  9 1001 9

 10 1010  A

 11 1011  B

 12 1100  C

 13 1101  D

 14 1110  E

 15 1111  F

 16 0001 0000 10

 17 0001 0001 11

 18 0001 0010 12

 31 0001 1111 1F

100 0110 0100 64

255 1111 1111 FF

256 0001 0000 0000 100
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Hexadecimal notation is not only used for representing integers but also used 
as a concise notation for representing any sequence of binary digits, whether they 
represent text, numbers, or some other type of data. The reasons for using hexadec-
imal notation are as follows:

1. It is more compact than binary notation.

2. In most computers, binary data occupy some multiple of 4 bits, and hence 
some multiple of a single hexadecimal digit.

3. It is extremely easy to convert between binary and hexadecimal notation.

As an example of the last point, consider the binary string 110111100001. This 
is equivalent to

1101 1110 0001 = DE116

  D    E     1

This process is performed so naturally that an experienced programmer can 
mentally convert visual representations of binary data to their hexadecimal equiva-
lent without written effort.

 9.6 KEY TERMS AND PROBLEMS

Key Terms

base
binary
decimal
fraction

hexadecimal
integer
least significant digit
most significant digit

nibble
positional number system
radix
radix point

Problems

 9.1 Count from 1 to 2010 in the following bases:
a. 8 b. 6 c. 5 d. 3

 9.2 Order the numbers (1.1)2, (1.4)10,  and  (1.5)16 from smallest to largest.
 9.3 Perform the indicated base conversions:

a. 548 to base 5 b. 3124 to base 7 c. 5206 to base 7 d. 122123 to base 9
 9.4 What generalizations can you draw about converting a number from one base to a 

power of that base; e.g., from base 3 to base 9 (32) or from base 2 to base 4 (22) or base 
8 (23)?

 9.5 Convert the following binary numbers to their decimal equivalents:
a. 001100 b. 000011 c. 011100 d. 111100 e. 101010

 9.6 Convert the following binary numbers to their decimal equivalents:
a. 11100.011 b. 110011.10011 c. 1010101010.1

 9.7 Convert the following decimal numbers to their binary equivalents:
a. 64 b. 100 c. 111 d. 145 e. 255

 9.8 Convert the following decimal numbers to their binary equivalents:
a. 34.75 b. 25.25 c. 27.1875
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 9.9 Prove that every real number with a terminating binary representation (finite number 
of digits to the right of the binary point) also has a terminating decimal representation 
(finite number of digits to the right of the decimal point).

 9.10 Express the following octal numbers (number with radix 8) in hexadecimal notation:
a. 12 b. 5655 c. 2550276 d. 76545336 e. 3726755

 9.11 Convert the following hexadecimal numbers to their decimal equivalents:
a. C b. 9F c. D52 d. 67E e. ABCD

 9.12 Convert the following hexadecimal numbers to their decimal equivalents:
a. F.4 b. D3.E c. 1111.1 d. 888.8 e. EBA.C

 9.13 Convert the following decimal numbers to their hexadecimal equivalents:
a. 16 b. 80 c. 2560 d. 3000 e. 62,500

 9.14 Convert the following decimal numbers to their hexadecimal equivalents:
a. 204.125 b. 255.875 c. 631.25 d. 10000.00390625

 9.15 Convert the following hexadecimal numbers to their binary equivalents:
a. E b. 1C c. A64 d. 1F.C e. 239.4

 9.16 Convert the following binary numbers to their hexadecimal equivalents:
a. 1001.1111 b. 110101.011001 c. 10100111.111011
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We begin our examination of the processor with an overview of the arithmetic and 
logic unit (ALU). The chapter then focuses on the most complex aspect of the ALU, 
computer arithmetic. The implementations of simple logic and arithmetic functions 
in digital logic are described in Chapter 11, and logic functions that are part of the 
ALU are described in Chapter 12.

Computer arithmetic is commonly performed on two very different types of 
numbers: integer and floating point. In both cases, the representation chosen is a cru-
cial design issue and is treated first, followed by a discussion of arithmetic operations.

This chapter includes a number of examples, each of which is highlighted in a 
shaded box.

 10.1 The AriThmeTic And Logic UniT

The ALU is that part of the computer that actually performs arithmetic and logical 
operations on data. All of the other elements of the computer system—control unit, 
registers, memory, I/O—are there mainly to bring data into the ALU for it to process 
and then to take the results back out. We have, in a sense, reached the core or essence 
of a computer when we consider the ALU.

An ALU and indeed, all electronic components in the computer, are based on 
the use of simple digital logic devices that can store binary digits and perform simple 
Boolean logic operations.

Figure 10.1 indicates, in general terms, how the ALU is interconnected with the 
rest of the processor. Operands for arithmetic and logic operations are presented to 
the ALU in registers, and the results of an operation are stored in registers. These 
registers are temporary storage locations within the processor that are connected 
by signal paths to the ALU (e.g., see Figure 2.3). The ALU may also set flags as the 
result of an operation. For example, an overflow flag is set to 1 if the result of a com-
putation exceeds the length of the register into which it is to be stored.

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the distinction between the way in which numbers are represented 
(the binary format) and the algorithms used for the basic arithmetic operations.

 r Explain twos complement representation.
 r Present an overview of the techniques for doing basic arithmetic operation in 
two complement notation.

 r Understand the use of significand, base, and exponent in the representation 
of floating-point numbers.

 r Present an overview of the IEEE 754 standard for floating-point 
representation.

 r Understand some of the key concepts related to floating-point arithmetic, 
including guard bits, rounding, subnormal numbers, underflow and overflow.
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The flag values are also stored in registers within the processor. The processor pro-
vides signals that control the operation of the ALU and the movement of the data 
into and out of the ALU.

 10.2 inTeger represenTATion

In the binary number system,1 arbitrary numbers can be represented with just the 
digits zero and one, the minus sign (for negative numbers), and the period, or radix 
point (for numbers with a fractional component).

-1101.01012 = -13.312510

For purposes of computer storage and processing, however, we do not have the ben-
efit of special symbols for the minus sign and radix point. Only binary digits (0 and 
1) may be used to represent numbers. If we are limited to nonnegative integers, the 
representation is straightforward.

ALU

Control
signals

Operand
registers

Flags

Result
registers

Figure 10.1 ALU Inputs and Outputs

1See Chapter 9 for a basic refresher on number systems (decimal, binary, hexadecimal).

An 8-bit word can represent the numbers from 0 to 255, such as

      00000000 =   0

      00000001 =   1

     00101001 =  41

     10000000 = 128

    11111111 = 255

In general, if an n-bit sequence of binary digits an - 1an - 2 c   a1a0 is inter-
preted as an unsigned integer A, its value is

A = a
n - 1

i = 0
2iai
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Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as pos-
itive integers, all of which involve treating the most significant (leftmost) bit in the 
word as a sign bit. If the sign bit is 0, the number is positive; if the sign bit is 1, the 
number is negative.

The simplest form of representation that employs a sign bit is the sign-magni-
tude representation. In an n-bit word, the rightmost n - 1 bits hold the magnitude 
of the integer.

 +18  = 00010010

 -18  = 10010010  (sign  magnitude)

The general case can be expressed as follows:

Sign Magnitude A = µ
a
n - 2

i = 0
 2

iai  if an - 1 = 0

- a
n - 2

i = 0
2iai  if an - 1 = 1

 (10.1)

There are several drawbacks to sign-magnitude representation. One is that 
addition and subtraction require a consideration of both the signs of the numbers 
and their relative magnitudes to carry out the required operation. This should 
become clear in the discussion in Section 10.3. Another drawback is that there are 
two representations of 0:

 +  010  = 00000000

 -  010  = 10000000  (sign  magnitude)

This is inconvenient because it is slightly more difficult to test for 0 (an operation 
performed frequently on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in 
implementing the integer portion of the ALU. Instead, the most common scheme is 
twos complement representation.2

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit 
as a sign bit, making it easy to test whether an integer is positive or negative. It dif-
fers from the use of the sign-magnitude representation in the way that the other bits 
are interpreted. Table 10.1 highlights key characteristics of twos complement repre-
sentation and arithmetic, which are elaborated in this section and the next.

Most treatments of twos complement representation focus on the rules for 
producing negative numbers, with no formal proof that the scheme is valid. Instead, 

2In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the 
practice used in standards documents and omit the apostrophe (e.g., IEEE Std 100-1992, The New IEEE 
Standard Dictionary of Electrical and Electronics Terms).
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our presentation of twos complement integers in this section and in Section 10.3 is 
based on [DATT93], which suggests that twos complement representation is best 
understood by defining it in terms of a weighted sum of bits, as we did previously 
for unsigned and sign-magnitude representations. The advantage of this treatment 
is that it does not leave any lingering doubt that the rules for arithmetic operations 
in twos complement notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is pos-
itive, then the sign bit, an - 1, is zero. The remaining bits represent the magnitude of 
the number in the same fashion as for sign magnitude:

A = a
n - 2

i = 0
2iai                  for A Ú 0

The number zero is identified as positive and therefore has a 0 sign bit and a magni-
tude of all 0s. We can see that the range of positive integers that may be represented 
is from 0 (all of the magnitude bits are 0) through 2n - 1 - 1 (all of the magnitude 
bits are 1). Any larger number would require more bits.

Now, for a negative number A(A 6 0), the sign bit, an - 1, is one. The remain-
ing n - 1 bits can take on any one of 2n - 1 values. Therefore, the range of negative 
integers that can be represented is from -1 to -2n - 1. We would like to assign the bit 
values to negative integers in such a way that arithmetic can be handled in a straight-
forward fashion, similar to unsigned integer arithmetic. In unsigned integer represen-
tation, to compute the value of an integer from the bit representation, the weight of the 
most significant bit is +2n - 1. For a representation with a sign bit, it turns out that the 
desired arithmetic properties are achieved, as we will see in Section 10.3, if the weight 
of the most significant bit is -2n - 1. This is the convention used in twos complement 
representation, yielding the following expression for negative numbers:

Twos Complement  A = -2n - 1an - 1 + a
n - 2

i = 0
2iai (10.2)

Equation (10.2) defines the twos complement representation for both positive and 
negative numbers. For an - 1 = 0, the term -2n - 1an - 1 = 0 and the equation defines 

Table 10.1 Characteristics of Twos Complement Representation and Arithmetic

Range -2n - 1  through  2n - 1 - 1

Number of Representations  
of Zero

One

Negation Take the Boolean complement of each bit of the corresponding 
positive number, then add 1 to the resulting bit pattern viewed 
as an unsigned integer.

Expansion of Bit Length Add additional bit positions to the left and fill in with the value 
of the original sign bit.

Overflow Rule If two numbers with the same sign (both positive or both nega-
tive) are added, then overflow occurs if and only if the result has 
the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add 
it to A.
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a nonnegative integer. When an - 1 = 1, the term 2n - 1 is subtracted from the summa-
tion term, yielding a negative integer.

Table 10.2 compares the sign-magnitude and twos complement representa-
tions for 4-bit integers. Although twos complement is an awkward representation 
from the human point of view, we will see that it facilitates the most important arith-
metic operations, addition and subtraction. For this reason, it is almost universally 
used as the processor representation for integers.

A useful illustration of the nature of twos complement representation is a 
value box, in which the value on the far right in the box is 1 (20) and each succeeding 
position to the left is double in value, until the leftmost position, which is negated. 
As you can see in Figure 10.2a, the most negative twos complement number that 
can be represented is -2n - 1; if any of the bits other than the sign bit is one, it adds a 
positive amount to the number. Also, it is clear that a negative number must have a 
1 at its leftmost position and a positive number must have a 0 in that position. Thus, 
the largest positive number is a 0 followed by all 1s, which equals 2n - 1 - 1.

The rest of Figure 10.2 illustrates the use of the value box to convert from twos 
complement to decimal and from decimal to twos complement.

Range Extension

It is sometimes desirable to take an n-bit integer and store it in m bits, where m 7 n.  
This expansion of bit length is referred to as range extension, because the range of 
numbers that can be expressed is extended by increasing the bit length.

Table 10.2 Alternative Representations for 4-Bit Integers

Decimal 
Representation

Sign-Magnitude 
Representation

Twos Complement 
Representation

Biased 
Representation

+8 — — 1111

+7 0111 0111 1110

+6 0110 0110 1101

+5 0101 0101 1100

+4 0100 0100 1011

+3 0011 0011 1010

+2 0010 0010 1001

+1 0001 0001 1000

+0 0000 0000 0111

-0 1000 — —

-1 1001 1111 0110

-2 1010 1110 0101

-3 1011 1101 0100

-4 1100 1100 0011

-5 1101 1011 0010

-6 1110 1010 0001

-7 1111 1001 0000

-8 — 1000 —
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In sign-magnitude notation, this is easily accomplished: simply move the sign bit to 
the new leftmost position and fill in with zeros.

+18 = 00010010 (sign magnitude, 8 bits)

+18 = 0000000000010010 (sign magnitude, 16 bits)

-18 = 10010010 (sign magnitude, 8 bits)

-18 = 1000000000010010 (sign magnitude, 16 bits)

This procedure will not work for twos complement negative integers. Using the 
same example,

−128 64 32 16 8 4 2 1

(a) An eight-position twos complement value box

−128 64 32 16 8 4 2 1

−128      +2 +1 = −125
(b) Convert binary 10000011 to decimal

−128 64 32 16 8 4 2 1

    1 0 0 0 0 0 1 1

    1 0 0 0 1 0 0 0

−120 = −128              +8
(c) Convert decimal −120 to binary

Figure 10.2 Use of a Value Box for Conversion between 
Twos Complement Binary and Decimal

+18 = 00010010 (twos complement, 8 bits)

+18 = 0000000000010010 (twos complement, 16 bits)

-18 = 11101110 (twos complement, 8 bits)

- 32,658 = 1000000001101110 (twos complement, 16 bits)

The next to last line is easily seen using the value box of Figure 10.2. The last line 
can be verified using Equation (10.2) or a 16-bit value box.

Instead, the rule for twos complement integers is to move the sign bit to the 
new leftmost position and fill in with copies of the sign bit. For positive numbers, 
fill in with zeros, and for negative numbers, fill in with ones. This is called sign 
extension.

-18 = 11101110 (twos complement, 8 bits)
-18 = 1111111111101110 (twos complement, 16 bits)
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To see why this rule works, let us again consider an n-bit sequence of bin-
ary digits an - 1 an - 2 c   a1a0 interpreted as a twos complement integer A, so that its 
value is

A = -2n - 1an - 1 + a
n - 2

i = 0
2iai

If A is a positive number, the rule clearly works. Now, if A is negative and we want 
to construct an m-bit representation, with m 7 n. Then

A = -2m - 1am - 1 + a
m - 2

i = 0
2iai

The two values must be equal:

 - 2m - 1 + a
m - 2

i = 0
2iai = -2n - 1 + a

n - 2

i = 0
2iai

 - 2m - 1 + a
m - 2

i = n - 1
2iai = -2n - 1

 -2n - 1 + a
m - 2

i = n - 1
2iai = 2m - 1

 1 + a
n - 2

i = 0
2i + a

m - 2

i = n - 1
2iai = 1 + a

m - 2

i = 0
2i

 a
m - 2

i = n - 1
2iai = a

m - 2

i = n - 1
2i

1     am - 2 = c = an - 2 = an - 2 = 1

In going from the first to the second equation, we require that the least signifi-
cant n - 1 bits do not change between the two representations. Then we get to the 
next to last equation, which is only true if all of the bits in positions n - 1 through 
m - 2 are 1. Therefore, the sign-extension rule works. The reader may find the rule 
easier to grasp after studying the discussion on twos complement negation at the 
beginning of Section 10.3.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes 
referred to as fixed point. This is because the radix point (binary point) is fixed and 
assumed to be to the right of the rightmost digit. The programmer can use the same 
representation for binary fractions by scaling the numbers so that the binary point is 
implicitly positioned at some other location.

 10.3 inTeger AriThmeTic

This section examines common arithmetic functions on numbers in twos comple-
ment representation.
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Negation

In sign-magnitude representation, the rule for forming the negation of an integer is 
simple: invert the sign bit. In twos complement notation, the negation of an integer 
can be formed with the following rules:

1. Take the Boolean complement of each bit of the integer (including the sign 
bit). That is, set each 1 to 0 and each 0 to 1.

2. Treating the result as an unsigned binary integer, add 1.

This two-step process is referred to as the twos complement operation, or the taking 
of the twos complement of an integer.

+18 = 00010010 (twos complement) 

bitwise complement = 11101101

 +              1

11101110 = -18

As expected, the negative of the negative of that number is itself:

-18 = 11101110 (twos complement) 

bitwise complement = 00010001

 +              1

00010010 = +18

We can demonstrate the validity of the operation just described using the defi-
nition of the twos complement representation in Equation (10.2). Again, interpret 
an n-bit sequence of binary digits an - 1an - 2 c   a1a0 as a twos complement integer 
A, so that its value is

A = -2n - 1an - 1 + a
n - 2

i = 0
2iai

Now form the bitwise complement, an - 1an - 2  c   a0, and, treating this as an 
unsigned integer, add 1. Finally, interpret the resulting n-bit sequence of binary dig-
its as a twos complement integer B, so that its value is

B = -2n - 1an - 1 + 1 + a
n - 2

i = 0
2iai

Now, we want A = -B, which means A + B = 0. This is easily shown to be true:

 A + B = -(an - 1 + an - 1)2n - 1 + 1 + aa
n - 2

i = 0
2i(ai + ai)b

 = -2n - 1 + 1 + aa
n - 2

i = 0
2ib

 = -2n - 1 + 1 + (2n - 1 - 1)

 = -2n - 1 + 2n - 1 = 0
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The preceding derivation assumes that we can first treat the bitwise complement of 
A as an unsigned integer for the purpose of adding 1, and then treat the result as a 
twos complement integer. There are two special cases to consider. First, consider 
A = 0. In that case, for an 8-bit representation:

0 = 00000000 (twos complement) 

bitwise complement = 11111111

 +              1

100000000 = 0

There is a carry out of the most significant bit position, which is ignored. The result 
is that the negation of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit 
pattern of 1 followed by n - 1 zeros, we get back the same number. For example, 
for 8-bit words,

+128 = 10000000 (twos complement) 

bitwise complement = 01111111

 +              1

10000000 = -128

Some such anomaly is unavoidable. The number of different bit patterns in an 
n-bit word is 2n, which is an even number. We wish to represent positive and neg-
ative integers and 0. If an equal number of positive and negative integers are rep-
resented (sign magnitude), then there are two representations for 0. If there is only 
one representation of 0 (twos complement), then there must be an unequal number 
of negative and positive numbers represented. In the case of twos complement, for 
an n-bit length, there is a representation for - 2n - 1 but not for + 2n - 1.

Addition and Subtraction

Addition in twos complement is illustrated in Figure 10.3. Addition proceeds as if 
the two numbers were unsigned integers. The first four examples illustrate successful 
operations. If the result of the operation is positive, we get a positive number in twos 
complement form, which is the same as in unsigned-integer form. If the result of the 
operation is negative, we get a negative number in twos complement form. Note 
that, in some instances, there is a carry bit beyond the end of the word (indicated by 
shading), which is ignored.

On any addition, the result may be larger than can be held in the word size 
being used. This condition is called overflow. When overflow occurs, the ALU must 
signal this fact so that no attempt is made to use the result. To detect overflow, the 
following rule is observed:

OvERFLOw RULE: If two numbers are added, and they are both positive or both 
negative, then overflow occurs if and only if the result has the opposite sign.
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Figures 10.3e and f show examples of overflow. Note that overflow can occur 
whether or not there is a carry.

Subtraction is easily handled with the following rule:

Figure 10.3 Addition of Numbers in Twos Complement 
Representation

SUBTRACTION RULE: To subtract one number (subtrahend) from another 
 (minuend), take the twos complement (negation) of the subtrahend and add it to the 
minuend.

Thus, subtraction is achieved using addition, as illustrated in Figure 10.4. The 
last two examples demonstrate that the overflow rule still applies.

Figure 10.4 Subtraction of Numbers in Twos Complement 
Representation (M - S)
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Some insight into twos complement addition and subtraction can be gained by 
looking at a geometric depiction [BENH92], as shown in Figure 10.5. The circle in 
the upper half of each part of the figure is formed by selecting the appropriate seg-
ment of the number line and joining the endpoints. Note that when the numbers are 
laid out on a circle, the twos complement of any number is horizontally opposite that 
number (indicated by dashed horizontal lines). Starting at any number on the circle, 
we can add positive k (or subtract negative k) to that number by moving k positions 
clockwise, and we can subtract positive k (or add negative k) from that number by 
moving k positions counterclockwise. If an arithmetic operation results in traversal 
of the point where the endpoints are joined, an incorrect answer is given (overflow).

0000

0 +1
+2

+3
+4

+5
+6

+7–8–7
–6

–5

–4

–3
–2

–1

0001

Addition
of positive
numbers

Subtraction
of positive
numbers

0010

0011

0100

0101

0110

01111000

(a) 4-bit numbers (b) n-bit numbers

1001

1010

1011

1100

1101

1110

1111

0–1–2–3–4–5–6–7–8–9 1 2 3 4 5 6 7 8 9

000…0

0

2n–2

–2n–1

–2n–2

–1

Addition
of positive
numbers

Subtraction
of positive
numbers

010…0

011…1100…0

110…0

111…1

–2n–1
–2n–1–1 2n–1

2n–1–1

2n–1–1

Figure 10.5 Geometric Depiction of Twos Complement Integers

ALL OF the examples of Figures 10.3 and 10.4 are easily traced in the circle of Figure 10.5.

Figure 10.6 suggests the data paths and hardware elements needed to accom-
plish addition and subtraction. The central element is a binary adder, which is pre-
sented two numbers for addition and produces a sum and an overflow indication. 
The binary adder treats the two numbers as unsigned integers. (A logic implemen-
tation of an adder is given in Chapter 11.) For addition, the two numbers are pre-
sented to the adder from two registers, designated in this case as A and B registers. 
The result may be stored in one of these registers or in a third. The overflow indi-
cation is stored in a 1-bit overflow flag (0 = no  overflow;    1 = overflow). For sub-
traction, the subtrahend (B register) is passed through a twos complementer so that 
its twos complement is presented to the adder. Note that Figure 10.6 only shows the 
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data paths. Control signals are needed to control whether or not the complementer 
is used, depending on whether the operation is addition or subtraction.

Multiplication

Compared with addition and subtraction, multiplication is a complex operation, 
whether performed in hardware or software. A wide variety of algorithms have been 
used in various computers. The purpose of this subsection is to give the reader some 
feel for the type of approach typically taken. We begin with the simpler problem 
of multiplying two unsigned (nonnegative) integers, and then we look at one of 
the most common techniques for multiplication of numbers in twos complement 
representation.

unsigned integers Figure 10.7 illustrates the multiplication of unsigned 
binary integers, as might be carried out using paper and pencil. Several important 
observations can be made:

1. Multiplication involves the generation of partial products, one for each digit in the 
multiplier. These partial products are then summed to produce the final product.

AdderOF

OF = Over�ow bit
SW = Switch (select addition or subtraction)

Complementer

A RegisterB Register

SW

Figure 10.6 Block Diagram of Hardware for Addition and 
Subtraction

    1011
   ×1101
    1011
   0000
  1011
 1011
10001111

Multiplicand (11)
Multiplier (13)

Product (143)

Partial products

Figure 10.7 Multiplication of 
Unsigned Binary Integers
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2. The partial products are easily defined. When the multiplier bit is 0, the partial 
product is 0. When the multiplier is 1, the partial product is the multiplicand.

3. The total product is produced by summing the partial products. For this oper-
ation, each successive partial product is shifted one position to the left relative 
to the preceding partial product.

4. The multiplication of two n-bit binary integers results in a product of up to 2n 
bits in length (e.g., 11 * 11 = 1001).

Compared with the pencil-and-paper approach, there are several things we can 
do to make computerized multiplication more efficient. First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates 
the need for storage of all the partial products; fewer registers are needed. Second, we 
can save some time on the generation of partial products. For each 1 on the multiplier, 
an add and a shift operation are required; but for each 0, only a shift is required.

Figure 10.8a shows a possible implementation employing these measures. 
The multiplier and multiplicand are loaded into two registers (Q and M). A third 

Mn–1

Multiplicand

(a) Block diagram

Add

Shift right

Multiplier

n-bit adder Shift and add
control logic

M0

An–1 A0 Qn–1 Q0C

(b) Example from Figure 10.7 (product in A, Q)

C

0

0

0

0

0

0

1

0

A

0000

1011

0101

0010

1101

0110

0001

1000

Q

1101

1101

1110

1111

1111

1111

1111

1111

M

1011

1011

1011

1011

1011

1011

1011

1011

Initial values

Add
Shift

Shift

Add
Shift

Add
Shift

First
cycle

Second
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Third
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Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication
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register, the A register, is also needed and is initially set to 0. There is also a 1-bit 
C register, initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the 
multiplier one at a time. If Q0 is 1, then the multiplicand is added to the A register 
and the result is stored in the A register, with the C bit used for overflow. Then all 
of the bits of the C, A, and Q registers are shifted to the right one bit, so that the C 
bit goes into An - 1,  A0 goes into Qn - 1, and Q0 is lost. If Q0 is 0, then no addition is 
performed, just the shift. This process is repeated for each bit of the original multi-
plier. The resulting 2n-bit product is contained in the A and Q registers. A flowchart 
of the operation is shown in Figure 10.9, and an example is given in Figure 10.8b. 
Note that on the second cycle, when the multiplier bit is 0, there is no add operation.

twos complement multiplication We have seen that addition and 
subtraction can be performed on numbers in twos complement notation by treating 
them as unsigned integers. Consider

1001
+  0011

1100

If these numbers are considered to be unsigned integers, then we are adding  
9 (1001) plus 3 (0011) to get 12 (1100). As twos complement integers, we are adding 
- 7(1001) to 3 (0011) to get - 4(1100).

START

END
YesNo

No Yes

C, A      0
M      Multiplicand
Q      Multiplier
Count      n

Shift right C, A, Q
Count      Count – 1

C, A      A + M

Q0 = 1?

Count = 0? Product
in A, Q

Figure 10.9 Flowchart for Unsigned Binary Multiplication
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Unfortunately, this simple scheme will not work for multiplication. To see 
this, consider again Figure 10.7. We multiplied 11 (1011) by 13 (1101) to get 143 
(10001111). If we interpret these as twos complement numbers, we have - 5(1011) 
times - 3 (1101) equals - 113  (10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are 
negative. In fact, it will not work if either the multiplicand or the multiplier is nega-
tive. To justify this statement, we need to go back to Figure 10.7 and explain what is 
being done in terms of operations with powers of 2. Recall that any unsigned binary 
number can be expressed as a sum of powers of 2. Thus,

 1101 = 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = 23 + 22 + 20

Further, the multiplication of a binary number by 2n is accomplished by shift-
ing that number to the left n bits. With this in mind, Figure 10.10 recasts Figure 
10.7 to make the generation of partial products by multiplication explicit. The only 
difference in Figure 10.10 is that it recognizes that the partial products should be 
viewed as 2n-bit numbers generated from the n-bit multiplicand.

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit 
word as 00001011. Each partial product (other than that for 20) consists of this num-
ber shifted to the left, with the unoccupied positions on the right filled with zeros 
(e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if 
the multiplicand is negative. The problem is that each contribution of the negative 
multiplicand as a partial product must be a negative number on a 2n-bit field; the sign 
bits of the partial products must line up. This is demonstrated in Figure 10.11, which 
shows that multiplication of 1001 by 0011. If these are treated as unsigned integers, 
the multiplication of 9 * 3 = 27 proceeds simply. However, if 1001 is interpreted 

1011

× 1101

00001011 1011 × 1 × 20

00000000 1011 × 0 × 21

00101100 1011 × 1 × 22

01011000 1011 × 1 × 23

10001111

Figure 10.10 Multiplication of Two 
Unsigned 4-Bit Integers Yielding an 
8-Bit Result

    1001 (9)

× 0011 (3)

00001001 1001 × 20

00010010 1001 × 21

00011011 (27)

    1001 (–7)

× 0011 (3)

11111001 (–7) × 20 = (–7)
11110010 (–7) × 21 = (–14)
11101011 (–21)

(a) Unsigned integers (b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos 
Complement Integers
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as the twos complement value - 7, then each partial product must be a negative 
twos complement number of 2n (8) bits, as shown in Figure 10.11b. Note that this is 
accomplished by padding out each partial product to the left with binary 1s.

If the multiplier is negative, straightforward multiplication also will not work. 
The reason is that the bits of the multiplier no longer correspond to the shifts or 
multiplications that must take place. For example, the 4-bit decimal number - 3 is 
written 1101 in twos complement. If we simply took partial products based on each 
bit position, we would have the following correspondence:

1101 4 - (1 * 23 + 1 * 22 + 0 * 21 + 1 * 20) = -(23 + 22 + 20)

In fact, what is desired is -(21 + 20). So this multiplier cannot be used directly in 
the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert 
both multiplier and multiplicand to positive numbers, perform the multiplication, 
and then take the twos complement of the result if and only if the sign of the two 
original numbers differed. Implementers have preferred to use techniques that 
do not require this final transformation step. One of the most common of these is 
Booth’s algorithm [BOOT51]. This algorithm also has the benefit of speeding up 
the multiplication process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 10.12 and can be described as follows. 
As before, the multiplier and multiplicand are placed in the Q and M registers, 

START

END
YesNo

� 10 � 01

� 11
� 00

A      0, Q�1      0
M      Multiplicand
Q      Multiplier
Count      n

Arithmetic shift
Right: A, Q, Q�1

Count      Count � 1

A      A � MA      A � M

Q0, Q�1

Count � 0?

Figure 10.12 Booth’s Algorithm for Twos 
Complement Multiplication
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respectively. There is also a 1-bit register placed logically to the right of the least 
significant bit (Q0) of the Q register and designated Q-1; its use is explained shortly. 
The results of the multiplication will appear in the A and Q registers. A and Q-1 
are initialized to 0. As before, control logic scans the bits of the multiplier one at a 
time. Now, as each bit is examined, the bit to its right is also examined. If the two 
bits are the same (1–1 or 0–0), then all of the bits of the A, Q, and Q-1 registers are 
shifted to the right 1 bit. If the two bits differ, then the multiplicand is added to or 
subtracted from the A register, depending on whether the two bits are 0–1 or 1–0. 
Following the addition or subtraction, the right shift occurs. In either case, the right 
shift is such that the leftmost bit of A, namely An - 1, not only is shifted into An - 2, 
but also remains in An - 1. This is required to preserve the sign of the number in A 
and Q. It is known as an arithmetic shift, because it preserves the sign bit.

Figure 10.13 shows the sequence of events in Booth’s algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 10.14a. 
The rest of Figure 10.14 gives other examples of the algorithm. As can be seen, it 
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of 1s or 0s are skipped over, with an average of only 
one addition or subtraction per block.

Q–1
0

0

1

1

1

0

0

A

0000

1001

1100

1110

0101

0010

0001

Q

0011

0011

1001

0100

0100

1010

0101

M

0111

0111

0111

0111

0111

0111

0111

Initial values

A    A – M
Shift

Shift

A    A + M
Shift

Shift

First
cycle

Second
cycle

Third
cycle

Fourth
cycle

Figure 10.13 Example of Booth’s Algorithm (7 * 3)

    0111

× 0011 (0)

11111001 1–0
0000000 1–1
000111  0–1
00010101 (21)

    0111

× 1101 (0)

11111001 1–0
0000111 0–1
111001  1–0
11101011 (–21)

(a) (7) × (3) = (21) (b) (7) × (−3) = (−21)

    1001

× 0011 (0)
00000111 1–0
0000000 1–1
111001  0–1
11101011 (–21)

    1001

× 1101 (0)
00000111 1–0
1111001 0–1
000111  1–0
00010101 (21)

(c) (−7) × (3) = (−21) (d) (−7) × (−3) = (21)

Figure 10.14 Examples Using Booth’s Algorithm
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Why does Booth’s algorithm work? Consider first the case of a positive multi-
plier. In particular, consider a positive multiplier consisting of one block of 1s sur-
rounded by 0s (e.g., 00011110). As we know, multiplication can be achieved by 
adding appropriately shifted copies of the multiplicand:

 M * (00011110) = M * (24 + 23 + 22 + 21)

 = M * (16 + 8 + 4 + 2)

 = M * 30

The number of such operations can be reduced to two if we observe that

 2n + 2n - 1 + c + 2n - K = 2n + 1 - 2n - K (10.3)

 M * (00011110) = M * (25 - 21)

 = M * (32 - 2)

 = M * 30

So the product can be generated by one addition and one subtraction of the multi-
plicand. This scheme extends to any number of blocks of 1s in a multiplier, including 
the case in which a single 1 is treated as a block.

 M * (01111010) = M * (26 + 25 + 24 + 23 + 21)

 = M * (27 - 23 + 22 - 21)

Booth’s algorithm conforms to this scheme by performing a subtraction when the 
first 1 of the block is encountered (1–0) and an addition when the end of the block 
is encountered (0–1).

To show that the same scheme works for a negative multiplier, we need to 
observe the following. Let X be a negative number in twos complement notation:

Representation of  X = 51xn - 2xn - 3 c x1x06
Then the value of X can be expressed as follows:

X = -2n - 1 + (xn - 2 * 2n - 2) + (xn - 3 * 2n - 3) + c (x1 * 21) + (x0 * 20) (10.4)

The reader can verify this by applying the algorithm to the numbers in Table 10.2.
The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is 

in the kth position. Thus, X is of the form

 Representation of  X = 5111  c   10xk - 1xk - 2 c x1x06  (10.5)

Then the value of X is

 X = -2n - 1 + 2n - 2 + c + 2k + 1 + (xk - 1 * 2k - 1) + c + (x0 * 20) (10.6)

From Equation (10.3), we can say that

2n - 2 + 2n - 3 + c + 2k - 1 = 2n - 1 - 2k - 1
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Rearranging

 - 2n - 1 + 2n - 2 + 2n - 3 + c + 2k + 1 = -2k + 1 (10.7)

Substituting Equation (10.7) into Equation (10.6), we have

 X = -2k + 1 + (xk - 1 * 2k - 1) + c + (x0 * 20) (10.8)

At last we can return to Booth’s algorithm. Remembering the representation 
of X [Equation (10.5)], it is clear that all of the bits from x0 up to the leftmost 0 
are handled properly because they produce all of the terms in Equation (10.8) but 
( - 2k + 1) and thus are in the proper form. As the algorithm scans over the leftmost 
0 and encounters the next 1 (2k + 1), a 1–0 transition occurs and a subtraction takes 
place ( - 2k + 1). This is the remaining term in Equation (10.8).

As an example, consider the multiplication of some multiplicand by (- 6). In twos 
complement representation, using an 8-bit word, (- 6) is represented as 11111010. By 
Equation (10.4), we know that

- 6 = -27 + 26 + 25 + 24 + 23 + 21

which the reader can easily verify. Thus,

M * (11111010) = M * ( - 27 + 26 + 25 + 24 + 23 + 21)

Using Equation (10.7),

M * (11111010) = M * ( - 23 + 21)

which the reader can verify is still M * (-6). Finally, following our earlier line of 
 reasoning,

M * (11111010) = M * ( -23 + 22 - 21)

We can see that Booth’s algorithm conforms to this scheme. It performs a sub-
traction when the first 1 is encountered (10), an addition when (01) is encountered, 
and finally another subtraction when the first 1 of the next block of 1s is encoun-
tered. Thus, Booth’s algorithm performs fewer additions and subtractions than a 
more straightforward algorithm.

Division

Division is somewhat more complex than multiplication but is based on the same 
general principles. As before, the basis for the algorithm is the paper-and-pencil 
approach, and the operation involves repetitive shifting and addition or subtraction.

Figure 10.15 shows an example of the long division of unsigned binary inte-
gers. It is instructive to describe the process in detail. First, the bits of the dividend 
are examined from left to right, until the set of bits examined represents a number 
greater than or equal to the divisor; this is referred to as the divisor being able to 
divide the number. Until this event occurs, 0s are placed in the quotient from left 
to right. When the event occurs, a 1 is placed in the quotient and the divisor is sub-
tracted from the partial dividend. The result is referred to as a partial remainder.
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From this point on, the division follows a cyclic pattern. At each cycle, additional 
bits from the dividend are appended to the partial remainder until the result is 
greater than or equal to the divisor. As before, the divisor is subtracted from this 
number to produce a new partial remainder. The process continues until all the bits 
of the dividend are exhausted.

Figure 10.16 shows a machine algorithm that corresponds to the long division 
process. The divisor is placed in the M register, the dividend in the Q register. At 

     00001101
1011 10010011
      1011
     001110
       1011
       001111
         1011
          100

Quotient
DividendDivisor

Remainder

Partial
remainders

Figure 10.15 Example of Division of Unsigned 
Binary Integers

START

END
YesNo

No Yes

Quotient in Q
Remainder in A

A      0
M      Divisor
Q      Dividend
Count      n

Shift left
A, Q

A      A � M

Count      Count � 1

Q0      1
Q0       0
A      A � M

A � 0?

Count � 0?

Figure 10.16 Flowchart for Unsigned Binary Division
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each step, the A and Q registers together are shifted to the left 1 bit. M is subtracted 
from A to determine whether A divides the partial remainder.3 If it does, then Q0 
gets a 1 bit. Otherwise, Q0 gets a 0 bit and M must be added back to A to restore the 
previous value. The count is then decremented, and the process continues for n steps. 
At the end, the quotient is in the Q register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We 
give here one approach for twos complement numbers. An example of this approach 
is shown in Figure 10.17.

The algorithm assumes that the divisor V and the dividend D are positive 
and that ∙ V ∙ 6 ∙ D ∙ . If ∙ V ∙ = ∙ D ∙ , then the quotient Q = 1 and the remainder 
R = 0. If ∙ V ∙ 7 ∙ D ∙ , then Q = 0 and R = D. The algorithm can be summarized 
as follows:

1. Load the twos complement of the divisor into the M register; that is, the M 
register contains the negative of the divisor. Load the dividend into the A, Q 
registers. The dividend must be expressed as a 2n-bit positive number. Thus, 
for example, the 4-bit 0111 becomes 00000111.

2. Shift A, Q left 1 bit position.

3. Perform A d A - M. This operation subtracts the divisor from the contents 
of A.

4. a.  If the result is nonnegative (most significant bit of A = 0), then set Q0 d 1.
b.   If the result is negative (most significant bit of A = 1), then set Q0 d 0. and 

restore the previous value of A.

5. Repeat steps 2 through 4 as many times as there are bit positions in Q.

6. The remainder is in A and the quotient is in Q.

3This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is 
a negative result.

A Q
Initial value

Shift
Use twos complement of 0011 for subtraction
Subtract
Restore, set Q0 = 0

Subtract, set Q0 = 1

Shift

Subtract
Restore, set Q0 = 0

Shift

Shift

Subtract
Restore, set Q0 = 0

Figure 10.17 Example of Restoring Twos Complement Division (7/3)
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To deal with negative numbers, we recognize that the remainder is defined by

D = Q * V + R

That is, the remainder is the value of R needed for the preceding equation to 
be valid. Consider the following examples of integer division with all possible com-
binations of signs of D and V:

D = 7 V = 3 1 Q = 2 R = 1
D = 7 V = -3 1 Q = -2 R = 1
D = -7 V = 3 1 Q = -2 R = -1
D = -7 V = -3 1 Q = 2 R = -1

The reader will note from Figure 10.17 that ( - 7)/(3) and (7)/( - 3) produce 
different remainders. We see that the magnitudes of Q and R are unaffected by the 
input signs and that the signs of Q and R are easily derivable from the signs of D and 
V. Specifically, sign(R) = sign(D) and sign(Q) = sign(D) * sign(V). Hence, one 
way to do twos complement division is to convert the operands into unsigned values 
and, at the end, to account for the signs by complementation where needed. This is 
the method of choice for the restoring division algorithm [PARH10].

 10.4 FLoATing-poinT represenTATion

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a 
range of positive and negative integers centered on or near 0. By assuming a fixed 
binary or radix point, this format allows the representation of numbers with a frac-
tional component as well.

This approach has limitations. Very large numbers cannot be represented, nor 
can very small fractions. Furthermore, the fractional part of the quotient in a div-
ision of two large numbers could be lost.

For decimal numbers, we get around this limitation by using scientific 
notation. Thus, 976,000,000,000,000 can be represented as 9.76 * 1014, and 
0.0000000000000976 can be represented as 9.76 * 10-14, What we have done, in 
effect, is dynamically to slide the decimal point to a convenient location and use the 
exponent of 10 to keep track of that decimal point. This allows a range of very large 
and very small numbers to be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a 
number in the form

{S * B{E

This number can be stored in a binary word with three fields:

 ■ Sign: plus or minus
 ■ Significand S
 ■ Exponent E
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The base B is implicit and need not be stored because it is the same for all numbers. 
Typically, it is assumed that the radix point is to the right of the leftmost, or most 
significant, bit of the significand. That is, there is one bit to the left of the radix point.

The principles used in representing binary floating-point numbers are best 
explained with an example. Figure 10.18a shows a typical 32-bit floating-point for-
mat. The leftmost bit stores the sign of the number (0 = positive,   1 = negative). 
The exponent value is stored in the next 8 bits. The representation used is known as 
a biased representation. A fixed value, called the bias, is subtracted from the field 
to get the true exponent value. Typically, the bias equals (2k - 1 - 1), where k is the 
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers 
0 through 255. With a bias of 127 (27 - 1), the true exponent values are in the range 
-127 to + 128. In this example, the base is assumed to be 2.

Table 10.2 shows the biased representation for 4-bit integers. Note that when 
the bits of a biased representation are treated as unsigned integers, the relative mag-
nitudes of the numbers do not change. For example, in both biased and unsigned 
representations, the largest number is 1111 and the smallest number is 0000. This is 
not true of sign-magnitude or twos complement representation. An advantage of 
biased representation is that nonnegative floating-point numbers can be treated as 
integers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.4

Any floating-point number can be expressed in many ways.

8 bits

Sign of
signi�cand

Signi�cand

23 bits

(a) Format

(b) Examples

 1.1010001 × 210100  = 0 10010011 10100010000000000000000 =  1.6328125 × 220

–1.1010001 × 210100  = 1 10010011 10100010000000000000000 = –1.6328125 × 220

 1.1010001 × 2–10100 = 0 01101011 10100010000000000000000 =  1.6328125 × 2–20

–1.1010001 × 2–10100 = 1 01101011 10100010000000000000000 = –1.6328125 × 2–20

Biased exponent

Figure 10.18 Typical 32-Bit Floating-Point Format

4The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means 
“the fractional part of a logarithm,” so is best avoided in this context.

The following are equivalent, where the significand is expressed in binary form:

0.110 * 25

110 * 22

0.0110 * 26

To simplify operations on floating-point numbers, it is typically required that they 
be normalized. A normal number is one in which the most significant digit of the 
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significand is nonzero. For base 2 representation, a normal number is therefore one 
in which the most significant bit of the significand is one. As was mentioned, the 
typical convention is that there is one bit to the left of the radix point. Thus, a nor-
mal nonzero number is one in the form

{1.bbb c b * 2{E

where b is either binary digit (0 or 1). Because the most significant bit is always one, 
it is unnecessary to store this bit; rather, it is implicit. Thus, the 23-bit field is used to 
store a 24-bit significand with a value in the half open interval [1, 2). Given a num-
ber that is not normal, the number may be normalized by shifting the radix point to 
the right of the leftmost 1 bit and adjusting the exponent accordingly.

Figure 10.18b gives some examples of numbers stored in this format. For each 
example, on the left is the binary number; in the center is the corresponding bit pat-
tern; on the right is the decimal value. Note the following features:

 ■ The sign is stored in the first bit of the word.
 ■ The first bit of the true significand is always 1 and need not be stored in the 

significand field.
 ■ The value 127 is added to the true exponent to be stored in the exponent field.
 ■ The base is 2.

For comparison, Figure 10.19 indicates the range of numbers that can be rep-
resented in a 32-bit word. Using twos complement integer representation, all of the 
integers from - 231 to 231 - 1 can be represented, for a total of 232 different num-
bers. With the example floating-point format of Figure 10.18, the following ranges 
of numbers are possible:

 ■ Negative numbers between -(2 - 2-23) * 2128 and - 2-127

 ■ Positive numbers between 2-127 and (2 - 2-23) * 2128

Expressible integers

Expressible negative
numbers

Negative
over�ow

Positive
over�ow

Negative
under�ow

Zero

Positive
under�ow

Expressible positive
numbers

(a) Twos complement integers

(b) Floating-point numbers

Number
line

Number
line

0

0

Figure 10.19 Expressible Numbers in Typical 32-Bit Formats
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Five regions on the number line are not included in these ranges:

 ■ Negative numbers less than - (2 - 2-23) * 2128, called negative overflow
 ■ Negative numbers greater than 2-127, called negative underflow
 ■ Zero
 ■ Positive numbers less than 2-127, called positive underflow
 ■ Positive numbers greater than (2 - 2-23) * 2128, called positive overflow

The representation as presented will not accommodate a value of 0. How-
ever, as we shall see, actual floating-point representations include a special bit 
pattern to designate zero. Overflow occurs when an arithmetic operation results 
in an absolute value greater than can be expressed with an exponent of 128  
(e.g., 2120 * 2100 = 2220). Underflow occurs when the fractional magnitude is too 
small (e.g., 2-120 * 2-100 = 2-220). Underflow is a less serious problem because the 
result can generally be satisfactorily approximated by 0.

It is important to note that we are not representing more individual values 
with floating-point notation. The maximum number of different values that can be 
represented with 32 bits is still 232. What we have done is to spread those numbers 
out in two ranges, one positive and one negative. In practice, most floating-point 
numbers that one would wish to represent are represented only approximately. 
However, for moderate sized integers, the representation is exact.

Also, note that the numbers represented in floating-point notation are not 
spaced evenly along the number line, as are fixed-point numbers. The possible val-
ues get closer together near the origin and farther apart as you move away, as shown 
in Figure 10.20. This is one of the trade-offs of floating-point math: Many calcula-
tions produce results that are not exact and have to be rounded to the nearest value 
that the notation can represent.

In the type of format depicted in Figure 10.18, there is a trade-off between 
range and precision. The example shows 8 bits devoted to the exponent and 23 to 
the significand. If we increase the number of bits in the exponent, we expand the 
range of expressible numbers. But because only a fixed number of different values 
can be expressed, we have reduced the density of those numbers and therefore the 
precision. The only way to increase both range and precision is to use more bits. 
Thus, most computers offer, at least, single-precision numbers and doublepreci-
sion numbers. For example, a processor could support a single-precision format of  
64 bits, and a double-precision format of 128 bits.

So there is a trade-off between the number of bits in the exponent and the 
number of bits in the significand. But it is even more complicated than that. The 
implied base of the exponent need not be 2. The IBM S/390 architecture, for 
example, uses a base of 16 [ANDE67b]. The format consists of a 7-bit exponent and 
a 24-bit significand.

0�n n 2n 4n

Figure 10.20 Density of Floating-Point Numbers
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The advantage of using a larger exponent is that a greater range can be 
achieved for the same number of exponent bits. But remember, we have not 
increased the number of different values that can be represented. Thus, for a fixed 
format, a larger exponent base gives a greater range at the expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754, 
adopted in 1985 and revised in 2008. This standard was developed to facilitate the 
portability of programs from one processor to another and to encourage the devel-
opment of sophisticated, numerically oriented programs. The standard has been 
widely adopted and is used on virtually all contemporary processors and arithmetic 
coprocessors. IEEE 754-2008 covers both binary and decimal floating-point repre-
sentations. In this chapter, we deal only with binary representations.

IEEE 754-2008 defines the following different types of floating-point formats:

 ■ Arithmetic format: All the mandatory operations defined by the standard are 
supported by the format. The format may be used to represent floating-point 
operands or results for the operations described in the standard.

 ■ Basic format: This format covers five floating-point representations, three 
binary and two decimal, whose encodings are specified by the standard, and 
which can be used for arithmetic. At least one of the basic formats is imple-
mented in any conforming implementation.

 ■ Interchange format: A fully specified, fixed-length binary encoding that allows 
data interchange between different platforms and that can be used for storage.

The three basic binary formats have bit lengths of 32, 64, and 128 bits, with 
exponents of 8, 11, and 15 bits, respectively (Figure 10.21). Table 10.3 summarizes 
the characteristics of the three formats. The two basic decimal formats have bit 
lengths of 64 and 128 bits. All of the basic formats are also arithmetic format types 
(can be used for arithmetic operations) and interchange format types (platform 
independent).

Several other formats are specified in the standard. The binary16 format is 
only an interchange format and is intended for storage of values when higher pre-
cision is not required. The binary{k} format and the decimal{k} format are inter-
change formats with total length k bits and with defined lengths for the significand 
and exponent. The format must be a multiple of 32 bits; thus formats are defined for 
k = 160,  192, and so on. These two families of formats are also arithmetic formats.

In addition, the standard defines extended precision formats, which 
extend a supported basic format by providing additional bits in the exponent 
(extended range) and in the significand (extended precision). The exact format 

In the IBM base-16 format,

0.11010001 * 210100 = 0.11010001 * 16101

and the exponent is stored to represent 5 rather than 20.
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is implementation dependent, but the standard places certain constraints on the 
length of the exponent and significand. These formats are arithmetic format types 
but not interchange format types. The extended formats are to be used for inter-
mediate calculations. With their greater precision, the extended formats lessen the 

Trailing signi�cand �eld

(c) Binary128 format

Biased
exponent

Trailing signi�cand �eld

(b) Binary64 format

8 bits

Sign
bit

Trailing
signi�cand �eld

(a) Binary32 format

Biased
exponent

23 bits

11 bits 52 bits

15 bits 112 bits

Sign
bit

Biased
exponent

Sign
bit

Figure 10.21 IEEE 754 Formats

Table 10.3 IEEE 754 Format Parameters

Parameter
Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent -126 -1022 -16382

Approx normal number range 
(base 10)

10-38,  10+38 10-308,  10+308 10-4932,  10+4932

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions 223 252 2112

Number of values 1.98 * 231 1.99 * 263 1.99 * 2128

Smallest positive normal number 2-126 2-1022 2-16362

Largest positive normal number 2128 - 2104 21024 - 2971 216384 - 216271

Smallest subnormal magnitude 2-149 2-1074 2-16494

Note: * Not including implied bit and not including sign bit.
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chance of a final result that has been contaminated by excessive roundoff error; 
with their greater range, they also lessen the chance of an intermediate overflow 
aborting a computation whose final result would have been representable in a basic 
format. An additional motivation for the extended format is that it affords some 
of the benefits of a larger basic format without incurring the time penalty usually 
associated with higher precision.

Finally, IEEE 754-2008 defines an extendable precision format as a format 
with a precision and range that are defined under user control. Again, these formats 
may be used for intermediate calculations, but the standard places no constraint or 
format or length.

Table 10.4 shows the relationship between defined formats and format types.
Not all bit patterns in the IEEE formats are interpreted in the usual way; 

instead, some bit patterns are used to represent special values. Table 10.5 indicates 
the values assigned to various bit patterns. The exponent values of all zeros (0 bits) 
and all ones (1 bits) define special values. The following classes of numbers are 
represented:

 ■ For exponent values in the range of 1 through 254 for 32-bit format, 1 through 
2046 for 64-bit format, and 1 through 16382, normal nonzero floating-point 
numbers are represented. The exponent is biased, so that the range of expo-
nents is - 126 through + 127 for 32-bit format, and so on. A normal number 
requires a 1 bit to the left of the binary point; this bit is implied, giving an effec-
tive 24-bit, 53-bit, or 113-bit significand. Because one of the bits is implied, the 
corresponding field in the binary format is referred to as the trailing signifi-
cand field.

 ■ An exponent of zero together with a fraction of zero represents positive or 
negative zero, depending on the sign bit. As was mentioned, it is useful to have 
an exact value of 0 represented.

Table 10.4 IEEE Formats

Format
Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k}  
(k = n * 32 for n 7 4)

X X

decimal64 X X X

decimal128 X X X

decimal{k}  
(k = n * 32 for n 7 4)

X X

extended precision X

extendable precision X
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Table 10.5 Interpretation of IEEE 754 Floating-Point Numbers

(a) binary32 format

Sign Biased Exponent Fraction value

positive zero 0 0 0 0

negative zero 1 0 0 -0

plus infinity 0 all 1s 0 ∞

minus infinity 1 all 1s 0 -∞

quiet NaN 0 or 1 all 1s ≠ 0;  first  bit = 1 qNaN

signaling NaN 0 or 1 all 1s ≠ 0;  first  bit = 0 sNaN

positive normal nonzero 0 0 6 e 6 225 f 2e - 127(1.f)

negative normal nonzero 1 0 6 e 6 225 f -2e - 127(1.f)

positive subnormal 0 0 f ≠ 0 2e - 126(0.f)

negative subnormal 1 0 f ≠ 0 -2e - 126(0.f)

(b) binary64 format

Sign Biased Exponent Fraction value

positive zero 0 0 0 0

negative zero 1 0 0 -0

plus infinity 0 all 1s 0 ∞

minus infinity 1 all 1s 0 - ∞

quiet NaN 0 or 1 all 1s ≠ 0;  first  bit = 1 qNaN

signaling NaN 0 or 1 all 1s ≠ 0;  first  bit = 0 sNaN

positive normal nonzero 0 0 6 e 6 2047 f 2e - 1023(1.f)

negative normal nonzero 1 0 6 e 6 2047 f -2e - 1023(1.f)

positive subnormal 0 0 f ≠ 0 2e - 1022(0.f)

negative subnormal 1 0 f ≠ 0 -2e - 1022(0.f)

(c) binary128 format

Sign Biased Exponent Fraction value

positive zero 0 0 0 0

negative zero 1 0 0 -0

plus infinity 0 all 1s 0 ∞

minus infinity 1 all 1s 0 - ∞

quiet NaN 0 or 1 all 1s ≠ 0;  first  bit = 1 qNaN

signaling NaN 0 or 1 all 1s ≠ 0;  first  bit = 0 sNaN

positive normal nonzero 0 all 1s f 2e - 16383(1.f)

negative normal nonzero 1 all 1s f -2e - 16383(1.f)

positive subnormal 0 0 f ≠ 0 2e - 16383(0.f)

negative subnormal 1 0 f ≠ 0 -2e - 16383(0.f)
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 ■ An exponent of all ones together with a fraction of zero represents positive or 
negative infinity, depending on the sign bit. It is also useful to have a represen-
tation of infinity. This leaves it up to the user to decide whether to treat over-
flow as an error condition or to carry the value ∞  and proceed with whatever 
program is being executed.

 ■ An exponent of zero together with a nonzero fraction represents a subnormal 
number. In this case, the bit to the left of the binary point is zero and the true 
exponent is - 126 or - 1022. The number is positive or negative depending on 
the sign bit.

 ■ An exponent of all ones together with a nonzero fraction is given the value 
NaN, which means Not a Number, and is used to signal various exception 
conditions.

The significance of subnormal numbers and NaNs is discussed in Section 10.5.

 10.5 FLoATing-poinT AriThmeTic

Table 10.6 summarizes the basic operations for floating-point arithmetic. For addi-
tion and subtraction, it is necessary to ensure that both operands have the same 
exponent value. This may require shifting the radix point on one of the operands to 
achieve alignment. Multiplication and division are more straightforward.

A floating-point operation may produce one of these conditions:

 ■ Exponent overflow: A positive exponent exceeds the maximum possible expo-
nent value. In some systems, this may be designated as +   ∞  or - ∞.

 ■ Exponent underflow: A negative exponent is less than the minimum possible 
exponent value (e.g., - 200 is less than -127). This means that the number is 
too small to be represented, and it may be reported as 0.

Examples:

X = 0.3 * 102 = 30

Y = 0.2 * 103 = 200

X + Y = (0.3 * 102 - 3 + 0.2) * 103 = 0.23 * 103 = 230

X - Y = (0.3 * 102 - 3 - 0.2) * 103 = ( - 0.17) * 103 = -170

X * Y = (0.3 * 0.2) * 102 + 3 = 0.06 * 105 = 6000

X , Y = (0.3 , 0.2) * 102 - 3 = 1.5 * 10-1 = 0.15

Table 10.6 Floating-Point Numbers and Arithmetic Operations

Floating-Point Numbers Arithmetic Operations

X = XS * BXE

Y = YS * BYE

X + Y = (XS * BXE - YE + YS) * BYE

X - Y = (XS * BXE - YE - YS) * BYE
fXE … YE

X * Y = (XS * YS) * BXE + YE

X
Y

= aXS

YS
b * BXE - YE
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 ■ Significand underflow: In the process of aligning significands, digits may flow 
off the right end of the significand. As we will discuss, some form of rounding 
is required.

 ■ Significand overflow: The addition of two significands of the same sign may 
result in a carry out of the most significant bit. This can be fixed by realign-
ment, as we will explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than multi-
plication and division. This is because of the need for alignment. There are four basic 
phases of the algorithm for addition and subtraction:

1. Check for zeros.

2. Align the significands.

3. Add or subtract the significands.

4. Normalize the result.

A typical flowchart is shown in Figure 10.22. A step-by-step narrative high-
lights the main functions required for floating-point addition and subtraction. We 
assume a format similar to those of Figure 10.21. For the addition or subtraction 
operation, the two operands must be transferred to registers that will be used by the 
ALU. If the floating-point format includes an implicit significand bit, that bit must 
be made explicit for the operation.

Phase 1. Zero check: Because addition and subtraction are identical except 
for a sign change, the process begins by changing the sign of the subtrahend if 
it is a subtract operation. Next, if either operand is 0, the other is reported as 
the result.
Phase 2. Significand alignment: The next phase is to manipulate the numbers 
so that the two exponents are equal.

To see the need for aligning exponents, consider the following decimal addition:

(123 * 100) + (456 * 10-2)

Clearly, we cannot just add the significands. The digits must first be set into equivalent 
positions, that is, the 4 of the second number must be aligned with the 3 of the first. Under 
these conditions, the two exponents will be equal, which is the mathematical condition 
under which two numbers in this form can be added. Thus,

(123 * 100) + (456 * 10-2) = (123 * 100) + (4.56 * 100) = 127.56 * 100

Alignment may be achieved by shifting either the smaller number to the right 
(increasing its exponent) or shifting the larger number to the left. Because either 
operation may result in the loss of digits, it is the smaller number that is shifted; 
any digits that are lost are therefore of relatively small significance. The alignment 
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is achieved by repeatedly shifting the magnitude portion of the significand right  
1 digit and incrementing the exponent until the two exponents are equal. (Note 
that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If this process 
results in a 0 value for the significand, then the other number is reported as the 
result. Thus, if two numbers have exponents that differ significantly, the lesser 
number is lost.

Phase 3. Addition: Next, the two significands are added together, taking into 
account their signs. Because the signs may differ, the result may be 0. There 
is also the possibility of significand overflow by 1 digit. If so, the significand 
of the result is shifted right and the exponent is incremented. An exponent 
overflow could occur as a result; this would be reported and the operation 
halted.
Phase 4. Normalization: The final phase normalizes the result. Normalization 
consists of shifting significand digits left until the most significant digit (bit, or 
4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the 
exponent and thus could cause an exponent underflow. Finally, the result must 
be rounded off and then reported. We defer a discussion of rounding until after 
a discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition 
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 10.23. First, if either 
operand is 0, 0 is reported as the result. The next step is to add the exponents. If 
the exponents are stored in biased form, the exponent sum would have doubled 
the bias. Thus, the bias value must be subtracted from the sum. The result could 
be either an exponent overflow or underflow, which would be reported, ending the 
algorithm.

If the exponent of the product is within the proper range, the next step is to 
multiply the significands, taking into account their signs. The multiplication is per-
formed in the same way as for integers. In this case, we are dealing with a sign-
magnitude representation, but the details are similar to those for twos complement 
representation. The product will be double the length of the multiplier and multipli-
cand. The extra bits will be lost during rounding.

After the product is calculated, the result is then normalized and rounded, 
as was done for addition and subtraction. Note that normalization could result in 
exponent underflow.

Finally, let us consider the flowchart for division depicted in Figure 10.24. 
Again, the first step is testing for 0. If the divisor is 0, an error report is issued, 
or the result is set to infinity, depending on the implementation. A dividend of 0 
results in 0. Next, the divisor exponent is subtracted from the dividend exponent. 
This removes the bias, which must be added back in. Tests are then made for expo-
nent underflow or overflow.

The next step is to divide the significands. This is followed with the usual nor-
malization and rounding.
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Precision Considerations

guard bits We mentioned that, prior to a floating-point operation, the exponent 
and significand of each operand are loaded into ALU registers. In the case of the 
significand, the length of the register is almost always greater than the length of the 
significand plus an implied bit. The register contains additional bits, called guard 
bits, which are used to pad out the right end of the significand with 0s.
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Figure 10.23 Floating-Point Multiplication (Z d X { Y)

The reason for the use of guard bits is illustrated in Figure 10.25. Consider numbers in 
the IEEE format, which has a 24-bit significand, including an implied 1 bit to the left of 
the binary point. Two numbers that are very close in value are x = 1.00  g   00 * 21 
and y = 1.11  g   11 * 20. If the smaller number is to be subtracted from the larger, 
it must be shifted right 1 bit to align the exponents. This is shown in Figure 10.25a. In the 
process, y loses 1 bit of significance; the result is 2-22. The same operation is repeated in  
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(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits

(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits

x = 1.000.....00 × 21

–y = 0.111.....11 × 21

z = 0.000.....01 × 21

= 1.000.....00 × 2–22

x = .100000 × 161

–y = .0FFFFF × 161

z = .000001 × 161

= .100000 × 16–4

x = .100000 00 × 161

–y = .0FFFFF F0 × 161

z = .000000 10 × 161

= .100000 00 × 16–5

x = 1.000.....00 0000 × 21

–y = 0.111.....11 1000 × 21

z = 0.000.....00 1000 × 21

= 1.000.....00 0000 × 2–23

Figure 10.25 The Use of Guard Bits
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rounding Another detail that affects the precision of the result is the rounding 
policy. The result of any operation on the significands is generally stored in a longer 
register. When the result is put back into the floating-point format, the extra bits 
must be eliminated in such a way as to produce a result that is close to the exact 
result. This process is called rounding.

A number of techniques have been explored for performing rounding. In fact, 
the IEEE standard lists four alternative approaches:

 ■ Round to nearest:  The result is rounded to the nearest representable number.
 ■ Round toward +H : The result is rounded up toward plus infinity.
 ■ Round toward −H : The result is rounded down toward negative infinity.
 ■ Round toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default 
rounding mode listed in the standard and is defined as follows: The representable 
value nearest to the infinitely precise result shall be delivered.

part (b) with the addition of guard bits. Now the least significant bit is not lost due to align-
ment, and the result is 2-23, a difference of a factor of 2 from the previous answer. When 
the radix is 16, the loss of precision can be greater. As Figures 10.25c and (d) show, the 
difference can be a factor of 16.

If the extra bits, beyond the 23 bits that can be stored, are 10010, then the extra bits 
amount to more than one-half of the last representable bit position. In this case, the cor-
rect answer is to add binary 1 to the last representable bit, rounding up to the next rep-
resentable number. Now consider that the extra bits are 01111. In this case, the extra bits 
amount to less than one-half of the last representable bit position. The correct answer is 
simply to drop the extra bits (truncate), which has the effect of rounding down to the next 
representable number.

The standard also addresses the special case of extra bits of the form 10000.… 
Here the result is exactly halfway between the two possible representable values. 
One possible technique here would be to always truncate, as this would be the sim-
plest operation. However, the difficulty with this simple approach is that it intro-
duces a small but cumulative bias into a sequence of computations. What is required 
is an unbiased method of rounding. One possible approach would be to round up 
or down on the basis of a random number so that, on average, the result would be 
unbiased. The argument against this approach is that it does not produce predict-
able, deterministic results. The approach taken by the IEEE standard is to force the 
result to be even: If the result of a computation is exactly midway between two rep-
resentable numbers, the value is rounded up if the last representable bit is currently 
1 and not rounded up if it is currently 0.
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The next two options, rounding to plus and minus infinity, are useful in imple-
menting a technique known as interval arithmetic. Interval arithmetic provides an 
efficient method for monitoring and controlling errors in floating-point computa-
tions by producing two values for each result. The two values correspond to the 
lower and upper endpoints of an interval that contains the true result. The width of 
the interval, which is the difference between the upper and lower endpoints, indi-
cates the accuracy of the result. If the endpoints of an interval are not representa-
ble, then the interval endpoints are rounded down and up, respectively. Although 
the width of the interval may vary according to implementation, many algorithms 
have been designed to produce narrow intervals. If the range between the upper 
and lower bounds is sufficiently narrow, then a sufficiently accurate result has been 
obtained. If not, at least we know this and can perform additional analysis.

The final technique specified in the standard is round toward zero. This is, 
in fact, simple truncation: The extra bits are ignored. This is certainly the simplest 
technique. However, the result is that the magnitude of the truncated value is always 
less than or equal to the more precise original value, introducing a consistent bias 
toward zero in the operation. This is a serious bias because it affects every operation 
for which there are nonzero extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific prac-
tices and procedures so that floating-point arithmetic produces uniform, predictable 
results independent of the hardware platform. One aspect of this has already been 
discussed, namely rounding. This subsection looks at three other topics: infinity, 
NaNs, and subnormal numbers.

infinity Infinity arithmetic is treated as the limiting case of real arithmetic, with 
the infinity values given the following interpretation:

- ∞    6 (every  finite  number) 6 + ∞

With the exception of the special cases discussed subsequently, any arithmetic 
operation involving infinity yields the obvious result.

For example:

5 + (+ ∞ ) = + ∞ 5 , (+ ∞ )          = +0
5 - (+ ∞ ) = - ∞ (+ ∞ ) + (+ ∞) = + ∞
5 + (- ∞ ) = - ∞ (- ∞) + (- ∞) = - ∞
5 - (- ∞) = + ∞ (- ∞) - (+ ∞) = - ∞
5 * (+ ∞) = + ∞ (+ ∞) - (- ∞) = + ∞

quiet and signaling nans A NaN is a symbolic entity encoded in floating-
point format, of which there are two types: signaling and quiet. A signaling NaN 
signals an invalid operation exception whenever it appears as an operand. Signaling
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NaNs afford values for uninitialized variables and arithmetic-like enhancements 
that are not the subject of the standard. A quiet NaN propagates through almost 
every arithmetic operation without signaling an exception. Table 10.7 indicates 
operations that will produce a quiet NaN.

Note that both types of NaNs have the same general format (Table 10.4): an 
exponent of all ones and a nonzero fraction. The actual bit pattern of the nonzero 
fraction is implementation dependent; the fraction values can be used to distinguish 
quiet NaNs from signaling NaNs and to specify particular exception conditions.

subnormal numbers Subnormal numbers are included in IEEE 754 to handle 
cases of exponent underflow. When the exponent of the result becomes too small (a 
negative exponent with too large a magnitude), the result is subnormalized by right 
shifting the fraction and incrementing the exponent for each shift until the exponent 
is within a representable range.

Figure 10.26 illustrates the effect of including subnormal numbers. The rep-
resentable numbers can be grouped into intervals of the form [2n, 2n + 1]. Within 

Table 10.7 Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract

Magnitude subtraction of infinities:
(+ ∞) + (- ∞)
(- ∞) + (+ ∞)
(+ ∞) - (+ ∞)
(- ∞) - (- ∞)

Multiply 0 * ∞
Division 0

0
 or 

∞
∞

Remainder x REM 0 or ∞  REM y

Square root 2x, where x 6 0

2−126 2−125 2−124 2−123

2−126 2−125 2−124 2−123

Gap

(a) 32-bit format without subnormal numbers

Uniform
spacing

(b) 32-bit format with subnormal numbers

0

0

Figure 10.26 The Effect of IEEE 754 Subnormal Numbers
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each such interval, the exponent portion of the number remains constant while  
the fraction varies, producing a uniform spacing of representable numbers within 
the interval. As we get closer to zero, each successive interval is half the width of the 
preceding interval but contains the same number of representable numbers. Hence 
the density of representable numbers increases as we approach zero. However, if 
only normal numbers are used, there is a gap between the smallest normal number 
and 0. In the case of the 32-bit IEEE 754 format, there are 223 representable num-
bers in each interval, and the smallest representable positive number is 2-126. With 
the addition of subnormal numbers, an additional 223 - 1 numbers are uniformly 
added between 0 and 2-126.

The use of subnormal numbers is referred to as gradual underflow [COON81]. 
Without subnormal numbers, the gap between the smallest representable nonzero 
number and zero is much wider than the gap between the smallest representable 
nonzero number and the next larger number. Gradual underflow fills in that gap 
and reduces the impact of exponent underflow to a level comparable with roundoff 
among the normal numbers.

 10.6 Key Terms, review QUesTions, And probLems

Key Terms

arithmetic and  
logic unit (ALU)

arithmetic shift
base
biased representation
dividend
divisor
exponent
exponent overflow
exponent underflow
fixed-point representation
floating-point representation
guard bits
mantissa

minuend
multiplicand
multiplier
negative overflow
negative underflow
normal number
ones complement represen-

tation
overflow
partial product
positive overflow
positive underflow
product
quotient

radix point
range extension
remainder
rounding
sign bit
sign-magnitude 

 representation
significand
significand overflow
significand underflow
subnormal number
subtrahend
twos complement  

representation

Review Questions

 10.1 Briefly explain the following representations: sign magnitude, twos complement, 
biased.

 10.2 Explain how to determine if a number is negative in the following representations: 
sign magnitude, twos complement, biased.

 10.3 What is the sign-extension rule for twos complement numbers?
 10.4 How can you form the negation of an integer in twos complement representation?
 10.5 In general terms, when does the twos complement operation on an n-bit integer 

 produce the same integer?



368  chApTer 10 / compUTer AriThmeTic

 10.6 What is the difference between the twos complement representation of a number and 
the twos complement of a number?

 10.7 If we treat two twos complement numbers as unsigned integers for purposes of addi-
tion, the result is correct if interpreted as a twos complement number. This is not true 
for multiplication. Why?

 10.8 What are the four essential elements of a number in floating-point notation?
 10.9 What is the benefit of using biased representation for the exponent portion of a float-

ing-point number?
 10.10 What are the differences among positive overflow, exponent overflow, and significand 

overflow?
 10.11 What are the basic elements of floating-point addition and subtraction?
 10.12 Give a reason for the use of guard bits.
 10.13 List four alternative methods of rounding the result of a floating-point operation.

Problems

 10.1 Represent the following decimal numbers in both binary sign/magnitude and twos 
complement using 16 bits: + 512;  - 29.

 10.2 Represent the following twos complement values in decimal: 1101011; 0101101.
 10.3 Another representation of binary integers that is sometimes encountered is ones 

complement. Positive integers are represented in the same way as sign magnitude. A 
negative integer is represented by taking the Boolean complement of each bit of the 
corresponding positive number.
a. Provide a definition of ones complement numbers using a weighted sum of bits, 

similar to Equations (10.1) and (10.2).
b. What is the range of numbers that can be represented in ones complement?
c. Define an algorithm for performing addition in ones complement arithmetic.
Note: Ones complement arithmetic disappeared from hardware in the 1960s, but still 
survives checksum calculations for the Internet Protocol (IP) and the Transmission 
Control Protocol (TCP).

 10.4 Add columns to Table 10.1 for sign magnitude and ones complement.
 10.5 Consider the following operation on a binary word. Start with the least significant bit. 

Copy all bits that are 0 until the first bit is reached and copy that bit, too. Then take 
the complement of each bit thereafter. What is the result?

 10.6 In Section 10.3, the twos complement operation is defined as follows. To find the twos 
complement of X, take the Boolean complement of each bit of X, and then add 1.
a. Show that the following is an equivalent definition. For an n-bit integer X, the twos 

complement of X is formed by treating X as an unsigned integer and calculating 
(2n - X).

b. Demonstrate that Figure 10.5 can be used to support graphically the claim in part 
(a), by showing how a clockwise movement is used to achieve subtraction.

 10.7 The r’s complement of an n-digit number N in base r is defined as rn - N for N ≠ 0 
and 0 for N = 0. Find the tens complement of the decimal number 13,250.

 10.8 Calculate (72, 530 - 13, 250) using tens complement arithmetic. Assume rules similar 
to those for twos complement arithmetic.

 10.9 Consider the twos complement addition of two n-bit numbers:

zn - 1zn - 2 c z0 = xn - 1xn - 2 c x0 + yn - 1yn - 2 c y0

Assume that bitwise addition is performed with a carry bit ci generated by the addi-
tion of xi,  yi, and ci - 1. Let n be a binary variable indicating overflow when n = 1. Fill 
in the values in the table.
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Input

xn - 1 0 0 0 0 1 1 1 1

yn - 1 0 0 1 1 0 0 1 1

cn - 2 0 1 0 1 0 1 0 1

Output
zn - 1

n

 10.10 Assume numbers are represented in 8-bit twos complement representation. Show the 
calculation of the following:
a. 6 + 13 b. -6 + 13 c. 6 - 13 d. -6 - 13

a. 
111000

- 110011
b. 

11001100
-101110

c. 
111100001111

- 110011110011
d. 

11000011
- 11101000

 10.11 Find the following differences using twos complement arithmetic:

 10.12 Is the following a valid alternative definition of overflow in twos complement 
arithmetic?

If the exclusive-OR of the carry bits into and out of the leftmost column is 1, 
then there is an overflow condition. Otherwise, there is not.

 10.13 Compare Figures 10.9 and 10.12. Why is the C bit not used in the latter?
 10.14 Given x = 0101 and y = 1010 in twos complement notation (i.e., x = 5,  y = -6), 

compute the product p = x * y with Booth’s algorithm.
 10.15 Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each 

number is represented using 6 bits.
 10.16 Prove that the multiplication of two n-digit numbers in base B gives a product of no 

more than 2n digits.
 10.17 Verify the validity of the unsigned binary division algorithm of Figure 10.16 by show-

ing the steps involved in calculating the division depicted in Figure 10.15. Use a pre-
sentation similar to that of Figure 10.17.

 10.18 The twos complement integer division algorithm described in Section 10.3 is known 
as the restoring method because the value in the A register must be restored following 
unsuccessful subtraction. A slightly more complex approach, known as nonrestoring, 
avoids the unnecessary subtraction and addition. Propose an algorithm for this latter 
approach.

 10.19 Under computer integer arithmetic, the quotient J/K of two integers J and K is less 
than or equal to the usual quotient. True or false?

 10.20 Divide -145 by 13 in binary twos complement notation, using 12-bit words. Use the 
algorithm described in Section 10.3.

 10.21 a. Consider a fixed-point representation using decimal digits, in which the implied 
radix point can be in any position (to the right of the least significant digit, to 
the right of the most significant digit, and so on). How many decimal digits are 
needed to represent the approximations of both Planck’s constant (6.63 * 10-27) 
and Avogadro’s number (6.02 * 1023)? The implied radix point must be in the 
same position for both numbers.

b. Now consider a decimal floating-point format with the exponent stored in a biased 
representation with a bias of 50. A normalized representation is assumed. How 
many decimal digits are needed to represent these constants in this floating-point 
format?

 10.22 Assume that the exponent e is constrained to lie in the range 0 … e … X, with a bias 
of q, that the base is b, and that the significand is p digits in length.
a. What are the largest and smallest positive values that can be written?
b. What are the largest and smallest positive values that can be written as normalized 

floating-point numbers?
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 10.23 Express the following numbers in IEEE 32-bit floating-point format:
a. -5 b. -6 c. -1.5 d. 384 e. 1/16 f. -1/32

 10.24 The following numbers use the IEEE 32-bit floating-point format. What is the equiv-
alent decimal value?
a. 1 10000011 11000000000000000000000
b. 0 01111110 10100000000000000000000
c. 0 10000000 00000000000000000000000

 10.25 Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and 
3 bits for the significand. List all 127 values.

 10.26 Express the following numbers in IBM’s 32-bit floating-point format, which uses a 
7-bit exponent with an implied base of 16 and an exponent bias of 64 (40 hexadec-
imal). A normalized floating-point number requires that the leftmost hexadecimal 
digit be nonzero; the implied radix point is to the left of that digit.

a. 1.0
b. 0.5

c. 1/64
d. 0.0

e. - 15.0
f.  5.4 * 10-79

g. 7.2 * 1075

h. 65,535

 10.27 Let 5BCA0000 be a floating-point number in IBM format, expressed in hexadecimal. 
What is the decimal value of the number?

 10.28 What would be the bias value for
a. A base-2 exponent (B = 2) in a 6-bit field?
b. A base-8 exponent (B = 8) in a 7-bit field?

 10.29 Draw a number line similar to that in Figure 10.19b for the floating-point format of 
Figure 10.21b.

 10.30 Consider a floating-point format with 8 bits for the biased exponent and 23 bits for the 
significand. Show the bit pattern for the following numbers in this format:
a. -720 b. 0.645

 10.31 The text mentions that a 32-bit format can represent a maximum of 232 different num-
bers. How many different numbers can be represented in the IEEE 32-bit format? 
Explain.

 10.32 Any floating-point representation used in a computer can represent only certain real 
numbers exactly; all others must be approximated. If A′ is the stored value approxi-
mating the real value A, then the relative error, r, is expressed as

r =
A - A′

A

Represent the decimal quantity + 0.4 in the following floating-point format: 
base = 2; exponent: biased, 4 bits; significand, 7 bits. What is the relative error?

 10.33 If A = 1.427, find the relative error if A is truncated to 1.42 and if it is rounded to 1.43.
 10.34 When people speak about inaccuracy in floating-point arithmetic, they often ascribe 

errors to cancellation that occurs during the subtraction of nearly equal quantities. 
But when X and Y are approximately equal, the difference X - Y is obtained exactly, 
with no error. What do these people really mean?

 10.35 Numerical values A and B are stored in the computer as approximations A′ and B′ 
Neglecting any further truncation or roundoff errors, show that the relative error of 
the product is approximately the sum of the relative errors in the factors.

 10.36 One of the most serious errors in computer calculations occurs when two nearly equal 
numbers are subtracted. Consider A = 0.22288 and B = 0.22211. The computer trun-
cates all values to four decimal digits. Thus A′ = 0.2228 and B′ = 0.2221.
a. What are the relative errors for A′ and B′?
b. What is the relative error for C′ = A′ - B′?
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 10.37 To get some feel for the effects of denormalization and gradual underflow, consider 
a decimal system that provides 6 decimal digits for the significand and for which the 
smallest normalized number is 10-99. A normalized number has one nonzero decimal 
digit to the left of the decimal point. Perform the following calculations and denormal-
ize the results. Comment on the results.
a. (2.50000 * 10-60) * (3.50000 * 10-43)
b. (2.50000 * 10-60) * (3.50000 * 10-60)
c. (5.67834 * 10-97) - (5.67812 * 10-97)

 10.38 Show how the following floating-point additions are performed (where significands 
are truncated to 4 decimal digits). Show the results in normalized form.
a. 5.566 * 102 + 7.777 * 102

b. 3.344 * 101 + 8.877 * 10-2

 10.39 Show how the following floating-point subtractions are performed (where signifi-
cands are truncated to 4 decimal digits). Show the results in normalized form.
a. 7.744 * 10-3 - 6.666 * 10-3 b. 8.844 * 10-3 - 2.233 * 10-1

 10.40 Show how the following floating-point calculations are performed (where significands 
are truncated to 4 decimal digits). Show the results in normalized form.
a. (2.255 * 101) * (1.234 * 100) b. (8.833 * 102) , (5.555 * 104)
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The operation of the digital computer is based on the storage and processing of 
binary data. Throughout this book, we have assumed the existence of storage ele-
ments that can exist in one of two stable states, and of circuits than can operate on 
binary data under the control of control signals to implement the various computer 
functions. In this chapter, we suggest how these storage elements and circuits can be 
implemented in digital logic, specifically with combinational and sequential circuits. 
The chapter begins with a brief review of Boolean algebra, which is the mathemati-
cal foundation of digital logic. Next, the concept of a gate is introduced. Finally, com-
binational and sequential circuits, which are constructed from gates, are described.

 11.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and 
its behavior is analyzed, with the use of a mathematical discipline known as Boolean 
algebra. The name is in honor of an English mathematician George Boole, who pro-
posed the basic principles of this algebra in 1854 in his treatise, An Investigation 
of the Laws of Thought on Which to Found the Mathematical Theories of Logic 
and Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical 
Engineering Department at M.I.T., suggested that Boolean algebra could be used to 
solve problems in  relay-  switching circuit design [SHAN38].1 Shannon’s techniques 
were subsequently used in the analysis and design of electronic digital circuits. 
Boolean algebra turns out to be a convenient tool in two areas:

 ■ Analysis: It is an economical way of describing the function of digital circuitry.
 ■ Design: Given a desired function, Boolean algebra can be applied to develop 

a simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations. 
In this case, the variables and operations are logical variables and operations. 
Thus, a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical 

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the basic operations of Boolean algebra.
 r Distinguish among the different types of  flip-  flops.
 r Use a Karnaugh map to simplify a Boolean expression.
 r Present an overview of programmable logic devices.

1The paper is available at box.com/COA10e.
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operations are AND, OR, and NOT, which are symbolically represented by dot, 
plus sign, and overbar:2

 A  AND  B = A  #   B

 A  OR  B = A + B

 NOT  A = A

The operation AND yields true (binary value 1) if and only if both of its operands 
are true. The operation OR yields true if either or both of its operands are true. The 
unary operation NOT inverts the value of its operand. For example, consider the 
equation

D = A + (B  #   C)

D is equal to 1 if A is 1 or if both B = 0 and C = 1. Otherwise D is equal to 0.
Several points concerning the notation are needed. In the absence of paren-

theses, the AND operation takes precedence over the OR operation. Also, when 
no ambiguity will occur, the AND operation is represented by simple concatenation 
instead of the dot operator. Thus,

A + B  #   C = A + (B  #   C) = A + BC

all mean: Take the AND of B and C; then take the OR of the result and A.
Table 11.1a defines the basic logical operations in a form known as a truth 

table, which lists the value of an operation for every possible combination of val-
ues of operands. The table also lists three other useful operators: XOR, NAND, 
and NOR. The  exclusive-  or (XOR) of two logical operands is 1 if and only if exactly 
one of the operands has the value 1. The NAND function is the complement (NOT) 
of the AND function, and the NOR is the complement of OR:

 A  NAND  B = NOT  (A  AND  B) = AB

 A  NOR  B = NOT  (A  OR  B) = A + B

As we shall see, these three new operations can be useful in implementing certain 
digital circuits.

The logical operations, with the exception of NOT, can be generalized to more 
than two variables, as shown in Table 11.1b.

Table 11.2 summarizes key identities of Boolean algebra. The equations have 
been arranged in two columns to show the complementary, or dual, nature of the 
AND and OR operations. There are two classes of identities: basic rules (or postu-
lates), which are stated without proof, and other identities that can be derived from 
the basic postulates. The postulates define the way in which Boolean expressions 
are interpreted. One of the two distributive laws is worth noting because it differs 
from what we would find in ordinary algebra:

A + (B  #   C) = (A + B)  #   (A + C)

2Logical NOT is often indicated by an apostrophe: NOT A = A′. 
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The two bottommost expressions are referred to as DeMorgan’s theorem. We can 
restate them as follows:

 A  NOR  B = A  AND  B

 A  NAND  B = A  OR  B

The reader is invited to verify the expressions in Table 11.2 by substituting 
actual values (1s and 0s) for the variables A, B, and C.

Table 11.1 Boolean Operators

(a) Boolean Operators of Two Input Variables

P Q
NOT P  

(P)
P AND Q 
(P  #   Q)

P OR Q 
(P  +   Q)

P NAND Q 
(P  #   Q)

P NOR Q
(P +   Q)

P XOR Q 
(P  ⊕   Q)

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(b) Boolean Operators Extended to More than Two Inputs (A, B, . . .)

Operation Expression Output = 1  if

AND A  #   B  #   c All of the set {A, B, …} are 1.

OR A + B + c Any of the set {A, B, …} are 1.

NAND A  #   B  #   c Any of the set {A, B, …} are 0.

NOR A + B + c All of the set {A, B, …} are 0.

XOR A  ⊕   B  ⊕   c The set {A, B, …} contains an odd number of ones.

Table 11.2 Basic Identities of Boolean Algebra

Basic Postulates

A  #   B = B  #   A A + B = B + A Commutative Laws

A  #   (B + C) = (A  #   B) + (A  #   C) A + (B  #   C) = (A + B)  #   (A + C) Distributive Laws

1  #   A = A 0 + A = A Identity Elements

A  #   A = 0 A + A = 1 Inverse Elements

Other Identities

0  #   A = 0 1 + A = 1

A  #   A = A A + A = A

A  #   (B  #   C) = (A  #   B)  #   C A + (B + C) = (A + B) + C Associative Laws

A  #   B = A + B A + B = A  #   B DeMorgan’s Theorem
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 11.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-
tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a simple 
Boolean operation on its input signals. The basic gates used in digital logic are 
AND, OR, NOT, NAND, NOR, and XOR. Figure 11.1 depicts these six gates. Each 
gate is defined in three ways: graphic symbol, algebraic notation, and truth table. 
The symbology used in this chapter is from the IEEE standard, IEEE Std 91. Note 
that the inversion (NOT) operation is indicated by a circle.

Each gate shown in Figure 11.1 has one or two inputs and one output. How-
ever, as indicated in Table 11.1b, all of the gates except NOT can have more than 
two inputs. Thus, (X + Y + Z) can be implemented with a single OR gate with 
three inputs. When one or more of the values at the input are changed, the correct 
output signal appears almost instantaneously, delayed only by the propagation time 
of signals through the gate (known as the gate delay). The significance of this delay 
is discussed in Section 11.3. In some cases, a gate is implemented with two outputs, 
one output being the negation of the other output.

A B F
0 0 1
0 1 0
1 0 0
1 1 0

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Graphical Symbol
Algebraic
Function Truth TableName

AND

OR

NOT

NAND

NOR

XOR

F = A • B
or

F = AB

F = A + B

A B F

0
0
1
1

0
0
0
1

0
1
0
1

A B F

0
0
1
1

0
1
1
1

0
1
0
1

A B F

0
0
1
1

1
1
1
0

0
1
0
1

A F

0
1

1
0

A

A

B

F = A
or

F = A′

F = AB

F = A + B

F = A ⊕ B

F

A

B
F

A

B
F

F

A

B
F

A

B
F

Figure 11.1 Basic Logic Gates
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Here we introduce a common term: we say that to assert a signal is to cause a 
signal line to make a transition from its logically false (0) state to its logically true 
(1) state. The true (1) state is either a high or low voltage state, depending on the 
type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrica-
tion are simpler if only one or two types of gates are used. Thus, it is important to 
identify functionally complete sets of gates. This means that any Boolean function 
can be implemented using only the gates in the set. The following are functionally 
complete sets:

 ■ AND, OR, NOT
 ■ AND, NOT
 ■ OR, NOT
 ■ NAND
 ■ NOR

It should be clear that AND, OR, and NOT gates constitute a functionally 
complete set, because they represent the three operations of Boolean algebra. For 
the AND and NOT gates to form a functionally complete set, there must be a way 
to synthesize the OR operation from the AND and NOT operations. This can be 
done by applying DeMorgan’s theorem:

 A + B = A  #   B

A  OR  B = NOT((NOT  A)AND  (NOT  B))  

Similarly, the OR and NOT operations are functionally complete because 
they can be used to synthesize the AND operation.

Figure 11.2 shows how the AND, OR, and NOT functions can be implemented 
solely with NAND gates, and Figure 11.3 shows the same thing for NOR gates. 
For this reason, digital circuits can be, and frequently are, implemented solely with 
NAND gates or solely with NOR gates.

A

A
A

B

A

B

A

B

A+B

A  B
A  B

Figure 11.2 Some Uses of NAND Gates
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With gates, we have reached the most primitive circuit level of computer 
hardware. An examination of the transistor combinations used to construct gates 
departs from that realm and enters the realm of electrical engineering. For our pur-
poses, however, we are content to describe how gates can be used as building blocks 
to implement the essential logical circuits of a digital computer.

 11.3 COMBINATIONAL CIRCUITS

A combinational circuit is an interconnected set of gates whose output at any time 
is a function only of the input at that time. As with a single gate, the appearance of 
the input is followed almost immediately by the appearance of the output, with only 
gate delays.

In general terms, a combinational circuit consists of n binary inputs and m 
binary outputs. As with a gate, a combinational circuit can be defined in three ways:

 ■ Truth table: For each of the 2n possible combinations of input signals, the 
binary value of each of the m output signals is listed.

 ■ Graphical symbols: The interconnected layout of gates is depicted.
 ■ Boolean equations: Each output signal is expressed as a Boolean function of 

its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates. For 
any given function, there are a number of alternative realizations. Consider the Boolean 
function represented by the truth table in Table 11.3. We can express this function by 
simply itemizing the combinations of values of A, B, and C that cause F to be 1:

 F + ABC + ABC + ABC (11.1)

A A

A

B

A

B

A (A+B)

B
A+B

A  B

Figure 11.3 Some Uses of NOR Gates
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There are three combinations of input values that cause F to be 1, and if any one 
of these combinations occurs, the result is 1. This form of expression, for  self-  evident 
reasons, is known as the sum of products (SOP) form. Figure 11.4 shows a straightfor-
ward implementation with AND, OR, and NOT gates.

Another form can also be derived from the truth table. The SOP form 
expresses that the output is 1 if any of the input combinations that produce 1 is true. 
We can also say that the output is 1 if none of the input combinations that produce 
0 is true. Thus,

F = (A  B  C)  #   (A  B  C)  #   (A  B  C)  #   (A  B  C)  #   (A  B  C)

This can be rewritten using a generalization of DeMorgan’s theorem:

(X # Y # Z) = X + Y + Z

Table 11.3 A Boolean Function of Three Variables

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

A B C

F

Figure 11.4  Sum-  of-  Products Implementation of Table 11.3
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Thus,

F = (A + B + C)  #   (A + B + C)  #   (A + B + C)  #   (A + B + C)  #   (A + B + C)  (11.2)

= (A + B + C)  #   (A + B + C)  #   (A + B + C)  #   (A + B + C)  #   (A + B + C)

This is in the product of sums (POS) form, which is illustrated in Figure 11.5. For 
clarity, NOT gates are not shown. Rather, it is assumed that each input signal and its 
complement are available. This simplifies the logic diagram and makes the inputs to 
the gates more readily apparent.

Thus, a Boolean function can be realized in either SOP or POS form. At this 
point, it would seem that the choice would depend on whether the truth table con-
tains more 1s or 0s for the output function: The SOP has one term for each 1, and 
the POS has one term for each 0. However, there are other considerations:

 ■ It is often possible to derive a simpler Boolean expression from the truth table 
than either SOP or POS.

 ■ It may be preferable to implement the function with a single gate type (NAND 
or NOR).

The significance of the first point is that, with a simpler Boolean expression, 
fewer gates will be needed to implement the function. Three methods that can be 
used to achieve simplification are

 ■ Algebraic simplification
 ■ Karnaugh maps
 ■  Quine–  McCluskey tables

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

Figure 11.5  Product-  of-  Sums 
Implementation of Table 11.3
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algebraic simplification Algebraic simplification involves the application of 
the identities of Table 11.2 to reduce the Boolean expression to one with fewer 
elements. For example, consider again Equation (11.1). Some thought should 
convince the reader that an equivalent expression is

 F = AB + BC (11.3)

Or, even simpler,

F = B(A + C)

This expression can be implemented as shown in Figure 11.6. The simplification 
of Equation (11.1) was done essentially by observation. For more complex expres-
sions, some more systematic approach is needed.

karnaugh maps For purposes of simplification, the Karnaugh map is a convenient 
way of representing a Boolean function of a small number (up to four) of variables. 
The map is an array of 2n squares, representing all possible combinations of values 
of n binary variables. Figure 11.7a shows the map of four squares for a function of 
two variables. It is essential for later purposes to list the combinations in the order 
00, 01, 11, 10. Because the squares corresponding to the combinations are to be 
used for recording information, the combinations are customarily written above the 
squares. In the case of three variables, the representation is an arrangement of eight 
squares (Figure 11.7b), with the values for one of the variables to the left and for the 
other two variables above the squares. For four variables, 16 squares are needed, 
with the arrangement indicated in Figure 11.7c.

The map can be used to represent any Boolean function in the following 
way. Each square corresponds to a unique product in the  sum-  of-  products form, 
with a 1 value corresponding to the variable and a 0 value corresponding to the 
NOT of that variable. Thus, the product AB corresponds to the fourth square 
in  Figure 11.7a. For each such product in the function, 1 is placed in the corres-
ponding square. Thus, for the  two-  variable example, the map corresponds to 
AB + AB. Given the truth table of a Boolean function, it is an easy matter to 
construct the map: for each combination of values of variables that produce a 
result of 1 in the truth table, fill in the corresponding square of the map with 1. 
Figure 11.7b shows the result for the truth table of Table 11.3. To convert from a 
Boolean expression to a map, it is first necessary to put the expression into what 
is referred to as canonical form: each term in the expression must contain each 
variable. So, for example, if we have Equation (11.3), we must first expand it into 
the full form of Equation (11.1) and then convert this to a map.

F
B

A

C

Figure 11.6 Simplified Implementation 
of Table A.3
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The labeling used in Figure 11.7d emphasizes the relationship between var-
iables and the rows and columns of the map. Here the two rows embraced by the 
symbol A are those in which the variable A has the value 1; the rows not embraced 
by the symbol A are those in which A is 0; similarly for B, C, and D.

Once the map of a function is created, we can often write a simple algebraic 
expression for it by noting the arrangement of the 1s on the map. The principle is as 
follows. Any two squares that are adjacent differ in only one of the variables. If two 
adjacent squares both have an entry of one, then the corresponding product terms 
differ in only one variable. In such a case, the two terms can be merged by eliminat-
ing that variable. For example, in Figure 11.8a, the two adjacent squares correspond 
to the two terms ABCD and ABCD. Thus, the function expressed is

ABCD + ABCD = ABD

This process can be extended in several ways. First, the concept of adjacency 
can be extended to include wrapping around the edge of the map. Thus, the top 
square of a column is adjacent to the bottom square, and the leftmost square of a 
row is adjacent to the rightmost square. These conditions are illustrated in Figures 
11.8b and c. Second, we can group not just 2 squares but 2n adjacent squares (i.e., 2, 
4, 8, etc.). The next three examples in Figure 11.8 show groupings of 4 squares. Note 
that in this case, two of the variables can be eliminated. The last three examples 
show groupings of 8 squares, which allow three variables to be eliminated.

We can summarize the rules for simplification as follows:

1. Among the marked squares (squares with a 1), find those that belong to a 
unique largest block of 1, 2, 4, or 8 and circle those blocks.

AB

1

00 01 11 10

00

00

01

11

10

01 11 10

00

0

1 

01 11 10

1

(a) F = AB + AB

BC

1 1

1

(b) F = ABC + ABC + ABC

CD

AB

1

(c) F = ABCD + ABCD + ABCD

1

1

C

B

D

A

(d) Simpli�ed labeling of map

A

Figure 11.7 The Use of Karnaugh Maps to Represent Boolean 
Functions



11.3 / ComBinaTional CirCuiTs  383

2. Select additional blocks of marked squares that are as large as possible and 
as few in number as possible, but include every marked square at least once. 
The results may not be unique in some cases. For example, if a marked square 
combines with exactly two other squares, and there is no fourth marked square 
to complete a larger group, then there is a choice to be made as to which of the 
two groupings to choose. When you are circling groups, you are allowed to use 
the same 1 value more than once.

3. Continue to draw loops around single marked squares, or pairs of adjacent 
marked squares, or groups of four, eight, and so on in such a way that every 
marked square belongs to at least one loop; then use as few of these blocks as 
possible to include all marked squares.

Figure 11.9a, based on Table 11.3, illustrates the simplification process. If any 
isolated 1s remain after the groupings, then each of these is circled as a group of 1s. 
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Figure 11.8 The Use of Karnaugh Maps
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Finally, before going from the map to a simplified Boolean expression, any group of 
1s that is completely overlapped by other groups can be eliminated. This is shown in 
Figure 11.9b. In this case, the horizontal group is redundant and may be ignored in 
creating the Boolean expression.

One additional feature of Karnaugh maps needs to be mentioned. In some 
cases, certain combinations of values of variables never occur, and therefore the cor-
responding output never occurs. These are referred to as “don’t care” conditions. 
For each such condition, the letter “d” is entered into the corresponding square of 
the map. In doing the grouping and simplification, each “d” can be treated as a 1 or 
0, whichever leads to the simplest expression.

An example, presented in [HAYE98], illustrates the points we have been dis-
cussing. We would like to develop the Boolean expressions for a circuit that adds 
1 to a packed decimal digit. For packed decimal, each decimal digit is represented 
by a 4-bit code, in the obvious way. Thus, 0 = 0000,  1 = 0001,c,  8 = 1000, and 
9 = 1001. The remaining 4-bit values, from 1010 to 1111, are not used. This code is 
also referred to as Binary Coded Decimal (BCD).

Table 11.4 shows the truth table for producing a 4-bit result that is one more 
than a 4-bit BCD input. The addition is modulo 10. Thus, 9 + 1 = 0. Also, note 
that six of the input codes produce “don’t care” results, because those are not valid 
BCD inputs. Figure 11.10 shows the resulting Karnaugh maps for each of the output 
variables. The d squares are used to achieve the best possible groupings.

the  quine–  mccluskey method For more than four variables, the Karnaugh 
map method becomes increasingly cumbersome. With five variables, two 16 * 16 
maps are needed, with one map considered to be on top of the other in three 
dimensions to achieve adjacency. Six variables require the use of four 16 * 16 

(b) F = BCD + ACD

(a) F = AB + BC
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Figure 11.9 Overlapping Groups
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Figure 11.10 Karnaugh Maps for the Incrementer

tables in four dimensions! An alternative approach is a tabular technique, referred 
to as the  Quine–  McCluskey method. The method is suitable for programming on a 
computer to give an automatic tool for producing minimized Boolean expressions.

Table 11.4 Truth Table for the  One-  Digit Packed Decimal Incrementer

Input Output

Number A B C D Number W X Y Z

0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 1 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

Don’t  
care  

condition 

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d D

µ
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The method is best explained by means of an example. Consider the following 
expression:

ABCD + ABCD + ABC  D + ABCD + ABCD + ABCD + ABCD + A  B  CD

Let us assume that this expression was derived from a truth table. We would 
like to produce a minimal expression suitable for implementation with gates.

The first step is to construct a table in which each row corresponds to one 
of the product terms of the expression. The terms are grouped according to the 
number of complemented variables. That is, we start with the term with no comple-
ments, if it exists, then all terms with one complement, and so on. Table 11.5 shows 
the list for our example expression, with horizontal lines used to indicate the group-
ing. For clarity, each term is represented by a 1 for each uncomplemented variable 
and a 0 for each complemented variable. Thus, we group terms according to the 
number of 1s they contain. The index column is simply the decimal equivalent and 
is useful in what follows.

The next step is to find all pairs of terms that differ in only one variable, that is, 
all pairs of terms that are the same except that one variable is 0 in one of the terms 
and 1 in the other. Because of the way in which we have grouped the terms, we can 
do this by starting with the first group and comparing each term of the first group 
with every term of the second group. Then compare each term of the second group 
with all of the terms of the third group, and so on. Whenever a match is found, place 
a check next to each term, combine the pair by eliminating the variable that differs 
in the two terms, and add that to a new list. Thus, for example, the terms ABCD and 
ABCD are combined to produce ABC. This process continues until the entire ori-
ginal table has been examined. The result is a new table with the following entries:

A  CD            ABC            ABDU 
                      BCDU           ACD

                      ABC             BCDU 
                     ABDU  

Table 11.5 First Stage of  Quine–  McCluskey Method 
(for  F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

Product Term Index A B C D

A  B CD  1 0 0 0 1 ✓

ABCD  5 0 1 0 1 ✓

ABCD  6 0 1 1 0 ✓

ABC  D 12 1 1 0 0 ✓

ABCD  7 0 1 1 1 ✓

ABCD 11 1 0 1 1 ✓

ABCD 13 1 1 0 1 ✓

ABCD 15 1 1 1 1 ✓
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The new table is organized into groups, as indicated, in the same fashion as the 
first table. The second table is then processed in the same manner as the first. That is, 
terms that differ in only one variable are checked and a new term produced for a third 
table. In this example, the third table that is produced contains only one term: BD.

In general, the process would proceed through successive tables until a table 
with no matches was produced. In this case, this has involved three tables.

Once the process just described is completed, we have eliminated many of 
the possible terms of the expression. Those terms that have not been eliminated 
are used to construct a matrix, as illustrated in Table 11.6. Each row of the matrix 
corresponds to one of the terms that have not been eliminated (has no check) in 
any of the tables used so far. Each column corresponds to one of the terms in the 
original expression. An X is placed at each intersection of a row and a column such 
that the row element is “compatible” with the column element. That is, the varia-
bles present in the row element have the same value as the variables present in the 
column element. Next, circle each X that is alone in a column. Then place a square 
around each X in any row in which there is a circled X. If every column now has 
either a squared or a circled X, then we are done, and those row elements whose 
Xs have been marked constitute the minimal expression. Thus, in our example, the 
final expression is

ABC + ACD + ABC + A CD

In cases in which some columns have neither a circle nor a square, additional 
processing is required. Essentially, we keep adding row elements until all columns 
are covered.

Let us summarize the  Quine–  McCluskey method to try to justify intuitively 
why it works. The first phase of the operation is reasonably straightforward. The 
process eliminates unneeded variables in product terms. Thus, the expression 
ABC + ABC is equivalent to AB, because

ABC + ABC = AB(C + C) = AB

After the elimination of variables, we are left with an expression that is clearly 
equivalent to the original expression. However, there may be redundant terms in 
this expression, just as we found redundant groupings in Karnaugh maps. The mat-
rix layout assures that each term in the original expression is covered and does so in 
a way that minimizes the number of terms in the final expression.

Table 11.6 Last Stage of  Quine–  McCluskey Method 
(for  F = ABCD + ABCD + ABC D + ABCD + ABCD + ABCD + ABCD + A B CD)

ABCD ABCD ABC D ABCD ABCD ABCD ABCD A B CD

BD X X X X

A CD X ⊗

ABC X ⊗

ABC X ⊗

ACD X ⊗
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nand and nor implementations Another consideration in the implemen-
tation of Boolean functions concerns the types of gates used. It is sometimes 
desirable to implement a Boolean function solely with NAND gates or solely 
with NOR gates. Although this may not be the  minimum-  gate implementation, 
it has the advantage of regularity, which can simplify the manufacturing process. 
Consider again Equation (11.3):

F = B(A + C)

Because the complement of the complement of a value is just the original value,

F = B(A + C) = (AB + (BC)

Applying DeMorgan’s theorem,

F = (AB)•(BC)

which has three NAND forms, as illustrated in Figure 11.11.

Multiplexers

The multiplexer connects multiple inputs to a single output. At any time, one of the 
inputs is selected to be passed to the output. A general block diagram representation 
is shown in Figure 11.12. This represents a 4- to-  1 multiplexer. There are four input 
lines, labeled D0, D1, D2, and D3. One of these lines is selected to provide the output 

A
B

B
C

F

Figure 11.11 NAND Implementation of 
Table 11.3

D0

D1

D2

S2 S1

D3

F
4-to-1
MUX

Figure 11.12 4- to-  1 Multiplexer 
Representation
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signal F. To select one of the four possible inputs, a 2-bit selection code is needed, 
and this is implemented as two select lines labeled S1 and S2.

An example 4- to-  1 multiplexer is defined by the truth table in Table 11.7. 
This is a simplified form of a truth table. Instead of showing all possible combina-
tions of input variables, it shows the output as data from line D0, D1, D2, or D3. 
Figure 11.13 shows an implementation using AND, OR, and NOT gates. S1 and 
S2 are connected to the AND gates in such a way that, for any combination of S1 
and S2, three of the AND gates will output 0. The fourth AND gate will output the 
value of the selected line, which is either 0 or 1. Thus, three of the inputs to the OR 
gate are always 0, and the output of the OR gate will equal the value of the selected 
input gate. Using this regular organization, it is easy to construct multiplexers of 
size 8- to-  1, 16- to-  1, and so on.

Multiplexers are used in digital circuits to control signal and data routing. An 
example is the loading of the program counter (PC). The value to be loaded into the 
program counter may come from one of several different sources:

D0

D1

D2

D3

S1S2

F

Figure 11.13 Multiplexer Implementation

Table 11.7 4- to-  1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3
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 ■ A binary counter, if the PC is to be incremented for the next instruction.
 ■ The instruction register, if a branch instruction using a direct address has just 

been executed.
 ■ The output of the ALU, if the branch instruction specifies the address using a 

displacement mode.

These various inputs could be connected to the input lines of a multiplexer, with the 
PC connected to the output line. The select lines determine which value is loaded 
into the PC. Because the PC contains multiple bits, multiple multiplexers are used, 
one per bit. Figure 11.14 illustrates this for 16-bit addresses.

Decoders

A decoder is a combinational circuit with a number of output lines, only one of 
which is asserted at any time. Which output line is asserted depends on the pattern 
of input lines. In general, a decoder has n inputs and 2n outputs. Figure 11.15 shows a 
decoder with three inputs and eight outputs.

Decoders find many uses in digital computers. One example is address decod-
ing. Suppose we wish to construct a 1 K-  byte memory using four 2 5 6 * 8 @bit RAM 
chips. We want a single unified address space, which can be broken down as follows:

  Address Chip

0000–00FF 0

0100–01FF 1

0200–02FF 2

0300–03FF 3

Each chip requires 8 address lines, and these are supplied by the  lower-  order 
8 bits of the address. The  higher-  order 2 bits of the 10-bit address are used to select 
one of the four RAM chips. For this purpose, a 2- to-  4 decoder is used whose output 
enables one of the four chips, as shown in Figure 11.16.

With an additional input line, a decoder can be used as a demultiplexer. The 
demultiplexer performs the inverse function of a multiplexer; it connects a single 
input to one of several outputs. This is shown in Figure 11.17. As before, n inputs are 
decoded to produce a single one of 2n outputs. All of the 2n output lines are ANDed 

S1

S2

C0 IR0

PC0

ALU0 C1 IR1 ALU1 C15 IR15 ALU15

4-to-1
MUX S1

S2

PC1

4-to-1
MUX S1

S2

PC15

4-to-1
MUX

Figure 11.14 Multiplexer Input to Program Counter
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with a data input line. Thus, the n inputs act as an address to select a particular out-
put line, and the value on the data input line (0 or 1) is routed to that output line.

The configuration in Figure 11.17 can be viewed in another way. Change the 
label on the new line from Data Input to Enable. This allows for the control of the 
timing of the decoder. The decoded output appears only when the encoded input is 
present and the enable line has a value of 1.

 Read-  Only Memory

Combinational circuits are often referred to as “memoryless” circuits, because their 
output depends only on their current input and no history of prior inputs is retained. 
However, there is one sort of memory that is implemented with combinational cir-
cuits, namely  read-  only memory (ROM).

Recall that a ROM is a memory unit that performs only the read operation. 
This implies that the binary information stored in a ROM is permanent and was cre-
ated during the fabrication process. Thus, a given input to the ROM (address lines) 
always produces the same output (data lines). Because the outputs are a function 
only of the present inputs, the ROM is in fact a combinational circuit.

A ROM can be implemented with a decoder and a set of OR gates. As an 
example, consider Table 11.8. This can be viewed as a truth table with four inputs 
and four outputs. For each of the 16 possible input values, the corresponding set 
of values of the outputs is shown. It can also be viewed as defining the contents 
of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an 
address, and the four outputs specify the contents of the location specified by the 
address. Figure 11.18 shows how this memory could be implemented using a 4- to-  16 
decoder and four OR gates. As with the PLA, a regular organization is used, and 
the interconnections are made to reflect the desired result.

Adders

So far, we have seen how interconnected gates can be used to implement such 
functions as the routing of signals, decoding, and ROM. One essential area not yet 
addressed is that of arithmetic. In this brief overview, we will content ourselves with 
looking at the addition function.

Binary addition differs from Boolean algebra in that the result includes a 
carry term. Thus, 

Data input

n-bit
destination

address 2n outputs
n-to-2n

decoder

Figure 11.17 Implementation of a Demultiplexer Using a Decoder
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1100
1101
1110
1111

Z1 Z2 Z3 Z4

Figure 11.18 A 64-Bit ROM

Table 11.8 Truth Table for a ROM

Input Output

X1 X2 X3 X4 Z1 Z2 Z3 Z4

 0  0  0  0  0  0  0 0

 0  0  0  1  0  0  0 1

 0  0  1  0  0  0  1 1

 0  0  1  1  0  0  1 0

 0  1  0  0  0  1  1 0

 0  1  0  1  0  1  1 1

 0  1  1  0  0  1  0 1

 0  1  1  1  0  1  0 0

 1  0  0  0  1  1  0 0

 1  0  0  1  1  1  0 1

 1  0  1  0  1  1  1 1

 1  0  1  1  1  1  1 0

 1  1  0  0  1  0  1 0

 1  1  0  1  1  0  1 1

 1  1  1  0  1  0  0 1

 1  1  1  1  1  0  0 0
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However, addition can still be dealt with in Boolean terms. In Table 11.9a, we show 
the logic for adding two input bits to produce a 1-bit sum and a carry bit. This truth 
table could easily be implemented in digital logic. However, we are not interested 
in performing addition on just a single pair of bits. Rather, we wish to add two  n-  bit 
numbers. This can be done by putting together a set of adders so that the carry from 
one adder is provided as input to the next. A 4-bit adder is depicted in Figure 11.19.

For a  multiple-  bit adder to work, each of the  single-  bit adders must have three 
inputs, including the carry from the  next-  lower-  order adder. The revised truth table 
appears in Table 11.9b. The two outputs can be expressed:

 Sum = A BC + ABC + ABC + ABC

 Carry = AB + AC + BC

Figure 11.20 is an implementation using AND, OR, and NOT gates.

Table 11.9 Binary Addition Truth Tables

A3

C3

S3

Cin

B3 A2

C2

S2

Cin

B2 A1

C1

S1

Cin

B1 A0

C0

S0

Cin 0

B0

Over�ow
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Figure 11.19 4-Bit Adder

(a)  Single-  Bit Addition

A B Sum Carry

 0 0 0 0

 0 1 1 0

 1 0 1 0

 1 1 0 1

(b) Addition with Carry Input

Cin A B Sum Cout

 0  0  0 0 0

 0  0  1 1 0

 0  1  0 1 0

 0  1  1 0 1

 1  0  0 1 0

 1  0  1 0 1

 1  1  0 0 1

 1  1  1 1 1

      0      0       1        1

+0
0

+1
1

+0
1

+1
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Thus we have the necessary logic to implement a  multiple-  bit adder such as 
shown in Figure 11.21. Note that because the output from each adder depends on 
the carry from the previous adder, there is an increasing delay from the least signifi-
cant to the most significant bit. Each  single-  bit adder experiences a certain amount 
of gate delay, and this gate delay accumulates. For larger adders, the accumulated 
delay can become unacceptably high.

If the carry values could be determined without having to ripple through all 
the previous stages, then each  single-  bit adder could function independently, and 
delay would not accumulate. This can be achieved with an approach known as carry 
lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to 
any stage of the adder without reference to previous carry values. We have

C
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C

A
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C
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C
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Figure 11.20 Implementation of an Adder

A31

C23
Cout

B31

S31 S24

A24 B24

8-bit
adder

A23

C15

B23

S23 S16

A16 B16

8-bit
adder

A15

C7

B15

S15 S8

A8 B8

8-bit
adder

A7

Cin

B7

S7 S0

A0 B0

8-bit
adder

Figure 11.21 Construction of a 32-Bit Adder Using 8-Bit Adders



396  CHaPTer 11 / DigiTal logiC

  C0 = A0B0 (11.4)

  C1 = A1B1 + A1A0B0 + B1A0B0 (11.5)

Following the same procedure, we get

C2 = A2B2 + A2A1B1 + A2A1A0B0 + A2B1A0B0 + B2A1B1

+   B2A1A0B0 + B2B1A0B0

This process can be repeated for arbitrarily long adders. Each carry term can be 
expressed in SOP form as a function only of the original inputs, with no dependence 
on the carries. Thus, only two levels of gate delay occur regardless of the length of 
the adder.

For long numbers, this approach becomes excessively complicated. Evaluating 
the expression for the most significant bit of an  n-  bit adder requires an OR gate 
with 2n -  1 inputs and 2n -  1 AND gates with from 2 to n + 1 inputs. Accordingly, 
full carry lookahead is typically done only 4 to 8 bits at a time. Figure 11.21 shows 
how a 32-bit adder can be constructed out of four 8-bit adders. In this case, the carry 
must ripple through the four 8-bit adders, but this will be substantially quicker than 
a ripple through  thirty-  two 1-bit adders.

 11.4 SEQUENTIAL CIRCUITS

Combinational circuits implement the essential functions of a digital computer. 
However, except for the special case of ROM, they provide no memory or state 
information, elements also essential to the operation of a digital computer. For the 
latter purposes, a more complex form of digital logic circuit is used: the sequential 
circuit. The current output of a sequential circuit depends not only on the current 
input, but also on the past history of inputs. Another and generally more useful way 
to view it is that the current output of a sequential circuit depends on the current 
input and the current state of that circuit.

In this section, we examine some simple but useful examples of sequential 
circuits. As will be seen, the sequential circuit makes use of combinational circuits.

 Flip-  Flops

The simplest form of sequential circuit is the  flip-  flop. There are a variety of  flip- 
 flops, all of which share two properties:

 ■ The  flip-  flop is a bistable device. It exists in one of two states and, in the 
absence of input, remains in that state. Thus, the  flip-  flop can function as a 1-bit 
memory.

 ■ The  flip-  flop has two outputs, which are always the complements of each 
other. These are generally labeled Q and Q.

the  s–  r latch Figure 11.22 shows a common configuration known as the  S–  R  flip- 
 flop or  S–  R latch. The circuit has two inputs, S (Set) and R (Reset), and two outputs, 
Q and Q, and consists of two NOR gates connected in a feedback arrangement.
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First, let us show that the circuit is bistable. Assume that both S and R are 0 
and that Q is 0. The inputs to the lower NOR gate are Q = 0 and S = 0. Thus, the 
output Q = 1 means that the inputs to the upper NOR gate are Q = 1 and R = 0, 
which has the output Q = 0. Thus, the state of the circuit is internally consistent 
and remains stable as long as S = R = 0. A similar line of reasoning shows that the 
state Q = 1,  Q = 0 is also stable for R = S = 0.

Thus, this circuit can function as a 1-bit memory. We can view the output Q as 
the “value” of the bit. The inputs S and R serve to write the values 1 and 0, respect-
ively, into memory. To see this, consider the state Q = 0,  Q = 1,  S = 0,  R = 0. 
Suppose that S changes to the value 1. Now the inputs to the lower NOR gate are 
S = 1,  Q = 0. After some time delay ∆t, the output of the lower NOR gate will be 
Q = 0 (see Figure 11.23). So, at this point in time, the inputs to the upper NOR gate 
become R = 0,  Q = 0. After another gate delay of ∆t the output Q becomes 1. This 
is again a stable state. The inputs to the lower gate are now S = 1,  Q = 1, which 
maintain the output Q = 0. As long as S = 1 and R = 0, the outputs will remain 
Q = 1,  Q = 0. Furthermore, if S returns to 0, the outputs will remain unchanged.

The R output performs the opposite function. When R goes to 1, it forces 
Q = 0,  Q = 1 regardless of the previous state of Q and Q. Again, a time delay of 
2∆t occurs before the final state is established (Figure 11.23).

The  S–  R latch can be defined with a table similar to a truth table, called a 
characteristic table, which shows the next state or states of a sequential circuit as 
a function of current states and inputs. In the case of the  S–  R latch, the state can 
be defined by the value of Q. Table 11.10a shows the resulting characteristic table. 
Observe that the inputs S = 1,  R = 1 are not allowed, because these would pro-
duce an inconsistent output (both Q and Q equal 0). The table can be expressed 
more compactly, as in Table 11.10b. An illustration of the behavior of the  S–  R latch 
is shown in Table 11.10c.

clocked  s–  r  flip-  flop The output of the  S–  R latch changes, after a brief time 
delay, in response to a change in the input. This is referred to as asynchronous 
operation. More typically, events in the digital computer are synchronized to a clock 
pulse, so that changes occur only when a clock pulse occurs. Figure 11.24 shows this 

S

Q

Q

R

Figure 11.22 The  S–  R Latch Implemented with 
NOR Gates
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Figure 11.23 NOR  S–  R Latch Timing Diagram

Table 11.10 The  S–  R Latch

(a) Characteristic Table

Current 
Inputs

Current 
State

Next  
State

SR Qn Qn + 1

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 —

11 1 —

(b) Simplified Characteristic Table

S R Qn + 1

0 0 Qn

0 1 0

1 0 1

1 1 —

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

R 0 0 0 1 0 0 1 0 0 0

Qn+ 1 1 1 1 0 0 0 0 0 1 1
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arrangement. This device is referred to as a clocked  S–  R  flip-  flop. Note that the R 
and S inputs are passed to the NOR gates only during the clock pulse.

d  flip-  flop One problem with  S–  R  flip-  flop is that the condition R = 1,  S = 1 
must be avoided. One way to do this is to allow just a single input. The D  flip-  flop 
accomplishes this. Figure 11.25 shows a gate implementation of the D  flip-  flop. By 
using an inverter, the nonclock inputs to the two AND gates are guaranteed to be the 
opposite of each other.

The D  flip-  flop is sometimes referred to as the data  flip-  flop because it is, 
in effect, storage for one bit of data. The output of the D  flip-  flop is always equal 
to the most recent value applied to the input. Hence, it remembers and produces 
the last input. It is also referred to as the delay  flip-  flop, because it delays a 0 or 1 
applied to its input for a single clock pulse. We can capture the logic of the D  flip- 
 flop in the following truth table:

D Qn+ 1

 0 0

 1 1

 j–  k  flip-  flop Another useful  flip-  flop is the  J–  K  flip-  flop. Like the  S–  R  flip-  flop, 
it has two inputs. However, in this case all possible combinations of input values are 
valid. Figure 11.26 shows a gate implementation of the  J–  K  flip-  flop, and Figure 11.27 
shows its characteristic table (along with those for the  S–  R and D  flip-  flops). Note 
that the first three combinations are the same as for the  S–  R  flip-  flop. With no 
input asserted, the output is stable. If only the J input is asserted, the result is a set 

S

R

Q

Q

Clock

Figure 11.24 Clocked  S–  R  Flip-  Flop

D
Q

Q

Clock

Figure 11.25 D  Flip-  Flop
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function, causing the output to be 1; if only the K input is asserted, the result is a 
reset function, causing the output to be 0. When both J and K are 1, the function 
performed is referred to as the toggle function: the output is reversed. Thus, if Q is 
1 and 1 is applied to J and K, then Q becomes 0. The reader should verify that the 
implementation of Figure 11.26 produces this characteristic function.

J

K

Q

Q

Clock

Figure 11.26  J–  K  Flip-  Flop
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Figure 11.27 Basic  Flip-  Flops
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Registers

As an example of the use of  flip-  flops, let us first examine one of the essential ele-
ments of the CPU: the register. As we know, a register is a digital circuit used within 
the CPU to store one or more bits of data. Two basic types of registers are commonly 
used: parallel registers and shift registers.

parallel registers A parallel register consists of a set of 1-bit memories that 
can be read or written simultaneously. It is used to store data. The registers that we 
have discussed throughout this book are parallel registers.

The 8-bit register of Figure 11.28 illustrates the operation of a parallel register 
using D  flip-  flops. A control signal, labeled load, controls writing into the register 
from signal lines, D11 through D18. These lines might be the output of multiplexers, 
so that data from a variety of sources can be loaded into the register.

shift register A shift register accepts and/or transfers information serially. 
Consider, for example, Figure 11.29, which shows a 5-bit shift register constructed 
from clocked D  flip-  flops. Data are input only to the leftmost  flip-  flop. With each 
clock pulse, data are shifted to the right one position, and the rightmost bit is 
transferred out.

Shift registers can be used to interface to serial I/O devices. In addition, they 
can be used within the ALU to perform logical shift and rotate functions. In this 
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latter capacity, they need to be equipped with parallel read/write circuitry as well 
as serial.

Counters

Another useful category of sequential circuit is the counter. A counter is a register 
whose value is easily incremented by 1 modulo the capacity of the register; that is, 
after the maximum value is achieved the next increment sets the counter value to 
0. Thus, a register made up of n  flip-  flops can count up to 2n -  1. An example of a 
counter in the CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on 
the way in which they operate. Asynchronous counters are relatively slow because 
the output of one  flip-  flop triggers a change in the status of the next  flip-  flop. In a 
synchronous counter, all of the  flip-  flops change state at the same time. Because the 
latter type is much faster, it is the kind used in CPUs. However, it is useful to begin 
the discussion with a description of an asynchronous counter.

ripple counter An asynchronous counter is also referred to as a ripple counter, 
because the change that occurs to increment the counter starts at one end and 
“ripples” through to the other end. Figure 11.30 shows an implementation of a 
4-bit counter using  J–  K  flip-  flops, together with a timing diagram that illustrates its 
behavior. The timing diagram is idealized in that it does not show the propagation 
delay that occurs as the signals move down the series of  flip-  flops. The output of 
the leftmost  flip-  flop (Q0) is the least significant bit. The design could clearly be 
extended to an arbitrary number of bits by cascading more  flip-  flops.
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K Q
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(a) Sequential circuit

(b) Timing diagram

Figure 11.30 Ripple Counter
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In the illustrated implementation, the counter is incremented with each clock 
pulse. The J and K inputs to each  flip-  flop are held at a constant 1. This means that, 
when there is a clock pulse, the output at Q will be inverted (1 to 0; 0 to 1). Note that 
the change in state is shown as occurring with the falling edge of the clock pulse; this 
is known as an  edge-  triggered  flip-  flop. Using  flip-  flops that respond to the tran-
sition in a clock pulse rather than the pulse itself provides better timing control in 
complex circuits. If one looks at patterns of output for this counter, it can be seen 
that it cycles through 0000, 0001, …, 1110, 1111, 0000, and so on.

synchronous counters The ripple counter has the disadvantage of the delay 
involved in changing value, which is proportional to the length of the counter. To 
overcome this disadvantage, CPUs make use of synchronous counters, in which 
all of the  flip-  flops of the counter change at the same time. In this subsection, we 
present a design for a 3-bit synchronous counter. In doing so, we illustrate some 
basic concepts in the design of a synchronous circuit.

For a 3-bit counter, three  flip-  flops will be needed. Let us use  J–  K  flip-  flops. 
Label the uncomplemented output of the three  flip-  flops C, B, and A, respectively, 
with C representing the most significant bit. The first step is to construct a truth 
table that relates the  J–  K inputs and outputs, to allow us to design the overall cir-
cuit. Such a truth table is shown in Figure 11.31a. The first three columns show the 
possible combinations of outputs C, B, and A. They are listed in the order that they 
will appear as the counter is incremented. Each row lists the current value of C, B, 
and A and the inputs to the three  flip-  flops that will be required to reach the next 
value of C, B, and A.

To understand the way in which the truth table of Figure 11.31a is constructed, 
it may be helpful to recast the characteristic table for the  J–  K  flip-  flop. Recall that 
this table was presented as follows:

J K Qn+ 1

0 0 Qn

0 1 0

1 0 1

1 1 Qn + 1

In this form, the table shows the effect that the J and K inputs have on the output. 
Now consider the following organization of the same information:

Qn J K Qn+ 1

 0 0 d 0

 0 1 d 1

 1 d 1 0

 1 d 0 1

In this form, the table provides the value of the next output when the inputs and 
the present output are known. This is exactly the information needed to design the 
counter or, indeed, any sequential circuit. In this form, the table is referred to as an 
excitation table.
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Let us return to Figure 11.31a. Consider the first row. We want the value of 
C to remain 0, the value of B to remain 0, and the value of A to go from 0 to 1 with 
the next application of a clock pulse. The excitation table shows that to maintain an 
output of 0, we must have inputs of J = 0 and don’t care for K. To effect a transition 
from 0 to 1, the inputs must be J = 1 and K = d. These values are shown in the first 
row of the table. By similar reasoning, the remainder of the table can be filled in.

(c) Logic diagram 
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Having constructed the truth table of Figure 11.31a, we see that the table 
shows the required values of all of the J and K inputs as functions of the current val-
ues of C, B, and A. With the aid of Karnaugh maps, we can develop Boolean expres-
sions for these six functions. This is shown in part b of the figure. For example, the 
Karnaugh map for the variable Ja (the J input to the  flip-  flop that produces the A 
output) yields the expression Ja = BC. When all six expressions are derived, it is a 
straightforward matter to design the actual circuit, as shown in part c of the figure.

 11.5 PROGRAMMABLE LOGIC DEVICES

Thus far, we have treated individual gates as building blocks, from which arbitrary 
functions can be realized. The designer could pursue a strategy of minimizing the 
number of gates to be used by manipulating the corresponding Boolean expressions.

As the level of integration provided by integrated circuits increases, other 
considerations apply. Early integrated circuits, using  small-  scale integration (SSI), 
provided from one to ten gates on a chip. Each gate is treated independently, in the 
 building-  block approach described so far. To construct a logic function, a number of 
these chips are laid out on a printed circuit board and the appropriate pin intercon-
nections are made.

Increasing levels of integration made it possible to put more gates on a chip 
and to make gate interconnections on the chip as well. This yields the advantages of 
decreased cost, decreased size, and increased speed (because  on-  chip delays are of 
shorter duration than  off-  chip delays). A design problem arises, however. For each 
particular logic function or set of functions, the layout of gates and interconnec-
tions on the chip must be designed. The cost and time involved in such custom chip 
design is high. Thus, it becomes attractive to develop a  general-  purpose chip that 
can be readily adapted to specific purposes. This is the intent of the programmable 
logic device (PLD).

There are a number of different types of PLDs in commercial use. Table 11.11 
lists some of the key terms and defines some of the most important types. In this 
section, we first look at one of the simplest such devices, the programmable logic 
array (PLA) and then introduce perhaps the most important and widely used type 
of PLD, the  field-  programmable gate array (FPGA).

Programmable Logic Array

The PLA is based on the fact that any Boolean function (truth table) can be 
expressed in a  sum-  of-  products (SOP) form, as we have seen. The PLA consists of 
a regular arrangement of NOT, AND, and OR gates on a chip. Each chip input is 
passed through a NOT gate so that each input and its complement are available to 
each AND gate. The output of each AND gate is available to each OR gate, and the 
output of each OR gate is a chip output. By making the appropriate connections, 
arbitrary SOP expressions can be implemented.

Figure 11.32a shows a PLA with three inputs, eight gates, and two outputs. On 
the left is a programmable AND array. The AND array is programmed by estab-
lishing a connection between any PLA input or its negation and any AND gate 
input by connecting the corresponding lines at their point of intersection. On the 
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right is a programmable OR array, which involves connecting AND gate outputs to 
OR gate inputs. Most larger PLAs contain several hundred gates, 15 to 25 inputs, 
and 5 to 15 outputs. The connections from the inputs to the AND gates, and from 
the AND gates to the OR gates, are not specified until programming time.

PLAs are manufactured in two different ways to allow easy programming (mak-
ing of connections). In the first, every possible connection is made through a fuse 
at every intersection point. The undesired connections can then be later removed 
by blowing the fuses. This type of PLA is referred to as a  field-  programmable logic 
array (FPLA). Alternatively, the proper connections can be made during chip fab-
rication by using an appropriate mask supplied for a particular interconnection pat-
tern. In either case, the PLA provides a flexible, inexpensive way of implementing 
digital logic functions.

Figure 11.32b shows a programmed PLA that realizes two Boolean expressions.

 Field-  Programmable Gate Array

The PLA is an example of a simple PLD (SPLD). The difficulty with increasing 
capacity of a strict SPLD architecture is that the structure of the programmable 
 logic-  planes grows too quickly in size as the number of inputs is increased. The only 
feasible way to provide large capacity devices based on SPLD architectures is to 
then integrate multiple SPLDs onto a single chip and provide interconnect to pro-
grammably connect the SPLD blocks together. Many commercial PLD products 

Table 11.11 PLD Terminology

Programmable Logic Device (PLD)

A general term that refers to any type of integrated circuit used for implementing digital hard-
ware, where the chip can be configured by the end user to realize different designs. Programming 
of such a device often involves placing the chip into a special programming unit, but some chips can 
also be configured “ in-  system.” Also referred to as a  field-  programmable device (FPD).

Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an  AND-  plane and an  OR-  plane, 
where both levels are programmable.

Programmable Array Logic (PAL)

A relatively small PLD that has a programmable  AND-  plane followed by a fixed  OR-  plane.

Simple PLD (SPLD)

A PLA or PAL.

Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple  SPLD-  like blocks on a single 
chip.

 Field-  Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs 
feature logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic 
resources. FPGAs also offer a higher ratio of  flip-  flops to logic resources than do CPLDs.

Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is 
implemented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped into 
a logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to 
a block of circuitry in a CPLD.
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exist on the market today with this basic structure, and are collectively referred to as 
Complex PLDs (CPLDs). The most important type of CPLD is the FPGA.

An FPGA consists of an array of uncommitted circuit elements, called logic 
blocks, and interconnect resources. An illustration of a typical FPGA architecture is 
shown in Figure 11.33. The key components of an FPGA are;

 ■ Logic block: The configurable logic blocks are where the computation of the 
user’s circuit takes place.

 ■ I/O block: The I/O blocks connect I/O pins to the circuitry on the chip.
 ■ Interconnect: These are signal paths available for establishing connections 

among I/O blocks and logic blocks.

The logic block can be either a combinational circuit or a sequential circuit. In 
essence, the programming of a logic block is done by downloading the contents of 
a truth table for a logic function. Figure 11.34 shows an example of a simple logic 
block consisting of a D  flip-  flop, a 2- to-  1 multiplexer, and a 16-bit lookup table. The 
lookup table is a memory consisting of 16 1-bit elements, so that 4 input lines are 
required to select one of the 16 bits. Larger logic blocks have larger lookup tables 
and multiple interconnected lookup tables. The combinational logic realized by the 
lookup table can be output directly or stored in the D  flip-  flop and output synchro-
nously. A separate  one-  bit memory controls the multiplexer to determine whether 
the output comes directly from the lookup table or from the  flip-  flop.

By interconnecting numerous logic blocks, very complex logic functions can 
be easily implemented.

Logic
block

I/O
block

Figure 11.33 Structure of an FPGA
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 11.6 KEY TERMS AND PROBLEMS
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Figure 11.34 A Simple FPGA Logic Block

adder
AND gate
assert
Boolean algebra
clocked  S–  R  flip-  flop
D  flip-  flop
gates
graphical symbol
 J–  K  flip-  flop
Karnaugh map
logic block
lookup table
multiplexer
NAND gate
NOR

OR gate
parallel register
combinational circuit
complex PLD (CPLD)
counter
decoder
product of sums (POS)
programmable array logic 

(PAL)
programmable logic array 

(PLA)
programmable logic device 

(PLD)
 Quine–  McCluskey method
 read-  only memory (ROM)

register
excitation table
 field-  programmable gate array 

(FPGA)
 flip-  flop
ripple counter
sequential circuit
shift register
simple PLD (SPLD)
sum of products (SOP)
synchronous counter
 S–  R Latch
truth table
XOR gate

Problems

 11.1 Construct a truth table for the following Boolean expressions:
a. ABC + A  B  C
b. ABC + A  B  C + A  B  C
c. A(BC + BC)
d. (A + B)(A + C)(A + B)

 11.2 Simplify the following expressions according to the commutative law:
a. A  #   B + B  #   A + C  #   D  #   E + C  #   D  #   E + E  #   C  #   D
b. A  #   B + A  #   C + B  #   A
c. (L  #   M  #   N)(A  #   B)(C  #   D  #   E)(M  #   N  #   L)
d. F  #   (K + R) + S  #   V + W  #   X + V  #   S + X  #   W + (R + K)  #   F
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 11.3 Apply DeMorgan’s theorem to the following equations:
a. F = V + A + L
b. F = A + B + C + D

 11.4 Simplify the following expressions:
a. A = S  #   T + V  #   W + R  #   S #   T
b. A = T  #   U  #   V + X  #   Y + Y
c. A = F  #   (E + F + G)
d. A = (P  #   Q + R + S  #   T)T  #   S
e. A = D  #   D  #   E
f. A = Y  #   (W + X + Y + Z)  #   Z
g. A = (B  #   E + C + F)  #   C

 11.5 Construct the operation XOR from the basic Boolean operations AND, OR, and NOT.
 11.6 Given a NOR gate and NOT gates, draw a logic diagram that will perform the  three- 

 input AND function.
 11.7 Write the Boolean expression for a  four-  input NAND gate.
 11.8 A combinational circuit is used to control a  seven-  segment display of decimal digits, as 

shown in Figure 11.35. The circuit has four inputs, which provide the  four-  bit code used 
in packed decimal representation (010 = 0000,c ,  910 = 1001). The seven outputs 
define which segments will be activated to display a given decimal digit. Note that 
some combinations of inputs and outputs are not needed.
a. Develop a truth table for this circuit.
b. Express the truth table in SOP form.
c. Express the truth table in POS form.
d. Provide a simplified expression.

 11.9 Design an 8- to-  1 multiplexer.
 11.10 Add an additional line to Figure 11.15 so that it functions as a demultiplexer.
 11.11 The Gray code is a binary code for integers. It differs from the ordinary binary rep-

resentation in that there is just a single bit change between the representations of 
any two numbers. This is useful for applications such as counters or  analog-  to-  digital 
converters where a sequence of numbers is generated. Because only one bit changes 
at a time, there is never any ambiguity due to slight timing differences. The first eight 
elements of the code are
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Figure 11.35  Seven-  Segment LED Display Example
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Binary Code Gray Code
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101 111
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Design a circuit that converts from binary to Gray code.
 11.12 Design a 5 * 32 decoder using four 3 * 8 decoders (with enable inputs) and one 

2 * 4 decoder.
 11.13 Implement the full adder of Figure 11.20 with just five gates. (Hint: Some of the gates 

are XOR gates.)
 11.14 Consider Figure 11.20. Assume that each gate produces a delay of 10 ns. Thus, the sum 

output is valid after 20 ns and the carry output after 20 ns. What is the total add time 
for a 32-bit adder
a. Implemented without carry lookahead, as in Figure 11.19?
b. Implemented with carry lookahead and using 8-bit adders, as in Figure 11.21?

 11.15 An alternative form of the  S–  R latch has the same structure as Figure 11.22 but uses 
NAND gates instead of NOR gates.
a. Redo Table 11.10a and 11.10b for  S–  R latch implemented with NAND gates.
b. Complete the following table, similar to Table 11.10c.

t 0 1 2 3 4 5 6 7 8 9

S 0 1 1 1 1 1 0 1 0 1

R 1 1 0 1 0 1 1 1 0 0

 11.16 Consider the graphic symbol for the  S–  R  flip-  flop in Figure 11.27. Add additional lines 
to depict a D  flip-  flop wired from the  S–  R  flip-  flop.

 11.17 Show the structure of a PLA with three inputs (C, B, A) and four outputs 
(O0,  O1,  O2,  O3) with the outputs defined as follows:

 O0 = A  BC + AB + ABC

 O1 = A  BC + ABC

 O2 = C

 O3 = AB + ABC

 11.18 An interesting application of a PLA is conversion from the old, obsolete punched card 
character codes to ASCII codes. The standard punched cards that were so popular 
with computers in the past had 12 rows and 80 columns where holes could be punched. 
Each column corresponded to one character, so each character had a 12-bit code. 
However, only 96 characters were actually used. Consider an application that reads 
punched cards and converts the character codes to ASCII.
a. Describe a PLA implementation of this application.
b. Can this problem be solved with a ROM? Explain.
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Much of what is discussed in this book is not readily apparent to the user or pro-
grammer of a computer. If a programmer is using a  high-  level language, such as 
Pascal or Ada, very little of the architecture of the underlying machine is visible.

One boundary where the computer designer and the computer programmer 
can view the same machine is the machine instruction set. From the designer’s point 
of view, the machine instruction set provides the functional requirements for the 
processor: implementing the processor is a task that in large part involves imple-
menting the machine instruction set. The user who chooses to program in machine 
language (actually, in assembly language; see Appendix B) becomes aware of the 
register and memory structure, the types of data directly supported by the machine, 
and the functioning of the ALU.

A description of a computer’s machine instruction set goes a long way toward 
explaining the computer’s processor. Accordingly, we focus on machine instructions 
in this chapter and the next.

 12.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the processor is determined by the instructions it executes, referred 
to as machine instructions or computer instructions. The collection of different 
instructions that the processor can execute is referred to as the processor’s instruc-
tion set.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execu-
tion. Figure 12.1, which repeats Figure 3.6, shows the steps involved in instruction 
execution and, by implication, defines the elements of a machine instruction. These 
elements are as follows:

 ■ Operation code: Specifies the operation to be performed (e.g., ADD, I/O). 
The operation is specified by a binary code, known as the operation code, or 
opcode.

 ■ Source operand reference: The operation may involve one or more source 
operands, that is, operands that are inputs for the operation.

Learning Objectives

After studying this chapter, you should be able to:

 r Present an overview of essential characteristics of machine instructions.
 r Describe the types of operands used in typical machine instruction sets.
 r Present an overview of x86 and ARM data types.
 r Describe the types of operands supported by typical machine instruction sets.
 r Present an overview of x86 and ARM operation types.
 r Understand the differences among big endian, little endian, and  bi-  endian.
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 ■ Result operand reference: The operation may produce a result.
 ■ Next instruction reference: This tells the processor where to fetch the next 

instruction after the execution of this instruction is complete.

The address of the next instruction to be fetched could be either a real address 
or a virtual address, depending on the architecture. Generally, the distinction is 
transparent to the instruction set architecture. In most cases, the next instruction to 
be fetched immediately follows the current instruction. In those cases, there is no 
explicit reference to the next instruction. When an explicit reference is needed, the 
main memory or virtual memory address must be supplied. The form in which that 
address is supplied is discussed in Chapter 13.

Source and result operands can be in one of four areas:

 ■ Main or virtual memory: As with next instruction references, the main or vir-
tual memory address must be supplied.

 ■ Processor register: With rare exceptions, a processor contains one or more 
registers that may be referenced by machine instructions. If only one register 
exists, reference to it may be implicit. If more than one register exists, then 
each register is assigned a unique name or number, and the instruction must 
contain the number of the desired register.

 ■ Immediate: The value of the operand is contained in a field in the instruction 
being executed.

 ■ I/O device: The instruction must specify the I/O module and device for the 
operation. If  memory-  mapped I/O is used, this is just another main or virtual 
memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The 
instruction is divided into fields, corresponding to the constituent elements of the 

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

Figure 12.1 Instruction Cycle State Diagram
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instruction. A simple example of an instruction format is shown in Figure  12.2. 
As another example, the IAS instruction format is shown in Figure 2.2. With most 
instruction sets, more than one format is used. During instruction execution, an 
instruction is read into an instruction register (IR) in the processor. The processor 
must be able to extract the data from the various instruction fields to perform the 
required operation.

It is difficult for both the programmer and the reader of textbooks to deal with 
binary representations of machine instructions. Thus, it has become common prac-
tice to use a symbolic representation of machine instructions. An example of this 
was used for the IAS instruction set, in Table 1.1.

Opcodes are represented by abbreviations, called mnemonics, that indicate 
the operation. Common examples include

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

LOAD Load data from memory

STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

ADD R, Y

may mean add the value contained in data location Y to the contents of regis-
ter R. In this example, Y refers to the address of a location in memory, and R refers 
to a particular register. Note that the operation is performed on the contents of a 
location, not on its address.

Thus, it is possible to write a  machine-  language program in symbolic form. 
Each symbolic opcode has a fixed binary representation, and the programmer spec-
ifies the location of each symbolic operand. For example, the programmer might 
begin with a list of definitions:

 X = 513

 Y = 514

and so on. A simple program would accept this symbolic input, convert opcodes and 
operand references to binary form, and construct binary machine instructions.

 Machine-  language programmers are rare to the point of nonexistence. Most 
programs today are written in a  high-  level language or, failing that, assembly lan-
guage, which is discussed in Appendix B. However, symbolic machine language 
remains a useful tool for describing machine instructions, and we will use it for that 
purpose.

Opcode

4 Bits 6 Bits 6 Bits

16 Bits

Operand reference Operand reference

Figure 12.2 A Simple Instruction Format
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Instruction Types

Consider a  high-  level language instruction that could be expressed in a language 
such as BASIC or FORTRAN. For example,

X = X + Y

This statement instructs the computer to add the value stored in Y to the value 
stored in X and put the result in X. How might this be accomplished with machine 
instructions? Let us assume that the variables X and Y correspond to locations 513 
and 514. If we assume a simple set of machine instructions, this operation could be 
accomplished with three instructions:

1. Load a register with the contents of memory location 513.

2. Add the contents of memory location 514 to the register.

3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine 
instructions. This is typical of the relationship between a  high-  level language and 
a machine language. A  high-  level language expresses operations in a concise alge-
braic form, using variables. A machine language expresses operations in a basic 
form involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions 
that must be included in a practical computer. A computer should have a set of 
instructions that allows the user to formulate any data processing task. Another way 
to view it is to consider the capabilities of a  high-  level programming language. Any 
program written in a  high-  level language must be translated into machine language 
to be executed. Thus, the set of machine instructions must be sufficient to express 
any of the instructions from a  high-  level language. With this in mind we can categor-
ize instruction types as follows:

 ■ Data processing: Arithmetic and logic instructions.
 ■ Data storage: Movement of data into or out of register and or memory 

locations.
 ■ Data movement: I/O instructions.
 ■ Control: Test and branch instructions.

Arithmetic instructions provide computational capabilities for processing 
numeric data. Logic (Boolean) instructions operate on the bits of a word as bits 
rather than as numbers; thus, they provide capabilities for processing any other type 
of data the user may wish to employ. These operations are performed primarily on 
data in processor registers. Therefore, there must be memory instructions for mov-
ing data between memory and the registers. I/O instructions are needed to transfer 
programs and data into memory and the results of computations back out to the 
user. Test instructions are used to test the value of a data word or the status of 
a computation. Branch instructions are then used to branch to a different set of 
instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in this 
chapter.



12.1 / Machine instruction characteristics  417

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the 
number of addresses contained in each instruction. This dimension has become less 
significant with the increasing complexity of processor design. Nevertheless, it is use-
ful at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruc-
tion? Evidently, arithmetic and logic instructions will require the most oper-
ands. Virtually all arithmetic and logic operations are either unary (one source 
operand) or binary (two source operands). Thus, we would need a maximum of 
two addresses to reference source operands. The result of an operation must be 
stored, suggesting a third address, which defines a destination operand. Finally, 
after completion of an instruction, the next instruction must be fetched, and its 
address is needed.

This line of reasoning suggests that an instruction could plausibly be required 
to contain four address references: two source operands, one destination operand, 
and the address of the next instruction. In most architectures, many instructions 
have one, two, or three operand addresses, with the address of the next instruction 
being implicit (obtained from the program counter). Most architectures also have 
a few  special-  purpose instructions with more operands. For example, the load and 
store multiple instructions of the ARM architecture, described in Chapter 13, desig-
nate up to 17 register operands in a single instruction.

Figure 12.3 compares typical  one-,  two-, and  three-  address instructions that 
could be used to compute Y = (A - B)/[C + (D * E)]. With three addresses, 
each instruction specifies two source operand locations and a destination operand 
location. Because we choose not to alter the value of any of the operand locations, 

Instruction Comment

SUB Y, A, B Y  A − B 
MPY T, D, E T  D × E 
ADD T, T, C T  T + C
DIV Y, Y, T Y  Y ÷ T

(a) Three-address instructions

Instruction Comment

MOVE Y, A Y  A
SUB Y, B Y  Y − B 
MOVE T, D T  D
MPY T, E T  T × E 
ADD T, C T  T + C
DIV Y, T Y  Y ÷ T

Instruction Comment

LOAD D AC  D
MPY E AC  AC × E 
ADD C AC  AC + C
STOR Y Y  AC
LOAD A AC  A
SUB B AC  AC − B 
DIV Y AC  AC ÷ Y
STOR Y Y  AC

(b) Two-address instructions (c) One-address instructions

Figure 12.3 Programs to Execute Y =
A - B

C + (D * E)
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a temporary location, T, is used to store some intermediate results. Note that there 
are four instructions and that the original expression had five operands.

 Three-  address instruction formats are not common because they require a 
relatively long instruction format to hold the three address references. With  two- 
 address instructions, and for binary operations, one address must do double duty as 
both an operand and a result. Thus, the instruction SUB Y, B carries out the calcu-
lation Y - B and stores the result in Y. The  two-  address format reduces the space 
requirement but also introduces some awkwardness. To avoid altering the value of 
an operand, a MOVE instruction is used to move one of the values to a result or 
temporary location before performing the operation. Our sample program expands 
to six instructions.

Simpler yet is the  one-  address instruction. For this to work, a second address 
must be implicit. This was common in earlier machines, with the implied address 
being a processor register known as the accumulator (AC). The accumulator con-
tains one of the operands and is used to store the result. In our example, eight 
instructions are needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions. 
 Zero-  address instructions are applicable to a special memory organization called 
a stack. A stack is a  last-  in-  first-  out set of locations. The stack is in a known loca-
tion and, often, at least the top two elements are in processor registers. Thus, 
 zero-  address instructions would reference the top two stack elements. Stacks are 
described in Appendix I. Their use is explored further later in this chapter and in 
Chapter 13.

Table 12.1 summarizes the interpretations to be placed on instructions with 
zero, one, two, or three addresses. In each case in the table, it is assumed that the 
address of the next instruction is implicit, and that one operation with two source 
operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer 
addresses per instruction result in instructions that are more primitive, requiring a 
less complex processor. It also results in instructions of shorter length. On the other 
hand, programs contain more total instructions, which in general results in longer 
execution times and longer, more complex programs. Also, there is an important 
threshold between  one-  address and  multiple-  address instructions. With  one-  address 
instructions, the programmer generally has available only one  general-  purpose 

Table 12.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C A d B OP C

2 OP A, B A d A OP B

1 OP A AC d AC OP A

0 OP T d (T - 1) OP T

AC = accumulator
T = top of stack
(T - 1) = second element of stack
A, B, C = memory or register locations
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register, the accumulator. With  multiple-  address instructions, it is common to have 
multiple  general-  purpose registers. This allows some operations to be performed 
solely on registers. Because register references are faster than memory references, 
this speeds up execution. For reasons of flexibility and ability to use multiple reg-
isters, most contemporary machines employ a mixture of  two-   and  three-  address 
instructions.

The design  trade-  offs involved in choosing the number of addresses per instruc-
tion are complicated by other factors. There is the issue of whether an address refer-
ences a memory location or a register. Because there are fewer registers, fewer bits 
are needed for a register reference. Also, as we will see in Chapter 13, a machine may 
offer a variety of addressing modes, and the specification of mode takes one or more 
bits. The result is that most processor designs involve a variety of instruction formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is 
instruction set design. The design of an instruction set is very complex because it 
affects so many aspects of the computer system. The instruction set defines many 
of the functions performed by the processor and thus has a significant effect on the 
implementation of the processor. The instruction set is the programmer’s means of 
controlling the processor. Thus, programmer requirements must be considered in 
designing the instruction set.

It may surprise you to know that some of the most fundamental issues relat-
ing to the design of instruction sets remain in dispute. Indeed, in recent years, the 
level of disagreement concerning these fundamentals has actually grown. The most 
important of these fundamental design issues include the following:

 ■ Operation repertoire: How many and which operations to provide, and how 
complex operations should be.

 ■ Data types: The various types of data upon which operations are performed.
 ■ Instruction format: Instruction length (in bits), number of addresses, size of 

various fields, and so on.
 ■ Registers: Number of processor registers that can be referenced by instruc-

tions, and their use.
 ■ Addressing: The mode or modes by which the address of an operand is 

specified.

These issues are highly interrelated and must be considered together in design-
ing an instruction set. This book, of course, must consider them in some sequence, 
but an attempt is made to show the interrelationships.

Because of the importance of this topic, much of Part Three is devoted to 
instruction set design. Following this overview section, this chapter examines data 
types and operation repertoire. Chapter 13 examines addressing modes (which 
includes a consideration of registers) and instruction formats. Chapter 15 examines 
the reduced instruction set computer (RISC). RISC architecture calls into ques-
tion many of the instruction set design decisions traditionally made in commercial 
computers.
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 12.2 TYPES OF OPERANDS

Machine instructions operate on data. The most important general categories of 
data are

 ■ Addresses
 ■ Numbers
 ■ Characters
 ■ Logical data

We shall see, in discussing addressing modes in Chapter 13, that addresses 
are, in fact, a form of data. In many cases, some calculation must be performed on 
the operand reference in an instruction to determine the main or virtual memory 
address. In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each 
of these is briefly examined in this section. Beyond that, some machines define spe-
cialized data types or data structures. For example, there may be machine opera-
tions that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth. An 
important distinction between numbers used in ordinary mathematics and numbers 
stored in a computer is that the latter are limited. This is true in two senses. First, 
there is a limit to the magnitude of numbers representable on a machine and second, 
in the case of  floating-  point numbers, a limit to their precision. Thus, the programmer 
is faced with understanding the consequences of rounding, overflow, and underflow.

Three types of numerical data are common in computers:

 ■ Binary integer or binary fixed point
 ■ Binary floating point
 ■ Decimal

We examined the first two in some detail in Chapter 10. It remains to say a few 
words about decimal numbers.

Although all internal computer operations are binary in nature, the human 
users of the system deal with decimal numbers. Thus, there is a necessity to convert 
from decimal to binary on input and from binary to decimal on output. For appli-
cations in which there is a great deal of I/O and comparatively little, comparatively 
simple computation, it is preferable to store and operate on the numbers in decimal 
form. The most common representation for this purpose is packed decimal.1

1Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the encod-
ing of each decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of  BCD- 
 encoded digits using one byte for each two digits.
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With packed decimal, each decimal digit is represented by a 4-bit code, in the 
obvious way, with two digits stored per byte. Thus, 0 = 000, 1 = 0001, c, 8 = 1000, 
and 9 = 1001. Note that this is a rather inefficient code because only 10 of 16 
possible 4-bit values are used. To form numbers, 4-bit codes are strung together, 
usually in multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This 
code is clearly less compact than a straight binary representation, but it avoids the 
conversion overhead. Negative numbers can be represented by including a 4-bit 
sign digit at either the left or right end of a string of packed decimal digits. Standard 
sign values are 1100 for positive ( + ) and 1101 for negative ( - ).

Many machines provide arithmetic instructions for performing operations 
directly on packed decimal numbers. The algorithms are quite similar to those 
described in Section 9.3 but must take into account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most con-
venient for human beings, they cannot, in character form, be easily stored or trans-
mitted by data processing and communications systems. Such systems are designed 
for binary data. Thus, a number of codes have been devised by which characters are 
represented by a sequence of bits. Perhaps the earliest common example of this is 
the Morse code. Today, the most commonly used character code in the International 
Reference Alphabet (IRA), referred to in the United States as the American 
Standard Code for Information Interchange (ASCII; see Appendix H). Each char-
acter in this code is represented by a unique 7-bit pattern; thus, 128 different char-
acters can be represented. This is a larger number than is necessary to represent 
printable characters, and some of the patterns represent control characters. Some of 
these control characters have to do with controlling the printing of characters on a 
page. Others are concerned with communications procedures.  IRA-  encoded charac-
ters are almost always stored and transmitted using 8 bits per character. The eighth 
bit may be set to 0 or used as a parity bit for error detection. In the latter case, the bit 
is set such that the total number of binary 1s in each octet is always odd (odd parity) 
or always even (even parity).

Note in Table H.1 (Appendix H) that for the IRA bit pattern 011XXXX, the 
digits 0 through 9 are represented by their binary equivalents, 0000 through 1001, in 
the rightmost 4 bits. This is the same code as packed decimal. This facilitates con-
version between 7-bit IRA and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded 
Decimal Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. 
It is an 8-bit code. As with IRA, EBCDIC is compatible with packed decimal. In 
the case of EBCDIC, the codes 11110000 through 11111001 represent the digits 
0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated 
as a single unit of data. It is sometimes useful, however, to consider an  n-  bit unit as 
consisting of n 1-bit items of data, each item having the value 0 or 1. When data are 
viewed this way, they are considered to be logical data.
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There are two advantages to the  bit-  oriented view. First, we may sometimes wish 
to store an array of Boolean or binary data items, in which each item can take on only 
the values 1 (true) and 0 (false). With logical data, memory can be used most efficiently 
for this storage. Second, there are occasions when we wish to manipulate the bits of a 
data item. For example, if  floating-  point operations are implemented in software, we 
need to be able to shift significant bits in some operations. Another example: To con-
vert from IRA to packed decimal, we need to extract the rightmost 4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as 
logical and other times as numerical or text. The “type” of a unit of data is deter-
mined by the operation being performed on it. While this is not normally the case in 
 high-  level languages, it is almost always the case with machine language.

 12.3 INTEL x86 AND ARM DATA TYPES

x86 Data Types

The x86 can deal with data types of 8 (byte), 16 (word), 32 (doubleword), 64 (quad-
word), and 128 (double quadword) bits in length. To allow maximum flexibility in 
data structures and efficient memory utilization, words need not be aligned at  even- 
 numbered addresses; doublewords need not be aligned at addresses evenly divisible 
by 4; quadwords need not be aligned at addresses evenly divisible by 8; and so on. 
However, when data are accessed across a 32-bit bus, data transfers take place in 
units of doublewords, beginning at addresses divisible by 4. The processor converts 
the request for misaligned values into a sequence of requests for the bus transfer. As 
with all of the Intel 80x86 machines, the x86 uses the  little-  endian style; that is, the 
least significant byte is stored in the lowest address (see Appendix 12A for a discus-
sion of endianness).

The byte, word, doubleword, quadword, and double quadword are referred to 
as general data types. In addition, the x86 supports an impressive array of specific 
data types that are recognized and operated on by particular instructions. Table 12.2 
summarizes these types.

Figure 12.4 illustrates the x86 numerical data types. The signed integers are in 
twos complement representation and may be 16, 32, or 64 bits long. The  floating- 
 point type actually refers to a set of types that are used by the  floating-  point unit 
and operated on by  floating-  point instructions. The  floating-  point representations 
conform to the IEEE 754 standard.

The packed SIMD ( single-  instruction-  multiple-  data) data types were intro-
duced to the x86 architecture as part of the extensions of the instruction set to 
optimize performance of multimedia applications. These extensions include MMX 
(multimedia extensions) and SSE (streaming SIMD extensions). The basic concept 
is that multiple operands are packed into a single referenced memory item and that 
these multiple operands are operated on in parallel. The data types are as follows:

 ■ Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or 
128-bit double quadword, interpreted as a bit field or as an integer.

 ■ Packed word and packed word integer: 16-bit words packed into a 64-bit quad-
word or 128-bit double quadword, interpreted as a bit field or as an integer.
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 ■ Packed doubleword and packed doubleword integer: 32-bit doublewords 
packed into a 64-bit quadword or 128-bit double quadword, interpreted as a 
bit field or as an integer.

 ■ Packed quadword and packed quadword integer: Two 64-bit quadwords packed 
into a 128-bit double quadword, interpreted as a bit field or as an integer.

 ■ Packed  single-  precision  floating-  point and packed  double-  precision floating-
point: Four 32-bit  floating-  point or two 64-bit  floating-  point values packed 
into a 128-bit double quadword.

ARM Data Types

ARM processors support data types of 8 (byte), 16 (halfword), and 32 (word) bits 
in length. Normally, halfword access should be halfword aligned and word accesses 
should be word aligned. For nonaligned access attempts, the architecture supports 
three alternatives.

 ■ Default case:

–  The address is treated as truncated, with address bits[1:0] treated as zero for 
word accesses, and address bit[0] treated as zero for halfword accesses.

Table 12.2 x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and double 
quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using twos 
complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded 
decimal (BCD)

A representation of a BCD digit in the range 0 through 9, with one digit in 
each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset within a 
segment. Used for all pointers in a nonsegmented memory and for references 
within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset of 16, 
32, or 64 bits. Far pointers are used for memory references in a segmented 
memory model where the identity of a segment being accessed must be 
specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is considered 
as an independent unit. A bit string can begin at any bit position of any byte 
and can contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to 223 - 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from 
zero to 223 - 1 bytes.

Floating point See Figure 12.4.

Packed SIMD (single  
instruction, multiple data)

Packed 64-bit and 128-bit data types.
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–  Load single word ARM instructions are architecturally defined to rotate right 
the  word-  aligned data transferred by a non  word-  aligned address one, two, or 
three bytes depending on the value of the two least significant address bits.

 ■ Alignment checking: When the appropriate control bit is set, a data abort sig-
nal indicates an alignment fault for attempting unaligned access.

 ■ Unaligned access: When this option is enabled, the processor uses one or more 
memory accesses to generate the required transfer of adjacent bytes transpar-
ently to the programmer.

For all three data types (byte, halfword, and word) an unsigned interpretation 
is supported, in which the value represents an unsigned, nonnegative integer. All 
three data types can also be used for twos complement signed integers.

The majority of ARM processor implementations do not provide  floating- 
 point hardware, which saves power and area. If  floating-  point arithmetic is required 
in such processors, it must be implemented in software. ARM does support an 
optional  floating-  point coprocessor that supports the  single-   and  double-  precision 
floating point data types defined in IEEE 754.
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Figure 12.4 x86 Numeric Data Formats
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endian support A state bit ( E-  bit) in the system control register is set and cleared 
under program control using the SETEND instruction. The  E-  bit defines which 
endian to load and store data. Figure 12.5 illustrates the functionality associated 
with the  E-  bit for a word load or store operation. This mechanism enables efficient 
dynamic data load/store for system designers who know they need to access data 
structures in the opposite endianness to their OS/environment. Note that the address 
of each data byte is fixed in memory. However, the byte lane in a register is different.

 12.4 TYPES OF OPERATIONS

The number of different opcodes varies widely from machine to machine. However, 
the same general types of operations are found on all machines. A useful and typical 
categorization is the following:

 ■ Data transfer
 ■ Arithmetic
 ■ Logical
 ■ Conversion
 ■ I/O
 ■ System control
 ■ Transfer of control

Table 12.3 (based on [HAYE98]) lists common instruction types in each cat-
egory. This section provides a brief survey of these various types of operations, 
together with a brief discussion of the actions taken by the processor to execute a 
particular type of operation (summarized in Table 12.4). The latter topic is exam-
ined in more detail in Chapter 14.

Byte 3

Data bytes
in memory

(ascending address values
from byte 0 to byte 3)

ARM register

Program status register E-bit = 0 Program status register E-bit = 1

ARM register

Byte 2

Byte 1

Byte 0

031 031

Byte 1Byte 2Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Byte 0

Figure 12.5 ARM Endian  Support—  Word Load/Store with  E-  Bit



Table 12.3 Common Instruction Set Operations

Type Operation Name Description

Data transfer

Move (transfer) Transfer word or block from source to destination

Store Transfer word from processor to memory

Load (fetch) Transfer word from memory to processor

Exchange Swap contents of source and destination

Clear (reset) Transfer word of 0s to destination

Set Transfer word of 1s to destination

Push Transfer word from source to top of stack

Pop Transfer word from top of stack to destination

Arithmetic

Add Compute sum of two operands

Subtract Compute difference of two operands

Multiply Compute product of two operands

Divide Compute quotient of two operands

Absolute Replace operand by its absolute value

Negate Change sign of operand

Increment Add 1 to operand

Decrement Subtract 1 from operand

Logical

AND Perform logical AND

OR Perform logical OR

NOT (complement) Perform logical NOT

 Exclusive-  OR Perform logical XOR

Test Test specified condition; set flag(s) based on outcome

Compare Make logical or arithmetic comparison of two or more  
operands; set flag(s) based on outcome

Set Control  
Variables

Class of instructions to set controls for protection purposes, 
interrupt handling, timer control, etc.

Shift Left (right) shift operand, introducing constants at end

Rotate Left (right) shift operand, with wraparound end

Transfer of control

Jump (branch) Unconditional transfer; load PC with specified address

Jump Conditional Test specified condition; either load PC with specified address 
or do nothing, based on condition

Jump to Subroutine Place current program control information in known location; 
jump to specified address

Return Replace contents of PC and other register from known 
location

Execute Fetch operand from specified location and execute as instruc-
tion; do not modify PC

Skip Increment PC to skip next instruction

Skip Conditional Test specified condition; either skip or do nothing based on 
condition

Halt Stop program execution

Wait (hold) Stop program execution; test specified condition repeatedly; 
resume execution when condition is satisfied

No operation No operation is performed, but program execution is continued

426
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Data Transfer

The most fundamental type of machine instruction is the data transfer instruction. 
The data transfer instruction must specify several things. First, the location of the 
source and destination operands must be specified. Each location could be memory, 
a register, or the top of the stack. Second, the length of data to be transferred must 
be indicated. Third, as with all instructions with operands, the mode of addressing for 
each operand must be specified. This latter point is discussed in Chapter 13.

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of  trade-  offs the designer must make. For example, the general 
location (memory or register) of an operand can be indicated in either the specifica-
tion of the opcode or the operand. Table 12.5 shows examples of the most common 
IBM EAS/390 data transfer instructions. Note that there are variants to indicate 

Type Operation Name Description

Input/output

Input (read) Transfer data from specified I/O port or device to destination 
(e.g., main memory or processor register)

Output (write) Transfer data from specified source to I/O port or device

Start I/O Transfer instructions to I/O processor to initiate I/O operation

Test I/O Transfer status information from I/O system to specified 
destination

Conversion

Translate Translate values in a section of memory based on a table of 
correspondences

Convert Convert the contents of a word from one form to another 
(e.g., packed decimal to binary)

Table 12.4 Processor Actions for Various Types of Operations

Data transfer

Transfer data from one location to another

If memory is involved:
Determine memory address
Perform  virtual-  to-  actual-  memory address transformation
Check cache
Initiate memory read/write

Arithmetic

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion
Similar to arithmetic and logical. May involve special logic to 
perform conversion

Transfer of control
Update program counter. For subroutine call/return, manage 
parameter passing and linkage

I/O
Issue command to I/O module

If  memory-  mapped I/O, determine  memory-  mapped address
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the amount of data to be transferred (8, 16, 32, or 64 bits). Also, there are different 
instructions for register to register, register to memory, memory to register, and 
memory to memory transfers. In contrast, the VAX has a move (MOV) instruction 
with variants for different amounts of data to be moved, but it specifies whether an 
operand is register or memory as part of the operand. The VAX approach is some-
what easier for the programmer, who has fewer mnemonics to deal with. However, 
it is also somewhat less compact than the IBM EAS/390 approach because the loca-
tion (register versus memory) of each operand must be specified separately in the 
instruction. We will return to this distinction when we discuss instruction formats in 
Chapter 13.

In terms of processor action, data transfer operations are perhaps the simplest 
type. If both source and destination are registers, then the processor simply causes 
data to be transferred from one register to another; this is an operation internal to 
the processor. If one or both operands are in memory, then the processor must per-
form some or all of the following actions:

1. Calculate the memory address, based on the address mode (discussed in 
Chapter 13).

2. If the address refers to virtual memory, translate from virtual to real memory 
address.

3. Determine whether the addressed item is in cache.

4. If not, issue a command to the memory module.

Table 12.5 Examples of IBM EAS/390 Data Transfer Operations

Operation 
Mnemonic Name

Number of Bits 
Transferred Description

L Load 32 Transfer from memory to register

LH Load Halfword 16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load (short) 32 Transfer from  floating-  point register to 
 floating-  point register

LE Load (short) 32 Transfer from memory to  floating- 
 point register

LDR Load (long) 64 Transfer from  floating-  point register to 
 floating-  point register

LD Load (long) 64 Transfer from memory to  floating- 
 point register

ST Store 32 Transfer from register to memory

STH Store Halfword 16 Transfer from register to memory

STC Store Character 8 Transfer from register to memory

STE Store (short) 32 Transfer from  floating-  point register 
to memory

STD Store (long) 64 Transfer from  floating-  point register 
to memory
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Arithmetic

Most machines provide the basic arithmetic operations of add, subtract, multi-
ply, and divide. These are invariably provided for signed integer ( fixed-  point) 
numbers. Often they are also provided for  floating-  point and packed decimal 
numbers.

Other possible operations include a variety of  single-  operand instructions; for 
example,

 ■ Absolute: Take the absolute value of the operand.
 ■ Negate: Negate the operand.
 ■ Increment: Add 1 to the operand.
 ■ Decrement: Subtract 1 from the operand.

The execution of an arithmetic instruction may involve data transfer oper-
ations to position operands for input to the ALU, and to deliver the output of 
the ALU. Figure 3.5 illustrates the movements involved in both data transfer and 
arithmetic operations. In addition, of course, the ALU portion of the processor per-
forms the desired operation.

Logical

Most machines also provide a variety of operations for manipulating individual bits 
of a word or other addressable units, often referred to as “bit twiddling.” They are 
based upon Boolean operations (see Chapter 11).

Some of the basic logical operations that can be performed on Boolean or 
binary data are shown in Table 12.6. The NOT operation inverts a bit. AND, OR, 
and  Exclusive-  OR (XOR) are the most common logical functions with two oper-
ands. EQUAL is a useful binary test.

These logical operations can be applied bitwise to  n-  bit logical data units. 
Thus, if two registers contain the data

 (R1) = 10100101

 (R2) = 00001111

then

(R1) AND (R2) = 00000101

Table 12.6 Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q P = Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1
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where the notation (X) means the contents of location X. Thus, the AND operation 
can be used as a mask that selects certain bits in a word and zeros out the remaining 
bits. As another example, if two registers contain

 (R1) = 10100101

 (R2) = 11111111

then

(R1) XOR (R2) = 01011010

With one word set to all 1s, the XOR operation inverts all of the bits in the other 
word (ones complement).

In addition to bitwise logical operations, most machines provide a variety of 
shifting and rotating functions. The most basic operations are illustrated in Fig-
ure 12.6. With a logical shift, the bits of a word are shifted left or right. On one end, 
the bit shifted out is lost. On the other end, a 0 is shifted in. Logical shifts are useful 
primarily for isolating fields within a word. The 0s that are shifted into a word dis-
place unwanted information that is shifted off the other end.

•   •   •

(a) Logical right shift

0

0

•   •   •

(e) Right rotate

•   •   •

(c) Arithmetic right shift

S

•   •   •

(b) Logical left shift

•   •   •

(f) Left rotate

0

•   •   •

(d) Arithmetic left shift

S

Figure 12.6 Shift and Rotate Operations
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As an example, suppose we wish to transmit characters of data to an I/O 
device 1 character at a time. If each memory word is 16 bits in length and contains 
two characters, we must unpack the characters before they can be sent. To send the 
two characters in a word;

1. Load the word into a register.

2. Shift to the right eight times. This shifts the remaining character to the right 
half of the register.

3. Perform I/O. The I/O module reads the  lower-  order 8 bits from the data bus.

The preceding steps result in sending the  left-  hand character. To send the  right- 
 hand character;

1. Load the word again into the register.

2. AND with 0000000011111111. This masks out the character on the left.

3. Perform I/O.

The arithmetic shift operation treats the data as a signed integer and does 
not shift the sign bit. On a right arithmetic shift, the sign bit is replicated into the 
bit position to its right. On a left arithmetic shift, a logical left shift is performed on 
all bits but the sign bit, which is retained. These operations can speed up certain 
arithmetic operations. With numbers in twos complement notation, a right arithme-
tic shift corresponds to a division by 2, with truncation for odd numbers. Both an 
arithmetic left shift and a logical left shift correspond to a multiplication by 2 when 
there is no overflow. If overflow occurs, arithmetic and logical left shift operations 
produce different results, but the arithmetic left shift retains the sign of the number. 
Because of the potential for overflow, many processors do not include this instruc-
tion, including PowerPC and Itanium. Others, such as the IBM EAS/390, do offer 
the instruction. Curiously, the x86 architecture includes an arithmetic left shift but 
defines it to be identical to a logical left shift.

Rotate, or cyclic shift, operations preserve all of the bits being operated on. 
One use of a rotate is to bring each bit successively into the leftmost bit, where it can 
be identified by testing the sign of the data (treated as a number).

As with arithmetic operations, logical operations involve ALU activity and 
may involve data transfer operations. Table 12.7 gives examples of all of the shift 
and rotate operations discussed in this subsection.

Table 12.7 Examples of Shift and Rotate Operations

Input Operation Result

10100110 Logical right shift (3 bits) 00010100

10100110 Logical left shift (3 bits) 00110000

10100110 Arithmetic right shift (3 bits) 11110100

10100110 Arithmetic left shift (3 bits) 10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101
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Conversion

Conversion instructions are those that change the format or operate on the format of 
data. An example is converting from decimal to binary. An example of a more com-
plex editing instruction is the EAS/390 Translate (TR) instruction. This instruction 
can be used to convert from one 8-bit code to another, and it takes three operands:

TR R1 (L), R2

The operand R2 contains the address of the start of a table of 8-bit codes. The L 
bytes starting at the address specified in R1 are translated, each byte being replaced 
by the contents of a table entry indexed by that byte. For example, to translate 
from EBCDIC to IRA, we first create a 256-byte table in storage locations, say, 
1000-10FF hexadecimal. The table contains the characters of the IRA code in the 
sequence of the binary representation of the EBCDIC code; that is, the IRA code is 
placed in the table at the relative location equal to the binary value of the EBCDIC 
code of the same character. Thus, locations 10F0 through 10F9 will contain the val-
ues 30 through 39, because F0 is the EBCDIC code for the digit 0, and 30 is the IRA 
code for the digit 0, and so on through digit 9. Now suppose we have the EBCDIC 
for the digits 1984 starting at location 2100 and we wish to translate to IRA. Assume 
the following:

 ■ Locations 2100–2103 contain F1 F9 F8 F4.
 ■ R1 contains 2100.
 ■ R2 contains 1000.

Then, if we execute

TR R1 (4), R2

locations 2100–2103 will contain 31 39 38 34.

Input/Output

Input/output instructions were discussed in some detail in Chapter 7. As we saw, there 
are a variety of approaches taken, including isolated programmed I/O,  memory- 
 mapped programmed I/O, DMA, and the use of an I/O processor. Many implemen-
tations provide only a few I/O instructions, with the specific actions specified by 
parameters, codes, or command words.

System Control

System control instructions are those that can be executed only while the processor 
is in a certain privileged state or is executing a program in a special privileged area 
of memory. Typically, these instructions are reserved for the use of the operating 
system.

Some examples of system control operations are as follows. A system con-
trol instruction may read or alter a control register; we discuss control registers in  
Chapter 14. Another example is an instruction to read or modify a storage protec-
tion key, such as is used in the EAS/390 memory system. Yet another example is 
access to process control blocks in a multiprogramming system.
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Transfer of Control

For all of the operation types discussed so far, the next instruction to be performed 
is the one that immediately follows, in memory, the current instruction. However, a 
significant fraction of the instructions in any program have as their function chang-
ing the sequence of instruction execution. For these instructions, the operation per-
formed by the processor is to update the program counter to contain the address of 
some instruction in memory.

There are a number of reasons why  transfer-  of-  control operations are 
required. Among the most important are the following:

1. In the practical use of computers, it is essential to be able to execute each 
instruction more than once and perhaps many thousands of times. It may 
require thousands or perhaps millions of instructions to implement an applica-
tion. This would be unthinkable if each instruction had to be written out sep-
arately. If a table or a list of items is to be processed, a program loop is needed. 
One sequence of instructions is executed repeatedly to process all the data.

2. Virtually all programs involve some decision making. We would like the computer 
to do one thing if one condition holds, and another thing if another condition 
holds. For example, a sequence of instructions computes the square root of a num-
ber. At the start of the sequence, the sign of the number is tested. If the number 
is negative, the computation is not performed, but an error condition is reported.

3. To compose correctly a large or even  medium-  size computer program is an 
exceedingly difficult task. It helps if there are mechanisms for breaking the 
task up into smaller pieces that can be worked on one at a time.

We now turn to a discussion of the most common  transfer-  of-  control opera-
tions found in instruction sets: branch, skip, and procedure call.

branch instructions A branch instruction, also called a jump instruction, 
has as one of its operands the address of the next instruction to be executed. Most 
often, the instruction is a conditional branch instruction. That is, the branch is made 
(update program counter to equal address specified in operand) only if a certain 
condition is met. Otherwise, the next instruction in sequence is executed (increment 
program counter as usual). A branch instruction in which the branch is always taken 
is an unconditional branch.

There are two common ways of generating the condition to be tested in a con-
ditional branch instruction. First, most machines provide a 1-bit or  multiple-  bit con-
dition code that is set as the result of some operations. This code can be thought 
of as a short  user-  visible register. As an example, an arithmetic operation (ADD, 
SUBTRACT, and so on) could set a 2-bit condition code with one of the following 
four values: 0, positive, negative, overflow. On such a machine, there could be four 
different conditional branch instructions:

BRP X Branch to location X if result is positive.

BRN X Branch to location X if result is negative.

BRZ X Branch to location X if result is zero.

BRO X Branch to location X if overflow occurs.
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In all of these cases, the result referred to is the result of the most recent oper-
ation that set the condition code.

Another approach that can be used with a  three-  address instruction format is 
to perform a comparison and specify a branch in the same instruction. For example,

BRE R1, R2, X Branch to X if contents of R1 = contents of R2.

Figure 12.7 shows examples of these operations. Note that a branch can be 
either forward (an instruction with a higher address) or backward (lower address). 
The example shows how an unconditional and a conditional branch can be used to 
create a repeating loop of instructions. The instructions in locations 202 through 210 
will be executed repeatedly until the result of subtracting Y from X is 0.

skip instructions Another form of  transfer-  of-  control instruction is the skip 
instruction. The skip instruction includes an implied address. Typically, the skip 
implies that one instruction be skipped; thus, the implied address equals the address 
of the next instruction plus one instruction length. Because the skip instruction 
does not require a destination address field, it is free to do other things. A typical 
example is the  increment-  and-  skip-  if-  zero (ISZ) instruction. Consider the following 
program fragment:

301
f
309 ISZ R1
310 BR 301
311

In this fragment, the two  transfer-  of-  control instructions are used to implement 
an iterative loop. R1 is set with the negative of the number of iterations to be 
performed. At the end of the loop, R1 is incremented. If it is not 0, the program 
branches back to the beginning of the loop. Otherwise, the branch is skipped, and 
the program continues with the next instruction after the end of the loop.

Memory
address

Unconditional
branch

Instruction

200

SUB X,Y
BRZ 211

BR 202

Conditional
branch

Conditional
branch

BRE R1, R2, 235

201
202
203

210
211

225

235

Figure 12.7 Branch Instructions
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procedure call instructions Perhaps the most important innovation in the 
development of programming languages is the procedure. A procedure is a  self- 
 contained computer program that is incorporated into a larger program. At any 
point in the program the procedure may be invoked, or called. The processor is 
instructed to go and execute the entire procedure and then return to the point from 
which the call took place.

The two principal reasons for the use of procedures are economy and mod-
ularity. A procedure allows the same piece of code to be used many times. This is 
important for economy in programming effort and for making the most efficient use 
of storage space in the system (the program must be stored). Procedures also allow 
large programming tasks to be subdivided into smaller units. This use of modularity 
greatly eases the programming task.

The procedure mechanism involves two basic instructions: a call instruction 
that branches from the present location to the procedure, and a return instruction 
that returns from the procedure to the place from which it was called. Both of these 
are forms of branching instructions.

Figure 12.8a illustrates the use of procedures to construct a program. In this 
example, there is a main program starting at location 4000. This program includes 
a call to procedure PROC1, starting at location 4500. When this call instruction is 
encountered, the processor suspends execution of the main program and begins exe-
cution of PROC1 by fetching the next instruction from location 4500. Within PROC1, 
there are two calls to PROC2 at location 4800. In each case, the execution of PROC1 

CALL Proc1

Main memory

Main
program

Procedure
Proc1

Procedure
Proc2

Addresses

4000

4100
4101

4500

4800

4600
4601

4650
4651

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns (b) Execution sequence

Figure 12.8 Nested Procedures
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is suspended and PROC2 is executed. The RETURN statement causes the processor 
to go back to the calling program and continue execution at the instruction after the 
corresponding CALL instruction. This behavior is illustrated in Figure 12.8b.

Three points are worth noting:

1. A procedure can be called from more than one location.

2. A procedure call can appear in a procedure. This allows the nesting of proce-
dures to an arbitrary depth.

3. Each procedure call is matched by a return in the called program.

Because we would like to be able to call a procedure from a variety of points, 
the processor must somehow save the return address so that the return can take 
place appropriately. There are three common places for storing the return address:

 ■ Register
 ■ Start of called procedure
 ■ Top of stack

Consider a  machine-  language instruction CALL X, which stands for call procedure 
at location X. If the register approach is used, CALL X causes the following actions:

RN d PC + ∆
PC d X

where RN is a register that is always used for this purpose, PC is the program 
counter, and ∆ is the instruction length. The called procedure can now save the 
contents of RN to be used for the later return.

A second possibility is to store the return address at the start of the procedure. 
In this case, CALL X causes

X d PC + ∆
PC d X + 1

This is quite handy. The return address has been stored safely away.
Both of the preceding approaches work and have been used. The only limita-

tion of these approaches is that they complicate the use of reentrant procedures. A 
reentrant procedure is one in which it is possible to have several calls open to it at 
the same time. A recursive procedure (one that calls itself) is an example of the use 
of this feature (see Appendix M). If parameters are passed via registers or memory 
for a reentrant procedure, some code must be responsible for saving the parameters 
so that the registers or memory space are available for other procedure calls.

A more general and powerful approach is to use a stack (see Appendix I for a 
discussion of stacks). When the processor executes a call, it places the return address 
on the stack. When it executes a return, it uses the address on the stack. Figure 12.9 
illustrates the use of the stack. 

In addition to providing a return address, it is also often necessary to pass 
parameters with a procedure call. These can be passed in registers. Another possi-
bility is to store the parameters in memory just after the CALL instruction. In this 
case, the return must be to the location following the parameters. Again, both of 
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these approaches have drawbacks. If registers are used, the called program and the 
calling program must be written to assure that the registers are used properly. The 
storing of parameters in memory makes it difficult to exchange a variable number of 
parameters. Both approaches prevent the use of reentrant procedures.

A more flexible approach to parameter passing is the stack. When the pro-
cessor executes a call, it not only stacks the return address, it stacks parameters to 
be passed to the called procedure. The called procedure can access the parameters 
from the stack. Upon return, return parameters can also be placed on the stack. The 
entire set of parameters, including return address, that is stored for a procedure 
invocation is referred to as a stack frame.

An example is provided in Figure 12.10. The example refers to procedure P 
in which the local variables x1 and x2 are declared, and procedure Q, which P can 
call and in which the local variables y1 and y2 are declared. In this figure, the return 

(a) Initial stack
contents

•
4101

(b) After 
CALL Proc1

•
4101

4601

(c) Initial
CALL Proc2

•
4101

(d) After
RETURN

•
4101

4651

(e) After
CALL Proc2

•
4101

(f) After
RETURN

•

(g) After
RETURN

•

Figure 12.9 Use of Stack to Implement Nested Subroutines of Figure 12.8
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Figure 12.10 Stack Frame Growth Using Sample Procedures P and Q



438  chaPter 12 / instruction sets: characteristics and Functions

point for each procedure is the first item stored in the corresponding stack frame. 
Next is stored a pointer to the beginning of the previous frame. This is needed if the 
number or length of parameters to be stacked is variable.

 12.5 INTEL x86 AND ARM OPERATION TYPES

x86 Operation Types

The x86 provides a complex array of operation types, including a number of special-
ized instructions. The intent was to provide tools for the compiler writer to produce 
optimized machine language translation of  high-  level language programs. Most of 
these are the conventional instructions found in most machine instruction sets, but 
several types of instructions are tailored to the x86 architecture and are of particular 
interest. Appendix A of [CART06] lists the x86 instructions, together with the oper-
ands for each and the effect of the instruction on the condition codes. Appendix B of 
the NASM assembly language manual [NASM12] provides a more detailed descrip-
tion of each x86 instruction. Both documents are available at box.com/COA10e.

call/return instructions The x86 provides four instructions to support 
procedure call/return: CALL, ENTER, LEAVE, RETURN. It will be instructive to 
look at the support provided by these instructions. Recall from Figure 12.10 that a 
common means of implementing the procedure call/return mechanism is via the use 
of stack frames. When a new procedure is called, the following must be performed 
upon entry to the new procedure:

 ■ Push the return point on the stack.
 ■ Push the current frame pointer on the stack.
 ■ Copy the stack pointer as the new value of the frame pointer.
 ■ Adjust the stack pointer to allocate a frame.

The CALL instruction pushes the current instruction pointer value onto the stack 
and causes a jump to the entry point of the procedure by placing the address of the 
entry point in the instruction pointer. In the 8088 and 8086 machines, the typical 
procedure began with the sequence

PUSH EBP

MOV EBP, ESP

SUB ESP, space_for_locals

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later 
machines, the ENTER instruction performs all the aforementioned operations in a 
single instruction.

The ENTER instruction was added to the instruction set to provide direct sup-
port for the compiler. The instruction also includes a feature for support of what are 
called nested procedures in languages such as Pascal, COBOL, and Ada (not found 
in C or FORTRAN). It turns out that there are better ways of handling nested pro-
cedure calls for these languages. Furthermore, although the ENTER instruction 
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saves a few bytes of memory compared with the PUSH, MOV, SUB sequence (4 
bytes versus 6 bytes), it actually takes longer to execute (10 clock cycles versus 6 
clock cycles). Thus, although it may have seemed a good idea to the instruction set 
designers to add this feature, it complicates the implementation of the processor 
while providing little or no benefit. We will see that, in contrast, a RISC approach 
to processor design would avoid complex instructions such as ENTER and might 
produce a more efficient implementation with a sequence of simpler instructions.

memory management Another set of specialized instructions deals with memory 
segmentation. These are privileged instructions that can only be executed from the 
operating system. They allow local and global segment tables (called descriptor 
tables) to be loaded and read, and for the privilege level of a segment to be checked 
and altered.

The special instructions for dealing with the  on-  chip cache were discussed in 
Chapter 4.

status flags and condition codes Status flags are bits in special registers 
that may be set by certain operations and used in conditional branch instructions. 
The term condition code refers to the settings of one or more status flags. In the 
x86 and many other architectures, status flags are set by arithmetic and compare 
operations. The compare operation in most languages subtracts two operands, as 
does a subtract operation. The difference is that a compare operation only sets 
status flags, whereas a subtract operation also stores the result of the subtraction 
in the destination operand. Some architectures also set status flags for data transfer 
instructions.

Table 12.8 lists the status flags used on the x86. Each flag, or combinations 
of these flags, can be tested for a conditional jump. Table 12.9 shows the condition 
codes (combinations of status flag values) for which conditional jump opcodes have 
been defined.

Several interesting observations can be made about this list. First, we may 
wish to test two operands to determine if one number is bigger than another. But 
this will depend on whether the numbers are signed or unsigned. For example, the 
8-bit number 11111111 is bigger than 00000000 if the two numbers are interpreted 

Table 12.8 x86 Status Flags

Status Bit Name Description

C Carry Indicates carrying or borrowing out of the  left-  most bit position following an 
arithmetic operation. Also modified by some of the shift and rotate operations.

P Parity Parity of the  least-  significant byte of the result of an arithmetic or logic  
operation. 1 indicates even parity; 0 indicates odd parity.

A Auxiliary Carry Represents carrying or borrowing between  half-  bytes of an 8-bit arithmetic 
or logic operation. Used in  binary-  coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign Indicates the sign of the result of an arithmetic or logic operation.

O Overflow Indicates an arithmetic overflow after an addition or subtraction for twos  
complement arithmetic.
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Table 12.9 x86 Condition Codes for Conditional Jump and SETcc Instructions

Symbol Condition Tested Comment

A, NBE C = 0 AND Z = 0 Above; Not below or equal (greater than, unsigned)

AE, NB, NC C = 0 Above or equal; Not below (greater than or equal, 
unsigned); Not carry

B, NAE, C C = 1 Below; Not above or equal (less than, unsigned);
Carry set

BE, NA C = 1 OR Z = 1 Below or equal; Not above (less than or equal, unsigned)

E, Z Z = 1 Equal; Zero (signed or unsigned)

G, NLE [(S = 1 AND O = 1) OR (S = 0 
AND O = 0)]AND[Z =  0]

Greater than; Not less than or equal (signed)

GE, NL (S = 1 AND O = 1) OR (S = 0  
AND O = 0)

Greater than or equal; Not less than (signed)

L, NGE (S = 1 AND O = 0) OR (S = 0 
AND O = 0)

Less than; Not greater than or equal (signed)

LE, NG (S = 1 AND O = 0) OR (S = 0 
AND O = 1) OR (Z = 1)

Less than or equal; Not greater than (signed)

NE, NZ Z = 0 Not equal; Not zero (signed or unsigned)

NO O = 0 No overflow

NS S = 0 Not sign (not negative)

NP, PO P = 0 Not parity; Parity odd

O O = 1 Overflow

P P = 1 Parity; Parity even

S S = 1 Sign (negative)

as unsigned integers (255 7 0) but is less if they are considered as 8-bit twos com-
plement numbers ( - 1 6 0). Many assembly languages therefore introduce two sets 
of terms to distinguish the two cases: If we are comparing two numbers as signed 
integers, we use the terms less than and greater than; if we are comparing them as 
unsigned integers, we use the terms below and above.

A second observation concerns the complexity of comparing signed integers. 
A signed result is greater than or equal to zero if (1) the sign bit is zero and there is 
no overflow (S = 0 AND O = 0), or (2) the sign bit is one and there is an overflow.
A study of Figure 10.4 should convince you that the conditions tested for the vari-
ous signed operations are appropriate.

x86 simd instructions In 1996, Intel introduced MMX technology into its 
Pentium product line. MMX is set of highly optimized instructions for multimedia 
tasks. There are 57 new instructions that treat data in a SIMD ( single-  instruction, 
 multiple-  data) fashion, which makes it possible to perform the same operation, such 
as addition or multiplication, on multiple data elements at once. Each instruction 
typically takes a single clock cycle to execute. For the proper application, these 
fast parallel operations can yield a speedup of two to eight times over comparable 
algorithms that do not use the MMX instructions [ATKI96]. With the introduction 
of 64-bit x86 architecture, Intel has expanded this extension to include double 
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quadword (128 bits) operands and  floating-  point operations. In this subsection, we 
describe the MMX features.

The focus of MMX is multimedia programming. Video and audio data are 
typically composed of large arrays of small data types, such as 8 or 16 bits, whereas 
conventional instructions are tailored to operate on 32- or 64-bit data. Here are 
some examples: In graphics and video, a single scene consists of an array of pixels,2 
and there are 8 bits for each pixel or 8 bits for each pixel color component (red, 
green, blue). Typical audio samples are quantized using 16 bits. For some 3D graph-
ics algorithms, 32 bits are common for basic data types. To provide for parallel oper-
ation on these data lengths, three new data types are defined in MMX. Each data 
type is 64 bits in length and consists of multiple smaller data fields, each of which 
holds a  fixed-  point integer. The types are as follows:

 ■ Packed byte: Eight bytes packed into one 64-bit quantity.
 ■ Packed word: Four 16-bit words packed into 64 bits.
 ■ Packed doubleword: Two 32-bit doublewords packed into 64 bits.

Table 12.10 lists the MMX instruction set. Most of the instructions involve 
parallel operation on bytes, words, or doublewords. For example, the PSLLW 
instruction performs a left logical shift separately on each of the four words in the 
packed word operand; the PADDB instruction takes packed byte operands as input 
and performs parallel additions on each byte position independently to produce a 
packed byte output.

One unusual feature of the new instruction set is the introduction of satura-
tion arithmetic for byte and 16-bit word operands. With ordinary unsigned arith-
metic, when an operation overflows (i.e., a carry out of the most significant bit), the 
extra bit is truncated. This is referred to as wraparound, because the effect of the 
truncation can be, for example, to produce an addition result that is smaller than the 
two input operands. Consider the addition of the two words, in hexadecimal, F000h 
and 3000h. The sum would be expressed as

   F000h = 1111 0000 0000 0000
+ 3000h = 0011 0000 0000 0000

                        10010 0000 0000 0000 = 2000h

If the two numbers represented image intensity, then the result of the addition is 
to make the combination of two dark shades turn out to be lighter. This is typically 
not what is intended. With saturation arithmetic, if addition results in overflow or 
subtraction results in underflow, the result is set to the largest or smallest value rep-
resentable. For the preceding example, with saturation arithmetic, we have

   F000h = 1111 0000 0000 0000
+ 3000h = 0011 0000 0000 0000

                     10010 0000 0000 0000
                         1111 1111 1111 1111 = FFFFh

2A pixel, or picture element, is the smallest element of a digital image that can be assigned a gray level. 
Equivalently, a pixel is an individual dot in a  dot-  matrix representation of a picture.
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Table 12.10 MMX Instruction Set

Category Instruction Description

Arithmetic

PADD [B, W, D] Parallel add of packed eight bytes, four 16-bit words, or two 
32-bit doublewords, with wraparound.

PADDS [B, W] Add with saturation.

PADDUS [B, W] Add unsigned with saturation.

PSUB [B, W, D] Subtract with wraparound.

PSUBS [B, W] Subtract with saturation.

PSUBUS [B, W] Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with  high- 
 order 16 bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with  low- 
 order 16 bits of 32-bit result chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together 
adjacent pairs of 32-bit results.

Comparison

PCMPEQ [B, W, D] Parallel compare for equality; result is mask of 1s if true or 
0s if false.

PCMPGT [B, W, D] Parallel compare for greater than; result is mask of 1s if 
true or 0s if false.

Conversion

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with 
signed saturation.

PUNPCKH [BW, WD, DQ] Parallel unpack (interleaved merge)  high-  order bytes, 
words, or doublewords from MMX register.

PUNPCKL [BW, WD, DQ] Parallel unpack (interleaved merge)  low-  order bytes, 
words, or doublewords from MMX register.

Logical

PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift

PSLL [W, D, Q] Parallel logical left shift of packed words, doublewords, or 
quadword by amount specified in MMX register or immedi-
ate value.

PSRL [W, D, Q] Parallel logical right shift of packed words, doublewords, or 
quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, double-
words, or quadword.

Data transfer MOV [D, Q] Move doubleword or quadword to/from MMX register.

Statemgt EMMS Empty MMX state (empty FP registers tag bits).

Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword (Q)], the 
data types are indicated in brackets.

To provide a feel for the use of MMX instructions, we look at an example, 
taken from [PELE97]. A common video application is the  fade-  out,  fade-  in effect, 
in which one scene gradually dissolves into another. Two images are combined with 
a weighted average:
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Result_pixel = A_pixel * fade + B_pixel * (1 - fade)

This calculation is performed on each pixel position in A and B. If a series of 
video frames is produced while gradually changing the fade value from 1 to 0 (scaled 
appropriately for an 8-bit integer), the result is to fade from image A to image B.

Figure 12.11 shows the sequence of steps required for one set of pixels. The 
8-bit pixel components are converted to 16-bit elements to accommodate the MMX 
16-bit multiply capability. If these images use 640 * 480 resolution, and the dissolve 
technique uses all 255 possible values of the fade value, then the total number of 
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MMX code sequence performing this operation:

× × × ×

pxor     mm7, mm7      ;zero out mm7
movq     mm3, fad_val    ;load fade value replicated 4 times
movd     mm0, imageA    ;load 4 red pixel components from image A
movd     mm1, imageB    ;load 4 red pixel components from image B
punpckblw   mm0, mm7      ;unpack 4 pixels to 16 bits
punpckblw   mm1, mm7      ;unpack 4 pixels to 16 bits
psubw     mm0, mm1      ;subtract image B from image A
pmulhw     mm0, mm3      ;multiply the subtract result by fade values
padddw     mm0, mm1      ;add result to image B
packuswb     mm0, mm7      ;pack 16-bit results back to bytes

Figure 12.11 Image Compositing on Color Plane Representation
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instructions executed using MMX is 535 million. The same calculation, performed 
without the MMX instructions, requires 1.4 billion instruction executions [INTE98].

ARM Operation Types

The ARM architecture provides a large collection of operation types. The following 
are the principal categories:

 ■ Load and store instructions: In the ARM architecture, only load and store 
instructions access memory locations; arithmetic and logical instructions are 
performed only on registers and immediate values encoded in the instruction. 
This limitation is characteristic of RISC design and it is explored further in 
Chapter 15. The ARM architecture supports two broad types of instruction 
that load or store the value of a single register, or a pair of registers, from or to 
memory: (1) load or store a 32-bit word or an 8-bit unsigned byte, and (2) load 
or store a 16-bit unsigned halfword, and load and sign extend a 16-bit halfword 
or an 8-bit byte.

 ■ Branch instructions: ARM supports a branch instruction that allows a condi-
tional branch forwards or backwards up to 32 MB. A subroutine call can be 
performed by a variant of the standard branch instruction. As well as allow-
ing a branch forward or backward up to 32 MB, the Branch with Link (BL) 
instruction preserves the address of the instruction after the branch (the return 
address) in the LR (R14). Branches are determined by a 4-bit condition field 
in the instruction.

 ■  Data-  processing instructions: This category includes logical instructions 
(AND, OR, XOR), add and subtract instructions, and test and compare 
instructions.

 ■ Multiply instructions: The integer multiply instructions operate on word or 
halfword operands and can produce normal or long results. For example, 
there is a multiply instruction that takes two 32-bit operands and produces a 
64-bit result.

 ■ Parallel addition and subtraction instructions: In addition to the normal data 
processing and multiply instructions, there are a set of parallel addition and 
subtraction instructions, in which portions of two operands are operated on 
in parallel. For example, ADD16 adds the top halfwords of two registers to 
form the top halfword of the result and adds the bottom halfwords of the same 
two registers to form the bottom halfword of the result. These instructions are 
useful in image processing applications, similar to the x86 MMX instructions.

 ■ Extend instructions: There are several instructions for unpacking data by sign 
or zero extending bytes to halfwords or words, and halfwords to words.

 ■ Status register access instructions: ARM provides the ability to read and also 
to write portions of the status register.

condition codes The ARM architecture defines four condition flags that are 
stored in the program status register: N, Z, C, and V (Negative, Zero, Carry and 
oVerflow), with meanings essentially the same as the S, Z, C, and V flags in the 
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x86 architecture. These four flags constitute a condition code in ARM. Table 12.11 
shows the combination of conditions for which conditional execution is defined.

There are two unusual aspects to the use of condition codes in ARM:

1. All instructions, not just branch instructions, include a condition code field, 
which means that virtually all instructions may be conditionally executed. Any 
combination of flag settings except 1110 or 1111 in an instruction’s condition 
code field signifies that the instruction will be executed only if the condition 
is met.

2. All data processing instructions (arithmetic, logical) include an S bit that signi-
fies whether the instruction updates the condition flags.

The use of conditional execution and conditional setting of the condition flags 
helps in the design of shorter programs that use less memory. On the other hand, 
all instructions include 4 bits for the condition code, so there is a  trade-  off in that 
fewer bits in the 32-bit instruction are available for opcode and operands. Because 
the ARM is a RISC design that relies heavily on register addressing, this seems to 
be a reasonable  trade-  off.

Table 12.11 ARM Conditions for Conditional Instruction Execution

Code Symbol Condition Tested Comment

0000 EQ Z = 1 Equal

0001 NE Z = 0 Not equal

0010 CS/HS C = 1 Carry set/unsigned higher or same

0011 CC/LO C = 0 Carry clear/unsigned lower

0100 MI N = 1 Minus/negative

0101 PL N = 0 Plus/positive or zero

0110 VS V = 1 Overflow

0111 VC V = 0 No overflow

1000 HI C = 1 AND Z = 0 Unsigned higher

1001 LS C = 0 OR Z = 1 Unsigned lower or same

1010 GE N = V
[(N = 1 AND V = 1)
OR (N = 0 AND V = 0)]

Signed greater than or equal

1011 LT N ≠ V
[(N = 1 AND V = 0)
OR (N = 0 AND V = 1)]

Signed less than

1100 GT (Z = 0) AND (N = V) Signed greater than

1101 LE (Z = 1) OR (N ≠ V) Signed less than or equal

1110 AL — Always (unconditional)

1111 — — This instruction can only be executed 
unconditionally
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 12.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

accumulator
address
arithmetic shift
 bi-  endian
big endian
branch
conditional branch
instruction set

jump
little endian
logical shift
machine instruction
operand
operation
packed decimal
pop

procedure call
procedure return
push
reentrant procedure
rotate
skip
stack

Review Questions

 12.1 What are the typical elements of a machine instruction?
 12.2 What types of locations can hold source and destination operands?
 12.3 If an instruction contains four addresses, what might be the purpose of each address?
 12.4 List and briefly explain five important instruction set design issues.
 12.5 What types of operands are typical in machine instruction sets?
 12.6 What is the relationship between the IRA character code and the packed decimal 

representation?
 12.7 What is the difference between an arithmetic shift and a logical shift?
 12.8 Why are transfer of control instructions needed?
 12.9 List and briefly explain two common ways of generating the condition to be tested in 

a conditional branch instruction.
 12.10 What is meant by the term nesting of procedures?
 12.11 List three possible places for storing the return address for a procedure return.
 12.12 What is a reentrant procedure?
 12.13 What is reverse Polish notation?
 12.14 What is the difference between big endian and little endian?

Problems

 12.1 Show in hex notation:
a. The packed decimal format for 23.
b. The ASCII characters 23.

 12.2 For each of the following packed decimal numbers, show the decimal value:
a. 0111 0011 0000 1001
b. 0101 1000 0010
c. 0100 1010 0110

 12.3 A given microprocessor has words of 1 byte. What is the smallest and largest integer 
that can be represented in the following representations:
a. Unsigned.
b.  Sign-  magnitude.
c. Ones complement.
d. Twos complement.
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e. Unsigned packed decimal.
f. Signed packed decimal.

 12.4 Many processors provide logic for performing arithmetic on packed decimal numbers. 
Although the rules for decimal arithmetic are similar to those for binary operations, 
the decimal results may require some corrections to the individual digits if binary logic 
is used.

Consider the decimal addition of two unsigned numbers. If each number con-
sists of N digits, then there are 4N bits in each number. The two numbers are to be 
added using a binary adder. Suggest a simple rule for correcting the result. Perform 
addition in this fashion on the numbers 1698 and 1786.

 12.5 The tens complement of the decimal number X is defined to be 10N - X , where N 
is the number of decimal digits in the number. Describe the use of ten’s complement 
representation to perform decimal subtraction. Illustrate the procedure by subtracting 
(0326)10 from (0736)10.

 12.6 Compare  zero-,  one-,  two-, and  three-  address machines by writing programs to compute

X = (A + B * C)/(D - E * F)

for each of the four machines. The instructions available for use are as follows:

0 Address 1 Address 2 Address 3 Address

PUSH M LOAD M MOVE (X d Y) MOVE (X d Y)

POP M STORE M ADD (X d X + Y) ADD (X d Y + Z)

ADD ADD M SUB (X d X - Y) SUB (X d Y - Z)

SUB SUB M MUL (X d X * Y) MUL (X d Y * Z)

MUL MUL M DIV (X d X/Y) DIV (X d Y/Z)

DIV DIV M

 12.7 Consider a hypothetical computer with an instruction set of only two  n-  bit instruc-
tions. The first bit specifies the opcode, and the remaining bits specify one of the 2n - 1 
 n-  bit words of main memory. The two instructions are as follows:

SUBS X Subtract the contents of location X from the accumulator, and store the 
result in location X and the accumulator.

JUMP X Place address X in the program counter.

A word in main memory may contain either an instruction or a binary number 
in twos complement notation. Demonstrate that this instruction repertoire is reason-
ably complete by specifying how the following operations can be programmed:
a. Data transfer: Location X to accumulator, accumulator to location X.
b. Addition: Add contents of location X to accumulator.
c. Conditional branch.
d. Logical OR.
e. I/O Operations.

 12.8 Many instruction sets contain the instruction NOOP, meaning no operation, which has 
no effect on the processor state other than incrementing the program counter. Suggest 
some uses of this instruction.

 12.9 In Section 12.4, it was stated that both an arithmetic left shift and a logical left shift 
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs, 
arithmetic and logical left shift operations produce different results, but the arithmetic 
left shift retains the sign of the number. Demonstrate that these statements are true 
for 5-bit twos complement integers.
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 12.10 In what way are numbers rounded using arithmetic right shift (e.g., round toward  
+ ∞ , round toward - ∞ , toward zero, away from 0)?

 12.11 Suppose a stack is to be used by the processor to manage procedure calls and returns. 
Can the program counter be eliminated by using the top of the stack as a program 
counter?

 12.12 The x86 architecture includes an instruction called Decimal Adjust after Addition 
(DAA). DAA performs the following sequence of instructions:

 if ((AL AND 0FH) >9) OR (AF = 1)  then 
AL d AL + 6;
AF d 1;

 else 
AF d 0;

 endif; 
 if (AL > 9FH) OR (CF = 1)  then 

AL d AL + 60H;
CF d 1;

 else 
CF d 0;

 endif. 

“H” indicates hexadecimal. AL is an 8-bit register that holds the result of addition of 
two unsigned 8-bit integers. AF is a flag set if there is a carry from bit 3 to bit 4 in the 
result of an addition. CF is a flag set if there is a carry from bit 7 to bit 8. Explain the 
function performed by the DAA instruction.

 12.13 The x86 Compare instruction (CMP) subtracts the source operand from the destina-
tion operand; it updates the status flags (C, P, A, Z, S, O) but does not alter either of 
the operands. The CMP instruction can be used to determine if the destination oper-
and is greater than, equal to, or less than the source operand.
a. Suppose the two operands are treated as unsigned integers. Show which status 

flags are relevant to determine the relative size of the two integer and what values 
of the flags correspond to greater than, equal to, or less than.

b. Suppose the two operands are treated as twos complement signed integers. Show 
which status flags are relevant to determine the relative size of the two integer and 
what values of the flags correspond to greater than, equal to, or less than.

c. The CMP instruction may be followed by a conditional Jump (Jcc) or Set Con-
dition (SETcc) instruction, where cc refers to one of the 16 conditions listed in 
Table 12.11. Demonstrate that the conditions tested for a signed number compar-
ison are correct.

 12.14 Suppose we wished to apply the x86 CMP instruction to 32-bit operands that con-
tained numbers in a  floating-  point format. For correct results, what requirements have 
to be met in the following areas?
a. The relative position of the significand, sign, and exponent fields.
b. The representation of the value zero.
c. The representation of the exponent.
d. Does the IEEE format meet these requirements? Explain.

 12.15 Many microprocessor instruction sets include an instruction that tests a condition and 
sets a destination operand if the condition is true. Examples include the SETcc on the 
x86, the Scc on the Motorola MC68000, and the Scond on the National NS32000.
a. There are a few differences among these instructions:

 ■ SETcc and Scc operate only on a byte, whereas Scond operates on byte, word, 
and doubleword operands.

 ■ SETcc and Scond set the operand to integer one if true and to zero if false. Scc 
sets the byte to all binary ones if true and all zeros if false. What are the relative 
advantages and disadvantages of these differences?
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b. None of these instructions set any of the condition code flags, and thus an explicit 
test of the result of the instruction is required to determine its value. Discuss 
whether condition codes should be set as a result of this instruction.

c. A simple IF statement such as IF a 7 b THEN can be implemented using a 
numerical representation method, that is, making the Boolean value manifest, as 
opposed to a flow of control method, which represents the value of a Boolean 
expression by a point reached in the program. A compiler might implement IF 
a 7 ssb THEN with the following x86 code:

SUB CX, CX ;set register CX to 0

MOV AX, B ;move contents of location B to register AX

CMP AX, A ;compare contents of register AX and location A

JLE TEST ;jump if A … B

INC CX ;add 1 to contents of register CX

TEST JCXZ OUT ;jump if contents of CX equal 0

THEN OUT

The result of (A 7 B) is a Boolean value held in a register and available later on, 
outside the context of the flow of code just shown. It is convenient to use register 
CX for this, because many of the branch and loop opcodes have a  built-  in test 
for CX.

Show an alternative implementation using the SETcc instruction that saves 
memory and execution time. (Hint: No additional new x86 instructions are needed, 
other than the SETcc.)

d. Now consider the  high-  level language statement:

A: = (B 7 C) OR (D = F)

A compiler might generate the following code:

MOV EAX, B ;move contents of location B to register EAX

CMP EAX, C ;compare contents of register EAX and location C

MOV BL, 0 ;0 represents false

JLE N1 ;jump if (B … C)

MOV BL, 1 ;1 represents false

N1 MOV EAX, D

CMP EAX, F

MOV BH, 0

JNE N2

MOV BH, 1

N2 OR BL, BH

Show an alternative implementation using the SETcc instruction that saves memory 
and execution time.

 12.16 Suppose that two registers contain the following hexadecimal values: AB0890C2, 
4598EE50. What is the result of adding them using MMX instructions:
a. packed byte.
b. packed word.
Assume saturation arithmetic is not used.
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 12.17 Appendix I points out that there are no  stack-  oriented instructions in an instruction set 
if the stack is to be used only by the processor for such purposes as procedure handling. 
How can the processor use a stack for any purpose without  stack-  oriented instructions?

 12.18 Mathematical formulas are usually expressed in what is known as infix notation, in 
which a binary operator appears between the operands. An alternative technique is 
known as reverse Polish, or postfix, notation, in which the operator follows its two 
operands. See Appendix I for more details. Convert the following formulas from 
reverse Polish to infix:
a. AB + C + D *
b. AB/CD/ +
c. ABCDE + * * /
d. ABCDE + F/ + G - H/ * +

 12.19 Convert the following formulas from infix to reverse Polish:
a. A + B + C + D + E
b. (A + B) * (C + D) + E
c. (A * B) + (C * D) + E
d. (A - B) * (((C - D * E)/F)/G) * H

 12.20 Convert the expression A + B - C to postfix notation using Dijkstra’s algorithm. 
Show the steps involved. Is the result equivalent to (A + B) - C or A + (B - C)? 
Does it matter?

 12.21 Using the algorithm for converting infix to postfix defined in Appendix I, show the 
steps involved in converting the expression of Figure I.3 into postfix. Use a presenta-
tion similar to Figure I.5.

 12.22 Show the calculation of the expression in Figure I.5, using a presentation similar to 
Figure I.4.

 12.23 Redraw the  little-  endian layout in Figure 12.13 so that the bytes appear as numbered 
in the  big-  endian layout. That is, show memory in 64-bit rows, with the bytes listed left 
to right, top to bottom.

 12.24 For the following data structures, draw the  big-  endian and  little-  endian layouts, using 
the format of Figure 12.13, and comment on the results.

a. struct {
  double i; //0x1112131415161718
 } s1;
b. struct {
  int i;  //0x11121314
  int j;  //0x15161718
 } s2;
c. struct {
  short i; //0x1112
  short j; //0x1314
  short k; //0x1516
  short l; //0x1718
 } s3;

 12.25 The IBM Power architecture specification does not dictate how a processor should imple-
ment  little-  endian mode. It specifies only the view of memory a processor must have 
when operating in  little-  endian mode. When converting a data structure from big endian 
to little endian, processors are free to implement a true  byte-  swapping mechanism or to 
use some sort of an address modification mechanism. Current Power processors are all 
default  big-  endian machines and use address modification to treat data as  little-  endian.

Consider the structure s defined in Figure 12.13. The layout in the  lower-  right 
portion of the figure shows the structure s as seen by the processor. In fact, if struc-
tures is compiled in  little-  endian mode, its layout in memory is shown in Figure 12.12. 
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Explain the mapping that is involved, describe an easy way to implement the mapping, 
and discuss the effectiveness of this approach.

 12.26 Write a small program to determine the endianness of machine and report the results. 
Run the program on a computer available to you and turn in the output.

 12.27 The MIPS processor can be set to operate in either  big-  endian or  little-  endian mode. 
Consider the Load Byte Unsigned (LBU) instruction, which loads a byte from mem-
ory into the  low-  order 8 bits of a register and fills the  high-  order 24 bits of the register 
with zeros. The description of LBU is given in the MIPS reference manual using a 
 register-  transfer language as

mem d LoadMemory(…)
byte d VirtualAddress1..0 
if  CONDITION  then 
 GPR[rt] d 024}mem31 – 8 * byte .. 24 – 8 * byte
else 
 GPR[rt] d 024}mem7 + 8 * byte .. 8 * byte 
endif 

where byte refers to the two  low-  order bits of the effective address and mem refers 
to the value loaded from memory. In the manual, instead of the word CONDITION, 
one of the following two words is used: BigEndian, LittleEndian. Which word is used?

 12.28 Most, but not all, processors use  big-   or  little-  endian bit ordering within a byte that 
is consistent with  big-   or  little-  endian ordering of bytes within a multibyte scalar. Let 
us consider the Motorola 68030, which uses  big-  endian byte ordering. The documen-
tation of the 68030 concerning formats is confusing. The user’s manual explains that 
the bit ordering of bit fields is the opposite of bit ordering of integers. Most bit field 
operations operate with one endian ordering, but a few bit field operations require the 
opposite ordering. The following description from the user’s manual describes most of 
the bit field operations:

A bit operand is specified by a base address that selects one byte in memory 
(the base byte), and a bit number that selects the one bit in this byte. The 
most significant bit is bit seven. A bit field operand is specified by: (1) a base 
address that selects one byte in memory; (2) a bit field offset that indicates the 
leftmost (base) bit of the bit field in relation to the most significant bit of the 
base byte; and (3) a bit field width that determines how many bits to the right 
of the base byte are in the bit field. The most significant bit of the base byte 
is bit field offset 0, the least significant bit of the base byte is bit field offset 7.

Do these instructions use  big-  endian or  little-  endian bit ordering?
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 APENDIX 12A  LITTLE-,  BIG-, AND  BI-  ENDIAN

An annoying and curious phenomenon relates to how the bytes within a word and 
the bits within a byte are both referenced and represented. We look first at the prob-
lem of byte ordering and then consider that of bits.

Byte Ordering

The concept of endianness was first discussed in the literature by Cohen [COHE81]. 
With respect to bytes, endianness has to do with the byte ordering of multibyte sca-
lar values. The issue is best introduced with an example. Suppose we have the 32-bit 
hexadecimal value 12345678 and that it is stored in a 32-bit word in  byte-  addressable 
memory at byte location 184. The value consists of 4 bytes, with the least significant 
byte containing the value 78 and the most significant byte containing the value 12. 
There are two obvious ways to store this value:

Address Value Address Value

184 12 184 78

185 34 185 56

186 56 186 34

187 78 187 12

The mapping on the left stores the most significant byte in the lowest numerical 
byte address; this is known as big endian and is equivalent to the  left-  to-  right order 
of writing in Western culture languages. The mapping on the right stores the least 
significant byte in the lowest numerical byte address; this is known as little endian 
and is reminiscent of the  right-  to-  left order of arithmetic operations in arithmetic 
units.3 For a given multibyte scalar value, big endian and little endian are  byte- 
 reversed mappings of each other.

The concept of endianness arises when it is necessary to treat a  multiple-  byte 
entity as a single data item with a single address, even though it is composed of 
smaller addressable units. Some machines, such as the Intel 80x86, x86, VAX, and 
Alpha, are  little-  endian machines, whereas others, such as the IBM System 370/390, 
the Motorola 680x0, Sun SPARC, and most RISC machines, are big endian. This 
presents problems when data are transferred from a machine of one endian type to 
the other and when a programmer attempts to manipulate individual bytes or bits 
within a multibyte scalar.

The property of endianness does not extend beyond an individual data unit. 
In any machine, aggregates such as files, data structures, and arrays are composed 
of multiple data units, each with endianness. Thus, conversion of a block of memory 
from one style of endianness to the other requires knowledge of the data structure.

Figure 12.13 illustrates how endianness determines addressing and byte order. 
The C structure at the top contains a number of data types. The memory layout in the 

3The terms big endian and little endian come from Part I, Chapter 4 of Jonathan Swift’s Gulliver’s Travels. 
They refer to a religious war between two groups, one that breaks eggs at the big end and the other that 
breaks eggs at the little end.
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lower left results from compilation of that structure for a  big-  endian machine, and that 
in the lower right for a  little-  endian machine. In each case, memory is depicted as a 
series of 64-bit rows. For the  big-  endian case, memory typically is viewed left to right, 
top to bottom, whereas for the  little-  endian case, memory typically is viewed as right 
to left, top to bottom. Note that these layouts are arbitrary. Either scheme could use 
either left to right or right to left within a row; this is a matter of depiction, not mem-
ory assignment. In fact, in looking at programmer manuals for a variety of machines, 
a bewildering collection of depictions is to be found, even within the same manual.

struct{
 int a; //0x1112_1314 word
 int pad; //
 double b; //0x2122_2324_2526_2728 doubleword
 char* c; //0x3132_3334 word
 char d[7]; //'A','B','C','D','E','F','G' byte array
 short e; //0x5152 halfword
 int f; //0x6162_6364 word
} s;

We can make several observations about this data structure:

 ■ Each data item has the same address in both schemes. For example, the address 
of the doubleword with hexadecimal value 2122232425262728 is 08.

 ■ Within any given multibyte scalar value, the ordering of bytes in the  little- 
 endian structure is the reverse of that for the  big-  endian structure.

struct{
 int a; //0x1112_1314 word
 int pad; //
 double b; //0x2122_2324_2526_2728 doubleword
 char* c; //0x3132_3334 word
 char d[7]; //'A','B','C','D','E','F','G' byte array
 short e; //0x5152 halfword
 int f; //0x6162_6364 word
} s;
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 ■ Endianness does not affect the ordering of data items within a structure. Thus, 
the  four-  character word c exhibits byte reversal, but the  seven-  character byte 
array d does not. Hence, the address of each individual element of d is the 
same in both structures.

The effect of endianness is perhaps more clearly demonstrated when we view 
memory as a vertical array of bytes, as shown in Figure 12.14.

There is no general consensus as to which is the superior style of endianness.4 
The following points favor the  big-  endian style:

 ■  Character-  string sorting: A  big-  endian processor is faster in comparing 
 integer-  aligned character strings; the integer ALU can compare multiple bytes 
in parallel.
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4The prophet revered by both groups in the Endian Wars of Gulliver’s Travels had this to say. “All true 
Believers shall break their Eggs at the convenient End.” Not much help!



 ■ Decimal/IRA dumps: All values can be printed left to right without causing 
confusion.

 ■ Consistent order:  Big-  endian processors store their integers and character 
strings in the same order (most significant byte comes first).

The following points favor the  little-  endian style:

 ■ A  big-  endian processor has to perform addition when it converts a 32-bit inte-
ger address to a 16-bit integer address, to use the least significant bytes.

 ■ It is easier to perform  higher-  precision arithmetic with the  little-  endian style; 
you don’t have to find the  least-  significant byte and move backward.

The differences are minor and the choice of endian style is often more a matter 
of accommodating previous machines than anything else.

The PowerPC is a  bi-  endian processor that supports both  big-  endian and  little- 
 endian modes. The  bi-  endian architecture enables software developers to choose 
either mode when migrating operating systems and applications from other machines. 
The operating system establishes the endian mode in which processes execute. Once 
a mode is selected, all subsequent memory loads and stores are determined by the 
 memory-  addressing model of that mode. To support this hardware feature, 2 bits are 
maintained in the machine state register (MSR) maintained by the operating system 
as part of the process state. One bit specifies the endian mode in which the kernel 
runs; the other specifies the processor’s current operating mode. Thus, mode can be 
changed on a  per-  process basis.

Bit Ordering

In ordering the bits within a byte, we are immediately faced with two questions:

1. Do you count the first bit as bit zero or as bit one?

2. Do you assign the lowest bit number to the byte’s least significant bit (little 
endian) or to the bytes most significant bit (big endian)?

These questions are not answered in the same way on all machines. Indeed, on 
some machines, the answers are different in different circumstances. Furthermore, 
the choice of  big-   or  little-  endian bit ordering within a byte is not always consistent 
with  big-   or  little-  endian ordering of bytes within a multibyte scalar. The program-
mer needs to be concerned with these issues when manipulating individual bits.

Another area of concern is when data are transmitted over a  bit-  serial line. 
When an individual byte is transmitted, does the system transmit the most significant 
bit first or the least significant bit first? The designer must make certain that incom-
ing bits are handled properly. For a discussion of this issue, see [JAME90].
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In Chapter 12, we focused on what an instruction set does. Specifically, we examined 
the types of operands and operations that may be specified by machine instructions. 
This chapter turns to the question of how to specify the operands and operations of 
instructions. Two issues arise. First, how is the address of an operand specified, and 
second, how are the bits of an instruction organized to define the operand addresses 
and operation of that instruction?

 13.1 ADDRESSING MODES

The address field or fields in a typical instruction format are relatively small. We 
would like to be able to reference a large range of locations in main memory or, for 
some systems, virtual memory. To achieve this objective, a variety of addressing tech-
niques has been employed. They all involve some  trade-  off between address range 
and/or addressing flexibility, on the one hand, and the number of memory references 
in the instruction and/or the complexity of address calculation, on the other. In this 
section, we examine the most common addressing techniques, or modes:

 ■ Immediate
 ■ Direct
 ■ Indirect
 ■ Register
 ■ Register indirect
 ■ Displacement
 ■ Stack

These modes are illustrated in Figure 13.1. In this section, we use the following 
notation:

A = contents of an address field in the instruction
R  = contents of an address field in the instruction that refers to a register

EA    = actual (effective) address of the location containing the referenced operand
(X) = contents of memory location X or register X

Learning Objectives

After studying this chapter, you should be able to:

 r Describe the various types of addressing modes common in instruction sets.
 r Present an overview of x86 and ARM addressing modes.
 r Summarize the issues and  trade-  offs involved in designing an instruction 
format.

 r Present an overview of x86 and ARM instruction formats.
 r Understand the distinction between machine language and assembly 
language.
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Table 13.1 indicates the address calculation performed for each addressing 
mode.

Before beginning this discussion, two comments need to be made. First, virtu-
ally all computer architectures provide more than one of these addressing modes. 
The question arises as to how the processor can determine which address mode 
is being used in a particular instruction. Several approaches are taken. Often, dif-
ferent opcodes will use different addressing modes. Also, one or more bits in the 
instruction format can be used as a mode field. The value of the mode field deter-
mines which addressing mode is to be used.

The second comment concerns the interpretation of the effective address 
(EA). In a system without virtual memory, the effective address will be either a main 
memory address or a register. In a virtual memory system, the effective address is a 
virtual address or a register. The actual mapping to a physical address is a function 
of the memory management unit (MMU) and is invisible to the programmer.
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Immediate Addressing

The simplest form of addressing is immediate addressing, in which the operand value 
is present in the instruction

Operand = A

This mode can be used to define and use constants or set initial values of variables. 
Typically, the number will be stored in twos complement form; the leftmost bit of 
the operand field is used as a sign bit. When the operand is loaded into a data reg-
ister, the sign bit is extended to the left to the full data word size. In some cases, the 
immediate binary value is interpreted as an unsigned nonnegative integer.

The advantage of immediate addressing is that no memory reference other 
than the instruction fetch is required to obtain the operand, thus saving one mem-
ory or cache cycle in the instruction cycle. The disadvantage is that the size of the 
number is restricted to the size of the address field, which, in most instruction sets, 
is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field con-
tains the effective address of the operand:

EA = A

The technique was common in earlier generations of computers but is not com-
mon on contemporary architectures. It requires only one memory reference and no 
special calculation. The obvious limitation is that it provides only a limited address 
space.

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word 
length, thus limiting the address range. One solution is to have the address field refer 
to the address of a word in memory, which in turn contains a  full-  length address of 
the operand. This is known as indirect addressing:

EA = (A)

Table 13.1 Basic Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage

Immediate Operand = A No memory reference Limited operand magnitude

Direct EA = A Simple Limited address space

Indirect EA = (A) Large address space Multiple memory references

Register EA = R No memory reference Limited address space

Register indirect EA = (R) Large address space Extra memory reference

Displacement EA = A + (R) Flexibility Complexity

Stack EA = top of stack No memory reference Limited applicability
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As defined earlier, the parentheses are to be interpreted as meaning contents 
of. The obvious advantage of this approach is that for a word length of N, an address 
space of 2N is now available. The disadvantage is that instruction execution requires 
two memory references to fetch the operand: one to get its address and a second to 
get its value.

Although the number of words that can be addressed is now equal to 2N, the 
number of different effective addresses that may be referenced at any one time is 
limited to 2K, where K is the length of the address field. Typically, this is not a bur-
densome restriction, and it can be an asset. In a virtual memory environment, all the 
effective address locations can be confined to page 0 of any process. Because the 
address field of an instruction is small, it will naturally produce  low-  numbered dir-
ect addresses, which would appear in page 0. (The only restriction is that the page 
size must be greater than or equal to 2K.) When a process is active, there will be 
repeated references to page 0, causing it to remain in real memory. Thus, an indirect 
memory reference will involve, at most, one page fault rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect 
addressing:

EA = (c (A) c)

In this case, one bit of a  full-  word address is an indirect flag (I). If the I bit is 0, 
then the word contains the EA. If the I bit is 1, then another level of indirection is 
invoked. There does not appear to be any particular advantage to this approach, 
and its disadvantage is that three or more memory references could be required to 
fetch an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the 
address field refers to a register rather than a main memory address:

EA = R

To clarify, if the contents of a register address field in an instruction is 5, then 
register R5 is the intended address, and the operand value is contained in R5. Typ-
ically, an address field that references registers will have from 3 to 5 bits, so that a 
total of from 8 to 32  general-  purpose registers can be referenced.

The advantages of register addressing are that (1) only a small address field 
is needed in the instruction, and (2) no  time-  consuming memory references are 
required. As was discussed in Chapter 4, the memory access time for a register 
internal to the processor is much less than that for a main memory address. The dis-
advantage of register addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set, this implies that the 
processor registers will be heavily used. Because of the severely limited number of 
registers (compared with main memory locations), their use in this fashion makes 
sense only if they are employed efficiently. If every operand is brought into a regis-
ter from main memory, operated on once, and then returned to main memory, then 
a wasteful intermediate step has been added. If, instead, the operand in a register 
remains in use for multiple operations, then a real savings is achieved. An example 
is the intermediate result in a calculation. In particular, suppose that the algorithm 
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for twos complement multiplication were to be implemented in software. The loca-
tion labeled A in the flowchart (Figure 10.12) is referenced many times and should 
be implemented in a register rather than a main memory location.

It is up to the programmer or compiler to decide which values should remain 
in registers and which should be stored in main memory. Most modern processors 
employ multiple  general-  purpose registers, placing a burden for efficient execution 
on the  assembly-  language programmer (e.g., compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect address-
ing is analogous to indirect addressing. In both cases, the only difference is whether 
the address field refers to a memory location or a register. Thus, for register indirect 
address,

EA = (R)

The advantages and limitations of register indirect addressing are basically the same 
as for indirect addressing. In both cases, the address space limitation (limited range 
of addresses) of the address field is overcome by having that field refer to a  word- 
 length location containing an address. In addition, register indirect addressing uses 
one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing 
and register indirect addressing. It is known by a variety of names depending on 
the context of its use, but the basic mechanism is the same. We will refer to this as 
displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields, at 
least one of which is explicit. The value contained in one address field (value = A) 
is used directly. The other address field, or an implicit reference based on opcode, 
refers to a register whose contents are added to A to produce the effective address.

We will describe three of the most common uses of displacement addressing:

 ■ Relative addressing
 ■  Base-  register addressing
 ■ Indexing

relative addressing For relative addressing, also called  PC-  relative addressing, 
the implicitly referenced register is the program counter (PC). That is, the next 
instruction address is added to the address field to produce the EA. Typically, the 
address field is treated as a twos complement number for this operation. Thus, the 
effective address is a displacement relative to the address of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chap-
ters 4 and 8. If most memory references are relatively near to the instruction being 
executed, then the use of relative addressing saves address bits in the instruction.



462  CHAPTer 13 / insTruCTion seTs: Addressing Modes And ForMATs

 base-  register addressing For  base-  register addressing, the interpretation is 
the following: The referenced register contains a main memory address, and the 
address field contains a displacement (usually an unsigned integer representation) 
from that address. The register reference may be explicit or implicit.

 Base-  register addressing also exploits the locality of memory references. It is 
a convenient means of implementing segmentation, which was discussed in Chap-
ter 8. In some implementations, a single  segment-  base register is employed and is 
used implicitly. In others, the programmer may choose a register to hold the base 
address of a segment, and the instruction must reference it explicitly. In this latter 
case, if the length of the address field is K and the number of possible registers is N, 
then one instruction can reference any one of N areas of 2K words.

indexing For indexing, the interpretation is typically the following: The address 
field references a main memory address, and the referenced register contains a 
positive displacement from that address. Note that this usage is just the opposite 
of the interpretation for  base-  register addressing. Of course, it is more than just 
a matter of user interpretation. Because the address field is considered to be a 
memory address in indexing, it generally contains more bits than an address field 
in a comparable  base-  register instruction. Also, we will see that there are some 
refinements to indexing that would not be as useful in the  base-  register context. 
Nevertheless, the method of calculating the EA is the same for both  base-  register 
addressing and indexing, and in both cases the register reference is sometimes 
explicit and sometimes implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for per-
forming iterative operations. Consider, for example, a list of numbers stored start-
ing at location A. Suppose that we would like to add 1 to each element on the list. 
We need to fetch each value, add 1 to it, and store it back. The sequence of effective 
addresses that we need is A,  A + 1,  A + 2,  . . . , up to the last location on the list. 
With indexing, this is easily done. The value A is stored in the instruction’s address 
field, and the chosen register, called an index register, is initialized to 0. After each 
operation, the index register is incremented by 1.

Because index registers are commonly used for such iterative tasks, it is typ-
ical that there is a need to increment or decrement the index register after each 
reference to it. Because this is such a common operation, some systems will auto-
matically do this as part of the same instruction cycle. This is known as autoindex-
ing. If certain registers are devoted exclusively to indexing, then autoindexing can 
be invoked implicitly and automatically. If  general-  purpose registers are used, the 
autoindex operation may need to be signaled by a bit in the instruction. Autoindex-
ing using increment can be depicted as follows.

 EA = A + (R)

 (R) d (R) + 1

In some machines, both indirect addressing and indexing are provided, and it 
is possible to employ both in the same instruction. There are two possibilities: the 
indexing is performed either before or after the indirection.

If indexing is performed after the indirection, it is termed postindexing:

EA = (A) + (R)
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First, the contents of the address field are used to access a memory location contain-
ing a direct address. This address is then indexed by the register value. This tech-
nique is useful for accessing one of a number of blocks of data of a fixed format. For 
example, it was described in Chapter 8 that the operating system needs to employ 
a process control block for each process. The operations performed are the same 
regardless of which block is being manipulated. Thus, the addresses in the instruc-
tions that reference the block could point to a location (value = A) containing a 
variable pointer to the start of a process control block. The index register contains 
the displacement within the block.

With preindexing, the indexing is performed before the indirection:

EA = (A + (R))

An address is calculated as with simple indexing. In this case, however, the calcu-
lated address contains not the operand, but the address of the operand. An example 
of the use of this technique is to construct a multiway branch table. At a particular 
point in a program, there may be a branch to one of a number of locations depend-
ing on conditions. A table of addresses can be set up starting at location A. By 
indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. As defined in 
Appendix I, a stack is a linear array of locations. It is sometimes referred to as a 
pushdown list or  last-  in-  first-  out queue. The stack is a reserved block of locations. 
Items are appended to the top of the stack so that, at any given time, the block is par-
tially filled. Associated with the stack is a pointer whose value is the address of the 
top of the stack. Alternatively, the top two elements of the stack may be in processor 
registers, in which case the stack pointer references the third element of the stack. 
The stack pointer is maintained in a register. Thus, references to stack locations in 
memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine 
instructions need not include a memory reference but implicitly operate on the top 
of the stack.

 13.2 x86 AND ARM ADDRESSING MODES

x86 Addressing Modes

Recall from Figure  8.21 that the x86 address translation mechanism produces an 
address, called a virtual or effective address, that is an offset into a segment. The 
sum of the starting address of the segment and the effective address produces a 
linear address. If paging is being used, this linear address must pass through a  page- 
 translation mechanism to produce a physical address. In what follows, we ignore this 
last step because it is transparent to the instruction set and to the programmer.

The x86 is equipped with a variety of addressing modes intended to allow 
the efficient execution of  high-  level languages. Figure  13.2 indicates the logic 
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involved. The segment register determines the segment that is the subject of the 
reference. There are six segment registers; the one being used for a particular refer-
ence depends on the context of execution and the instruction. Each segment regis-
ter holds an index into the segment descriptor table (Figure 8.20), which holds the 
starting address of the corresponding segments. Associated with each  user-  visible 
segment register is a segment descriptor register (not programmer visible), which 
records the access rights for the segment as well as the starting address and limit 
(length) of the segment. In addition, there are two registers that may be used in 
constructing an address: the base register and the index register.

Table 13.2 lists the x86 addressing modes. Let us consider each of these in turn.
For the immediate mode, the operand is included in the instruction. The oper-

and can be a byte, word, or doubleword of data.
For register operand mode, the operand is located in a register. For general 

instructions, such as data transfer, arithmetic, and logical instructions, the operand 
can be one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, 
EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, BP), or 
one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There are 
also some instructions that reference the segment selector registers (CS, DS, ES, 
SS, FS, GS).
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Figure 13.2 x86 Addressing Mode Calculation
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The remaining addressing modes reference locations in memory. The mem-
ory location must be specified in terms of the segment containing the location and 
the offset from the beginning of the segment. In some cases, a segment is specified 
explicitly; in others, the segment is specified by simple rules that assign a segment by 
default.

In the displacement mode, the operand’s offset (the effective address of 
 Figure 13.2) is contained as part of the instruction as an 8-, 16-, or 32-bit displace-
ment. With segmentation, all addresses in instructions refer merely to an offset in a 
segment. The displacement addressing mode is found on few machines because, as 
mentioned earlier, it leads to long instructions. In the case of the x86, the displace-
ment value can be as long as 32 bits, making for a 6-byte instruction. Displacement 
addressing can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address 
portion of the instruction tells the processor where to look to find the address. The 
base mode specifies that one of the 8-, 16-, or 32-bit registers contains the effective 
address. This is equivalent to what we have referred to as register indirect addressing.

In the base with displacement mode, the instruction includes a displacement 
to be added to a base register, which may be any of the  general-  purpose registers. 
Examples of uses of this mode are as follows:

 ■ Used by a compiler to point to the start of a local variable area. For example, 
the base register could point to the beginning of a stack frame, which contains 
the local variables for the corresponding procedure.

 ■ Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and which 
therefore cannot be indexed using an index register. In this case, the displacement 
points to the beginning of the array, and the base register holds the results of a 
 calculation to determine the offset to a specific element within the array.

Table 13.2 x86 Addressing Modes

Mode Algorithm

Immediate Operand = A

Register Operand LA = R

Displacement LA = (SR) + A

Base LA = (SR) + (B)

Base with Displacement LA = (SR) + (B) + A

Scaled Index with Displacement LA = (SR) + (I) * S + A

Base with Index and Displacement LA = (SR) + (B) + (I) + A

Base with Scaled Index and Displacement LA = (SR) + (I) * S + (B) + A

Relative LA = (PC) + A

LA = linear address

(X) = contents of X
SR = segment register
PC = program counter
A = contents of an address field in the instruction

R = register
B = base register
I = index register
S = scaling factor
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 ■ Used to access a field of a record. The base register points to the beginning of 
the record, while the displacement is an offset to the field.

In the scaled index with displacement mode, the instruction includes a dis-
placement to be added to a register, in this case called an index register. The index 
register may be any of the  general-  purpose registers except the one called ESP, 
which is generally used for stack processing. In calculating the effective address, the 
contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8, and 
then added to a displacement. This mode is very convenient for indexing arrays. A 
scaling factor of 2 can be used for an array of 16-bit integers. A scaling factor of 4 
can be used for 32-bit integers or  floating-  point numbers. Finally, a scaling factor of 
8 can be used for an array of  double-  precision  floating-  point numbers.

The base with index and displacement mode sums the contents of the base 
register, the index register, and a displacement to form the effective address. Again, 
the base register can be any  general-  purpose register and the index register can 
be any  general-  purpose register except ESP. As an example, this addressing mode 
could be used for accessing a local array on a stack frame. This mode can also be 
used to support a  two-  dimensional array; in this case, the displacement points to the 
beginning of the array, and each register handles one dimension of the array.

The based scaled index with displacement mode sums the contents of the index 
register multiplied by a scaling factor, the contents of the base register, and the displace-
ment. This is useful if an array is stored in a stack frame; in this case, the array elements 
would be 2, 4, or 8 bytes each in length. This mode also provides efficient indexing of a 
 two-  dimensional array when the array elements are 2, 4, or 8 bytes in length.

Finally, relative addressing can be used in  transfer-  of-  control instructions. A 
displacement is added to the value of the program counter, which points to the next 
instruction. In this case, the displacement is treated as a signed byte, word, or dou-
bleword value, and that value either increases or decreases the address in the pro-
gram counter.

ARM Addressing Modes

Typically, a RISC machine, unlike a CISC machine, uses a simple and relatively 
straightforward set of addressing modes. The ARM architecture departs somewhat 
from this tradition by providing a relatively rich set of addressing modes. These 
modes are most conveniently classified with respect to the type of instruction.1

load/store addressing Load and store instructions are the only instructions 
that reference memory. This is always done indirectly through a base register plus 
offset. There are three alternatives with respect to indexing (Figure 13.3):

 ■ Offset: For this addressing method, indexing is not used. An offset value is 
added to or subtracted from the value in the base register to form the memory 
address. As an example Figure 13.3a illustrates this method with the assembly 
language instruction STRB r0, [r1, #12]. This is the store byte instruction. 

1As with our discussion of x86 addressing, we ignore the translation from virtual to physical address in 
the following discussion.
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Figure 13.3 ARM Indexing Methods

In this case the base address is in register r1 and the displacement is an imme-
diate value of decimal 12. The resulting address (base plus offset) is the loca-
tion where the least significant byte from r0 is to be stored.

 ■ Preindex: The memory address is formed in the same way as for offset address-
ing. The memory address is also written back to the base register. In other 
words, the base register value is incremented or decremented by the offset 
value. Figure 13.3b illustrates this method with the assembly language instruc-
tion STRB r0, [r1, #12]!. The exclamation point signifies preindexing.
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 ■ Postindex: The memory address is the base register value. An offset is added 
to or subtracted from the base register value and the result is written back to 
the base register. Figure 13.3c illustrates this method with the assembly lan-
guage instruction STRB r0, [r1], #12.

Note that what ARM refers to as a base register acts as an index register for 
preindex and postindex addressing. The offset value can either be an immediate 
value stored in the instruction or it can be in another register. If the offset value is in 
a register, another useful feature is available: scaled register addressing. The value 
in the offset register is scaled by one of the shift operators: Logical Shift Left, Log-
ical Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended 
(which includes the carry bit in the rotation). The amount of the shift is specified as 
an immediate value in the instruction.

data processing instruction addressing Data processing instructions use 
either register addressing or a mixture of register and immediate addressing. For 
register addressing, the value in one of the register operands may be scaled using 
one of the five shift operators defined in the preceding paragraph.

branch instructions The only form of addressing for branch instructions is 
immediate addressing. The branch instruction contains a 24-bit value. For address 
calculation, this value is shifted left 2 bits, so that the address is on a word boundary. 
Thus the effective address range is {32 MB from the program counter.

load/store multiple addressing Load Multiple instructions load a subset 
(possibly all) of the  general-  purpose registers from memory. Store Multiple 
instructions store a subset (possibly all) of the  general-  purpose registers to memory. 
The list of registers for the load or store is specified in a 16-bit field in the instruction 
with each bit corresponding to one of the 16 registers. Load and Store Multiple 
addressing modes produce a sequential range of memory addresses. The  lowest- 
 numbered register is stored at the lowest memory address and the  highest-  numbered 
register at the highest memory address. Four addressing modes are used (Figure 13.4): 
increment after, increment before, decrement after, and decrement before. A base 
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register specifies a main memory address where register values are stored in or 
loaded from in ascending (increment) or descending (decrement) word locations. 
Incrementing or decrementing starts either before or after the first memory access.

These instructions are useful for block loads or stores, stack operations, and 
procedure exit sequences.

 13.3 INSTRUCTION FORMATS

An instruction format defines the layout of the bits of an instruction, in terms of 
its constituent fields. An instruction format must include an opcode and, implicitly 
or explicitly, zero or more operands. Each explicit operand is referenced using one 
of the addressing modes described in Section 13.1. The format must, implicitly or 
explicitly, indicate the addressing mode for each operand. For most instruction sets, 
more than one instruction format is used.

The design of an instruction format is a complex art, and an amazing variety of 
designs have been implemented. We examine the key design issues, looking briefly 
at some designs to illustrate points, and then we examine the x86 and ARM solu-
tions in detail.

Instruction Length

The most basic design issue to be faced is the instruction format length. This decision 
affects, and is affected by, memory size, memory organization, bus structure, pro-
cessor complexity, and processor speed. This decision determines the richness and 
flexibility of the machine as seen by the  assembly-  language programmer.

The most obvious  trade-  off here is between the desire for a powerful instruc-
tion repertoire and a need to save space. Programmers want more opcodes, more 
operands, more addressing modes, and greater address range. More opcodes and 
more operands make life easier for the programmer, because shorter programs can 
be written to accomplish given tasks. Similarly, more addressing modes give the pro-
grammer greater flexibility in implementing certain functions, such as table manip-
ulations and  multiple-  way branching. And, of course, with the increase in main 
memory size and the increasing use of virtual memory, programmers want to be able 
to address larger memory ranges. All of these things (opcodes, operands, addressing 
modes, address range) require bits and push in the direction of longer instruction 
lengths. But longer instruction length may be wasteful. A 64-bit instruction occupies 
twice the space of a 32-bit instruction but is probably less than twice as useful.

Beyond this basic  trade-  off, there are other considerations. Either the instruc-
tion length should be equal to the  memory-  transfer length (in a bus system, data-
bus length) or one should be a multiple of the other. Otherwise, we will not get 
an integral number of instructions during a fetch cycle. A related consideration 
is the memory transfer rate. This rate has not kept up with increases in processor 
speed. Accordingly, memory can become a bottleneck if the processor can execute 
instructions faster than it can fetch them. One solution to this problem is to use 
cache memory (see Section 4.3); another is to use shorter instructions. Thus, 16-bit 
instructions can be fetched at twice the rate of 32-bit instructions but probably can 
be executed less than twice as rapidly.
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A seemingly mundane but nevertheless important feature is that the instruc-
tion length should be a multiple of the character length, which is usually 8 bits, and 
of the length of  fixed-  point numbers. To see this, we need to make use of that unfor-
tunately  ill-  defined word, word [FRAI83]. The word length of memory is, in some 
sense, the “natural” unit of organization. The size of a word usually determines 
the size of  fixed-  point numbers (usually the two are equal). Word size is also typ-
ically equal to, or at least integrally related to, the memory transfer size. Because 
a common form of data is character data, we would like a word to store an inte-
gral number of characters. Otherwise, there are wasted bits in each word when 
storing multiple characters, or a character will have to straddle a word boundary. 
The importance of this point is such that IBM, when it introduced the System/360 
and wanted to employ 8-bit characters, made the wrenching decision to move from 
the 36-bit architecture of the scientific members of the 700/7000 series to a 32-bit 
architecture.

Allocation of Bits

We’ve looked at some of the factors that go into deciding the length of the instruc-
tion format. An equally difficult issue is how to allocate the bits in that format. The 
 trade-  offs here are complex.

For a given instruction length, there is clearly a  trade-  off between the number 
of opcodes and the power of the addressing capability. More opcodes obviously 
mean more bits in the opcode field. For an instruction format of a given length, 
this reduces the number of bits available for addressing. There is one interesting 
refinement to this  trade-  off, and that is the use of  variable-  length opcodes. In this 
approach, there is a minimum opcode length but, for some opcodes, additional 
operations may be specified by using additional bits in the instruction. For a fixed-
length instruction, this leaves fewer bits for addressing. Thus, this feature is used 
for those instructions that require fewer operands and/or less powerful addressing.

The following interrelated factors go into determining the use of the address-
ing bits.

 ■ Number of addressing modes: Sometimes an addressing mode can be indi-
cated implicitly. For example, certain opcodes might always call for indexing. 
In other cases, the addressing modes must be explicit, and one or more mode 
bits will be needed.

 ■ Number of operands: We have seen that fewer addresses can make for longer, 
more awkward programs (e.g., Figure 12.3). Typical instruction formats on 
today’s machines include two operands. Each operand address in the instruc-
tion might require its own mode indicator, or the use of a mode indicator 
could be limited to just one of the address fields.

 ■ Register versus memory: A machine must have registers so that data can be 
brought into the processor for processing. With a single  user-  visible register 
(usually called the accumulator), one operand address is implicit and con-
sumes no instruction bits. However,  single-  register programming is awkward 
and requires many instructions. Even with multiple registers, only a few bits 
are needed to specify the register. The more that registers can be used for 
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operand references, the fewer bits are needed. A number of studies indicate 
that a total of 8 to 32  user-  visible registers is desirable [LUND77, HUCK83]. 
Most contemporary architectures have at least 32 registers.

 ■ Number of register sets: Most contemporary machines have one set of  general- 
 purpose registers, with typically 32 or more registers in the set. These registers 
can be used to store data and can be used to store addresses for displacement 
addressing. Some architectures, including that of the x86, have a collection of 
two or more specialized sets (such as data and displacement). One advantage 
of this latter approach is that, for a fixed number of registers, a functional split 
requires fewer bits to be used in the instruction. For example, with two sets 
of eight registers, only 3 bits are required to identify a register; the opcode or 
mode register will determine which set of registers is being referenced.

 ■ Address range: For addresses that reference memory, the range of addresses 
that can be referenced is related to the number of address bits. Because this 
imposes a severe limitation, direct addressing is rarely used. With displacement 
addressing, the range is opened up to the length of the address register. Even so, 
it is still convenient to allow rather large displacements from the register address, 
which requires a relatively large number of address bits in the instruction.

 ■ Address granularity: For addresses that reference memory rather than 
 registers, another factor is the granularity of addressing. In a system with  
16- or 32-bit words, an address can reference a word or a byte at the designer’s 
choice. Byte addressing is convenient for character manipulation but requires, 
for a  fixed-  size memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance. 
How critical the various choices are is not clear. As an example, we cite one study 
[CRAG79] that compared various instruction format approaches, including the use 
of a stack,  general-  purpose registers, an accumulator, and only  memory-  to-  register 
approaches. Using a consistent set of assumptions, no significant difference in code 
space or execution time was observed.

Let us briefly look at how two historical machine designs balance these vari-
ous factors.

pdp-8 One of the simplest instruction designs for a  general-  purpose computer was 
for the  PDP-  8 [BELL78b]. The  PDP-  8 uses 12-bit instructions and operates on 
12-bit words. There is a single  general-  purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each 
memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided 
into  fixed-  length pages of 27 = 128 words each. Address calculation is based on 
references to page 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect 
addressing is to be used. These two modes can be used in combination, so that an 
indirect address is a 12-bit address contained in a word of page 0 or the current 
page. In addition, 8 dedicated words on page 0 are autoindex “registers.” When an 
indirect reference is made to one of these locations, preindexing occurs.

Figure 13.5 shows the  PDP-  8 instruction format. There are a 3-bit opcode and 
three types of instructions. For opcodes 0 through 5, the format is a  single-  address 
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memory reference instruction including a page bit and an indirect bit. Thus, there 
are only six basic operations. To enlarge the group of operations, opcode 7 defines 
a register reference or microinstruction. In this format, the remaining bits are used 
to encode additional operations. In general, each bit defines a specific operation 
(e.g., clear accumulator), and these bits can be combined in a single instruction. The 
microinstruction strategy was used as far back as the  PDP-  1 by DEC and is, in a 
sense, a forerunner of today’s microprogrammed machines, to be discussed in Part 
Four. Opcode 6 is the I/O operation; 6 bits are used to select one of 64 devices, and 
3 bits specify a particular I/O command.

The  PDP-  8 instruction format is remarkably efficient. It supports indirect 
addressing, displacement addressing, and indexing. With the use of the opcode 
extension, it supports a total of approximately 35 instructions. Given the constraints 
of a 12-bit instruction length, the designers could hardly have done better.

 PDP-  10 A sharp contrast to the instruction set of the  PDP-  8 is that of the  PDP-  10. 
The  PDP-  10 was designed to be a  large-  scale  time-  shared system, with an emphasis on 
making the system easy to program, even if additional hardware expense was involved.

Among the design principles employed in designing the instruction set were 
the following [BELL78c]:

 ■ Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates 
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CLA = Clear Accumulator
CLL  = Clear Link
CMA = CoMplement Accumulator
CML = CoMplement Link
RAR = Rotate Accumulator Right
RAL  = Rotate Accumulator Left
BSW = Byte SWap

IAC   = Increment ACcumulator
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MQA= Multiplier Quotient into Accumulator
MQL = Multiplier Quotient Load

Figure 13.5  PDP-  8 Instruction Formats
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that other elements of an instruction are independent of (not determined by) 
the opcode. The  PDP-  10 designers use the term to describe the fact that an 
address is always computed in the same way, independent of the opcode. This 
is in contrast to many machines, where the address mode sometimes depends 
implicitly on the operator being used.

 ■ Completeness: Each arithmetic data type (integer,  fixed-  point,  floating-  point) 
should have a complete and identical set of operations.

 ■ Direct addressing: Base plus displacement addressing, which places a mem-
ory organization burden on the programmer, was avoided in favor of direct 
addressing.

Each of these principles advances the main goal of ease of programming.
The  PDP-  10 has a 36-bit word length and a 36-bit instruction length. The 

fixed instruction format is shown in Figure 13.6. The opcode occupies 9 bits, allow-
ing up to 512 operations. In fact, a total of 365 different instructions are defined. 
Most instructions have two addresses, one of which is one of 16  general-  purpose 
registers. Thus, this operand reference occupies 4 bits. The other operand refer-
ence starts with an 18-bit memory address field. This can be used as an immedi-
ate operand or a memory address. In the latter usage, both indexing and indirect 
addressing are allowed. The same  general-  purpose registers are also used as index 
registers.

A 36-bit instruction length is true luxury. There is no need to do clever things 
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also 
straightforward. An 18-bit address field makes direct addressing desirable. For 
memory sizes greater than 218, indirection is provided. For the ease of the program-
mer, indexing is provided for table manipulation and iterative programs. Also, with 
an 18-bit operand field, immediate addressing becomes attractive.

The  PDP-  10 instruction set design does accomplish the objectives listed ear-
lier [LUND77]. It eases the task of the programmer or compiler at the expense of 
an inefficient utilization of space. This was a conscious choice made by the designers 
and therefore cannot be faulted as poor design.

 Variable-  Length Instructions

The examples we have looked at so far have used a single fixed instruction length, 
and we have implicitly discussed  trade-  offs in that context. But the designer may 
choose instead to provide a variety of instruction formats of different lengths. This 
tactic makes it easy to provide a large repertoire of opcodes, with different opcode 
lengths. Addressing can be more flexible, with various combinations of register and 
memory references plus addressing modes. With  variable-  length instructions, these 
many variations can be provided efficiently and compactly.

Index
register Memory address

0 8 9 12 14 17 18 35
I = indirect bit

Opcode Register I

Figure 13.6 PDP-  10 Instruction Format
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The principal price to pay for  variable-  length instructions is an increase in the 
complexity of the processor. Falling hardware prices, the use of microprogramming 
(discussed in Part Four), and a general increase in understanding the principles of 
processor design have all contributed to making this a small price to pay. However, 
we will see that RISC and superscalar machines can exploit the use of  fixed-  length 
instructions to provide improved performance.

The use of  variable-  length instructions does not remove the desirability of 
making all of the instruction lengths integrally related to the word length. Because 
the processor does not know the length of the next instruction to be fetched, a 
typical strategy is to fetch a number of bytes or words equal to at least the longest 
possible instruction. This means that sometimes multiple instructions are fetched. 
However, as we shall see in Chapter 14, this is a good strategy to follow in any 
case.

 PDP-  11 The  PDP-  11 was designed to provide a powerful and flexible instruction 
set within the constraints of a 16-bit minicomputer [BELL70].

The  PDP-  11 employs a set of eight 16-bit  general-  purpose registers. Two 
of these registers have additional significance: one is used as a stack pointer for 
 special-  purpose stack operations, and one is used as the program counter, which 
contains the address of the next instruction.

Figure 13.7 shows the  PDP-  11 instruction formats. Thirteen different formats 
are used, encompassing  zero-,  one-, and  two-  address instruction types. The opcode 
can vary from 4 to 16 bits in length. Register references are 6 bits in length. Three 
bits identify the register, and the remaining 3 bits identify the addressing mode. The 
 PDP-  11 is endowed with a rich set of addressing modes. One advantage of linking 
the addressing mode to the operand rather than the opcode, as is sometimes done, 
is that any addressing mode can be used with any opcode. As was mentioned, this 
independence is referred to as orthogonality.

 PDP-  11 instructions are usually one word (16 bits) long. For some instruc-
tions, one or two memory addresses are appended, so that 32-bit and 48-bit instruc-
tions are part of the repertoire. This provides for further flexibility in addressing.

The  PDP-  11 instruction set and addressing capability are complex. This 
increases both hardware cost and programming complexity. The advantage is that 
more efficient or compact programs can be developed.

vax Most architectures provide a relatively small number of fixed instruction 
formats. This can cause two problems for the programmer. First, addressing mode 
and opcode are not orthogonal. For example, for a given operation, one operand 
must come from a register and another from memory, or both from registers, and 
so on. Second, only a limited number of operands can be accommodated: typically 
up to two or three. Because some operations inherently require more operands, 
various strategies must be used to achieve the desired result using two or more 
instructions.

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format [STRE78]:

1. All instructions should have the “natural” number of operands.

2. All operands should have the same generality in specification.
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The result is a highly variable instruction format. An instruction consists of a 1- or 
2-byte opcode followed by from zero to six operand specifiers, depending on the 
opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can 
be constructed. Figure 13.8 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handle 
most VAX instructions. However, as there are over 300 different instructions, 8 bits 
are not enough. The hexadecimal codes FD and FF indicate an extended opcode, 
with the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. 
An operand specifier is, at minimum, a 1-byte format in which the leftmost 4 bits 
are the address mode specifier. The only exception to this rule is the literal mode, 
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Figure 13.7 Instruction Formats for the  PDP-  11
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which is signaled by the pattern 00 in the leftmost 2 bits, leaving space for a 6-bit 
literal. Because of this exception, a total of 12 different addressing modes can be 
specified.

An operand specifier often consists of just one byte, with the rightmost 4 bits 
specifying one of 16  general-  purpose registers. The length of the operand specifier 
can be extended in one of two ways. First, a constant value of one or more bytes 
may immediately follow the first byte of the operand specifier. An example of this is 
the displacement mode, in which an 8-, 16-, or 32-bit displacement is used. Second, 
an index mode of addressing may be used. In this case, the first byte of the operand 
specifier consists of the 4-bit addressing mode code of 0100 and a 4-bit index regis-
ter identifier. The remainder of the operand specifier consists of the base address 
specifier, which may itself be one or more bytes in length.

The reader may be wondering, as the author did, what kind of instruction 
requires six operands. Surprisingly, the VAX has a number of such instructions. 
Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OP6

Opcode for RSB

Hexadecimal
Format

Assembler Notation
and DescriptionExplanation

0

8 bits

5

D 4
5 9

B 0
C 4
6 4
0 1
A B
1 9

C 1
0 5
5 0
4 2
D F

RSB
Return from subroutine

Opcode for CLRL

Register R9

CLRL R9

Clear register R9

Opcode for MOVW
Word displacement mode,
Register R4

Byte displacement mode,
Register R11
25 in hexadecimal

356 in hexadecimal

MOVW 356(R4), 25(R11)

Move a word from address
that is 356 plus contents
of R4 to address that is
25 plus contents of R11

Opcode for ADDL3

Short literal 5

Register mode R0

Index pre�x R2
Indirect word relative
(displacement from PC)

ADDL3 #5, R0, @A[R2]

Add 5 to a 32-bit integer in
R0 and store the result in
location whose address is
sum of A and 4 times the
contents of R2

Amount of displacement from
PC relative to location A

Figure 13.8 Example of VAX Instructions
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This instruction adds two packed decimal numbers. OP1 and OP2 specify the length 
and starting address of one decimal string; OP3 and OP4 specify a second string. 
These two strings are added and the result is stored in the decimal string whose 
length and starting location are specified by OP5 and OP6.

The VAX instruction set provides for a wide variety of operations and address-
ing modes. This gives a programmer, such as a compiler writer, a very powerful 
and flexible tool for developing programs. In theory, this should lead to efficient 
 machine-  language compilations of  high-  level language programs and, in general, to 
effective and efficient use of processor resources. The penalty to be paid for these 
benefits is the increased complexity of the processor compared with a processor 
with a simpler instruction set and format.

We return to these matters in Chapter 15, where we examine the case for very 
simple instruction sets.

 13.4 x86 AND ARM INSTRUCTION FORMATS

x86 Instruction Formats

The x86 is equipped with a variety of instruction formats. Of the elements described 
in this subsection, only the opcode field is always present. Figure 13.9 illustrates the 
general instruction format. Instructions are made up of from zero to four optional 
instruction prefixes, a 1- or 2-byte opcode, an optional address specifier (which con-
sists of the ModR/M byte and the Scale Index Base byte) an optional displacement, 
and an optional immediate field.

Mod

0, 1, 2, 3, or 4 bytes 0, 1, 2, or 4 bytes 0, 1, 2, or 4 bytes1, 2, or 3 bytes
0 or 1
byte

0 or 1
byte

0 or 1
byte

0 or 1
byte

0 or 1
byte

0 or 1
byte

Instruction pre	xes Opcode

01234567 01234567

ModR/M SIB Displacement Immediate

Instruction
pre	x

Segment
override

Operand
size

override

Address
size

override

Reg/Opcode R/M Scale Index Base

Figure 13.9 x86 Instruction Format
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Let us first consider the prefix bytes:

 ■ Instruction prefixes: The instruction prefix, if present, consists of the LOCK 
prefix or one of the repeat prefixes. The LOCK prefix is used to ensure exclu-
sive use of shared memory in multiprocessor environments. The repeat prefixes 
specify repeated operation of a string, which enables the x86 to process strings 
much faster than with a regular software loop. There are five different repeat 
prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the absolute REP 
prefix is present, the operation specified in the instruction is executed repeat-
edly on successive elements of the string; the number of repetitions is specified 
in register CX. The conditional REP prefix causes the instruction to repeat 
until the count in CX goes to zero or until the condition is met.

 ■ Segment override: Explicitly specifies which segment register an instruction 
should use, overriding the default  segment-  register selection generated by the 
x86 for that instruction.

 ■ Operand size: An instruction has a default operand size of 16 or 32 bits, and 
the operand prefix switches between 32-bit and 16-bit operands.

 ■ Address size: The processor can address memory using either 16- or 32-bit 
addresses. The address size determines the displacement size in instructions 
and the size of address offsets generated during effective address calculation. 
One of these sizes is designated as default, and the address size prefix switches 
between 32-bit and 16-bit address generation.

The instruction itself includes the following fields:

 ■ Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also 
include bits that specify if data is  byte-   or  full-  size (16 or 32 bits depending on 
context), direction of data operation (to or from memory), and whether an 
immediate data field must be sign extended.

 ■ ModR/M: This byte, and the next, provide addressing information. The 
ModR/M byte specifies whether an operand is in a register or in memory; if 
it is in memory, then fields within the byte specify the addressing mode to 
be used. The ModR/M byte consists of three fields: The Mod field (2 bits) 
 combines with the R/M field to form 32 possible values: 8 registers and 24 
indexing modes; the Reg/Opcode field (3 bits) specifies either a register num-
ber or three more bits of opcode information; the R/M field (3 bits) can specify 
a register as the location of an operand, or it can form part of the  addressing- 
 mode encoding in combination with the Mod field.

 ■ SIB: Certain encoding of the ModR/M byte specifies the inclusion of the SIB byte 
to specify fully the addressing mode. The SIB byte consists of three fields: The 
Scale field (2 bits) specifies the scale factor for scaled indexing; the Index field (3 
bits) specifies the index register; the Base field (3 bits) specifies the base register.

 ■ Displacement: When the  addressing-  mode specifier indicates that a displace-
ment is used, an 8-, 16-, or 32-bit signed integer displacement field is added.

 ■ Immediate: Provides the value of an 8-, 16-, or 32-bit operand.

Several comparisons may be useful here. In the x86 format, the addressing 
mode is provided as part of the opcode sequence rather than with each operand. 
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Because only one operand can have  address-  mode information, only one mem-
ory operand can be referenced in an instruction. In contrast, the VAX carries 
the  address-  mode information with each operand, allowing  memory-  to-  memory 
operations. The x86 instructions are therefore more compact. However, if a 
 memory-  to-  memory operation is required, the VAX can accomplish this in a 
single instruction.

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte 
offsets for indexing. Although the use of the larger index offsets results in longer 
instructions, this feature provides needed flexibility. For example, it is useful in 
addressing large arrays or large stack frames. In contrast, the IBM S/370 instruc-
tion format allows offsets no greater than 4 Kbytes (12 bits of offset information), 
and the offset must be positive. When a location is not in reach of this offset, the 
compiler must generate extra code to generate the needed address. This problem is 
especially apparent in dealing with stack frames that have local variables occupying 
in excess of 4 Kbytes. As [DEWA90] puts it, “generating code for the 370 is so pain-
ful as a result of that restriction that there have even been compilers for the 370 that 
simply chose to limit the size of the stack frame to 4 Kbytes.”

As can be seen, the encoding of the x86 instruction set is very complex. This 
has to do partly with the need to be backward compatible with the 8086 machine and 
partly with a desire on the part of the designers to provide every possible assistance 
to the compiler writer in producing efficient code. It is a matter of some debate 
whether an instruction set as complex as this is preferable to the opposite extreme 
of the RISC instruction sets.

ARM Instruction Formats

All instructions in the ARM architecture are 32 bits long and follow a regular format 
(Figure 13.10). The first four bits of an instruction are the condition code. As dis-
cussed in Chapter 12, virtually all ARM instructions can be conditionally executed. 
The next three bits specify the general type of instruction. For most instructions 
other than branch instructions, the next five bits constitute an opcode and/or modi-
fier bits for the operation. The remaining 20 bits are for operand addressing. The reg-
ular structure of the instruction formats eases the job of the instruction decode units.

immediate constants To achieve a greater range of immediate values, the data 
processing immediate format specifies both an immediate value and a rotate value. 
The 8-bit immediate value is expanded to 32 bits and then rotated right by a number of 
bits equal to twice the 4-bit rotate value. Several examples are shown in Figure 13.11.

thumb instruction set The Thumb instruction set is a  re-  encoded subset of 
the ARM instruction set. Thumb is designed to increase the performance of ARM 
implementations that use a 16-bit or narrower memory data bus and to allow better 
code density than provided by the ARM instruction for both 16-bit and 32-bit 
processors. The Thumb instruction set was created by analyzing the 32-bit ARM 
instruction set and deriving the best fit 16-bit instruction set, thus reducing code 
size. The savings is achieved in the following way:

1. Thumb instructions are unconditional, so the condition code field is not used. 
Also, all Thumb arithmetic and logic instructions update the condition flags, 
so that the  update-  flag bit is not needed. Savings: 5 bits.
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2. Thumb has only a subset of the operations in the full instruction set and uses 
only a 2-bit opcode field, plus a 3-bit type field. Savings: 2 bits.

3. The remaining savings of 9 bits comes from reductions in the operand specifi-
cations. For example, Thumb instructions reference only registers r0 through 
r7, so only 3 bits are required for register references, rather than 4 bits. Imme-
diate values do not include a 4-bit rotate field.

0 0 0S Rn RmRd shift amount shift

0shift amount shift

0cond opcode
Data processing
immediate shift

0 1 S Rn Rd rotate immediate0cond opcode
Data processing

immediate

1 0 LWBUP Rn Rd immediate0cond
Load/store

immediate offset

1 1 LWBUP Rn Rd0cond
Load/store

register offset

0 0 10S Rn Rm

Rm

register list0 0 LWSUP Rn1cond
Load/store

multiple

24-bit offset0 1 L1cond
Branch/branch

with link

S = For data processing instructions, signies that
 the instruction updates the condition codes

S = For load/store multiple instructions, signies
 whether instruction execution is restricted to
 supervisor mode

P, U, W = bits that distinguish among
 different types of addressing mode 

B = Distinguishes between an unsigned
 byte (B==1) and a word (B==0) access

L = For load/store instructions, distinguishes
 between a Load (L==1) and a Store (L==0)

L = For branch instructions, determines whether
 a return address is stored in the link register 

Rd Rs shift0cond opcode
Data processing

register shift

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.10 ARM Instruction Formats

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #0—range 0 through 0x000000FF—step 0x00000001 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ror #8—range 0 through 0xFF000000—step 0x01000000 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000

ror #30—range 0 through 0x000003FC—step 0x00000004 

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 13.11 Examples of Use of ARM Immediate Constants
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The ARM processor can execute a program consisting of a mixture of Thumb 
instructions and 32-bit ARM instructions. A bit in the processor control register 
determines which type of instruction is currently being executed. Figure 13.12 shows 
an example. The figure shows both the general format and a specific instance of an 
instruction in both 16-bit and 32-bit formats.

 thumb-  2 instruction set With the introduction of the Thumb instruction set, 
the user was required to blend instruction sets by compiling performance critical 
code to ARM and the rest to Thumb. This manual code blending requires additional 
effort and it is difficult to achieve optimal results. To overcome these problems, 
ARM developed the  Thumb-  2 instruction set, which is the only instruction set 
available on the  Cortex-  M microcontroller products.

 Thumb-  2 is a major enhancement to the Thumb instruction set architecture (ISA). 
It introduces 32-bit instructions that can be intermixed freely with the older 16-bit 
Thumb instructions. These new 32-bit instructions cover almost all the functionality 
of the ARM instruction set. The most important difference between the Thumb ISA 
and the ARM ISA is that most 32-bit Thumb instructions are unconditional, whereas 
almost all ARM instructions can be conditional. However,  Thumb-  2 introduces a new 
 If-  Then (IT) instruction that delivers much of the functionality of the condition field 
in ARM instructions.  Thumb-  2 delivers overall code density comparable with Thumb, 
together with the performance levels associated with the ARM ISA. Before  Thumb-  2, 
developers had to choose between Thumb for size and ARM for performance.

[ROBI07] reports on an analysis of the  Thumb-  2 instruction set compared 
with the ARM and original Thumb instruction sets. The analysis involved compiling 
and executing the Embedded Microprocessor Benchmark Consortium (EEMBC) 
benchmark suite using the three instruction sets, with the following results:

 ■ With compilers optimized for performance,  Thumb-  2 size was 26% smaller 
than ARM, and slightly larger than original Thumb.

 ■ With compilers optimized for space,  Thumb-  2 size was 32% smaller than 
ARM, and slightly smaller than original Thumb.

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1

ADD r3, #19

ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

0 1 1 00 1 10 0 0 1 00 1 10

Add/subract/compare/move
immediate format

Always
condition code

Major opcode
denoting format 3
move/compare/add/sub
with immediate value

Minor opcode
denoting ADD
instruction Destination and

source register Immediate
value

Update
condition
�ags

Zero
rotation

0 1 Rd/Rn
op

code immediate0

012345678910111214 1315

0 1 S Rn Rd rotate immediate0cond opcode

Figure 13.12 Expanding a Thumb ADD Instruction into its ARM Equivalent
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 ■ With compilers optimized for performance,  Thumb-  2 performance on the 
benchmark suite was 98% of ARM performance and 125% of original Thumb 
performance.

These results confirm that  Thumb-  2 meets its design objectives.
Figure 13.13 shows how the new 32-bit Thumb instructions are encoded. The 

encoding is compatible with the existing Thumb unconditional branch instructions, 
which has the bit pattern 11100 in the five leftmost bits of the instruction. No other 
16-bit instruction begins with the pattern 111 in the three leftmost bits, so the bit 
patterns 11101, 11110, and 11111 indicate that this is a 32-bit Thumb instruction.

 13.5 ASSEMBLY LANGUAGE

A processor can understand and execute machine instructions. Such instructions are 
simply binary numbers stored in the computer. If a programmer wished to program 
directly in machine language, then it would be necessary to enter the program as 
binary data.

Consider the simple BASIC statement

N = I + J + K

Suppose we wished to program this statement in machine language and to initialize 
I, J, and K to 2, 3, and 4, respectively. This is shown in Figure 13.14a. The program 
starts in location 101 (hexadecimal). Memory is reserved for the four variables start-
ing at location 201. The program consists of four instructions:

1. Load the contents of location 201 into the AC.

2. Add the contents of location 202 to the AC.

3. Add the contents of location 203 to the AC.

4. Store the contents of the AC in location 204.

This is clearly a tedious and very  error-  prone process.
A slight improvement is to write the program in hexadecimal rather than bin-

ary notation (Figure 13.14b). We could write the program as a series of lines. Each 

thm hw1 hw2 thm thmhw1 hw2

i+2 i+6i+4 i+8 i+10 Instruction �owi

Halfword1 [15:13]  Halfword1 [12:11] Length Functionality 

Not 111 xx 16 bits (1 halfword) 16-bit Thumb instruction 

111 00 16 bits (1 halfword) 16-bit Thumb unconditional 
branch instruction 

111 Not 00 32 bits (2 halfwords) 32-bit Thumb-2 instruction 

Figure 13.13 Thumb-  2 Encoding
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line contains the address of a memory location and the hexadecimal code of the bin-
ary value to be stored in that location. Then we need a program that will accept this 
input, translate each line into a binary number, and store it in the specified location.

For more improvement, we can make use of the symbolic name or mnemonic 
of each instruction. This results in the symbolic program shown in Figure 13.14c. 
Each line of input still represents one memory location. Each line consists of three 
fields, separated by spaces. The first field contains the address of a location. For 
an instruction, the second field contains the  three-  letter symbol for the opcode. 
If it is a  memory-  referencing instruction, then a third field contains the address. 
To store arbitrary data in a location, we invent a pseudoinstruction with the sym-
bol DAT. This is merely an indication that the third field on the line contains a 
hexadecimal number to be stored in the location specified in the first field.

For this type of input we need a slightly more complex program. The program 
accepts each line of input, generates a binary number based on the second and third 
(if present) fields, and stores it in the location specified by the first field.

The use of a symbolic program makes life much easier but is still awkward. 
In particular, we must give an absolute address for each word. This means that the 
program and data can be loaded into only one place in memory, and we must know 
that place ahead of time. Worse, suppose we wish to change the program some day 
by adding or deleting a line. This will change the addresses of all subsequent words.

A much better system, and one commonly used, is to use symbolic addresses. 
This is illustrated in Figure 13.14d. Each line still consists of three fields. The first 
field is still for the address, but a symbol is used instead of an absolute numerical 
address. Some lines have no address, implying that the address of that line is one 

Address Contents
101 0010 0010 101 2201 101 2201
102 0001 0010 102 1202 102 1202
103 0001 0010 103 1203 103 1203
104 0011 0010 104 3204 104 3204

201 0000 0000 201 0002 201 0002
202 0000 0000 202 0003 202 0003
203 0000 0000 203 0004 203 0004
204 0000 0000 204 0000 204 0000

(a) Binary program (b) Hexadecimal program

Address Instruction Label Operation Operand
101 LDA 201 FORMUL LDA I
102 ADD 202 ADD J
103 ADD 203 ADD K
104 STA 204 STA N

201 DAT 2 I DATA 2
202 DAT 3 J DATA 3
203 DAT 4 K DATA 4
204 DAT 0 N DATA 0

(c) Symbolic  program (d) Assembly program

ContentsAddress

Figure 13.14 Computation of the Formula N = I + J + K
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more than the address of the previous line. For  memory-  reference instructions, the 
third field also contains a symbolic address.

With this last refinement, we have an assembly language. Programs written in 
assembly language (assembly programs) are translated into machine language by an 
assembler. This program must not only do the symbolic translation discussed earlier 
but also assign some form of memory addresses to symbolic addresses.

The development of assembly language was a major milestone in the evolu-
tion of computer technology. It was the first step to the  high-  level languages in use 
today. Although few programmers use assembly language, virtually all machines 
provide one. They are used, if at all, for systems programs such as compilers and 
I/O routines.

Appendix B provides a more detailed examination of assembly language.

 13.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

autoindexing
 base-  register addressing
direct addressing
displacement addressing
effective address

immediate addressing
indexing
indirect addressing
instruction format
postindexing

preindexing
register addressing
register indirect addressing
relative addressing
word

Review Questions

 13.1 Briefly define immediate addressing.
 13.2 Briefly define direct addressing.
 13.3 Briefly define indirect addressing.
 13.4 Briefly define register addressing.
 13.5 Briefly define register indirect addressing.
 13.6 Briefly define displacement addressing.
 13.7 Briefly define relative addressing.
 13.8 What is the advantage of autoindexing?
 13.9 What is the difference between postindexing and preindexing?
 13.10 What facts go into determining the use of the addressing bits of an instruction?
 13.11 What are the advantages and disadvantages of using a  variable-  length instruction 

format?

Problems

 13.1 Given the following memory values and a  one-  address machine with an accumulator, 
what values do the following instructions load into the accumulator?

 ■ Word 20 contains 40.
 ■ Word 30 contains 50.
 ■ Word 40 contains 60.
 ■ Word 50 contains 70.
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a. LOAD IMMEDIATE 20
b. LOAD DIRECT 20
c. LOAD INDIRECT 20
d. LOAD IMMEDIATE 30
e. LOAD DIRECT 30
f. LOAD INDIRECT 30

 13.2 Let the address stored in the program counter be designated by the symbol X1. The 
instruction stored in X1 has an address part (operand reference) X2. The operand 
needed to execute the instruction is stored in the memory word with address X3. An 
index register contains the value X4. What is the relationship between these various 
quantities if the addressing mode of the instruction is (a) direct; (b) indirect; (c) PC 
relative; (d) indexed?

 13.3 An address field in an instruction contains decimal value 14. Where is the correspond-
ing operand located for
a. immediate addressing?
b. direct addressing?
c. indirect addressing?
d. register addressing?
e. register indirect addressing?

 13.4 Consider a 16-bit processor in which the following appears in main memory, starting 
at location 200:

200 Load to AC Mode

201 500

202 Next instruction

The first part of the first word indicates that this instruction loads a value into an ac-
cumulator. The Mode field specifies an addressing mode and, if appropriate, indicates 
a source register; assume that when used, the source register is R1, which has a value 
of 400. There is also a base register that contains the value 100. The value of 500 in 
location 201 may be part of the address calculation. Assume that location 399 contains 
the value 999, location 400 contains the value 1000, and so on. Determine the effective 
address and the operand to be loaded for the following address modes:

d. PC relative
e. Displacement
f. Register

g. Register indirect
h. Autoindexing with increment, using R1

a. Direct
b. Immediate
c. Indirect

 13.5 A  PC-  relative mode branch instruction is 3 bytes long. The address of the instruction, 
in decimal, is 256028. Determine the branch target address if the signed displacement 
in the instruction is -31.

 13.6 A  PC-  relative mode branch instruction is stored in memory at address 62010. The 
branch is made to location 53010. The address field in the instruction is 10 bits long. 
What is the binary value in the instruction?

 13.7 How many times does the processor need to refer to memory when it fetches and 
executes an  indirect-  address-  mode instruction if the instruction is (a) a computation 
requiring a single operand; (b) a branch?

 13.8 The IBM 370 does not provide indirect addressing. Assume that the address of an 
operand is in main memory. How would you access the operand?

 13.9 In [COOK82], the author proposes that the  PC-  relative addressing modes be elimi-
nated in favor of other modes, such as the use of a stack. What is the disadvantage of 
this proposal?
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 13.10 The x86 includes the following instruction:

IMUL op1, op2, immediate

This instruction multiplies op2, which may be either register or memory, by the imme-
diate operand value, and places the result in op1, which must be a register. There is no 
other  three-  operand instruction of this sort in the instruction set. What is the possible 
use of such an instruction? (Hint: Consider indexing.)

 13.11 Consider a processor that includes a base with indexing addressing mode. Suppose an 
instruction is encountered that employs this addressing mode and specifies a displace-
ment of 1970, in decimal. Currently the base and index register contain the decimal 
numbers 48,022 and 8, respectively. What is the address of the operand?

 13.12 Define: EA = (X)+  is the effective address equal to the contents of location X, with X 
incremented by one word length after the effective address is calculated; EA = -(X) 
is the effective address equal to the contents of location X, with X decremented by 
one word length before the effective address is calculated; EA = (X)-  is the effective 
address equal to the contents of location X, with X decremented by one word length 
after the effective address is calculated. Consider the following instructions, each in 
the format (Operation Source Operand, Destination Operand), with the result of the 
operation placed in the destination operand.
a. OP X, (X)
b. OP  (X),  (X)+
c. OP  (X)+ ,  (X)
d. OP -  (X),  (X)
e. OP -  (X),  (X)+
f. OP  (X)+ ,  (X)+
g. OP(X)- ,  (X)
Using X as the stack pointer, which of these instructions can pop the top two elements 
from the stack, perform the designated operation (e.g., ADD source to destination 
and store in destination), and push the result back on the stack? For each such in-
struction, does the stack grow toward memory location 0 or in the opposite direction?

 13.13 Assume a  stack-  oriented processor that includes the stack operations PUSH 
and POP. Arithmetic operations automatically involve the top one or two stack ele-
ments. Begin with an empty stack. What stack elements remain after the following 
instructions are executed?

PUSH 4
PUSH 7
PUSH 8
ADD
PUSH 10
SUB
MUL

 13.14 Justify the assertion that a 32-bit instruction is probably much less than twice as useful 
as a 16-bit instruction.

 13.15 Why was IBM’s decision to move from 36 bits to 32 bits per word wrenching, and to 
whom?

 13.16 Assume an instruction set that uses a fixed 16-bit instruction length. Operand spec-
ifiers are 6 bits in length. There are K  two-  operand instructions and L  zero-  operand 
instructions. What is the maximum number of  one-  operand instructions that can be 
supported?

 13.17 Design a  variable-  length opcode to allow all of the following to be encoded in a 36-bit 
instruction:

 ■ instructions with two 15-bit addresses and one 3-bit register number;
 ■ instructions with one 15-bit address and one 3-bit register number;
 ■ instructions with no addresses or registers.
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 13.18 Consider the results of Problem 10.6. Assume that M is a 16-bit memory address and 
that X, Y, and Z are either 16-bit addresses or 4-bit register numbers. The  one-  address 
machine uses an accumulator, and the  two-   and  three-  address machines have 16 regis-
ters and instructions operating on all combinations of memory locations and registers. 
Assuming 8-bit opcodes and instruction lengths that are multiples of 4 bits, how many 
bits does each machine need to compute X?

 13.19 Is there any possible justification for an instruction with two opcodes?
 13.20 The 16-bit Zilog Z8001 has the following general instruction format:

15   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0

Mode Opcode w/b Operand 2 Operand 1

The mode field specifies how to locate the operands from the operand fields. The w/b 
field is used in certain instructions to specify whether the operands are bytes or 16-bit 
words. The operand 1 field may (depending on the mode field contents) specify one 
of 16  general-  purpose registers. The operand 2 field may specify any  general-  purpose 
registers except register 0. When the operand 2 field is all zeros, each of the original 
opcodes takes on a new meaning.
a. How many opcodes are provided on the Z8001?
b. Suggest an efficient way to provide more opcodes and indicate the  trade-  off 

involved.
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This chapter discusses aspects of the processor not yet covered in Part Three and sets 
the stage for the discussion of RISC and superscalar architecture in Chapters 15 and 16.

We begin with a summary of processor organization. Registers, which form 
the internal memory of the processor, are then analyzed. We are then in a position 
to return to the discussion (begun in Section 3.2) of the instruction cycle. A descrip-
tion of the instruction cycle and a common technique known as instruction pipelin-
ing complete our description. The chapter concludes with an examination of some 
aspects of the x86 and ARM organizations.

 14.1 PROCESSOR ORGANIZATION

To understand the organization of the processor, let us consider the requirements 
placed on the processor, the things that it must do:

 ■ Fetch instruction: The processor reads an instruction from memory (register, 
cache, main memory).

 ■ Interpret instruction: The instruction is decoded to determine what action is 
required.

 ■ Fetch data: The execution of an instruction may require reading data from 
memory or an I/O module.

 ■ Process data: The execution of an instruction may require performing some 
arithmetic or logical operation on data.

 ■ Write data: The results of an execution may require writing data to memory 
or an I/O module.

To do these things, it should be clear that the processor needs to store some 
data temporarily. It must remember the location of the last instruction so that it can 
know where to get the next instruction. It needs to store instructions and data tem-
porarily while an instruction is being executed. In other words, the processor needs 
a small internal memory.

Figure 14.1 is a simplified view of a processor, indicating its connection to the 
rest of the system via the system bus. A similar interface would be needed for any 

Learning Objectives

After studying this chapter, you should be able to:

 r Distinguish between  user-  visible and control/status registers, and discuss the 
purposes of registers in each category.

 r Summarize the instruction cycle.
 r Discuss the principle behind instruction pipelining and how it works in 
practice.

 r Compare and contrast the various forms of pipeline hazards.
 r Present an overview of the x86 processor structure.
 r Present an overview of the ARM processor structure.
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of the interconnection structures described in Chapter 3. The reader will recall that 
the major components of the processor are an arithmetic and logic unit (ALU) and 
a control unit (CU). The ALU does the actual computation or processing of data. 
The control unit controls the movement of data and instructions into and out of the 
processor and controls the operation of the ALU. In addition, the figure shows a 
minimal internal memory, consisting of a set of storage locations, called registers.

Figure 14.2 is a slightly more detailed view of the processor. The data trans-
fer and logic control paths are indicated, including an element labeled internal 
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processor bus. This element is needed to transfer data between the various registers 
and the ALU because the ALU in fact operates only on data in the internal pro-
cessor memory. The figure also shows typical basic elements of the ALU. Note the 
similarity between the internal structure of the computer as a whole and the internal 
structure of the processor. In both cases, there is a small collection of major ele-
ments (computer: processor, I/O, memory; processor: control unit, ALU, registers) 
connected by data paths.

 14.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At 
higher levels of the hierarchy, memory is faster, smaller, and more expensive (per 
bit). Within the processor, there is a set of registers that function as a level of mem-
ory above main memory and cache in the hierarchy. The registers in the processor 
perform two roles:

 ■  User-  visible registers: Enable the  machine-   or assembly language programmer 
to minimize main memory references by optimizing use of registers.

 ■ Control and status registers: Used by the control unit to control the operation 
of the processor and by privileged, operating system programs to control the 
execution of programs.

There is not a clean separation of registers into these two categories. For 
example, on some machines the program counter is user visible (e.g., x86), but on 
many it is not. For purposes of the following discussion, however, we will use these 
categories.

 User-  Visible Registers

A  user-  visible register is one that may be referenced by means of the machine 
language that the processor executes. We can characterize these in the following 
categories:

 ■ General purpose
 ■ Data
 ■ Address
 ■ Condition codes

 General-  purpose registers can be assigned to a variety of functions by the pro-
grammer. Sometimes their use within the instruction set is orthogonal to the oper-
ation. That is, any  general-  purpose register can contain the operand for any opcode. 
This provides true  general-  purpose register use. Often, however, there are restrictions. 
For example, there may be dedicated registers for  floating-  point and stack operations.

In some cases,  general-  purpose registers can be used for addressing functions 
(e.g., register indirect, displacement). In other cases, there is a partial or clean sep-
aration between data registers and address registers. Data registers may be used 
only to hold data and cannot be employed in the calculation of an operand address. 
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Address registers may themselves be somewhat general purpose, or they may be 
devoted to a particular addressing mode. Examples include the following:

 ■ Segment pointers: In a machine with segmented addressing (see Section 8.3), 
a segment register holds the address of the base of the segment. There may be 
multiple registers: for example, one for the operating system and one for the 
current process.

 ■ Index registers: These are used for indexed addressing and may be autoindexed.
 ■ Stack pointer: If there is  user-  visible stack addressing, then typically there is 

a dedicated register that points to the top of the stack. This allows implicit 
addressing; that is, push, pop, and other stack instructions need not contain an 
explicit stack operand.

There are several design issues to be addressed here. An important issue 
is whether to use completely  general-  purpose registers or to specialize their use. 
We have already touched on this issue in the preceding chapter because it affects 
instruction set design. With the use of specialized registers, it can generally be impli-
cit in the opcode which type of register a certain operand specifier refers to. The 
operand specifier must only identify one of a set of specialized registers rather than 
one out of all the registers, thus saving bits. On the other hand, this specialization 
limits the programmer’s flexibility.

Another design issue is the number of registers, either general purpose or data 
plus address, to be provided. Again, this affects instruction set design because more 
registers require more operand specifier bits. As we previously discussed, somewhere 
between 8 and 32 registers appears optimum [LUND77]. Fewer registers result in more 
memory references; more registers do not noticeably reduce memory references (e.g., 
see [WILL90]). However, a new approach, which finds advantage in the use of hun-
dreds of registers, is exhibited in some RISC systems and is discussed in Chapter 15.

Finally, there is the issue of register length. Registers that must hold addresses 
obviously must be at least long enough to hold the largest address. Data registers 
should be able to hold values of most data types. Some machines allow two contigu-
ous registers to be used as one for holding  double-  length values.

A final category of registers, which is at least partially visible to the user, holds 
condition codes (also referred to as flags). Condition codes are bits set by the pro-
cessor hardware as the result of operations. For example, an arithmetic operation 
may produce a positive, negative, zero, or overflow result. In addition to the result 
itself being stored in a register or memory, a condition code is also set. The code 
may subsequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they 
form part of a control register. Generally, machine instructions allow these bits to 
be read by implicit reference, but the programmer cannot alter them.

Many processors, including those based on the  IA-  64 architecture and the 
MIPS processors, do not use condition codes at all. Rather, conditional branch 
instructions specify a comparison to be made and act on the result of the compari-
son, without storing a condition code. Table 14.1, based on [DERO87], lists key 
advantages and disadvantages of condition codes.
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In some machines, a subroutine call will result in the automatic saving of all 
 user-  visible registers, to be restored on return. The processor performs the saving 
and restoring as part of the execution of call and return instructions. This allows 
each subroutine to use the  user-  visible registers independently. On other machines, 
it is the responsibility of the programmer to save the contents of the relevant  user- 
 visible registers prior to a subroutine call, by including instructions for this purpose 
in the program.

Control and Status Registers

There are a variety of processor registers that are employed to control the operation 
of the processor. Most of these, on most machines, are not visible to the user. Some 
of them may be visible to machine instructions executed in a control or operating 
system mode.

Of course, different machines will have different register organizations and 
use different terminology. We list here a reasonably complete list of register types, 
with a brief description.

Four registers are essential to instruction execution:

 ■ Program counter (PC): Contains the address of an instruction to be fetched.
 ■ Instruction register (IR): Contains the instruction most recently fetched.
 ■ Memory address register (MAR): Contains the address of a location in 

memory.
 ■ Memory buffer register (MBR): Contains a word of data to be written to 

memory or the word most recently read.

Not all processors have internal registers designated as MAR and MBR, but 
some equivalent buffering mechanism is needed whereby the bits to be transferred 

Table 14.1 Condition Codes

Advantages Disadvantages

1.  Because condition codes are set by normal 
arithmetic and data movement instructions, they 
should reduce the number of COMPARE and 
TEST instructions needed.

2.  Conditional instructions, such as BRANCH are 
simplified relative to composite instructions, such 
as TEST and BRANCH.

3.  Condition codes facilitate multiway branches. 
For example, a TEST instruction can be followed 
by two branches, one on less than or equal to 
zero and one on greater than zero.

4.  Condition codes can be saved on the stack 
during subroutine calls along with other register 
information.

1.  Condition codes add complexity, both to the 
hardware and software. Condition code bits are 
often modified in different ways by different 
instructions, making life more difficult for both 
the microprogrammer and compiler writer.

2.  Condition codes are irregular; they are typically 
not part of the main data path, so they require 
extra hardware connections.

3.  Often condition code machines must add special 
 non-  condition-  code instructions for special situa-
tions anyway, such as bit checking, loop control, 
and atomic semaphore operations.

4.  In a pipelined implementation, condition codes 
require special synchronization to avoid conflicts.
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to the system bus are staged and the bits to be read from the data bus are temporar-
ily stored.

Typically, the processor updates the PC after each instruction fetch so that the 
PC always points to the next instruction to be executed. A branch or skip instruc-
tion will also modify the contents of the PC. The fetched instruction is loaded into 
an IR, where the opcode and operand specifiers are analyzed. Data are exchanged 
with memory using the MAR and MBR. In a  bus-  organized system, the MAR con-
nects directly to the address bus, and the MBR connects directly to the data bus. 
 User-  visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement of data between 
the processor and memory. Within the processor, data must be presented to the 
ALU for processing. The ALU may have direct access to the MBR and  user-  visible 
registers. Alternatively, there may be additional buffering registers at the boundary 
to the ALU; these registers serve as input and output registers for the ALU and 
exchange data with the MBR and  user-  visible registers.

Many processor designs include a register or set of registers, often known as 
the program status word (PSW), that contain status information. The PSW typic-
ally contains condition codes plus other status information. Common fields or flags 
include the following:

 ■ Sign: Contains the sign bit of the result of the last arithmetic operation.
 ■ Zero: Set when the result is 0.
 ■ Carry: Set if an operation resulted in a carry (addition) into or borrow (sub-

traction) out of a  high-  order bit. Used for multiword arithmetic operations.
 ■ Equal: Set if a logical compare result is equality.
 ■ Overflow: Used to indicate arithmetic overflow.
 ■ Interrupt Enable/Disable: Used to enable or disable interrupts.
 ■ Supervisor: Indicates whether the processor is executing in supervisor or 

user mode. Certain privileged instructions can be executed only in supervisor 
mode, and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a 
particular processor design. There may be a pointer to a block of memory contain-
ing additional status information (e.g., process control blocks). In machines using 
vectored interrupts, an interrupt vector register may be provided. If a stack is used 
to implement certain functions (e.g., subroutine call), then a system stack pointer is 
needed. A page table pointer is used with a virtual memory system. Finally, regis-
ters may be used in the control of I/O operations.

A number of factors go into the design of the control and status register organ-
ization. One key issue is operating system support. Certain types of control infor-
mation are of specific utility to the operating system. If the processor designer has 
a functional understanding of the operating system to be used, then the register 
organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between 
registers and memory. It is common to dedicate the first (lowest) few hundred or 
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thousand words of memory for control purposes. The designer must decide how 
much control information should be in registers and how much in memory. The 
usual  trade-  off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable 
systems. In this section, we look at two 16-bit microprocessors that were designed at 
about the same time: the Motorola MC68000 [STRI79] and the Intel 8086 [MORS78]. 
Figures 14.3a and b depict the register organization of each; purely internal registers, 
such as a memory address register, are not shown.

The MC68000 partitions its 32-bit registers into eight data registers and nine 
address registers. The eight data registers are used primarily for data manipulation 
and are also used in addressing as index registers. The width of the registers allows 
8-, 16-, and 32-bit data operations, determined by opcode. The address registers con-
tain 32-bit (no segmentation) addresses; two of these registers are also used as stack 
pointers, one for users and one for the operating system, depending on the current 
execution mode. Both registers are numbered 7, because only one can be used at a 
time. The MC68000 also includes a 32-bit program counter and a 16-bit status register.

The Motorola team wanted a very regular instruction set, with no  special- 
 purpose registers. A concern for code efficiency led them to divide the registers into 
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two functional components, saving one bit on each register specifier. This seems a 
reasonable compromise between complete generality and code compaction.

The Intel 8086 takes a different approach to register organization. Every 
register is special purpose, although some registers are also usable as general pur-
pose. The 8086 contains four 16-bit data registers that are addressable on a byte 
or 16-bit basis, and four 16-bit pointer and index registers. The data registers can 
be used as general purpose in some instructions. In others, the registers are used 
implicitly. For example, a multiply instruction always uses the accumulator. The 
four pointer registers are also used implicitly in a number of operations; each 
contains a segment offset. There are also four 16-bit segment registers. Three of 
the four segment registers are used in a dedicated, implicit fashion, to point to 
the segment of the current instruction (useful for branch instructions), a segment 
containing data, and a segment containing a stack, respectively. These dedicated 
and implicit uses provide for compact encoding at the cost of reduced flexibility. 
The 8086 also includes an instruction pointer and a set of 1-bit status and control 
flags.

The point of this comparison should be clear. There is no universally accepted 
philosophy concerning the best way to organize processor registers [TOON81]. As 
with overall instruction set design and so many other processor design issues, it is 
still a matter of judgment and taste.

A second instructive point concerning register organization design is illus-
trated in Figure 14.3c. This figure shows the  user-  visible register organization for 
the Intel 80386 [ELAY85], which is a 32-bit microprocessor designed as an exten-
sion of the 8086.1 The 80386 uses 32-bit registers. However, to provide upward 
compatibility for programs written on the earlier machine, the 80386 retains the 
original register organization embedded in the new organization. Given this design 
constraint, the architects of the 32-bit processors had limited flexibility in designing 
the register organization.

 14.3 INSTRUCTION CYCLE

In Section 3.2, we described the processor’s instruction cycle (Figure 3.9). To recall, 
an instruction cycle includes the following stages:

 ■ Fetch: Read the next instruction from memory into the processor.
 ■ Execute: Interpret the opcode and perform the indicated operation.
 ■ Interrupt: If interrupts are enabled and an interrupt has occurred, save the 

current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First, 
we must introduce one additional stage, known as the indirect cycle.

1Because the MC68000 already uses 32-bit registers, the MC68020 [MACD84], which is a full 32-bit archi-
tecture, uses the same register organization.
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The Indirect Cycle

We have seen, in Chapter 13, that the execution of an instruction may involve one 
or more operands in memory, each of which requires a memory access. Further, if 
indirect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruction 
stages. The result is shown in Figure 14.4. The main line of activity consists of alter-
nating instruction fetch and instruction execution activities. After an instruction is 
fetched, it is examined to determine if any indirect addressing is involved. If so, the 
required operands are fetched using indirect addressing. Following execution, an 
interrupt may be processed before the next instruction fetch.

Another way to view this process is shown in Figure 14.5, which is a revised 
version of Figure 3.12. This illustrates more correctly the nature of the instruction 
cycle. Once an instruction is fetched, its operand specifiers must be identified. Each 
input operand in memory is then fetched, and this process may require indirect 
addressing.  Register-  based operands need not be fetched. Once the opcode is exe-
cuted, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design of 
the processor. We can, however, indicate in general terms what must happen. Let us 
assume that a processor that employs a memory address register (MAR), a memory 
buffer register (MBR), a program counter (PC), and an instruction register (IR).

During the fetch cycle, an instruction is read from memory. Figure 14.6 shows 
the flow of data during this cycle. The PC contains the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address 
bus. The control unit requests a memory read, and the result is placed on the data 
bus and copied into the MBR and then moved to the IR. Meanwhile, the PC is 
incremented by 1, preparatory for the next fetch.

Once the fetch cycle is over, the control unit examines the contents of the IR 
to determine if it contains an operand specifier using indirect addressing. If so, an 
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indirect cycle is performed. As shown in Figure 14.7, this is a simple cycle. The  right- 
 most N bits of the MBR, which contain the address reference, are transferred to 
the MAR. Then the control unit requests a memory read, to get the desired address 
of the operand into the MBR.

The fetch and indirect cycles are simple and predictable. The execute cycle 
takes many forms; the form depends on which of the various machine instructions 
is in the IR. This cycle may involve transferring data among registers, read or write 
from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable 
(Figure 14.8). The current contents of the PC must be saved so that the processor 
can resume normal activity after the interrupt. Thus, the contents of the PC are 
transferred to the MBR to be written into memory. The special memory location 
reserved for this purpose is loaded into the MAR from the control unit. It might, 
for example, be a stack pointer. The PC is loaded with the address of the interrupt 
routine. As a result, the next instruction cycle will begin by fetching the appropriate 
instruction.
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 14.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the processor can improve performance. We have already 
seen some examples of this, such as the use of multiple registers rather than a single 
accumulator, and the use of a cache memory. Another organizational approach, 
which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing 
plant. An assembly line takes advantage of the fact that a product goes through 
various stages of production. By laying the production process out in an assembly 
line, products at various stages can be worked on simultaneously. This process is also 
referred to as pipelining, because, as in a pipeline, new inputs are accepted at one 
end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact, 
an instruction has a number of stages. Figures 14.5, for example, breaks the instruc-
tion cycle up into 10 tasks, which occur in sequence. Clearly, there should be some 
opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two 
stages: fetch instruction and execute instruction. There are times during the execu-
tion of an instruction when main memory is not being accessed. This time could be 
used to fetch the next instruction in parallel with the execution of the current one. 
Figure 14.9a depicts this approach. The pipeline has two independent stages. The 
first stage fetches an instruction and buffers it. When the second stage is free, the 
first stage passes it the buffered instruction. While the second stage is executing the 
instruction, the first stage takes advantage of any unused memory cycles to fetch 
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and buffer the next instruction. This is called instruction prefetch or fetch overlap. 
Note that this approach, which involves instruction buffering, requires more regis-
ters. In general, pipelining requires registers to store data between stages.

It should be clear that this process will speed up instruction execution. If the 
fetch and execute stages were of equal duration, the instruction cycle time would be 
halved. However, if we look more closely at this pipeline (Figure 14.9b), we will see 
that this doubling of execution rate is unlikely for two reasons:

1. The execution time will generally be longer than the fetch time. Execution will 
involve reading and storing operands and the performance of some operation. 
Thus, the fetch stage may have to wait for some time before it can empty its buffer.

2. A conditional branch instruction makes the address of the next instruction to 
be fetched unknown. Thus, the fetch stage must wait until it receives the next 
instruction address from the execute stage. The execute stage may then have 
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the 
following: When a conditional branch instruction is passed on from the fetch to 
the execute stage, the fetch stage fetches the next instruction in memory after the 
branch instruction. Then, if the branch is not taken, no time is lost. If the branch is 
taken, the fetched instruction must be discarded and a new instruction fetched.

While these factors reduce the potential effectiveness of the  two-  stage pipe-
line, some speedup occurs. To gain further speedup, the pipeline must have more 
stages. Let us consider the following decomposition of the instruction processing.

 ■ Fetch instruction (FI): Read the next expected instruction into a buffer.
 ■ Decode instruction (DI): Determine the opcode and the operand specifiers.
 ■ Calculate operands (CO): Calculate the effective address of each source oper-

and. This may involve displacement, register indirect, indirect, or other forms 
of address calculation.

 ■ Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.

 ■ Execute instruction (EI): Perform the indicated operation and store the result, 
if any, in the specified destination operand location.

 ■ Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dur-
ation. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 14.10 shows that a  six-  stage pipeline can reduce the execution time for 
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction 
goes through all six stages of the pipeline. This will not always be the case. For 
example, a load instruction does not need the WO stage. However, to simplify the 
pipeline hardware, the timing is set up assuming that each instruction requires all 
six stages. Also, the diagram assumes that all of the stages can be performed in par-
allel. In particular, it is assumed that there are no memory conflicts. For example, 
the FI, FO, and WO stages involve a memory access. The diagram implies that all 
these accesses can occur simultaneously. Most memory systems will not permit that. 
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However, the desired value may be in cache, or the FO or WO stage may be null. 
Thus, much of the time, memory conflicts will not slow down the pipeline.

Several other factors serve to limit the performance enhancement. If the six 
stages are not of equal duration, there will be some waiting involved at various pipe-
line stages, as discussed before for the  two-  stage pipeline. Another difficulty is the 
conditional branch instruction, which can invalidate several instruction fetches. A 
similar unpredictable event is an interrupt. Figure 14.11 illustrates the effects of the 
conditional branch, using the same program as Figure 14.10. Assume that instruc-
tion 3 is a conditional branch to instruction 15. Until the instruction is executed, 
there is no way of knowing which instruction will come next. The pipeline, in this 
example, simply loads the next instruction in sequence (instruction 4) and proceeds. 
In Figure 14.10, the branch is not taken, and we get the full performance benefit of 
the enhancement. In Figure 14.11, the branch is taken. This is not determined until 
the end of time unit 7. At this point, the pipeline must be cleared of instructions that 
are not useful. During time unit 8, instruction 15 enters the pipeline. No instructions 
complete during time units 9 through 12; this is the performance penalty incurred 
because we could not anticipate the branch. Figure 14.12 indicates the logic needed 
for pipelining to account for branches and interrupts.

Other problems arise that did not appear in our simple  two-  stage organization. 
The CO stage may depend on the contents of a register that could be altered by a 
previous instruction that is still in the pipeline. Other such register and memory con-
flicts could occur. The system must contain logic to account for this type of conflict.

To clarify pipeline operation, it might be useful to look at an alterna-
tive depiction. Figures 14.10 and 14.11 show the progression of time horizontally 
across the figures, with each row showing the progress of an individual instruction. 
 Figure 14.13 shows same sequence of events, with time progressing vertically down 
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the figure, and each row showing the state of the pipeline at a given point in time. 
In Figure 14.13a (which corresponds to Figure 14.10), the pipeline is full at time 6, 
with 6 different instructions in various stages of execution, and remains full through 
time 9; we assume that instruction I9 is the last instruction to be executed. In Fig-
ure 14.13b, (which corresponds to Figure 14.11), the pipeline is full at times 6 and 7. 
At time 7, instruction 3 is in the execute stage and executes a branch to instruction 
15. At this point, instructions I4 through I7 are flushed from the pipeline, so that at 
time 8, only two instructions are in the pipeline, I3 and I15.

From the preceding discussion, it might appear that the greater the number of 
stages in the pipeline, the faster the execution rate. Some of the IBM S/360 designers 
pointed out two factors that frustrate this seemingly simple pattern for  high-  performance 
design [ANDE67a], and they remain elements that designer must still consider:

1. At each stage of the pipeline, there is some overhead involved in moving data 
from buffer to buffer and in performing various preparation and delivery 
functions. This overhead can appreciably lengthen the total execution time 
of a single instruction. This is significant when sequential instructions are log-
ically dependent, either through heavy use of branching or through memory 
access dependencies.

2. The amount of control logic required to handle memory and register depen-
dencies and to optimize the use of the pipeline increases enormously with the 
number of stages. This can lead to a situation where the logic controlling the 
gating between stages is more complex than the stages being controlled.

Another consideration is latching delay: It takes time for pipeline buffers to 
operate and this adds to instruction cycle time.
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Instruction pipelining is a powerful technique for enhancing performance but 
requires careful design to achieve optimum results with reasonable complexity.

Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and 
relative speedup (based on a discussion in [HWAN93]). The cycle time t of an 
instruction pipeline is the time needed to advance a set of instructions one stage 
through the pipeline; each column in Figures 14.10 and 14.11 represents one cycle 
time. The cycle time can be determined as

t = max
i

[ti] + d = tm + d      1 … i … k
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where

 ti = time delay of the circuitry in the ith stage of the pipeline
 tm =  maximum stage delay (delay through stage which experiences the largest 

delay)
 k = number of stages in the instruction pipeline
 d =  time delay of a latch, needed to advance signals and data from one stage 

to the next

In general, the time delay d is equivalent to a clock pulse and tm W d. Now 
suppose that n instructions are processed, with no branches. Let Tk,  n be the total 
time required for a pipeline with k stages to execute n instructions. Then

 Tk,n = [k + (n - 1)]t (14.1)

A total of k cycles are required to complete the execution of the first instruc-
tion, and the remaining n - 1 instructions require n - 1 cycles.2 This equation is 
easily verified from Figure 14.10. The ninth instruction completes at time cycle 14:

14 = [6 + (9 - 1)]

2We are being a bit sloppy here. The cycle time will only equal the maximum value of t when all the stages 
are full. At the beginning, the cycle time may be less for the first one or few cycles.
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Now consider a processor with equivalent functions but no pipeline, and 
assume that the instruction cycle time is kt. The speedup factor for the instruction 
pipeline compared to execution without the pipeline is defined as

 Sk =
T1,  n

Tk,  n
=

nkt
[k + (n - 1)]t

=
nk

k + (n - 1)
 (14.2)

Figure 14.14a plots the speedup factor as a function of the number of instruc-
tions that are executed without a branch. As might be expected, at the limit (n S ∞), 
we have a  k-  fold speedup. Figure 14.14b shows the speedup factor as a function of 
the number of stages in the instruction pipeline.3 In this case, the speedup factor 
approaches the number of instructions that can be fed into the pipeline without 
branches. Thus, the larger the number of pipeline stages, the greater the poten-
tial for speedup. However, as a practical matter, the potential gains of additional 
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3Note that the  x-  axis is logarithmic in Figure 14.14a and linear in Figure 14.14b.
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pipeline stages are countered by increases in cost, delays between stages, and the 
fact that branches will be encountered requiring the flushing of the pipeline.

Pipeline Hazards

In the previous subsection, we mentioned some of the situations that can result in 
less than optimal pipeline performance. In this subsection, we examine this issue in 
a more systematic way. Chapter 16 revisits this issue, in more detail, after we have 
introduced the complexities found in superscalar pipeline organizations.

A pipeline hazard occurs when the pipeline, or some portion of the pipeline, 
must stall because conditions do not permit continued execution. Such a pipe-
line stall is also referred to as a pipeline bubble. There are three types of hazards: 
resource, data, and control.

resource hazards A resource hazard occurs when two (or more) instructions 
that are already in the pipeline need the same resource. The result is that the 
instructions must be executed in serial rather than parallel for a portion of the 
pipeline. A resource hazard is sometime referred to as a structural hazard.

Let us consider a simple example of a resource hazard. Assume a simplified 
 five-  stage pipeline, in which each stage takes one clock cycle. Figure 14.15a shows 
the ideal case, in which a new instruction enters the pipeline each clock cycle. Now 
assume that main memory has a single port and that all instruction fetches and data 
reads and writes must be performed one at a time. Further, ignore the cache. In this 
case, an operand read to or write from memory cannot be performed in parallel 
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with an instruction fetch. This is illustrated in Figure 14.15b, which assumes that the 
source operand for instruction I1 is in memory, rather than a register. Therefore, 
the fetch instruction stage of the pipeline must idle for one cycle before beginning 
the instruction fetch for instruction I3. The figure assumes that all other operands 
are in registers.

Another example of a resource conflict is a situation in which multiple instruc-
tions are ready to enter the execute instruction phase and there is a single ALU. One 
solutions to such resource hazards is to increase available resources, such as having 
multiple ports into main memory and multiple ALU units.

Reservation Table Analyzer

One approach to analyzing resource conflicts and aiding in the design of pipe-
lines is the reservation table. We examine reservation tables in Appendix N.

data hazards A data hazard occurs when there is a conflict in the access 
of an operand location. In general terms, we can state the hazard in this form: 
Two instructions in a program are to be executed in sequence and both access 
a particular memory or register operand. If the two instructions are executed in 
strict sequence, no problem occurs. However, if the instructions are executed in 
a pipeline, then it is possible for the operand value to be updated in such a way 
as to produce a different result than would occur with strict sequential execution. 
In other words, the program produces an incorrect result because of the use of 
pipelining.

As an example, consider the following x86 machine instruction sequence:

ADD EAX, EBX /* EAX = EAX + EBX

SUB ECX, EAX /* ECX = ECX – EAX

The first instruction adds the contents of the 32-bit registers EAX and EBX 
and stores the result in EAX. The second instruction subtracts the contents of EAX 
from ECX and stores the result in ECX. Figure 14.16 shows the pipeline behavior. 
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The ADD instruction does not update register EAX until the end of stage 5, which 
occurs at clock cycle 5. But the SUB instruction needs that value at the beginning of 
its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline 
must stall for two clocks cycles. Thus, in the absence of special hardware and spe-
cific avoidance algorithms, such a data hazard results in inefficient pipeline usage.

There are three types of data hazards:

 ■ Read after write (RAW), or true dependency: An instruction modifies a reg-
ister or memory location and a succeeding instruction reads the data in that 
memory or register location. A hazard occurs if the read takes place before the 
write operation is complete.

 ■ Write after read (WAR), or antidependency: An instruction reads a register 
or memory location and a succeeding instruction writes to the location. A haz-
ard occurs if the write operation completes before the read operation takes 
place.

 ■ Write after write (WAW), or output dependency: Two instructions both write 
to the same location. A hazard occurs if the write operations take place in the 
reverse order of the intended sequence.

The example of Figure 14.16 is a RAW hazard. The other two hazards are best 
discussed in the context of superscalar organization, discussed in Chapter 16.

control hazards A control hazard, also known as a branch hazard, occurs 
when the pipeline makes the wrong decision on a branch prediction and therefore 
brings instructions into the pipeline that must subsequently be discarded. We discuss 
approaches to dealing with control hazards next.

Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring a steady 
flow of instructions to the initial stages of the pipeline. The primary impediment, as 
we have seen, is the conditional branch instruction. Until the instruction is actually 
executed, it is impossible to determine whether the branch will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

 ■ Multiple streams
 ■ Prefetch branch target
 ■ Loop buffer
 ■ Branch prediction
 ■ Delayed branch

multiple streams A simple pipeline suffers a penalty for a branch instruction 
because it must choose one of two instructions to fetch next and may make the wrong 
choice. A  brute-  force approach is to replicate the initial portions of the pipeline and 
allow the pipeline to fetch both instructions, making use of two streams. There are 
two problems with this approach:

 ■ With multiple pipelines there are contention delays for access to the registers 
and to memory.
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 ■ Additional branch instructions may enter the pipeline (either stream) before 
the original branch decision is resolved. Each such instruction needs an add-
itional stream.

Despite these drawbacks, this strategy can improve performance. Examples of 
machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

prefetch branch target When a conditional branch is recognized, the target 
of the branch is prefetched, in addition to the instruction following the branch. This 
target is then saved until the branch instruction is executed. If the branch is taken, 
the target has already been prefetched.

The IBM 360/91 uses this approach.

loop buffer A loop buffer is a small,  very-  high-  speed memory maintained by the 
instruction fetch stage of the pipeline and containing the n most recently fetched 
instructions, in sequence. If a branch is to be taken, the hardware first checks 
whether the branch target is within the buffer. If so, the next instruction is fetched 
from the buffer. The loop buffer has three benefits:

1. With the use of prefetching, the loop buffer will contain some instruction 
sequentially ahead of the current instruction fetch address. Thus, instructions 
fetched in sequence will be available without the usual memory access time.

2. If a branch occurs to a target just a few locations ahead of the address of the 
branch instruction, the target will already be in the buffer. This is useful for 
the rather common occurrence of  IF–  THEN and  IF–  THEN–  ELSE sequences.

3. This strategy is particularly well suited to dealing with loops, or iterations; 
hence the name loop buffer. If the loop buffer is large enough to contain all 
the instructions in a loop, then those instructions need to be fetched from 
memory only once, for the first iteration. For subsequent iterations, all the 
needed instructions are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions. 
The differences are that the loop buffer only retains instructions in sequence and is 
much smaller in size and hence lower in cost.

Figure 14.17 gives an example of a loop buffer. If the buffer contains 256 bytes, 
and byte addressing is used, then the least significant 8 bits are used to index the 
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Figure 14.17 Loop Buffer
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buffer. The remaining most significant bits are checked to determine if the branch 
target lies within the environment captured by the buffer.

Among the machines using a loop buffer are some of the CDC machines  
( Star-  100, 6600, 7600) and the  CRAY-  1. A specialized form of loop buffer is 
 available on the Motorola 68010, for executing a  three-  instruction loop involving 
the DBcc (decrement and branch on condition) instruction (see Problem 14.14). 
A  three-  word buffer is maintained, and the processor executes these instructions 
repeatedly until the loop condition is satisfied.

Branch Prediction Simulator
Branch Target Buffer

branch prediction Various techniques can be used to predict whether a branch 
will be taken. Among the more common are the following:

 ■ Predict never taken
 ■ Predict always taken
 ■ Predict by opcode
 ■ Taken/not taken switch
 ■ Branch history table

The first three approaches are static: they do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approaches 
are dynamic: They depend on the execution history.

The first two approaches are the simplest. These either always assume that 
the branch will not be taken and continue to fetch instructions in sequence, or they 
always assume that the branch will be taken and always fetch from the branch tar-
get. The  predict-  never-  taken approach is the most popular of all the branch predic-
tion methods.

Studies analyzing program behavior have shown that conditional branches are 
taken more than 50% of the time [LILJ88], and so if the cost of prefetching from 
either path is the same, then always prefetching from the branch target address 
should give better performance than always prefetching from the sequential path. 
However, in a paged machine, prefetching the branch target is more likely to cause 
a page fault than prefetching the next instruction in sequence, and so this per-
formance penalty should be taken into account. An avoidance mechanism may be 
employed to reduce this penalty.

The final static approach makes the decision based on the opcode of the 
branch instruction. The processor assumes that the branch will be taken for certain 
branch opcodes and not for others. [LILJ88] reports success rates of greater than 
75% with this strategy.

Dynamic branch strategies attempt to improve the accuracy of prediction by 
recording the history of conditional branch instructions in a program. For example, 
one or more bits can be associated with each conditional branch instruction that 
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reflect the recent history of the instruction. These bits are referred to as a taken/
not taken switch that directs the processor to make a particular decision the next 
time the instruction is encountered. Typically, these history bits are not associated 
with the instruction in main memory. Rather, they are kept in temporary  high- 
 speed storage. One possibility is to associate these bits with any conditional branch 
instruction that is in a cache. When the instruction is replaced in the cache, its his-
tory is lost. Another possibility is to maintain a small table for recently executed 
branch instructions with one or more history bits in each entry. The processor could 
access the table associatively, like a cache, or by using the  low-  order bits of the 
branch instruction’s address.

With a single bit, all that can be recorded is whether the last execution 
of this instruction resulted in a branch or not. A shortcoming of using a single 
bit appears in the case of a conditional branch instruction that is almost always 
taken, such as a loop instruction. With only one bit of history, an error in predic-
tion will occur twice for each use of the loop: once on entering the loop, and once 
on exiting.

If two bits are used, they can be used to record the result of the last two 
instances of the execution of the associated instruction, or to record a state in some 
other fashion. Figure 14.18 shows a typical approach (see Problem 14.13 for other 
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possibilities). Assume that the algorithm starts at the  upper-  left-  hand corner of 
the flowchart. As long as each succeeding conditional branch instruction that is 
encountered is taken, the decision process predicts that the next branch will be 
taken. If a single prediction is wrong, the algorithm continues to predict that the 
next branch is taken. Only if two successive branches are not taken does the algo-
rithm shift to the  right-  hand side of the flowchart. Subsequently, the algorithm will 
predict that branches are not taken until two branches in a row are taken. Thus, 
the algorithm requires two consecutive wrong predictions to change the prediction 
decision.

The decision process can be represented more compactly by a  finite-  state 
machine, shown in Figure 14.19. The  finite-  state machine representation is com-
monly used in the literature.

The use of history bits, as just described, has one drawback: If the decision 
is made to take the branch, the target instruction cannot be fetched until the tar-
get address, which is an operand in the conditional branch instruction, is decoded. 
Greater efficiency could be achieved if the instruction fetch could be initiated as 
soon as the branch decision is made. For this purpose, more information must be 
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the instruc-
tion fetch stage of the pipeline. Each entry in the table consists of three elements: 
the address of a branch instruction, some number of history bits that record the 
state of use of that instruction, and information about the target instruction. In most 
proposals and implementations, this third field contains the address of the target 
instruction. Another possibility is for the third field to actually contain the target 
instruction. The  trade-  off is clear: Storing the target address yields a smaller table 
but a greater instruction fetch time compared with storing the target instruction 
[RECH98].

Figure 14.20 contrasts this scheme with a  predict-  never-  taken strategy. With 
the former strategy, the instruction fetch stage always fetches the next sequential 
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address. If a branch is taken, some logic in the processor detects this and instructs 
that the next instruction be fetched from the target address (in addition to flushing 
the pipeline). The branch history table is treated as a cache. Each prefetch triggers a 
lookup in the branch history table. If no match is found, the next sequential address 
is used for the fetch. If a match is found, a prediction is made based on the state of 
the instruction: Either the next sequential address or the branch target address is 
fed to the select logic.

When the branch instruction is executed, the execute stage signals the branch 
history table logic with the result. The state of the instruction is updated to reflect 
a correct or incorrect prediction. If the prediction is incorrect, the select logic is 
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redirected to the correct address for the next fetch. When a conditional branch 
instruction is encountered that is not in the table, it is added to the table and one 
of the existing entries is discarded, using one of the cache replacement algorithms 
discussed in Chapter 4.

A refinement of the branch history approach is referred to as  two-  level or 
 correlation-  based branch history [YEH91]. This approach is based on the assump-
tion that whereas in  loop-  closing branches, the past history of a particular branch 
instruction is a good predictor of future behavior, with more complex  control-  flow 
structures, the direction of a branch is frequently correlated with the direction of 
related branches. An example is an  if-  then-  else or case structure. There are a num-
ber of strategies possible. Typically, recent global branch history (i.e., the history of 
the most recent branches not just of this branch instruction) is used in addition to 
the history of the current branch instruction. The general structure is defined as an 
(m, n) correlator, which uses the behavior of the last m branches to choose from 2m 
 n-  bit branch predictors for the current branch instruction. In other words, an  n-  bit 
history is kept for a give branch for each possible combination of branches taken by 
the most recent m branches.

delayed branch It is possible to improve pipeline performance by automatically 
rearranging instructions within a program, so that branch instructions occur later 
than actually desired. This intriguing approach is examined in Chapter 15.

Intel 80486 Pipelining

An instructive example of an instruction pipeline is that of the Intel 80486. The 
80486 implements a  five-  stage pipeline:

 ■ Fetch: Instructions are fetched from the cache or from external memory 
and placed into one of the two 16-byte prefetch buffers. The objective of the 
fetch stage is to fill the prefetch buffers with new data as soon as the old data 
have been consumed by the instruction decoder. Because instructions are of 
variable length (from 1 to 11 bytes not counting prefixes), the status of the 
prefetcher relative to the other pipeline stages varies from instruction to 
instruction. On average, about five instructions are fetched with each 16-byte 
load [CRAW90]. The fetch stage operates independently of the other stages to 
keep the prefetch buffers full.

 ■ Decode stage 1: All opcode and  addressing-  mode information is decoded in 
the D1 stage. The required information, as well as  instruction-  length informa-
tion, is included in at most the first 3 bytes of the instruction. Hence, 3 bytes 
are passed to the D1 stage from the prefetch buffers. The D1 decoder can then 
direct the D2 stage to capture the rest of the instruction (displacement and 
immediate data), which is not involved in the D1 decoding.

 ■ Decode stage 2: The D2 stage expands each opcode into control signals for 
the ALU. It also controls the computation of the more complex addressing 
modes.

 ■ Execute: This stage includes ALU operations, cache access, and register 
update.
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 ■ Write back: This stage, if needed, updates registers and status flags modified 
during the preceding execute stage. If the current instruction updates mem-
ory, the computed value is sent to the cache and to the  bus-  interface write 
buffers at the same time.

With the use of two decode stages, the pipeline can sustain a throughput 
of close to one instruction per clock cycle. Complex instructions and conditional 
branches can slow down this rate.

Figure 14.21 shows examples of the operation of the pipeline. Figure 14.21a 
shows that there is no delay introduced into the pipeline when a memory access is 
required. However, as Figure 14.21b shows, there can be a delay for values used 
to compute memory addresses. That is, if a value is loaded from memory into a 
register and that register is then used as a base register in the next instruction, the 
processor will stall for one cycle. In this example, the processor accesses the cache 
in the EX stage of the first instruction and stores the value retrieved in the register 
during the WB stage. However, the next instruction needs this register in its D2 
stage. When the D2 stage lines up with the WB stage of the previous instruction, 
bypass signal paths allow the D2 stage to have access to the same data being used by 
the WB stage for writing, saving one pipeline stage.

Figure 14.21c illustrates the timing of a branch instruction, assuming that the 
branch is taken. The compare instruction updates condition codes in the WB stage, 
and bypass paths make this available to the EX stage of the jump instruction at the 
same time. In parallel, the processor runs a speculative fetch cycle to the target of 
the jump during the EX stage of the jump instruction. If the processor determines 
a false branch condition, it discards this prefetch and continues execution with the 
next sequential instruction (already fetched and decoded).

D1 D2 EX WB

Fetch D1 D2 EX WB

Fetch D1 D2 EX MOV Mem2, Reg1

(a) No data load delay in the pipeline

MOV Reg1, Reg2

MOV Reg1, Mem1

Fetch D1 D2 EX WB

Fetch D1 D2 EX

Fetch D1 D2 EX Target

(c) Branch instruction timing

Jcc Target

CMP Reg1, Imm

Fetch D1 D2 EX WB

Fetch D1 D2 EX

(b) Pointer load delay

MOV Reg2, (Reg1)

MOV Reg1, Mem1

Fetch

WB

Figure 14.21 80486 Instruction Pipeline Examples
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 14.5 THE x86 PROCESSOR FAMILY

The x86 organization has evolved dramatically over the years. In this section we 
examine some of the details of the most recent processor organizations, concen-
trating on common elements in single processors. Chapter 16 looks at superscalar 
aspects of the x86, and Chapter 18 examines the multicore organization. An over-
view of the Pentium 4 processor organization is depicted in Figure 4.18.

Register Organization

The register organization includes the following types of registers (Table 14.2):

 ■ General: There are eight 32-bit  general-  purpose registers (see Figure 14.3c). 
These may be used for all types of x86 instructions; they can also hold oper-
ands for address calculations. In addition, some of these registers also serve 
special purposes. For example, string instructions use the contents of the ECX, 
ESI, and EDI registers as operands without having to reference these regis-
ters explicitly in the instruction. As a result, a number of instructions can be 

Table 14.2 x86 Processor Registers

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32  General-  purpose user registers

Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose

General 16 32  General-  purpose user registers

Segment 6 16 Contain segment selectors

RFLAGS 1 64 Status and control bits

Instruction Pointer 1 64 Instruction pointer

(c)  Floating-  Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold  floating-  point numbers

Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric registers

Instruction Pointer 1 48 Points to instruction interrupted by exception

Data Pointer 1 48 Points to operand interrupted by exception
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encoded more compactly. In 64-bit mode, there are sixteen 64-bit  general- 
 purpose registers.

 ■ Segment: The six 16-bit segment registers contain segment selectors, which 
index into segment tables, as discussed in Chapter 8. The code segment (CS) 
register references the segment containing the instruction being executed. The 
stack segment (SS) register references the segment containing a  user-  visible 
stack. The remaining segment registers (DS, ES, FS, GS) enable the user to 
reference up to four separate data segments at a time.

 ■ Flags: The 32-bit EFLAGS register contains condition codes and various 
mode bits. In 64-bit mode, this register is extended to 64 bits and referred 
to as RFLAGS. In the current architecture definition, the upper 32 bits of 
RFLAGS are unused.

 ■ Instruction pointer: Contains the address of the current instruction.

There are also registers specifically devoted to the  floating-  point unit:

 ■ Numeric: Each register holds an  extended-  precision 80-bit  floating-  point num-
ber. There are eight registers that function as a stack, with push and pop oper-
ations available in the instruction set.

 ■ Control: The 16-bit control register contains bits that control the operation 
of the  floating-  point unit, including the type of rounding control; single, 
double, or extended precision; and bits to enable or disable various exception 
conditions.

 ■ Status: The 16-bit status register contains bits that reflect the current state 
of the  floating-  point unit, including a 3-bit pointer to the top of the stack; 
condition codes reporting the outcome of the last operation; and exception 
flags.

 ■ Tag word: This 16-bit register contains a 2-bit tag for each  floating-  point 
numeric register, which indicates the nature of the contents of the correspond-
ing register. The four possible values are valid, zero, special (NaN, infinity, 
denormalized), and empty. These tags enable programs to check the contents 
of a numeric register without performing complex decoding of the actual data 
in the register. For example, when a context switch is made, the processor 
need not save any  floating-  point registers that are empty.

The use of most of the aforementioned registers is easily understood. Let us 
elaborate briefly on several of the registers.

eflags register The EFLAGS register (Figure 14.22) indicates the condition of 
the processor and helps to control its operation. It includes the six condition codes 
defined in Table 12.9 (carry, parity, auxiliary, zero, sign, overflow), which report the 
results of an integer operation. In addition, there are bits in the register that may be 
referred to as control bits:

 ■ Trap flag (TF): When set, causes an interrupt after the execution of each 
instruction. This is used for debugging.

 ■ Interrupt enable flag (IF): When set, the processor will recognize external 
interrupts.
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 ■ Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit  half-  registers SI and DI (for 16-bit operations) 
or the 32-bit registers ESI and EDI (for 32-bit operations).

 ■ I/O privilege flag (IOPL): When set, causes the processor to generate an 
exception on all accesses to I/O devices during  protected-  mode operation.

 ■ Resume flag (RF): Allows the programmer to disable debug exceptions so 
that the instruction can be restarted after a debug exception without immedi-
ately causing another debug exception.

 ■ Alignment check (AC): Activates if a word or doubleword is addressed on a 
nonword or nondoubleword boundary.

 ■ Identification flag (ID): If this bit can be set and cleared, then this processor 
supports the processorID instruction. This instruction provides information 
about the vendor, family, and model.

In addition, there are 4 bits that relate to operating mode. The Nested Task 
(NT) flag indicates that the current task is nested within another task in  protected- 
 mode operation. The Virtual Mode (VM) bit allows the programmer to enable or 
disable virtual 8086 mode, which determines whether the processor runs as an 8086 
machine. The Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending (VIP) flag 
are used in a multitasking environment.

control registers The x86 employs four control registers (register CR1 is 
unused) to control various aspects of processor operation (Figure 14.23). All of the 
registers except CR0 are either 32 bits or 64 bits long, depending on whether the 
implementation supports the x86 64-bit architecture. The CR0 register contains 
system control flags, which control modes or indicate states that apply generally 
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X VIP = Virtual interrupt pending
X VIF = Virtual interrupt �ag
X AC = Alignment check
X VM = Virtual 8086 mode
X RF = Resume �ag
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X IF = Interrupt enable �ag
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S CF = Carry �ag
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Figure 14.22 x86 EFLAGS Register
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to the processor rather than to the execution of an individual task. The flags are as 
follows:

 ■ Protection Enable (PE): Enable/disable protected mode of operation.
 ■ Monitor Coprocessor (MP): Only of interest when running programs from ear-

lier machines on the x86; it relates to the presence of an arithmetic coprocessor.
 ■ Emulation (EM): Set when the processor does not have a  floating-  point unit, 

and causes an interrupt when an attempt is made to execute  floating-  point 
instructions.

 ■ Task Switched (TS): Indicates that the processor has switched tasks.
 ■ Extension Type (ET): Not used on the Pentium and later machines; used to 

indicate support of math coprocessor instructions on earlier machines.

OSXSAVE XSAVE enable bit=
PCIDE Enables process-context identi�ers=

OSXMMEXCPT = Support unmasked SIMD FP exceptions

Shaded area indicates reserved bits.

VME = Virtual 8086 mode extensions
PCD = Page-level cache disable
PWT = Page-level writes transparent
PG = Paging
CD = Cache disable
NW = Not write through
AM = Alignment mask
WP = Write protect
NE = Numeric error
ET = Extension type
TS = Task switched
EM = Emulation
MP = Monitor coprocessor
PE = Protection enable
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FSGSBASE Enables segment base instructions=
SMXE Enable safer mode extensions=
VMXE Enable virtual machine extensions=
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PCE Performance counter enable=
PGE Page global enable=
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PAE Physical address extension=
PSE Page size extensions=
DE Debug extensions=
TSD Time stamp disable=
PVI Protected mode virtual interrupt=

Figure 14.23 x86 Control Registers
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 ■ Numeric Error (NE): Enables the standard mechanism for reporting  floating- 
 point errors on external bus lines.

 ■ Write Protect (WP): When this bit is clear,  read-  only  user-  level pages can be 
written by a supervisor process. This feature is useful for supporting process 
creation in some operating systems.

 ■ Alignment Mask (AM): Enables/disables alignment checking.
 ■ Not Write Through (NW): Selects mode of operation of the data cache. When 

this bit is set, the data cache is inhibited from cache  write-  through operations.
 ■ Cache Disable (CD): Enables/disables the internal cache fill mechanism.
 ■ Paging (PG): Enables/disables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 regis-
ter holds the 32-bit linear address of the last page accessed before a page fault inter-
rupt. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address 
of the page directory; the remainder of the address contains zeros. Two bits of CR3 
are used to drive pins that control the operation of an external cache. The  page- 
 level cache disable (PCD) enables or disables the external cache, and the  page-  level 
writes transparent (PWT) bit controls write through in the external cache. CR4 con-
tains additional control bits.

mmx registers Recall from Section 10.3 that the x86 MMX capability makes use 
of several 64-bit data types. The MMX instructions make use of 3-bit register address 
fields, so that eight MMX registers are supported. In fact, the processor does not 
include specific MMX registers. Rather, the processor uses an aliasing technique 
(Figure 14.24). The existing  floating-  point registers are used to store MMX values. 
Specifically, the  low-  order 64 bits (mantissa) of each  floating-  point register are used 
to form the eight MMX registers. Thus, the older 32-bit x86 architecture is easily 
extended to support the MMX capability. Some key characteristics of the MMX use 
of these registers are as follows:

 ■ Recall that the  floating-  point registers are treated as a stack for  floating- 
  point operations. For MMX operations, these same registers are accessed 
directly.

 ■ The first time that an MMX instruction is executed after any  floating-  point 
operations, the FP tag word is marked valid. This reflects the change from 
stack operation to direct register addressing.

 ■ The EMMS (Empty MMX State) instruction sets bits of the FP tag word to 
indicate that all registers are empty. It is important that the programmer insert 
this instruction at the end of an MMX code block so that subsequent  floating- 
 point operations function properly.

 ■ When a value is written to an MMX register, bits [79:64] of the corresponding 
FP register (sign and exponent bits) are set to all ones. This sets the value in 
the FP register to NaN (not a number) or infinity when viewed as a  floating- 
 point value. This ensures that an MMX data value will not look like a valid 
 floating-  point value.
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Interrupt Processing

Interrupt processing within a processor is a facility provided to support the operat-
ing system. It allows an application program to be suspended, in order that a variety 
of interrupt conditions can be serviced and later resumed.

interrupts and exceptions Two classes of events cause the x86 to suspend 
execution of the current instruction stream and respond to the event: interrupts and 
exceptions. In both cases, the processor saves the context of the current process and 
transfers to a predefined routine to service the condition. An interrupt is generated 
by a signal from hardware, and it may occur at random times during the execution 
of a program. An exception is generated from software, and it is provoked by the 
execution of an instruction. There are two sources of interrupts and two sources of 
exceptions:

1. Interrupts
 ■ Maskable interrupts: Received on the processor’s INTR pin. The processor 

does not recognize a maskable interrupt unless the interrupt enable flag 
(IF) is set.

 ■ Nonmaskable interrupts: Received on the processor’s NMI pin. Recogni-
tion of such interrupts cannot be prevented.

2. Exceptions

 ■  Processor-  detected exceptions: Results when the processor encounters an 
error while attempting to execute an instruction.
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 ■ Programmed exceptions: These are instructions that generate an exception 
(e.g., INTO, INT3, INT, and BOUND).

interrupt vector table Interrupt processing on the x86 uses the interrupt 
vector table. Every type of interrupt is assigned a number, and this number is used 
to index into the interrupt vector table. This table contains 256 32-bit interrupt 
vectors, which is the address (segment and offset) of the interrupt service routine 
for that interrupt number.

Table 14.3 shows the assignment of numbers in the interrupt vector table; 
shaded entries represent interrupts, while nonshaded entries are exceptions. The 
NMI hardware interrupt is type 2. INTR hardware interrupts are assigned numbers 
in the range of 32 to 255; when an INTR interrupt is generated, it must be accom-
panied on the bus with the interrupt vector number for this interrupt. The remain-
ing vector numbers are used for exceptions.

If more than one exception or interrupt is pending, the processor services 
them in a predictable order. The location of vector numbers within the table does 
not reflect priority. Instead, priority among exceptions and interrupts is organized 
into five classes. In descending order of priority, these are

 ■ Class 1: Traps on the previous instruction (vector number 1)
 ■ Class 2: External interrupts (2, 32–255)
 ■ Class 3: Faults from fetching next instruction (3, 14)
 ■ Class 4: Faults from decoding the next instruction (6, 7)
 ■ Class 5: Faults on executing an instruction (0, 4, 5, 8, 10–14, 16, 17)

interrupt handling Just as with a transfer of execution using a CALL 
instruction, a transfer to an  interrupt-  handling routine uses the system stack to store 
the processor state. When an interrupt occurs and is recognized by the processor, a 
sequence of events takes place:

1. If the transfer involves a change of privilege level, then the current stack 
segment register and the current extended stack pointer (ESP) register are 
pushed onto the stack.

2. The current value of the EFLAGS register is pushed onto the stack.

3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR 
interrupts and the trap or  single-  step feature.

4. The current code segment (CS) pointer and the current instruction pointer (IP 
or EIP) are pushed onto the stack.

5. If the interrupt is accompanied by an error code, then the error code is pushed 
onto the stack.

6. The interrupt vector contents are fetched and loaded into the CS and IP or 
EIP registers. Execution continues from the interrupt service routine.

To return from an interrupt, the interrupt service routine executes an IRET 
instruction. This causes all of the values saved on the stack to be restored; execution 
resumes from the point of the interrupt.
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Table 14.3 x86 Exception and Interrupt Vector Table

Vector Number Description

0 Divide error; division overflow or division by zero

1 Debug exception; includes various faults and traps related to debugging

2 NMI pin interrupt; signal on NMI pin

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for 
debugging

4  INTO-  detected overflow; occurs when the processor executes INTO with the OF  
flag set

5 BOUND range exceeded; the BOUND instruction compares a register with bound-
aries stored in memory and generates an interrupt if the contents of the register is out 
of bounds

6 Undefined opcode

7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of 
external device

8 Double fault; two interrupts occur during the same instruction and cannot be handled 
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized or 
not valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception (e.g., 
writing to a  read-  only segment)

14 Page fault

15 Reserved

16  Floating-  point error; generated by a  floating-  point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword 
stored at an address not a multiple of 4

18 Machine check; model specific

19–31 Reserved

32–255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

 14.6 THE ARM PROCESSOR

In this section, we look at some of the key elements of the ARM architecture and 
organization. We defer a discussion of more complex aspects of organization and 
pipelining until Chapter 16. For the discussion in this section and in Chapter 16, it is 
useful to keep in mind key characteristics of the ARM architecture. ARM is primar-
ily a RISC system with the following notable attributes:
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 ■ A moderate array of uniform registers, more than are found on some CISC 
systems but fewer than are found on many RISC systems.

 ■ A load/store model of data processing, in which operations only perform on 
operands in registers and not directly in memory. All data must be loaded into 
registers before an operation can be performed; the result can then be used for 
further processing or stored into memory.

 ■ A uniform  fixed-  length instruction of 32 bits for the standard set and 16 bits 
for the Thumb instruction set.

 ■ To make each data processing instruction more flexible, either a shift or rota-
tion can preprocess one of the source registers. To efficiently support this fea-
ture, there are separate arithmetic logic unit (ALU) and shifter units.

 ■ A small number of addressing modes with all load/store addressees deter-
mined from registers and instruction fields. Indirect or indexed addressing 
involving values in memory are not used.

 ■  Auto-  increment and  auto-  decrement addressing modes are used to improve 
the operation of program loops.

 ■ Conditional execution of instructions minimizes the need for conditional 
branch instructions, thereby improving pipeline efficiency, because pipeline 
flushing is reduced.

Processor Organization

The ARM processor organization varies substantially from one implementation to the 
next, particularly when based on different versions of the ARM architecture. However, 
it is useful for the discussion in this section to present a simplified, generic ARM orga-
nization, which is illustrated in Figure 14.25. In this figure, the arrows indicate the flow 
of data. Each box represents a functional hardware unit or a storage unit.

Data are exchanged with the processor from external memory through a 
data bus. The value transferred is either a data item, as a result of a load or store 
instruction, or an instruction fetch. Fetched instructions pass through an instruction 
decoder before execution, under control of a control unit. The latter includes pipe-
line logic and provides control signals (not shown) to all the hardware elements of 
the processor. Data items are placed in the register file, consisting of a set of 32-bit 
registers. Byte or halfword items treated as  twos-  complement numbers are  sign- 
 extended to 32 bits.

ARM data processing instructions typically have two source registers, Rn and 
Rm, and a single result or destination register, Rd. The source register values feed 
into the ALU or a separate multiply unit that makes use of an additional register to 
accumulate partial results. The ARM processor also includes a hardware unit that 
can shift or rotate the Rm value before it enters the ALU. This shift or rotate occurs 
within the cycle time of the instruction and increases the power and flexibility of 
many data processing operations.

The results of an operation are fed back to the destination register. Load/store 
instructions may also use the output of the arithmetic units to generate the memory 
address for a load or store.
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Processor Modes

It is quite common for a processor to support only a small number of processor 
modes. For example, many operating systems make use of just two modes: a user 
mode and a kernel mode, with the latter mode used to execute privileged system 
software. In contrast, the ARM architecture provides a flexible foundation for oper-
ating systems to enforce a variety of protection policies.

The ARM architecture supports seven execution modes. Most application 
programs execute in user mode. While the processor is in user mode, the program 
being executed is unable to access protected system resources or to change mode, 
other than by causing an exception to occur.

The remaining six execution modes are referred to as privileged modes. These 
modes are used to run system software. There are two principal advantages to 
defining so many different privileged modes: (1) The OS can tailor the use of system 
software to a variety of circumstances, and (2) certain registers are dedicated for use 
for each of the privileged modes, allowing swifter changes in context.
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Figure 14.25 Simplified ARM Organization
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The exception modes have full access to system resources and can change 
modes freely. Five of these modes are known as exception modes. These are entered 
when specific exceptions occur. Each of these modes has some dedicated registers 
that substitute for some of the user mode registers, and which are used to avoid 
corrupting User mode state information when the exception occurs. The exception 
modes are as follows:

 ■ Supervisor mode: Usually what the OS runs in. It is entered when the pro-
cessor encounters a software interrupt instruction. Software interrupts are a 
standard way to invoke operating system services on ARM.

 ■ Abort mode: Entered in response to memory faults.
 ■ Undefined mode: Entered when the processor attempts to execute an instruc-

tion that is supported neither by the main integer core nor by one of the 
coprocessors.

 ■ Fast interrupt mode: Entered whenever the processor receives an interrupt 
signal from the designated fast interrupt source. A fast interrupt cannot be 
interrupted, but a fast interrupt may interrupt a normal interrupt.

 ■ Interrupt mode: Entered whenever the processor receives an interrupt signal 
from any other interrupt source (other than fast interrupt). An interrupt may 
only be interrupted by a fast interrupt.

The remaining privileged mode is the System mode. This mode is not entered 
by any exception and uses the same registers available in User mode. The System 
mode is used for running certain privileged operating system tasks. System mode 
tasks may be interrupted by any of the five exception categories.

Register Organization

Figure 14.26 depicts the  user-  visible registers for the ARM. The ARM processor has 
a total of 37 32-bit registers, classified as follows:

 ■  Thirty-  one registers referred to in the ARM manual as  general-  purpose 
registers. In fact, some of these, such as the program counters, have special 
purposes.

 ■ Six program status registers.

Registers are arranged in partially overlapping banks, with the current pro-
cessor mode determining which bank is available. At any time, sixteen numbered 
registers and one or two program status registers are visible, for a total of 17 or 18 
 software-  visible registers. Figure 14.26 is interpreted as follows:

 ■ Registers R0 through R7, register R15 (the program counter) and the current 
program status register (CPSR) are visible in and shared by all modes.

 ■ Registers R8 through R12 are shared by all modes except fast interrupt, which 
has its own dedicated registers R8_fiq through R12_fiq.

 ■ All the exception modes have their own versions of registers R13 and R14.
 ■ All the exception modes have a dedicated saved program status register 

(SPSR).
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 general-  purpose registers Register R13 is normally used as a stack pointer 
and is also known as the SP. Because each exception mode has a separate R13, each 
exception mode can have its own dedicated program stack. R14 is known as the link 
register (LR) and is used to hold subroutine return addresses and exception mode 
returns. Register R15 is the program counter (PC).

program status registers The CPSR is accessible in all processor modes. 
Each exception mode also has a dedicated SPSR that is used to preserve the value 
of the CPSR when the associated exception occurs.

Modes

Privileged  modes

Exception  modes

User System Supervisor Abort Unde�ned Interrupt Fast interrupt

R0 R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8 R8_�q

R9 R9 R9 R9 R9 R9 R9_�q

R10 R10 R10 R10 R10 R10 R10_�q

R11 R11 R11 R11 R11 R11 R11_�q

R12 R12 R12 R12 R12 R12 R12_�q

R13(SP) R13(SP) R13_svc R13_abt R13_und R13_irq R13_�q

R14(LR) R14(LR) R14_svc R14_abt R14_und R14_irq R14_�q

R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_�q

Shading indicates that the normal register used by User or System mode has been replaced by an alternative register 
speci�c to the exception mode.
SP = stack pointer    CPSR = current program status register
LR = link register     SPSR = saved program status register
PC = program counter

Figure 14.26 ARM Register Organization
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The 16 most significant bits of the CPSR contain user flags visible in User 
mode, and which can be used to affect the operation of a program (Figure 14.27). 
These are as follows:

 ■ Condition code flags: The N, Z, C, and V flags, which are discussed in 
Chapter 12.

 ■ Q flag: used to indicate whether overflow and/or saturation has occurred in 
some  SIMD-  oriented instructions.

 ■ J bit: indicates the use of special 8-bit instructions, known as Jazelle instruc-
tions, which are beyond the scope of our discussion.

 ■ GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or Equal 
(GE) flags for individual bytes or halfwords of the result.

The 16 least significant bits of the CPSR contain system control flags that can 
only be altered when the processor is in a privileged mode. The fields are as follows:

 ■ E bit: Controls load and store endianness for data; ignored for instruction 
fetches.

 ■ Interrupt disable bits: The A bit disables imprecise data aborts when set; the 
I bit disables IRQ interrupts when set; and the F bit disables FIQ interrupts 
when set.

 ■ T bit: Indicates whether instructions should be interpreted as normal ARM 
instructions or Thumb instructions.

 ■ Mode bits: Indicates the processor mode.

Interrupt Processing

As with any processor, the ARM includes a facility that enables the processor 
to interrupt the currently executing program to deal with exception conditions. 
Exceptions are generated by internal and external sources to cause the processor to 
handle an event. The processor state just before handling the exception is normally 
preserved so that the original program can be resumed when the exception routine 
has completed. More than one exception can arise at the same time. The ARM archi-
tecture supports seven types of exceptions. Table 14.4 lists the types of exception 
and the processor mode that is used to process each type. When an exception occurs, 
execution is forced from a fixed memory address corresponding to the type of excep-
tion. These fixed addresses are called the exception vectors.

If more than one interrupt is outstanding, they are handled in priority order. 
Table 14.4 lists the exceptions in priority order, highest to lowest.

When an exception occurs, the processor halts execution after the current 
instruction. The state of the processor is preserved in the SPSR that corresponds to 

Res J Reserved

System control �agsUser �ags

GE[3:0] Reserved E A I F T M[4:0]QVCZN

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Figure 14.27 Format of ARM CPSR and SPSR
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Table 14.4 ARM Interrupt Vector

Exception type Mode
Normal entry 

address Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.

Data abort Abort 0x00000010 Occurs when an invalid memory address 
has been accessed, such as if there is no 
physical memory for an address or the 
correct access permission is lacking.

FIQ (fast interrupt) FIQ 0x0000001C Occurs when an external device asserts the 
FIQ pin on the processor. An interrupt can-
not be interrupted except by an FIQ. FIQ 
is designed to support a data transfer or 
channel process, and has sufficient private 
registers to remove the need for register 
saving in such applications, therefore min-
imizing the overhead of context switching. 
A fast interrupt cannot be interrupted.

IRQ (interrupt) IRQ 0x00000018 Occurs when an external device asserts the 
IRQ pin on the processor. An interrupt 
cannot be interrupted except by an FIQ.

Prefetch abort Abort 0x0000000C Occurs when an attempt to fetch an 
instruction results in a memory fault. The 
exception is raised when the instruction 
enters the execute stage of the pipeline.

Undefined instructions Undefined 0x00000004 Occurs when an instruction not in the 
instruction set reaches the execute stage of 
the pipeline.

Software interrupt Supervisor 0x00000008 Generally used to allow user mode pro-
grams to call the OS. The user program 
executes a SWI instruction with an argu-
ment that identifies the function the user 
wishes to perform.

the type of exception, so that the original program can be resumed when the excep-
tion routine has completed. The address of the instruction the processor was just 
about to execute is placed in the link register of the appropriate processor mode. To 
return after handling the exception, the SPSR is moved into the CPSR and R14 is 
moved into the PC.

 14.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

branch prediction
condition code
delayed branch

flag
instruction cycle
instruction pipeline

instruction prefetch
program status word (PSW)
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Review Questions

 14.1 What general roles are performed by processor registers?
 14.2 What categories of data are commonly supported by  user-  visible registers?
 14.3 What is the function of condition codes?
 14.4 What is a program status word?
 14.5 Why is a  two-  stage instruction pipeline unlikely to cut the instruction cycle time in 

half, compared with the use of no pipeline?
 14.6 List and briefly explain various ways in which an instruction pipeline can deal with 

conditional branch instructions.
 14.7 How are history bits used for branch prediction?

Problems

 14.1 a. If the last operation performed on a computer with an 8-bit word was an addition 
in which the two operands were 00000010 and 00000011, what would be the value 
of the following flags?

 ■ Carry
 ■ Zero
 ■ Overflow
 ■ Sign
 ■ Even Parity
 ■  Half-  Carry

b. Repeat for the addition of -1 (twos complement) and +1.
 14.2 Repeat Problem 14.1 for the operation A-B, where A contains 11110000 and B con-

tains 0010100.
 14.3 A microprocessor is clocked at a rate of 5 GHz.

a. How long is a clock cycle?
b. What is the duration of a particular type of machine instruction consisting of three 

clock cycles?
 14.4 A microprocessor provides an instruction capable of moving a string of bytes from 

one area of memory to another. The fetching and initial decoding of the instruction 
takes 10 clock cycles. Thereafter, it takes 15 clock cycles to transfer each byte. The 
microprocessor is clocked at a rate of 10 GHz.
a. Determine the length of the instruction cycle for the case of a string of 64 bytes.
b. What is the  worst-  case delay for acknowledging an interrupt if the instruction is 

noninterruptible?
c. Repeat part (b) assuming the instruction can be interrupted at the beginning of 

each byte transfer.
 14.5 The Intel 8088 consists of a bus interface unit (BIU) and an execution unit (EU), 

which form a 2-stage pipeline. The BIU fetches instructions into a 4-byte instruction 
queue. The BIU also participates in address calculations, fetches operands, and writes 
results in memory as requested by the EU. If no such requests are outstanding and 
the bus is free, the BIU fills any vacancies in the instruction queue. When the EU 
completes execution of an instruction, it passes any results to the BIU (destined for 
memory or I/O) and proceeds to the next instruction.
a. Suppose the tasks performed by the BIU and EU take about equal time. By what 

factor does pipelining improve the performance of the 8088? Ignore the effect of 
branch instructions.

b. Repeat the calculation assuming that the EU takes twice as long as the BIU.
 14.6 Assume an 8088 is executing a program in which the probability of a program jump is 

0.1. For simplicity, assume that all instructions are 2 bytes long.
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a. What fraction of instruction fetch bus cycles is wasted?
b. Repeat if the instruction queue is 8 bytes long.

 14.7 Consider the timing diagram of Figures 14.10. Assume that there is only a  two-  stage 
pipeline (fetch, execute). Redraw the diagram to show how many time units are now 
needed for four instructions.

 14.8 Assume a pipeline with four stages: fetch instruction (FI), decode instruction and cal-
culate addresses (DA), fetch operand (FO), and execute (EX). Draw a diagram sim-
ilar to Figure 14.10 for a sequence of 7 instructions, in which the third instruction is a 
branch that is taken and in which there are no data dependencies.

 14.9 A pipelined processor has a clock rate of 2.5 GHz and executes a program with 1.5 mil-
lion instructions. The pipeline has five stages, and instructions are issued at a rate of 
one per clock cycle. Ignore penalties due to branch instructions and  out-  of-  sequence 
executions.
a. What is the speedup of this processor for this program compared to a nonpipe-

lined processor, making the same assumptions used in Section 14.4?
b. What is throughput (in MIPS) of the pipelined processor?

 14.10 A nonpipelined processor has a clock rate of 2.5 GHz and an average CPI (cycles 
per instruction) of 4. An upgrade to the processor introduces a  five-  stage pipeline. 
However, due to internal pipeline delays, such as latch delay, the clock rate of the new 
processor has to be reduced to 2 GHz.
a. What is the speedup achieved for a typical program?
b. What is the MIPS rate for each processor?

 14.11 Consider an instruction sequence of length n that is streaming through the instruc-
tion pipeline. Let p be the probability of encountering a conditional or unconditional 
branch instruction, and let q be the probability that execution of a branch instruction 
I causes a jump to a nonconsecutive address. Assume that each such jump requires the 
pipeline to be cleared, destroying all ongoing instruction processing, when I emerges 
from the last stage. Revise Equations (14.1) and (14.2) to take these probabilities into 
account.

 14.12 One limitation of the  multiple-  stream approach to dealing with branches in a pipeline 
is that additional branches will be encountered before the first branch is resolved. 
Suggest two additional limitations or drawbacks.

 14.13 Consider the state diagrams of Figure 14.28.
a. Describe the behavior of each.
b. Compare these with the branch prediction state diagram in Section 14.4. Discuss 

the relative merits of each of the three approaches to branch prediction.
 14.14 The Motorola 680x0 machines include the instruction Decrement and Branch Accord-

ing to Condition, which has the following form:

DBcc Dn, displacement

where cc is one of the testable conditions, Dn is a  general-  purpose register, and dis-
placement specifies the target address relative to the current address. The instruction 
can be defined as follows:

if (cc = False)
then begin
         Dn: = (Dn) -1;
         if Dn Z -1 then PC: = (PC) + displacement end
else PC: = (PC) + 2;

When the instruction is executed, the condition is first tested to determine whether 
the termination condition for the loop is satisfied. If so, no operation is performed and 
execution continues at the next instruction in sequence. If the condition is false, the 
specified data register is decremented and checked to see if it is less than zero. If it is 
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less than zero, the loop is terminated and execution continues at the next instruction 
in sequence. Otherwise, the program branches to the specified location. Now consider 
the following  assembly-  language program fragment:

AGAIN CMPM.L (A0)+ , (A1)+
DBNE D1, AGAIN

NOP
Two strings addressed by A0 and A1 are compared for equality; the string pointers 
are incremented with each reference. D1 initially contains the number of longwords 
(4 bytes) to be compared.
a. The initial contents of the registers are A0 = $00004000, A1 = $00005000 and 

D1 = $000000FF (the $ indicates hexadecimal notation). Memory between $4000 
and $6000 is loaded with words $AAAA. If the foregoing program is run, specify 
the number of times the DBNE loop is executed and the contents of the three 
registers when the NOP instruction is reached.

b. Repeat (a), but now assume that memory between $4000 and $4FEE is loaded 
with $0000 and between $5000 and $6000 is loaded with $AAA.

 14.15 Redraw Figures 14.19c, assuming that the conditional branch is not taken.
 14.16 Table 14.5 summarizes statistics from [MACD84] concerning branch behavior for var-

ious classes of applications. With the exception of type 1 branch behavior, there is 
no noticeable difference among the application classes. Determine the fraction of all 
branches that go to the branch target address for the scientific environment. Repeat 
for commercial and systems environments.

 14.17 Pipelining can be applied within the ALU to speed up  floating-  point operations. Con-
sider the case of  floating-  point addition and subtraction. In simplified terms, the pipe-
line could have four stages: (1) Compare the exponents; (2) Choose the exponent and 
align the significands; (3) Add or subtract significands; (4) Normalize the results. The 
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pipeline can be considered to have two parallel threads, one handling exponents and 
one handling significands, and could start out like this:

R

a

Exponents

b

R

A

Signi�cands

B

In this figure, the boxes labeled R refer to a set of registers used to hold temporary 
results. Complete the block diagram that shows at a top level the structure of the 
pipeline.

Table 14.5 Branch Behavior in Sample Applications

Occurrence of branch classes:

Type 1: Branch 72.5%

Type 2: Loop control  9.8%

Type 3: Procedure call, return 17.7%

Type 1 branch: where it goes Scientific Commercial Systems

 Unconditional—  100% go to target 20% 40% 35%

 Conditional—  went to target   43.2%   24.3%   32.5%

 Conditional—  did not go to target (inline)   36.8%   35.7%   32.5%

Type 2 branch (all environments)

That go to target 91%

That go inline 9%

Type 3 branch

100% go to target
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Since the development of the  stored-  program computer around 1950, there have 
been remarkably few true innovations in the areas of computer organization and 
architecture. The following are some of the major advances since the birth of the 
computer:

 ■ The family concept: Introduced by IBM with its System/360 in 1964, followed 
shortly thereafter by DEC, with its  PDP-  8. The family concept decouples 
the architecture of a machine from its implementation. A set of computers 
is offered, with different price/performance characteristics, that presents the 
same architecture to the user. The differences in price and performance are 
due to different implementations of the same architecture.

 ■ Microprogrammed control unit: Suggested by Wilkes in 1951 and introduced 
by IBM on the S/360 line in 1964. Microprogramming eases the task of design-
ing and implementing the control unit and provides support for the family 
concept.

 ■ Cache memory: First introduced commercially on IBM S/360 Model 85 in 
1968. The insertion of this element into the memory hierarchy dramatically 
improves performance.

 ■ Pipelining: A means of introducing parallelism into the essentially sequential 
nature of a  machine-  instruction program. Examples are instruction pipelining 
and vector processing.

 ■ Multiple processors: This category covers a number of different organizations 
and objectives.

 ■ Reduced instruction set computer (RISC) architecture: This is the focus of 
this chapter.

When it appeared, RISC architecture was a dramatic departure from the his-
torical trend in processor architecture. An analysis of the RISC architecture brings 
into focus many of the important issues in computer organization and architecture.

Learning Objectives

After studying this chapter, you should be able to:

 r Provide an overview research results on instruction execution characteristics 
that motivated the development of the RISC approach.

 r Summarize the key characteristics of RISC machines.
 r Understand the design and performance implications of using a large  
register file.

 r Understand the use of  compiler-  based register optimization to improve 
performance.

 r Discuss the implication of a RISC architecture for pipeline design and 
performance.

 r List and explain key approaches to pipeline optimization on a RISC machine.
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Although RISC architectures have been defined and designed in a variety of 
ways by different groups, the key elements shared by most designs are these:

 ■ A large number of  general-  purpose registers, and/or the use of compiler tech-
nology to optimize register usage.

 ■ A limited and simple instruction set.
 ■ An emphasis on optimizing the instruction pipeline.

Table 15.1 compares several RISC and  non-  RISC systems.
We begin this chapter with a brief survey of some results on instruction sets, 

and then examine each of the three topics just listed. This is followed by a descrip-
tion of two of the  best-  documented RISC designs.

 15.1 INSTRUCTION EXECUTION CHARACTERISTICS

One of the most visible forms of evolution associated with computers is that of pro-
gramming languages. As the cost of hardware has dropped, the relative cost of soft-
ware has risen. Along with that, a chronic shortage of programmers has driven up 
software costs in absolute terms. Thus, the major cost in the life cycle of a system is 
software, not hardware. Adding to the cost, and to the inconvenience, is the element 
of unreliability: it is common for programs, both system and application, to continue 
to exhibit new bugs after years of operation.

The response from researchers and industry has been to develop ever more 
powerful and complex  high-  level programming languages. These  high-  level lan-
guages (HLLs): (1) allow the programmer to express algorithms more concisely; 
(2) allow the compiler to take care of details that are not important in the program-
mer’s expression of algorithms; and (3) often support naturally the use of structured 
programming and/or  object-  oriented design.

Alas, this solution gave rise to a perceived problem, known as the seman-
tic gap, the difference between the operations provided in HLLs and those pro-
vided in computer architecture. Symptoms of this gap are alleged to include 
execution inefficiency, excessive machine program size, and compiler com-
plexity. Designers responded with architectures intended to close this gap. Key 
features include large instruction sets, dozens of addressing modes, and var-
ious HLL statements implemented in hardware. An example of the latter is 
the CASE machine instruction on the VAX. Such complex instruction sets are 
intended to:

 ■ Ease the task of the compiler writer.
 ■ Improve execution efficiency, because complex sequences of operations can 

be implemented in microcode.
 ■ Provide support for even more complex and sophisticated HLLs.

Meanwhile, a number of studies have been done over the years to determine 
the characteristics and patterns of execution of machine instructions generated 
from HLL programs. The results of these studies inspired some researchers to look 
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Table 15.1 Characteristics of Some CISCs, RISCs, and Superscalar Processors

Complex Instruction Set  
(CISC)Computer

Reduced Instruction  
Set (RISC) Computer

Characteristic IBM  
370/168

VAX  
11/780

Intel  
80486

SPARC MIPS  
R4000

Year developed 1973 1978 1989 1987 1991

Number of instructions 208 303 235 69 94

Instruction size (bytes) 2–6 2–57 1–11 4 4

Addressing modes 4 22 11 1 1

Number of  general-  purpose 
registers

16 16 8 40–520 32

Control memory size 
(kbits)

420 480 246 — —

Cache size (kB) 64 64 8 32 128

Superscalar

Characteristic PowerPC Ultra  
SPARC

MIPS  
R10000

Year developed 1993 1996 1996

Number of instructions 225

Instruction size (bytes) 4 4 4

Addressing modes 2 1 1

Number of  general-  purpose 
registers

32 40–520 32

Control memory size 
(kbits)

— — —

Cache size (kB) 16–32 32 64

for a different approach: namely, to make the architecture that supports the HLL 
simpler, rather than more complex.

To understand the line of reasoning of the RISC advocates, we begin with a 
brief review of instruction execution characteristics. The aspects of computation of 
interest are as follows:

 ■ Operations performed: These determine the functions to be performed by the 
processor and its interaction with memory.

 ■ Operands used: The types of operands and the frequency of their use deter-
mine the memory organization for storing them and the addressing modes for 
accessing them.

 ■ Execution sequencing: This determines the control and pipeline organization.
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In the remainder of this section, we summarize the results of a number of 
studies of  high-  level-  language programs. All of the results are based on dynamic 
measurements. That is, measurements are collected by executing the program and 
counting the number of times some feature has appeared or a particular property 
has held true. In contrast, static measurements merely perform these counts on 
the source text of a program. They give no useful information on performance, 
because they are not weighted relative to the number of times each statement is 
executed.

Operations

A variety of studies have been made to analyze the behavior of HLL programs. 
Table  4.7, discussed in Chapter  4, includes key results from a number of studies. 
There is quite good agreement in the results of this mixture of languages and appli-
cations. Assignment statements predominate, suggesting that the simple move-
ment of data is of high importance. There is also a preponderance of conditional 
statements (IF, LOOP). These statements are implemented in machine language 
with some sort of compare and branch instruction. This suggests that the sequence 
 control mechanism of the instruction set is important.

These results are instructive to the machine instruction set designer, indicating 
which types of statements occur most often and therefore should be supported in 
an “optimal” fashion. However, these results do not reveal which statements use 
the most time in the execution of a typical program. That is, we want to answer the 
question: Given a compiled  machine-  language program, which statements in the 
source language cause the execution of the most  machine-  language instructions and 
what is the execution time of these instructions?

To get at this underlying phenomenon, the Patterson programs [PATT82a], 
described in Appendix 4A, were compiled on the VAX,  PDP-  11, and Motorola 
68000 to determine the average number of machine instructions and memory refer-
ences per statement type. The second and third columns in Table 15.2 show the rel-
ative frequency of occurrence of various HLL statements in a variety of programs; 
the data were obtained by observing the occurrences in running programs rather 
than just the number of times that statements occur in the source code. Hence 
these metrics capture dynamic behavior. To obtain the data in columns four and 
five ( machine-  instruction weighted), each value in the second and third columns is 
multiplied by the number of machine instructions produced by the compiler. These 
results are then normalized so that columns four and five show the relative fre-
quency of occurrence, weighted by the number of machine instructions per HLL 
statement. Similarly, the sixth and seventh columns are obtained by multiplying the 
frequency of occurrence of each statement type by the relative number of memory 
references caused by each statement. The data in columns four through seven pro-
vide surrogate measures of the actual time spent executing the various statement 
types. The results suggest that the procedure call/return is the most  time-  consuming 
operation in typical HLL programs.

The reader should be clear on the significance of Table 15.2. This table indi-
cates the relative performance impact of various statement types in an HLL, when 



540  CHAPTER 15 / REduCEd InsTRuCTIon sET ComPuTERs 

that HLL is compiled for a typical contemporary instruction set architecture. Some 
other architecture could conceivably produce different results. However, this study 
produces results that are representative for contemporary complex instruction set 
computer (CISC) architectures. Thus, they can provide guidance to those looking 
for more efficient ways to support HLLs.

Operands

Much less work has been done on the occurrence of types of operands, despite the 
importance of this topic. There are several aspects that are significant.

The Patterson study already referenced [PATT82a] also looked at the dynamic 
frequency of occurrence of classes of variables (Table 15.3). The results, consistent 
between Pascal and C programs, show that most references are to simple scalar 
variables. Further, more than 80% of the scalars were local (to the procedure) var-
iables. In addition, each reference to an array or a structure requires a reference to 
an index or pointer, which again is usually a local scalar. Thus, there is a preponder-
ance of references to scalars, and these are highly localized.

The Patterson study examined the dynamic behavior of HLL programs, 
independent of the underlying architecture. As discussed before, it is necessary 
to deal with actual architectures to examine program behavior more deeply. One 
study, [LUND77], examined  DEC-  10 instructions dynamically and found that 
each instruction on the average references 0.5 operand in memory and 1.4 reg-
isters. Similar results are reported in [HUCK83] for C, Pascal, and FORTRAN 
programs on S/370,  PDP-  11, and VAX. Of course, these figures depend highly 
on both the architecture and the compiler, but they do illustrate the frequency of 
operand accessing.

Table 15.2 Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

Dynamic Occurrence
 Machine-  Instruction 

Weighted
 Memory-  Reference 

Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

Table 15.3 Dynamic Percentage of Operands

Pascal C Average

Integer constant 16% 23% 20%

Scalar variable 58% 53% 55%

Array/Structure 26% 24% 25%
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These latter studies suggest the importance of an architecture that lends itself 
to fast operand accessing, because this operation is performed so frequently. The 
Patterson study suggests that a prime candidate for optimization is the mechanism 
for storing and accessing local scalar variables.

Procedure Calls

We have seen that procedure calls and returns are an important aspect of HLL pro-
grams. The evidence (Table 15.2) suggests that these are the most  time-  consuming 
operations in compiled HLL programs. Thus, it will be profitable to consider ways 
of implementing these operations efficiently. Two aspects are significant: the num-
ber of parameters and variables that a procedure deals with, and the depth of 
nesting.

Tanenbaum’s study [TANE78] found that 98% of dynamically called pro-
cedures were passed fewer than six arguments and that 92% of them used fewer 
than six local scalar variables. Similar results were reported by the Berkeley RISC 
team [KATE83], as shown in Table 15.4. These results show that the number of 
words required per procedure activation is not large. The studies reported ear-
lier indicated that a high proportion of operand references is to local scalar varia-
bles. These studies show that those references are in fact confined to relatively few 
variables.

The same Berkeley group also looked at the pattern of procedure calls and 
returns in HLL programs. They found that it is rare to have a long uninterrupted 
sequence of procedure calls followed by the corresponding sequence of returns. 
Rather, they found that a program remains confined to a rather narrow window of 
 procedure-  invocation depth. This is illustrated in Figure 4.21, which was discussed 
in Chapter 4. These results reinforce the conclusion that operand references are 
highly localized.

Implications

A number of groups have looked at results such as those just reported and have con-
cluded that the attempt to make the instruction set architecture close to HLLs is not 
the most effective design strategy. Rather, the HLLs can best be supported by opti-
mizing performance of the most  time-  consuming features of typical HLL programs.

Table 15.4 Procedure Arguments and Local Scalar Variables

Percentage of Executed 
Procedure Calls With

Compiler, Interpreter,  
and Typesetter

Small Nonnumeric 
Programs

> 3 arguments 0–7% 0–5%

> 5 arguments 0–3% 0%

> 8 words of arguments and 
local scalars

1–20% 0–6%

> 12 words of arguments and 
local scalars

1–6% 0–3%
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Generalizing from the work of a number of researchers, three elements emerge 
that, by and large, characterize RISC architectures. First, use a large number of 
registers or use a compiler to optimize register usage. This is intended to optimize 
operand referencing. The studies just discussed show that there are several refer-
ences per HLL statement and that there is a high proportion of move (assignment) 
statements. This, coupled with the locality and predominance of scalar references, 
suggests that performance can be improved by reducing memory references at the 
expense of more register references. Because of the locality of these references, an 
expanded register set seems practical.

Second, careful attention needs to be paid to the design of instruction pipe-
lines. Because of the high proportion of conditional branch and procedure call 
instructions, a straightforward instruction pipeline will be inefficient. This man-
ifests itself as a high proportion of instructions that are prefetched but never 
executed.

Finally, an instruction set consisting of  high-  performance primitives is indi-
cated. Instructions should have predictable costs (measured in execution time, 
code size, and increasingly, in energy dissipation) and be consistent with a  high- 
 performance implementation (which harmonizes with predictable  execution-  time 
cost).

 15.2 THE USE OF A LARGE REGISTER FILE

The results summarized in Section 15.1 point out the desirability of quick access to 
operands. We have seen that there is a large proportion of assignment statements 
in HLL programs, and many of these are of the simple form A d B. Also, there is 
a significant number of operand accesses per HLL statement. If we couple these 
results with the fact that most accesses are to local scalars, heavy reliance on register 
storage is suggested.

The reason that register storage is indicated is that it is the fastest available 
storage device, faster than both main memory and cache. The register file is phys-
ically small, on the same chip as the ALU and control unit, and employs much 
shorter addresses than addresses for cache and memory. Thus, a strategy is needed 
that will allow the most frequently accessed operands to be kept in registers and to 
minimize  register-  memory operations.

Two basic approaches are possible, one based on software and the other 
on hardware. The software approach is to rely on the compiler to maximize reg-
ister usage. The compiler will attempt to assign registers to those variables that 
will be used the most in a given time period. This approach requires the use 
of sophisticated  program-  analysis algorithms. The hardware approach is simply 
to use more registers so that more variables can be held in registers for longer 
periods of time.

In this section, we will discuss the hardware approach. This approach has been 
pioneered by the Berkeley RISC group [PATT82a]; was used in the first commer-
cial RISC product, the Pyramid [RAGA83]; and is currently used in the popular 
SPARC architecture.
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Register Windows

On the face of it, the use of a large set of registers should decrease the need to access 
memory. The design task is to organize the registers in such a fashion that this goal 
is realized.

Because most operand references are to local scalars, the obvious approach 
is to store these in registers, with perhaps a few registers reserved for global vari-
ables. The problem is that the definition of local changes with each procedure call 
and return, operations that occur frequently. On every call, local variables must 
be saved from the registers into memory, so that the registers can be reused by the 
called procedure. Furthermore, parameters must be passed. On return, the vari-
ables of the calling procedure must be restored (loaded back into registers) and 
results must be passed back to the calling procedure.

The solution is based on two other results reported in Section 15.1. First, 
a typical procedure employs only a few passed parameters and local variables 
(Table  15.4). Second, the depth of procedure activation fluctuates within a rela-
tively narrow range (Figure 4.21). To exploit these properties, multiple small sets 
of registers are used, each assigned to a different procedure. A procedure call auto-
matically switches the processor to use a different  fixed-  size window of registers, 
rather than saving registers in memory. Windows for adjacent procedures are over-
lapped to allow parameter passing.

The concept is illustrated in Figure 15.1. At any time, only one window of reg-
isters is visible and is addressable as if it were the only set of registers (e.g., addresses 
0 through N - 1). The window is divided into three  fixed-  size areas. Parameter 
registers hold parameters passed down from the procedure that called the current 
procedure and hold results to be passed back up. Local registers are used for local 
variables, as assigned by the compiler. Temporary registers are used to exchange 
parameters and results with the next lower level (procedure called by current proce-
dure). The temporary registers at one level are physically the same as the parameter 
registers at the next lower level. This overlap permits parameters to be passed with-
out the actual movement of data. Keep in mind that, except for the overlap, the reg-
isters at two different levels are physically distinct. That is, the parameter and local 
registers at level J are disjoint from the local and temporary registers at level J + 1.

To handle any possible pattern of calls and returns, the number of register 
windows would have to be unbounded. Instead, the register windows can be used 
to hold the few most recent procedure activations. Older activations must be saved 
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Figure 15.1 Overlapping Register Windows
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in memory and later restored when the nesting depth decreases. Thus, the actual 
organization of the register file is as a circular buffer of overlapping windows. Two 
notable examples of this approach are Sun’s SPARC architecture, described in Sec-
tion 15.7, and the  IA-  64 architecture used in Intel’s Itanium processor.

The circular organization is shown in Figure 15.2, which depicts a circular 
buffer of six windows. The buffer is filled to a depth of 4 (A called B; B called C; 
C called D) with procedure D active. The  current-  window pointer (CWP) points 
to the window of the currently active procedure. Register references by a machine 
instruction are offset by this pointer to determine the actual physical register. The 
 saved-  window pointer (SWP) identifies the window most recently saved in memory. 
If procedure D now calls procedure E, arguments for E are placed in D’s tempo-
rary registers (the overlap between w3 and w4) and the CWP is advanced by one 
window.

If procedure E then makes a call to procedure F, the call cannot be made with 
the current status of the buffer. This is because F’s window overlaps A’s window. If 
F begins to load its temporary registers, preparatory to a call, it will overwrite the 
parameter registers of A (A.in). Thus, when CWP is incremented (modulo 6) so 
that it becomes equal to SWP, an interrupt occurs, and A’s window is saved. Only 
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the first two portions (A.in and A.loc) need be saved. Then, the SWP is incremented 
and the call to F proceeds. A similar interrupt can occur on returns. For example, 
subsequent to the activation of F, when B returns to A, CWP is decremented and 
becomes equal to SWP. This causes an interrupt that results in the restoration of 
A’s window.

From the preceding, it can be seen that an  N-  window register file can hold 
only N - 1 procedure activations. The value of N need not be large. As was men-
tioned in Appendix 4A, one study [TAMI83] found that, with 8 windows, a save or 
restore is needed on only 1% of the calls or returns. The Berkeley RISC computers 
use 8 windows of 16 registers each. The Pyramid computer employs 16 windows of 
32 registers each.

Global Variables

The window scheme just described provides an efficient organization for storing 
local scalar variables in registers. However, this scheme does not address the need 
to store global variables, those accessed by more than one procedure. Two options 
suggest themselves. First, variables declared as global in an HLL can be assigned 
memory locations by the compiler, and all machine instructions that reference these 
variables will use  memory-  reference operands. This is straightforward, from both the 
hardware and software (compiler) points of view. However, for frequently accessed 
global variables, this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These 
registers would be fixed in number and available to all procedures. A unified num-
bering scheme can be used to simplify the instruction format. For example, refer-
ences to registers 0 through 7 could refer to unique global registers, and references 
to registers 8 through 31 could be offset to refer to physical registers in the current 
window. There is an increased hardware burden to accommodate the split in regis-
ter addressing. In addition, the linker must decide which global variables should be 
assigned to registers.

Large Register File versus Cache

The register file, organized into windows, acts as a small, fast buffer for holding a sub-
set of all variables that are likely to be used the most heavily. From this point of view, 
the register file acts much like a cache memory, although a much faster memory. The 
question therefore arises as to whether it would be simpler and better to use a cache 
and a small traditional register file.

Table 15.5 compares characteristics of the two approaches. The  window-  based 
register file holds all the local scalar variables (except in the rare case of window 
overflow) of the most recent N - 1 procedure activations. The cache holds a selec-
tion of recently used scalar variables. The register file should save time, because all 
local scalar variables are retained. On the other hand, the cache may make more 
efficient use of space, because it is reacting to the situation dynamically. Further-
more, caches generally treat all memory references alike, including instructions and 
other types of data. Thus, savings in these other areas are possible with a cache and 
not a register file.
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A register file may make inefficient use of space, because not all procedures 
will need the full window space allotted to them. On the other hand, the cache 
suffers from another sort of inefficiency: Data are read into the cache in blocks. 
Whereas the register file contains only those variables in use, the cache reads in a 
block of data, some or much of which will not be used.

The cache is capable of handling global as well as local variables. There are 
usually many global scalars, but only a few of them are heavily used [KATE83]. A 
cache will dynamically discover these variables and hold them. If the  window-  based 
register file is supplemented with global registers, it too can hold some global sca-
lars. However, when program modules are separately compiled, it is impossible for 
the compiler to assign global values to registers; the linker must perform this task.

With the register file, the movement of data between registers and memory is 
determined by the procedure nesting depth. Because this depth usually fluctuates 
within a narrow range, the use of memory is relatively infrequent. Most cache mem-
ories are set associative with a small set size. Thus, there is the danger that other 
data or instructions will compete for cache residency.

Based on the discussion so far, the choice between a large  window-  based reg-
ister file and a cache is not  clear-  cut. There is one characteristic, however, in which 
the register approach is clearly superior and which suggests that a  cache-  based sys-
tem will be noticeably slower. This distinction shows up in the amount of addressing 
overhead experienced by the two approaches.

Figure 15.3 illustrates the difference. To reference a local scalar in a  window- 
 based register file, a “virtual” register number and a window number are used. 
These can pass through a relatively simple decoder to select one of the physical reg-
isters. To reference a memory location in cache, a  full-  width memory address must 
be generated. The complexity of this operation depends on the addressing mode. In 
a set associative cache, a portion of the address is used to read a number of words 
and tags equal to the set size. Another portion of the address is compared with the 
tags, and one of the words that were read is selected. It should be clear that even if 
the cache is as fast as the register file, the access time will be considerably longer. 
Thus, from the point of view of performance, the  window-  based register file is supe-
rior for local scalars. Further performance improvement could be achieved by the 
addition of a cache for instructions only.

Table 15.5 Characteristics of  Large-  Register-  File and Cache Organizations

Large Register File Cache

All local scalars

Individual variables

 Compiler-  assigned global variables

Save/Restore based on procedure nesting 
depth

Register addressing

Multiple operands addressed and accessed 
in one cycle

 Recently-  used local scalars

Blocks of memory

 Recently-  used global variables

Save/Restore based on cache 
replacement algorithm

Memory addressing

One operand addressed and 
accessed per cycle
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 15.3  COMPILER-  BASED REGISTER OPTIMIZATION

Let us assume now that only a small number (e.g., 16–32) of registers is available on 
the target RISC machine. In this case, optimized register usage is the responsibility 
of the compiler. A program written in a  high-  level language has, of course, no explicit 
references to registers (the  C-  language keyword register notwithstanding). Rather, 
program quantities are referred to symbolically. The objective of the compiler is to 
keep the operands for as many computations as possible in registers rather than 
main memory, and to minimize  load-  and-  store operations.

In general, the approach taken is as follows. Each program quantity that is 
a candidate for residing in a register is assigned to a symbolic or virtual register. 
The compiler then maps the unlimited number of symbolic registers into a fixed 
number of real registers. Symbolic registers whose usage does not overlap can share 
the same real register. If, in a particular portion of the program, there are more 
quantities to deal with than real registers, then some of the quantities are assigned 
to memory locations.  Load-  and-  store instructions are used to position quantities in 
registers temporarily for computational operations.

Data
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Instruction

Registers
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Figure 15.3 Referencing a Scalar
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The essence of the optimization task is to decide which quantities are to be 
assigned to registers at any given point in the program. The technique most com-
monly used in RISC compilers is known as graph coloring, which is a technique bor-
rowed from the discipline of topology [CHAI82, CHOW86, COUT86, CHOW90].

The graph coloring problem is this. Given a graph consisting of nodes and 
edges, assign colors to nodes such that adjacent nodes have different colors, and 
do this in such a way as to minimize the number of different colors. This problem 
is adapted to the compiler problem in the following way. First, the program is ana-
lyzed to build a register interference graph. The nodes of the graph are the symbolic 
registers. If two symbolic registers are “live” during the same program fragment, 
then they are joined by an edge to depict interference. An attempt is then made to 
color the graph with n colors, where n is the number of registers. Nodes that share 
the same color can be assigned to the same register. If this process does not fully 
succeed, then those nodes that cannot be colored must be placed in memory, and 
loads and stores must be used to make space for the affected quantities when they 
are needed.

Figure 15.4 is a simple example of the process. Assume a program with six 
symbolic registers to be compiled into three actual registers. Figure 15.4a shows the 
time sequence of active use of each symbolic register. The dashed horizontal lines 
indicate successive instruction executions. Figure 15.4b shows the register interfer-
ence graph (shading and  stripes are used instead of colors). A possible coloring 
with three colors is indicated. Because symbolic registers A and D do not interfere, 
the compile can assign both of these to physical register R1. Similarly, symbolic 
registers C and E can be assigned to register R3. One symbolic register, F, is left 
uncolored and must be dealt with using loads and stores.

In general, there is a  trade-  off between the use of a large set of registers and 
 compiler-  based register optimization. For example, [BRAD91a] reports on a study 
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that modeled a RISC architecture with features similar to the Motorola 88000 and 
the MIPS R2000. The researchers varied the number of registers from 16 to 128, 
and they considered both the use of all  general-  purpose registers and registers split 
between integer and  floating-  point use. Their study showed that with even simple 
register optimization, there is little benefit to the use of more than 64 registers. With 
reasonably sophisticated register optimization techniques, there is only marginal 
performance improvement with more than 32 registers. Finally, they noted that 
with a small number of registers (e.g., 16), a machine with a shared register organi-
zation executes faster than one with a split organization. Similar conclusions can be 
drawn from [HUGU91], which reports on a study that is primarily concerned with 
optimizing the use of a small number of registers rather than comparing the use of 
large register sets with optimization efforts.

 15.4 REDUCED INSTRUCTION SET ARCHITECTURE

In this section, we look at some of the general characteristics of and the motivation 
for a reduced instruction set architecture. Specific examples will be seen later in 
this chapter. We begin with a discussion of motivations for contemporary complex 
instruction set architectures.

Why CISC

We have noted the trend to richer instruction sets, which include a larger number 
of instructions and more complex instructions. Two principal reasons have moti-
vated this trend: a desire to simplify compilers and a desire to improve performance. 
Underlying both of these reasons was the shift to HLLs on the part of programmers; 
architects attempted to design machines that provided better support for HLLs.

It is not the intent of this chapter to say that the CISC designers took the 
wrong direction. Indeed, because technology continues to evolve and because archi-
tectures exist along a spectrum rather than in two neat categories, a  black-  and-  white 
assessment is unlikely ever to emerge. Thus, the comments that follow are simply 
meant to point out some of the potential pitfalls in the CISC approach and to pro-
vide some understanding of the motivation of the RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious, but it is 
not. The task of the compiler writer is to build a compiler that generates good (fast, 
small, fast and small) sequences of machine instructions for HLL programs (i.e., the 
compiler views individual HLL statements in the context of surrounding HLL state-
ments). If there are machine instructions that resemble HLL statements, this task is 
simplified. This reasoning has been disputed by the RISC researchers ([HENN82], 
[RADI83], [PATT82b]). They have found that complex machine instructions are 
often hard to exploit because the compiler must find those cases that exactly fit 
the construct. The task of optimizing the generated code to minimize code size, 
reduce instruction execution count, and enhance pipelining is much more difficult 
with a complex instruction set. As evidence of this, studies cited earlier in this chap-
ter  indicate that most of the instructions in a compiled program are the relatively 
simple ones.
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The other major reason cited is the expectation that a CISC will yield smaller, 
faster programs. Let us examine both aspects of this assertion: that programs will be 
smaller and that they will execute faster.

There are two advantages to smaller programs. Because the program takes up 
less memory, there is a savings in that resource. With memory today being so inex-
pensive, this potential advantage is no longer compelling. More important, smaller 
programs should improve performance, and this will happen in three ways. First, 
fewer instructions means fewer instruction bytes to be fetched. Second, in a paging 
environment, smaller programs occupy fewer pages, reducing page faults. Third, 
more instructions fit in cache(s).

The problem with this line of reasoning is that it is far from certain that a CISC 
program will be smaller than a corresponding RISC program. In many cases, the 
CISC program, expressed in symbolic machine language, may be shorter (i.e., fewer 
instructions), but the number of bits of memory occupied may not be noticeably 
smaller. Table 15.6 shows results from three studies that compared the size of com-
piled C programs on a variety of machines, including RISC I, which has a reduced 
instruction set architecture. Note that there is little or no savings using a CISC over 
a RISC. It is also interesting to note that the VAX, which has a much more complex 
instruction set than the  PDP-  11, achieves very little savings over the latter. These 
results were confirmed by IBM researchers [RADI83], who found that the IBM 801 
(a RISC) produced code that was 0.9 times the size of code on an IBM S/370. The 
study used a set of PL/I programs.

There are several reasons for these rather surprising results. We have already 
noted that compilers on CISCs tend to favor simpler instructions, so that the con-
ciseness of the complex instructions seldom comes into play. Also, because there 
are more instructions on a CISC, longer opcodes are required, producing longer 
instructions. Finally, RISCs tend to emphasize register rather than memory refer-
ences, and the former require fewer bits. An example of this last effect is discussed 
presently.

So the expectation that a CISC will produce smaller programs, with the atten-
dant advantages, may not be realized. The second motivating factor for increasingly 
complex instruction sets was that instruction execution would be faster. It seems to 
make sense that a complex HLL operation will execute more quickly as a single 
machine instruction rather than as a series of more primitive instructions. However, 
because of the bias toward the use of those simpler instructions, this may not be so. 

Table 15.6 Code Size Relative to RISC I

[PATT82a] 11 C 
Programs

[KATE83] 12 C 
Programs

[HEAT84] 5 C 
Programs

RISC I 1.0 1.0 1.0

 VAX-  11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

 PDP-  11/70 0.9 0.71
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The entire control unit must be made more complex, and/or the microprogram con-
trol store must be made larger, to accommodate a richer instruction set. Either factor 
increases the execution time of the simple instructions.

In fact, some researchers have found that the speedup in the execution of com-
plex functions is due not so much to the power of the complex machine instructions 
as to their residence in  high-  speed control store [RADI83]. In effect, the control 
store acts as an instruction cache. Thus, the hardware architect is in the position of 
trying to determine which subroutines or functions will be used most frequently and 
assigning those to the control store by implementing them in microcode. The results 
have been less than encouraging. On S/390 systems, instructions such as Translate 
and  Extended-  Precision-  Floating-  Point-  Divide reside in  high-  speed storage, while 
the sequence involved in setting up procedure calls or initiating an interrupt handler 
are in slower main memory.

Thus, it is far from clear that a trend to increasingly complex instruction sets is 
appropriate. This has led a number of groups to pursue the opposite path.

Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture 
have been taken, certain characteristics are common to all of them:

 ■ One instruction per cycle
 ■  Register-  to-  register operations
 ■ Simple addressing modes
 ■ Simple instruction formats

Here, we provide a brief discussion of these characteristics. Specific examples are 
explored later in this chapter.

The first characteristic listed is that there is one machine instruction per 
machine cycle. A machine cycle is defined to be the time it takes to fetch two oper-
ands from registers, perform an ALU operation, and store the result in a register. 
Thus, RISC machine instructions should be no more complicated than, and execute 
about as fast as, microinstructions on CISC machines (discussed in Part Four). With 
simple,  one-  cycle instructions, there is little or no need for microcode; the machine 
instructions can be hardwired. Such instructions should execute faster than compa-
rable machine instructions on other machines, because it is not necessary to access a 
microprogram control store during instruction execution.

A second characteristic is that most operations should be register to register, 
with only simple LOAD and STORE operations accessing memory. This design 
feature simplifies the instruction set and therefore the control unit. For example, a 
RISC instruction set may include only one or two ADD instructions (e.g., integer 
add, add with carry); the VAX has 25 different ADD instructions. Another benefit 
is that such an architecture encourages the optimization of register use, so that fre-
quently accessed operands remain in  high-  speed storage.

This emphasis on  register-  to-  register operations is notable for RISC designs. 
Contemporary CISC machines provide such instructions but also include  memory- 
 to-  memory and mixed register/memory operations. Attempts to compare these 
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approaches were made in the 1970s, before the appearance of RISCs. Figure 15.5a 
illustrates the approach taken. Hypothetical architectures were evaluated on pro-
gram size and the number of bits of memory traffic. Results such as this one led 
one researcher to suggest that future architectures should contain no registers at 
all [MYER78]. One wonders what he would have thought, at the time, of the RISC 
machine once produced by Pyramid, which contained no less than 528 registers!

What was missing from those studies was a recognition of the frequent access 
to a small number of local scalars and that, with a large bank of registers or an opti-
mizing compiler, most operands could be kept in registers for long periods of time. 
Thus, Figure 15.5b may be a fairer comparison.

A third characteristic is the use of simple addressing modes. Almost all RISC 
instructions use simple register addressing. Several additional modes, such as dis-
placement and  PC-  relative, may be included. Other, more complex modes can be 
synthesized in software from the simple ones. Again, this design feature simplifies 
the instruction set and the control unit.

A final common characteristic is the use of simple instruction formats. Gen-
erally, only one or a few formats are used. Instruction length is fixed and aligned on 
word boundaries. Field locations, especially the opcode, are fixed. This design fea-
ture has a number of benefits. With fixed fields, opcode decoding and register oper-
and accessing can occur simultaneously. Simplified formats simplify the control unit. 
Instruction fetching is optimized because  word-  length units are fetched. Alignment on 
a word boundary also means that a single instruction does not cross page boundaries.

Taken together, these characteristics can be assessed to determine the poten-
tial performance benefits of the RISC approach. A certain amount of “circumstantial 
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evidence” can be presented. First, more effective optimizing compilers can be devel-
oped. With  more-  primitive instructions, there are more opportunities for moving 
functions out of loops, reorganizing code for efficiency, maximizing register utili-
zation, and so forth. It is even possible to compute parts of complex instructions at 
compile time. For example, the S/390 Move Characters (MVC) instruction moves a 
string of characters from one location to another. Each time it is executed, the move 
will depend on the length of the string, whether and in which direction the locations 
overlap, and what the alignment characteristics are. In most cases, these will all be 
known at compile time. Thus, the compiler could produce an optimized sequence of 
primitive instructions for this function.

A second point, already noted, is that most instructions generated by a com-
piler are relatively simple anyway. It would seem reasonable that a control unit built 
specifically for those instructions and using little or no microcode could execute 
them faster than a comparable CISC.

A third point relates to the use of instruction pipelining. RISC researchers feel 
that the instruction pipelining technique can be applied much more effectively with 
a reduced instruction set. We examine this point in some detail presently.

A final, and somewhat less significant, point is that RISC processors are more 
responsive to interrupts because interrupts are checked between rather elemen-
tary operations. Architectures with complex instructions either restrict interrupts to 
instruction boundaries or must define specific interruptible points and implement 
mechanisms for restarting an instruction.

The case for improved performance for a reduced instruction set architecture 
is strong, but one could perhaps still make an argument for CISC. A number of 
studies have been done, but not on machines of comparable technology and power. 
Further, most studies have not attempted to separate the effects of a reduced 
instruction set and the effects of a large register file. The “circumstantial evidence,” 
however, is suggestive.

CISC versus RISC Characteristics

After the initial enthusiasm for RISC machines, there has been a growing realization 
that (1) RISC designs may benefit from the inclusion of some CISC features and that 
(2) CISC designs may benefit from the inclusion of some RISC features. The result is 
that the more recent RISC designs, notably the PowerPC, are no longer “pure” RISC 
and the more recent CISC designs, notably the Pentium II and later Pentium models, 
do incorporate some RISC characteristics.

An interesting comparison in [MASH95] provides some insight into this issue. 
Table 15.7 lists a number of processors and compares them across a number of char-
acteristics. For purposes of this comparison, the following are considered typical of 
a classic RISC:

1. A single instruction size.

2. That size is typically 4 bytes.

3. A small number of data addressing modes, typically less than five. This 
parameter is difficult to pin down. In the table, register and literal modes 
are not counted and different formats with different offset sizes are counted 
separately.



Table 15.7 Characteristics of Some Processors

Processor

Number of 
instruction 

sizes

Max  
instruction 

size  
in bytes

Number of 
addressing 

modes
Indirect 

addressing

Load/store 
combined 

with 
arithmetic

Max  
number of 
memory 
operands

Unaligned 
addressing 

allowed

Max  
number  
of MMU 

uses

Number of 
bits for  
integer  
register 
specifier

Number 
of bits for 

FP register 
specifier

AMD29000 1 4 1 no no 1 no 1 8 3a

MIPS R2000 1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10a no no 1 no 1 5 4

IBM RT/PC 2a 4 1 no no 1 no 1 4a 3a

IBM RS/6000 1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2b
nob yes 2 yes 4 4 2

Intel 80486 12 12 15 nob yes 2 yes 4 3 3

NSC 32016 21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4a    8a 9a no no 1 0 2 4a 3a

Intel 80960 2a    8a 9a no no 1 yesa — 5 3a

Notes: a RISC that does not conform to this characteristic.
b CISC that does not conform to this characteristic.
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4. No indirect addressing that requires you to make one memory access to get 
the address of another operand in memory.

5. No operations that combine load/store with arithmetic (e.g., add from mem-
ory, add to memory).

6. No more than one  memory-  addressed operand per instruction.

7. Does not support arbitrary alignment of data for load/store operations.

8. Maximum number of uses of the memory management unit (MMU) for a data 
address in an instruction.

9. Number of bits for integer register specifier equal to five or more. This means 
that at least 32 integer registers can be explicitly referenced at a time.

10. Number of bits for  floating-  point register specifier equal to four or more. This 
means that at least 16  floating-  point registers can be explicitly referenced at a 
time.

Items 1 through 3 are an indication of instruction decode complexity. Items 4 
through 8 suggest the ease or difficulty of pipelining, especially in the presence of 
virtual memory requirements. Items 9 and 10 are related to the ability to take good 
advantage of compilers.

In the table, the first eight processors are clearly RISC architectures, the next 
five are clearly CISC, and the last two are processors often thought of as RISC that 
in fact have many CISC characteristics.

 15.5 RISC PIPELINING

Pipelining with Regular Instructions

As we discussed in Section 12.4, instruction pipelining is often used to enhance per-
formance. Let us reconsider this in the context of a RISC architecture. Most instruc-
tions are register to register, and an instruction cycle has the following two stages:

 ■ I: Instruction fetch.
 ■ E: Execute. Performs an ALU operation with register input and output.

For load and store operations, three stages are required:

 ■ I: Instruction fetch.
 ■ E: Execute. Calculates memory address.
 ■ D: Memory.  Register-  to-  memory or  memory-  to-  register operation.

Figure 15.6a depicts the timing of a sequence of instructions using no pipe-
lining. Clearly, this is a wasteful process. Even very simple pipelining can substan-
tially improve performance. Figure 15.6b shows a  two-  stage pipelining scheme, in 
which the I and E stages of two different instructions are performed simultane-
ously. The two stages of the pipeline are an instruction fetch stage, and an  execute/
memory stage that executes the instruction, including  register-  to-  memory and 
 memory-  to-  register operations. Thus we see that the instruction fetch stage of the 
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second instruction can be performed in parallel with the first part of the execute/
memory stage. However, the execute/memory stage of the second instruction must 
be delayed until the first instruction clears the second stage of the pipeline. This 
scheme can yield up to twice the execution rate of a serial scheme. Two problems 
prevent the maximum speedup from being achieved. First, we assume that a  single- 
 port memory is used and that only one memory access is possible per stage. This 
requires the insertion of a wait state in some instructions. Second, a branch instruc-
tion interrupts the sequential flow of execution. To accommodate this with mini-
mum circuitry, a NOOP instruction can be inserted into the instruction stream by 
the compiler or assembler.

Pipelining can be improved further by permitting two memory accesses per 
stage. This yields the sequence shown in Figure 15.6c. Now, up to three instructions 
can be overlapped, and the improvement is as much as a factor of 3. Again, branch 
instructions cause the speedup to fall short of the maximum possible. Also, note 
that data dependencies have an effect. If an instruction needs an operand that is 
altered by the preceding instruction, a delay is required. Again, this can be accom-
plished by a NOOP.

The pipelining discussed so far works best if the three stages are of approxi-
mately equal duration. Because the E stage usually involves an ALU operation, it 
may be longer. In this case, we can divide into two substages:

 ■ E1: Register file read
 ■ E2: ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design 
of the phasing into three or four stages is easily accomplished. Figure 15.6d shows 
the result with a  four-  stage pipeline. Up to four instructions at a time can be under 
way, and the maximum potential speedup is a factor of 4. Note again the use of 
NOOPs to account for data and branch delays.

I E1 E2 D 
I E1 E2

I E1 E2

I E1 E2

I E1 E2
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I E1 E2

I E1 E2

I E1 E2

I E1 E2
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Branch X

I E D 

I E 

I E 

D 
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NOOP
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(d) Four-stage pipelined timing

(b) Two-stage pipelined timing

I E D 
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D 
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(a) Sequential execution

I E D 
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(c) Three-stage pipelined timing

Load rA      M
Load rB      M
Add rC      rA + rB
Store M      rC

Load  rA      M
Load  rB      M
Add  rC      rA + rB
Store  M      rC

Load rA      M
Load rB      M

Add rC      rA + rB
Store M      rC

Load rA      M
Load rB      M

Add rC      rA + rB
Store M      rC

Figure 15.6 The Effects of Pipelining
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Optimization of Pipelining

Because of the simple and regular nature of RISC instructions, it is easier for a hard-
ware designer to implement a simple, fast pipeline. There are few variations in instruc-
tion execution duration, and the pipeline can be tailored to reflect this. However, we 
have seen that data and branch dependencies reduce the overall execution rate.

delayed branch To compensate for these dependencies, code reorganization 
techniques have been developed. First, let us consider branching instructions. 
Delayed branch, a way of increasing the efficiency of the pipeline, makes use of a 
branch that does not take effect until after execution of the following instruction 
(hence the term delayed). The instruction location immediately following the branch 
is referred to as the delay slot. This strange procedure is illustrated in Table 15.8. In 
the column labeled “normal branch,” we see a normal symbolic instruction  machine- 
 language program. After 102 is executed, the next instruction to be executed is 105. 
To regularize the pipeline, a NOOP is inserted after this branch. However, increased 
performance is achieved if the instructions at 101 and 102 are interchanged.

Figure 15.7 shows the result. Figure 15.7a shows the traditional approach to 
pipelining, of the type discussed in Chapter 14 (e.g., see Figures 14.11 and 14.12). The 
JUMP instruction is fetched at time 4. At time 5, the JUMP instruction is executed 
at the same time that instruction 103 (ADD instruction) is fetched. Because a JUMP 
occurs, which updates the program counter, the pipeline must be cleared of instruc-
tion 103; at time 6, instruction 105, which is the target of the JUMP, is loaded. Fig-
ure 15.7b shows the same pipeline handled by a typical RISC organization. The timing 
is the same. However, because of the insertion of the NOOP instruction, we do not 
need special circuitry to clear the pipeline; the NOOP simply executes with no effect. 
Figure 15.7c shows the use of the delayed branch. The JUMP instruction is fetched at 
time 2, before the ADD instruction, which is fetched at time 3. Note, however, that 
the ADD instruction is fetched before the execution of the JUMP instruction has a 
chance to alter the program counter. Therefore, during time 4, the ADD instruction is 
executed at the same time that instruction 105 is fetched. Thus, the original semantics 
of the program are retained but two fewer clock cycles are required for execution.

This interchange of instructions will work successfully for unconditional 
branches, calls, and returns. For conditional branches, this procedure cannot be 
blindly applied. If the condition that is tested for the branch can be altered by the 

Table 15.8 Normal and Delayed Branch

Address Normal Branch Delayed Branch
Optimized  
Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z
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immediately preceding instruction, then the compiler must refrain from doing the 
interchange and instead insert a NOOP. Otherwise, the compiler can seek to insert 
a useful instruction after the branch. The experience with both the Berkeley RISC 
and IBM 801 systems is that the majority of conditional branch instructions can be 
optimized in this fashion ([PATT82a], [RADI83]).

delayed load A similar sort of tactic, called the delayed load, can be used on 
LOAD instructions. On LOAD instructions, the register that is to be the target of 
the load is locked by the processor. The processor then continues execution of the 
instruction stream until it reaches an instruction requiring that register, at which 
point it idles until the load is complete. If the compiler can rearrange instructions so 
that useful work can be done while the load is in the pipeline, efficiency is increased.

Loop Unrolling Simulator

(a) Traditional pipeline

100 LOAD X, rA

Time

101 ADD 1, rA

102 JUMP 105

103 ADD rA, rB

105 STORE rA, Z

(b) RISC pipeline with inserted NOOP

100 LOAD X, rA

1

101 ADD 1, rA

102 JUMP 106

103 NOOP

106 STORE rA, Z

(c) Reversed instructions

100 LOAD X, Ar

101 JUMP 105
102 ADD 1, rA

105 STORE rA, Z
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Figure 15.7 Use of the Delayed Branch
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loop unrolling Another compiler technique to improve instruction parallelism 
is loop unrolling [BACO94]. Unrolling replicates the body of a loop some number 
of times called the unrolling factor (u) and iterates by step u instead of step 1.

Unrolling can improve the performance by

 ■ reducing loop overhead
 ■ increasing instruction parallelism by improving pipeline performance
 ■ improving register, data cache, or TLB locality

Figure 15.8 illustrates all three of these improvements in an example. Loop 
overhead is cut in half because two iterations are performed before the test and 
branch at the end of the loop. Instruction parallelism is increased because the sec-
ond assignment can be performed while the results of the first are being stored and 
the loop variables are being updated. If array elements are assigned to registers, 
register locality will improve because a[i] and a[i + 1] are used twice in the loop 
body, reducing the number of loads per iteration from three to two.

As a final note, we should point out that the design of the instruction pipeline 
should not be carried out in isolation from other optimization techniques applied to 
the system. For example, [BRAD91b] shows that the scheduling of instructions for 
the pipeline and the dynamic allocation of registers should be considered together 
to achieve the greatest efficiency.

 15.6 MIPS R4000

One of the first commercially available RISC chip sets was developed by MIPS 
Technology Inc. The system was inspired by an experimental system, also using the 
name MIPS, developed at Stanford [HENN84]. In this section we look at the MIPS 

do i=2, n−1
 a[i] = a[i] + a[i−1] * a[i+1]

end do

(a) Original loop

do i=2, n−2, 2
 a[i] = a[i] + a[i−1] * a[i+1]

 a[i+1] = a[i+1] + a[i] * a[i+2]

end do

if (mod(n−2, 2) = i) then
 a[n−1] = a[n−1] + a[n−2] * a[n]

end if

(b) Loop unrolled twice

Figure 15.8 Loop Unrolling
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R4000. It has substantially the same architecture and instruction set of the earlier 
MIPS designs: the R2000 and R3000. The most significant difference is that the 
R4000 uses 64 rather than 32 bits for all internal and external data paths and for 
addresses, registers, and the ALU.

The use of 64 bits has a number of advantages over a 32-bit architecture. It 
allows a bigger address  space—  large enough for an operating system to map more 
than a terabyte of files directly into virtual memory for easy access. With 1-tera-
byte and larger disk drives now common, the 4-gigabyte address space of a 32-bit 
machine becomes limiting. Also, the 64-bit capacity allows the R4000 to process 
data such as IEEE  double-  precision  floating-  point numbers and character strings, 
up to eight characters in a single action.

The R4000 processor chip is partitioned into two sections, one containing the 
CPU and the other containing a coprocessor for memory management. The pro-
cessor has a very simple architecture. The intent was to design a system in which 
the instruction execution logic was as simple as possible, leaving space available for 
logic to enhance performance (e.g., the entire  memory-  management unit).

The processor supports  thirty-  two 64-bit registers. It also provides for up to 
128 Kbytes of  high-  speed cache, half each for instructions and data. The relatively 
large cache (the IBM 3090 provides 128 to 256 Kbytes of cache) enables the system 
to keep large sets of program code and data local to the processor,  off-  loading the 
main memory bus and avoiding the need for a large register file with the accompa-
nying windowing logic.

Instruction Set

All MIPS R series instructions are encoded in a single 32-bit word format. All data 
operations are register to register; the only memory references are pure load/store 
operations.

The R4000 makes no use of condition codes. If an instruction generates a con-
dition, the corresponding flags are stored in a  general-  purpose register. This avoids 
the need for special logic to deal with condition codes, as they affect the pipelining 
mechanism and the reordering of instructions by the compiler. Instead, the mecha-
nisms already implemented to deal with  register-  value dependencies are employed. 
Further, conditions mapped onto the register files are subject to the same  compile- 
 time optimizations in allocation and reuse as other values stored in registers.

As with most  RISC-  based machines, the MIPS uses a single 32-bit instruction 
length. This single instruction length simplifies instruction fetch and decode, and 
it also simplifies the interaction of instruction fetch with the virtual memory man-
agement unit (i.e., instructions do not cross word or page boundaries). The three 
instruction formats (Figure 15.9) share common formatting of opcodes and register 
references, simplifying instruction decode. The effect of more complex instructions 
can be synthesized at compile time.

Only the simplest and most frequently used  memory-  addressing mode is 
implemented in hardware. All memory references consist of a 16-bit offset from a 
32-bit register. For example, the “load word” instruction is of the form

lw r2, 128(r3)  /* load word at address 128 offset from  
register 3 into register 2
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Each of the 32  general-  purpose registers can be used as the base register. One reg-
ister, r0, always contains 0.

The compiler makes use of multiple machine instructions to synthesize typical 
addressing modes in conventional machines. Here is an example from [CHOW87], 
which uses the instruction lui (load upper immediate). This instruction loads the 
upper half of a register with a 16-bit immediate value, setting the lower half to zero. 
Consider an  assembly-  language instruction that uses a 32-bit immediate argument

lw r2, #imm(r4)  /* load word at address using a 32-bit  
immediate offset #imm 
/* offset from register 4 into register 2

This instruction can be compiled into the following MIPS instructions

lui r1, # imm-  hi    /* where # imm-  hi is the  high-  order  
16 bits of #imm

addu r1, r1, r4    /* add unsigned # imm-  hi to r4 and  
put in r1

lw r2, # imm-  lo(r1)  /* where # imm-  lo is the  low-  order  
16 bits of #imm

Instruction Pipeline

With its simplified instruction architecture, the MIPS can achieve very efficient pipe-
lining. It is instructive to look at the evolution of the MIPS pipeline, as it illustrates 
the evolution of RISC pipelining in general.

The initial experimental RISC systems and the first generation of commercial 
RISC processors achieve execution speeds that approach one instruction per system 
clock cycle. To improve on this performance, two classes of processors have evolved 

Operation

Operation Operation code
rs Source register speci�er
rt Source/destination register speci�er
Immediate Immediate, branch, or address displacement
Target Jump target address
rd Destination register speci�er
Shift Shift amount
Function ALU/shift function speci�er

I-type
(immediate)

rs

6 5 5 16

rt Immediate

OperationJ-type
(jump)

6 26

Target

OperationR-type
(register)

rs

6 5 5 5

rt rd

5 6

Shift Function

Figure 15.9 MIPS Instruction Formats
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to offer execution of multiple instructions per clock cycle: superscalar and super-
pipelined architectures. In essence, a superscalar architecture replicates each of the 
pipeline stages so that two or more instructions at the same stage of the pipeline can 
be processed simultaneously. A superpipelined architecture is one that makes use 
of more, and more  fine-  grained, pipeline stages. With more stages, more instruc-
tions can be in the pipeline at the same time, increasing parallelism.

Both approaches have limitations. With superscalar pipelining, dependencies 
between instructions in different pipelines can slow down the system. Also,  over- 
 head logic is required to coordinate these dependencies. With superpipelining, there 
is overhead associated with transferring instructions from one stage to the next.

Chapter 16 is devoted to a study of superscalar architecture. The MIPS R4000 
is a good example of a  RISC-  based superpipeline architecture.

MIPS R3000 Five-Stage Pipeline Simulator

Figure  15.10a shows the instruction pipeline of the R3000. In the R3000, 
the pipeline advances once per clock cycle. The MIPS compiler is able to reorder 
instructions to fill delay slots with code 70 to 90% of the time. All instructions fol-
low the same sequence of five pipeline stages:

 ■ Instruction fetch;
 ■ Source operand fetch from register file;
 ■ ALU operation or data operand address generation;
 ■ Data memory reference;
 ■ Write back into register file.

As illustrated in Figure 15.10a, there is not only parallelism due to pipelining 
but also parallelism within the execution of a single instruction. The 60-ns clock 
cycle is divided into two 30-ns stages. The external instruction and data access oper-
ations to the cache each require 60 ns, as do the major internal operations (OP, DA, 
IA). Instruction decode is a simpler operation, requiring only a single 30-ns stage, 
overlapped with register fetch in the same instruction. Calculation of an address 
for a branch instruction also overlaps instruction decode and register fetch, so that 
a branch at instruction i can address the ICACHE access of instruction i + 2. Sim-
ilarly, a load at instruction i fetches data that are immediately used by the OP of 
instruction i + 1, while an ALU/shift result gets passed directly into instruction 
i + 1 with no delay. This tight coupling between instructions makes for a highly 
efficient pipeline.

In detail, then, each clock cycle is divided into separate stages, denoted as f1 
and f2. The functions performed in each stage are summarized in Table 15.9.

The R4000 incorporates a number of technical advances over the R3000. The 
use of more advanced technology allows the clock cycle time to be cut in half, to 
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Figure 15.10 Enhancing the R3000 Pipeline

Table 15.9 R3000 Pipeline Stages

Pipeline 
Stage Phase Function

IF f1 Using the TLB, translate an instruction virtual address to a physical address 
(after a branching decision).

IF f2 Send the physical address to the instruction address.

RD f1 Return instruction from instruction cache.

Compare tags and validity of fetched instruction.

RD f2 Decode instruction.

Read register file.

If branch, calculate branch target address.

ALU f1 + f2 If  register-  to-  register operation, the arithmetic or logical operation is performed.

ALU f1 If a branch, decide whether the branch is to be taken or not.

If a memory reference (load or store), calculate data virtual address.

ALU f2 If a memory reference, translate data virtual address to physical using TLB.

MEM f1 If a memory reference, send physical address to data cache.

MEM f2 If a memory reference, return data from data cache, and check tags.

WB f1 Write to register file.

563
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30 ns, and for the access time to the register file to be cut in half. In addition, there 
is greater density on the chip, which enables the instruction and data caches to be 
incorporated on the chip. Before looking at the final R4000 pipeline, let us con-
sider how the R3000 pipeline can be modified to improve performance using R4000 
technology.

Figure 15.10b shows a first step. Remember that the cycles in this figure are 
half as long as those in Figure 15.10a. Because they are on the same chip, the instruc-
tion and data cache stages take only half as long; so they still occupy only one clock 
cycle. Again, because of the speedup of the register file access, register read and 
write still occupy only half of a clock cycle.

Because the R4000 caches are  on-  chip, the  virtual-  to-  physical address trans-
lation can delay the cache access. This delay is reduced by implementing virtually 
indexed caches and going to a parallel cache access and address translation. Fig-
ure 15.10c shows the optimized R3000 pipeline with this improvement. Because of the 
compression of events, the data cache tag check is performed separately on the next 
cycle after cache access. This check determines whether the data item is in the cache.

In a superpipelined system, existing hardware is used several times per cycle by 
inserting pipeline registers to split up each pipe stage. Essentially, each superpipe-
line stage operates at a multiple of the base clock frequency, the multiple depending 
on the degree of superpipelining. The R4000 technology has the speed and density 
to permit superpipelining of degree 2. Figure 15.11a shows the optimized R3000 
pipeline using this superpipelining. Note that this is essentially the same dynamic 
structure as Figure 15.10c.

Further improvements can be made. For the R4000, a much larger and spe-
cialized adder was designed. This makes it possible to execute ALU operations at 

Clock Cycle

IC1

IF =  Instruction fetch �rst half
IS =  Instruction fetch second half
RF =  Fetch operands from register
EX =  Instruction execute
IC =  Instruction cache

DC =  Data cache
DF =  Data cache �rst half
DS =  Data cache second half
TC =  Tag check
WB  = Write back to register �le

(a) Superpipelined implementation of the optimized R3000 pipeline
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Figure 15.11 Theoretical R3000 and Actual R4000 Superpipelines
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twice the rate. Other improvements allow the execution of loads and stores at twice 
the rate. The resulting pipeline is shown in Figure 15.11b.

The R4000 has eight pipeline stages, meaning that as many as eight instruc-
tions can be in the pipeline at the same time. The pipeline advances at the rate of 
two stages per clock cycle. The eight pipeline stages are as follows:

 ■ Instruction fetch first half: Virtual address is presented to the instruction cache 
and the translation lookaside buffer.

 ■ Instruction fetch second half: Instruction cache outputs the instruction and the 
TLB generates the physical address.

 ■ Register file: Three activities occur in parallel:

— Instruction is decoded and check made for interlock conditions (i.e., this 
instruction depends on the result of a preceding instruction).

—Instruction cache tag check is made.

—Operands are fetched from the register file.
 ■ Instruction execute: One of three activities can occur:

— If the instruction is a  register-  to-  register operation, the ALU performs the 
arithmetic or logical operation.

—If the instruction is a load or store, the data virtual address is calculated.

— If the instruction is a branch, the branch target virtual address is calculated 
and branch conditions are checked.

 ■ Data cache first: Virtual address is presented to the data cache and TLB.
 ■ Data cache second: The TLB generates the physical address, and the data 

cache outputs the data.
 ■ Tag check: Cache tag checks are performed for loads and stores.
 ■ Write back: Instruction result is written back to register file.

 15.7 SPARC

SPARC (Scalable Processor Architecture) refers to an architecture defined by Sun 
Microsystems. Sun developed its own SPARC implementation but also licenses the 
architecture to other vendors to produce  SPARC-  compatible machines. The SPARC 
architecture is inspired by the Berkeley RISC I machine, and its instruction set and 
register organization is based closely on the Berkeley RISC model.

SPARC Register Set

As with the Berkeley RISC, the SPARC makes use of register windows. Each win-
dow gives addressability to 24 registers, and the total number of windows is imple-
mentation dependent and ranges from 2 to 32 windows. Figure 15.12 illustrates an 
implementation that supports 8 windows, using a total of 136 physical registers; as 
the discussion in Section  15.2 indicates, this seems a reasonable number of win-
dows. Physical registers 0 through 7 are global registers shared by all procedures. 
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Each procedure sees logical registers 0 through 31. Logical registers 24 through 31, 
referred to as ins, are shared with the calling (parent) procedure; and logical registers 
8 through 15, referred to as outs, are shared with any called (child) procedure. These 
two portions overlap with other windows. Logical registers 16 through 23, referred 
to as locals, are not shared and do not overlap with other windows. Again, as the dis-
cussion of Section 12.1 indicates, the availability of 8 registers for parameter passing 
should be adequate in most cases (e.g., see Table 15.4).

Figure 15.13 is another view of the register overlap. The calling procedure 
places any parameters to be passed in its outs registers; the called procedure treats 
these same physical registers as it ins registers. The processor maintains a current 
window pointer (CWP), located in the processor status register (PSR), that points to 
the window of the currently executing procedure. The window invalid mask (WIM), 
also in the PSR, indicates which windows are invalid.
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With the SPARC register architecture, it is usually not necessary to save and 
restore registers for a procedure call. The compiler is simplified because the compiler 
need be concerned only with allocating the local registers for a procedure in an effi-
cient manner and need not be concerned with register allocation between procedures.

Instruction Set

Most of the SPARC instructions reference only register operands.  Register-  to- 
 register instructions have three operands and can be expressed in the form

Rd S RS1  op   S2

where Rd and RS1 are register references; S2 can refer either to a register or to a 
13-bit immediate operand. Register zero (R0) is hardwired with the value 0. This 
form is well suited to typical programs, which have a high proportion of local scalars 
and constants.

The available ALU operations can be grouped as follows:

 ■ Integer addition (with or without carry).
 ■ Integer subtraction (with or without carry).
 ■ Bitwise Boolean AND, OR, XOR and their negations.
 ■ Shift left logical, right logical, or right arithmetic.
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Figure 15.13 Eight Register Windows Forming a Circular Stack in 
SPARC
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All of these instructions, except the shifts, can optionally set the four condi-
tion codes (ZERO, NEGATIVE, OVERFLOW, CARRY). Signed integers are 
represented in 32-bit twos complement form.

Only simple load and store instructions reference memory. There are separate 
load and store instructions for word (32 bits), doubleword, halfword, and byte. For 
the latter two cases, there are instructions for loading these quantities as signed or 
unsigned numbers. Signed numbers are sign extended to fill out the 32-bit destina-
tion register. Unsigned numbers are padded with zeros.

The only available addressing mode, other than register, is a displacement 
mode. That is, the effective address (EA) of an operand consists of a displacement 
from an address contained in a register:

 EA = (RS1) + S2
 or EA = (RS1) + (RS2)

depending on whether the second operand is immediate or a register reference. To 
perform a load or store, an extra stage is added to the instruction cycle. During the 
second stage, the memory address is calculated using the ALU; the load or store 
occurs in a third stage. This single addressing mode is quite versatile and can be 
used to synthesize other addressing modes, as indicated in Table 15.10.

It is instructive to compare the SPARC addressing capability with that of 
the MIPS. The MIPS makes use of a 16-bit offset, compared with a 13-bit offset on 
the SPARC. On the other hand, the MIPS does not permit an address to be con-
structed from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-bit instruction formats 
(Figure 15.14). All instructions begin with a 2-bit opcode. For most instructions, this 
is extended with additional opcode bits elsewhere in the format. For the Call instruc-
tion, a 30-bit immediate operand is extended with two zero bits to the right to form 
a 32-bit  PC-  relative address in twos complement form. Instructions are aligned on a 
32-bit boundary so that this form of addressing suffices.

The Branch instruction includes a 4-bit condition field that corresponds to the 
four standard condition code bits, so that any combination of conditions can be 
tested. The 22-bit  PC-  relative address is extended with two zero bits on the right to 

Table 15.10  Synthesizing Other Addressing Modes with SPARC Addressing Modes

Instruction Type Addressing Mode Algorithm SPARC Equivalent

 Register-  to-  register Immediate operand = A S2

Load, store Direct EA = A R0 + S2

 Register-  to-  register Register EA = R RS1,  SS2

Load, store Register Indirect EA = (R) RS1 + 0

Load, store Displacement EA = (R) + A RS1 + S2

Note: S2 = either a register operand or a 13-bit immediate operand.
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form a 24-bit twos complement relative address. An unusual feature of the Branch 
instruction is the annul bit. When the annul bit is not set, the instruction after the 
branch is always executed, regardless of whether the branch is taken. This is the 
typical delayed branch operation found on many RISC machines and described in 
Section 15.5 (see Figure 15.7). However, when the annul bit is set, the instruction 
following the branch is executed only if the branch is taken. The processor sup-
presses the effect of that instruction even though it is already in the pipeline. This 
annul bit is useful because it makes it easier for the compiler to fill the delay slot 
following a conditional branch. The instruction that is the target of the branch can 
always be put in the delay slot, because if the branch is not taken, the instruction can 
be annulled. The reason this technique is desirable is that conditional branches are 
generally taken more than half the time.

The SETHI instruction is a special instruction used to form a 32-bit constant. 
This feature is needed to form large data constants; for example, it can be used to 
form a large offset for a load or store instruction. The SETHI instruction sets the 
22  high-  order bits of a register with its 22-bit immediate operand, and zeros out the 
 low-  order 10 bits. An immediate constant of up to 13 bits can be specified in one of 
the general formats, and such an instruction could be used to fill in the remaining 10 
bits of the register. A load or store instruction can also be used to achieve a direct 
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Figure 15.14 SPARC Instruction Formats
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addressing mode. To load a value from location K in memory, we could use the fol-
lowing SPARC instructions:

sethi %hi(K), %r8 ;load  high-  order 22 bits of address of location
;K into register r8

Ld [,r8 + ,lo(K)], %r8 ;load contents of location K into r8

The macros %hi and %lo are used to define immediate operands consisting of the 
appropriate address bits of a location. This use of SETHI is similar to the use of the 
lui instruction on the MIPS.

The  floating-  point format is used for  floating-  point operations. Two source 
and one destination registers are designated.

Finally, all other operations, including loads, stores, arithmetic, and logical 
operations use one of the last two formats shown in Figure 15.14. One of the formats 
makes use of two source registers and a destination register, while the other uses 
one source register, one 13-bit immediate operand, and one destination register.

 15.8 RISC VERSUS CISC CONTROVERSY

For many years, the general trend in computer architecture and organization has 
been toward increasing processor complexity: more instructions, more addressing 
modes, more specialized registers, and so on. The RISC movement represents a fun-
damental break with the philosophy behind that trend. Naturally, the appearance 
of RISC systems, and the publication of papers by its proponents extolling RISC 
virtues, led to a reaction from those involved in the design of CISC architectures.

The work that has been done on assessing merits of the RISC approach can be 
grouped into two categories:

 ■ Quantitative: Attempts to compare program size and execution speed of pro-
grams on RISC and CISC machines that use comparable technology.

 ■ Qualitative: Examines issues such as  high-  level language support and opti-
mum use of VLSI real estate.

Most of the work on quantitative assessment has been done by those working 
on RISC systems [PATT82b, HEAT84, PATT84], and it has been, by and large, 
favorable to the RISC approach. Others have examined the issue and come away 
unconvinced [COLW85a, FLYN87, DAVI87]. There are several problems with 
attempting such comparisons [SERL86]:

 ■ There is no pair of RISC and CISC machines that are comparable in  life-  cycle 
cost, level of technology, gate complexity, sophistication of compiler, operating 
system support, and so on.

 ■ No definitive test set of programs exists. Performance varies with the program.
 ■ It is difficult to sort out hardware effects from effects due to skill in compiler 

writing.
 ■ Most of the comparative analysis on RISC has been done on “toy” machines 

rather than commercial products. Furthermore, most commercially available 
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machines advertised as RISC possess a mixture of RISC and CISC character-
istics. Thus, a fair comparison with a commercial, “ pure-  play” CISC machine 
(e.g., VAX, Pentium) is difficult.

The qualitative assessment is, almost by definition, subjective. Several research-
ers have turned their attention to such an assessment [COLW85a, WALL85], but 
the results are, at best, ambiguous, and certainly subject to rebuttal [PATT85b] and, 
of course, counterrebuttal [COLW85b].

In more recent years, the RISC versus CISC controversy has died down to 
a great extent. This is because there has been a gradual convergence of the tech-
nologies. As chip densities and raw hardware speeds increase, RISC systems have 
become more complex. At the same time, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC, 
such as an increased number of  general-  purpose registers and increased emphasis 
on instruction pipeline design.

 15.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

complex instruction set com-
puter (CISC)

delayed branch
delayed load

 high-  level language (HLL)
reduced instruction set  

computer (RISC)
register file

register window
SPARC

Review Questions

 15.1 What are some typical distinguishing characteristics of RISC organization?
 15.2 Briefly explain the two basic approaches used to minimize  register-  memory opera-

tions on RISC machines.
 15.3 If a circular register buffer is used to handle local variables for nested procedures, 

describe two approaches for handling global variables.
 15.4 What are some typical characteristics of a RISC instruction set architecture?
 15.5 What is a delayed branch?

Problems

 15.1 Considering the  call-  return pattern in Figure 4.21, how many overflows and under-
flows (each of which causes a register save/restore) will occur with a window size of
a. 5?
b. 8?
c. 16?

 15.2 In the discussion of Figure 15.2, it was stated that only the first two portions of a win-
dow are saved or restored. Why is it not necessary to save the temporary registers?

 15.3 We wish to determine the execution time for a given program using the various pipe-
lining schemes discussed in Section 15.5. Let
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 N = number of executed instructions
 D = number of memory accesses
 J = number of jump instructions

For the simple sequential scheme (Figure 15.6a), the execution time is 2N + D stages. 
Derive formulas for  two-  stage,  three-  stage, and  four-  stage pipelining.

 15.4 Reorganize the code sequence in Figure 15.6d to reduce the number of NOOPs.
 15.5 Consider the following code fragment in a  high-  level language:

for I  in 1…100  loop
S d S + Q(I). VAL

end loop; 

Assume that Q is an array of 32-byte records and the VAL field is in the first 4 bytes of 
each record. Using x86 code, we can compile this program fragment as follows:

MOV ECX,1 ;use register ECX to hold I

LP: IMUL EAX, ECX, 32 ;get offset in EAX

MOV EBX, Q[EAX] ;load VAL field

ADD S, EBX ;add to S

INC ECX ;increment I

CMP ECX, 101 :compare to 101

JNE LP ;loop until I = 100

This program makes use of the IMUL instruction, which multiplies the second oper-
and by the immediate value in the third operand and places the result in the first 
operand (see Problem 10.13). A RISC advocate would like to demonstrate that a 
clever compiler can eliminate unnecessarily complex instructions such as IMUL. Pro-
vide the demonstration by rewriting the above x86 program without using the IMUL 
instruction.

 15.6 Consider the following loop:

S  :=   0;
for  K:=1  to  100  do

S:=S - K;

A straightforward translation of this into a generic assembly language would look 
something like this:

LD R1, 0 ;keep value of S in R1

LD R2,1 ;keep value of K in R2

LP SUB R1, R1, R2 ;S:=S - K

BEQ R2, 100, EXIT ;done if K = 100

ADD R2, R2, 1 ;else increment K

JMP LP ;back to start of loop

A compiler for a RISC machine will introduce delay slots into this code so that the 
processor can employ the delayed branch mechanism. The JMP instruction is easy to 
deal with, because this instruction is always followed by the SUB instruction; therefore, 
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we can simply place a copy of the SUB instruction in the delay slot after the JMP. The 
BEQ presents a difficulty. We can’t leave the code as is, because the ADD instruction 
would then be executed one too many times. Therefore, a NOP instruction is needed. 
Show the resulting code.

 15.7 A RISC machine’s compiler may do both a mapping of symbolic registers to actual 
registers and a rearrangement of instructions for pipeline efficiency. An interesting 
question arises as to the order in which these two operations should be done. Consider 
the following program fragment:

LD SR1, A ;load A into symbolic register 1

LD SR2, B ;load B into symbolic register 2

ADD SR3, SR1, SR2 ;add contents of SR1 and SR2 and store in SR3

LD SR4, C

LD SR5, D

ADD SR6, SR4, SR5

a. First do the register mapping and then any possible instruction reordering. How 
many machine registers are used? Has there been any pipeline improvement?

b. Starting with the original program, now do instruction reordering and then any 
possible mapping. How many machine registers are used? Has there been any 
pipeline improvement?

 15.8 Add entries for the following processors to Table 15.7:
a. Pentium II
b. ARM

 15.9 In many cases, common machine instructions that are not listed as part of the MIPS 
instruction set can be synthesized with a single MIPS instruction. Show this for the 
following:
a.  Register-  to-  register move
b. Increment, decrement
c. Complement
d. Negate
e. Clear

 15.10 A SPARC implementation has K register windows. What is the number N of physical 
registers?

 15.11 SPARC is lacking a number of instructions commonly found on CISC machines. Some 
of these are easily simulated using either register R0, which is always set to 0, or a 
constant operand. These simulated instructions are called pseudoinstructions and are 
recognized by the SPARC assembler. Show how to simulate the following pseudoin-
structions, each with a single SPARC instruction. In all of these, src and dst refer to 
registers. (Hint: A store to R0 has no effect.)
a. MOV src, dst
b. COMPARE src1, src2
c. TEST src1

d. NOT dst
e. NEG dst
f. INC dst

g. DEC dst
h. CLR dst
i. NOP

 15.12 Consider the following code fragment:

if K  > 10
L := K + 1

else
L := K – 1
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A straightforward translation of this statement into SPARC assembler could take the 
following form:

sethi %hi(K), %r8 ;load  high-  order 22 bits of address of location
;K into register r8

ld [,r8 + ,lo(K)], %r8 ;load contents of location K into r8
cmp %r8, 10 ;compare contents of r8 with 10
ble L1 ;branch if (r8) … 10
nop
sethi %hi(K), %r9
ld [,r9 + ,lo(K)], %r9 ;load contents of location K into r9
inc %r9 ;add 1 to (r9)
sethi %hi(L), %r10
st %r9, [,r10 + ,lo(L)] ;store (r9) into location L
b L2
nop

L1: sethi %hi(K), %r11
ld [,r11 + ,lo(K)], %r12 ;load contents of location K into r12
dec %r12 ;subtract 1 from (r12)
sethi %hi(L), %r13
st %r12, [,r13 + ,lo(L)] ;store (r12) into location L

L2:

The code contains a nop after each branch instruction to permit delayed branch 
operation.
a. Standard compiler optimizations that have nothing to do with RISC machines are 

generally effective in being able to perform two transformations on the foregoing 
code. Notice that two of the loads are unnecessary and that the two stores can be 
merged if the store is moved to a different place in the code. Show the program 
after making these two changes.

b. It is now possible to perform some optimizations peculiar to SPARC. The nop 
after the ble can be replaced by moving another instruction into that delay slot 
and setting the annul bit on the ble instruction (expressed as ble,a L1). Show the 
program after this change.

c. There are now two unnecessary instructions. Remove these and show the resulting 
program.
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A superscalar implementation of a processor architecture is one in which common 
instructions—integer and floating-point arithmetic, loads, stores, and conditional 
branches—can be initiated simultaneously and executed independently. Such imple-
mentations raise a number of complex design issues related to the instruction pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architec-
ture. Although the simplified instruction set architecture of a RISC machine lends 
itself readily to superscalar techniques, the superscalar approach can be used on 
either a RISC or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines 
from the beginning of true RISC research with the IBM 801 and the Berkeley 
RISC I was seven or eight years, the first superscalar machines became commer-
cially available within just a year or two of the coining of the term superscalar. 
The superscalar approach has now become the standard method for implementing 
high-performance microprocessors.

In this chapter, we begin with an overview of the superscalar approach, con-
trasting it with superpipelining. Next, we present the key design issues associated 
with superscalar implementation. Then we look at several important examples of 
superscalar architecture.

 16.1 OVERVIEW

The term superscalar, first coined in 1987 [AGER87], refers to a machine that is 
designed to improve the performance of the execution of scalar instructions. In most 
applications, the bulk of the operations are on scalar quantities. Accordingly, the 
superscalar approach represents the next step in the evolution of high-performance 
general-purpose processors.

The essence of the superscalar approach is the ability to execute instructions 
independently and concurrently in different pipelines. The concept can be further 
exploited by allowing instructions to be executed in an order different from the 
program order. Figure 16.1 compares, in general terms, the scalar and superscalar 
approaches. In a traditional scalar organization, there is a single pipelined func-
tional unit for integer operations and one for floating-point operations. Parallelism is 
achieved by enabling multiple instructions to be at different stages of the pipeline at 

Learning Objectives

After studying this chapter, you should be able to:

 r Explain the difference between superscalar and superpipelined approaches.
 r Define instruction-level parallelism.
 r Discuss dependencies and resource conflicts as limitations to instruction-level 
parallelism

 r Present an overview of the design issues involved in instruction-level 
parallelism.

 r Compare and contrast techniques of improving pipeline performance in 
RISC machines and superscalar machines.
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one time. In the superscalar organization, there are multiple functional units, each of 
which is implemented as a pipeline. Each individual functional unit provides a degree 
of parallelism by virtue of its pipelined structure. The use of multiple functional units 
enables the processor to execute streams of instructions in parallel, one stream for 
each pipeline. It is the responsibility of the hardware, in conjunction with the com-
piler, to assure that the parallel execution does not violate the intent of the program.

Many researchers have investigated superscalar-like processors, and their 
research indicates that some degree of performance improvement is possible. 
Table 16.1 presents the reported performance advantages. The differences in the 
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Figure 16.1 Superscalar Organization Compared to Ordinary Scalar Organization

Table 16.1 Reported Speedups  
of Superscalar-Like Machines

Reference Speedup

[TJAD70] 1.8

[KUCK77] 8

[WEIS84] 1.58

[ACOS86] 2.7

[SOHI90] 1.8

[SMIT89] 2.3

[JOUP89b] 2.2

[LEE91] 7
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results arise from differences both in the hardware of the simulated machine and in 
the applications being simulated.

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as super-
pipelining, a term first coined in 1988 [JOUP88]. Superpipelining exploits the fact 
that many pipeline stages perform tasks that require less than half a clock cycle. Thus, 
a doubled internal clock speed allows the performance of two tasks in one external 
clock cycle. We have seen one example of this approach with the MIPS R4000.

Figure 16.2 compares the two approaches. The upper part of the diagram illus-
trates an ordinary pipeline, used as a base for comparison. The base pipeline issues 
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one instruction per clock cycle and can perform one pipeline stage per clock cycle. 
The pipeline has four stages: instruction fetch; operation decode; operation execu-
tion; and result write back. The execution stage is crosshatched for clarity. Note that 
although several instructions are executing concurrently, only one instruction is in 
its execution stage at any one time.

The next part of the diagram shows a superpipelined implementation that is 
capable of performing two pipeline stages per clock cycle. An alternative way of 
looking at this is that the functions performed in each stage can be split into two 
nonoverlapping parts and each can execute in half a clock cycle. A superpipeline 
implementation that behaves in this fashion is said to be of degree 2. Finally, the 
lowest part of the diagram shows a superscalar implementation capable of execut-
ing two instances of each stage in parallel. Higher-degree superpipeline and super-
scalar implementations are of course possible.

Both the superpipeline and the superscalar implementations depicted in Fig-
ure 16.2 have the same number of instructions executing at the same time in the 
steady state. The superpipelined processor falls behind the superscalar processor at 
the start of the program and at each branch target.

Constraints

The superscalar approach depends on the ability to execute multiple instructions 
in parallel. The term instruction-level parallelism refers to the degree to which, on 
average, the instructions of a program can be executed in parallel. A combination 
of compiler-based optimization and hardware techniques can be used to maximize 
instruction-level parallelism. Before examining the design techniques used in super-
scalar machines to increase instruction-level parallelism, we need to look at the fun-
damental limitations to parallelism with which the system must cope. [JOHN91] lists 
five limitations:

 ■ True data dependency;
 ■ Procedural dependency;
 ■ Resource conflicts;
 ■ Output dependency;
 ■ Antidependency.

We examine the first three of these limitations in the remainder of this section. A 
discussion of the last two must await some of the developments in the next section.

true data dependency Consider the following sequence:1

 ADD EAX, ECX ;load register EAX with the con-
  ;tents of ECX plus the contents
  ;of EAX
 MOV EBX, EAX ;load EBX with the contents of EAX

The second instruction can be fetched and decoded but cannot execute until the 
first instruction executes. The reason is that the second instruction needs data 

1For the Intel x86 assembly language, a semicolon starts a comment field.
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produced by the first instruction. This situation is referred to as a true data depen-
dency (also called flow dependency or read after write [RAW] dependency).

Figure 16.3 illustrates this dependency in a superscalar machine of degree 
2. With no dependency, two instructions can be fetched and executed in paral-
lel. If there is a data dependency between the first and second instructions, then 
the second instruction is delayed as many clock cycles as required to remove the 
dependency. In general, any instruction must be delayed until all of its input values 
have been produced.

In a simple pipeline, such as illustrated in the upper part of Figure 16.2, the 
aforementioned sequence of instructions would cause no delay. However, consider 
the following, in which one of the loads is from memory rather than from a register:

MOV EAX, eff ;load register EAX with the 
contents of effective memory 
address eff

 MOV EBX, EAX ;load EBX with the contents of EAX
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A typical RISC processor takes two or more cycles to perform a load from 
memory when the load is a cache hit. It can take tens or even hundreds of cycles for 
a cache miss on all cache levels, because of the delay of an off-chip memory access. 
One way to compensate for this delay is for the compiler to reorder instructions so 
that one or more subsequent instructions that do not depend on the memory load 
can begin flowing through the pipeline. This scheme is less effective in the case of 
a superscalar pipeline: The independent instructions executed during the load are 
likely to be executed on the first cycle of the load, leaving the processor with noth-
ing to do until the load completes.

procedural dependencies As was discussed in Chapter 14, the presence 
of branches in an instruction sequence complicates the pipeline operation. The 
instructions following a branch (taken or not taken) have a procedural dependency 
on the branch and cannot be executed until the branch is executed. Figure 16.3 
illustrates the effect of a branch on a superscalar pipeline of degree 2.

As we have seen, this type of procedural dependency also affects a scalar pipe-
line. The consequence for a superscalar pipeline is more severe, because a greater 
magnitude of opportunity is lost with each delay.

If variable-length instructions are used, then another sort of procedural 
dependency arises. Because the length of any particular instruction is not known, it 
must be at least partially decoded before the following instruction can be fetched. 
This prevents the simultaneous fetching required in a superscalar pipeline. This 
is one of the reasons that superscalar techniques are more readily applicable to a 
RISC or RISC-like architecture, with its fixed instruction length.

resource conflict A resource conflict is a competition of two or more 
instructions for the same resource at the same time. Examples of resources include 
memories, caches, buses, register-file ports, and functional units (e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data 
dependency (Figure 16.3). There are some differences, however. For one thing, resource 
conflicts can be overcome by duplication of resources, whereas a true data depend-
ency cannot be eliminated. Also, when an operation takes a long time to complete, 
resource conflicts can be minimized by pipelining the appropriate functional unit.

 16.2 DESIGN ISSUES

Instruction-Level Parallelism and Machine Parallelism

[JOUP89a] makes an important distinction between the two related concepts of 
instruction-level parallelism and machine parallelism. Instruction-level parallelism 
exists when instructions in a sequence are independent and thus can be executed in 
parallel by overlapping.

As an example of the concept of instruction-level parallelism, consider the 
following two code fragments [JOUP89b]:

Load R1 d R2 Add R3 d R3, “1”
Add R3 d R3, “1” Add R4 d R3, R2
Add R4 d R4, R2 Store [R4] d R0
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The three instructions on the left are independent, and in theory all three could be 
executed in parallel. In contrast, the three instructions on the right cannot be exe-
cuted in parallel because the second instruction uses the result of the first, and the 
third instruction uses the result of the second.

The degree of instruction-level parallelism is determined by the frequency of 
true data dependencies and procedural dependencies in the code. These factors, 
in turn, are dependent on the instruction set architecture and on the application. 
Instruction-level parallelism is also determined by what [JOUP89a] refers to as 
operation latency: the time until the result of an instruction is available for use as an 
operand in a subsequent instruction. The latency determines how much of a delay a 
data or procedural dependency will cause.

Machine parallelism is a measure of the ability of the processor to take advan-
tage of instruction-level parallelism. Machine parallelism is determined by the num-
ber of instructions that can be fetched and executed at the same time (the number 
of parallel pipelines) and by the speed and sophistication of the mechanisms that 
the processor uses to find independent instructions.

Both instruction-level and machine parallelism are important factors in 
enhancing performance. A program may not have enough instruction-level parallel-
ism to take full advantage of machine parallelism. The use of a fixed-length instruc-
tion set architecture, as in a RISC, enhances instruction-level parallelism. On the 
other hand, limited machine parallelism will limit performance no matter what the 
nature of the program.

Instruction Issue Policy

As was mentioned, machine parallelism is not simply a matter of having multiple 
instances of each pipeline stage. The processor must also be able to identify instruc-
tion-level parallelism and orchestrate the fetching, decoding, and execution of 
instructions in parallel. [JOHN91] uses the term instruction issue to refer to the 
process of initiating instruction execution in the processor’s functional units and the 
term instruction issue policy to refer to the protocol used to issue instructions. In 
general, we can say that instruction issue occurs when instruction moves from the 
decode stage of the pipeline to the first execute stage of the pipeline.

In essence, the processor is trying to look ahead of the current point of execu-
tion to locate instructions that can be brought into the pipeline and executed. Three 
types of orderings are important in this regard:

 ■ The order in which instructions are fetched;
 ■ The order in which instructions are executed;
 ■ The order in which instructions update the contents of register and memory 

locations.

The more sophisticated the processor, the less it is bound by a strict relation-
ship between these orderings. To optimize utilization of the various pipeline ele-
ments, the processor will need to alter one or more of these orderings with respect 
to the ordering to be found in a strict sequential execution. The one constraint on 
the processor is that the result must be correct. Thus, the processor must accommo-
date the various dependencies and conflicts discussed earlier.
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In general terms, we can group superscalar instruction issue policies into the 
following categories:

 ■ In-order issue with in-order completion.
 ■ In-order issue with out-of-order completion.
 ■ Out-of-order issue with out-of-order completion.

in-order issue with in-order completion The simplest instruction issue 
policy is to issue instructions in the exact order that would be achieved by sequential 
execution (in-order issue) and to write results in that same order (in-order completion). 
Not even scalar pipelines follow such a simple-minded policy. However, it is useful to 
consider this policy as a baseline for comparing more sophisticated approaches.

Figure 16.4a gives an example of this policy. We assume a superscalar pipeline 
capable of fetching and decoding two instructions at a time, having three separate 
functional units (e.g., two integer arithmetic and one floating-point arithmetic), and 
having two instances of the write-back pipeline stage. The example assumes the 
following constraints on a six-instruction code fragment:

 ■ I1 requires two cycles to execute.
 ■ I3 and I4 conflict for the same functional unit.
 ■ I5 depends on the value produced by I4.
 ■ I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time and passed to the decode unit. Because 
instructions are fetched in pairs, the next two instructions must wait until the pair of 
decode pipeline stages has cleared. To guarantee in-order completion, when there 
is a conflict for a functional unit or when a functional unit requires more than one 
cycle to generate a result, the issuing of instructions temporarily stalls.

In this example, the elapsed time from decoding the first instruction to writing 
the last results is eight cycles.

in-order issue with out-of-order completion Out-of-order completion 
is used in scalar RISC processors to improve the performance of instructions that 
require multiple cycles. Figure 16.4b illustrates its use on a superscalar processor. 
Instruction I2 is allowed to run to completion prior to I1. This allows I3 to be 
completed earlier, with the net result of a savings of one cycle.

With out-of-order completion, any number of instructions may be in the exe-
cution stage at any one time, up to the maximum degree of machine parallelism 
across all functional units. Instruction issuing is stalled by a resource conflict, a data 
dependency, or a procedural dependency.

In addition to the aforementioned limitations, a new dependency, which we 
referred to earlier as an output dependency (also called write after write [WAW] 
dependency), arises. The following code fragment illustrates this dependency (op 
represents any operation):

I1: R3 d R3 op R5
I2: R4 d R3 + 1
I3: R3 d R5 + 1
I4: R7 d R3 op R4
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Instruction I2 cannot execute before instruction I1, because it needs the 
result in register R3 produced in I1; this is an example of a true data dependency, 
as described in Section 16.1. Similarly, I4 must wait for I3, because it uses a result 
produced by I3. What about the relationship between I1 and I3? There is no data 
dependency here, as we have defined it. However, if I3 executes to completion prior 
to I1, then the wrong value of the contents of R3 will be fetched for the execution 
of I4. Consequently, I3 must complete after I1 to produce the correct output values. 
To ensure this, the issuing of the third instruction must be stalled if its result might 
later be overwritten by an older instruction that takes longer to complete.

Out-of-order completion requires more complex instruction issue logic than 
in-order completion. In addition, it is more difficult to deal with instruction inter-
rupts and exceptions. When an interrupt occurs, instruction execution at the current 

Decode Execute Write Cycle

I1 I2 1

I3 I4 I1 I2 2

I3 I4 I1 3

I4 I3 I1 I2 4

I5 I6 I4 5

I6 I5 I3 I4 6

I6 7

I5 I6 8

(a) In-order issue and in-order completion

Decode Execute Write Cycl e

I1 I2 1

I3 I4 I1 I2 2

I4 I1 I3 I2 3

I5 I6 I4 I1 I3 4

I6 I5 I4 5

I6 I5 6

I6 7

(b) In-order issue and out-of-order completion

Decode Window Execute Write Cycle

I1 I2 1

I3 I4 I1,I 2 I1 I2 2

I5 I6 I3,I4 I1 I3 I2 3

I4,I5,I6 I6 I4 I1 I3 4

I5 I5 I4 I6 5

I5 6

(c) Out-of-order issue and out-of-order completion

Figure 16.4 Superscalar Instruction Issue and Completion Policies
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point is suspended, to be resumed later. The processor must assure that the resump-
tion takes into account that, at the time of interruption, instructions ahead of the 
instruction that caused the interrupt may already have completed.

out-of-order issue with out-of-order completion With in-order 
issue, the processor will only decode instructions up to the point of a dependency 
or conflict. No additional instructions are decoded until the conflict is resolved. 
As a result, the processor cannot look ahead of the point of conflict to subsequent 
instructions that may be independent of those already in the pipeline and that may 
be usefully introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and execute 
stages of the pipeline. This is done with a buffer referred to as an instruction win-
dow. With this organization, after a processor has finished decoding an instruction, 
it is placed in the instruction window. As long as this buffer is not full, the processor 
can continue to fetch and decode new instructions. When a functional unit becomes 
available in the execute stage, an instruction from the instruction window may be 
issued to the execute stage. Any instruction may be issued, provided that (1) it needs 
the particular functional unit that is available, and (2) no conflicts or dependencies 
block this instruction. Figure 16.5 suggests this organization.

The result of this organization is that the processor has a lookahead capability, 
allowing it to identify independent instructions that can be brought into the execute 
stage. Instructions are issued from the instruction window with little regard for their 
original program order. As before, the only constraint is that the program execution 
behaves correctly.

Figures 16.4c illustrates this policy. During each of the first three cycles, two 
instructions are fetched into the decode stage. During each cycle, subject to the 
constraint of the buffer size, two instructions move from the decode stage to the 
instruction window. In this example, it is possible to issue instruction I6 ahead of 
I5 (recall that I5 depends on I4, but I6 does not). Thus, one cycle is saved in both 
the execute and write-back stages, and the end-to-end savings, compared with 
Figure 16.4b, is one cycle.
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The instruction window is depicted in Figure 16.4c to illustrate its role. How-
ever, this window is not an additional pipeline stage. An instruction being in the 
window simply implies that the processor has sufficient information about that 
instruction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same 
constraints described earlier. An instruction cannot be issued if it violates a depend-
ency or conflict. The difference is that more instructions are available for issuing, 
reducing the probability that a pipeline stage will have to stall. In addition, a new 
dependency, which we referred to earlier as an antidependency (also called write 
after read [WAR] dependency), arises. The code fragment considered earlier illus-
trates this dependency:

I1: R3 d R3 op R5
I2: R4 d R3 + 1
I3: R3 d R5 + 1
I4: R7 d R3 op R4

Instruction I3 cannot complete execution before instruction I2 begins execu-
tion and has fetched its operands. This is so because I3 updates register R3, which is 
a source operand for I2. The term antidependency is used because the constraint is 
similar to that of a true data dependency, but reversed: Instead of the first instruc-
tion producing a value that the second instruction uses, the second instruction 
destroys a value that the first instruction uses.

Reorder Buffer Simulator
Tomasulo’s Algorithm Simulator

Alternative Simulation of Tomasulo’s Algorithm

One common technique that is used to support out-of-order completion is the 
reorder buffer. The reorder buffer is temporary storage for results completed out of 
order that are then committed to the register file in program order. A related con-
cept is Tomasulo’s algorithm. Appendix N examines these concepts.

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion are 
allowed, we have seen that this gives rise to the possibility of WAW dependencies  
and WAR dependencies. These dependencies differ from RAW data dependencies and 
resource conflicts, which reflect the flow of data through a program and the sequence 
of execution. WAW dependencies and WAR dependencies, on the other hand, arise 
because the values in registers may no longer reflect the sequence of values dictated 
by the program flow.

When instructions are issued in sequence and complete in sequence, it is pos-
sible to specify the contents of each register at each point in the execution. When 
out-of-order techniques are used, the values in registers cannot be fully known at 
each point in time just from a consideration of the sequence of instructions dictated 
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by the program. In effect, values are in conflict for the use of registers, and the pro-
cessor must resolve those conflicts by occasionally stalling a pipeline stage.

Antidependencies and output dependencies are both examples of storage con-
flicts. Multiple instructions are competing for the use of the same register locations, 
generating pipeline constraints that retard performance. The problem is made more 
acute when register optimization techniques are used (as discussed in Chapter 15), 
because these compiler techniques attempt to maximize the use of registers, hence 
maximizing the number of storage conflicts.

One method for coping with these types of storage conflicts is based on a 
traditional resource-conflict solution: duplication of resources. In this context, the 
technique is referred to as register renaming. In essence, registers are allocated 
dynamically by the processor hardware, and they are associated with the values 
needed by instructions at various points in time. When a new register value is cre-
ated (i.e., when an instruction executes that has a register as a destination oper-
and), a new register is allocated for that value. Subsequent instructions that access 
that value as a source operand in that register must go through a renaming process: 
the register references in those instructions must be revised to refer to the register 
containing the needed value. Thus, the same original register reference in several 
different instructions may refer to different actual registers, if different values are 
intended.

Let us consider how register renaming could be used on the code fragment we 
have been examining:

I1: R3b d R3a op R5a 
I2: R4b d R3b + 1
I3: R3c d R5a + 1
I4: R7b d R3c op R4b

The register reference without the subscript refers to the logical register ref-
erence found in the instruction. The register reference with the subscript refers to a 
hardware register allocated to hold a new value. When a new allocation is made for 
a particular logical register, subsequent instruction references to that logical register 
as a source operand are made to refer to the most recently allocated hardware regis-
ter (recent in terms of the program sequence of instructions).

In this example, the creation of register R3c in instruction I3 avoids the WAR 
dependency on the second instruction and the WAW on the first instruction, and 
it does not interfere with the correct value being accessed by I4. The result is that 
I3 can be issued immediately; without renaming, I3 cannot be issued until the first 
instruction is complete and the second instruction is issued.

Scoreboarding Simulator
An alternative to register renaming is a scoreboarding. In essence, scoreboard-

ing is a bookkeeping technique that allows instructions to execute whenever they are 
not dependent on previous instructions and no structural hazards are present. See 
Appendix N for a discussion.
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Machine Parallelism

In the preceding discussion, we looked at three hardware techniques that can be used 
in a superscalar processor to enhance performance: duplication of resources, out-of-
order issue, and renaming. One study that illuminates the relationship among these 
techniques was reported in [SMIT89]. The study made use of a simulation that mod-
eled a machine with the characteristics of the MIPS R2000, augmented with various 
superscalar features. A number of different program sequences were simulated.

Figure 16.6 shows the results. In each of the graphs, the vertical axis corre-
sponds to the mean speedup of the superscalar machine over the scalar machine. 
The horizontal axis shows the results for four alternative processor organizations. 
The base machine does not duplicate any of the functional units, but it can issue 
instructions out of order. The second configuration duplicates the load/store func-
tional unit that accesses a data cache. The third configuration duplicates the ALU, 
and the fourth configuration duplicates both load/store and ALU. In each graph, 
results are shown for instruction window sizes of 8, 16, and 32 instructions, which 
dictates the amount of lookahead the processor can do. The difference between the 
two graphs is that, in the second, register renaming is allowed. This is equivalent 
to saying that the first graph reflects a machine that is limited by all dependencies, 
whereas the second graph corresponds to a machine that is limited only by true 
dependencies.

The two graphs, combined, yield some important conclusions. The first is that it 
is probably not worthwhile to add functional units without register renaming. There 
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Figure 16.6 Speedups of Various Machine Organizations without Procedural Dependencies
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is some slight improvement in performance, but at the cost of increased hardware 
complexity. With register renaming, which eliminates antidependencies and out-
put dependencies, noticeable gains are achieved by adding more functional units. 
Note, however, that there is a significant difference in the amount of gain achievable 
between using an instruction window of 8 versus a larger instruction window. This 
indicates that if the instruction window is too small, data dependencies will prevent 
effective utilization of the extra functional units; the processor must be able to look 
quite far ahead to find independent instructions to utilize the hardware more fully.

Pipeline with Static vs. Dynamic Scheduling—Simulator

Branch Prediction

Any high-performance pipelined machine must address the issue of dealing with 
branches. For example, the Intel 80486 addressed the problem by fetching both the 
next sequential instruction after a branch and speculatively fetching the branch tar-
get instruction. However, because there are two pipeline stages between prefetch 
and execution, this strategy incurs a two-cycle delay when the branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored. 
This allows the processor to calculate the result of conditional branch instructions 
before any unusable instructions have been prefetched. With this method, the pro-
cessor always executes the single instruction that immediately follows the branch. 
This keeps the pipeline full while the processor fetches a new instruction stream.

With the development of superscalar machines, the delayed branch strategy 
has less appeal. The reason is that multiple instructions need to execute in the delay 
slot, raising several problems relating to instruction dependencies. Thus, supersca-
lar machines have returned to pre-RISC techniques of branch prediction. Some, 
like the PowerPC 601, use a simple static branch prediction technique. More sophis-
ticated processors, such as the PowerPC 620 and the Pentium 4, use dynamic branch 
prediction based on branch history analysis.

Superscalar Execution

We are now in a position to provide an overview of superscalar execution of pro-
grams; this is illustrated in Figure 16.7. The program to be executed consists of a 
linear sequence of instructions. This is the static program as written by the pro-
grammer or generated by the compiler. The instruction fetch stage, which includes 
branch prediction, is used to form a dynamic stream of instructions. This stream is 
examined for dependencies, and the processor may remove artificial dependencies. 
The processor then dispatches the instructions into a window of execution. In this 
window, instructions no longer form a sequential stream but are structured accord-
ing to their true data dependencies. The processor executes each instruction in an 
order determined by the true data dependencies and hardware resource availabil-
ity. Finally, instructions are conceptually put back into sequential order and their 
results are recorded.
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The final step mentioned in the preceding paragraph is referred to as commit-
ting, or retiring, the instruction. This step is needed for the following reason. Because 
of the use of parallel, multiple pipelines, instructions may complete in an order dif-
ferent from that shown in the static program. Further, the use of branch prediction 
and speculative execution means that some instructions may complete execution and 
then must be abandoned because the branch they represent is not taken. Therefore, 
permanent storage and program-visible registers cannot be updated immediately 
when instructions complete execution. Results must be held in some sort of tempor-
ary storage that is usable by dependent instructions and then made permanent when 
it is determined that the sequential model would have executed the instruction.

Superscalar Implementation

Based on our discussion so far, we can make some general comments about the pro-
cessor hardware required for the superscalar approach. [SMIT95] lists the following 
key elements:

 ■ Instruction fetch strategies that simultaneously fetch multiple instructions, 
often by predicting the outcomes of, and fetching beyond, conditional branch 
instructions. These functions require the use of multiple pipeline fetch and 
decode stages, and branch prediction logic.

 ■ Logic for determining true dependencies involving register values, and mech-
anisms for communicating these values to where they are needed during 
execution.

 ■ Mechanisms for initiating, or issuing, multiple instructions in parallel.
 ■ Resources for parallel execution of multiple instructions, including multiple 

pipelined functional units and memory hierarchies capable of simultaneously 
servicing multiple memory references.

 ■ Mechanisms for committing the process state in correct order.
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Figure 16.7 Conceptual Depiction of Superscalar Processing
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 16.3 INTEL CORE MICROARCHITECTURE

Although the concept of superscalar design is generally associated with the RISC 
architecture, the same superscalar principles can be applied to a CISC machine. Per-
haps the most notable example of this is the Intel x86 architecture. The evolution of 
superscalar concepts in the Intel line is interesting to note. The 386 is a traditional 
CISC nonpipelined machine. The 486 introduced the first pipelined x86 processor, 
reducing the average latency of integer operations from between two and four cycles 
to one cycle, but still limited to executing a single instruction each cycle, with no 
superscalar elements. The original Pentium had a modest superscalar component, 
consisting of the use of two separate integer execution units. The Pentium Pro intro-
duced a full-blown superscalar design with out-of-order execution. Subsequent x86 
models have refined and enhanced the superscalar design.

Figure 16.8 shows the current version of the x86 pipeline architecture. Intel 
refers to a pipeline architecture as a microarchitecture. The microarchitecture 

Instruction fetch and predecode

Scheduler/Reservation station

Memory ordering buffer

Retirement unit
(Re-order buffer)

Rename/Allocator

Decode

Instruction queue

Integer ALU
branch

MMX/SSE
FPmove

Port 0

Integer ALU
FPAdd

MMX/SSE
FPmove

Integer ALU
FPMul

MMX/SSE
FPmove

Load unit Store  Unit

Microcode
ROM

Branch
prediction

unit

Shared L2 cache
up to 10.7 Gbps

FSB

Shared
bus

interface
unit

L1 data cache and DTLB

L1 instruction cache

Port 1 Port 2 Port 3 Port 4

Figure 16.8 Intel Core Microarchitecture



592  CHAPTER 16 / INSTRUCTION-LEVEL PARALLELISM & SUPERSCALAR PROCESSORS

underlies and implements the machine’s instruction set architecture. The microar-
chitecture is referred to as the Intel Core Microarchitecture. It is implemented on 
each processor core in the Intel Core 2 and Intel Xeon processor families. There is 
also an Enhanced Intel Core Microarchitecture. One key difference between the 
two microarchitectures is that the Enhanced Intel Core Microarchitecture provides 
a third level of cache.

Table 16.2 shows some of the parameters and performance characteristics of 
the cache architecture. All of the caches use a writeback update policy. When an 
instruction reads data from a memory location, the processor looks for the cache 
line that contains this data in the caches and main memory in the following order:

1. L1 data cache of the initiating core

2. L1 data cache of other cores and L2 cache

3. System memory

The cache line is taken from the L1 data cache of another core only if it is 
modified, ignoring the cache line availability or state in the L2 cache. Table 16.2b 

Table 16.2 Cache/Memory Parameters and Performance of Processors Based on Intel 
Core Microarchitecture

(a) Cache Parameters

Cache Level Capacity Associativity 
(ways)

Line Size 
(bytes)

Writeback 
Update Policy

L1 data 32 kB 8 64 Writeback

L1 instruction 32 kB 8 N/A N/A

L2 (shared)1 2, 4 MB 8 or 16 64 Writeback

L2 (shared)2 3, 6 MB 12 or 24 64 Writeback

L3 (shared)2 8, 12, 16 MB 15 64 Writeback

Notes:
1. Intel Core Microarchitecture
2. Enhanced Intel Core Microarchitecture

(b) Load/Store Performance

Data Locality Load Store

Latency Throughput Latency Throughput

L1 data cache 3 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles

L1 data cache of 
the other core in 
modified state

14 clock 
cycles +   
5.5 bus cycles

14 clock 
cycles +   
5.5 bus cycles

14 clock 
cycles +   
5.5 bus cycles

N/A

L2 cache 14 3 14 3

Memory 14 clock 
cycles + 5.5 bus 
cycles + memory 
latency

Depends on bus 
read protocol

14 clock 
cycles + 5.5 bus 
cycles + memory 
latency

Depends on bus 
read protocol
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shows the characteristics of fetching the first four bytes of different localities from 
the memory cluster. The latency column provides an estimate of access latency. 
However, the actual latency can vary depending on the load of cache, memory com-
ponents, and their parameters.

The pipeline of the Intel Core microarchitecture contains:

 ■ An in-order issue front end that fetches instruction streams from memory, with 
four instruction decoders to supply decoded instructions to the out-of-order 
execution core. Each instruction is translated into one or more fixed-length 
RISC instructions, known as micro-operations, or micro-ops.

 ■ An out-of-order superscalar execution core that can issue up to six micro-ops 
per cycle and reorder micro-ops to execute as soon as sources are ready and 
execution resources are available.

 ■ An in-order retirement unit that ensures the results of execution of micro-
ops are processed and architectural states and the processor's register set are 
updated according to the original program order.

In effect, the Intel Core Microarchitecture implements a CISC instruction set 
architecture on a RISC microarchitecture. The inner RISC micro-ops pass through 
a pipeline with at least 14 stages; in some cases, the micro-op requires multiple exe-
cution stages, resulting in an even longer pipeline. This contrasts with the five-stage 
pipeline (Figure 14.21) used on the earlier Intel x86 processors and on the Pentium.

Front End

The front end needs to supply decoded instructions (micro-ops) and sustain the 
stream to a six-issue wide out-of-order engine. It consists of three major components: 
branch prediction unit (BPU), instruction fetch and predecode unit, and instruction 
queue and decode unit.

branch prediction unit This unit helps the instruction fetch unit fetch the 
most likely instruction to be executed by predicting the various branch types: 
conditional, indirect, direct, call, and return. The BPU uses dedicated hardware 
for each branch type. Branch prediction enables the processor to begin executing 
instructions long before the branch outcome is decided.

The microarchitecture uses a dynamic branch prediction strategy based on the 
history of recent executions of branch instructions. A branch target buffer (BTB) is 
maintained that caches information about recently encountered branch instructions. 
Whenever a branch instruction is encountered in the instruction stream, the BTB 
is checked. If an entry already exists in the BTB, then the instruction unit is guided 
by the history information for that entry in determining whether to predict that the 
branch is taken. If a branch is predicted, then the branch destination address associ-
ated with this entry is used for prefetching the branch target instruction.

Once the instruction is executed, the history portion of the appropriate entry 
is updated to reflect the result of the branch instruction. If this instruction is not 
represented in the BTB, then the address of this instruction is loaded into an entry 
in the BTB; if necessary, an older entry is deleted.

The description of the preceding two paragraphs fits, in general terms, the 
branch prediction strategy used on the original Pentium model, as well as the later 
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Pentium models, including current Intel models. However, in the case of the Pen-
tium, a relatively simple 2-bit history scheme is used. The later models have much 
longer pipelines (14 stages for the Intel Core Microarchitecture compared with 
5 stages for the Pentium) and therefore the penalty for misprediction is greater. 
Accordingly, the later models use a more elaborate branch prediction scheme with 
more history bits to reduce the misprediction rate.

Conditional branches that do not have a history in the BTB are predicted 
using a static prediction algorithm, according to the following rules:

 ■ For branch addresses that are not instruction pointer (IP) relative, predict 
taken if the branch is a return and not taken otherwise.

 ■ For IP-relative backward conditional branches, predict taken. This rule 
reflects the typical behavior of loops.

 ■ For IP-relative forward conditional branches, predict not taken.

instruction fetch and predecode unit The instruction fetch unit 
comprises the instruction translation lookaside buffer (ITLB), an instruction 
prefetcher, the instruction cache, and the predecode logic.

Instruction fetch is performed from an L1 instruction cache. When an L1 cache 
miss occurs, the in-order front end feeds new instructions into the L1 cache from the 
L2 cache 64 bytes at a time. As a default, instructions are fetched sequentially, so 
that each L2 cache line fetch includes the next instruction to be fetched. Branch 
prediction via the branch prediction unit may alter this sequential fetch operation. 
The ITLB translates the linear IP address given it into physical addresses needed to 
access the L2 cache. Static branch prediction in the front end is used to determine 
which instructions to fetch next.

The predecode unit accepts the sixteen bytes from the instruction cache or 
prefetch buffers and carries out the following tasks:

 ■ Determine the length of the instructions.
 ■ Decode all prefixes associated with instructions.
 ■ Mark various properties of instructions for the decoders (for example, “is 

branch”).

The predecode unit can write up to six instructions per cycle into the instruction 
queue. If a fetch contains more than six instructions, the predecoder continues to 
decode up to six instructions per cycle until all instructions in the fetch are written 
to the instruction queue. Subsequent fetches can only enter predecoding after the 
current fetch completes.

instruction queue and decode unit Fetched instructions are placed in 
an instruction queue. From there, the decode unit scans the bytes to determine 
instruction boundaries; this is a necessary operation because of the variable length of 
x86 instructions. The decoder translates each machine instruction into from one to four 
micro-ops, each of which is a 118-bit RISC instruction. Note for comparison that most 
pure RISC machines have an instruction length of just 32 bits. The longer micro-op 
length is required to accommodate the more complex x86 instructions. Nevertheless, the 
micro-ops are easier to manage than the original instructions from which they derive.
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A few instructions require more than four micro-ops. These instructions are 
transferred to microcode ROM, which contains the series of micro-ops (five or more) 
associated with a complex machine instruction. For example, a string instruction may 
translate into a very large (even hundreds), repetitive sequence of micro-ops. Thus, the 
microcode ROM is a microprogrammed control unit in the sense discussed in Part Six.

The resulting micro-op sequence is delivered to the rename/allocator module.

Out-of-Order Execution Logic

This part of the processor reorders micro-ops to allow them to execute as quickly as 
their input operands are ready.

allocate The allocate stage allocates resources required for execution. It 
performs the following functions:

 ■ If a needed resource, such as a register, is unavailable for one of the three 
micro-ops arriving at the allocator during a clock cycle, the allocator stalls the 
pipeline.

 ■ The allocator allocates a reorder buffer (ROB) entry, which tracks the com-
pletion status of one of the 126 micro-ops that could be in process at any time.2

 ■ The allocator allocates one of the 128 integer or floating-point register entries 
for the result data value of the micro-op, and possibly a load or store buffer 
used to track one of the 48 loads or 24 stores in the machine pipeline.

 ■ The allocator allocates an entry in one of the two micro-op queues in front of 
the instruction schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also con-
tains the 128 hardware registers. Each buffer entry consists of the following fields:

 ■ State: Indicates whether this micro-op is scheduled for execution, has been dis-
patched for execution, or has completed execution and is ready for retirement.

 ■ Memory Address: The address of the Pentium instruction that generated the 
micro-op.

 ■ Micro-op: The actual operation.
 ■ Alias Register: If the micro-op references one of the 16 architectural registers, 

this entry redirects that reference to one of the 128 hardware registers.

Micro-ops enter the ROB in order. Micro-ops are then dispatched from the 
ROB to the Dispatch/Execute unit out of order. The criterion for dispatch is that the 
appropriate execution unit and all necessary data items required for this microop 
are available. Finally, micro-ops are retired from the ROB in order. To accomplish 
in-order retirement, micro-ops are retired oldest first after each micro-op has been 
designated as ready for retirement.

register renaming The rename stage remaps references to the 16 architectural 
registers (8 floating-point registers, plus EAX, EBX, ECX, EDX, ESI, EDI, EBP, 
and ESP) into a set of 128 physical registers. The stage removes false dependencies 

2See Appendix N for a discussion of reorder buffers.
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caused by a limited number of architectural registers while preserving the true data 
dependencies (reads after writes).

micro-op queuing After resource allocation and register renaming, micro-
ops are placed in one of two micro-op queues, where they are held until there is 
room in the schedulers. One of the two queues is for memory operations (loads 
and stores) and the other for micro-ops that do not involve memory references. 
Each queue obeys a FIFO (first-in-first-out) discipline, but no order is maintained 
between queues. That is, a micro-op may be read out of one queue out of order 
with respect to micro-ops in the other queue. This provides greater flexibility to 
the schedulers.

micro-op scheduling and dispatching The schedulers are responsible for 
retrieving micro-ops from the micro-op queues and dispatching these for execution. 
Each scheduler looks for micro-ops in whose status indicates that the micro-op has 
all of its operands. If the execution unit needed by that micro-op is available, then 
the scheduler fetches the micro-op and dispatches it to the appropriate execution 
unit. Up to six micro-ops can be dispatched in one cycle. If more than one micro-op is 
available for a given execution unit, then the scheduler dispatches them in sequence 
from the queue. This is a sort of FIFO discipline that favors in-order execution, but 
by this time the instruction stream has been so rearranged by dependencies and 
branches that it is substantially out of order.

Four ports attach the schedulers to the execution units. Port 0 is used for both 
integer and floating-point instructions, with the exception of simple integer opera-
tions and the handling of branch mispredictions, which are allocated to Port 1. In 
addition, MMX execution units are allocated between these two ports. The remain-
ing ports are for memory loads and stores.

Integer and Floating-Point Execution Units

The integer and floating-point register files are the source for pending operations by 
the execution units. The execution units retrieve values from the register files as well 
as from the L1 data cache. A separate pipeline stage is used to compute flags (e.g., 
zero, negative); these are typically the input to a branch instruction.

A subsequent pipeline stage performs branch checking. This function com-
pares the actual branch result with the prediction. If a branch prediction turns out 
to have been wrong, then there are micro-operations in various stages of processing 
that must be removed from the pipeline. The proper branch destination is then pro-
vided to the Branch Predictor during a drive stage, which restarts the whole pipeline 
from the new target address.

 16.4 ARM CORTEX-A8

Recent implementations of the ARM architecture have seen the introduction of 
superscalar techniques in the instruction pipeline. In this section, we focus on the 
ARM Cortex-A8, which provides a good example of a RISC-based superscalar 
design.
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The Cortex-A8 is in the ARM family of processors that ARM refers to as 
application processors. An ARM application processor is an embedded processor 
running complex operating systems for wireless, consumer and imaging applica-
tions. The Cortex-A8 targets a wide variety of mobile and consumer applications 
including mobile phones, set-top boxes, gaming consoles and automotive naviga-
tion/entertainment systems.

Figure 16.9 shows a logical view of the Cortex-A8 architecture, emphasiz-
ing the flow of instructions among functional units. The main instruction flow is 
through three functional units that implement a dual, in-order-issue, 13-stage pipe-
line. The Cortex designers decided to stay with in-order issue to keep additional 
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power required to a minimum. Out-of-order issue and retire can require extensive 
amounts of logic consuming extra power.

Figure 16.10 shows the details of the main Cortex-A8 pipeline. There is a 
separate unit for SIMD (single-instruction-multiple-data) unit that implements a 
10-stage pipeline.

Instruction Fetch Unit

The instruction fetch unit predicts the instruction stream, fetches instructions from 
the L1 instruction cache, and places the fetched instructions into a buffer for con-
sumption by the decode pipeline. The instruction fetch unit also includes the L1 
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instruction cache. Because there can be several unresolved branches in the pipeline, 
instruction fetches are speculative, meaning there is no guarantee that they are exe-
cuted. A branch or exceptional instruction in the code stream can cause a pipeline 
flush, discarding the currently fetched instructions. The instruction fetch unit can 
fetch up to four instructions per cycle, and goes through the following stages:

F0: The address generation unit (AGU) generates a new virtual address. Nor-
mally, this address is the next address sequentially from the preceding fetch 
address. The address can also be a branch target address provided by a branch 
prediction for a previous instruction. F0 is not counted as part of the 13-stage 
pipeline, because ARM processors have traditionally defined instruction cache 
access as the first stage.

F1: The calculated address is used to fetch instructions from the L1 instruc-
tion cache. In parallel, the fetch address is used to access the branch predic-
tion arrays to determine if the next fetch address should be based on a branch 
prediction.

F3: Instruction data are placed into the instruction queue. If an instruction 
results in branch prediction, the new target address is sent to the address gen-
eration unit.

To minimize the branch penalties typically associated with a deeper pipeline, 
the Cortex-A8 processor implements a two-level global history branch predictor, 
consisting of the branch target buffer (BTB) and the global history buffer (GHB). 
These data structures are accessed in parallel with instruction fetches. The BTB 
indicates whether or not the current fetch address will return a branch instruction and 
its branch target address. It contains 512 entries. On a hit in the BTB a branch is pre-
dicted and the GHB is accessed. The GHB consists of 4096 2-bit counters that encode 
the strength and direction information of branches. The GHB is indexed by 10-bit his-
tory of the direction of the last ten branches encountered and 4 bits of the PC. In add-
ition to the dynamic branch predictor, a return stack is used to predict subroutine return 
addresses. The return stack has eight 32-bit entries that store the link register value in 
r14 and the ARM or Thumb state of the calling function. When a return-type instruc-
tion is predicted taken, the return stack provides the last pushed address and state.

The instruction fetch unit can fetch and queue up to 12 instructions. It issues 
instructions to the decode unit two at a time. The queue enables the instruction 
fetch unit to prefetch ahead of the rest of the integer pipeline and build up a backlog 
of instructions ready for decoding.

Instruction Decode Unit

The instruction decode unit decodes and sequences all ARM and Thumb instructions. 
It has a dual pipeline structure, called pipe0 and pipe1, so that two instructions can prog-
ress through the unit at a time. When two instructions are issued from the instruction 
decode pipeline, pipe0 will always contain the older instruction in program order. This 
means that if the instruction in pipe0 cannot issue, then the instruction in pipe1 will 
not issue. All issued instructions progress in order down the execution pipeline with 
results written back into the register file at the end of the execution pipeline. This in-or-
der instruction issue and retire prevents WAR hazards and keeps tracking of WAW 
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hazards and recovery from flush conditions straightforward. Thus, the main concern of 
the instruction decode pipeline is the prevention of RAW hazards.

Each instruction goes through five stages of processing.

D0: Thumb instructions are decompressed into 32-bit ARM instructions. A 
preliminary decode function is performed.

D1: The instruction decode function is completed.

D2: This stage writes instructions into and read instructions from the pending/
replay queue structure.

D3: This stage contains the instruction scheduling logic. A scoreboard predicts 
register availability using static scheduling techniques.3 Hazard checking is 
also done at this stage.

D4: Performs the final decode for all the control signals required by the inte-
ger execute and load/store units.

In the first two stages, the instruction type, the source and destination oper-
ands, and resource requirements for the instruction are determined. A few less 
commonly used instructions are referred to as multicycle instructions. The D1 stage 
breaks these instructions down into multiple instruction opcodes that are sequenced 
individually through the execution pipeline.

The pending queue serves two purposes. First, it prevents a stall signal from D3 
from rippling any further up the pipeline. Second, by buffering instructions, there should 
always be two instructions available for the dual pipeline. In the case where only one 
instruction is issued, the pending queue enables two instructions to proceed down the 
pipeline together, even if they were originally sent from the fetch unit in different cycles.

The replay operation is designed to deal with the effects of the memory system 
on instruction timing. Instructions are statically scheduled in the D3 stage based on 
a prediction of when the source operand will be available. Any stall from the mem-
ory system can result in the minimum of an 8-cycle delay. This 8-cycle delay mini-
mum is balanced with the minimum number of possible cycles to receive data from 
the L2 cache in the case of an L1 load miss. Table 16.3 gives the most common cases 
that can result in an instruction replay because of a memory system stall.

To deal with these stalls, a recovery mechanism is used to flush all subsequent 
instructions in the execution pipeline and reissue (replay) them. To support replay, 
instructions are copied into the replay queue before they are issued and removed 
as they write back their results and retire. If a replay signal is issued instructions are 
retrieved from the replay queue and reenter the pipeline.

The decode unit issues two instructions in parallel to the execution unit, unless it 
encounters an issue restriction. Table 16.4 shows the most common restriction cases.

Integer Execute Unit

The instruction execute unit consists of two symmetric arithmetic logic unit (ALU) 
pipelines, an address generator for load and store instructions, and the multiply pipeline. 
The execute pipelines also perform register write back. The instruction execute unit:

3See Appendix N for a discussion of scoreboarding.
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 ■ Executes all integer ALU and multiply operations, including flag generation.
 ■ Generates the virtual addresses for loads and stores and the base write-back 

value, when required.
 ■ Supplies formatted data for stores and forwards data and flags.
 ■ Processes branches and other changes of instruction stream and evaluates 

instruction condition codes.

For ALU instructions, either pipeline can be used, consisting of the following stages:

E0: Access register file. Up to six registers can be read from the register file for 
two instructions.

E1: The barrel shifter (see Figure 14.25) performs its function, if needed.

E2: The ALU unit (see Figure 14.25) performs its function.

E3: If needed, this stage completes saturation arithmetic used by some ARM 
data processing instructions.

E4: Any change in control flow, including branch misprediction, exceptions, 
and memory system replays are prioritized and processed.

E5: Results of ARM instructions are written back into the register file.

Table 16.3 Cortex-A8 Memory System Effects on Instruction Timings

Replay Event Delay Description

Load data miss 8 cycles 1. A load instruction misses in the L1 data cache.
2. A request is then made to the L2 data cache.
3.  If a miss also occurs in the L2 data cache, then a second 

replay occurs. The number of stall cycles depends on the 
external system memory timing. The minimum time required 
to receive the critical word for an L2 cache miss is approx-
imately 25 cycles, but can be much longer because of L3 
memory latencies.

Data TLB miss 24 cycles 1.  A table walk because of a miss in the L1 TLB causes a 
24-cycle delay, assuming the translation table entries are 
found in the L2 cache.

2.  If the translation table entries are not present in the L2 
cache, the number of stall cycles depends on the external 
system memory timing.

Store buffer full 8 cycles plus latency 
to drain fill buffer

1.  A store instruction miss does not result in any stalls unless 
the store buffer is full.

2.  In the case of a full store buffer, the delay is at least eight 
cycles. The delay can be more if it takes longer to drain some 
entries from the store buffer.

Unaligned load or 
store request

8 cycles 1.  If a load instruction address is unaligned and the full access 
is not contained within a 128-bit boundary, there is a 8-cycle 
penalty.

2.  If a store instruction address is unaligned and the full access 
is not contained within a 64-bit boundary, there is a 8-cycle 
penalty.
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Instructions that invoke the multiply unit (see Figure 14.25) are routed to 
pipe0; the multiply operation is performed in stages E1 through E3, and the multi-
ply accumulate operation in stage E4.

The load/store pipeline runs parallel to the integer pipeline. The stages are as 
follows:

E1: The memory address is generated from the base and index register.

E2: The address is applied to the cache arrays.

E3: In the case of a load, data are returned and formatted for forwarding to 
the ALU or MUL unit. In the case of a store, the data are formatted and ready 
to be written into the cache.

E4: Performs updates to the L2 cache, if required.

E5: Results of ARM instructions are written back into the register file.

Table 16.5 shows a sample code segment and indicates how the processor might 
schedule it.

Table 16.4 Cortex-A8 Dual-Issue Restrictions

Restric-
tion Type Description Example Cycle Restriction

Load/store 
resource 
hazard

There is only one LS pipeline. 
Only one LS instruction can 
be issued per cycle. It can be in 
pipeline 0 or pipeline 1.

LDR r5, [r6]
STR r7, [r8]
MOV r9, r10

1
2
2

Wait for LS unit
Dual issue possible

Multiply 
resource 
hazard

There is only one multiply 
pipeline, and it is only avail-
able in pipeline 0.

ADD r1, r2, r3
MUL r4, r5, r6
MUL r7, r8, r9

1
2
3

Wait for pipeline 0
Wait for multiply unit

Branch 
resource 
hazard

There can be only one branch 
per cycle. It can be in pipeline 
0 or pipeline 1. A branch is 
any instruction that changes 
the PC.

BX r1
BEQ 0x1000
ADD r1, r2, r3

1
2
2

Wait for branch  
Dual issue possible

Data out-
put hazard

Instructions with the same des-
tination cannot be issued in the 
same cycle. This can happen 
with conditional code.

MOVEQ r1, r2
MOVNE r1, r3
LDR r5, [r6]

1
2
2

Wait because of output 
dependency
Dual issue possible

Data 
source 
hazard

Instructions cannot be issued 
if their data is not available. 
See the scheduling tables for 
source requirements and stages 
results.

ADD r1, r2, r3
ADD r4, r1, r6
LDR r7, [r4]

1
2
4

Wait for r1
Wait two cycles for r4

Multi-cycle 
instructions

Multi-cycle instructions must 
issue in pipeline 0 and can only 
dual issue in their last iteration.

MOV r1, r2
LDM r3, {r4-r7}
LDM (cycle 2)
LDM (cycle 3)

ADD r8, r9, r10

1
2
3
4

4

Wait for pipeline 0, transfer r4
Transfer r5, r6
Transfer r7
Dual issue possible on last 
transfer
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SIMD and Floating-Point Pipeline

All SIMD and floating-point instructions pass through the integer pipeline and are pro-
cessed in a separate 10-stage pipeline (Figure 16.11). This unit, referred to as the NEON 
unit, handles packed SIMD instructions, and provides two types of floating-point sup-
port. If implemented, a vector floating-point (VFP) coprocessor performs floating-point 
operations in compliance with IEEE 754. If the coprocessor is not present, then sepa-
rate multiply and add pipelines implement the floating-point operations.

Table 16.5 Cortex-A8 Example Dual Issue Instruction Sequence for Integer Pipeline

Cycle Program Counter Instruction Timing Description

1 0x00000ed0 BX r14 Dual issue pipeline 0

1 0x00000ee4 CMP r0,#0 Dual issue in pipeline 1

2 0x00000ee8 MOV r3,#3 Dual issue pipeline 0

2 0x00000eec MOV r0,#0 Dual issue in pipeline 1

3 0x00000ef0 STREQ r3,[r1,#0] Dual issue in pipeline 0, r3 not needed until 
E3

3 0x00000ef4 CMP r2,#4 Dual issue in pipeline 1

4 0x00000ef8 LDRLS pc,[pc,r2,LSL #2] Single issue pipeline 0, + 1 cycle for load to 
pc, no extra cycle for shift since LSL #2

5 0x00000f2c MOV r0,#1 Dual issue with 2nd iteration of load in 
pipeline 1

6 0x00000f30 B 5pc6 + 8 #0xf38 dual issue pipeline 0

6 0x00000f38 STR r0,[r1,#0] Dual issue pipeline 1

7 0x00000f3c: LDR pc,[r13],#4 Single issue pipeline 0, + 1 cycle for load 
to pc

8 0x0000017c ADD r2,r4,#0xc Dual issue with 2nd iteration of load in 
pipeline 1

9 0x00000180 LDR r0,[r6,#4] Dual issue pipeline 0

9 0x00000184 MOV r1,#0xa Dual issue pipeline 1

12 0x00000188 LDR r0,[r0,#0] Single issue pipeline 0: r0 produced in E3, 
required in E1, so + 2 cycle stall

13 0x0000018c STR r0,[r4,#0] Single issue pipeline 0 due to LS resource 
hazard, no extra delay for r0 since produced 
in E3 and consumed in E3

14 0x00000190 LDR r0,[r4,#0xc] Single issue pipeline 0 due to LS resource 
hazard

15 0x00000194 LDMFD r13!,{r4-r6,r14} Load multiple: loads r4 in 1st cycle, r5 and r6 
in 2nd cycle, r14 in 3rd cycle, 3 cycles total

17 0x00000198 B 5pc6 + 0xda8 #0xf40 dual issue in pipeline 1 with 3rd cycle 
of LDM

18 0x00000f40 ADD r0,r0,#2 ARM Single issue in pipeline 0

19 0x00000f44 ADD r0,r1,r0 ARM Single issue in pipeline 0, no dual issue 
due to hazard on r0 produced in E2 and 
required in E2
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 16.5 ARM CORTEX-M3

The preceding section looked at the rather complex pipeline organization of the 
Cortex-A8, an application processor. As a useful contrast, this section examines the 
considerably simpler pipeline organization of the Cortex-M3. The Cortex-M series is 
designed for the microcontroller domain. As such, the Cortex-M processors need to 
be as simple and efficient as possible.

Figure 16.12 provides a block diagram overview of the Cortex-M3 processor. 
This figure provides more detail than that shown in Figure 1.16. Key elements include:

 ■ Processor core: Includes a three-stage pipeline, a register bank, and a memory 
interface.

 ■ Memory protection unit: Protects critical data used by the operating system 
from user applications, separating processing tasks by disallowing access 
to each other’s data, disabling access to memory regions, allowing memory 
regions to be defined as read-only, and detecting unexpected memory accesses 
that could potentially break the system.

 ■ Nested vectored interrupt controller (NVIC): Provides configurable inter-
rupt handling abilities to the processor. It facilitates low-latency exception and 
interrupt handling, and controls power management.

 ■ Wake-up interrupt controller (NVIC): Provides configurable interrupt han-
dling abilities to the processor. It facilitates low-latency exception and inter-
rupt handling, and controls power management.

 ■ Flash patch and breakpoint unit: Implements breakpoints and code patches.
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 ■ Data watchpoint and trace (DWT): Implements watchpoints, data tracing, 
and system profiling.

 ■ Serial wire viewer: Can export a stream of software-generated messages, data 
trace, and profiling information through a single pin.

 ■ Debug access port: Provides an interface for external debug access to the 
processor.

 ■ Embedded trace macrocell: Is an application-driven trace source that supports 
printf() style debugging to trace operating system and application events, and 
generates diagnostic system information.

 ■ Bus matrix: Connects the core and debug interfaces to external buses on the 
microcontroller.

Pipeline Structure

The Cortex-M3 pipeline has three stages (Figure 16.12). We examine these in turn.
During the fetch stage, one 32-bit word is fetched at a time and loaded into a 

3-word buffer. The 32-bit word may consist of:

 ■ two Thumb instructions,
 ■ one word-aligned Thumb-2 instruction, or
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 ■ the upper/lower halfword of a halfword-aligned Thumb-2 instruction with

— one Thumb instruction, or

— the lower/upper halfword of another halfword-aligned Thumb-2 instruction.

All fetch addresses from the core are word aligned. If a Thumb-2 instruction is 
halfword aligned, two fetches are necessary to fetch the Thumb-2 instruction. How-
ever, the three-entry prefetch buffer ensures that a stall cycle is only necessary for 
the first halfword Thumb-2 instruction fetched.

This decode stage performs three key functions:

 ■ Instruction decode and register read: Decodes Thumb and Thumb-2 
instructions.

 ■ Address generation: The address generation unit (AGU) generates main 
memory addresses for the load/store unit.

 ■ Branch: Performs branch based on immediate offset in branch instruction or a 
return based on the contents of the link register (register R14).

Finally, there is a single execute stage for instruction execution, which includes 
ALU, load/store, and branch instructions.

Dealing with Branches

To keep the processor as simple as possible, the Cortex-M3 processor does not use 
branch prediction, but instead use the simple techniques of branch forwarding and 
branch speculation, defined as follows:

 ■ Branch forwarding: The term forwarding refers to presenting an instruction 
address to be fetched from memory. The processor forwards certain branch 
types, by which the memory transaction of the branch is presented at least 
one cycle earlier than when the opcode reaches execute. Branch forwarding 
increases the performance of the core, because branches are a significant part 
of embedded controller applications. Branches affected are PC relative with 
immediate offset, or use link register (LR) as the target register.

 ■ Branch speculation: For conditional branches, the instruction address is pre-
sented speculatively, so that the instruction is fetched from memory before it 
is known if the instruction will be executed.

The Cortex-M3 processor prefetches instruction ahead of execution using 
the fetch buffer. It also speculatively prefetches from branch target addresses. Spe-
cifically, when a conditional branch instruction is encountered, the decode stage 
also includes a speculative instruction fetch that could lead to faster execution. 
The processor fetches the branch destination instruction during the decode stage 
itself. Later, during the execute stage, the branch is resolved and it is known which 
instruction is to be executed next.

If the branch is not to be taken, the next sequential instruction is already avail-
able. If the branch is to be taken, the branch instruction is made available at the 
same time as the decision is made, restricting idle time to just one cycle.
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Figure 16.13 clarifies the manner in which branches are handled, which can be 
described as follows:

1. The decode stage forwards addresses from unconditional branches and spec-
ulatively forwards addresses from conditional branches when it is possible to 
calculate the address.

2. If the ALU determines that a branch is not taken, this information is fed back 
to empty the instruction cache.

3. A load instruction to the program counter results in a branch address to be 
forwarded for fetching.

As can be seen, the manner in which branches are handled is considerably 
simpler for the Cortex-M than the Cortex-A, requiring less processor logic and 
processing.
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 16.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 16.1 What is the essential characteristic of the superscalar approach to processor design?
 16.2 What is the difference between the superscalar and superpipelined approaches?
 16.3 What is instruction-level parallelism?
 16.4 Briefly define the following terms:

 ■ True data dependency
 ■ Procedural dependency
 ■ Resource conflicts
 ■ Output dependency
 ■ Antidependency

 16.5 What is the distinction between instruction-level parallelism and machine parallelism?
 16.6 List and briefly define three types of superscalar instruction issue policies.
 16.7 What is the purpose of an instruction window?
 16.8 What is register renaming and what is its purpose?
 16.9 What are the key elements of a superscalar processor organization?

Problems

 16.1 When out-of-order completion is used in a superscalar processor, resumption of exe-
cution after interrupt processing is complicated, because the exceptional condition 
may have been detected as an instruction that produced its result out of order. The 
program cannot be restarted at the instruction following the exceptional instruction, 
because subsequent instructions have already completed, and doing so would cause 
these instructions to be executed twice. Suggest a mechanism or mechanisms for deal-
ing with this situation.

 16.2 Consider the following sequence of instructions, where the syntax consists of an 
opcode followed by the destination register followed by one or two source registers:

 0 ADD R3, R1, R2
 1 LOAD R6, [R3]
 2 AND R7, R5, 3
 3 ADD R1, R6, R7
 4 SRL R7, R0, 8

antidependency
branch prediction
commit
flow dependency
in-order completion
in-order issue
instruction issue
instruction-level parallelism
instruction window

machine parallelism
micro-operations
micro-ops
out-of-order  

completion
out-of-order issue
output dependency
procedural dependency
read-write dependency

register renaming
resource conflict
retire
superpipelined
superscalar
true data dependency
write-read dependency
write-write  

dependency
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 5 OR R2, R4, R7
 6 SUB R5, R3, R4
 7 ADD R0, R1, 10
 8 LOAD R6, [R5]
 9 SUB R2, R1, R6
 10 AND R3, R7, 15

Assume the use of a four-stage pipeline: fetch, decode/issue, execute, write back. 
Assume that all pipeline stages take one clock cycle except for the execute stage. For 
simple integer arithmetic and logical instructions, the execute stage takes one cycle, 
but for a LOAD from memory, five cycles are consumed in the execute stage.

If we have a simple scalar pipeline but allow out-of-order execution, we can 
construct the following table for the execution of the first seven instructions:

Instruction Fetch Decode Execute Write Back

0 0 1 2 3

1 1 2 4 9

2 2 3 5 6

3 3 4 10 11

4 4 5 6 7

5 5 6 8 10

6 6 7 9 12

The entries under the four pipeline stages indicate the clock cycle at which each 
instruction begins each phase. In this program, the second ADD instruction (instruc-
tion 3) depends on the LOAD instruction (instruction 1) for one of its operands, r6. 
Because the LOAD instruction takes five clock cycles, and the issue logic encounters 
the dependent ADD instruction after two clocks, the issue logic must delay the ADD 
instruction for three clock cycles. With an out-of-order capability, the processor can 
stall instruction 3 at clock cycle 4, and then move on to issue the following three inde-
pendent instructions, which enter execution at clocks 6, 8, and 9. The LOAD finishes 
execution at clock 9, and so the dependent ADD can be launched into execution on 
clock 10.
a. Complete the preceding table.
b. Redo the table assuming no out-of-order capability. What is the savings using the 

capability?
c. Redo the table assuming a superscalar implementation that can handle two 

instructions at a time at each stage.
 16.3 Consider the following assembly language program:

 I1: Move R3, R7 /R3 d (R7)/
 I2: Load R8, (R3) /R8 d Memory (R3)/
 I3: Add R3, R3, 4 /R3 d (R3) + 4/
 I4: Load R9, (R3) /R9 d Memory (R3)/
 I5: BLE R8, R9, L3 /Branch if (R9) > (R8)/

This program includes WAW, RAW, and WAR dependencies. Show these.
 16.4 a.  Identify the RAW, WAR, and WAW dependencies in the following instruction 

sequence:

I1: R1 = 100
I2: R1 = R2 + R4
I3: R2 = r4 - 25
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I4: R4 = R1 + R3
I5: R1 = R1 + 30

b. Rename the registers from part (a) to prevent dependency problems. Identify ref-
erences to initial register values using the subscript “a” to the register reference.

 16.5 Consider the “in-order-issue/in-order-completion” execution sequence shown in 
Figure 16.14.
a. Identify the most likely reason why I2 could not enter the execute stage until the 

fourth cycle. Will “in-order issue/out-of-order completion” or “out-of-order issue/
out-of-order completion” fix this? If so, which?

b. Identify the reason why I6 could not enter the write stage until the nineth cycle. 
Will “in-order issue/out-of-order completion” or “out-of-order issue/out-of-order 
completion” fix this? If so, which?

 16.6 Figure 16.15 shows an example of a superscalar processor organization. The processor 
can issue two instructions per cycle if there is no resource conflict and no data depen-
dence problem. There are essentially two pipelines, with four processing stages (fetch, 
decode, execute, and store). Each pipeline has its own fetch decode and store unit. 
Four functional units (multiplier, adder, logic unit, and load unit) are available for use 
in the execute stage and are shared by the two pipelines on a dynamic basis. The two 
store units can be dynamically used by the two pipelines, depending on availability at 
a particular cycle. There is a lookahead window with its own fetch and decoding logic. 
This window is used for instruction lookahead for out-of-order instruction issue.

Consider the following program to be executed on this processor:

I1: Load R1, A /R1 d Memory (A)/
I2: Add R2, R1 /R2 d (R2) + R(1)/
I3: Add R3, R4 /R3 d (R3) + R(4)/
I4: Mul R4, R5 /R4 d (R4) + R(5)/
I5: Comp R6 /R6 d (R6)/
I6: Mul R6, R7 /R6 d (R6) * R(7)/

a. What dependencies exist in the program?
b. Show the pipeline activity for this program on the processor of Figure 16.15 using 

in-order issue with in-order completion policies and using a presentation similar 
to Figure 16.2.

b. Repeat for in-order issue with out-of-order completion.
c. Repeat for out-of-order issue with out-of-order completion.

 16.7 Figure 16.16 is from a paper on superscalar design. Explain the three parts of the fig-
ure, and define w, x, y, and z.

 16.8 Yeh’s dynamic branch prediction algorithm, used on the Pentium 4, is a two-level 
branch prediction algorithm. The first level is the history of the last n branches. The 

Decode Execute Write Cycle
I1 I2 1

I2 I1 2
I2 I1 3

I3 I4 I2 4
I5 I6 I4 I3 I1 I2 5
I5 I6 I5 I3 6

I5 I6 I3 I4 7
8

I5 I6 9

Figure 16.14 An In-Order Issue, In-Order-Completion 
Execution Sequence
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second level is the branch behavior of the last s occurrences of that unique pattern of 
the last n branches. For each conditional branch instruction in a program, there is an 
entry in a Branch History Table (BHT). Each entry consists of n bits corresponding to 
the last n executions of the branch instruction, with a 1 if the branch was taken and a 
0 if the branch was not. Each BHT entry indexes into a Pattern Table (PT) that has 2n 
entries, one for each possible pattern of n bits. Each PT entry consists of s bits that are 
used in branch prediction, as was described in Chapter 14 (e.g., Figure 14.19). When a 
conditional branch is encountered during instruction fetch and decode, the address of 
the instruction is used to retrieve the appropriate BHT entry, which shows the recent 
history of the instruction. Then, the BHT entry is used to retrieve the appropriate PT 
entry for branch prediction. After the branch is executed, the BHT entry is updated, 
and then the appropriate PT entry is updated.
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Figure 16.15 A Dual-Pipeline Superscalar Processor
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a. In testing the performance of this scheme, Yeh tried five different prediction 
schemes, illustrated in Figure 16.17. Identify which three of these schemes cor-
respond to those shown in Figures 14.19 and 14.28. Describe the remaining two 
schemes.

b. With this algorithm, the prediction is not based on just the recent history of this 
particular branch instruction. Rather, it is based on the recent history of all pat-
terns of branches that match the n-bit pattern in the BHT entry for this instruc-
tion. Suggest a rationale for such a strategy.
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Traditionally, the computer has been viewed as a sequential machine. Most computer 
programming languages require the programmer to specify algorithms as sequences 
of instructions. Processors execute programs by executing machine instructions in a 
sequence and one at a time. Each instruction is executed in a sequence of operations 
(fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true. At the  micro- 
 operation level, multiple control signals are generated at the same time. Instruction 
pipelining, at least to the extent of overlapping fetch and execute operations, has 
been around for a long time. Both of these are examples of performing independent 
operations in parallel. This approach is taken further with superscalar organization, 
which exploits  instruction-  level parallelism. With a superscalar machine, there are 
multiple execution units within a single processor, and these may execute multiple 
instructions from the same program in parallel.

As computer technology has evolved, and as the cost of computer hard-
ware has dropped, computer designers have sought more and more opportunities 
for parallelism, usually to enhance performance and, in some cases, to increase 
availability. After an overview, this chapter looks at some of the most prominent 
approaches to parallel organization. First, we examine symmetric multiproces-
sors (SMPs), one of the earliest and still the most common example of paral-
lel organization. In an SMP organization, multiple processors share a common 
memory. This organization raises the issue of cache coherence, to which a sep-
arate section is devoted. Next, the chapter examines multithreaded processors 
and chip multiprocessors. Then we describe clusters, which consist of multiple 
independent computers organized in a cooperative fashion. Clusters have become 
increasingly common to support workloads that are beyond the capacity of a 
single SMP. Another approach to the use of multiple processors that we examine 
is that of nonuniform memory access (NUMA) machines. The NUMA approach 
is relatively new and not yet proven in the marketplace, but is often considered as 
an alternative to the SMP or cluster approach. Finally, this chapter looks at cloud 
computing architecture.

Learning Objectives

After studying this chapter, you should be able to:

 r Summarize the types of parallel processor organizations.
 r Present an overview of design features of symmetric multiprocessors.
 r Understand the issue of cache coherence in a multiple processor system.
 r Explain the key features of the MESI protocol.
 r Explain the difference between implicit and explicit multithreading.
 r Summarize key design issues for clusters.
 r Explain the concept of nonuniform memory access.
 r Present an overview of cloud computing concepts
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 17.1 MULTIPLE PROCESSOR ORGANIZATIONS

Types of Parallel Processor Systems

A taxonomy first introduced by Flynn [FLYN72] is still the most common way of cat-
egorizing systems with parallel processing capability. Flynn proposed the following 
categories of computer systems:

 ■ Single instruction, single data (SISD) stream: A single processor executes a 
single instruction stream to operate on data stored in a single memory. Unipro-
cessors fall into this category.

 ■ Single instruction, multiple data (SIMD) stream: A single machine instruction 
controls the simultaneous execution of a number of processing elements on a 
lockstep basis. Each processing element has an associated data memory, so that 
instructions are executed on different sets of data by different processors. Vec-
tor and array processors fall into this category, and are discussed in Section 18.7.

 ■ Multiple instruction, single data (MISD) stream: A sequence of data is trans-
mitted to a set of processors, each of which executes a different instruction 
sequence. This structure is not commercially implemented.

 ■ Multiple instruction, multiple data (MIMD) stream: A set of processors simul-
taneously execute different instruction sequences on different data sets. SMPs, 
clusters, and NUMA systems fit into this category.

With the MIMD organization, the processors are general purpose; each is able 
to process all of the instructions necessary to perform the appropriate data trans-
formation. MIMDs can be further subdivided by the means in which the processors 
communicate (Figure 17.1). If the processors share a common memory, then each 
processor accesses programs and data stored in the shared memory, and processors 
communicate with each other via that memory. The most common form of such 
system is known as a symmetric multiprocessor (SMP), which we examine in Sec-
tion 17.2. In an SMP, multiple processors share a single memory or pool of mem-
ory by means of a shared bus or other interconnection mechanism; a distinguishing 
feature is that the memory access time to any region of memory is approximately 
the same for each processor. A more recent development is the nonuniform mem-
ory access (NUMA) organization, which is described in Section 17.5. As the name 
suggests, the memory access time to different regions of memory may differ for a 
NUMA processor.

A collection of independent uniprocessors or SMPs may be interconnected to 
form a cluster. Communication among the computers is either via fixed paths or via 
some network facility.

Parallel Organizations

Figure  17.2 illustrates the general organization of the taxonomy of Figure  17.1.  
Figure 17.2a shows the structure of an SISD. There is some sort of control unit (CU) 
that provides an instruction stream (IS) to a processing unit (PU). The processing 
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unit operates on a single data stream (DS) from a memory unit (MU). With an SIMD, 
there is still a single control unit, now feeding a single instruction stream to multiple 
PUs. Each PU may have its own dedicated memory (illustrated in Figure 17.2b), or 
there may be a shared memory. Finally, with the MIMD, there are multiple control 
units, each feeding a separate instruction stream to its own PU. The MIMD may be 
a  shared-  memory multiprocessor (Figure 17.2c) or a distributed-memory multicom-
puter (Figure 17.2d).

The design issues relating to SMPs, clusters, and NUMAs are complex, involv-
ing issues relating to physical organization, interconnection structures, interprocessor 
communication, operating system design, and application software techniques. Our 
concern here is primarily with organization, although we touch briefly on operating 
system design issues.

 17.2 SYMMETRIC MULTIPROCESSORS

Until fairly recently, virtually all  single-  user personal computers and most worksta-
tions contained a single  general-  purpose microprocessor. As demands for perfor-
mance increase and as the cost of microprocessors continues to drop, vendors have 
introduced systems with an SMP organization. The term SMP refers to a computer 
hardware architecture and also to the operating system behavior that reflects that 
architecture. An SMP can be defined as a standalone computer system with the fol-
lowing characteristics:

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are inter-
connected by a bus or other internal connection scheme, such that memory 
access time is approximately the same for each processor.

3. All processors share access to I/O devices, either through the same channels 
or through different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).

5. The system is controlled by an integrated operating system that provides 
interaction between processors and their programs at the job, task, file, and 
data element levels.

Points 1 to 4 should be  self-  explanatory. Point 5 illustrates one of the contrasts 
with a loosely coupled multiprocessing system, such as a cluster. In the latter, the 
physical unit of interaction is usually a message or complete file. In an SMP, indi-
vidual data elements can constitute the level of interaction, and there can be a high 
degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of 
the processors. An SMP organization has a number of potential advantages over a 
uniprocessor organization, including the following:

 ■ Performance: If the work to be done by a computer can be organized so that 
some portions of the work can be done in parallel, then a system with multiple 
processors will yield greater performance than one with a single processor of 
the same type (Figure 17.3).
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 ■ Availability: In a symmetric multiprocessor, because all processors can per-
form the same functions, the failure of a single processor does not halt the 
machine. Instead, the system can continue to function at reduced performance.

 ■ Incremental growth: A user can enhance the performance of a system by add-
ing an additional processor.

 ■ Scaling: Vendors can offer a range of products with different price and per-
formance characteristics based on the number of processors configured in the 
system.

It is important to note that these are potential, rather than guaranteed, benefits. 
The operating system must provide tools and functions to exploit the parallelism in 
an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is 
transparent to the user. The operating system takes care of scheduling of threads or 
processes on individual processors and of synchronization among processors.

Organization

Figure  17.4 depicts in general terms the organization of a multiprocessor system. 
There are two or more processors. Each processor is  self-  contained, including a con-
trol unit, ALU, registers, and, typically, one or more levels of cache. Each processor 
has access to a shared main memory and the I/O devices through some form of inter-
connection mechanism. The processors can communicate with each other through 
memory (messages and status information left in common data areas). It may also be 
possible for processors to exchange signals directly. The memory is often organized 
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Process 3

(a)  Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b)  Interleaving and overlapping (multiprocessing, two processors)

Blocked Running

Time

Figure 17.3 Multiprogramming and Multiprocessing
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so that multiple simultaneous accesses to separate blocks of memory are possible. In 
some configurations, each processor may also have its own private main memory and 
I/O channels in addition to the shared resources.

The most common organization for personal computers, workstations, and 
servers is the  time-  shared bus. The  time-  shared bus is the simplest mechanism for 
constructing a multiprocessor system (Figure 17.5). The structure and interfaces are 
basically the same as for a  single-  processor system that uses a bus interconnection. 
The bus consists of control, address, and data lines. To facilitate DMA transfers 
from I/O subsystems to processors, the following features are provided:

 ■ Addressing: It must be possible to distinguish modules on the bus to deter-
mine the source and destination of data.

 ■ Arbitration: Any I/O module can temporarily function as “master.” A mech-
anism is provided to arbitrate competing requests for bus control, using some 
sort of priority scheme.

 ■  Time-  sharing: When one module is controlling the bus, other modules are 
locked out and must, if necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In 
this latter case, there are now multiple processors as well as multiple I/O processors 
all attempting to gain access to one or more memory modules via the bus.

Processor

Main memory

•   •   •

• 
  •

   
•

Interconnection
network

Processor Processor

I/O

I/O

I/O

Figure 17.4 Generic Block Diagram of a Tightly Coupled Multiprocessor
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The bus organization has several attractive features:

 ■ Simplicity: This is the simplest approach to multiprocessor organization. The 
physical interface and the addressing, arbitration, and  time-  sharing logic of 
each processor remain the same as in a  single-  processor system.

 ■ Flexibility: It is generally easy to expand the system by attaching more proces-
sors to the bus.

 ■ Reliability: The bus is essentially a passive medium, and the failure of any 
attached device should not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory ref-
erences pass through the common bus. Thus, the bus cycle time limits the speed of 
the system. To improve performance, it is desirable to equip each processor with a 
cache memory. This should reduce the number of bus accesses dramatically. Typi-
cally, workstation and PC SMPs have two levels of cache, with the L1 cache internal 
(same chip as the processor) and the L2 cache either internal or external. Some 
processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each 
local cache contains an image of a portion of memory, if a word is altered in one 
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cache, it could conceivably invalidate a word in another cache. To prevent this, the 
other processors must be alerted that an update has taken place. This problem is 
known as the cache coherence problem and is typically addressed in hardware rather 
than by the operating system. We address this issue in Section 17.4.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that 
the user perceives a single operating system controlling system resources. In fact, 
such a configuration should appear as a  single-  processor multiprogramming system. 
In both the SMP and uniprocessor cases, multiple jobs or processes may be active at 
one time, and it is the responsibility of the operating system to schedule their execu-
tion and to allocate resources. A user may construct applications that use multiple 
processes or multiple threads within processes without regard to whether a single 
processor or multiple processors will be available. Thus, a multiprocessor operating 
system must provide all the functionality of a multiprogramming system plus addi-
tional features to accommodate multiple processors. Among the key design issues:

 ■ Simultaneous concurrent processes: OS routines need to be reentrant to allow 
several processors to execute the same IS code simultaneously. With multiple 
processors executing the same or different parts of the OS, OS tables and man-
agement structures must be managed properly to avoid deadlock or invalid 
operations.

 ■ Scheduling: Any processor may perform scheduling, so conflicts must be 
avoided. The scheduler must assign ready processes to available processors.

 ■ Synchronization: With multiple active processes having potential access to 
shared address spaces or shared I/O resources, care must be taken to provide 
effective synchronization. Synchronization is a facility that enforces mutual 
exclusion and event ordering.

 ■ Memory management: Memory management on a multiprocessor must 
deal with all of the issues found on uniprocessor machines, as is discussed in 
Chapter 8. In addition, the operating system needs to exploit the available 
hardware parallelism, such as multiported memories, to achieve the best per-
formance. The paging mechanisms on different processors must be coordi-
nated to enforce consistency when several processors share a page or segment 
and to decide on page replacement.

 ■ Reliability and fault tolerance: The operating system should provide graceful 
degradation in the face of processor failure. The scheduler and other portions 
of the operating system must recognize the loss of a processor and restructure 
management tables accordingly.

 17.3 CACHE COHERENCE AND THE MESI PROTOCOL

In contemporary multiprocessor systems, it is customary to have one or two levels of 
cache associated with each processor. This organization is essential to achieve reason-
able performance. It does, however, create a problem known as the cache coherence 
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problem. The essence of the problem is this: Multiple copies of the same data can 
exist in different caches simultaneously, and if processors are allowed to update their 
own copies freely, an inconsistent view of memory can result. In Chapter 4 we defined 
two common write policies:

 ■ Write back: Write operations are usually made only to the cache. Main mem-
ory is only updated when the corresponding cache line is evicted from the 
cache.

 ■ Write through: All write operations are made to main memory as well as to 
the cache, ensuring that main memory is always valid.

It is clear that a  write-  back policy can result in inconsistency. If two caches 
contain the same line, and the line is updated in one cache, the other cache will 
unknowingly have an invalid value. Subsequent reads to that invalid line produce 
invalid results. Even with the  write-  through policy, inconsistency can occur unless 
other caches monitor the memory traffic or receive some direct notification of the 
update.

In this section, we will briefly survey various approaches to the cache coher-
ence problem and then focus on the approach that is most widely used: the MESI 
(modified/exclusive/shared/invalid) protocol. A version of this protocol is used on 
both the x86 architecture.

For any cache coherence protocol, the objective is to let recently used local 
variables get into the appropriate cache and stay there through numerous reads 
and write, while using the protocol to maintain consistency of shared variables that 
might be in multiple caches at the same time. Cache coherence approaches have 
generally been divided into software and hardware approaches. Some implementa-
tions adopt a strategy that involves both software and hardware elements. Never-
theless, the classification into software and hardware approaches is still instructive 
and is commonly used in surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hard-
ware circuitry and logic by relying on the compiler and operating system to deal with 
the problem. Software approaches are attractive because the overhead of detecting 
potential problems is transferred from run time to compile time, and the design com-
plexity is transferred from hardware to software. On the other hand,  compile-  time 
software approaches generally must make conservative decisions, leading to ineffi-
cient cache utilization.

 Compiler-  based coherence mechanisms perform an analysis on the code to 
determine which data items may become unsafe for caching, and they mark those 
items accordingly. The operating system or hardware then prevents noncacheable 
items from being cached.

The simplest approach is to prevent any shared data variables from being 
cached. This is too conservative, because a shared data structure may be exclusively 
used during some periods and may be effectively  read-  only during other periods. It 
is only during periods when at least one process may update the variable and at least 
one other process may access the variable that cache coherence is an issue.
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More efficient approaches analyze the code to determine safe periods for 
shared variables. The compiler then inserts instructions into the generated code 
to enforce cache coherence during the critical periods. A number of techniques 
have been developed for performing the analysis and for enforcing the results; see 
[LILJ93] and [STEN90] for surveys.

Hardware Solutions

 Hardware-  based solutions are generally referred to as cache coherence protocols. 
These solutions provide dynamic recognition at run time of potential inconsistency 
conditions. Because the problem is only dealt with when it actually arises, there 
is more effective use of caches, leading to improved performance over a software 
approach. In addition, these approaches are transparent to the programmer and the 
compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state 
information about data lines is held, how that information is organized, where coher-
ence is enforced, and the enforcement mechanisms. In general, hardware schemes 
can be divided into two categories: directory protocols and snoopy protocols.

directory protocols Directory protocols collect and maintain information 
about where copies of lines reside. Typically, there is a centralized controller that is 
part of the main memory controller, and a directory that is stored in main memory. 
The directory contains global state information about the contents of the various 
local caches. When an individual cache controller makes a request, the centralized 
controller checks and issues necessary commands for data transfer between 
memory and caches or between caches. It is also responsible for keeping the state 
information up to date; therefore, every local action that can affect the global state 
of a line must be reported to the central controller.

Typically, the controller maintains information about which processors have 
a copy of which lines. Before a processor can write to a local copy of a line, it 
must request exclusive access to the line from the controller. Before granting this 
exclusive access, the controller sends a message to all processors with a cached 
copy of this line, forcing each processor to invalidate its copy. After receiving 
acknowledgments back from each such processor, the controller grants exclusive 
access to the requesting processor. When another processor tries to read a line 
that is exclusively granted to another processor, it will send a miss notification 
to the controller. The controller then issues a command to the processor holding 
that line that requires the processor to do a write back to main memory. The 
line may now be shared for reading by the original processor and the requesting 
processor.

Directory schemes suffer from the drawbacks of a central bottleneck and the 
overhead of communication between the various cache controllers and the central 
controller. However, they are effective in  large-  scale systems that involve multiple 
buses or some other complex interconnection scheme.

snoopy protocols Snoopy protocols distribute the responsibility for 
maintaining cache coherence among all of the cache controllers in a multipro- 
cessor. A cache must recognize when a line that it holds is shared with other 
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caches. When an update action is performed on a shared cache line, it must be 
announced to all other caches by a broadcast mechanism. Each cache controller 
is able to “snoop” on the network to observe these broadcasted notifications, and 
react accordingly.

Snoopy protocols are ideally suited to a  bus-  based multiprocessor, because 
the shared bus provides a simple means for broadcasting and snooping. However, 
because one of the objectives of the use of local caches is to avoid bus accesses, care 
must be taken that the increased bus traffic required for broadcasting and snooping 
does not cancel out the gains from the use of local caches.

Two basic approaches to the snoopy protocol have been explored: write invali-
date and write update (or write broadcast). With a  write-  invalidate protocol, there 
can be multiple readers but only one writer at a time. Initially, a line may be shared 
among several caches for reading purposes. When one of the caches wants to per-
form a write to the line, it first issues a notice that invalidates that line in the other 
caches, making the line exclusive to the writing cache. Once the line is exclusive, the 
owning processor can make cheap local writes until some other processor requires 
the same line.

With a  write-  update protocol, there can be multiple writers as well as multiple 
readers. When a processor wishes to update a shared line, the word to be updated is 
distributed to all others, and caches containing that line can update it.

Neither of these two approaches is superior to the other under all circum-
stances. Performance depends on the number of local caches and the pattern of 
memory reads and writes. Some systems implement adaptive protocols that employ 
both  write-  invalidate and  write-  update mechanisms.

The  write-  invalidate approach is the most widely used in commercial multi-
processor systems, such as the x86 architecture. It marks the state of every cache 
line (using two extra bits in the cache tag) as modified, exclusive, shared, or invalid. 
For this reason, the  write-  invalidate protocol is called MESI. In the remainder of 
this section, we will look at its use among local caches across a multiprocessor. For 
simplicity in the presentation, we do not examine the mechanisms involved in coor-
dinating among both level 1 and level 2 locally as well as at the same time coordinat-
ing across the distributed multiprocessor. This would not add any new principles but 
would greatly complicate the discussion.

The MESI Protocol

To provide cache consistency on an SMP, the data cache often supports a protocol 
known as MESI. For MESI, the data cache includes two status bits per tag, so that 
each line can be in one of four states:

 ■ Modified: The line in the cache has been modified (different from main mem-
ory) and is available only in this cache.

 ■ Exclusive: The line in the cache is the same as that in main memory and is not 
present in any other cache.

 ■ Shared: The line in the cache is the same as that in main memory and may be 
present in another cache.

 ■ Invalid: The line in the cache does not contain valid data.
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Table 17.1 summarizes the meaning of the four states. Figure 17.6 displays a 
state diagram for the MESI protocol. Keep in mind that each line of the cache has 
its own state bits and therefore its own realization of the state diagram. Figure 17.6a 
shows the transitions that occur due to actions initiated by the processor attached 
to this cache. Figure 17.6b shows the transitions that occur due to events that are 
snooped on the common bus. This presentation of separate state diagrams for 
 processor-  initiated and  bus-  initiated actions helps to clarify the logic of the MESI 
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protocol. At any time a cache line is in a single state. If the next event is from the 
attached processor, then the transition is dictated by Figure 17.6a and if the next 
event is from the bus, the transition is dictated by Figure 17.6b. Let us look at these 
transitions in more detail.

read miss When a read miss occurs in the local cache, the processor initiates a 
memory read to read the line of main memory containing the missing address. The 
processor inserts a signal on the bus that alerts all other processor/cache units to 
snoop the transaction. There are a number of possible outcomes:

 ■ If one other cache has a clean (unmodified since read from memory) copy of 
the line in the exclusive state, it returns a signal indicating that it shares this 
line. The responding processor then transitions the state of its copy from exclu-
sive to shared, and the initiating processor reads the line from main memory 
and transitions the line in its cache from invalid to shared.

 ■ If one or more caches have a clean copy of the line in the shared state, each of 
them signals that it shares the line. The initiating processor reads the line and 
transitions the line in its cache from invalid to shared.

 ■ If one other cache has a modified copy of the line, then that cache blocks the 
memory read and provides the line to the requesting cache over the shared 
bus. The responding cache then changes its line from modified to shared.1 The 
line sent to the requesting cache is also received and processed by the memory 
controller, which stores the block in memory.

 ■ If no other cache has a copy of the line (clean or modified), then no signals are 
returned. The initiating processor reads the line and transitions the line in its 
cache from invalid to exclusive.

read hit When a read hit occurs on a line currently in the local cache, the 
processor simply reads the required item. There is no state change: The state 
remains modified, shared, or exclusive.

write miss When a write miss occurs in the local cache, the processor initiates a 
memory read to read the line of main memory containing the missing address. For 
this purpose, the processor issues a signal on the bus that means  read-  with-  intent- 
 to-  modify (RWITM). When the line is loaded, it is immediately marked modified. 
With respect to other caches, two possible scenarios precede the loading of the line 
of data.

First, some other cache may have a modified copy of this line (state = modify).  
In this case, the alerted processor signals the initiating processor that another pro-
cessor has a modified copy of the line. The initiating processor surrenders the bus 
and waits. The other processor gains access to the bus, writes the modified cache 

1In some implementations, the cache with the modified line signals the initiating processor to retry. Mean-
while, the processor with the modified copy seizes the bus, writes the modified line back to main memory, 
and transitions the line in its cache from modified to shared. Subsequently, the requesting processor tries 
again and finds that one or more processors have a clean copy of the line in the shared state, as described 
in the preceding point.
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line back to main memory, and transitions the state of the cache line to invalid 
(because the initiating processor is going to modify this line). Subsequently, the 
initiating processor will again issue a signal to the bus of RWITM and then read 
the line from main memory, modify the line in the cache, and mark the line in the 
modified state.

The second scenario is that no other cache has a modified copy of the requested 
line. In this case, no signal is returned, and the initiating processor proceeds to read 
in the line and modify it. Meanwhile, if one or more caches have a clean copy of the 
line in the shared state, each cache invalidates its copy of the line, and if one cache 
has a clean copy of the line in the exclusive state, it invalidates its copy of the line.

write hit When a write hit occurs on a line currently in the local cache, the effect 
depends on the current state of that line in the local cache:

 ■ Shared: Before performing the update, the processor must gain exclusive own-
ership of the line. The processor signals its intent on the bus. Each processor 
that has a shared copy of the line in its cache transitions the sector from shared 
to invalid. The initiating processor then performs the update and transitions its 
copy of the line from shared to modified.

 ■ Exclusive: The processor already has exclusive control of this line, and so it 
simply performs the update and transitions its copy of the line from exclusive 
to modified.

 ■ Modified: The processor already has exclusive control of this line and has the 
line marked as modified, and so it simply performs the update.

l1-l2 cache consistency We have so far described cache coherency protocols 
in terms of the cooperate activity among caches connected to the same bus or 
other SMP interconnection facility. Typically, these caches are L2 caches, and each 
processor also has an L1 cache that does not connect directly to the bus and that 
therefore cannot engage in a snoopy protocol. Thus, some scheme is needed to 
maintain data integrity across both levels of cache and across all caches in the SMP 
configuration.

The strategy is to extend the MESI protocol (or any cache coherence protocol) 
to the L1 caches. Thus, each line in the L1 cache includes bits to indicate the state. 
In essence, the objective is the following: for any line that is present in both an L2 
cache and its corresponding L1 cache, the L1 line state should track the state of the 
L2 line. A simple means of doing this is to adopt the  write-  through policy in the L1 
cache; in this case the write through is to the L2 cache and not to the memory. The 
L1  write-  through policy forces any modification to an L1 line out to the L2 cache 
and therefore makes it visible to other L2 caches. The use of the L1  write-  through 
policy requires that the L1 content must be a subset of the L2 content. This in turn 
suggests that the associativity of the L2 cache should be equal to or greater than that 
of the L1 associativity. The L1  write-  through policy is used in the IBM S/390 SMP.

If the L1 cache has a  write-  back policy, the relationship between the two 
caches is more complex. There are several approaches to maintaining, a topic 
beyond our scope.
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 17.4 MULTITHREADING AND CHIP MULTIPROCESSORS

The most important measure of performance for a processor is the rate at which it 
executes instructions. This can be expressed as

MIPS rate = f * IPC

where f is the processor clock frequency, in MHz, and IPC (instructions per cycle) 
is the average number of instructions executed per cycle. Accordingly, designers 
have pursued the goal of increased performance on two fronts: increasing clock fre-
quency and increasing the number of instructions executed or, more properly, the 
number of instructions that complete during a processor cycle. As we have seen 
in earlier chapters, designers have increased IPC by using an instruction pipeline 
and then by using multiple parallel instruction pipelines in a superscalar architec-
ture. With pipelined and  multiple-  pipeline designs, the principal problem is to max-
imize the utilization of each pipeline stage. To improve throughput, designers have 
created ever more complex mechanisms, such as executing some instructions in a 
different order from the way they occur in the instruction stream and beginning exe-
cution of instructions that may never be needed. But as was discussed in Section 2.2, 
this approach may be reaching a limit due to complexity and power consumption 
concerns.

An alternative approach, which allows for a high degree of  instruction-  level 
parallelism without increasing circuit complexity or power consumption, is called 
multithreading. In essence, the instruction stream is divided into several smaller 
streams, known as threads, such that the threads can be executed in parallel.

The variety of specific multithreading designs, realized in both commercial 
systems and experimental systems, is vast. In this section, we give a brief survey of 
the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may not 
be the same as the concept of software threads in a multiprogrammed operating 
system. It will be useful to define terms briefly:

 ■ Process: An instance of a program running on a computer. A process embod-
ies two key characteristics:

—  Resource ownership: A process includes a virtual address space to hold the 
process image; the process image is the collection of program, data, stack, 
and attributes that define the process. From time to time, a process may 
be allocated control or ownership of resources, such as main memory, I/O 
channels, I/O devices, and files.

—  Scheduling/execution: The execution of a process follows an execution path 
(trace) through one or more programs. This execution may be interleaved 
with that of other processes. Thus, a process has an execution state (Run-
ning, Ready, etc.) and a dispatching priority and is the entity that is sched-
uled and dispatched by the operating system.
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 ■ Process switch: An operation that switches the processor from one process to 
another, by saving all the process control data, registers, and other information 
for the first and replacing them with the process information for the second.2

 ■ Thread: A dispatchable unit of work within a process. It includes a processor 
context (which includes the program counter and stack pointer) and its own data 
area for a stack (to enable subroutine branching). A thread executes sequen-
tially and is interruptible so that the processor can turn to another thread.

 ■ Thread switch: The act of switching processor control from one thread to 
another within the same process. Typically, this type of switch is much less 
costly than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process 
is concerned with both scheduling/execution and resource ownership. The multiple 
threads within a process share the same resources. This is why a thread switch is 
much less time consuming than a process switch. Traditional operating systems, 
such as earlier versions of unix, did not support threads. Most modern operating 
systems, such as Linux, other versions of unix, and Windows, do support thread. A 
distinction is made between  user-  level threads, which are visible to the application 
program, and  kernel-  level threads, which are visible only to the operating system. 
Both of these may be referred to as explicit threads, defined in software.

All of the commercial processors and most of the experimental processors so 
far have used explicit multithreading. These systems concurrently execute instruc-
tions from different explicit threads, either by interleaving instructions from dif-
ferent threads on shared pipelines or by parallel execution on parallel pipelines. 
Implicit multithreading refers to the concurrent execution of multiple threads 
extracted from a single sequential program. These implicit threads may be defined 
either statically by the compiler or dynamically by the hardware. In the remainder 
of this section we consider explicit multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter 
for each thread of execution to be executed concurrently. The designs differ in the 
amount and type of additional hardware used to support concurrent thread exe-
cution. In general, instruction fetching takes place on a thread basis. The processor 
treats each thread separately and may use a number of techniques for optimizing 
 single-  thread execution, including branch prediction, register renaming, and super-
scalar techniques. What is achieved is  thread-  level parallelism, which may provide 
for greatly improved performance when married to  instruction-  level parallelism.

Broadly speaking, there are four principal approaches to multithreading:

 ■ Interleaved multithreading: This is also known as  fine-  grained multithread-
ing. The processor deals with two or more thread contexts at a time, switching 
from one thread to another at each clock cycle. If a thread is blocked because 

2The term context switch is often found in OS literature and textbooks. Unfortunately, although most of 
the literature uses this term to mean what is here called a process switch, other sources use it to mean a 
thread switch. To avoid ambiguity, the term is not used in this book.
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of data dependencies or memory latencies, that thread is skipped and a ready 
thread is executed.

 ■ Blocked multithreading: This is also known as  coarse-  grained multithreading. 
The instructions of a thread are executed successively until an event occurs 
that may cause delay, such as a cache miss. This event induces a switch to 
another thread. This approach is effective on an  in-  order processor that would 
stall the pipeline for a delay event such as a cache miss.

 ■ Simultaneous multithreading (SMT): Instructions are simultaneously issued 
from multiple threads to the execution units of a superscalar processor. This 
combines the wide superscalar instruction issue capability with the use of 
multiple thread contexts.

 ■ Chip multiprocessing: In this case, multiple cores are implemented on a single 
chip and each core handles separate threads. The advantage of this approach 
is that the available logic area on a chip is used effectively without depending 
on  ever-  increasing complexity in pipeline design. This is referred to as multi-
core; we examine this topic separately in Chapter 18.

For the first two approaches, instructions from different threads are not exe-
cuted simultaneously. Instead, the processor is able to rapidly switch from one 
thread to another, using a different set of registers and other context information. 
This results in a better utilization of the processor’s execution resources and avoids 
a large penalty due to cache misses and other latency events. The SMT approach 
involves true simultaneous execution of instructions from different threads, using 
replicated execution resources. Chip multiprocessing also enables simultaneous 
execution of instructions from different threads.

Figure 17.7, based on one in [UNGE02], illustrates some of the possible pipe-
line architectures that involve multithreading and contrasts these with approaches 
that do not use multithreading. Each horizontal row represents the potential issue 
slot or slots for a single execution cycle; that is, the width of each row corresponds 
to the maximum number of instructions that can be issued in a single clock cycle.3 
The vertical dimension represents the time sequence of clock cycles. An empty 
(shaded) slot represents an unused execution slot in one pipeline. A  no-  op is indi-
cated by N.

The first three illustrations in Figure 17.7 show different approaches with a 
scalar (i.e.,  single-  issue) processor:

 ■  Single-  threaded scalar: This is the simple pipeline found in traditional RISC 
and CISC machines, with no multithreading.

 ■ Interleaved multithreaded scalar: This is the easiest multithreading approach 
to implement. By switching from one thread to another at each clock cycle, 
the pipeline stages can be kept fully occupied, or close to fully occupied. The 
hardware must be capable of switching from one thread context to another 
between cycles.

3Issue slots are the position from which instructions can be issued in a given clock cycle. Recall from 
Chapter 16 that instruction issue is the process of initiating instruction execution in the processor’s func-
tional units. This occurs when an instruction moves from the decode stage of the pipeline to the first 
execute stage of the pipeline.
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 ■ Blocked multithreaded scalar: In this case, a single thread is executed until a 
latency event occurs that would stop the pipeline, at which time the processor 
switches to another thread.

Figure 17.7c shows a situation in which the time to perform a thread switch is 
one cycle, whereas Figure 17.7b shows that thread switching occurs in zero cycles. 
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In the case of interleaved multithreading, it is assumed that there are no control or 
data dependencies between threads, which simplifies the pipeline design and there-
fore should allow a thread switch with no delay. However, depending on the specific 
design and implementation, block multithreading may require a clock cycle to per-
form a thread switch, as illustrated in Figure 17.7. This is true if a fetched instruction 
triggers the thread switch and must be discarded from the pipeline [UNGE03].

Although interleaved multithreading appears to offer better processor uti-
lization than blocked multithreading, it does so at the sacrifice of  single-  thread 
performance. The multiple threads compete for cache resources, which raises the 
probability of a cache miss for a given thread.

More opportunities for parallel execution are available if the processor can 
issue multiple instructions per cycle. Figures 17.7d through 17.7i illustrate a number 
of variations among processors that have hardware for issuing four instructions per 
cycle. In all these cases, only instructions from a single thread are issued in a single 
cycle. The following alternatives are illustrated:

 ■ Superscalar: This is the basic superscalar approach with no multithreading. 
Until relatively recently, this was the most powerful approach to providing 
parallelism within a processor. Note that during some cycles, not all of the 
available issue slots are used. During these cycles, less than the maximum num-
ber of instructions is issued; this is referred to as horizontal loss. During other 
instruction cycles, no issue slots are used; these are cycles when no instructions 
can be issued; this is referred to as vertical loss.

 ■ Interleaved multithreading superscalar: During each cycle, as many instruc-
tions as possible are issued from a single thread. With this technique, potential 
delays due to thread switches are eliminated, as previously discussed. How-
ever, the number of instructions issued in any given cycle is still limited by 
dependencies that exist within any given thread.

 ■ Blocked multithreaded superscalar: Again, instructions from only one thread 
may be issued during any cycle, and blocked multithreading is used.

 ■ Very long instruction word (VLIW): A VLIW architecture, such as  IA-  64, places 
multiple instructions in a single word. Typically, a VLIW is constructed by the 
compiler, which places operations that may be executed in parallel in the same 
word. In a simple VLIW machine (Figure 17.7g), if it is not possible to com-
pletely fill the word with instructions to be issued in parallel,  no-  ops are used.

 ■ Interleaved multithreading VLIW: This approach should provide similar 
efficiencies to those provided by interleaved multithreading on a superscalar 
architecture.

 ■ Blocked multithreaded VLIW: This approach should provide similar efficien-
cies to those provided by blocked multithreading on a superscalar architecture.

The final two approaches illustrated in Figure 17.7 enable the parallel, simul-
taneous execution of multiple threads:

 ■ Simultaneous multithreading: Figure 17.7j shows a system capable of issuing 
8 instructions at a time. If one thread has a high degree of  instruction-  level 
parallelism, it may on some cycles be able fill all of the horizontal slots. On 
other cycles, instructions from two or more threads may be issued. If sufficient 



17.5 / ClusTERs  633

threads are active, it should usually be possible to issue the maximum number 
of instructions on each cycle, providing a high level of efficiency.

 ■ Chip multiprocessor (multicore): Figure 17.7k shows a chip containing four 
cores, each of which has a  two-  issue superscalar processor. Each core is 
assigned a thread, from which it can issue up to two instructions per cycle. We 
discuss multicore computers in Chapter 18.

Comparing Figures 17.7j and 17.7k, we see that a chip multiprocessor with 
the same instruction issue capability as an SMT cannot achieve the same degree of 
 instruction-  level parallelism. This is because the chip multiprocessor is not able to 
hide latencies by issuing instructions from other threads. On the other hand, the chip 
multiprocessor should outperform a superscalar processor with the same instruction 
issue capability, because the horizontal losses will be greater for the superscalar 
processor. In addition, it is possible to use multithreading within each of the cores 
on a chip multiprocessor, and this is done on some contemporary machines.

 17.5 CLUSTERS

An important and relatively recent development computer system design is clustering. 
Clustering is an alternative to symmetric multiprocessing as an approach to providing 
high performance and high availability and is particularly attractive for server appli-
cations. We can define a cluster as a group of interconnected, whole computers work-
ing together as a unified computing resource that can create the illusion of being one 
machine. The term whole computer means a system that can run on its own, apart from 
the cluster; in the literature, each computer in a cluster is typically referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can 
also be thought of as objectives or design requirements:

 ■ Absolute scalability: It is possible to create large clusters that far surpass the 
power of even the largest standalone machines. A cluster can have tens, hun-
dreds, or even thousands of machines, each of which is a multiprocessor.

 ■ Incremental scalability: A cluster is configured in such a way that it is possible to 
add new systems to the cluster in small increments. Thus, a user can start out with 
a modest system and expand it as needs grow, without having to go through a 
major upgrade in which an existing small system is replaced with a larger system.

 ■ High availability: Because each node in a cluster is a standalone computer, the 
failure of one node does not mean loss of service. In many products, fault tol-
erance is handled automatically in software.

 ■ Superior price/performance: By using commodity building blocks, it is possible 
to put together a cluster with equal or greater computing power than a single 
large machine, at much lower cost.

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the sim-
plest classification is based on whether the computers in a cluster share access to the 
same disks. Figure 17.8a shows a  two-  node cluster in which the only interconnection 
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is by means of a  high-  speed link that can be used for message exchange to coordi-
nate cluster activity. The link can be a LAN that is shared with other computers that 
are not part of the cluster or the link can be a dedicated interconnection facility. In 
the latter case, one or more of the computers in the cluster will have a link to a LAN 
or WAN so that there is a connection between the server cluster and remote client 
systems. Note that in the figure, each computer is depicted as being a multiprocessor. 
This is not necessary but does enhance both performance and availability.

In the simple classification depicted in Figure 17.8, the other alternative is 
a  shared-  disk cluster. In this case, there generally is still a message link between 
nodes. In addition, there is a disk subsystem that is directly linked to multiple com-
puters within the cluster. In this figure, the common disk subsystem is a RAID sys-
tem. The use of RAID or some similar redundant disk technology is common in 
clusters so that the high availability achieved by the presence of multiple computers 
is not compromised by a shared disk that is a single point of failure.

A clearer picture of the range of cluster options can be gained by looking at 
functional alternatives. Table 17.2 provides a useful classification along functional 
lines, which we now discuss.

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

(b) Shared Disk

I/O I/O

Figure 17.8 Cluster Configurations
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A common, older method, known as passive standby, is simply to have one 
computer handle all of the processing load while the other computer remains 
inactive, standing by to take over in the event of a failure of the primary. To coord-
inate the machines, the active, or primary, system periodically sends a “heartbeat” 
message to the standby machine. Should these messages stop arriving, the standby 
assumes that the primary server has failed and puts itself into operation. This 
approach increases availability but does not improve performance. Further, if the 
only information that is exchanged between the two systems is a heartbeat message, 
and if the two systems do not share common disks, then the standby provides a 
functional backup but has no access to the databases managed by the primary.

The passive standby is generally not referred to as a cluster. The term cluster 
is reserved for multiple interconnected computers that are all actively doing pro-
cessing while maintaining the image of a single system to the outside world. The 
term active secondary is often used in referring to this configuration. Three classifi-
cations of clustering can be identified: separate servers, shared nothing, and shared 
memory.

In one approach to clustering, each computer is a separate server with its own 
disks and there are no disks shared between systems (Figure 17.8a). This arrange-
ment provides high performance as well as high availability. In this case, some type 
of management or scheduling software is needed to assign incoming client requests 
to servers so that the load is balanced and high utilization is achieved. It is desir-
able to have a failover capability, which means that if a computer fails while exe-
cuting an application, another computer in the cluster can pick up and complete 

Table 17.2 Clustering Methods: Benefits and Limitations

Clustering Method Description Benefits Limitations

Passive Standby A secondary server 
takes over in case of 
primary server failure.

Easy to implement. High cost because the 
secondary server is 
unavailable for other 
processing tasks.

Active Secondary: The secondary server is 
also used for processing 
tasks.

Reduced cost because 
secondary servers can be 
used for processing.

Increased complexity.

Separate Servers Separate servers have 
their own disks. Data 
is continuously copied 
from primary to second-
ary server.

High availability. High network and server 
overhead due to copying 
operations.

Servers Connected to 
Disks

Servers are cabled to 
the same disks, but each 
server owns its disks. If 
one server fails, its disks 
are taken over by the 
other server.

Reduced network and 
server overhead due to 
elimination of copying 
operations.

Usually requires disk 
mirroring or RAID tech-
nology to compensate 
for risk of disk failure.

Servers Share Disks Multiple servers simul-
taneously share access 
to disks.

Low network and server 
overhead. Reduced risk 
of downtime caused by 
disk failure.

Requires lock manager 
software. Usually used 
with disk mirroring or 
RAID technology.
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the application. For this to happen, data must constantly be copied among systems 
so that each system has access to the current data of the other systems. The over-
head of this data exchange ensures high availability at the cost of a performance 
penalty.

To reduce the communications overhead, most clusters now consist of servers 
connected to common disks (Figure 17.8b). In one variation on this approach, called 
shared nothing, the common disks are partitioned into volumes, and each volume is 
owned by a single computer. If that computer fails, the cluster must be reconfigured 
so that some other computer has ownership of the volumes of the failed computer.

It is also possible to have multiple computers share the same disks at the same 
time (called the shared disk approach), so that each computer has access to all of the 
volumes on all of the disks. This approach requires the use of some type of locking 
facility to ensure that data can only be accessed by one computer at a time.

Operating System Design Issues

Full exploitation of a cluster hardware configuration requires some enhancements to 
a  single-  system operating system.

failure management How failures are managed by a cluster depends on the 
clustering method used (Table 17.2). In general, two approaches can be taken to dealing 
with failures: highly available clusters and  fault-  tolerant clusters. A highly available 
cluster offers a high probability that all resources will be in service. If a failure occurs, 
such as a system goes down or a disk volume is lost, then the queries in progress are 
lost. Any lost query, if retried, will be serviced by a different computer in the cluster. 
However, the cluster operating system makes no guarantee about the state of partially 
executed transactions. This would need to be handled at the application level.

A  fault-  tolerant cluster ensures that all resources are always available. This 
is achieved by the use of redundant shared disks and mechanisms for backing out 
uncommitted transactions and committing completed transactions.

The function of switching applications and data resources over from a failed 
system to an alternative system in the cluster is referred to as failover. A related 
function is the restoration of applications and data resources to the original system 
once it has been fixed; this is referred to as failback. Failback can be automated, but 
this is desirable only if the problem is truly fixed and unlikely to recur. If not, auto-
matic failback can cause subsequently failed resources to bounce back and forth 
between computers, resulting in performance and recovery problems.

load balancing A cluster requires an effective capability for balancing the 
load among available computers. This includes the requirement that the cluster 
be incrementally scalable. When a new computer is added to the cluster, the 
 load-  balancing facility should automatically include this computer in scheduling 
applications. Middleware mechanisms need to recognize that services can appear 
on different members of the cluster and may migrate from one member to another.

parallelizing computation In some cases, effective use of a cluster requires 
executing software from a single application in parallel. [KAPP00] lists three general 
approaches to the problem:
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 ■ Parallelizing compiler: A parallelizing compiler determines, at compile time, 
which parts of an application can be executed in parallel. These are then split 
off to be assigned to different computers in the cluster. Performance depends 
on the nature of the problem and how well the compiler is designed. In gen-
eral, such compilers are difficult to develop.

 ■ Parallelized application: In this approach, the programmer writes the appli-
cation from the outset to run on a cluster, and uses message passing to move 
data, as required, between cluster nodes. This places a high burden on the 
programmer but may be the best approach for exploiting clusters for some 
applications.

 ■ Parametric computing: This approach can be used if the essence of the appli-
cation is an algorithm or program that must be executed a large number of 
times, each time with a different set of starting conditions or parameters. A 
good example is a simulation model, which will run a large number of differ-
ent scenarios and then develop statistical summaries of the results. For this 
approach to be effective, parametric processing tools are needed to organize, 
run, and manage the jobs in an effective manner.

Cluster Computer Architecture

Figure 17.9 shows a typical cluster architecture. The individual computers are con-
nected by some  high-  speed LAN or switch hardware. Each computer is capable of 
operating independently. In addition, a middleware layer of software is installed 
in each computer to enable cluster operation. The cluster middleware provides a 
unified system image to the user, known as a  single-  system image. The middleware 
is also responsible for providing high availability, by means of load balancing and 

Figure 17.9 Cluster Computer Architecture [BUYY99]
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responding to failures in individual components. [HWAN99] lists the following as 
desirable cluster middleware services and functions:

 ■ Single entry point: A user logs onto the cluster rather than to an individual 
computer.

 ■ Single file hierarchy: The user sees a single hierarchy of file directories under 
the same root directory.

 ■ Single control point: There is a default workstation used for cluster manage-
ment and control.

 ■ Single virtual networking: Any node can access any other point in the cluster, 
even though the actual cluster configuration may consist of multiple intercon-
nected networks. There is a single virtual network operation.

 ■ Single memory space: Distributed shared memory enables programs to share 
variables.

 ■ Single  job-  management system: Under a cluster job scheduler, a user can sub-
mit a job without specifying the host computer to execute the job.

 ■ Single user interface: A common graphic interface supports all users, regard-
less of the workstation from which they enter the cluster.

 ■ Single I/O space: Any node can remotely access any I/O peripheral or disk 
device without knowledge of its physical location.

 ■ Single process space: A uniform  process-  identification scheme is used. A 
process on any node can create or communicate with any other process on a 
remote node.

 ■ Checkpointing: This function periodically saves the process state and inter-
mediate computing results, to allow rollback recovery after a failure.

 ■ Process migration: This function enables load balancing.

The last four items on the preceding list enhance the availability of the cluster. 
The remaining items are concerned with providing a single system image.

Returning to Figure 17.9, a cluster will also include software tools for enabling 
the efficient execution of programs that are capable of parallel execution.

Blade Servers

A common implementation of the cluster approach is the blade server. A blade 
server is a server architecture that houses multiple server modules (“blades”) in 
a single chassis. It is widely used in data centers to save space and improve system 
management. Either  self-  standing or rack mounted, the chassis provides the power 
supply, and each blade has its own processor, memory, and hard disk.

An example of the application is shown in Figure  17.10. The trend at 
large data centers, with substantial banks of blade servers, is the deployment 
of 10-Gbps ports on individual servers to handle the massive multimedia traffic 
provided by these servers. Such arrangements are stressing the  on-  site Ethernet 
switches needed to interconnect large numbers of servers. A 100-Gbps rate pro-
vides the bandwidth required to handle the increased traffic load. The 100-Gbps 
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Figure 17.10 Example 100-Gbps Ethernet Configuration for Massive Blade Server Site

Ethernet switches are deployed in switch uplinks inside the data center as well 
as providing interbuilding, intercampus, wide area connections for enterprise 
networks.

Clusters Compared to SMP

Both clusters and symmetric multiprocessors provide a configuration with multiple 
processors to support  high-  demand applications. Both solutions are commercially 
available, although SMP schemes have been around far longer.

The main strength of the SMP approach is that an SMP is easier to manage 
and configure than a cluster. The SMP is much closer to the original  single-  processor 
model for which nearly all applications are written. The principal change required 
in going from a uniprocessor to an SMP is to the scheduler function. Another ben-
efit of the SMP is that it usually takes up less physical space and draws less power 
than a comparable cluster. A final important benefit is that the SMP products are 
well established and stable.

Over the long run, however, the advantages of the cluster approach are likely 
to result in clusters dominating the  high-  performance server market. Clusters are 
far superior to SMPs in terms of incremental and absolute scalability. Clusters are 
also superior in terms of availability, because all components of the system can 
readily be made highly redundant.
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 17.6 NONUNIFORM MEMORY ACCESS

In terms of commercial products, the two common approaches to providing a 
 multiple-  processor system to support applications are SMPs and clusters. For some 
years, another approach, known as nonuniform memory access (NUMA), has been 
the subject of research and commercial NUMA products are now available.

Before proceeding, we should define some terms often found in the NUMA 
literature.

 ■ Uniform memory access (UMA): All processors have access to all parts of 
main memory using loads and stores. The memory access time of a processor 
to all regions of memory is the same. The access times experienced by different 
processors are the same. The SMP organization discussed in Sections 17.2 and 
17.3 is UMA.

 ■ Nonuniform memory access (NUMA): All processors have access to all parts 
of main memory using loads and stores. The memory access time of a proces-
sor differs depending on which region of main memory is accessed. The last 
statement is true for all processors; however, for different processors, which 
memory regions are slower and which are faster differ.

 ■  Cache-  coherent NUMA ( CC-  NUMA): A NUMA system in which cache 
coherence is maintained among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a clus-
ter. The commercial products that have received much attention recently are  CC- 
 NUMA systems, which are quite distinct from both SMPs and clusters. Usually, but 
unfortunately not always, such systems are in fact referred to in the commercial 
literature as  CC-  NUMA systems. This section is concerned only with  CC-  NUMA 
systems.

Motivation

With an SMP system, there is a practical limit to the number of processors that can 
be used. An effective cache scheme reduces the bus traffic between any one proces-
sor and main memory. As the number of processors increases, this bus traffic also 
increases. Also, the bus is used to exchange  cache-  coherence signals, further adding 
to the burden. At some point, the bus becomes a performance bottleneck. Perfor-
mance degradation seems to limit the number of processors in an SMP configuration 
to somewhere between 16 and 64 processors. For example, Silicon Graphics’ Power 
Challenge SMP is limited to 64 R10000 processors in a single system; beyond this 
number performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind the 
development of cluster systems. However, with a cluster, each node has its own 
private main memory; applications do not see a large global memory. In effect, 
coherency is maintained in software rather than hardware. This memory granularity 
affects performance and, to achieve maximum performance, software must be tai-
lored to this environment. One approach to achieving  large-  scale multiprocessing 
while retaining the flavor of SMP is NUMA.
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The objective with NUMA is to maintain a transparent system wide mem-
ory while permitting multiple multiprocessor nodes, each with its own bus or other 
internal interconnect system.

Organization

Figure 17.11 depicts a typical  CC-  NUMA organization. There are multiple indepen-
dent nodes, each of which is, in effect, an SMP organization. Thus, each node con-
tains multiple processors, each with its own L1 and L2 caches, plus main memory. 
The node is the basic building block of the overall  CC-  NUMA organization. For 
example, each Silicon Graphics Origin node includes two MIPS R10000 processors; 
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each Sequent  NUMA-  Q node includes four Pentium II processors. The nodes are 
interconnected by means of some communications facility, which could be a switch-
ing mechanism, a ring, or some other networking facility.

Each node in the  CC-  NUMA system includes some main memory. From the 
point of view of the processors, however, there is only a single addressable memory, 
with each location having a unique system wide address. When a processor initiates 
a memory access, if the requested memory location is not in that processor’s cache, 
then the L2 cache initiates a fetch operation. If the desired line is in the local portion 
of the main memory, the line is fetched across the local bus. If the desired line is in 
a remote portion of the main memory, then an automatic request is sent out to fetch 
that line across the interconnection network, deliver it to the local bus, and then 
deliver it to the requesting cache on that bus. All of this activity is automatic and 
transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although imple-
mentations differ as to details, in general terms we can say that each node must 
maintain some sort of directory that gives it an indication of the location of vari-
ous portions of memory and also cache status information. To see how this scheme 
works, we give an example taken from [PFIS98]. Suppose that processor 3 on node 
2 (P2-3) requests a memory location 798, which is in the memory of node 1. The 
following sequence occurs:

1. P2-3 issues a read request on the snoopy bus of node 2 for location 798.

2. The directory on node 2 sees the request and recognizes that the location is in 
node 1.

3. Node 2’s directory sends a request to node 1, which is picked up by node 1’s 
directory.

4. Node 1’s directory, acting as a surrogate of P2-3, requests the contents of 798, 
as if it were a processor.

5. Node 1’s main memory responds by putting the requested data on the bus.

6. Node 1’s directory picks up the data from the bus.

7. The value is transferred back to node 2’s directory.

8. Node 2’s directory places the data back on node 2’s bus, acting as a surrogate 
for the memory that originally held it.

9. The value is picked up and placed in P2-3’s cache and delivered to P2-3.

The preceding sequence explains how data are read from a remote mem-
ory using hardware mechanisms that make the transaction transparent to the pro-
cessor. On top of these mechanisms, some form of cache coherence protocol is 
needed. Various systems differ on exactly how this is done. We make only a few 
general remarks here. First, as part of the preceding sequence, node 1’s directory 
keeps a record that some remote cache has a copy of the line containing location 
798. Then, there needs to be a cooperative protocol to take care of modifications. 
For example, if a modification is done in a cache, this fact can be broadcast to other 
nodes. Each node’s directory that receives such a broadcast can then determine if 
any local cache has that line and, if so, cause it to be purged. If the actual mem-
ory location is at the node receiving the broadcast notification, then that node’s 



17.7 / Cloud CoMPuTing  643

directory needs to maintain an entry indicating that that line of memory is invalid 
and remains so until a write back occurs. If another processor (local or remote) 
requests the invalid line, then the local directory must force a write back to update 
memory before providing the data.

NUMA Pros and Cons

The main advantage of a  CC-  NUMA system is that it can deliver effective perfor-
mance at higher levels of parallelism than SMP, without requiring major software 
changes. With multiple NUMA nodes, the bus traffic on any individual node is lim-
ited to a demand that the bus can handle. However, if many of the memory accesses 
are to remote nodes, performance begins to break down. There is reason to believe 
that this performance breakdown can be avoided. First, the use of L1 and L2 caches 
is designed to minimize all memory accesses, including remote ones. If much of the 
software has good temporal locality, then remote memory accesses should not be 
excessive. Second, if the software has good spatial locality, and if virtual memory 
is in use, then the data needed for an application will reside on a limited num-
ber of frequently used pages that can be initially loaded into the memory local 
to the running application. The Sequent designers report that such spatial locality 
does appear in representative applications [LOVE96]. Finally, the virtual memory 
scheme can be enhanced by including in the operating system a page migration 
mechanism that will move a virtual memory page to a node that is frequently using 
it; the Silicon Graphics designers report success with this approach [WHIT97].

Even if the performance breakdown due to remote access is addressed, there 
are two other disadvantages for the  CC-  NUMA approach [PFIS98]. First, a  CC- 
 NUMA does not transparently look like an SMP; software changes will be required 
to move an operating system and applications from an SMP to a  CC-  NUMA sys-
tem. These include page allocation, already mentioned, process allocation, and load 
balancing by the operating system. A second concern is that of availability. This is a 
rather complex issue and depends on the exact implementation of the  CC-  NUMA 
system; the interested reader is referred to [PFIS98].

Vector Processor Simulator

 17.7 CLOUD COMPUTING

Cloud computing was introduced in Chapter 1, where the three service models were 
discussed. Here we go into greater detail.

Cloud Computing Elements

NIST  SP-  800-145 (The NIST Definition of Cloud Computing) specifies that cloud 
computing is composed of five essential characteristics, three service models, and 
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four deployment models. Figure 17.12 illustrates the relationship among these con-
cepts. The essential characteristics of cloud computing include the following:

 ■ Broad network access: Capabilities are available over the network and 
accessed through standard mechanisms that promote use by heterogeneous 
thin or thick client platforms (e.g., mobile phones, laptops, and tablets) as well 
as other traditional or  cloud-  based software services.

 ■ Rapid elasticity: Cloud computing gives you the ability to expand and reduce 
resources according to your specific service requirement. For example, you 
may need a large number of server resources for the duration of a specific 
task. You can then release these resources upon completion of the task.

 ■ Measured service: Cloud systems automatically control and optimize resource 
use by leveraging a metering capability at some level of abstraction appro-
priate to the type of service (e.g., storage, processing, bandwidth, and active 
user accounts). Resource usage can be monitored, controlled, and reported, 
providing transparency for both the provider and consumer of the utilized 
service.

 ■  On-  demand  self-  service: A consumer can unilaterally provision computing 
capabilities, such as server time and network storage, as needed automatically 

Broad
network access

Resource pooling

Rapid
elasticity

E
ss

en
ti

al
ch

ar
ac

te
ri

st
ic

s
Se

rv
ic

e
m

od
el

s
D

ep
lo

ym
en

t
m

od
el

s

Measured
service

On-demand
self-service

Public Private Hybrid Community

Software as a service (SaaS)

Platform as a service (PaaS)

Infrastructure as a service (IaaS)

Figure 17.12 Cloud Computing Elements



17.7 / Cloud CoMPuTing  645

without requiring human interaction with each service provider. Because 
the service is on demand, the resources are not permanent parts of your IT 
infrastructure.

 ■ Resource pooling: The provider’s computing resources are pooled to serve 
multiple consumers using a  multi-  tenant model, with different physical and 
virtual resources dynamically assigned and reassigned according to consumer 
demand. There is a degree of location independence in that the customer gen-
erally has no control or knowledge over the exact location of the provided 
resources, but may be able to specify location at a higher level of abstraction 
(e.g., country, state, or datacenter). Examples of resources include storage, 
processing, memory, network bandwidth, and virtual machines. Even private 
clouds tend to pool resources between different parts of the same organization.

NIST defines three service models, which can be viewed as nested service 
alternatives (Figure 17.13). These were defined in Chapter 1, and can be briefly 
summarized as follows:

 ■ Software as a service (SaaS): Provides service to customers in the form of soft-
ware, specifically application software, running on and accessible in the cloud.
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(visible to subscriber)

Cloud application software
(developed by subscriber)

(c) IaaS

Cloud
infrastructure

(visible to
subscriber)

Cloud platform
(visible to subscriber)

Cloud application software
(developed by subscriber)

Figure 17.13 Cloud Service Models
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 ■ Platform as a service (PaaS): Provides service to customers in the form of a 
platform on which the customer's applications can run.

 ■ Infrastructure as a service (IaaS): Provides the customer access to the under-
lying cloud infrastructure.

NIST defines four deployment models:

 ■ Public cloud: The cloud infrastructure is made available to the general public 
or a large industry group and is owned by an organization selling cloud ser-
vices. The cloud provider is responsible both for the cloud infrastructure and 
for the control of data and operations within the cloud. The major advantage 
of the public cloud is cost. A subscribing organization only pays for the services 
and resources it needs and can adjust these as needed. Further, the subscriber 
has greatly reduced management overhead. The principal concern is security. 
However, there are a number of public cloud providers that have demonstrated 
strong security controls and, in fact, such providers may have more resources 
and expertise to devote to security that would be available in a private cloud.

 ■ Private cloud: A private cloud is a cloud infrastructure implemented within 
the internal IT environment of the organization. The organization may choose 
to manage the cloud in house or contract the management function to a third 
party. Additionally, the cloud servers and storage devices may exist on prem-
ise or off premise. A key motivation for opting for a private cloud is security. 
A private cloud infrastructure offers tighter controls over the geographic loca-
tion of data storage and other aspects of security.

 ■ Community cloud: A community cloud shares characteristics of private and 
public clouds. Like a private cloud, a community cloud is not open to any sub-
scriber. Like a public cloud, the cloud resources are shared among a number of 
independent organizations. The organizations that share the community cloud 
have similar requirements and, typically, a need to exchange data with each 
other. One example of an industry that is employing the community cloud 
concept is the health care industry. A community cloud can be implemented 
to comply with government privacy and other regulations. The community 
participants can exchange data in a controlled fashion. The cloud infrastruc-
ture may be managed by the participating organizations or a third party and 
may exist on premise or off premise. In this deployment model, the costs are 
spread over fewer users than a public cloud (but more than a private cloud), so 
only some of the cost savings potential of cloud computing are realized.

 ■ Hybrid cloud: The cloud infrastructure is a composition of two or more clouds (pri-
vate, community, or public) that remain unique entities but are bound together by 
standardized or proprietary technology that enables data and application porta-
bility (e.g., cloud bursting for load balancing between clouds). With a hybrid cloud 
solution, sensitive information can be placed in a private area of the cloud, and 
less sensitive data can take advantage of the cost benefits of the public cloud.

Figure 17.14 illustrates the typical cloud service context. An enterprise main-
tains workstations within an enterprise LAN or set of LANs, which are connected by a 
router through a network or the Internet to the cloud service provider. The cloud ser-
vice provider maintains a massive collection of servers, which it manages with a variety 
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of network management, redundancy, and security tools. In the figure, the cloud infra-
structure is shown as a collection of blade servers, which is a common architecture.

Cloud Computing Reference Architecture

NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a ref-
erence architecture, described as follows:

The NIST cloud computing reference architecture focuses on the requirements of 
“what” cloud services provide, not a “how to” design solution and implementation. The 
reference architecture is intended to facilitate the understanding of the operational 
intricacies in cloud computing. It does not represent the system architecture of a specific 
cloud computing system; instead it is a tool for describing, discussing, and developing a 
 system-  specific architecture using a common framework of reference.

Network
or Internet

Router

Router

Servers

LAN
switch

LAN
switch

Enterprise
cloud user

Cloud
service

provider

Figure 17.14 Cloud Computing Context
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NIST developed the reference architecture with the following objectives in mind:

 ■ To illustrate and understand the various cloud services in the context of an 
overall cloud computing conceptual model.

 ■ To provide a technical reference for consumers to understand, discuss, cat-
egorize, and compare cloud services.

 ■ To facilitate the analysis of candidate standards for security, interoperability, 
and portability and reference implementations.

The reference architecture, depicted in Figure 17.15, defines five major actors 
in terms of the roles and responsibilities:

 ■ Cloud consumer: A person or organization that maintains a business relation-
ship with, and uses service from, cloud providers.

 ■ Cloud provider (CP): A person, organization, or entity responsible for making 
a service available to interested parties.

 ■ Cloud auditor: A party that can conduct independent assessment of cloud ser-
vices, information system operations, performance, and security of the cloud 
implementation.

 ■ Cloud broker: An entity that manages the use, performance, and deliv-
ery of cloud services, and negotiates relationships between CPs and cloud 
consumers.

 ■ Cloud carrier: An intermediary that provides connectivity and transport of 
cloud services from CPs to cloud consumers.
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Figure 17.15 NIST Cloud Computing Reference Architecture
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The roles of the cloud consumer and provider have already been discussed. 
To summarize, a cloud provider can provide one or more of the cloud services 
to meet IT and business requirements of cloud consumers. For each of the three 
service models (SaaS, PaaS, IaaS), the CP provides the storage and processing 
facilities needed to support that service model, together with a cloud interface 
for cloud service consumers. For SaaS, the CP deploys, configures, maintains, 
and updates the operation of the software applications on a cloud infrastructure 
so that the services are provisioned at the expected service levels to cloud con-
sumers. The consumers of SaaS can be organizations that provide their members 
with access to software applications, end users who directly use software applica-
tions, or software application administrators who configure applications for end 
users.

For PaaS, the CP manages the computing infrastructure for the platform 
and runs the cloud software that provides the components of the platform, such as 
runtime software execution stack, databases, and other middleware components. 
Cloud consumers of PaaS can employ the tools and execution resources provided 
by CPs to develop, test, deploy, and manage the applications hosted in a cloud 
environment.

For IaaS, the CP acquires the physical computing resources underlying the 
service, including the servers, networks, storage, and hosting infrastructure. The 
IaaS cloud consumer in turn uses these computing resources, such as a virtual com-
puter, for their fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and 
transport of cloud services between cloud consumers and CPs. Typically, a CP will 
set up service level agreements (SLAs) with a cloud carrier to provide services 
consistent with the level of SLAs offered to cloud consumers, and may require the 
cloud carrier to provide dedicated and secure connections between cloud consum-
ers and CPs.

A cloud broker is useful when cloud services are too complex for a cloud con-
sumer to easily manage. A cloud broker can offer three areas of support:

 ■ Service intermediation: These are  value-  added services, such as identity man-
agement, performance reporting, and enhanced security.

 ■ Service aggregation: The broker combines multiple cloud services to meet 
consumer needs not specifically addressed by a single CP, or to optimize per-
formance or minimize cost.

 ■ Service arbitrage: This is similar to service aggregation except that the ser-
vices being aggregated are not fixed. Service arbitrage means a broker has the 
flexibility to choose services from multiple agencies. The cloud broker, for 
example, can use a  credit-  scoring service to measure and select an agency with 
the best score.

A cloud auditor can evaluate the services provided by a CP in terms of secur-
ity controls, privacy impact, performance, and so on. The auditor is an independent 
entity that can assure that the CP conforms to a set of standards.
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 17.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 17.1 List and briefly define three types of computer system organization.
 17.2 What are the chief characteristics of an SMP?
 17.3 What are some of the potential advantages of an SMP compared with a uniprocessor?
 17.4 What are some of the key OS design issues for an SMP?
 17.5 What is the difference between software and hardware cache coherent schemes?
 17.6 What is the meaning of each of the four states in the MESI protocol?
 17.7 What are some of the key benefits of clustering?
 17.8 What is the difference between failover and failback?
 17.9 What are the differences among UMA, NUMA, and  CC-  NUMA?
 17.10 What is the cloud computing reference architecture?

Problems

 17.1 Let a be the percentage of program code that can be executed simultaneously by n 
processors in a computer system. Assume that the remaining code must be executed 
sequentially by a single processor. Each processor has an execution rate of x MIPS.
a. Derive an expression for the effective MIPS rate when using the system for exclu-

sive execution of this program, in terms of n, a, and x.
b. If n = 16 and x = 4 MIPS, determine the value of a that will yield a system per-

formance of 40 MIPS.
 17.2 A multiprocessor with eight processors has 20 attached tape drives. There are a large 

number of jobs submitted to the system that each require a maximum of four tape 
drives to complete execution. Assume that each job starts running with only three 
tape drives for a long period before requiring the fourth tape drive for a short period 
toward the end of its operation. Also assume an endless supply of such jobs.
a. Assume the scheduler in the OS will not start a job unless there are four tape 

drives available. When a job is started, four drives are assigned immediately and 
are not released until the job finishes. What is the maximum number of jobs that 
can be in progress at once? What are the maximum and minimum number of tape 
drives that may be left idle as a result of this policy?

active standby
cache coherence
cluster
cloud auditor
cloud broker
cloud carrier
cloud computing
cloud consumer
cloud provider
community cloud
directory protocol

failback
failover
hybrid cloud
infrastructure as a service 

(IaaS)
MESI protocol
multiprocessor
nonuniform memory access 

(NUMA)
passive standby
platform as a service (PaaS)

private cloud
public cloud
service aggregation
service arbitrage
service intermediation
snoopy protocol
software as a service (SaaS)
symmetric multiprocessor 

(SMP)
uniform memory access (UMA)
uniprocessor
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b. Suggest an alternative policy to improve tape drive utilization and at the same 
time avoid system deadlock. What is the maximum number of jobs that can be in 
progress at once? What are the bounds on the number of idling tape drives?

 17.3 Can you foresee any problem with the  write-  once cache approach on  bus-  based mul-
tiprocessors? If so, suggest a solution.

 17.4 Consider a situation in which two processors in an SMP configuration, over time, 
require access to the same line of data from main memory. Both processors have a 
cache and use the MESI protocol. Initially, both caches have an invalid copy of the 
line. Figure 17.16 depicts the consequence of a read of line x by Processor P1. If this 
is the start of a sequence of accesses, draw the subsequent figures for the following 
sequence:
1. P2 reads x.
2. P1 writes to x (for clarity, label the line in P1’s cache x′).
3. P1 writes to x (label the line in P1’s cache x″).
4. P2 reads x.

 17.5 Figure  17.17 shows the state diagrams of two possible cache coherence protocols. 
Deduce and explain each protocol, and compare each to MESI.

 17.6 Consider an SMP with both L1 and L2 caches using the MESI protocol. As explained 
in Section 17.3, one of four states is associated with each line in the L2 cache. Are all 
four states also needed for each line in the L1 cache? If so, why? If not, explain which 
state or states can be eliminated.

 17.7 An earlier version of the IBM mainframe, the S/390 G4, used three levels of cache. As 
with the z990, only the first level was on the processor chip [called the processor unit 
(PU)]. The L2 cache was also similar to the z990. An L3 cache was on a separate chip 
that acted as a memory controller, and was interposed between the L2 caches and the 
memory cards. Table 17.3 shows the performance of a  three-  level cache arrangement 
for the IBM S/390. The purpose of this problem is to determine whether the inclusion 
of the third level of cache seems worthwhile. Determine the access penalty (average 
number of PU cycles) for a system with only an L1 cache, and normalize that value 
to 1.0. Then determine the normalized access penalty when both an L1 and L2 cache 

x
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Processor
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Cache
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Memory
access

Processor
2
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Figure 17.16 MESI Example: Processor 1 Reads Line x
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are used, and the access penalty when all three caches are used. Note the amount of 
improvement in each case and state your opinion on the value of the L3 cache.

 17.8 a.      Consider a uniprocessor with separate data and instruction caches, with hit ratios 
of Hd and Hi, respectively. Access time from processor to cache is c clock cycles, and 
transfer time for a block between memory and cache is b clock cycles. Let fi be the 
fraction of memory accesses that are for instructions, and fd is the fraction of dirty 
lines in the data cache among lines replaced. Assume a  write-  back policy and deter-
mine the effective memory access time in terms of the parameters just defined.

b. Now assume a  bus-  based SMP in which each processor has the characteristics of 
part (a). Every processor must handle cache invalidation in addition to memory 
reads and writes. This affects effective memory access time. Let finv be the fraction 
of data references that cause invalidation signals to be sent to other data caches. 
The processor sending the signal requires t clock cycles to complete the invalida-
tion operation. Other processors are not involved in the invalidation operation. 
Determine the effective memory access time.

 17.9  What organizational alternative is suggested by each of the illustrations in Figure 17.18?
 17.10 In Figure 17.7, some of the diagrams show horizontal rows that are partially filled. In 

other cases, there are rows that are completely blank. These represent two different 
types of loss of efficiency. Explain.

 17.11 Consider the pipeline depiction in Figure 14.13b, which is redrawn in Figure 17.19a, 
with the fetch and decode stages ignored, to represent the execution of thread  A.   
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Z( j )

Z(i)
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Figure 17.17 Two Cache Coherence Protocols

Table 17.3 Typical Cache Hit Rate on S/390 SMP Configuration [MAK97]

Memory Subsystem
Access Penalty  

(PU cycles) Cache Size Hit Rate (%)

L1 cache  1  32 KB 89

L2 cache  5 256 KB 5

L3 cache 14   2 MB 3

Memory 32   8 GB 3
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Figure 17.19b illustrates the execution of a separate thread B. In both cases, a simple 
pipelined processor is used.
a. Show an instruction issue diagram, similar to Figure  17.7a, for each of the two 

threads.
b. Assume that the two threads are to be executed in parallel on a chip multipro-

cessor, with each of the two cores on the chip using a simple pipeline. Show an 
instruction issue diagram similar to Figure 17.7k. Also show a pipeline execution 
diagram in the style of Figure 17.19.

c. Assume a  two-  issue superscalar architecture. Repeat part (b) for an interleaved 
multithreading superscalar implementation, assuming no data dependencies. 

(a) (b) (c) (d)

Figure 17.18 Diagram for Problem 17.9
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Note: There is no unique answer; you need to make assumptions about latency 
and priority.

d. Repeat part (c) for a blocked multithreading superscalar implementation.
e. Repeat for a  four-  issue SMT architecture.

 17.12 An application program is executed on a  nine-  computer cluster. A benchmark pro-
gram took time T on this cluster. Further, it was found that 25% of T was time in 
which the application was running simultaneously on all nine computers. The remain-
ing time, the application had to run on a single computer.
a. Calculate the effective speedup under the aforementioned condition as compared 

to executing the program on a single computer. Also calculate a, the percentage of 
code that has been parallelized (programmed or compiled so as to use the cluster 
mode) in the preceding program.

b. Suppose that we are able to effectively use 17 computers rather than 9 computers 
on the parallelized portion of the code. Calculate the effective speedup that is 
achieved.

 17.13 The following FORTRAN program is to be executed on a computer, and a parallel 
version is to be executed on a 32-computer cluster.

L1:  DO 10 I = 1, 1024
L2: SUM(I) = 0
L3: DO 20J = 1,I
L4: 20 SUM(I) = SUM(I) + I
L5: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all processor and 
 memory-  access activities. Ignore the overhead caused by the software loop control 
statements (lines 1, 3, 5) and all other system overhead and resource conflicts.
a. What is the total execution time (in machine cycle times) of the program on a 

single computer?
b. Divide the  I-  loop iterations among the 32 computers as follows: Computer 1 exe-

cutes the first 32 iterations (I = 1 to 32), processor 2 executes the next 32 itera-
tions, and so on. What are the execution time and speedup factor compared with 
part (a)? (Note that the computational workload, dictated by the  J-  loop, is unbal-
anced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution 
of all the computational workload over 32 computers. By a balanced load is meant 
an equal number of additions assigned to each computer with respect to both 
loops.

d. What is the minimum execution time resulting from the parallel execution on 32 
computers? What is the resulting speedup over a single computer?

 17.14 Consider the following two versions of a program to add two vectors:

L1: DO  10 I = 1, N
L2: A(I) = B(I) + C(I)
L3: 10 CONTINUE 
L4:  SUM = 0
L5:  DO 20J = 1, N
L6:  SUM = SUM + A(J)
L7: 20 CONTINUE

 DOALL  K = 1, M
   DO 10 I = L( K-  1)+1, KL
   A(I) = B(I)+C(I)
 10 CONTINUE 
     SUM(K) = 0
    DO 20 J = 1, L
     SUM(K) = SUM(K) + A(L( K-  1)+J)
 20  CONTINUE 
    ENDALL

a. The program on the left executes on a uniprocessor. Suppose each line of code 
L2, L4, and L6 takes one processor clock cycle to execute. For simplicity, ignore 
the time required for the other lines of code. Initially all arrays are already loaded 
in main memory and the short program fragment is in the instruction cache. How 
many clock cycles are required to execute this program?
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b. The program on the right is written to execute on a multiprocessor with M proces-
sors. We partition the looping operations into M sections with L = N/M elements 
per section. DOALL declares that all M sections are executed in parallel. The 
result of this program is to produce M partial sums. Assume that k clock cycles are 
needed for each interprocessor communication operation via the shared memory 
and that therefore the addition of each partial sum requires k cycles. An  l-  level 
binary adder tree can merge all the partial sums, where l =  log 2M. How many 
cycles are needed to produce the final sum?

c. Suppose N = 220 elements in the array and M = 256. What is the speedup 
achieved by using the multiprocessor? Assume k = 200. What percentage is this 
of the theoretical speedup of a factor of 256?



656

Multicore coMputers
18.1 Hardware Performance Issues 

Increase in Parallelism and Complexity
Power Consumption

18.2 Software Performance Issues 
Software on Multicore
Application Example: Valve Game Software

18.3 Multicore Organization 
Levels of Cache
Simultaneous Multithreading

18.4 Heterogeneous Multicore Organization 
Different Instruction Set Architectures
Equivalent Instruction Set Architectures
Cache Coherence and the MOESI Model

18.5 Intel Core i7-990X 

18.6 ARM  Cortex-  A15 MPCore 
Interrupt Handling
Cache Coherency
L2 Cache Coherency

18.7 IBM zEnterprise EC12 Mainframe 
Organization
Cache Structure

18.8 Key Terms, Review Questions, and Problems 

CHAPTER



18.1 / Hardware Performance Issues  657

A multicore processor, also known as a chip multiprocessor, combines two or more 
processor units (called cores) on a single piece of silicon (called a die). Typically, each 
core consists of all of the components of an independent processor, such as registers, 
ALU, pipeline hardware, and control unit, plus L1 instruction and data caches. In 
addition to the multiple cores, contemporary multicore chips also include L2 cache 
and, increasingly, L3 cache. The most highly integrated multicore processors, known 
as systems on chip (SoCs), also include memory and peripheral controllers.

This chapter provides an overview of multicore systems. We begin with a look 
at the hardware performance factors that led to the development of multicore com-
puters and the software challenges of exploiting the power of a multicore system. 
Next, we look at multicore organization. Finally, we examine three examples of 
multicore products, covering personal computer and workstation systems (Intel), 
embedded systems (ARM), and mainframes (IBM).

 18.1 HARDWARE PERFORMANCE ISSUES

As we discuss in Chapter  2, microprocessor systems have experienced a steady 
increase in execution performance for decades. This increase is due to a number 
of factors, including increase in clock frequency, increase in transistor density, and 
refinements in the organization of the processor on the chip.

Increase in Parallelism and Complexity

The organizational changes in processor design have primarily been focused on 
exploiting ILP, so that more work is done in each clock cycle. These changes include, 
in chronological order (Figure 18.1):

 ■ Pipelining: Individual instructions are executed through a pipeline of stages 
so that while one instruction is executing in one stage of the pipeline, another 
instruction is executing in another stage of the pipeline.

 ■ Superscalar: Multiple pipelines are constructed by replicating execution 
resources. This enables parallel execution of instructions in parallel pipelines, 
so long as hazards are avoided.

Learning Objectives

After studying this chapter, you should be able to:

 r Understand the hardware performance issues that have driven the move to 
multicore computers.

 r Understand the software performance issues posed by the use of multi-
threaded multicore computers.

 r Present an overview of the two principal approaches to heterogeneous multi-
core organization.

 r Have an appreciation of the use of multicore organization on embedded 
systems, PCs and servers, and mainframes.
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 ■ Simultaneous multithreading (SMT): Register banks are expanded so that 
multiple threads can share the use of pipeline resources.

With each of these innovations, designers have over the years attempted to 
increase the performance of the system by adding complexity. In the case of pipelin-
ing, simple  three-  stage pipelines were replaced by pipelines with five stages. Intel’s 
Pentium 4 “Prescott” core had 31 stages for some instructions.

There is a practical limit to how far this trend can be taken, because with more 
stages, there is the need for more logic, more interconnections, and more control signals.

With superscalar organization, increased performance can be achieved by 
increasing the number of parallel pipelines. Again, there are diminishing returns 
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as the number of pipelines increases. More logic is required to manage hazards and 
to stage instruction resources. Eventually, a single thread of execution reaches the 
point where hazards and resource dependencies prevent the full use of the multiple 
pipelines available. Also, compiled binary code rarely exposes enough ILP to take 
advantage of more than about six parallel pipelines.

This same point of diminishing returns is reached with SMT, as the complexity 
of managing multiple threads over a set of pipelines limits the number of threads 
and number of pipelines that can be effectively utilized. SMT’s advantage lies in the 
fact that two (or more) program streams can be searched for available ILP.

There is a related set of problems dealing with the design and fabrication of 
the computer chip. The increase in complexity to deal with all of the logical issues 
related to very long pipelines, multiple superscalar pipelines, and multiple SMT 
register banks means that increasing amounts of the chip area are occupied with 
coordinating and signal transfer logic. This increases the difficulty of designing, fab-
ricating, and debugging the chips. The increasingly difficult engineering challenge 
related to processor logic is one of the reasons that an increasing fraction of the 
processor chip is devoted to the simpler memory logic. Power issues, discussed next, 
provide another reason.

Power Consumption

To maintain the trend of higher performance as the number of transistors per chip 
rises, designers have resorted to more elaborate processor designs (pipelining, super-
scalar, SMT) and to high clock frequencies. Unfortunately, power requirements have 
grown exponentially as chip density and clock frequency have risen. This was shown 
in Figure 2.2.

One way to control power density is to use more of the chip area for cache 
memory. Memory transistors are smaller and have a power density an order of 
magnitude lower than that of logic (see Figure 18.2). As chip transistor density has 
increased, the percentage of chip area devoted to memory has grown, and is now 
often half the chip area. Even so, there is still a considerable amount of chip area 
devoted to processing logic.
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Figure 18.2 Power and Memory Considerations
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How to use all those logic transistors is a key design issue. As discussed earlier 
in this section, there are limits to the effective use of such techniques as superscalar 
and SMT. In general terms, the experience of recent decades has been encapsu-
lated in a rule of thumb known as Pollack’s rule [POLL99], which states that per-
formance increase is roughly proportional to square root of increase in complexity. 
In other words, if you double the logic in a processor core, then it delivers only 
40% more performance. In principle, the use of multiple cores has the potential to 
provide  near-  linear performance improvement with the increase in the number of 
 cores—  but only for software that can take advantage.

Power considerations provide another motive for moving toward a mul-
ticore organization. Because the chip has such a huge amount of cache memory, 
it becomes unlikely that any one thread of execution can effectively use all that 
memory. Even with SMT, multithreading is done in a relatively limited fashion and 
cannot therefore fully exploit a gigantic cache, whereas a number of relatively inde-
pendent threads or processes has a greater opportunity to take full advantage of the 
cache memory.

 18.2 SOFTWARE PERFORMANCE ISSUES

A detailed examination of the software performance issues related to multicore 
organization is beyond our scope. In this section, we first provide an overview of 
these issues, and then look at an example of an application designed to exploit mul-
ticore capabilities.

Software on Multicore

The potential performance benefits of a multicore organization depend on the abil-
ity to effectively exploit the parallel resources available to the application. Let us 
focus first on a single application running on a multicore system. Recall from Chap-
ter 2 that Amdahl’s law states that:

  Speed  up =
time to execute program on a single processor

time to execute program on  N  parallel processors

 =
1

(1 - -f) +  
f
N

  (18.1)

The law assumes a program in which a fraction (1 - -f) of the execution time 
involves code that is inherently sequential and a fraction f that involves code that is 
infinitely parallelizable with no scheduling overhead.

This law appears to make the prospect of a multicore organization attrac-
tive. But as Figure 18.3a shows, even a small amount of serial code has a noticeable 
impact. If only 10% of the code is inherently serial (f = 0.9), running the program 
on a multicore system with eight processors yields a performance gain of only a 
factor of 4.7. In addition, software typically incurs overhead as a result of communi-
cation and distribution of work among multiple processors and as a result of cache 
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coherence overhead. This overhead results in a curve where performance peaks and 
then begins to degrade because of the increased burden of the overhead of using 
multiple processors (e.g., coordination and OS management). Figure 18.3b, from 
[MCDO05], is a representative example.

However, software engineers have been addressing this problem and there 
are numerous applications in which it is possible to effectively exploit a multicore 
system. [MCDO05] analyzes the effectiveness of multicore systems on a set of data-
base applications, in which great attention was paid to reducing the serial fraction 
within hardware architectures, operating systems, middleware, and the database 
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application software. Figure 18.4 shows the result. As this example shows, database 
management systems and database applications are one area in which multicore 
systems can be used effectively. Many kinds of servers can also effectively use the 
parallel multicore organization, because servers typically handle numerous rela-
tively independent transactions in parallel.

In addition to  general-  purpose server software, a number of classes of applica-
tions benefit directly from the ability to scale throughput with the number of cores. 
[MCDO06] lists the following examples:

 ■ Multithreaded native applications ( thread-  level parallelism): Multithreaded 
applications are characterized by having a small number of highly threaded 
processes.

 ■ Multiprocess applications ( process-  level parallelism): Multiprocess applica-
tions are characterized by the presence of many  single-  threaded processes.

 ■ Java applications: Java applications embrace threading in a fundamental way. 
Not only does the Java language greatly facilitate multithreaded applications, 
but the Java Virtual Machine is a multithreaded process that provides sched-
uling and memory management for Java applications.

 ■  Multi-  instance applications ( application-  level parallelism): Even if an individ-
ual application does not scale to take advantage of a large number of threads, 
it is still possible to gain from multicore architecture by running multiple 
instances of the application in parallel. If multiple application instances 
require some degree of isolation, virtualization technology (for the hardware 
of the operating system) can be used to provide each of them with its own 
separate and secure domain.
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Before turning to an example, we elaborate on the topic of  thread-  level par-
allelism by introducing the concept of threading granularity, which can be defined 
as the minimal unit of work that can be beneficially parallelized. In general, the 
finer the granularity the system enables, the less constrained is the programmer in 
parallelizing a program. Consequently, finer grain threading systems allow paralleli-
zation in more situations than  coarse-  grained ones. The choice of the target gran-
ularity of an architecture involves an inherent tradeoff. On the one hand, the finer 
grain systems are preferable because of the flexibility they afford to the program-
mer. On the other hand, the finer the threading granularity, the more significant 
part of the execution is taken by the threading system overhead.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number 
of popular games as well as the Source engine, one of the most widely played game 
engines available. Source is an animation engine used by Valve for its games and 
licensed to other game developers.

Valve has reprogrammed the Source engine software to use multithreading to 
exploit the scalability of multicore processor chips from Intel and AMD [REIM06]. 
The revised Source engine code provides more powerful support for Valve games 
such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows 
[HARR06]:

 ■  Coarse-  grained threading: Individual modules, called systems, are assigned to 
individual processors. In the Source engine case, this means putting rendering 
on one processor, AI (artificial intelligence) on another, physics on another, 
and so on. This is straightforward. In essence, each major module is single 
threaded and the principal coordination involves synchronizing all the threads 
with a timeline thread.

 ■  Fine-  grained threading: Many similar or identical tasks are spread across 
multiple processors. For example, a loop that iterates over an array of data 
can be split up into a number of smaller parallel loops in individual threads 
that can be scheduled in parallel.

 ■ Hybrid threading: This involves the selective use of  fine-  grain threading for 
some systems and single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the per-
formance across two processors compared to executing on a single processor. But this 
performance gain could only be achieved with contrived cases. For  real-  world game-
play, the improvement was on the order of a factor of 1.2. Valve also found that effec-
tive use of  fine-  grain threading was difficult. The time per work unit can be variable, and 
managing the timeline of outcomes and consequences involved complex programming.

Valve found that a hybrid threading approach was the most promising and 
would scale the best as multicore systems with eight or sixteen processors became 
available. Valve identified systems that operate very effectively when assigned to 
a single processor permanently. An example is sound mixing, which has little user 
interaction, is not constrained by the frame configuration of windows, and works on 
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its own set of data. Other modules, such as scene rendering, can be organized into a 
number of threads so that the module can execute on a single processor but achieve 
greater performance as it is spread out over more and more processors.

Figure 18.5 illustrates the thread structure for the rendering module. In this 
hierarchical structure,  higher-  level threads spawn  lower-  level threads as needed. 
The rendering module relies on a critical part of the Source engine, the world list, 
which is a database representation of the visual elements in the game’s world. The 
first task is to determine what are the areas of the world that need to be rendered. 
The next task is to determine what objects are in the scene as viewed from multiple 
angles. Then comes the  processor-  intensive work. The rendering module has to 
work out the rendering of each object from multiple points of view, such as the 
player’s view, the view of TV monitors, and the point of view of reflections in water.

Some of the key elements of the threading strategy for the rendering module 
are listed in [LEON07] and include the following:

 ■ Construct  scene-  rendering lists for multiple scenes in parallel (e.g., the world 
and its reflection in water).

 ■ Overlap graphics simulation.
 ■ Compute character bone transformations for all characters in all scenes in parallel.
 ■ Allow multiple threads to draw in parallel.
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Bone setup
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Figure 18.5 Hybrid Threading for Rendering Module



18.3 / mulTIcore organIzaTIon  665

The designers found that simply locking key databases, such as the world list, 
for a thread was too inefficient. Over 95% of the time, a thread is trying to read 
from a data set, and only 5% of the time at most is spent in writing to a data set. 
Thus, a concurrency mechanism known as the  single-  writer-  multiple-  readers model 
works effectively.

 18.3 MULTICORE ORGANIZATION

At a top level of description, the main variables in a multicore organization are as 
follows:

 ■ The number of core processors on the chip
 ■ The number of levels of cache memory
 ■ How cache memory is shared among cores
 ■ Whether simultaneous multithreading (SMT) is employed
 ■ The types of cores

We explore all but the last of these considerations in this section, deferring a 
discussion of types of cores to the next section.

Levels of Cache

Figure 18.6 shows four general organizations for multicore systems. Figure 18.6a is an 
organization found in some of the earlier multicore computer chips and is still seen 
in some embedded chips. In this organization, the only  on-  chip cache is L1 cache, 
with each core having its own dedicated L1 cache. Almost invariably, the L1 cache is 
divided into instruction and data caches for performance reasons, while L2 and  higher- 
 level caches are unified. An example of this organization is the ARM11 MPCore.

The organization of Figure 18.6b is also one in which there is no  on-  chip cache 
sharing. In this, there is enough area available on the chip to allow for L2 cache. 
An example of this organization is the AMD Opteron. Figure 18.6c shows a similar 
allocation of chip space to memory, but with the use of a shared L2 cache. The Intel 
Core Duo has this organization. Finally, as the amount of cache memory available 
on the chip continues to grow, performance considerations dictate splitting off a 
separate, shared L3 cache (Figure 18.6d), with dedicated L1 and L2 caches for each 
core processor. The Intel Core i7 is an example of this organization.

The use of a shared  higher-  level cache on the chip has several advantages over 
exclusive reliance on dedicated caches:

1. Constructive interference can reduce overall miss rates. That is, if a thread on 
one core accesses a main memory location, this brings the line containing the 
referenced location into the shared cache. If a thread on another core soon 
thereafter accesses the same memory block, the memory locations will already 
be available in the shared  on-  chip cache.

2. A related advantage is that data shared by multiple cores is not replicated at 
the shared cache level.
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3. With proper line replacement algorithms, the amount of shared cache allo-
cated to each core is dynamic, so that threads that have less locality (larger 
working sets) can employ more cache.

4.  Inter-  core communication is easy to implement, via shared memory locations.

5. The use of a shared  higher-  level cache confines the cache coherency problem 
to the lower cache levels, which may provide some additional performance 
advantage.

A potential advantage to having only dedicated L2 caches on the chip is that 
each core enjoys more rapid access to its private L2 cache. This is advantageous for 
threads that exhibit strong locality.

As both the amount of memory available and the number of cores grow, the 
use of a shared L3 cache combined with dedicated percore L2 caches seems likely 
to provide better performance than simply a massive shared L2 cache or very large 
dedicated L2 caches with no  on-  chip L3. An example of this latter arrangement is 
the Xeon E5-2600/4600 chip processor (Figure 7.1)

Not shown is the arrangement where L1s are local to each core, L2s are shared 
among 2 to 4 cores, and L3 is global across all cores. This arrangement is likely to 
become more common over time.
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Simultaneous Multithreading

Another organizational design decision in a multicore system is whether the indi-
vidual cores will implement simultaneous multithreading (SMT). For example, the 
Intel Core Duo uses pure superscalar cores, whereas the Intel Core i7 uses SMT 
cores. SMT has the effect of scaling up the number of  hardware-  level threads that 
the multicore system supports. Thus, a multicore system with four cores and SMT 
that supports four simultaneous threads in each core appears the same to the appli-
cation level as a multicore system with 16 cores. As software is developed to more 
fully exploit parallel resources, an SMT approach appears to be more attractive than 
a purely superscalar approach.

 18.4 HETEROGENEOUS MULTICORE ORGANIZATION

The quest to make optimal use of the silicon real estate on a processor chip is never 
ending. As clock speeds and logic densities increase, designers must balance many 
design elements in attempts to maximize performance and minimize power con-
sumption. We have so far examined a number of such approaches, including the 
following:

1. Increase the percentage of the chip devoted to cache memory.

2. Increase the number of levels of cache memory.

3. Change the length (increase or decrease) and functional components of the 
instruction pipeline.

4. Employ simultaneous multithreading.

5. Use multiple cores.

A typical case for the use of multiple cores is a chip with multiple identical 
cores, known as homogenous multicore organization. To achieve better results, in 
terms of performance and/or power consumption, an increasingly popular design 
choice is heterogeneous multicore organization, which refers to a processor chip 
that includes more than one kind of core. In this section, we look at two approaches 
to heterogeneous multicore organization.

Different Instruction Set Architectures

The approach that has received the most industry attention is the use of cores that 
have distinct ISAs. Typically, this involves mixing conventional cores, referred to in 
this context as CPUs, with specialized cores optimized for certain types of data or 
applications. Most often, the additional cores are optimized to deal with vector and 
matrix data processing.

cpu/gpu multicore The most prominent trend in terms of heterogeneous 
multicore design is the use of both CPUs and graphics processing units (GPUs) 
on the same chip. GPUs are discussed in detail in the following chapter. Briefly, 
GPUs are characterized by the ability to support thousands of parallel execution 
threads. Thus, GPUs are well matched to applications that process large amounts 
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of vector and matrix data. Initially aimed at improving the performance of graphics 
applications, thanks to  easy-  to-  adopt programming models such as CUDA 
(Compute Unified Device Architecture), these new processors are increasingly 
being applied to improve the performance of  general-  purpose and scientific 
applications that involve large numbers of repetitive operations on structured data.

To deal with the diversity of target applications in today’s computing environ-
ment, multicore containing both GPUs and CPUs has the potential to enhance per-
formance. This heterogeneous mix, however, presents issues of coordination and 
correctness.

Figure 18.7 is a typical multicore processor organization. Multiple CPUs and 
GPUs share  on-  chip resources, such as the  last-  level cache (LLC), interconnection 
network, and memory controllers. Most critical is the way in which cache manage-
ment policies provide effective sharing of the LLC. The differences in cache sensitiv-
ity and memory access rate between CPUs and GPUs create significant challenges 
to the efficient sharing of the LLC.

Table 18.1 illustrates the potential performance benefit of combining CPUs 
and GPUs for scientific applications. This table shows the basic operating param-
eters of an AMD chip, the A10 5800K [ALTS12]. For  floating-  point calculations, 
the CPU’s performance at 121.6 GFLOPS is dwarfed by the GPU, which offers 614 
GFLOPS to applications that can utilize the resource effectively.

Whether it is scientific applications or traditional graphics processing, the key 
to leveraging the added GPU processors is to consider the time needed to transfer a 
block of data to the GPU, process it, then return the results to the main application 
thread. In earlier implementations of chips that incorporated GPUs, physical mem-
ory is partitioned between CPU and GPU. If an application thread is running on a 
CPU that demands GPU processing, the CPU explicitly copies the data to the GPU 
memory. The GPU completes the computation and then copies the result back to 
CPU memory. Issues of cache coherence across CPU and GPU memory caches do 
not arise because the memory is partitioned. On the other hand, the physical hand-
ing of data back and forth results in a performance penalty.

A number of research and development efforts are underway to improve per-
formance over that described in the preceding paragraph, of which the most notable 
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is the initiative by the Heterogeneous System Architecture (HSA) Foundation. Key 
features of the HSA approach include the following:

1. The entire virtual memory space is visible to both CPU and GPU. Both CPU 
and GPU can access and allocate any location in the system’s virtual memory 
space.

2. The virtual memory system brings in pages to physical main memory as 
needed.

3. A coherent memory policy ensures that CPU and GPU caches both see an 
 up-  to-  date view of data.

4. A unified programming interface that enables users to exploit the parallel 
capabilities of the GPUs within programs that rely on CPU execution as well.

The overall objective is to allow programmers to write applications that 
exploit the serial power of CPUs and the  parallel-  processing power of GPUs seam-
lessly with efficient coordination at the OS and hardware level. As mentioned, this 
is an ongoing area of research and development.

cpu/dsp multicore Another common example of a heterogeneous multicore 
chip is a mixture of CPUs and digital signal processors (DSPs). A DSP provides 
 ultra-  fast instruction sequences (shift and add; multiply and add), which are 
commonly used in  math-  intensive digital signal processing applications. DSPs are 
used to process analog data from sources such as sound, weather satellites, and 
earthquake monitors. Signals are converted into digital data and analyzed using 
various algorithms such as Fast Fourier Transform. DSP cores are widely used in 
myriad devices, including cellphones, sound cards, fax machines, modems, hard 
disks, and digital TVs.

As a good representative example, Figure  18.8 shows a recent version of 
Texas Instruments (TI) K2H SoC platform [TI12]. This heterogeneous multicore 
processor delivers  power-  efficient processing solutions for  high-  end imaging appli-
cations. TI lists the performance as delivering up to 352 GMACS, 198 GFLOPS, 
and 19,600 MIPS. GMACS stands for giga (billions of)  multiply-  accumulate opera-
tions per second, a common measure of DSP performance. Target applications for 
these systems include industrial automation, video surveillance,  high-  end inspection 
systems, industrial printers/scanners, and currency/counterfeit detection.

Table 18.1 Operating Parameters of AMD 5100K Heterogeneous Multicore Processor

CPU GPU

Clock frequency (GHz) 3.8 0.8

Cores 4 384

FLOPS/core 8 2

GFLOPS 121.6 614.4

FLOPS = floating@point operations per second.
FLOPS/core = number of parallel  floating-  point operations that can be performed.
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The TI chip includes four ARM  Cortex-  A15 cores and eight TI C66x DSP 
cores.

Each DSP core contains 32 kB of L1 data cache and 32 kB of L1 program 
(instruction) cache. In addition, each DSP has 1 MB of dedicated SRAM memory 
that can be configured as all L2 cache, all main memory, or a mix of the two. The 
portion configured as main memory functions as a “local” main memory, referred 
to simply as SRAM. This local main memory can be used for temporary data, avoid-
ing the need for traffic between cache and  off-  chip memory. The L2 cache of each of 
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the eight DSP cores is dedicated rather than shared with the other DSP cores. This 
is typical for a multicore DSP organization: Each DSP works on a separate block of 
data in parallel, so there is little need for data sharing.

Each ARM  Cortex-  A15 CPU core has 32-kB L1 data and program caches, 
and the four cores share a 4-MB L2 cache.

The 6-MB multicore shared memory (MSM) is always configured as 
all SRAM. That is, it behaves like main memory rather than cache. It can be config-
ured to feed directly the L1 DSP and CPU caches, or to feed the L2 DSP and CPU 
caches. This configuration decision depends on the expected application profile. 
The multicore shared memory controller (MSMC) manages traffic among ARM 
cores, DSP, DMA, other mastering peripherals, and the external memory interface 
(EMIF). MSMC controls access to the MSM, which is accessible by all the cores and 
the mastering peripherals on the device.

Equivalent Instruction Set Architectures

Another recent approach to heterogeneous multicore organization is the use of 
multiple cores that have equivalent ISAs but vary in performance or power effi-
ciency. The leading example of this is ARM’s big.Little architecture, which we exam-
ine in this section.

Figure 18.9 illustrates this architecture. The figure shows a multicore pro-
cessor chip containing two  high-  performance  Cortex-  A15 cores and two  lower- 
 performance,  lower-  power-  consuming  Cortex-  A7 cores. The A7 cores handle less 
 computation-  intense tasks, such as background processing, playing music, sending 
texts, and making phone calls. The A15 cores are invoked for high intensity tasks, 
such as for video, gaming, and navigation.

The big.Little architecture is aimed at the smartphone and tablet market. 
These are devices whose performance demands from users are increasing at a much 
faster rate than the capacity of batteries or the power savings from semiconductor 
process advances. The usage pattern for smartphones and tablets is quite dynamic. 
Periods of  processing-  intense tasks, such as gaming and web browsing, alternate 
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with typically longer periods of low  processing-  intensity tasks, such as texting,   
e-  mail, and audio. The big.Little architecture takes advantage of this variation in 
required performance. The A15 is designed for maximum performance within the 
mobile power budget. The A7 processor is designed for maximum efficiency and 
high enough performance to address all but the most intense periods of work.

a7 and a15 characteristics The A7 is far simpler and less powerful than 
the A15. But its simplicity requires far fewer transistors than does the A15’s 
 complexity—  and fewer transistors require less energy to operate. The differences 
between the A7 and A15 cores are seen most clearly by examining their instruction 
pipelines, as shown in Figure 18.10.
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The A7 is an  in-  order CPU with a pipeline length of 8 to 10 stages. It has a 
single queue for all of its execution units, and two instructions can be sent to its five 
execution units per clock cycle. The A15, on the other hand, is an  out -of-  order pro-
cessor with a pipeline length of 15 to 24 stages. Each of its eight execution units has 
its own multi stage queue, and three instructions can be processed per clock cycle.

The energy consumed by the execution of an instruction is partially related to 
the number of pipeline stages it must traverse. Therefore, a significant difference in 
energy consumption between  Cortex-  A15 and  Cortex-  A7 comes from the different 
pipeline complexity. Across a range of benchmarks, the  Cortex-  A15 delivers roughly 
twice the performance of the  Cortex-  A7 per unit MHz, and the  Cortex-  A7 is roughly 
three times as energy efficient as the  Cortex-  A15 in completing the same workloads 
[JEFF12]. The performance tradeoff is illustrated in Figure 18.11 [STEV13].

software processing models The big.Little architecture can be configured 
to use one of two software processing models: migration and multiprocessing (MP). 
The software models differ mainly in the way they allocate work to big or Little 
cores during runtime execution of a workload.

In the migration model, big and Little cores are paired. To the OS kernel 
scheduler, each big/Little pair is visible as a single core. Power management software 
is responsible for migrating software contexts between the two cores. This model is 
a natural extension to the dynamic voltage and frequency scaling (DVFS) operating 
points provided by current mobile platforms to allow the OS to match the perfor-
mance of the platform to the performance required by the application. In today’s 
smartphone SoCs, DVFS drivers like cpu_freq sample the OS performance at reg-
ular and frequent intervals, and the DVFS governor decides whether to shift to a 
higher or lower operating point or remain at the current operating point. As shown 
in Figure 18.11, both the A7 and the A15 can execute at four distinct operating 

Performance

P
ow

er

Lowest Cortex-A7 operating point

Lowest Cortex-A15 operating point

Highest Cortex-A7 operating point

Highest Cortex-A15 operating point

Figure 18.11  Cortex-  A7 and A15 Performance Comparison
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points. The DVFS software can effectively dial in to one of the operating points on 
the curve, setting a specific CPU clock frequency and voltage level.

These operating points affect the voltage and frequency of a single CPU clus-
ter; however, in a big.Little system there are two CPU clusters with independent 
voltage and frequency domains. This allows the big cluster to act as a logical exten-
sion of the DVFS operating points provided by the Little processor cluster. In a 
big.Little system under a migration mode of control, when  Cortex-  A7 is executing, 
the DVFS driver can tune the performance of the CPU cluster to higher levels. 
Once  Cortex-  A7 is at its highest operating point, if more performance is required, 
a task migration can be invoked that picks up the OS and applications and moves 
them to the  Cortex-  A15. In today’s smartphone SoCs, DVFS drivers like cpu_freq 
sample the OS performance at regular and frequent intervals, and the DVFS gov-
ernor decides whether to shift to a higher or lower operating point or remain at the 
current operating point.

The migration model is simple but requires that one of the CPUs in each pair 
is always idle. The MP model allows any mixture of A15 and A7 cores to be powered 
on and executing simultaneously. Whether a big processor needs to be powered on 
is determined by performance requirements of tasks currently executing. If there 
are demanding tasks, then a big processor can be powered on to execute them. Low 
demand tasks can execute on a Little processor. Finally, any processors that are not 
being used can be powered down. This ensures that cores, big or Little, are only 
active when they are needed, and that the appropriate core is used to execute any 
given workload.

The MP model is somewhat more complicated to implement but is also more 
efficient of resources. It assigns tasks appropriately and enables more cores to be 
running simultaneously when the demand warrants it.

Cache Coherence and the MOESI Model

Typically, a heterogeneous multicore processor will feature dedicated L2 cache 
assigned to the different processor types. We see that in the general depiction of a 
CPU/GPU scheme of Figure 18.7. Because the CPU and GPU are engaged in quite 
different tasks, it makes sense that each has its own L2 cache, shared among the simi-
lar CPUs. We also see this in the big.Little architecture (Figure 18.9), in which the A7 
cores share an L2 cache and the A15 cores share a separate L2 cache.

When multiple caches exist, there is a need for a  cache-  coherence scheme to 
avoid access to invalid data. Cache coherency may be addressed with  software-  based 
techniques. In the case where the cache contains stale data, the cached copy may be 
invalidated and reread from memory when needed again. When memory contains 
stale data due to a  write-  back cache containing dirty data, the cache may be cleaned 
by forcing write back to memory. Any other cached copies that may exist in other 
caches must be invalidated. This software burden consumes too many resources in a 
SoC chip, leading to the use of hardware  cache-  coherent implementations, especially 
in heterogeneous multicore processors.

As described in Chapter 17, there are two main approaches to  hardware- 
 implemented cache coherence: directory protocols and snoopy protocols. ARM 
has developed a hardware coherence capability called ACE (Advanced Extensible 
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Interface Coherence Extensions) that can be configured to implement either direc-
tory or snoopy approach, or even a combination. ACE has been designed to sup-
port a wide range of coherent masters with differing capabilities. ACE supports 
coherency between dissimilar processors such as the  Cortex-  A15 and  Cortex-  A7 
processors, enabling ARM big.Little technology. It supports I/O coherency for 
 un-  cached masters, supports masters with differing cache line sizes, differing inter-
nal cache state models, and masters with  write-  back or  write-  through caches. As 
another example, ACE is implemented in the memory subsystem memory control-
ler (MSMC) in the TI SoC chip of Figure 18.8. MSMC supports hardware cache 
coherence between the ARM CorePac L1/L2 caches and EDMA/IO peripherals for 
shared SRAM and DDR spaces. This feature allows the sharing of MSMC SRAM 
and DDR data spaces by these masters on the chip, without having to use explicit 
software cache maintenance techniques.

ACE makes use of a  five-  state cache model. In each cache, each line is either 
Valid or Invalid. If a line is Valid, it can be in one of four states, defined by two 
dimensions. A line may contain data that are Shared or Unique. A Shared line con-
tains data from a region of external (main) memory that is potentially sharable. A 
Unique line contains data from a region of memory that is dedicated to the core 
owning this cache. And the line is either Clean or Dirty, generally meaning either 
memory contains the latest, most  up-  to-  date data and the cache line is merely a copy 
of memory, or if it’s Dirty then the cache line is the latest, most  up-  to-  date data and 
it must be written back to memory at some stage. The one exception to the above 
description is when multiple caches share a line and it’s dirty. In this case, all caches 
must contain the latest data value at all times, but only one may be in the Shared/
Dirty state, the others being held in the Shared/Clean state. The Shared/Dirty state 
is thus used to indicate which cache has responsibility for writing the data back to 
memory, and Shared/Clean is more accurately described as meaning data is shared 
but there is no need to write it back to memory.

The ACE states correspond to a cache coherency model with five states, 
known as MOESI (Figure 18.12). Table 18.2 compares the MOESI model with the 
MESI model described in Chapter 17.
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Figure 18.12 ARM ACE Cache Line States
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 18.5 INTEL CORE i7-990X

Intel has introduced a number of multicore products in recent years. In this section, 
we look at the Intel Core i7-990X.

The general structure of the Intel Core i7-990X is shown in Figure 18.13. Each 
core has its own dedicated L2 cache and the six cores share a 12-MB L3 cache. One 
mechanism Intel uses to make its caches more effective is prefetching, in which the 
hardware examines memory access patterns and attempts to fill the caches specula-
tively with data that’s likely to be requested soon.

The Core i7-990X chip supports two forms of external communications to 
other chips. The DDR3 memory controller brings the memory controller for the 
DDR main memory1 onto the chip. The interface supports three channels that are 
8 bytes wide for a total bus width of 192 bits, for an aggregate data rate of up to  
32 GB/s. With the memory controller on the chip, the Front Side Bus is eliminated.

The QuickPath Interconnect (QPI) is a  cache-  coherent,  point-  to-  point link- 
based electrical interconnect specification for Intel processors and chipsets. It ena-
bles  high-  speed communications among connected processor chips. The QPI link 
operates at 6.4 GT/s (transfers per second). At 16 bits per transfer, that adds up to 
12.8 GB/s, and since QPI links involve dedicated bidirectional pairs, the total band-
width is 25.6 GB/s. Section 3.5 covers QPI in some detail.

Table 18.2 Comparison of States in Snoop Protocols

(a) MESIM

Modified Exclusive Shared Invalid

Clean/Dirty Dirty Clean Clean N/A

Unique? Yes Yes No N/A

Can write? Yes Yes No N/A

Can forward? Yes Yes Yes N/A

Comments Must write 
back to share or 

replace

Transitions to  
M on write

Shared implies 
clean, can 
forward

Cannot read

(b) MOESI

Modified Owned Exclusive Shared Invalid

Clean/Dirty Dirty Dirty Clean Either N/A

Unique? Yes Yes Yes No N/A

Can write? Yes Yes Yes No N/A

Can forward? Yes Yes Yes No N/A

Comments Can share 
without write 

back

Must write 
back to 

transition

Transitions 
to M on write

Shared, can 
be dirty or 

clean

Cannot read

1The DDR synchronous RAM memory is discussed in Chapter 5.
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 18.6 ARM  CORTEX-  A15 MPCORE

We have already seen two examples of heterogeneous multicore processors using 
ARM cores, in Section 18.4: the big.Little architecture, which uses a combination of 
ARM  Cortex-  A7 and  Cortex-  A15 cores; and the Texas Instruments DSP SoC archi-
tecture, which combines  Cortex-  A15 cores with TI DSP cores. In this section, we 
introduce the  Cortex-  A15 MPCore multicore chip, which is a homogeneous mul-
ticore processor using multiple A15 cores. The A15 MPCore is a  high-  performance 
chip targeted at applications including mobile computing,  high-  end digital home 
servers, and wireless infrastructure.

Figure 18.14 presents a block diagram of the  Cortex-  A15 MPCore. The key 
elements of the system are as follows:

 ■ Generic interrupt controller (GIC): Handles interrupt detection and interrupt 
prioritization. The GIC distributes interrupts to individual cores.

 ■ Debug unit and interface: The debug unit enables an external debug host to: stop 
program execution; examine and alter process and coprocessor state; examine 
and alter memory and input/output peripheral state; and restart the processor.

 ■ Generic timer: Each core has its own private timer that can generate interrupts.
 ■ Trace: Supports performance monitoring and program trace tools.
 ■ Core: A single ARM  Cortex-  15 core.
 ■ L1 cache: Each core has its own dedicated L1 data cache and L1 instruction 

cache.
 ■ L2 cache: The shared L2 memory system services L1 instruction and data 

cache misses from each core.
 ■ Snoop control unit (SCU): Responsible for maintaining L1/L2 cache 

coherency.
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Figure 18.13 Intel Core i7-990X Block Diagram
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Interrupt Handling

The GIC collates interrupts from a large number of sources. It provides

 ■ Masking of interrupts
 ■ Prioritization of the interrupts
 ■ Distribution of the interrupts to the target A15 cores
 ■ Tracking the status of interrupts
 ■ Generation of interrupts by software

The GIC is a single functional unit that is placed in the system alongside A15 
cores. This enables the number of interrupts supported in the system to be inde-
pendent of the A15 core design. The GIC is memory mapped; that is, control reg-
isters for the GIC are defined relative to a main memory base address. The GIC is 
accessed by the A15 cores using a private interface through the SCU.
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Figure 18.14 ARM  Cortex-  A15 MPCore Chip Block Diagram
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The GIC is designed to satisfy two functional requirements:

 ■ Provide a means of routing an interrupt request to a single CPU or multiple 
CPUs, as required.

 ■ Provide a means of interprocessor communication so that a thread on one 
CPU can cause activity by a thread on another CPU.

As an example that makes use of both requirements, consider a multithreaded 
application that has threads running on multiple processors. Suppose the applica-
tion allocates some virtual memory. To maintain consistency, the operating system 
must update memory translation tables on all processors. The OS could update the 
tables on the processor where the virtual memory allocation took place, and then 
issue an interrupt to all the other processors running this application. The other 
processors could then use this interrupt’s ID to determine that they need to update 
their memory translation tables.

The GIC can route an interrupt to one or more CPUs in the following three 
ways:

 ■ An interrupt can be directed to a specific processor only.
 ■ An interrupt can be directed to a defined group of processors. The MPCore 

views the first processor to accept the interrupt, typically the least loaded, as 
being best positioned to handle the interrupt.

 ■ An interrupt can be directed to all processors.

From the point of view of software running on a particular CPU, the OS can 
generate an interrupt to all but self, to self, or to specific other CPUs. For commu-
nication between threads running on different CPUs, the interrupt mechanism is 
typically combined with shared memory for message passing. Thus, when a thread is 
interrupted by an interprocessor communication interrupt, it reads from the appro-
priate block of shared memory to retrieve a message from the thread that triggered 
the interrupt. A total of 16 interrupt IDs per CPU are available for interprocessor 
communication.

From the point of view of an A15 core, an interrupt can be:

 ■ Inactive: An Inactive interrupt is one that is nonasserted, or which in a multi-
processing environment has been completely processed by that CPU but can 
still be either Pending or Active in some of the CPUs to which it is targeted, 
and so might not have been cleared at the interrupt source.

 ■ Pending: A Pending interrupt is one that has been asserted, and for which 
processing has not started on that CPU.

 ■ Active: An Active interrupt is one that has been started on that CPU, but pro-
cessing is not complete. An Active interrupt can be  pre-  empted when a new 
interrupt of higher priority interrupts A15 core interrupt processing.

Interrupts come from the following sources:

 ■ Interprocessor interrupts (IPIs): Each CPU has private interrupts, ID0-ID15, 
that can only be triggered by software. The priority of an IPI depends on the 
receiving CPU, not the sending CPU.
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 ■ Private timer and/or watchdog interrupts: These use interrupt IDs 29 and 30.
 ■ Legacy FIQ line: In legacy IRQ mode, the legacy FIQ pin, on a per CPU basis, 

bypasses the Interrupt Distributor logic and directly drives interrupt requests 
into the CPU.

 ■ Hardware interrupts: Hardware interrupts are triggered by programmable 
events on associated interrupt input lines. CPUs can support up to 224 inter-
rupt input lines. Hardware interrupts start at ID32.

Figure 18.15 is a block diagram of the GIC. The GIC is configurable to sup-
port between 0 and 255 hardware interrupt inputs. The GIC maintains a list of inter-
rupts, showing their priority and status. The Interrupt Distributor transmits to each 
CPU Interface the highest Pending interrupt for that interface. It receives back the 
information that the interrupt has been acknowledged, and can then change the 
status of the corresponding interrupt. The CPU Interface also transmits End of 
Interrupt (EOI) information, which enables the Interrupt Distributor to update the 
status of this interrupt from Active to Inactive.

Cache Coherency

The MPCore’s Snoop Control Unit (SCU) is designed to resolve most of the tra-
ditional bottlenecks related to access to shared data and the scalability limitation 
introduced by coherence traffic.
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l1 cache coherency The L1 cache coherency scheme is based on the MESI 
protocol described in Chapter 17. The SCU monitors operations with shared data 
to optimize MESI state migration. The SCU introduces three types of optimization: 
direct data intervention, duplicated tag RAMs, and migratory lines.

Direct data intervention (DDI) enables copying clean data from one CPU L1 
data cache to another CPU L1 data cache without accessing external memory. This 
reduces read after read activity from the Level 1 cache to the Level 2 cache. Thus, a 
local L1 cache miss is resolved in a remote L1 cache rather than from access to the 
shared L2 cache.

Recall that main memory location of each line within a cache is identified by 
a tag for that line. The tags can be implemented as a separate block of RAM of the 
same length as the number of lines in the cache. In the SCU, duplicated tag RAMs are 
duplicated versions of L1 tag RAMs used by the SCU to check for data availability 
before sending coherency commands to the relevant CPUs. Coherency commands 
are sent only to CPUs that must update their coherent data cache. This reduces the 
power consumption and performance impact from snooping into and manipulating 
each processor’s cache on each memory update. Having tag data available locally lets 
the SCU limit cache manipulations to processors that have cache lines in common.

The migratory lines feature enables moving dirty data from one CPU to 
another without writing to L2 and reading the data back in from external memory. 
The operation can be described as follows. In a typical MESI protocol, one proces-
sor has a modified line and another processor attempts to read that line, the follow-
ing actions occur:

1. The line contents are transferred from the modified line to the processor that 
initiated the read.

2. The line contents are written back to main memory.

3. The line is put in the shared state in both caches.

L2 Cache Coherency

The SCU uses hybrid MESI and MOESI protocols to maintain coherency between 
the individual L1 data caches and the L2 cache. The L2 memory system contains a 
snoop tag array that is a duplicate copy of each of the L1 data cache directories. The 
snoop tag array reduces the amount of snoop traffic between the L2 memory system 
and the L1 memory system. Any line that resides in the snoop tag array in the Mod-
ified/Exclusive state belongs to the L1 memory system. Any access that hits against 
a line in this state must be serviced by the L1 memory system and passed to the L2 
memory system. If the line is invalid or in the shared state in the snoop tag array, 
then the L2 cache can supply the data. The SCU contains buffers that can handle 
direct  cache-  to-  cache transfers between cores without reading or writing any data on 
the ACE. Lines can migrate back and forth without any change to the MOESI state 
of the line in the L2 cache. Shareable transactions on the ACP are also coherent, so 
the snoop tag arrays are queried as a result of ACP transactions. For reads where the 
shareable line resides in one of the L1 data caches in the Modified/Exclusive state, 
the line is transferred from the L1 memory system to the L2 memory system and 
passed back on the ACP.
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 18.7 IBM zENTERPRISE EC12 MAINFRAME

In this section, we look at a mainframe computer organization that uses multicore 
processor chips. The example we use is the IBM zEnterprise EC12 mainframe com-
puter [SHUM13, DOBO13], which began shipping in late 2010. Section 7.8 provides 
a general overview of the EC12, together with a discussion of its I/O structure.

Organization

The principal building block of the mainframe is the multichip module (MCM). The 
MCM is a 103-layer glass ceramic substrate (size 96–96 mm) containing eight chips 
and 7356 connections. The total number of transistors is over 23 billion. The MCM 
plugs into a card that is part of the book packaging. The book itself is plugged into 
the  mid-  plane system board to provide interconnectivity among the books.

The key components of an MCM are shown in Figure 18.16:
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Figure 18.16 IBM EC12 Processor Node Structure
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 ■ Processor unit (PU): There are six 5.5-GHz processor PU chips, each con-
taining four processor cores plus three levels of cache. The PUs have external 
connections to main memory via memory control units and to I/O via host 
channel adapters. Thus, each MCM includes 24 cores.

 ■ Storage control (SC): The two SC chips contain an additional level of cache 
plus interconnection logic for connecting to three other MCMs.

The microprocessor core features a wide superscalar,  out-  of-  order pipeline 
that can decode three z/Architecture CISC instructions per clock cycle (6 0.18 ns) 
and execute up to seven operations per cycle. The instruction execution path is 
predicted by branch direction and target prediction logic. Each core includes two 
integer units, two load/store units, one binary  floating-  point unit, and one decimal 
 floating-  point unit.

Cache Structure

The EC12 incorporates a  four-  level cache structure. We look at each level in turn 
(Figure 18.17).

Each core has a dedicated 160-kB L1 cache, divided into a 96-kB data cache 
and a 64-kB instruction cache. The L1 cache is designed as a  write-  through cache 
to L2, that is, altered data are also stored to the next level of memory. These caches 
are 8-way set associative.

Each core also has a dedicated 2-MB L2, split equally into 1-MB data cache 
and 1-MB instruction cache. The L2 caches are  write-  through to L3, and 8-way set 
associative.

Each 4-core processor unit chip includes a 24-MB L3 cache shared by all six 
cores. Because L1 and L2 caches are  write-  through, the L3 cache must process every 
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store generated by the six cores on its chip. This feature maintains data availability 
during a core failure. The L3 cache is 12-way set associative. The EC12 implements 
embedded DRAM (eDRAM) as L3 cache memory on the chip. While this eDRAM 
memory is slower than static RAM (SRAM) normally used to implement cache 
memory, you can put a lot more of it onto a given area. For many workloads, having 
more memory closer to the core is more important than having fast memory.

Finally, all 6 PUs on an MCM share a 160-MB L4 cache, which is split into one 
92-MB cache on each SC chip. The principal motivation for incorporating a level 4 
cache is that the very high clock speed of the core processors results in a significant 
mismatch with main memory speed. The fourth cache layer is needed to keep the 
cores running efficiently. The large shared L3 and L4 caches are suited to  transaction- 
 processing workloads exhibiting a high degree of data sharing and task swapping. The 
L4 cache is 24-way set associative. The SC chip, which houses the L4 cache, also acts 
as a  cross-  point switch for L4- to-  L4 traffic to up to three remote books2 by three bidi-
rectional data buses. The L4 cache is the coherence manager, meaning that all mem-
ory fetches must be in the L4 cache before that data can be used by the processor.

All four caches use a line size of 256 bytes.
The EC12 is an interesting study in design  trade-  offs and the difficulty in 

exploiting the increasingly powerful processors available with current technology. 
The large L4 cache is intended to drive the need for access to main memory down 
to the bare minimum. However, the distance to the  off-  chip L4 cache costs a num-
ber of instruction cycles. Thus, the  on-  chip area devoted to cache is as large as 
possible, even to the point of having fewer cores than possible on the chip. The 
L1 caches are small, to minimize distance from the core and ensure that access 
can occur in one cycle. Each L2 cache is dedicated to a single core, in an attempt 
to maximize the amount of cached data that can be accessed without resort to a 
shared cache. The L3 cache is shared by all four cores on a chip and is as large as 
possible, to minimize the need to go to the L4 cache.

Because all of the books of the zEnterprise 196 share the workload, the four L4 
caches on the four books form a single pool of L4 cache memory. Thus, access to L4 
means not only going  off-  chip but perhaps  off-  book, further increasing access delay. 
This means relatively large distances exist between the  higher-  level caches in the pro-
cessors and the L4 cache content. Still, accessing L4 cache data on another book is faster 
than accessing DRAM on the other book, which is why the L4 caches work this way.

To overcome the delays that are inherent to the book design and to save cycles 
to access the  off-  book L4 content, the designers try to keep instructions and data as 
close to the cores as possible by directing as much work as possible of a given logical 
partition workload to the cores located in the same book as the L4 cache. This is 
achieved by having the system resource manager/scheduler and the z/OS dispatcher 
work together to keep as much work as possible within the boundaries of as few 
cores and L4 cache space (which is best within a book boundary) as can be achieved 
without affecting throughput and response times. Preventing the resource manager/
scheduler and the dispatcher from assigning workloads to processors where they 
might run less efficiently contributes to overcoming latency in a  high-  frequency pro-
cessor design such as the EC12.

2Recall from Chapter 7 that a EC12 book consists of an MCM, memory cards, and I/O cage connections.
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 18.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Amdahl’s law
chip multiprocessor
 coarse-  grained threading
 fine-  grained threading
heterogeneous multicore 

organization

homogenous multicore 
organization

hybrid threading
MOESI protocol
multicore processor
pipelining

Pollack’s rule
simultaneous multithreading 

(SMT)
superscalar
threading granularity

Review Questions

 18.1 Summarize the differences among simple instruction pipelining, superscalar, and 
simultaneous multithreading.

 18.2 Give several reasons for the choice by designers to move to a multicore organization 
rather than increase parallelism within a single processor.

 18.3 Why is there a trend toward giving an increasing fraction of chip area to cache 
memory?

 18.4 List some examples of applications that benefit directly from the ability to scale 
throughput with the number of cores.

 18.5 At a top level, what are the main design variables in a multicore organization?
 18.6 List some advantages of a shared L2 cache among cores compared to separate dedi-

cated L2 caches for each core.

Problems

 18.1 Consider the following problem. A designer has a chip available and must decide what 
fraction of the chip will be devoted to cache memory (L1, L2, L3). The remainder 
of the chip will be devoted to one or more complex superscalar and/or SMT cores. 
Define the following parameters:

 ■ n = maximum number of cores that can be contained on the chip.
 ■ k = actual number of cores implemented 

(1 … k … n,  wherer = n/k  is an integer).
 ■ perf(r) = sequential performance gain by using the resources equivalent to r 

cores to form a single processor, where perf(1) = 1.
 ■ f = fraction of software that is parallelizable across multiple cores.

Thus, if we construct a chip with n cores, we expect each core to provide sequential 
performance of 1 and for the n cores to be able to exploit parallelism up to a degree 
of n parallel threads. Similarly, if the chip has k cores, then each core should exhibit a 
performance of perf(r) and the chip is able to exploit parallelism up to a degree of k 
parallel threads. We can modify Amdhal’s law (Equation 18.1) to reflect this situation 
as follows:

Speedup =
1

1 - - f

perf(r)
+

f * r

perf(r) * n
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a. Justify this modification of Amdahl’s law.
b. Using Pollack’s rule, we set perf(r) = 2r. Let n = 16. We want to plot speedup 

as a function of r for f = 0.5; f = 0.9; f = 0.975; f = 0.99; f = 0.999. The results 
are available in a document at this book’s Premium Content site ( multicore- 
 performance.pdf). What conclusions can you draw?

c. Repeat part (b) for n = 256.
 18.2 The technical reference manual for the  Cortex-  A15 says that the GIC is memory 

mapped. That is, the core processors use memory mapped I/O to communicate with 
the  GIC.  Recall from Chapter  7 that with memory mapped I/O, there is a single 
address space for memory locations and I/O devices. The processor treats the status 
and data registers of I/O modules as memory locations and uses the same machine 
instructions to access both memory and I/O devices. Based on this information, what 
path through the block diagram of Figure 18.15 is used for the core processors to com-
municate with the GIC?

 18.3 In this question we analyze the performance of the following C program on a multi-
threaded architecture. You should assume that arrays A, B, and C do not overlap in 
memory.

for (i=0; i<328; i++) {
 A[i] = A[i]*B[i];
 C[i] = C[i]+A[i];

 }

 ■ Our machine is a  single-  issue,  in-  order processor. It switches to a different thread 
every cycle using fixed round robin scheduling. Each of the N threads executes one 
instruction every N cycles. We allocate the code to the threads such that every thread 
executes every Nth iteration of the original C code.

 ■ Integer instructions take 1 cycle to execute,  floating-  point instructions take 4 cycles 
and memory instructions take 3 cycles. All execution units are fully pipelined. If an 
instruction cannot issue because its data is not yet available, it inserts a bubble into 
the pipeline, and retries after I cycles.

 ■ Below is our program in assembly code for this machine for a single thread execut-
ing the entire loop.

loop: ld f1, 0 (r1)  ;f1 = A[i]
 ld f2, 0 (r2)  ;f2 = B[i]
 fmul f4, f2, f1 ;f4 = f1*f2
 st f4 0(r1) ;A[i] = f4
 ld f3, 0(r3) ;f3 = C[i]
 fadd f5, f4, f3 ;f5 = f4 + f3
 st f5 0(r3) ;C[i] = f5
 add r1, r1, 4 ;i++
 add r2, r2, 4
 add r3, r3, 4
 add r4, r4, −1

 bnez r4, loop ;loop

a. We allocate the assembly code of the loop to N threads such that every thread 
executes every Nth iteration of the original loop. Write the assembly code that one 
of the N threads would execute on this multithreaded machine.

b. What is the minimum number of threads this machine needs to remain fully uti-
lized issuing an instruction every cycle for our program?

c. Could we reach peak performance running this program using fewer threads by 
rearranging the instructions? Explain briefly.

d. What will be the peak performance in flops/cycle for this program?
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 18.4 For the MOESI protocol, consider any pair of caches. Use the following matrix to 
indicate which states are permitted for a given cache line; use X for forbidden and 
checkmark for permitted.

M O E S I

M

O

E

S

I

 18.5 Draw a state transition diagram, including labels on the transitions, for the MOESI 
protocol, similar to Figure 17.6.

 18.6 In directory cache coherence protocols, such as those based on MESI or MOESI, 
a silent transition is one in which a cache line transitions from one state to another 
without reporting this change to the central controller.
a. For each state in the MESI protocol, indicate to which target states, if any, a silent 

transition is possible.
b. Repeat for MOESI.
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The graphics processor unit (GPU) is designed specifically to be optimized for fast 
 three-  dimensional (3D) graphics rendering and video processing. GPUs can be found 
in almost all of today’s workstations, laptops, tablets, and smartphones [OWEN08]. 
The GPU comes in many sizes. The larger units have several hundred to thousands 
of parallel processor cores on a single integrated circuit (IC). These can be found 
as separate coprocessor cards, usually  PCIe-  based, in workstations, gaming systems, 
and even supercomputers [SLAV12]. The smallest GPUs are found in embedded 
systems, such as tablets and smartphones, where the GPU is composed of only a 
 single-  digit number of cores, and are typically combined with a number of conven-
tional cores, referred to as central processing units (CPUs) on the same silicon IC.

Over the past several years, the GPU has found its way into massively parallel 
programming environments for a wide range of applications, such as bioinformat-
ics, molecular dynamics, oil and gas exploration, computational finance, signal and 
audio processing, statistical modeling, computer vision, and medical imaging. This 
is where the term  general-  purpose computing using a GPU (GPGPU) is derived 
from. The main reasons for the migration of highly parallelizable applications to 
the GPU are due to the advent of programmer friendly GPGPU languages, such as 
NVIDIA’s CUDA and the Khronos Group’s OpenCL, some slight modifications 
to the GPU architecture to facilitate  general-  purpose computing [SAND10] (from 
here on known as GPGPU architecture), along with the low cost and high perform-
ance of GPUs. For example, for about $200, one can purchase a GPU with 960 
parallel processor cores for your workstation (e.g., NVIDIA’s GeForce GTX 660).

We begin this chapter with an overview of the CUDA model, which is essen-
tial for understanding the design and use of GPUs. Next, the chapter contrasts 
GPUs and CPUs. This is followed by a detailed look at GPU architecture. Then, 
Intel’s GPU is examined. Finally, the chapter discusses when to use a GPU as a 
coprocessor.

 19.1 CUDA BASICS

CUDA (Compute Unified Device Architecture) is a parallel computing platform and 
programming model created by NVIDIA and implemented by the graphics process-
ing units (GPUs) that they produce. To adequately describe the GPGPU architecture, 
several CUDA software terms and concepts need to be covered first. This is by no 
means a comprehensive introduction to the CUDA programming language, particu-
larly since the focus of this chapter and book is on computer architecture. However, it 

Learning Objectives

After studying this chapter, you should be able to:

 r Present an overview of CUDA.
 r Understand the difference between a GPU and a CPU.
 r Describe the basic elements of a typical GPU architecture.
 r Discuss when to use a GPU as a coprocessor.
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is difficult to describe the hardware portion of the GPGPU system without first laying 
the foundation with CUDA software terminology and its programming framework. 
These concepts will carry over into the GPU/GPGPU architecture domain.

CUDA C is a C/C++ based language. A CUDA program can be divided into 
three general sections: (1) code to be run on the host (CPU); (2) code to be run on 
the device (GPU); and (3) the code related to the transfer of data between the host 
and the device. The code to be run on the host is of course serial code that can’t, or 
isn’t worth, parallelizing. The  data-  parallel code to be run on the GPU is called a 
kernel, while a thread is a single instance of this kernel function. The kernel typi-
cally will have few to no branching statements. Branching statements in the kernel 
result in serial execution of the threads in the GPU hardware. More about this will 
be covered in Section 19.3.

The programmer defines the number of threads launched when the kernel 
function is called. The total number of threads defined is typically in the thousands 
to maximize the utilization of the GPU processor cores (also known as CUDA 
cores), as well as maximize the available speedup. Additionally, the programmer 
specifies how these threads are to be bundled. To be more specific, threads are uni-
formly bundled in blocks, and the number of blocks (also known as thread blocks) 
per kernel launch is called a grid (see Figure 19.1). Table 19.1 gives a summary of 
the CUDA terms just defined.

Thread (0, 0)

Grid

Block (1,1)

Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block(0, 0) Block(1, 0) Block(2, 0)

Block(0, 1) Block(1, 1) Block(2, 1)

Figure 19.1 Relationship among Threads, Blocks, and 
a Grid
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Figure  19.1 illustrates a  two-  dimensional grid of  two-  dimensional thread 
blocks. Both the grid and block dimensions can be either one, two, or three dimen-
sions. They need not have the same dimensions. For example, the grid could be 
set to one dimension, and the thread block could be set to three dimensions. How-
ever, as we will see shortly, this configuration can’t fully utilize the GPU processors, 
because a block is assigned to only one of the several GPU streaming multiproces-
sors (SMs). A block is never split between SMs. Thus, all but one set of GPU proces-
sor cores will be idle, while one SM is bearing the full processing load. Additionally, 
there is a maximum number of threads that an SM will accept. If this number is sur-
passed, then the code won’t compile. Therefore, it is up to the programmer to use 
the specification data of the GPU to be used, and distribute the load as uniformly as 
possible. At minimum, the number of thread blocks launched should be no less than 
the number of SMs on the GPU. However, finding the optimum configuration can 
be a very time consuming and daunting process.

 19.2 GPU VERSUS CPU

This section compares the complementary architectures of the GPU and 
the CPU. Because the GPU and CPU are orthogonally optimized to one another, 
their combination into a heterogeneous GPGPU system provides superior cost and 
performance gains for certain applications, compared to a pure CPU approach.

Basic Differences between CPU and GPU Architectures

Because the GPU and the CPU are designed and optimized for two significantly dif-
ferent types of applications, their architectures differ significantly. This can be seen 
by comparing the relative amount of die area (transistor count) that is dedicated to 
cache, control logic, and processing logic for the two types of processor technologies 
(see Figure 19.2). In the CPU, as discussed in Chapter 18, the control logic and cache 
memory make up the majority of the CPU’s real estate. This is as expected for an 
architecture which is tuned to process sequential code as quickly as possible. On the 
other hand, a GPU uses a massively parallel SIMD (single instruction multiple data) 
architecture to perform mainly mathematical operations. As such, a GPU doesn’t 
require the same complex capabilities of the CPU’s control logic (i.e., out of order 
execution, branch prediction, data hazards, etc.). Nor does it require large amounts of 
cache memory. GPUs simply run the same thread of code on large amounts of data 

Table 19.1 CUDA Terms to GPU’s Hardware Components Equivalence Mapping

CUDA Term Definition
Equivalent GPU  

Hardware Component

Kernel Parallel code in the form of a function to be run 
on GPU

Not applicable

Thread An instance of the kernel on the GPU GPU/CUDA processor core

Block A group of threads assigned to a particular SM CUDA multiprocessor (SM)

Grid The GPU GPU
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and are able to hide memory latency by managing the execution of more threads 
than available processor cores.

Performance and Performance per Watt Comparison

The video game market has driven the need for  ever-  increasing  real-  time graph-
ics realism. This translates into more parallel GPU processor cores with greater 
 floating-  point capabilities. As a result, the GPU is designed to maximize the num-
ber of  floating-  point operations per second (FLOPs) it can perform. Additionally, 
newer NVIDIA architectures, such as the Kepler and Maxwell architectures, have 
focused on increasing the performance per watt ratio (FLOPs/watt) over previous 
GPU architectures by decreasing the power required by each GPU processor core. 
This was accomplished with Kepler by decreasing its processor cores’ clock, while 
increasing the number of  on-  chip transistors (following Moore’s Law) allowing for a 
positive net gain of 3x the performance per watt over the Fermi architecture. Addi-
tionally, the Maxwell architecture has improved execution efficiency. This trend of 
increasing FLOPs that a GPU can perform versus a multicore CPU has diverged at 
an exponential rate (see Figure 19.3 [NVID14]), thus creating a large performance 
gap. Similar can be said about the performance per watt gap between these two dif-
ferent processing technologies.

 19.3 GPU ARCHITECTURE OVERVIEW

The historical evolution of the GPU architecture can be divided up into three major 
phases or eras. The first phase would cover the early days of the GPU architecture 
(early 1980s to late 1990s), where the GPU was composed of fixed, nonprogram-
mable, specialized processing stages (e.g., vertex, raster, shader, etc.). Additionally, 
the continued technology advancements during this period, allowing for a dramatic 
decrease in the size and cost of a graphics system, in turn brought graphics proces-
sors to the PC in the  mid-   to  late-  1990s. The second phase would cover the iterative 
modification of the resulting Phase I GPU architecture from a fixed, specialized, 
hardware pipeline to a fully programmable processor (approximately during the 
early to  mid-  2000s). The general, final modification, introduced by NVIDIA in 
2006, facilitated the use of its new GPGPU language, CUDA. The third phase picks 
up where the second one leaves off and covers how the GPU/GPGPU architec-
ture makes an excellent and affordable highly parallelized SIMD coprocessor for 

Control

Cache

DRAM

CPU

DRAM

GPU

ALU ALU

ALU ALU

Figure 19.2 CPU versus GPU Silicon Area/Transistor Dedication



19.3 / PU ARCHiTECTURE pvERviEw  693

accelerating the run times of some  nongraphics-  related programs, along with how a 
GPGPU language (CUDA in this case) maps to this architecture. The focus of this 
chapter follows this third phase or era of the GPU.

The first NVIDIA GPU with added GPGPU support hardware was the 
GeForce 8800 GTX. To enable the GPU to be used by programmers for  general- 
 purpose parallel computing applications, a true cache hierarchy and a  user- 
 addressable shared memory was added. Additionally, arrays of the programmable 
GPU processor cores are equally divided up into scalable SMs. The benefit of such 
an architecture is the scalability of GPU processor cores, as well as SMs in new gen-
erations or different models of GPUs without requiring modification to the CUDA 
programming language.

Baseline GPU Architecture

As previously mentioned, NVIDIA has progressed through several generations of 
GPU processing technologies (i.e., Tesla, Fermi, Kepler, and Maxwell), each of which 
has a small to moderate difference in its microarchitecture over its predecessor. The 
naming convention for the SM has been slightly modified for the newer generations 
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of GPU technologies, such as SMX for Kepler and SMM for Maxwell. This helps 
signify a relatively significant change to the SM architecture from its predecessor 
(it also helps with the new product’s promotional marketing!). With that being said, 
from a CUDA programming perspective, all of these processing technologies still 
have identical  top-  level architectures.

For the remainder of this chapter, we will use NVIDIA’s Fermi architecture 
as the example baseline architecture. The Fermi architecture was chosen due to 
its fairly representative GPU architecture and lower CUDA core/SM count, which 
simplifies the mapping between the GPU hardware and the CUDA software. This 
example architecture is composed of 16 SMs, where each SM contains a group of 32 
CUDA cores. Therefore, the Fermi GPU has a total of 16 SMs * 32 CUDA cores/
SM, or 512 CUDA cores.

Full Chip Layout

Figure 19.4 illustrates the general layout of the NVIDIA Fermi architecture GPU. As 
can be seen in this figure, the L2 cache is centrally located to the 16 SMs (8 SMs 
above and below). Each SM is represented by the 2 adjacent columns and 16 rows 
of rectangles (GPU processor cores), along with a column of 16 load/store units and 
a column of 4 special function units (SFUs). A more detailed illustration of the SM 
module is shown in Figure 19.5 [NIVD09]. The rectangles at the head and foot of the 
SMs in Figure 19.4 are where the registers and L1/shared memory are located. Each 
of the six DRAM I/O interfaces has a 64-bit memory interface (the DRAM interface 
circuitry is show in dark blue rectangles on the outermost left and right sides). Thus, 
collectively, there is a 384-bit interface to the GPU’s GDDR5 (graphic double data 
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rate, a DDR memory designed specifically for graphic processing) DRAM, allowing 
for support of up to a total of 6 GB of SM  off-  chip memory (i.e., global, constant, 
texture, and local). More specifics about these different memory types will be dis-
cussed in the next section. Also, illustrated in Figure 19.4 is the host interface, which 
can be found on the  left-  hand side of the GPU layout diagram. The host interface 
allows for PCIe connectivity between the GPU and the CPU. Lastly, the GigaThread 
global scheduler, in orange and located next to the host interface, is responsible for 
the distribution of thread blocks to all of the SM’s warp schedulers (see Figure 19.5).

Streaming Multiprocessor Architecture Details

The  right-  hand side of Figure 19.5 breaks down the NVIDIA Fermi architecture into 
its basic components for a single SM. These components are

 ■ GPU processor cores (total of 32 CUDA cores)
 ■ Warp scheduler and dispatch port
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Core

Core
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FP
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Figure 19.5 Single SM Architecture
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 ■ Sixteen load/store units
 ■ Four SFUs
 ■ 32k * 32-bit registers
 ■ Shared memory and L1 cache (64 kB in total)

dual warp scheduler As covered previously, the GigaThread global scheduler 
unit on the GPU chip distributes the thread blocks to the SMs. The dual warp 
scheduler will then break up each thread block it is processing into warps, where 
a warp is a bundle of 32 threads that start at the same starting address and their 
thread IDs are consecutive. Once a warp is issued, each thread will have its own 
instruction address counter and register set. This allows for independent branching 
and execution of each thread in the SM.

The GPU is most efficient when it is processing as many warps as possible to 
keep the CUDA cores maximally utilized. As illustrated in Figure 19.6, maximum 
SM hardware utilization will occur when the dual warp schedulers and instruction 
dispatch units are able to issue two warps every two clock cycles (Fermi architec-
ture). As explained next, structural hazards are the main source of an SM falling 
short of achieving this maximum processing rate, while  off-  chip memory access 
latency can be more easily hidden.

Each divided column of 16 CUDA cores (* 2), 16 load/store units, and 4 SFUs 
(see Figure 19.5) is eligible to be assigned half a warp (16 threads) to process from 
each of the two warp scheduler/dispatch units per clock cycle, given that the compo-
nent column isn’t experiencing a structural hazard. Structural hazards are caused by 
limited SFUs,  double-  precision multiplication, and branching. However, the warp 
schedulers have a  built-  in scoreboard to track warps that are available for execu-
tion, as well as structural hazards. This allows for the SM to both work around 
structural hazards and help hide  off-  chip memory access latency as optimally as 
possible.

T
im

e

WARP scheduler

Instruction dispatch unit

Warp 8 instruction 11

Warp 2 instruction 42

Warp 14 instruction 95

Warp 8 instruction 12

Warp 14 instruction 96

  Warp 2 instruction 43 

WARP scheduler

Instruction dispatch unit

Warp 9 instruction 11

Warp 3 instruction 33

Warp 15 instruction 95

Warp 9 instruction 12

Warp 3 instruction 34

  Warp 15 instruction 96 

Figure 19.6 Dual Warp Schedulers and Instruction Dispatch 
Units Run Example
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Therefore, it is important for the programmer to set the thread block size 
greater than the total number of CUDA cores in an SM, but less than the maximum 
allowable threads per block, and to make sure the thread block size (in the x and/
or y dimensions) is a multiple of 32 (warp size) to achieve  near-  optimal utilization 
of the SMs.

cuda cores As mentioned in the CUDA Basics section, the NVIDIA GPU 
processor cores are also known as CUDA cores (see Figure 19.5). Also defined 
earlier, and as can be seen in Figure 19.4, there are a total of 32 CUDA cores 
dedicated to each SM in the Fermi architecture. Each CUDA core has two separate 
pipelines or data paths: an integer (INT) unit pipeline and a  floating-  point (FP) 
unit pipeline (see Figure 19.5). Only one of these data paths can be used during a 
single clock period. The INT unit is capable of 32-bit, 64-bit, and extended precision 
for integer and logic/bitwise operations. The FP unit can perform a  single-  precision 
FP operation, while a  double-  precision FP operation requires two CUDA cores. 
Therefore, threads that perform only  double-  precision FP operations will take twice 
as long to run compared to a  single-  precision FP thread. This performance impact 
of  double-  precision FP arithmetic is addressed in the Kepler architecture by the 
inclusion of dedicated  double-  precision units in each SM, as well as a majority of 
 single-  precision units. Fortunately, the management of  thread-  level FP  single-   and 
 double-  precision operations is hidden from the CUDA programmer. However, 
the programmer should be aware of the potential performance impact that can be 
incurred between using the two precision types based on the GPU used.

The Fermi architecture added an improvement to the CUDA core’s FP unit 
over its predecessors. It upgraded from the IEEE 754-1985  floating-  point arithme-
tic standard to the IEEE 754-2008 standard. This was accomplished by improving 
on the accuracy of the  multiply-  add instruction (MAD) with a fused  multiply-  add 
(FMA) instruction. The FMA instruction is valid for both  single-   and  double- 
 precision arithmetic. The Fermi architecture performs only a single rounding at the 
end of an FMA instruction. Not only is the accuracy of the result improved, but also 
performing an FMA instruction is compressed into a single processor clock cycle. 
Therefore, 32  single-  precision or 16  double-  precision FMA operations can occur in 
a single processor clock cycle per SM.

special function units Each SM has four SFUs. The SFU performs 
transcendental operations, such as cosine, sine, reciprocal, and square root, in a 
single clock cycle. Since there are only 4 SFUs in an SM and 32 parallel threads of a 
single instruction in a warp, it takes 8 clock cycles to complete a warp that requires 
the SFUs. However, the CUDA processors, along with the load and store units, can 
still be utilized at the same time.

load and store units Each of the 16 load and store units of the SM calculates 
the source and destination addresses for a single thread per clock cycle. The addresses 
are for the cache or DRAM that the threads wish to write data to, or read data from.

registers, shared memory, and l1 cache As illustrated in Figure 19.5, 
each SM has its own ( on-  chip) dedicated set of registers and shared memory/L1 
cache block. Details and benefits as to these low latency,  on-  chip memories are 
described below.
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Although the Fermi architecture has an impressive 32k * 32-bit registers per 
SM, each thread has a maximum of 64 * 32-bit registers allocated to it as defined by 
CUDA compute capability version 2.x, which is a function of the maximum number 
of active warps allowed per SM, as well as the number of registers per SM. As shown 
in Table 19.2, the registers, along with shared memory, have the fastest access times 
of only several nanoseconds (ns). If there is any temporary register spillage, the 
data will first get moved to L1 cache before being sent to L2 cache, then long access 
latency local memory (see Figure 19.7a). The use of L1 cache helps prevent data 
read/write hazards from occurring. The lifetime of the data in the registers assigned 
to a thread is therefore only as long as the life of the thread.

The addressable,  on-  chip shared memory dedicated to the GPU processor 
cores of an SM is a unique configuration when compared to contemporary multicore 
microprocessors, such as the CPU. These contemporary architectures, as covered in 
Chapter 18 and illustrated in Figure 18.6, have a dedicated  on-  chip L1 cache and a set 
of registers per core. However, they typically do not have  on-  chip addressable mem-
ory. Instead, dedicated memory management hardware regulates the movement of 
data between the cache and main memory without control from the programmer. 
This is significantly different from the GPU architecture (see Figure 19.5).

As discussed at the beginning of this chapter, shared memory was added to 
the GPU architecture specifically to assist with GPGPU applications. Optimizing 
the use of shared memory can significantly improve the speedup and performance 
of a GPGPU application by eliminating unneeded long latency accesses to  off-  chip 
memory. Despite the shared memory being small in size for each SM (48 kB at 
maximum configuration), it has a very low access latency of 100 * to 150 * less 
than global memory (see Table 19.2). Thus, there are three major ways that shared 
memory can accelerate the parallel processing tasks: (1) multiple repeated use of 
shared memory data by all threads of a block (e.g., blocks of data used for  matrix– 
 matrix multiplication); (2) select threads of a block (based on specific IDs) are used 
to transfer data from the global memory to the shared memory, thus redundant 

Table 19.2 GPU’s Memory Hierarchy Attributes

Memory Type Relative Access Times Access Type Scope Data Lifetime

Registers Fastest.  On-  chip R/W Single thread Thread

Shared Fast.  On-  chip R/W All threads in a block Block

Local 100 * to 150 * slower 
than shared and register. 
 Off-  chip

R/W Single thread Thread

Global 100 * to 150 * slower 
than shared and register. 
 Off-  chip.

R/W All threads and host Application

Constant 100 * to 150 * slower 
than shared and register. 
 Off-  chip

R All threads and host Application

Texture 100 * to 150 * slower 
than shared and register. 
 Off-  chip

R All threads and host Application
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reads and writes to the same memory locations are removed; and (3) the user can 
optimize data accesses to global memory by making sure the accesses are coalesced, 
when possible. All of these points also aid in reducing  off-  chip memory bandwidth 
constraint issues. The lifetime of the data in an SM’s shared memory is as long as the 
life of the thread block being processed on it. So, once all of the threads of the block 
have completed, the data in the SM’s shared memory is no longer valid.

Although the use of shared memory will give the optimum run times, in some 
applications the memory accesses are not known during the programming phase. 
This is where having more L1 cache available (maximum setting of 48 kB) will 
give the optimal results. Additionally, the L1 cache helps with aiding register spills, 

(a) SM memory architecture

(b) Overall memory architecture

128 kB  register �le

768 kB  L2 cache

DRAM

to/from L2 cache from L2 cache

x kB  shared
memory

(64 – x) kB  L1
data cache 64 kB L1 instruction cache

Core 0

SM 0 SM 1 SM 15

Core 1 Core 31

Figure 19.7 Fermi Memory Architecture
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instead of going straight to local ( off-  chip) DRAM memory. The  two-  level cache 
 hierarchy—  single L1 cache per SM, and the across chip, SM shared L2  cache—  gives 
the same benefits as those found in conventional multicore microprocessors.

Importance of Knowing and Programming to Your 
Memory Types

It is important for the programmer to understand the nuances of the various GPU 
memories, particularly the sizes available for each memory type, their relative access 
times, and accessibility limitations, to enable correct and efficient code development 
using CUDA. As one can see from the CUDA Basics section covered at the begin-
ning of the chapter, the SM level memories just covered, and the terminology and 
parameters listed in Table 19.2, a much different approach is required for GPGPU 
programming than program development targeted for a CPU, where the specific 
data storage hardware used (other than file I/O) is hidden from the programmer.

For example, with the GPU architecture, each thread assigned to a CUDA 
core has its own set of registers, such that one thread cannot access another thread’s 
registers, whether in the same SM or not. The only way threads within a particular 
SM can cooperate with each other (via data sharing) is through the shared memory 
(see Figure 19.8). This is typically accomplished by the programmer assigning only 
certain threads of an SM to write to specific locations of its shared memory, thus 
preventing write hazards or wasted cycles (e.g., many threads reading the same data 
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Figure 19.8 CUDA Representation of a GPU’s Basic Architecture
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from global memory and writing it to the same shared memory address). Before all 
of the threads of a particular SM are allowed to read from the shared memory that 
has just been written to, synchronization of all the threads of that SM needs to take 
place to prevent a  read-  after-  write (RAW) data hazard.1

 19.4 INTEL’S GEN8 GPU

As another example of a GPGPU architecture, this section provides an overview of 
the Gen8 processor graphics architecture [INTE14, PEDD14].

The fundamental building block of the Gen8 architecture is the execution unit 
(EU) shown in Figure 19.9. The EU is a simultaneous multithreading (SMT) archi-
tecture with seven threads. Recall from Chapters 17 and 18 that in an SMT archi-
tecture, register banks are expanded so that multiple threads can share the use of 
pipeline resources. The EU has seven threads and is implemented as a superscalar 
pipeline architecture. Each thread includes 128  general-  purpose registers. Within 
each EU, the primary computation units are two SIMD  floating-  point units that sup-
port both floating point and integer computation. Each SIMD FPU can complete 
simultaneous add and multiply  floating-  point instructions every cycle. There is also a 
branch unit dedicated to branch instructions and a send unit for memory operations.

Each register stores 32 bytes, accessible as an SIMD 8-element vector of 32-bit 
data elements. Thus each Gen8 thread has 4 kB of  general-  purpose register file 
(GRF), for a total of 28 kB of GRF per EU. Flexible addressing modes permit reg-
isters to be addressed together to build effectively wider registers, or even to rep-
resent strided rectangular block data structures.2 Per thread architectural state is 
maintained in a separate dedicated architecture register file (ARF).

1See Chapter 16 for a discussion of RAW hazards.
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Figure 19.9 Intel Gen8 Execution Unit

2The term strided refers to a sequence of memory reads and writes to addresses, each of which is sepa-
rated from the last by a constant interval called the stride length. Strided references are often generated by 
loops through an array, and (if the data is large enough that  access-  time is significant) it can be worthwhile 
to tune for better locality by inverting double loops or by partially unrolling the outer loop of a loop nest.
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The EU can issue up to four different instructions simultaneously from dif-
ferent threads. The thread arbiter dispatches each instruction to one of the four 
functional units for execution.

EUs are organized into a subslice (Figure 19.10), which may contain up to 
eight EUs. Each subslice contains its own local thread dispatcher unit and its own 
supporting instruction caches. Thus, a single subslice has dedicated hardware 
resources and register files for a total of 56 simultaneous threads.

A subslice also includes a unit called the sampler, with its own local L1 and 
L2 cache. The sampler is used for sampling texture and image surfaces. The sam-
pler includes logic to support dynamic decompression of block compression texture 
formats. The sampler also includes  fixed-  function logic that enables address conver-
sion of image (u,v) coordinates and address clamping modes such as mirror, wrap, 
border, and clamp. The sampler supports a variety of sampling filtering modes such 
as point, bilinear, trilinear, and anisotropic. The data port provides efficient read/
write operations that attempt to take advantage of cache line size to consolidate 
read operations from different threads.

To create product variants, subslices may be clustered into groups called slices 
(Figure 19.11). Currently, up to three subslices may be organized into a single slice 
for a total of 24 EUs. In addition to the subslices, the slice includes logic for thread 
dispatch routing, other function logic to optimize graphic data processing, a shared 
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L3 cache, and a smaller shared local memory structure. The latter is visible (address-
able memory) to the EUs and is useful for sharing temporary variables.

To enhance performance a technique known as cache banking is used for the 
shared L3 data cache. To achieve high bandwidth, the cache is divided into equal-
size memory modules, called banks, which can be accessed simultaneously. Any 
memory read or write request made of n addresses that fall in n distinct memory 
banks can therefore be serviced simultaneously, yielding an overall bandwidth that 
is n times as high as the bandwidth of a single module. However, if two addresses 
of a memory request fall in the same memory bank, there is a bank conflict and the 
access has to be serialized. The hardware splits a memory request with bank con-
flicts into as many separate  conflict-  free requests as necessary, decreasing through-
put by a factor equal to the number of separate memory requests. If the number of 
separate memory requests is n, the initial memory request is said to cause  n-  way 
bank conflicts. To get maximum performance, it is therefore important to under-
stand how memory addresses map to memory banks in order to schedule the mem-
ory requests so as to minimize bank conflicts.

Finally, an SoC product architect can create product families or a specific 
product within a family by placing a single slice or multiple slices on an SoC chip. 
These slices are combined with additional  front-  end logic to manage command 
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submission, as well as  fixed-  function logic to support 3D rendering and media pipe-
lines. Additionally, the entire Gen8 compute architecture interfaces to the rest of 
the SoC components via a dedicated unit called the graphics technology interface 
(GTI).

An example of such an SoC is the Intel Core M Processor with Intel HD 
Graphics 5300 Gen8 (Figure 19.12). In addition to the GPU portion, the chip con-
tains multiple CPU cores, an LLC cache and a system agent. The system agent 
includes controllers for DRAM memory, display, and PCIe devices. The Processor 
Graphics Gen8, CPUs, LLC cache, and system agent are interconnected with a ring 
structure, such as we saw for the Xeon processor (Figure 7.16).

 19.5 WHEN TO USE A GPU AS A COPROCESSOR

We end this chapter with a brief discussion on determining candidate GPGPU appli-
cations from a software design perspective, as well as some related software tools to 
assist with this process.

What differentiates a program that would benefit from running a portion of 
its code on a GPU (thus, a heterogeneous computing platform) versus a program 
that wouldn’t? As has been illustrated and discussed in this chapter, the GPU is 
made up of hundreds to thousands of processor cores and has an SIMD archi-
tecture. Therefore, programs that have a highly parallelizable portion(s) of code, 
which can be replicated into thousands of lightweight threads to work on large 
data sets concurrently, are the best candidates for accelerating their run time on a 
GPGPU system. Here, a lightweight thread is defined as an instance of a relatively 
small, massively parallelizable snippet of code, which has no or very little branch-
ing. Typically, the original serial code is in the form of a large iteration  for-  loop, 
or several embedded  for-  loops, which perform calculations on equations that have 
no data dependency between iterations (e.g., matrix arithmetic). Additionally, 
when initially profiling the entire program with tools similar to the GNU command 
line based gprof or NVIDIA’s nvprof visual based profiler (either profiler prefer-
ably run against typical representative data), the section(s) to be parallelized must 
make up a fair percentage of the program’s total run time. This requirement will 
both maximize the speedup that can be obtained (Amdahl’s law) and minimize 
the impact that data transfer time between the CPU and the GPU will have on the 
overall speedup.

Once a candidate massively parallelizable code segment has been identified, 
it then needs to be converted from serial code to parallel code or a CUDA kernel. 
If a parallelizing compiler were available that could automatically do this conver-
sion without input from the user and also give a  near-  optimal, correct solution, then 
that would save a great deal of time, money, and effort. Unfortunately, such a tool 
does not yet exist. This leaves two options: (1) convert the code through complex 
planning and programming in CUDA, OpenCL, or similar; or (2) use a compiler 
directive language, such as OpenACC, hiCUDA, or similar. Although using a com-
piler directive language to place parallelizing “hints” in the code for the compiler 
can save a great deal of programming time, it is still an iterative process and the 
optimum run time obtained is not guaranteed. However, this method has seen a 
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growing interest over the past several years, and the newer versions of the CUDA 
compiler support the OpenACC language. Yet, a  well-  planned/engineered and 
coded CUDA program will almost always give the best runtimes to date.

 19.6 KEY TERMS AND REVIEW QUESTIONS

Key Terms

block
cache banking
central processing unit (CPU)
Compute Unified Device 

Architecture (CUDA)
CUDA core

 general-  purpose computing 
using a GPU (GPGPU)

GPU processor core
graphic processing unit  

(GPU)
grid

kernel
streaming multiprocessors 

(SMs)
thread
thread block
warp

Review Questions

 19.1 Define CUDA.
 19.2 List the basic differences between CPU and GPU architectures.
 19.3 What are the differences between kernel, thread, and block?
 19.4 Define warp.
 19.5 What are special function units?
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In Chapter 12, we pointed out that a machine instruction set goes a long way toward 
defining the processor. If we know the machine instruction set, including an under-
standing of the effect of each opcode and an understanding of the addressing modes, 
and if we know the set of  user-  visible registers, then we know the functions that the 
processor must perform. This is not the complete picture. We must know the exter-
nal interfaces, usually through a bus, and how interrupts are handled. With this line 
of reasoning, the following list of those things needed to specify the function of a 
processor emerges:

1. Operations (opcodes)

2. Addressing modes

3. Registers

4. I/O module interface

5. Memory module interface

6. Interrupts

This list, though general, is rather complete. Items 1 through 3 are defined by the 
instruction set. Items 4 and 5 are typically defined by specifying the system bus. 
Item 6 is defined partially by the system bus and partially by the type of support the 
processor offers to the operating system.

This list of six items might be termed the functional requirements for a pro-
cessor. They determine what a processor must do. This is what occupied us in Parts 
Two and Four. Now, we turn to the question of how these functions are performed 
or, more specifically, how the various elements of the processor are controlled to 
provide these functions. Thus, we turn to a discussion of the control unit, which 
controls the operation of the processor.

 20.1  MICRO-  OPERATIONS

We have seen that the operation of a computer, in executing a program, consists of a 
sequence of instruction cycles, with one machine instruction per cycle. Of course, we 
must remember that this sequence of instruction cycles is not necessarily the same 
as the written sequence of instructions that make up the program, because of the 
existence of branching instructions. What we are referring to here is the execution 
time sequence of instructions.

Learning Objectives

After studying this chapter, you should be able to:

 r Explain the concept of  micro-  operations and define the principal instruction 
cycle phases in terms of  micro-  operations.

 r Discuss how  micro-  operations are organized to control a processor.
 r Understand hardwired control unit organization.
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We have further seen that each instruction cycle is made up of a number of 
smaller units. One subdivision that we found convenient is fetch, indirect, execute, 
and interrupt, with only fetch and execute cycles always occurring.

To design a control unit, however, we need to break down the description 
further. In our discussion of pipelining in Chapter 14, we began to see that a fur-
ther decomposition is possible. In fact, we will see that each of the smaller cycles 
involves a series of steps, each of which involves the processor registers. We will 
refer to these steps as  micro-  operations. The prefix micro refers to the fact that each 
step is very simple and accomplishes very little. Figure 20.1 depicts the relationship 
among the various concepts we have been discussing. To summarize, the execution 
of a program consists of the sequential execution of instructions. Each instruction 
is executed during an instruction cycle made up of shorter subcycles (e.g., fetch, 
indirect, execute, interrupt). The execution of each subcycle involves one or more 
shorter operations, that is,  micro-  operations.

 Micro-  operations are the functional, or atomic, operations of a processor. In this 
section, we will examine  micro-  operations to gain an understanding of how the events 
of any instruction cycle can be described as a sequence of such  micro-  operations. A 
simple example will be used. In the remainder of this chapter, we then show how the 
concept of  micro-  operations serves as a guide to the design of the control unit.

The Fetch Cycle

We begin by looking at the fetch cycle, which occurs at the beginning of each instruc-
tion cycle and causes an instruction to be fetched from memory. For purposes of 
discussion, we assume the organization depicted in Figure 14.6 (Data Flow, Fetch 
Cycle). Four registers are involved:

 ■ Memory address register (MAR): Is connected to the address lines of the sys-
tem bus. It specifies the address in memory for a read or write operation.

 ■ Memory buffer register (MBR): Is connected to the data lines of the system bus. 
It contains the value to be stored in memory or the last value read from memory.

Program execution

Instruction cycle Instruction cycleInstruction cycle

Indirect Execute InterruptFetch

μOP μOP μOP μOP μOP

Figure 20.1 Constituent Elements of a Program Execution
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 ■ Program counter (PC): Holds the address of the next instruction to be 
fetched.

 ■ Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of view 
of its effect on the processor registers. An example appears in Figure 20.2. At the 
beginning of the fetch cycle, the address of the next instruction to be executed is in 
the program counter (PC); in this case, the address is 1100100. The first step is to 
move that address to the memory address register (MAR) because this is the only 
register connected to the address lines of the system bus. The second step is to bring 
in the instruction. The desired address (in the MAR) is placed on the address bus, 
the control unit issues a READ command on the control bus, and the result appears 
on the data bus and is copied into the memory buffer register (MBR). We also need 
to increment the PC by the instruction length to get ready for the next instruction. 
Because these two actions (read word from memory, increment PC) do not inter-
fere with each other, we can do them simultaneously to save time. The third step is 
to move the contents of the MBR to the instruction register (IR). This frees up the 
MBR for use during a possible indirect cycle.

Thus, the simple fetch cycle actually consists of three steps and four  micro- 
 operations. Each  micro-  operation involves the movement of data into or out of a 
register. So long as these movements do not interfere with one another, several of 
them can take place during one step, saving time. Symbolically, we can write this 
sequence of events as follows:

t1:  MAR d   (PC)
t2:  MBR d Memory
    PC    d   (PC) + I 
t3:  IR   d   (MBR)

where I is the instruction length. We need to make several comments about this 
sequence. We assume that a clock is available for timing purposes and that it emits reg-
ularly spaced clock pulses. Each clock pulse defines a time unit. Thus, all time units are 
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Figure 20.2 Sequence of Events, Fetch Cycle
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of equal duration. Each  micro-  operation can be performed within the time of a single 
time unit. The notation (t1, t2, t3) represents successive time units. In words, we have

 ■ First time unit: Move contents of PC to MAR.
 ■ Second time unit: Move contents of memory location specified by MAR 

to MBR. Increment by I the contents of the PC.
 ■ Third time unit: Move contents of MBR to IR.

Note that the second and third  micro-  operations both take place during the second 
time unit. The third  micro-  operation could have been grouped with the fourth with-
out affecting the fetch operation:

t1:    MAR d   (PC)
t2:  MBR d Memory
t3:  PC   d   (PC) + I 
   IR   d   (MBR)

The groupings of  micro-  operations must follow two simple rules:

1. The proper sequence of events must be followed. Thus (MAR d (PC)) must 
precede (MBR d Memory) because the memory read operation makes use of 
the address in the MAR.

2. Conflicts must be avoided. One should not attempt to read to and write from 
the same register in one time unit, because the results would be unpredictable. 
For example, the  micro-  operations (MBR d Memory) and (IR d MBR) 
should not occur during the same time unit.

A final point worth noting is that one of the  micro-  operations involves an 
addition. To avoid duplication of circuitry, this addition could be performed by 
the ALU. The use of the ALU may involve additional  micro-  operations, depending 
on the functionality of the ALU and the organization of the processor. We defer a 
discussion of this point until later in this chapter.

It is useful to compare events described in this and the following subsections to 
Figure 3.5 (Example of Program Execution). Whereas  micro-  operations are ignored 
in that figure, this discussion shows the  micro-  operations needed to perform the 
subcycles of the instruction cycle.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands. Continuing our 
simple example, let us assume a  one-  address instruction format, with direct and indirect 
addressing allowed. If the instruction specifies an indirect address, then an indirect cycle 
must precede the execute cycle. The data flow differs somewhat from that indicated in 
Figure 14.7 (Data Flow, Indirect Cycle) and includes the following  micro-  operations:

t1:  MAR d   (IR(Address))
t2:  MBR d Memory
t3:  IR(Address) d   (MBR(Address))

The address field of the instruction is transferred to the MAR. This is then used 
to fetch the address of the operand. Finally, the address field of the IR is updated 
from the MBR, so that it now contains a direct rather than an indirect address.
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The IR is now in the same state as if indirect addressing had not been used, 
and it is ready for the execute cycle. We skip that cycle for a moment, to consider 
the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether any 
enabled interrupts have occurred. If so, the interrupt cycle occurs. The nature of this 
cycle varies greatly from one machine to another. We present a very simple sequence 
of events, as illustrated in Figure 14.8 (Data Flow, Indirect Cycle). We have

t1:  MBR d   (PC)
t2:  MAR d Save_Address
   PC d Routine_Address
t3:  Memory d   (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that 
they can be saved for return from the interrupt. Then the MAR is loaded with 
the address at which the contents of the PC are to be saved, and the PC is loaded 
with the address of the start of the  interrupt-  processing routine. These two actions 
may each be a single  micro-  operation. However, because most processors provide 
multiple types and/or levels of interrupts, it may take one or more additional  micro- 
 operations to obtain the Save_Address and the Routine_Address before they can 
be transferred to the MAR and PC, respectively. In any case, once this is done, the 
final step is to store the MBR, which contains the old value of the PC, into memory. 
The processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable. Each involves 
a small, fixed sequence of  micro-  operations and, in each case, the same  micro- 
 operations are repeated each time around.

This is not true of the execute cycle. Because of the variety of opcodes, there 
are a number of different sequences of  micro-  operations that can occur. The control 
unit examines the opcode and generates a sequence of  micro-  operations based on 
the value of the opcode. This is referred to as instruction decoding.

Let us consider several hypothetical examples.
First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following sequence of 
 micro-  operations might occur:

t1:  MAR d   (IR(address))
t2:  MBR d Memory
t3:  R1   d   (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step, the 
address portion of the IR is loaded into the MAR. Then the referenced memory 
location is read. Finally, the contents of R1 and MBR are added by the ALU. Again, 
this is a simplified example. Additional  micro-  operations may be required to extract 
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the register reference from the IR and perhaps to stage the ALU inputs or outputs 
in some intermediate registers.

Let us look at two more complex examples. A common instruction is incre-
ment and skip if zero:

ISZ X

The content of location X is incremented by 1. If the result is 0, the next instruction 
is skipped. A possible sequence of  micro-  operations is

t1:  MAR d   (IR(address))
t2:  MBR d Memory
t3:  MBR d   (MBR) + 1
t4:  Memory d   (MBR)
 If ((MBR) = 0) then (PC d (PC) + I)

The new feature introduced here is the conditional action. The PC is incre-
mented if (MBR) = 0. This test and action can be implemented as one  micro- 
 operation. Note also that this  micro-  operation can be performed during the same 
time unit during which the updated value in MBR is stored back to memory.

Finally, consider a subroutine call instruction. As an example, consider a 
 branch-  and-  save-  address instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in location 
X, and execution continues at location X + I. The saved address will later be used 
for return. This is a straightforward technique for supporting subroutine calls. The 
following  micro-  operations suffice:

t1:  MAR d   (IR(address))
 MBR d   (PC)
t2:  PC d   (IR(address))
 Memory d   (MBR)
t3:  PC d   (PC) + I

The address in the PC at the start of the instruction is the address of the next 
instruction in sequence. This is saved at the address designated in the IR. The latter 
address is also incremented to provide the address of the instruction for the next 
instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed into a 
sequence of elementary  micro-  operations. In our example, there is one sequence 
each for the fetch, indirect, and interrupt cycles, and, for the execute cycle, there is 
one sequence of  micro-  operations for each opcode.

To complete the picture, we need to tie sequences of  micro-  operations 
together, and this is done in Figure 20.3. We assume a new 2-bit register called the 
instruction cycle code (ICC). The ICC designates the state of the processor in terms 
of which portion of the cycle it is in:

00: Fetch
01: Indirect
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10: Execute
11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The indirect 
cycle is always followed by the execute cycle. The interrupt cycle is always followed 
by the fetch cycle (see Figure 14.4, The Instruction Cycle). For both the fetch and 
execute cycles, the next cycle depends on the state of the system.

Thus, the flowchart of Figure 20.3 defines the complete sequence of  micro- 
 operations, depending only on the instruction sequence and the interrupt pattern. 
Of course, this is a simplified example. The flowchart for an actual processor would 
be more complex. In any case, we have reached the point in our discussion in which 
the operation of the processor is defined as the performance of a sequence of  micro- 
 operations. We can now consider how the control unit causes this sequence to occur.

 20.2 CONTROL OF THE PROCESSOR

Functional Requirements

As a result of our analysis in the preceding section, we have decomposed the behavior 
or functioning of the processor into elementary operations, called  micro-  operations. 
By reducing the operation of the processor to its most fundamental level, we are 
able to define exactly what it is that the control unit must cause to happen. Thus, we 
can define the functional requirements for the control unit: those functions that the 
control unit must perform. A definition of these functional requirements is the basis 
for the design and implementation of the control unit.
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interrupt
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instruction

Indirect
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10 (execute) 01 indirect

Execute
instruction

Yes No

No Yes

Figure 20.3 Flowchart for Instruction Cycle
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With the information at hand, the following  three-  step process leads to a char-
acterization of the control unit:

1. Define the basic elements of the processor.

2. Describe the  micro-  operations that the processor performs.

3. Determine the functions that the control unit must perform to cause the 
 micro-  operations to be performed.

We have already performed steps 1 and 2. Let us summarize the results. First, 
the basic functional elements of the processor are the following:

 ■ ALU
 ■ Registers
 ■ Internal data paths
 ■ External data paths
 ■ Control unit

Some thought should convince you that this is a complete list. The ALU is the 
functional essence of the computer. Registers are used to store data internal to the 
processor. Some registers contain status information needed to manage instruction 
sequencing (e.g., a program status word). Others contain data that go to or come 
from the ALU, memory, and I/O modules. Internal data paths are used to move 
data between registers and between register and ALU. External data paths link 
registers to memory and I/O modules, often by means of a system bus. The control 
unit causes operations to happen within the processor.

The execution of a program consists of operations involving these pro-
cessor elements. As we have seen, these operations consist of a sequence of 
 micro-  operations. Upon review of Section 20.1, the reader should see that all  micro- 
 operations fall into one of the following categories:

 ■ Transfer data from one register to another.
 ■ Transfer data from a register to an external interface (e.g., system bus).
 ■ Transfer data from an external interface to a register.
 ■ Perform an arithmetic or logic operation, using registers for input and 

output.

All of the  micro-  operations needed to perform one instruction cycle, including all 
of the  micro-  operations to execute every instruction in the instruction set, fall into 
one of these categories.

We can now be somewhat more explicit about the way in which the control 
unit functions. The control unit performs two basic tasks:

 ■ Sequencing: The control unit causes the processor to step through a series 
of  micro-  operations in the proper sequence, based on the program being 
executed.

 ■ Execution: The control unit causes each  micro-  operation to be performed.

The preceding is a functional description of what the control unit does. The 
key to how the control unit operates is the use of control signals.
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Control Signals

We have defined the elements that make up the processor (ALU, registers, data 
paths) and the  micro-  operations that are performed. For the control unit to perform 
its function, it must have inputs that allow it to determine the state of the system and 
outputs that allow it to control the behavior of the system. These are the external 
specifications of the control unit. Internally, the control unit must have the logic 
required to perform its sequencing and execution functions. We defer a discussion 
of the internal operation of the control unit to Section 20.3 and Chapter 21. The 
remainder of this section is concerned with the interaction between the control unit 
and the other elements of the processor.

Figure 20.4 is a general model of the control unit, showing all of its inputs and 
outputs. The inputs are:

 ■ Clock: This is how the control unit “keeps time.” The control unit causes one 
 micro-  operation (or a set of simultaneous  micro-  operations) to be performed 
for each clock pulse. This is sometimes referred to as the processor cycle time, 
or the clock cycle time.

 ■ Instruction register: The opcode and addressing mode of the current instruc-
tion are used to determine which  micro-  operations to perform during the exe-
cute cycle.

 ■ Flags: These are needed by the control unit to determine the status of the 
processor and the outcome of previous ALU operations. For example, for the 
 increment-  and-  skip-  if-  zero (ISZ) instruction, the control unit will increment 
the PC if the zero flag is set.

 ■ Control signals from control bus: The control bus portion of the system bus 
provides signals to the control unit.

Control
unit

Instruction register

Flags

Clock

Control signals
within CPU

Control signals
from control bus
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to  control bus
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Figure 20.4 Block Diagram of the Control Unit



20.2 / ConTRol of THE PRoCEnnoR  717

The outputs are as follows:

 ■ Control signals within the processor: These are two types: those that cause 
data to be moved from one register to another, and those that activate specific 
ALU functions.

 ■ Control signals to control bus: These are also of two types: control signals to 
memory, and control signals to the I/O modules.

Three types of control signals are used: those that activate an ALU function; 
those that activate a data path; and those that are signals on the external system bus 
or other external interface. All of these signals are ultimately applied directly as 
binary inputs to individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains 
control. The control unit keeps track of where it is in the instruction cycle. At a 
given point, it knows that the fetch cycle is to be performed next. The first step is to 
transfer the contents of the PC to the MAR. The control unit does this by activating 
the control signal that opens the gates between the bits of the PC and the bits of 
the MAR. The next step is to read a word from memory into the MBR and incre-
ment the PC. The control unit does this by sending the following control signals 
simultaneously:

 ■ A control signal that opens gates, allowing the contents of the MAR onto the 
address bus;

 ■ A memory read control signal on the control bus;
 ■ A control signal that opens the gates, allowing the contents of the data bus to 

be stored in the MBR;
 ■ Control signals to logic that add 1 to the contents of the PC and store the 

result back to the PC.

Following this, the control unit sends a control signal that opens gates between the 
MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must 
decide whether to perform an indirect cycle or an execute cycle next. To decide this, 
it examines the IR to see if an indirect memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle, the 
control unit begins by examining the opcode and, on the basis of that, decides which 
sequence of  micro-  operations to perform for the execute cycle.

A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple example. 
Figure 20.5 illustrates the example. This is a simple processor with a single accu-
mulator (AC). The data paths between elements are indicated. The control paths 
for signals emanating from the control unit are not shown, but the terminations of 
control signals are labeled Ci and indicated by a circle. The control unit receives 
inputs from the clock, the IR, and flags. With each clock cycle, the control unit 
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reads all of its inputs and emits a set of control signals. Control signals go to three 
separate destinations:

 ■ Data paths: The control unit controls the internal flow of data. For example, on 
instruction fetch, the contents of the memory buffer register are transferred to 
the IR. For each path to be controlled, there is a switch (indicated by a circle in 
the figure). A control signal from the control unit temporarily opens the gate 
to let data pass.

 ■ ALU: The control unit controls the operation of the ALU by a set of control 
signals. These signals activate various logic circuits and gates within the ALU.

 ■ System bus: The control unit sends control signals out onto the control lines of 
the system bus (e.g., memory READ).

The control unit must maintain knowledge of where it is in the instruction 
cycle. Using this knowledge, and by reading all of its inputs, the control unit emits 
a sequence of control signals that causes  micro-  operations to occur. It uses the 
clock pulses to time the sequence of events, allowing time between events for sig-
nal levels to stabilize. Table 20.1 indicates the control signals that are needed for 
some of the  micro-  operation sequences described earlier. For simplicity, the data 
and control paths for incrementing the PC and for loading the fixed addresses into 
the PC and MAR are not shown.

It is worth pondering the minimal nature of the control unit. The control unit 
is the engine that runs the entire computer. It does this based only on knowing the 
instructions to be executed and the nature of the results of arithmetic and logical 
operations (e.g., positive, overflow, etc.). It never gets to see the data being pro-
cessed or the actual results produced. And it controls everything with a few control 
signals to points within the processor and a few control signals to the system bus.
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Figure 20.5 Data Paths and Control Signals
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Table 20.1 Micro-  operations and Control Signals

 Micro-  operations Active Control Signals

Fetch:

t1: MAR d (PC) C2

t2: MBR d Memory
PC d (PC) + 1

C5, CR

t3: IR d (MBR) C4

Indirect:

t1: MAR d (IR(Address)) C8

t2: MBR d Memory C5, CR

t3: IR(Address) d  (MBR(Address)) C4

Interrupt:

t1: MBR d (PC) C1

t2 : MAR d  Save@address
PC d Routine@address

t3: Memory d (MBR) C12, CW

CR = Read control signal to system bus.

CW = Write control signal to system bus.

Internal Processor Organization

Figure 20.5 indicates the use of a variety of data paths. The complexity of this type of 
organization should be clear. More typically, some sort of internal bus arrangement, 
as was suggested in Figure 14.2 (Internal Structure of the CPU), will be used.

Using an internal processor bus, Figure 20.5 can be rearranged as shown in 
Figure 20.6. A single internal bus connects the ALU and all processor registers. 
Gates and control signals are provided for movement of data onto and off the bus 
from each register. Additional control signals control data transfer to and from the 
system (external) bus and the operation of the ALU.

Two new registers, labeled Y and Z, have been added to the organization. 
These are needed for the proper operation of the ALU. When an operation involv-
ing two operands is performed, one can be obtained from the internal bus, but the 
other must be obtained from another source. The AC could be used for this pur-
pose, but this limits the flexibility of the system and would not work with a proces-
sor with multiple  general-  purpose registers. Register Y provides temporary storage 
for the other input. The ALU is a combinatorial circuit (see Chapter 11) with no 
internal storage. Thus, when control signals activate an ALU function, the input to 
the ALU is transformed to the output. Therefore, the output of the ALU cannot 
be directly connected to the bus, because this output would feed back to the input. 
Register Z provides temporary output storage. With this arrangement, an operation 
to add a value from memory to the AC would have the following steps:

t1:  MAR d (IR(address))
t2:  MBR d Memory
t3:  Y d (MBR)
t4:  Z d (AC) + (Y)
t5:  AC d (Z)

Other organizations are possible, but, in general, some sort of internal bus 
or set of internal buses is used. The use of common data paths simplifies the 
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interconnection layout and the control of the processor. Another practical reason 
for the use of an internal bus is to save space.

The Intel 8085

To illustrate some of the concepts introduced thus far in this chapter, let us consider 
the Intel 8085. Its organization is shown in Figure 20.7. Several key components that 
may not be  self-  explanatory are:

 ■ Incrementer/decrementer address latch: Logic that can add 1 to or subtract 1 
from the contents of the stack pointer or program counter. This saves time by 
avoiding the use of the ALU for this purpose.

 ■ Interrupt control: This module handles multiple levels of interrupt signals.
 ■ Serial I/O control: This module interfaces to devices that communicate 1 bit 

at a time.

Table 20.2 describes the external signals into and out of the 8085. These are 
linked to the external system bus. These signals are the interface between the 8085 
processor and the rest of the system (Figure 20.8).
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The control unit is identified as having two components labeled (1) instruc-
tion decoder and machine cycle encoding and (2) timing and control. A discussion 
of the first component is deferred until the next section. The essence of the control 
unit is the timing and control module. This module includes a clock and accepts as 
inputs the current instruction and some external control signals. Its output consists 
of control signals to the other components of the processor plus control signals to 
the external system bus.

The timing of processor operations is synchronized by the clock and controlled 
by the control unit with control signals. Each instruction cycle is divided into from 
one to five machine cycles; each machine cycle is in turn divided into from three to 
five states. Each state lasts one clock cycle. During a state, the processor performs 
one or a set of simultaneous  micro-  operations as determined by the control signals.

The number of machine cycles is fixed for a given instruction but varies 
from one instruction to another. Machine cycles are defined to be equivalent to 
bus accesses. Thus, the number of machine cycles for an instruction depends on 
the number of times the processor must communicate with external devices. For 
example, if an instruction consists of two 8-bit portions, then two machine cycles are 
required to fetch the instruction. If that instruction involves a 1-byte memory or I/O 
operation, then a third machine cycle is required for execution.
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Figure 20.7 Intel 8085 CPU Block Diagram
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Table 20.2 Intel 8085 External Signals

Address and Data Signals
High Address (A15–A8)

The  high-  order 8 bits of a 16-bit address.

Address/Data (AD7–AD0)
The  lower-  order 8 bits of a 16-bit address or 8 bits of data. This multiplexing saves on pins.

Serial Input Data (SID)
A  single-  bit input to accommodate devices that transmit serially (one bit at a time).

Serial Output Data (SOD)
A  single-  bit output to accommodate devices that receive serially.

Timing and Control Signals

CLK (OUT)
The system clock. The CLK signal goes to peripheral chips and synchronizes their timing.

X1, X2
These signals come from an external crystal or other device to drive the internal clock generator.

Address Latch Enabled (ALE)
Occurs during the first clock state of a machine cycle and causes peripheral chips to store the address lines. 
This allows the address module (e.g., memory, I/O) to recognize that it is being addressed.

Status (S0, S1)
Control signals used to indicate whether a read or write operation is taking place.

IO/M
Used to enable either I/O or memory modules for read and write operations.

Read Control (RD)
Indicates that the selected memory or I/O module is to be read and that the data bus is available for data 
transfer.

Write Control (WR)
Indicates that data on the data bus is to be written into the selected memory or I/O location.

Memory and I/O Initiated Symbols

Hold
Requests the CPU to relinquish control and use of the external system bus. The CPU will complete execution 
of the instruction presently in the IR and then enter a hold state, during which no signals are inserted by the 
CPU to the control, address, or data buses. During the hold state, the bus may be used for DMA operations.

Hold Acknowledge (HOLDA)
This control unit output signal acknowledges the HOLD signal and indicates that the bus is now available.

READY
Used to synchronize the CPU with slower memory or I/O devices. When an addressed device asserts 
READY, the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise, the CPU 
enters a wait state until the device is ready.

 Interrupt-  Related Signals

TRAP
Restart Interrupts (RST 7.5, 6.5, 5.5)

Interrupt Request (INTR)
These five lines are used by an external device to interrupt the CPU. The CPU will not honor the request 
if it is in the hold state or if the interrupt is disabled. An interrupt is honored only at the completion of an 
instruction. The interrupts are in descending order of priority.

Interrupt Acknowledge
Acknowledges an interrupt.
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CPU Initialization

RESET IN
Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.

RESET OUT
Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Voltage and Ground

VCC
+5-volt power supply

VSS
Electrical ground

Figure 20.9 gives an example of 8085 timing, showing the value of external 
control signals. Of course, at the same time, the control unit generates internal con-
trol signals that control internal data transfers. The diagram shows the instruction 
cycle for an OUT instruction. Three machine cycles (M1, M2, M3) are needed. Dur-
ing the first, the OUT instruction is fetched. The second machine cycle fetches the 
second half of the instruction, which contains the number of the I/O device selected 
for output. During the third cycle, the contents of the AC are written out to the 
selected device over the data bus.

The Address Latch Enabled (ALE) pulse signals the start of each machine 
cycle from the control unit. The ALE pulse alerts external circuits. During timing 
state T1 of machine cycle M1, the control unit sets the IO/M signal to indicate that 
this is a memory operation. Also, the control unit causes the contents of the PC 
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to be placed on the address bus (A15 through A8) and the address/data bus (AD7 
through AD0). With the falling edge of the ALE pulse, the other modules on the 
bus store the address.

During timing state T2, the addressed memory module places the contents of the 
addressed memory location on the address/data bus. The control unit sets the Read 
Control (RD) signal to indicate a read, but it waits until T3 to copy the data from the 
bus. This gives the memory module time to put the data on the bus and for the signal 
levels to stabilize. The final state, T4, is a bus idle state during which the processor 
decodes the instruction. The remaining machine cycles proceed in a similar fashion.

 20.3 HARDWIRED IMPLEMENTATION

We have discussed the control unit in terms of its inputs, output, and functions. We 
now turn to the topic of control unit implementation. A wide variety of techniques 
have been used. Most of these fall into one of two categories:

 ■ Hardwired implementation
 ■ Microprogrammed implementation

In a hardwired implementation, the control unit is essentially a state machine 
circuit. Its input logic signals are transformed into a set of output logic signals, which 
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are the control signals. This approach is examined in this section. Microprogrammed 
implementation is the subject of Chapter 21.

Control Unit Inputs

Figure 20.4 depicts the control unit as we have so far discussed it. The key inputs are 
the IR, the clock, flags, and control bus signals. In the case of the flags and control 
bus signals, each individual bit typically has some meaning (e.g., overflow). The other 
two inputs, however, are not directly useful to the control unit.

First consider the IR. The control unit makes use of the opcode and will per-
form different actions (issue a different combination of control signals) for different 
instructions. To simplify the control unit logic, there should be a unique logic input for 
each opcode. This function can be performed by a decoder, which takes an encoded 
input and produces a single output. In general, a decoder will have n binary inputs and 
2n binary outputs. Each of the 2n different input patterns will activate a single unique 
output. Table 20.3 is an example for n = 4. The decoder for a control unit will typi-
cally have to be more complex than that, to account for  variable-  length opcodes. An 
example of the digital logic used to implement a decoder is presented in Chapter 11.

The clock portion of the control unit issues a repetitive sequence of pulses. 
This is useful for measuring the duration of  micro-  operations. Essentially, the period 
of the clock pulses must be long enough to allow the propagation of signals along 

Table 20.3 A Decoder with 4 Inputs and 16 Outputs

I1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

I2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

I3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

I4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

O4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

O5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

O6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

O7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

O8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

O9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

O10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

O12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

O13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

O14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

O15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



726  CHAPTER 20 / ConTRol UniT oPERATion

data paths and through processor circuitry. However, as we have seen, the control 
unit emits different control signals at different time units within a single instruction 
cycle. Thus, we would like a counter as input to the control unit, with a different 
control signal being used for T1,T2, and so forth. At the end of an instruction cycle, 
the control unit must feed back to the counter to reinitialize it at T1.

With these two refinements, the control unit can be depicted as in Figure 20.10.

Control Unit Logic

To define the hardwired implementation of a control unit, all that remains is to dis-
cuss the internal logic of the control unit that produces output control signals as a 
function of its input signals.

Essentially, what must be done is, for each control signal, to derive a Boolean 
expression of that signal as a function of the inputs. This is best explained by 
example. Let us consider again our simple example illustrated in Figure 20.5. We 
saw in Table 20.1 the  micro-  operation sequences and control signals needed to con-
trol three of the four phases of the instruction cycle.

Let us consider a single control signal, C5. This signal causes data to be read from 
the external data bus into the MBR. We can see that it is used twice in Table 20.1. Let 
us define two new control signals, P and Q, that have the following interpretation:

 PQ = 00 Fetch Cycle

 PQ = 01 Indirect Cycle

 PQ = 10 Execute Cycle

 PQ = 11 Interrupt Cycle

Then the following Boolean expression defines C5:

C5 = P•Q•T2 + P•Q•T2

Instruction register

Decoder

Control
unit Flags

Timing
generator

Tn

Clock
T2

T1

I0 I1 Ik

C0 C1 Cm

Figure 20.10 Control Unit with Decoded Inputs
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That is, the control signal C5 will be asserted during the second time unit of both the 
fetch and indirect cycles.

This expression is not complete. C5 is also needed during the execute cycle. 
For our simple example, let us assume that there are only three instructions that 
read from memory: LDA, ADD, and AND. Now we can define C5 as

C5 = P•Q•T2 + P•Q•T2 + P•Q•(LDA + ADD + AND)•T2

This same process could be repeated for every control signal generated by the pro-
cessor. The result would be a set of Boolean equations that define the behavior of 
the control unit and hence of the processor.

To tie everything together, the control unit must control the state of the 
instruction cycle. As was mentioned, at the end of each subcycle (fetch, indirect, 
execute, interrupt), the control unit issues a signal that causes the timing generator 
to reinitialize and issue T1. The control unit must also set the appropriate values of 
P and Q to define the next subcycle to be performed.

The reader should be able to appreciate that in a modern complex processor, 
the number of Boolean equations needed to define the control unit is very large. 
The task of implementing a combinatorial circuit that satisfies all of these equations 
becomes extremely difficult. The result is that a far simpler approach, known as 
microprogramming, is usually used. This is the subject of the next chapter.

 20.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 20.1 Explain the distinction between the written sequence and the time sequence of an 
instruction.

 20.2 What is the relationship between instructions and  micro-  operations?
 20.3 What is the overall function of a processor’s control unit?
 20.4 Outline a  three-  step process that leads to a characterization of the control unit.
 20.5 What basic tasks does a control unit perform?
 20.6 Provide a typical list of the inputs and outputs of a control unit.
 20.7 List three types of control signals.
 20.8 Briefly explain what is meant by a hardwired implementation of a control unit.

Problems

 20.1 Your ALU can add its two input registers, and it can logically complement the bits of 
either input register, but it cannot subtract. Numbers are to be stored in twos com-
plement representation. List the  micro-  operations your control unit must perform to 
cause a subtraction.

control bus
control path

control signal
control unit

hardwired implementation
 micro-  operations
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 20.2 Show the  micro-  operations and control signals in the same fashion as Table 20.1 for 
the processor in Figure 20.5 for the following instructions:

 ■ Load Accumulator
 ■ Store Accumulator
 ■ Add to Accumulator
 ■ AND to Accumulator
 ■ Jump
 ■ Jump if AC = 0
 ■ Complement Accumulator

 20.3 Assume that propagation delay along the bus and through the ALU of Figure 20.6 are 
20 and 100 ns, respectively. The time required for a register to copy data from the bus 
is 10 ns. What is the time that must be allowed for
a. data from one register to another?
b. the program counter?

 20.4 Write the sequence of  micro-  operations required for the bus structure of Figure 20.6 
to add a number to the AC when the number is
a. immediate operand;
b.  direct-  address operand;
c.  indirect-  address operand.

 20.5 A stack is implemented as shown in Figure 20.11 (see Appendix I for a discussion of 
stacks). Show the sequence of  micro-  operations for
a. popping;
b. the stack.
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Figure 20.11 Typical Stack Organization (full/descending)
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The term microprogram was first coined by M. V. Wilkes in the early 1950s [WILK51]. 
Wilkes proposed an approach to control unit design that was organized and system-
atic and avoided the complexities of a hardwired implementation. The idea intrigued 
many researchers but appeared unworkable because it would require a fast, rela-
tively inexpensive control memory.

The state of the microprogramming art was reviewed by Datamation in its 
February 1964 issue. No microprogrammed system was in wide use at that time, 
and one of the papers [HILL64] summarized the then-popular view that the future 
of microprogramming “is somewhat cloudy. None of the major manufacturers has 
evidenced interest in the technique, although presumably all have examined it.”

This situation changed dramatically within a very few months. IBM’s Sys-
tem/360 was announced in April, and all but the largest models were micropro-
grammed. Although the 360 series predated the availability of semiconductor 
ROM, the advantages of microprogramming were compelling enough for IBM 
to make this move. Microprogramming became a popular technique for imple-
menting the control unit of CISC processors. In recent years, microprogram-
ming has become less used but remains a tool available to computer designers. 
For example, as we have seen on the Pentium 4, machine instructions are con-
verted into a RISC-like format, most of which are executed without the use 
of microprogramming. However, some of the instructions are executed using 
microprogramming.

 21.1 BASIC CONCEPTS

Microinstructions

The control unit seems a reasonably simple device. Nevertheless, to implement a con-
trol unit as an interconnection of basic logic elements is no easy task. The design must 
include logic for sequencing through micro-operations, for executing micro-operations, 
for interpreting opcodes, and for making decisions based on ALU flags. It is difficult to 
design and test such a piece of hardware. Furthermore, the design is relatively inflexi-
ble. For example, it is difficult to change the design if one wishes to add a new machine 
instruction.

An alternative, which has been used in many CISC processors, is to imple-
ment a microprogrammed control unit.

Learning Objectives

After studying this chapter, you should be able to:

 r Present an overview of the basic concepts of microprogrammed control.
 r Understand the difference between hardwired control and microprogrammed 
control.

 r Discuss the basic categories of sequencing techniques.
 r Present an overview of the taxonomy of microinstructions.
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Consider Table 21.1. In addition to the use of control signals, each micro- 
operation is described in symbolic notation. This notation looks suspiciously like 
a programming language. In fact it is a language, known as a microprogramming 
language. Each line describes a set of micro-operations occurring at one time and 
is known as a microinstruction. A sequence of instructions is known as a micropro-
gram, or firmware. This latter term reflects the fact that a microprogram is midway 
between hardware and software. It is easier to design in firmware than hardware, 
but it is more difficult to write a firmware program than a software program.

How can we use the concept of microprogramming to implement a control 
unit? Consider that for each micro-operation, all that the control unit is allowed 
to do is generate a set of control signals. Thus, for any micro-operation, each con-
trol line emanating from the control unit is either on or off. This condition can, of 
course, be represented by a binary digit for each control line. So we could construct 
a control word in which each bit represents one control line. Then each micro-oper-
ation would be represented by a different pattern of 1s and 0s in the control word.

Suppose we string together a sequence of control words to represent the 
sequence of micro-operations performed by the control unit. Next, we must rec-
ognize that the sequence of micro-operations is not fixed. Sometimes we have an 
indirect cycle; sometimes we do not. So let us put our control words in a memory, 
with each word having a unique address. Now add an address field to each control 
word, indicating the location of the next control word to be executed if a certain 
condition is true (e.g., the indirect bit in a memory-reference instruction is 1). Also, 
add a few bits to specify the condition.

Table 21.1 Machine Instruction Set for Wilkes Example

Order Effect of Order

A n C(Acc) + C(n) to Acc1

S n C(Acc) - C(n) to Acc1

H n C(n) to Acc2

V n C(Acc2) * C(n) to Acc, where C(n) Ú 0

T n C(Acc1) to n, 0 to Acc

U n C(Acc1) to n

R n C(Acc) * 2(n + 1) to Acc

L n C(Acc) * 2n + 1 to Acc

G n IF C(Acc) 6 0, transfer control to n; if C(Acc) Ú 0, ignore  
(i.e., proceed serially)

I n Read next character on input mechanism into n

O n Send C(n) to output mechanism

Notation:  Acc = accumulator
 Acc1 = most significant half of accumulator
 Acc2 = least significant half of accumulator
 n = storage location n
 C(X ) = contents of X (X = register or storage location)
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The result is known as a horizontal microinstruction, an example of which 
is shown in Figure 21.1a. The format of the microinstruction or control word is as 
follows. There is one bit for each internal processor control line and one bit for each 
system bus control line. There is a condition field indicating the condition under 
which there should be a branch, and there is a field with the address of the micro-
instruction to be executed next when a branch is taken. Such a microinstruction is 
interpreted as follows:

1. To execute this microinstruction, turn on all the control lines indicated by a 1 
bit; leave off all control lines indicated by a 0 bit. The resulting control signals 
will cause one or more micro-operations to be performed.

2. If the condition indicated by the condition bits is false, execute the next micro-
instruction in sequence.

3. If the condition indicated by the condition bits is true, the next microinstruc-
tion to be executed is indicated in the address field.

Figure 21.2 shows how these control words or microinstructions could be 
arranged in a control memory. The microinstructions in each routine are to be exe-
cuted sequentially. Each routine ends with a branch or jump instruction indicating 
where to go next. There is a special execute cycle routine whose only purpose is to 
signify that one of the machine instruction routines (AND, ADD, and so on) is to 
be executed next, depending on the current opcode.

The control memory of Figure 21.2 is a concise description of the complete 
operation of the control unit. It defines the sequence of micro-operations to be 

     Microinstruction address
     Jump condition
       —Unconditional
       —Zero
       —Over	ow
       —Indirect bit
System bus control signals
Internal CPU control signals

Microinstruction address
Jump condition

Function codes

(a) Horizontal microinstruction

(b) Vertical microinstruction

Figure 21.1 Typical Microinstruction Formats
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performed during each cycle (fetch, indirect, execute, interrupt), and it specifies the 
sequencing of these cycles. If nothing else, this notation would be a useful device 
for documenting the functioning of a control unit for a particular computer. But it is 
more than that. It is also a way of implementing the control unit.

Microprogrammed Control Unit

The control memory of Figure 21.2 contains a program that describes the behavior 
of the control unit. It follows that we could implement the control unit by simply 
executing that program.

Figure 21.3 shows the key elements of such an implementation. The set of 
microinstructions is stored in the control memory. The control address register con-
tains the address of the next microinstruction to be read. When a microinstruction is 
read from the control memory, it is transferred to a control buffer register. The left-
hand portion of that register (see Figure 21.1a) connects to the control lines emanat-
ing from the control unit. Thus, reading a microinstruction from the control memory 
is the same as executing that microinstruction. The third element shown in the figure is 
a sequencing unit that loads the control address register and issues a read command.

Jump to indirect or execute

Fetch
cycle
routine

Indirect
cycle
routine

Interrupt
cycle
routine

AND routine

ADD routine

IOF routine

Execute cycle beginning

Jump to execute

Jump to fetch

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to fetch or interrupt

Jump to opcode routine

Figure 21.2 Organization of Control Memory
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Let us examine this structure in greater detail, as depicted in Figure 21.4. Com-
paring this with Figure 21.3, we see that the control unit still has the same inputs (IR, 
ALU flags, clock) and outputs (control signals). The control unit functions as follows:

1. To execute an instruction, the sequencing logic unit issues a READ command 
to the control memory.

2. The word whose address is specified in the control address register is read into 
the control buffer register.

3. The content of the control buffer register generates control signals and 
next-address information for the sequencing logic unit.

4. The sequencing logic unit loads a new address into the control address register 
based on the next-address information from the control buffer register and the 
ALU flags.

All this happens during one clock pulse.
The last step just listed needs elaboration. At the conclusion of each micro-

instruction, the sequencing logic unit loads a new address into the control address 
register. Depending on the value of the ALU flags and the control buffer register, 
one of three decisions is made:

 ■ Get the next instruction: Add 1 to the control address register.
 ■ Jump to a new routine based on a jump microinstruction: Load the address 

field of the control buffer register into the control address register.
 ■ Jump to a machine instruction routine: Load the control address register 

based on the opcode in the IR.

Figure 21.4 shows two modules labeled decoder. The upper decoder trans-
lates the opcode of the IR into a control memory address. The lower decoder is 
not used for horizontal microinstructions but is used for vertical microinstructions 
(Figure 21.1b). As was mentioned, in a horizontal microinstruction every bit in the 

Sequencing
logic

Read 

Control address register

Control buffer register

Control
memory

Figure 21.3 Control Unit Microarchitecture
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control field attaches to a control line. In a vertical microinstruction, a code is used 
for each action to be performed [e.g., MAR d (PC)], and the decoder translates 
this code into individual control signals. The advantage of vertical microinstruc-
tions is that they are more compact (fewer bits) than horizontal microinstructions, 
at the expense of a small additional amount of logic and time delay.

Wilkes Control

As was mentioned, Wilkes first proposed the use of a microprogrammed control unit 
in 1951 [WILK51]. This proposal was subsequently elaborated into a more detailed 
design [WILK53]. It is instructive to examine this seminal proposal.

The configuration proposed by Wilkes is depicted in Figure 21.5. The heart of the 
system is a matrix partially filled with diodes. During a machine cycle, one row of the 
matrix is activated with a pulse. This generates signals at those points where a diode is 
present (indicated by a dot in the diagram). The first part of the row generates the con-
trol signals that control the operation of the processor. The second part generates the 
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to system bus
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Flags

Clock

Read

Next address control

Control address register

Instruction register
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Figure 21.4 Functioning of Microprogrammed Control Unit
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address of the row to be pulsed in the next machine cycle. Thus, each row of the matrix 
is one microinstruction, and the layout of the matrix is the control memory.

At the beginning of the cycle, the address of the row to be pulsed is contained 
in Register I. This address is the input to the decoder, which, when activated by 
a clock pulse, activates one row of the matrix. Depending on the control signals, 
either the opcode in the instruction register or the second part of the pulsed row is 
passed into Register II during the cycle. Register II is then gated to Register I by 
a clock pulse. Alternating clock pulses are used to activate a row of the matrix and 
to transfer from Register II to Register I. The two-register arrangement is needed 
because the decoder is simply a combinatorial circuit; with only one register, the 
output would become the input during a cycle, causing an unstable condition.

This scheme is very similar to the horizontal microprogramming approach 
described earlier (Figure 21.1a). The main difference is this: In the previous descrip-
tion, the control address register could be incremented by one to get the next 
address. In the Wilkes scheme, the next address is contained in the microinstruc-
tion. To permit branching, a row must contain two address parts, controlled by a 
conditional signal (e.g., flag), as shown in the figure.

Having proposed this scheme, Wilkes provides an example of its use to imple-
ment the control unit of a simple machine. This example, the first known design of a 
microprogrammed processor, is worth repeating here because it illustrates many of 
the contemporary principles of microprogramming.

The processor of the hypothetical machine (the example machine by Wilkes) 
includes the following registers:

Register II

Register I

Address
decoder

Control signals

Control
signals

Clock

From
instruction

register

Conditional
signal

Figure 21.5 Wilkes’s Microprogrammed Control Unit
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A Multiplicand

B Accumulator (least significant half)

C Accumulator (most significant half)

D Shift register

In addition, there are three registers and two 1-bit flags accessible only to the con-
trol unit. The registers are as follows:

E Serves as both a memory address register 
(MAR) and temporary storage

F Program counter

G Another temporary register; used for 
counting

Table 21.1 lists the machine instruction set for this example. Table 21.2 is the 
complete set of microinstructions, expressed in symbolic form, that implements 
the control unit. Thus, a total of 38 microinstructions is all that is required to define 
the system completely.

The first full column gives the address (row number) of each microinstruction. 
Those addresses corresponding to opcodes are labeled. Thus, when the opcode for 
the add instruction (A) is encountered, the microinstruction at location 5 is exe-
cuted. Columns 2 and 3 express the actions to be taken by the ALU and control 
unit, respectively. Each symbolic expression must be translated into a set of control 
signals (microinstruction bits). Columns 4 and 5 have to do with the setting and 
use of the two flags (flip-flops). Column 4 specifies the signal that sets the flag. For 
example, (1)Cs means that flag number 1 is set by the sign bit of the number in reg-
ister C. If column 5 contains a flag identifier, then columns 6 and 7 contain the two 
alternative microinstruction addresses to be used. Otherwise, column 6 specifies the 
address of the next microinstruction to be fetched.

Instructions 0 through 4 constitute the fetch cycle. Microinstruction 4 presents 
the opcode to a decoder, which generates the address of a microinstruction corre-
sponding to the machine instruction to be fetched. The reader should be able to 
deduce the complete functioning of the control unit from a careful study of Table 21.2.

Advantages and Disadvantages

The principal advantage of the use of microprogramming to implement a control 
unit is that it simplifies the design of the control unit. Thus, it is both cheaper and 
less error prone to implement. A hardwired control unit must contain complex logic 
for sequencing through the many micro-operations of the instruction cycle. On the 
other hand, the decoders and sequencing logic unit of a microprogrammed control 
unit are very simple pieces of logic.

The principal disadvantage of a microprogrammed unit is that it will be some-
what slower than a hardwired unit of comparable technology. Despite this, micro-
programming is the dominant technique for implementing control units in pure 
CISC architectures, due to its ease of implementation. RISC processors, with their 
simpler instruction format, typically use hardwired control units. We now examine 
the microprogrammed approach in greater detail.
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Table 21.2 Microinstructions for Wilkes Example
Notations: A, B, C, . . . stand for the various registers in the arithmetical and control register units. C to D indicates 

that the switching circuits connect the output of register C to the input register D; (D + A) to C indicates that the 
output register of A is connected to the one input of the adding unit (the output of D is permanently connected to 
the other input), and the output of the adder to register C. A numerical symbol n in quotes (e.g., “n”) stands for the 
source whose output is the number n in units of the least significant digit.

Arithmetical 
Unit

Control  
Register Unit

Conditional 
Flip-Flop

Next 
Microinstruction

Set Use 0  1

 0 F to G and E 1

 1 (G to “1”) to F 2

 2 Store to G 3

 3 G to E 4

 4 E to decoder —

A  5 C to D 16

S  6 C to D 17

H  7 Store to B 0

V  8 Store to A 27

T  9 C to Store 25

U 10 C to Store 0

R 11 B to D E to G 19

L 12 C to D E to G 22

G 13 E to G (1)C5 18

I 14 Input to Store 0

O 15 Store to Output 0

16 (D + Store) to C 0

17 (D - Store) to C 0

18 1 0 1

19 D to B (R)* (G - 1) to E 20

20 C to D (1)E5 21

21 D to C (R) 1 11  0

22 D to C (L)† (G - 1) to E 23

23 B to D (1)E5 24

24 D to B (L) 1 12  0

25 “0” to B 26

26 B to C 0

27 “0” to C “18” to E 28

28 B to D E to G (1)B1 29

29 D to B (R) (G - “1”) to E 30

30 C to D (R) (2)E5 1 31 32
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 21.2 MICROINSTRUCTION SEQUENCING

The two basic tasks performed by a microprogrammed control unit are as follows:

 ■ Microinstruction sequencing: Get the next microinstruction from the control 
memory.

 ■ Microinstruction execution: Generate the control signals needed to execute 
the microinstruction.

In designing a control unit, these tasks must be considered together, because 
both affect the format of the microinstruction and the timing of the control unit. In 
this section, we will focus on sequencing and say as little as possible about format 
and timing issues. These issues are examined in more detail in the next section.

Design Considerations

Two concerns are involved in the design of a microinstruction sequencing technique: 
the size of the microinstruction and the address-generation time. The first concern 
is obvious; minimizing the size of the control memory reduces the cost of that com-
ponent. The second concern is simply a desire to execute microinstructions as fast 
as possible.

In executing a microprogram, the address of the next microinstruction to be 
executed is in one of these categories:

 ■ Determined by instruction register
 ■ Next sequential address
 ■ Branch

Arithmetical 
Unit

Control  
Register Unit

Conditional 
Flip-Flop

Next 
Microinstruction

Set Use 0  1

31 D to C 2 28 33

32 (D + A) to C 2 28 33

33 B to D (1)B1 34

34 D to B (R) 35

35 C to D (R) 1 36 37

36 D to C 0

37 (D - A) to C 0

*  Right shift. The switching circuits in the arithmetic unit are arranged so that the least significant digit of the 
register C is placed in the most significant place of register B during right shift micro-operations, and the most 
significant digit of register C (sign digit) is repeated (thus making the correction for negative numbers).

†  Left shift. The switching circuits are similarly arranged to pass the most significant digit of register B to the 
least significant place of register C during left shift micro-operations.
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The first category occurs only once per instruction cycle, just after an instruction is 
fetched. The second category is the most common in most designs. However, the 
design cannot be optimized just for sequential access. Branches, both conditional 
and unconditional, are a necessary part of a microprogram. Furthermore, microin-
struction sequences tend to be short; one out of every three or four microinstructions 
could be a branch [SIEW82]. Thus, it is important to design compact, time-efficient 
techniques for microinstruction branching.

Sequencing Techniques

Based on the current microinstruction, condition flags, and the contents of the 
instruction register, a control memory address must be generated for the next micro-
instruction. A wide variety of techniques have been used. We can group them into 
three general categories, as illustrated in Figures 21.6 to 21.8. These categories are 
based on the format of the address information in the microinstruction:

Control address
register

Address
decoder

Address
selection

Flags

Control
buffer

register

Address
1

Address
2

Control

Control
memory

Branch
logic Multiplexer Instruction

register

Figure 21.6 Branch Control Logic: Two Address Fields
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 ■ Two address fields
 ■ Single address field
 ■ Variable format

The simplest approach is to provide two address fields in each microinstruc-
tion. Figure 21.6 suggests how this information is to be used. A multiplexer is pro-
vided that serves as a destination for both address fields plus the instruction register. 
Based on an address-selection input, the multiplexer transmits either the opcode 
or one of the two addresses to the control address register (CAR). The CAR is 
subsequently decoded to produce the next microinstruction address. The address- 
selection signals are provided by a branch logic module whose input consists of con-
trol unit flags plus bits from the control portion of the microinstruction.

Although the two-address approach is simple, it requires more bits in the 
microinstruction than other approaches. With some additional logic, savings can be 
achieved. A common approach is to have a single address field (Figure 21.7). With 
this approach, the options for next address are as follows:

 ■ Address field
 ■ Instruction register code
 ■ Next sequential address

Address
decoder

Address
selection

Flags

Control
buffer

register
AddressControl

Control
memory

Branch
logic Multiplexer

Control address
register

+1

Instruction
register

Figure 21.7 Branch Control Logic: Single Address Field



742  CHAPTER 21 / MiCRoPRogRAMMEd ConTRol

The address-selection signals determine which option is selected. This approach 
reduces the number of address fields to one. Note, however, that the address field 
often will not be used. Thus, there is some inefficiency in the microinstruction coding 
scheme.

Another approach is to provide for two entirely different microinstruction 
formats (Figure 21.8). One bit designates which format is being used. In one 
format, the remaining bits are used to activate control signals. In the other for-
mat, some bits drive the branch logic module, and the remaining bits provide 
the address. With the first format, the next address is either the next sequential 
address or an address derived from the instruction register. With the second 
format, either a conditional or unconditional branch is being specified. One 
disadvantage of this approach is that one entire cycle is consumed with each 
branch microinstruction. With the other approaches, address generation occurs 
as part of the same cycle as control signal generation, minimizing control mem-
ory accesses.

The approaches just described are general. Specific implementations will 
often involve a variation or combination of these techniques.
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21.2 / MiCRoinsTRuCTion sEquEnCing  743

Address Generation

We have looked at the sequencing problem from the point of view of format con-
siderations and general logic requirements. Another viewpoint is to consider the 
various ways in which the next address can be derived or computed.

Table 21.3 lists the various address generation techniques. These can be 
divided into explicit techniques, in which the address is explicitly available in the 
microinstruction, and implicit techniques, which require additional logic to generate 
the address.

We have essentially dealt with the explicit techniques. With a two-field 
approach, two alternative addresses are available with each microinstruction. Using 
either a single address field or a variable format, various branch instructions can be 
implemented. A conditional branch instruction depends on the following types of 
information:

 ■ ALU flags
 ■ Part of the opcode or address mode fields of the machine instruction
 ■ Parts of a selected register, such as the sign bit
 ■ Status bits within the control unit

Several implicit techniques are also commonly used. One of these, mapping, 
is required with virtually all designs. The opcode portion of a machine instruction 
must be mapped into a microinstruction address. This occurs only once per instruc-
tion cycle.

A common implicit technique is one that involves combining or adding two 
portions of an address to form the complete address. This approach was taken for 
the IBM S/360 family [TUCK67] and used on many of the S/370 models. We will use 
the IBM 3033 as an example.

The control address register on the IBM 3033 is 13 bits long and is illustrated 
in Figure 21.9. Two parts of the address can be distinguished. The highest-order 
8 bits (00–07) normally do not change from one microinstruction cycle to the next. 
During the execution of a microinstruction, these 8 bits are copied directly from 
an 8-bit field of the microinstruction (the BA field) into the highest-order 8 bits of 
the control address register. This defines a block of 32 microinstructions in control 
memory. The remaining 5 bits of the control address register are set to specify the 
specific address of the microinstruction to be fetched next. Each of these bits is 
determined by a 4-bit field (except one is a 7-bit field) in the current microinstruc-
tion; the field specifies the condition for setting the corresponding bit. For example, 
a bit in the control address register might be set to 1 or 0 depending on whether a 
carry occurred on the last ALU operation.

Table 21.3 Microinstruction Address Generation Techniques

Explicit Implicit

Two-field Mapping

Unconditional branch Addition

Conditional branch Residual control
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The final approach listed in Table 21.3 is termed residual control. This 
approach involves the use of a microinstruction address that has previously been 
saved in temporary storage within the control unit. For example, some microin-
struction sets come equipped with a subroutine facility. An internal register or stack 
of registers is used to hold return addresses. An example of this approach is taken 
on the LSI-11, which we now examine.

LSI-11 Microinstruction Sequencing

The LSI-11 is a microcomputer version of a PDP-11, with the main components of 
the system residing on a single board. The LSI-11 is implemented using a micropro-
grammed control unit [SEBE76].

The LSI-11 makes use of a 22-bit microinstruction and a control memory of 
2K 22-bit words. The next microinstruction address is determined in one of five 
ways:

 ■ Next sequential address:  In the absence of other instructions, the control unit’s 
control address register is incremented by 1.

 ■ Opcode mapping: At the beginning of each instruction cycle, the next microin-
struction address is determined by the opcode.

 ■ Subroutine facility: Explained presently.
 ■ Interrupt testing: Certain microinstructions specify a test for interrupts. If an 

interrupt has occurred, this determines the next microinstruction address.
 ■ Branch: Conditional and unconditional branch microinstructions are used.

A one-level subroutine facility is provided. One bit in every microinstruction 
is dedicated to this task. When the bit is set, an 11-bit return register is loaded with 
the updated contents of the control address register. A subsequent microinstruction 
that specifies a return will cause the control address register to be loaded from the 
return register.

The return is one form of unconditional branch instruction. Another form of 
unconditional branch causes the bits of the control address register to be loaded 
from 11 bits of the microinstruction. The conditional branch instruction makes use 
of a 4-bit test code within the microinstruction. This code specifies testing of various 
ALU condition codes to determine the branch decision. If the condition is not true, 
the next sequential address is selected. If it is true, the 8 lowest-order bits of the 
control address register are loaded from 8 bits of the microinstruction. This allows 
branching within a 256-word page of memory.
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Figure 21.9 IBM 3033 Control Address Register
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As can be seen, the LSI-11 includes a powerful address sequencing facility 
within the control unit. This allows the microprogrammer considerable flexibility 
and can ease the microprogramming task. On the other hand, this approach requires 
more control unit logic than do simpler capabilities.

 21.3 MICROINSTRUCTION EXECUTION

The microinstruction cycle is the basic event on a microprogrammed processor. Each 
cycle is made up of two parts: fetch and execute. The fetch portion is determined by 
the generation of a microinstruction address, and this was dealt with in the preceding 
section. This section deals with the execution of a microinstruction.

Recall that the effect of the execution of a microinstruction is to generate 
control signals. Some of these signals control points internal to the processor. The 
remaining signals go to the external control bus or other external interface. As an 
incidental function, the address of the next microinstruction is determined.

The preceding description suggests the organization of a control unit shown in 
Figure 21.10. This slightly revised version of Figure 21.4 emphasizes the focus of this 
section. The major modules in this diagram should by now be clear. The sequencing 
logic module contains the logic to perform the functions discussed in the preceding 
section. It generates the address of the next microinstruction, using as inputs the 
instruction register, ALU flags, the control address register (for incrementing), and 
the control buffer register. The last may provide an actual address, control bits, or 
both. The module is driven by a clock that determines the timing of the microin-
struction cycle.

The control logic module generates control signals as a function of some of 
the bits in the microinstruction. It should be clear that the format and content of the 
microinstruction determines the complexity of the control logic module.

A Taxonomy of Microinstructions

Microinstructions can be classified in a variety of ways. Distinctions that are com-
monly made in the literature include the following:

 ■ Vertical/horizontal
 ■ Packed/unpacked
 ■ Hard/soft microprogramming
 ■ Direct/indirect encoding

All of these bear on the format of the microinstruction. None of these terms has 
been used in a consistent, precise way in the literature. However, an examination 
of these pairs of qualities serves to illuminate microinstruction design alterna-
tives. In the following paragraphs, we first look at the key design issue underlying 
all of these pairs of characteristics, and then we look at the concepts suggested 
by each pair.

In the original proposal by Wilkes [WILK51], each bit of a microinstruc-
tion either directly produced a control signal or directly produced one bit of the 
next address. We have seen, in the preceding section, that more complex address 
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sequencing schemes, using fewer microinstruction bits, are possible. These schemes 
require a more complex sequencing logic module. A similar sort of trade-off exists 
for the portion of the microinstruction concerned with control signals. By encoding 
control information, and subsequently decoding it to produce control signals, con-
trol word bits can be saved.

How can this encoding be done? To answer that, consider that there are a 
total of K different internal and external control signals to be driven by the con-
trol unit. In Wilkes’s scheme, K bits of the microinstruction would be dedicated 
to this purpose. This allows all of the 2K possible combinations of control signals 
to be generated during any instruction cycle. But we can do better than this if we 
observe that not all of the possible combinations will be used. Examples include 
the following:

 ■ Two sources cannot be gated to the same destination (e.g., C2 and C8 in 
Fig ure 21.5).

 ■ A register cannot be both source and destination (e.g., C5 and C12 in 
Figure 21.5).

 ■ Only one pattern of control signals can be presented to the ALU at a time.
 ■ Only one pattern of control signals can be presented to the external control 

bus at a time.
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Figure 21.10 Control Unit Organization
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So, for a given processor, all possible allowable combinations of control signals 
could be listed, giving some number Q < 2K possibilities. These could be encoded 
with a minimum log2 Q bits, with (log2 Q) < K. This would be the tightest possible 
form of encoding that preserves all allowable combinations of control signals. In 
practice, this form of encoding is not used, for two reasons:

 ■ It is as difficult to program as a pure decoded (Wilkes) scheme. This point is 
discussed further presently.

 ■ It requires a complex and therefore slow control logic module.

Instead, some compromises are made. These are of two kinds:

 ■ More bits than are strictly necessary are used to encode the possible 
combinations.

 ■ Some combinations that are physically allowable are not possible to encode.

The latter kind of compromise has the effect of reducing the number of bits. The net 
result, however, is to use more than log2 Q bits.

In the next subsection, we will discuss specific encoding techniques. The 
remainder of this subsection deals with the effects of encoding and the various 
terms used to describe it.

Based on the preceding, we can see that the control signal portion of the 
microinstruction format falls on a spectrum. At one extreme, there is one bit for 
each control signal; at the other extreme, a highly encoded format is used. Table 21.4 
shows that other characteristics of a microprogrammed control unit also fall along a 
spectrum and that these spectra are, by and large, determined by the degree-of-en-
coding spectrum.

The second pair of items in the table is rather obvious. The pure Wilkes scheme 
will require the most bits. It should also be apparent that this extreme presents the 
most detailed view of the hardware. Every control signal is individually controllable 

Table 21.4 The Microinstruction Spectrum

Characteristics

Unencoded Highly encoded

Many bits Few bits

Detailed view of hardware Aggregated view of hardware

Difficult to program Easy to program

Concurrency fully exploited Concurrency not fully exploited

Little or no control logic Complex control logic

Fast execution Slow execution

Optimize performance Optimize programming

Terminology

Unpacked Packed

Horizontal Vertical

Hard Soft
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by the microprogrammer. Encoding is done in such a way as to aggregate functions 
or resources, so that the microprogrammer is viewing the processor at a higher, less 
detailed level. Furthermore, the encoding is designed to ease the microprogram-
ming burden. Again, it should be clear that the task of understanding and orches-
trating the use of all the control signals is a difficult one. As was mentioned, one of 
the consequences of encoding, typically, is to prevent the use of certain otherwise 
allowable combinations.

The preceding paragraph discusses microinstruction design from the micro-
programmer’s point of view. But the degree of encoding also can be viewed from its 
hardware effects. With a pure unencoded format, little or no decode logic is needed; 
each bit generates a particular control signal. As more compact and more aggre-
gated encoding schemes are used, more complex decode logic is needed. This, in 
turn, may affect performance. More time is needed to propagate signals through 
the gates of the more complex control logic module. Thus, the execution of encoded 
microinstructions takes longer than the execution of unencoded ones.

Therefore, all of the characteristics listed in Table 21.4 fall along a spectrum 
of design strategies. In general, a design that falls toward the left end of the spec-
trum is intended to optimize the performance of the control unit. Designs toward 
the right end are more concerned with optimizing the process of microprogramming. 
Indeed, microinstruction sets near the right end of the spectrum look very much like 
machine instruction sets. A good example of this is the LSI-11 design, described later 
in this section. Typically, when the objective is simply to implement a control unit, 
the design will be near the left end of the spectrum. The IBM 3033 design, discussed 
presently, is in this category. As we shall discuss later, some systems permit a variety 
of users to construct different microprograms using the same microinstruction facil-
ity. In the latter cases, the design is likely to fall near the right end of the spectrum.

We can now deal with some of the terminology introduced earlier. Table 21.4 indi-
cates how three of these pairs of terms relate to the microinstruction spectrum. In essence, 
all of these pairs describe the same thing but emphasize different design characteristics.

The degree of packing relates to the degree of identification between a given 
control task and specific microinstruction bits. As the bits become more packed, a 
given number of bits contains more information. Thus, packing connotes encoding. 
The terms horizontal and vertical relate to the relative width of microinstructions. 
[SIEW82] suggests as a rule of thumb that vertical microinstructions have lengths in 
the range of 16 to 40 bits and that horizontal microinstructions have lengths in the 
range of 40 to 100 bits. The terms hard and soft microprogramming are used to sug-
gest the degree of closeness to the underlying control signals and hardware layout. 
Hard microprograms are generally fixed and committed to read-only memory. Soft 
microprograms are more changeable and are suggestive of user microprogramming.

The other pair of terms mentioned at the beginning of this subsection refers to 
direct versus indirect encoding, a subject to which we now turn.

Microinstruction Encoding

In practice, microprogrammed control units are not designed using a pure unen-
coded or horizontal microinstruction format. At least some degree of encoding is 
used to reduce control memory width and to simplify the task of microprogramming.
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The basic technique for encoding is illustrated in Figure 21.11a. The microin-
struction is organized as a set of fields. Each field contains a code, which, upon 
decoding, activates one or more control signals.

Let us consider the implications of this layout. When the microinstruction 
is executed, every field is decoded and generates control signals. Thus, with N 
fields, N simultaneous actions are specified. Each action results in the activation 
of one or more control signals. Generally, but not always, we will want to design 
the format so that each control signal is activated by no more than one field. 
Clearly, however, it must be possible for each control signal to be activated by at 
least one field.

Now consider the individual field. A field consisting of L bits can contain one 
of 2L codes, each of which can be encoded to a different control signal pattern. 
Because only one code can appear in a field at a time, the codes are mutually exclu-
sive, and, therefore, the actions they cause are mutually exclusive.

Control signals

(a) Direct encoding

(b) Indirect encoding

Decode
logic

Decode
logic

Decode
logic

Decode
logic

Decode
logic

Control signals

Decode
logic

Field Field Field

Field Field Field

Decode
logic

Figure 21.11 Microinstruction Encoding
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The design of an encoded microinstruction format can now be stated in simple 
terms:

 ■ Organize the format into independent fields. That is, each field depicts a set of 
actions (pattern of control signals) such that actions from different fields can 
occur simultaneously.

 ■ Define each field such that the alternative actions that can be specified by the 
field are mutually exclusive. That is, only one of the actions specified for a 
given field could occur at a time.

Two approaches can be taken for organizing the encoded microinstruction 
into fields: functional and resource. The functional encoding method identifies func-
tions within the machine and designates fields by function type. For example, if var-
ious sources can be used for transferring data to the accumulator, one field can be 
designated for this purpose, with each code specifying a different source. Resource 
encoding views the machine as consisting of a set of independent resources and 
devotes one field to each (e.g., I/O, memory, ALU).

Another aspect of encoding is whether it is direct or indirect (Figure 21.11b). 
With indirect encoding, one field is used to determine the interpretation of another 
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field. For example, consider an ALU that is capable of performing eight different 
arithmetic operations and eight different shift operations. A 1-bit field could be 
used to indicate whether a shift or arithmetic operation is to be used; a 3-bit field 
would indicate the operation. This technique generally implies two levels of decod-
ing, increasing propagation delays.

Figure 21.12 is a simple example of these concepts. Assume a processor with a 
single accumulator and several internal registers, such as a program counter and a tem-
porary register for ALU input. Figure 21.12a shows a highly vertical format. The first 
3 bits indicate the type of operation, the next 3 encode the operation, and the final 
2 select an internal register. Figure 21.12b is a more horizontal approach, although 
encoding is still used. In this case, different functions appear in different fields.

LSI-11 Microinstruction Execution

The LSI-11 [SEBE76] is a good example of a vertical microinstruction approach. We 
look first at the organization of the control unit, then at the microinstruction format.

lsi-11 control unit organization The LSI-11 is the first member of the 
PDP-11 family that was offered as a single-board processor. The board contains 
three LSI chips, an internal bus known as the microinstruction bus (MIB), and some 
additional interfacing logic.

Figure 21.13 depicts, in simplified form, the organization of the LSI-11 pro-
cessor. The three chips are the data, control, and control store chips. The data chip 
contains an 8-bit ALU, twenty-six 8-bit registers, and storage for several condition 
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Figure 21.13 Simplified Block Diagram of the LSI-11 Processor
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codes. Sixteen of the registers are used to implement the eight 16-bit general- 
purpose registers of the PDP-11. Others include a program status word, memory 
address register (MAR), and memory buffer register. Because the ALU deals with 
only 8 bits at a time, two passes through the ALU are required to implement a 
16-bit PDP-11 arithmetic operation. This is controlled by the microprogram.

The control store chip or chips contain the 22-bit-wide control memory. The 
control chip contains the logic for sequencing and executing microinstructions. It 
contains the control address register, the control data register, and a copy of the 
machine instruction register.

The MIB ties all the components together. During microinstruction fetch, the 
control chip generates an 11-bit address onto the MIB. Control store is accessed, 
producing a 22-bit microinstruction, which is placed on the MIB. The low-order 
16 bits go to the data chip, while the low-order 18 bits go to the control chip. The 
high-order 4 bits control special processor board functions.

Figure 21.14 provides a still simplified but more detailed look at the LSI-11 
control unit: the figure ignores individual chip boundaries. The address sequencing 
scheme described in Section 21.2 is implemented in two modules. Overall sequence 
control is provided by the microprogram sequence control module, which is capable 

Control data register

Control
store

Translation
array

Microprogram
sequence
control

Control address register

Return register

Instruction register
INT

Figure 21.14 Organization of the LSI-11 Control Unit
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of incrementing the microinstruction address register and performing unconditional 
branches. The other forms of address calculation are carried out by a separate trans-
lation array. This is a combinatorial circuit that generates an address based on the 
microinstruction, the machine instruction, the microinstruction program counter, 
and an interrupt register.

The translation array comes into play on the following occasions:

 ■ The opcode is used to determine the start of a microroutine.
 ■ At appropriate times, address mode bits of the microinstruction are tested to 

perform appropriate addressing.
 ■ Interrupt conditions are periodically tested.
 ■ Conditional branch microinstructions are evaluated.

lsi-11 microinstruction format The LSI-11 uses an extremely vertical 
microinstruction format, which is only 22 bits wide. The microinstruction set strongly 
resembles the PDP-11 machine instruction set that it implements. This design was 
intended to optimize the performance of the control unit within the constraint of a 
vertical, easily programmed design. Table 21.5 lists some of the LSI-11 microinstructions.

Figure 21.15 shows the 22-bit LSI-11 microinstruction format. The high-order 
4 bits control special functions on the processor board. The translate bit enables the 
translation array to check for pending interrupts. The load return register bit is used 
at the end of a microroutine to cause the next microinstruction address to be loaded 
from the return register.

The remaining 16 bits are used for highly encoded micro-operations. The for-
mat is much like a machine instruction, with a variable-length opcode and one or 
more operands.

Table 21.5 Some LSI-11 Microinstructions

Arithmetic Operations General Operations
Add word (byte, literal)
Test word (byte, literal)
Increment word (byte) by 1
Increment word (byte) by 2
Negate word (byte)
Conditionally increment (decrement) byte
Conditionally add word (byte)
Add word (byte) with carry
Conditionally add digits
Subtract word (byte)
Compare word (byte, literal)
Subtract word (byte) with carry
Decrement word (byte) by 1

Logical Operations
AND word (byte, literal)
Test word (byte)
OR word (byte)
Exclusive-OR word (byte)
Bit clear word (byte)
Shift word (byte) right (left) with (without) carry
Complement word (byte)

MOV word (byte)
Jump
Return
Conditional jump
Set (reset) flags
Load G low
Conditionally MOV word (byte)

Input/Output Operations
Input word (byte)
Input status word (byte)
Read
Write
Read (write) and increment word (byte) by 1
Read (write) and increment word (byte) by 2
Read (write) acknowledge
Output word (byte, status)
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P AA AB AC AD AE AF AG AH AJ AK AL

A, B, C, D registers

0 35

Arithmetic Shift

P BA BCBB BD BE BF BH

Next address

36 71

Storage address

Storage address

P BH CA CB CC CD CE CF CG CH

Shift control Local storage
Miscellaneous controls

72 107

P DA DB DC DD DE

Testing and condition code setting

108 125

Figure 21.16 IBM 3033 Microinstruction Format

(a) Format of the full LSI-11 microinstruction

(b) Format of the encoded part of the LSI-11 microinstruction
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IBM 3033 Microinstruction Execution

The standard IBM 3033 control memory consists of 4K words. The first half of these 
(0000–07FF) contain 108-bit microinstructions, while the remainder (0800–0FFF) 
are used to store 126-bit microinstructions. The format is depicted in Figure 21.16. 
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Table 21.6 IBM 3033 Microinstruction Control Fields

ALU Control Fields

AA(3) Load A register from one of data registers

AB(3) Load B register from one of data registers

AC(3) Load C register from one of data registers

AD(3) Load D register from one of data registers

AE(4) Route specified A bits to ALU

AF(4) Route specified B bits to ALU

AG(5) Specifies ALU arithmetic operation on A input

AH(4) Specifies ALU arithmetic operation on B input

AJ(1) Specifies D or B input to ALU on B side

AK(4) Route arithmetic output to shifter

CA(3) Load F register

CB(1) Activate shifter

CC(5) Specifies logical and carry functions

CE(7) Specifies shift amount

Sequencing and Branching Fields

AL(1) End operation and perform branch

BA(8) Set high-order bits (00–07) of control address register

BB(4) Specifies condition for setting bit 8 of control address register

BC(4) Specifies condition for setting bit 9 of control address register

BD(4) Specifies condition for setting bit 10 of control address register

BE(4) Specifies condition for setting bit 11 of control address register

BF(7) Specifies condition for setting bit 12 of control address register

Although this is a rather horizontal format, encoding is still extensively used. The 
key fields of that format are summarized in Table 21.6.

The ALU operates on inputs from four dedicated, non-user-visible registers, 
A, B, C, and D. The microinstruction format contains fields for loading these reg-
isters from user-visible registers, performing an ALU function, and specifying a 
user-visible register for storing the result. There are also fields for loading and stor-
ing data between registers and memory.

The sequencing mechanism for the IBM 3033 was discussed in Section 21.2.

 21.4 TI 8800

The Texas Instruments 8800 Software Development Board (SDB) is a micropro-
grammable 32-bit computer card. The system has a writable control store, imple-
mented in RAM rather than ROM. Such a system does not achieve the speed or 
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density of a microprogrammed system with a ROM control store. However, it is 
useful for developing prototypes and for educational purposes.

The 8800 SDB consists of the following components (Figure 21.17):

 ■ Microcode memory
 ■ Microsequencer
 ■ 32-bit ALU
 ■ Floating-point and integer processor
 ■ Local data memory

Two buses link the internal components of the system. The DA bus provides 
data from the microinstruction data field to the ALU, the floating-point processor, 
or the microsequencer. In the latter case, the data consists of an address to be used 
for a branch instruction. The bus can also be used for the ALU or microsequencer to 
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Figure 21.17 TI 8800 Block Diagram
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provide data to other components. The system Y bus connects the ALU and float-
ing-point processor to local memory and to external modules via the PC interface.

The board fits into an IBM PC-compatible host computer. The host computer 
provides a suitable platform for microcode assembly and debug.

Microinstruction Format

The microinstruction format for the 8800 consists of 128 bits broken down into 30 
functional fields, as indicated in Table 21.7. Each field consists of one or more bits, 
and the fields are grouped into five major categories:

 ■ Control of board
 ■ 8847 floating-point and integer processor chip
 ■ 8832 registered ALU
 ■ 8818 microsequencer
 ■ WCS data field

As indicated in Figure 21.17, the 32 bits of the WCS data field are fed into the DA 
bus to be provided as data to the ALU, floating-point processor, or microsequencer. 
The other 96 bits (fields 1–27) of the microinstruction are control signals that are 
fed directly to the appropriate module. For simplicity, these other connections are 
not shown in Figure 21.17.

The first six fields deal with operations that pertain to the control of the board, 
rather than controlling an individual component. Control operations include the 
following:

 ■ Selecting condition codes for sequencer control. The first bit of field 1 indi-
cates whether the condition flag is to be set to 1 or 0, and the remaining 4 bits 
indicate which flag is to be set.

 ■ Sending an I/O request to the PC/AT.
 ■ Enabling local data memory read/write operations.
 ■ Determining the unit driving the system Y bus. One of the four devices 

attached to the bus (Figure 21.17) is selected.

The last 32 bits are the data field, which contain information specific to a par-
ticular microinstruction.

The remaining fields of the microinstruction are best discussed in the con-
text of the device that they control. In the remainder of this section, we discuss the 
microsequencer and the registered ALU. The floating-point unit introduces no new 
concepts and is skipped.

Microsequencer

The principal function of the 8818 microsequencer is to generate the next microin-
struction address for the microprogram. This 15-bit address is provided to the micro-
code memory (Figure 21.17).

The next address can be selected from one of five sources:

1. The microprogram counter (MPC) register, used for repeat (reuse same 
address) and continue (increment address by 1) instructions.
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Table 21.7 TI 8800 Microinstruction Format

Field Number Number of Bits Description

Control of Board

1 5 Select condition code input

2 1 Enable/disable external I/O request signal

3 2 Enable/disable local data memory read/write operations

4 1 Load status/do no load status

5 2 Determine unit driving Y bus

6 2 Determine unit driving DA bus

8847 Floating-Point and Integer Processing Chip

7 1 C register control: clock, do not clock

8 1 Select most significant or least significant bits for Y bus

9 1 C register data source: ALU, multiplexer

10 4 Select IEEE or FAST mode for ALU and MUL

11 8 Select sources for data operands: RA registers, RB regis-
ters, P register, 5 register, C register

12 1 RB register control: clock, do not clock

13 1 RA register control: clock, do not clock

14 2 Data source confirmation

15 2 Enable/disable pipeline registers

16 11 8847 ALU function

8832 Registered ALU

17 2 Write enable/disable data output to selected register: 
most significant half, least significant half

18 2 Select register file data source: DA bus, DB bus, ALU Y 
MUX output, system Y bus

19 3 Shift instruction modifier

20 1 Carry in: force, do not force

21 2 Set ALU configuration mode: 32, 16, or 8 bits

22 2 Select input to 5 multiplexer: register file, DB bus, MQ 
register

23 1 Select input to R multiplexer: register file, DA bus

24 6 Select register in file C for write

25 6 Select register in file B for read

26 6 Select register in file A for write

27 8 ALU function

8818 Microsequencer

28 12 Control input signals to the 8818

WCS Data Field

29 16 Most significant bits of writable control store data field

30 16 Least significant bits of writable control store data field
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2. The stack, which supports microprogram subroutine calls as well as iterative 
loops and returns from interrupts.

3. The DRA and DRB ports, which provide two additional paths from exter-
nal hardware by which microprogram addresses can be generated. These 
two ports are connected to the most significant and least significant 16 bits of 
the DA bus, respectively. This allows the microsequencer to obtain the next 
instruction address from the WCS data field of the current microinstruction or 
from a result calculated by the ALU.

4. Register counters RCA and RCB, which can be used for additional address 
storage.

5. An external input onto the bidirectional Y port to support external interrupts.

Figure 21.18 is a logical block diagram of the 8818. The device consists of the 
following principal functional groups:

 ■ A 16-bit microprogram counter (MPC) consisting of a register and an incrementer.
 ■ Two register counters, RCA and RCB, for counting loops and iterations, stor-

ing branch addresses, or driving external devices.
 ■ A 65-word by 16-bit stack, which allows microprogram subroutine calls and 

interrupts.
 ■ An interrupt return register and Y output enable for interrupt processing at 

the microinstruction level.
 ■ A Y output multiplexer by which the next address can be selected from MPC, 

RCA, RCB, external buses DRA and DRB, or the stack.

registers/counters The registers RCA and RCB may be loaded from 
the DA bus, either from the current microinstruction or from the output of the 
ALU. The values may be used as counters to control the flow of execution and 
may be automatically decremented when accessed. The values may also be used as 
microinstruction addresses to be supplied to the Y output multiplexer. Independent 
control of both registers during a single microinstruction cycle is supported with the 
exception of simultaneous decrement of both registers.

stack The stack allows multiple levels of nested calls or interrupts, and it can be 
used to support branching and looping. Keep in mind that these operations refer to 
the control unit, not the overall processor, and that the addresses involved are those 
of microinstructions in the control memory.

Six stack operations are possible:

1. Clear, which sets the stack pointer to zero, emptying the stack;

2. Pop, which decrements the stack pointer;

3. Push, which puts the contents of the MPC, interrupt return register, or DRA 
bus onto the stack and increments the stack pointer;

4. Read, which makes the address indicated by the read pointer available at the 
Y output multiplexer;
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5. Hold, which causes the address of the stack pointer to remain unchanged;

6. Load stack pointer, which inputs the seven least significant bits of DRA to the 
stack pointer.

control of microsequencer The microsequencer is controlled primarily 
by the 12-bit field of the current microinstruction, field 28 (Table 21.7). This field 
consists of the following subfields:

 ■ OSEL (1 bit): Output select. Determines which value will be placed on the out-
put of the multiplexer that feeds into the DRA bus (upper-left-hand corner of 
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Figure 21.18 TI 8818 Microsequencer



21.4 / Ti 8800  761

Figure 21.18). The output is selected to come from either the stack or from reg-
ister RCA. DRA then serves as input to either the Y output multiplexer or to 
register RCA.

 ■ SELDR (1 bit): Select DR bus. If set to 1, this bit selects the external DA bus 
as input to the DRA/DRB buses. If set to 0, selects the output of the DRA 
multiplexer to the DRA bus (controlled by OSEL) and the contents of RCB 
to the DRB bus.

 ■ ZEROIN (1 bit): Used to indicate a conditional branch. The behavior of the 
microsequencer will then depend on the condition code selected in field 1 
(Table 21.7).

 ■ RC2–RC0 (3 bits): Register controls. These bits determine the change in the 
contents of registers RCA and RCB. Each register can either remain the same, 
decrement, or load from the DRA/DRB buses.

 ■ S2–S0 (3 bits): Stack controls. These bits determine which stack operation is 
to be performed.

 ■ MUX2–MUX0: Output controls. These bits, together with the condition code 
if used, control the Y output multiplexer and therefore the next microinstruc-
tion address. The multiplexer can select its output from the stack, DRA, DRB, 
or MPC.

These bits can be set individually by the programmer. However, this is typically 
not done. Rather, the programmer uses mnemonics that equate to the bit patterns 
that would normally be required. Table 21.8 lists the 15 mnemonics for field 28. A 
microcode assembler converts these into the appropriate bit patterns.

Table 21.8 TI 8818 Microsequencer Microinstruction Bits (Field 28)

Mnemonic Value Description

RST8818 000000000110 Reset Instruction

BRA88181 011000111000 Branch to DRA Instruction

BRA88180 010000111110 Branch to DRA Instruction

INC88181 000000111110 Continue Instruction

INC88180 001000001000 Continue Instruction

CAL88181 010000110000 Jump to Subroutine at Address Specified by DRA

CAL88180 010000101110 Jump to Subroutine at Address Specified by DRA

RET8818 000000011010 Return from Subroutine

PUSH8818 000000110111 Push Interrupt Return Address onto Stack

POP8818 100000010000 Return from Interrupt

LOADDRA 000010111110 Load DRA Counter from DA Bus

LOADDRB 000110111110 Load DRB Counter from DA Bus

LOADDRAB 000110111100 Load DRA/DRB

DECRDRA 010001111100 Decrement DRA Counter and Branch If Not Zero

DECRDRB 010101111100 Decrement DRB Counter and Branch If Not Zero
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As an example, the instruction INC88181 is used to cause the next microin-
struction in sequence to be selected, if the currently selected condition code is 1. 
From Table 21.8, we have

INC88181 = 000000111110

which decodes directly into

 ■ OSEL = 0: Selects RCA as output from DRA output MUX; in this case the 
selection is irrelevant.

 ■ SELDR = 0: As defined previously; again, this is irrelevant for this instruction.
 ■ ZEROIN = 0: Combined with the value for MUX, indicates no branch 

should be taken.
 ■ R = 000: Retain current value of RA and RC.
 ■ S = 111: Retain current state of stack.
 ■ MUX = 110: Choose MPC when condition code = 1, DRA when condition 

code = 0.

Registered ALU

The 8832 is a 32-bit ALU with 64 registers that can be configured to operate as four 
8-bit ALUs, two 16-bit ALUs, or a single 32-bit ALU.

The 8832 is controlled by the 39 bits that make up fields 17 through 27 of 
the microinstruction (Table 21.7); these are supplied to the ALU as control signals. 
In addition, as indicated in Figure 21.17, the 8832 has external connections to the 
32-bit DA bus and the 32-bit system Y bus. Inputs from the DA can be provided 
simultaneously as input data to the 64-word register file and to the ALU logic mod-
ule. Input from the system Y bus is provided to the ALU logic module. Results of 
the ALU and shift operations are output to the DA bus or the system Y bus. Results 
can also be fed back to the internal register file.

Three 6-bit address ports allow a two-operand fetch and an operand write to 
be performed within the register file simultaneously. An MQ shifter and MQ regis-
ter can also be configured to function independently to implement double-precision 
8-bit, 16-bit, and 32-bit shift operations.

Fields 17 through 26 of each microinstruction control the way in which data 
flows within the 8832 and between the 8832 and the external environment. The 
fields are as follows:

17. Write Enable. These two bits specify write 32 bits, 16 most significant bits, 16 
least significant bits, or do not write into register file. The destination register 
is defined by field 24.

18. Select Register File Data Source. If a write is to occur to the register file, these 
two bits specify the source: DA bus, DB bus, ALU output, or system Y bus.

19. Shift Instruction Modifier. Specifies options concerning supplying end fill bits 
and reading bits that are shifted during shift instructions.

20. Carry In. This bit indicates whether a bit is carried into the ALU for this 
operation.
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21. ALU Configuration Mode. The 8832 can be configured to operate as a single 
32-bit ALU, two 16-bit ALUs, or four 8-bit ALUs.

22. S Input. The ALU logic module inputs are provided by two internal multi-
plexers referred to as the S and R multiplexers. This field selects the input to 
be provided by the S multiplexer: register file, DB bus, or MQ register. The 
source register is defined by field 25.

23. R Input. Selects input to be provided by the R multiplexer: register file or DA bus.

24. Destination Register. Address of register in register file to be used for the 
destination operand.

25. Source Register. Address of register in register file to be used for the source 
operand, provided by the S multiplexer.

26. Source Register. Address of register in register file to be used for the source 
operand, provided by the R multiplexer.

Finally, field 27 is an 8-bit opcode that specifies the arithmetic or logical func-
tion to be performed by the ALU. Table 21.9 lists the different operations that can 
be performed.

As an example of the coding used to specify fields 17 through 27, consider the 
instruction to add the contents of register 1 to register 2 and place the result in regis-
ter 3. The symbolic instruction is
CONT11 [17], WELH, SELRYFYMX, [24], R3, R2, R1, PASS + ADD

The assembler will translate this into the appropriate bit pattern. The individual 
components of the instruction can be described as follows:

 ■ CONT11 is the basic NOP instruction.
 ■ Field [17] is changed to WELH (write enable, low and high), so that a 32-bit 

register is written into.
 ■ Field [18] is changed to SELRFYMX to select the feedback from the ALU  

Y MUX output.
 ■ Field [24] is changed to designate register R3 for the destination register.
 ■ Field [25] is changed to designate register R2 for one of the source registers.
 ■ Field [26] is changed to designate register R1 for one of the source registers.
 ■ Field [27] is changed to specify an ALU operation of ADD. The ALU shifter 

instruction is PASS; therefore, the ALU output is not shifted by the shifter.

Several points can be made about the symbolic notation. It is not necessary to 
specify the field number for consecutive fields. That is,

CONT11 [17],WELH,[18],SELRFYMX

can be written as

CONT11 [17],WELH,SELRFYMX

because SELRFYMX is in field 18.

ALU instructions from Group 1 of Table 21.9 must always be used in con-
junction with Group 2. ALU instructions from Groups 3 to 5 must not be used with 
Group 2.
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Table 21.9 TI 8832 Registered ALU Instruction Field (Field 27)

Group 1 Function

ADD H#01 R + S + Cn

SUBR H#02 (NOT R) + S + Cn

SUBS H#03 R = (NOT S) + Cn

INSC H#04 S + Cn

INCNS H#05 (NOT S) + Cn

INCR H#06 R + Cn

INCNR H#07 (NOT R) + Cn

XOR H#09 R XOR S

AND H#0A R AND S

OR H#0B R OR S

NAND H#0C R NAND S

NOR H#0D R NOR S

ANDNR H#0E (NOT R) AND S

Group 2 Function

SRA H#00 Arithmetic right single precision shift

SRAD H#10 Arithmetic right double precision shift

SRL H#20 Logical right single precision shift

SRLD H#30 Logical right double precision shift

SLA H#40 Arithmetic left single precision shift

SLAD H#50 Arithmetic left double precision shift

SLC H#60 Circular left single precision shift

SLCD H#70 Circular left double precision shift

SRC H#80 Circular right single precision shift

SRCD H#90 Circular right double precision shift

MQSRA H#A0 Arithmetic right shift MQ register

MQSRL H#B0 Logical right shift MQ register

MQSLL H#C0 Logical left shift MQ register

MQSLC H#D0 Circular left shift MQ register

LOADMQ H#E0 Load MQ register

PASS H#F0 Pass ALU to Y (no shift operation)

Group 3 Function

SET1 H#08 Set bit 1

Set0 H#18 Set bit 0

TB1 H#28 Test bit 1

TB0 H#38 Test bit 0

ABS H#48 Absolute value

SMTC H#58 Sign magnitude/twos-complement
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Group 3 Function

ADDI H#68 Add immediate

SUBI H#78 Subtract immediate

BADD H#88 Byte add R to S

BSUBS H#98 Byte subtract S from R

BSUBR H#A8 Byte subtract R from S

BINCS H#B8 Byte increment S

BINCNS H#C8 Byte increment negative S

BXOR H#D8 Byte XOR R and S

BAND H#E8 Byte AND R and S

BOR H#F8 Byte OR R and S

Group 4 Function

CRC H#00 Cyclic redundancy character accum.

SEL H#10 Select S or R

SNORM H#20 Single length normalize

DNORM H#30 Double length normalize

DIVRF H#40 Divide remainder fix

SDIVQF H#50 Signed divide quotient fix

SMULI H#60 Signed multiply iterate

SMULT H#70 Signed multiply terminate

SDIVIN H#80 Signed divide initialize

SDIVIS H#90 Signed divide start

SDIVI H#A0 Signed divide iterate

UDIVIS H#B0 Unsigned divide start

UDIVI H#C0 Unsigned divide iterate

UMULI H#D0 Unsigned multiply iterate

SDIVIT H#E0 Signed divide terminate

UDIVIT H#F0 Unsigned divide terminate

Group 5 Function

LOADFF H#0F Load divide/BCD flip-flops

CLR H#1F Clear

DUMPFF H#5F Output divide/BCD flip-flops

BCDBIN H#7F BCD to binary

EX3BC H#8F Excess (3 byte correction

EX3C H#9F Excess (3 word correction

SDIVO H#AF Signed divide overflow test

BINEX3 H#DF Binary to excess - 3

NOP32 H#FF No operation
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 21.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Review Questions

 21.1 What is the difference between a hardwired implementation and a microprogrammed 
implementation of a control unit?

 21.2 How is a horizontal microinstruction interpreted?
 21.3 What is the purpose of a control memory?
 21.4 What is a typical sequence in the execution of a horizontal microinstruction?
 21.5 What is the difference between horizontal and vertical microinstructions?
 21.6 What are the basic tasks performed by a microprogrammed control unit?
 21.7 What is the difference between packed and unpacked microinstructions?
 21.8 What is the difference between hard and soft microprogramming?
 21.9 What is the difference between functional and resource encoding?
 21.10 List some common applications of microprogramming.

Problems

 21.1 Describe the implementation of the multiply instruction in the hypothetical machine 
designed by Wilkes. Use narrative and a flowchart.

 21.2 Assume a microinstruction set that includes a microinstruction with the following 
symbolic form:

IF (AC0 = 1) THEN CAR d (C0 - 6) ELSE CAR d (CAR) + 1

where AC0 is the sign bit of the accumulator and C0 - 6 are the first seven bits of the 
microinstruction. Using this microinstruction, write a microprogram that implements 
a Branch Register Minus (BRM) machine instruction, which branches if the AC is 
negative. Assume that bits C1 through Cn of the microinstruction specify a parallel set 
of micro-operations. Express the program symbolically.

 21.3 A simple processor has four major phases to its instruction cycle: fetch, indirect, 
execute, and interrupt. Two 1-bit flags designate the current phase in a hardwired 
implementation.
a. Why are these flags needed?
b. Why are they not needed in a microprogrammed control unit?

 21.4 Consider the control unit of Figure 21.7. Assume that the control memory is 24 bits 
wide. The control portion of the microinstruction format is divided into two fields. 
A micro-operation field of 13 bits specifies the micro-operations to be performed. 
An address selection field specifies a condition, based on the flags, that will cause a 
microinstruction branch. There are eight flags.

control memory
control word
firmware
hard microprogramming
horizontal microinstruction

microinstruction encoding
microinstruction execution
microinstruction sequencing
microinstructions
microprogram

microprogrammed control unit
microprogramming language
soft microprogramming
unpacked microinstruction
vertical microinstruction
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a. How many bits are in the address selection field?
b. How many bits are in the address field?
c. What is the size of the control memory?

 21.5 How can unconditional branching be done under the circumstances of the previous 
problem? How can branching be avoided; that is, describe a microinstruction that 
does not specify any branch, conditional or unconditional.

 21.6 We wish to provide 8 control words for each machine instruction routine. Machine 
instruction opcodes have 5 bits, and control memory has 1024 words. Suggest a map-
ping from the instruction register to the control address register.

 21.7 An encoded microinstruction format is to be used. Show how a 9-bit micro-operation 
field can be divided into subfields to specify 46 different actions.

 21.8 A processor has 16 registers, an ALU with 16 logic and 16 arithmetic functions, and a 
shifter with 8 operations, all connected by an internal processor bus. Design a micro-
instruction format to specify the various micro-operations for the processor.
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Appendix A

Projects for teaching comPuter 
organization and architecture

A.1 Interactive Simulations

A.2 Research Projects

A.3 Simulation Projects
SimpleScalar
SMPCache

A.4 Assembly Language Projects

A.5 Reading/Report Assignments

A.6 Writing Assignments

A.7 Test Bank
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Many instructors believe that research or implementation projects are crucial to 
the clear understanding of the concepts of computer organization and architecture. 
Without projects, it may be difficult for students to grasp some of the basic concepts 
and interactions among components. Projects reinforce the concepts introduced in 
the book, give students a greater appreciation of the inner workings of processors 
and computer systems, and can motivate students and give them confidence that 
they have mastered the material.

In this text, I have tried to present the concepts of computer organization and 
architecture as clearly as possible and have provided numerous homework problems 
to reinforce those concepts. Many instructors will wish to supplement this material 
with projects. This appendix provides some guidance in that regard and describes 
support material available in the Instructor’s Resource Center (IRC) for this book, 
accessible by instructors online from Pearson. The support material covers six types 
of projects and other student exercises:

■■ Interactive simulations
■■ Research projects
■■ Simulation projects
■■ Assembly language projects
■■ Reading/report assignments
■■ Writing assignments
■■ Test bank

 A.1 InterActIve SImulAtIonS

Interactive simulations provide a powerful tool for understanding the complex 
design features of a modern computer system. Today’s students want to be able to 
visualize the various complex computer systems mechanisms on their own computer 
screen. A total of 20 simulations are used to illustrate key functions and algorithms 
in computer organization and architecture design. Table A.1 lists the simulations by 
chapter. At the relevant point in the book, an icon indicates that a relevant interac-
tive simulation is available online for student use.

Because the simulations enable the user to set initial conditions, they can serve 
as the basis for student assignments. The IRC for this book includes a set of assign-
ments, one set for each of the interactive simulations. Each assignment includes 
several specific problems that can be assigned to students.

The interactive simulations were developed under the direction of Profes-
sor Israel Koren, at the University of Massachusetts Department of Electrical 
and Computer Engineering. Aswin Sreedhar of the University of Massachusetts 
developed the interactive simulation assignments. For access to the animations, 
click on the rotating globe at this book’s web site at http://williamstallings.com/
ComputerOrganization.

http://williamstallings.com/ComputerOrganization
http://williamstallings.com/ComputerOrganization
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Table A.1  Computer Organization and  Architecture—  Interactive Simulations by Chapter

Chapter 4—Cache Memory

Cache Simulator Emulates  small-  sized caches based on a  user-  input cache 
model and displays the cache contents at the end of the sim-
ulation cycle based on an input sequence which is entered by 
the user, or randomly generated if so selected.

Cache Time Analysis Demonstrates Average Memory Access Time analysis for the 
cache parameters you specify.

Multitask Cache Demonstrator Models cache on a system that supports multitasking.

Selective Victim Cache Simulator Compares three different cache policies.

Chapter 5—Internal Memory

Interleaved Memory Simulator Demonstrates the effect of interleaving memory.

Chapter 6—External Memory

RAID Determine storage efficiency and reliability.

Chapter 7—Input/Output

I/O System Design Tool Evaluates comparative cost and performance of different I/O 
systems.

Chapter 8—OS Support

Page Replacement Algorithms Compares LRU, FIFO, and Optimal.

More Page Replacement Algorithms Compares a number of policies.

Chapter 14—CPU Structure and Function

Reservation Table Analyzer Evaluates reservation tables. which are a way of representing 
the task flow pattern of a pipelined system.

Branch Prediction Demonstrates three different branch prediction schemes.

Branch Target Buffer Combined branch predictor/branch target buffer simulator.

Chapter 15—Reduced Instruction Set Computers

MIPS 5-Stage Pipeline Simulates the pipeline.

Loop Unrolling Simulates the loop unrolling software technique for exploiting 
 instruction-  level parallelism.

Chapter 16— Instruction-  Level Parallelism and Superscalar Processors

Pipeline with Static vs. Dynamic Scheduling A more complex simulation of the MIPS pipeline.

Reorder Buffer Simulator Simulates instruction reordering in a RISC pipeline.

Scoreboarding Technique for Dynamic 
Scheduling

Simulation of an instruction scheduling technique used in a 
number of processors.

Tomasulo’s Algorithm Simulation of another instruction scheduling technique.

Alternative Simulation of Tomasulo’s 
Algorithm

Another simulation of Tomasulo’s algorithm.

Chapter 17—Parallel Processing

Vector Processor Simulation Demonstrates execution of vector processing instructions.
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 A.2 reSeArch ProjectS

An effective way of reinforcing basic concepts from the course and for teaching stu-
dents research skills is to assign a research project. Such a project could involve a 
literature search as well as a Web search of vendor products, research lab activities, 
and standardization efforts. Projects could be assigned to teams or, for smaller proj-
ects, to individuals. In any case, it is best to require some sort of project proposal early 
in the term, giving the instructor time to evaluate the proposal for appropriate topic 
and appropriate level of effort. Student handouts for research projects should include

■■ A format for the proposal
■■ A format for the final report
■■ A schedule with intermediate and final deadlines
■■ A list of possible project topics

The students can select one of the listed topics or devise their own comparable 
project. The IRC includes a suggested format for the proposal and final report as 
well as a list of possible research topics.

 A.3 SImulAtIon ProjectS

An excellent way to obtain a grasp of the internal operation of a processor and to 
study and appreciate some of the design  trade-  offs and performance implications is 
by simulating key elements of the processor. Two tools that are useful for this pur-
pose are SimpleScalar and SMPCache.

Compared with actual hardware implementation, simulation provides two 
advantages for both research and educational use:

■■ With simulation, it is easy to modify various elements of an organization, to 
vary the performance characteristics of various components, and then to ana-
lyze the effects of such modifications.

■■ Simulation provides for detailed performance statistics collection, which can 
be used to understand performance  trade-  offs.

SimpleScalar

SimpleScalar [BURG97, MANJ01a, MANJ01b] is a set of tools that can be used to 
simulate real programs on a range of modern processors and systems. The tool set 
includes compiler, assembler, linker, and simulation and visualization tools. Simple-
Scalar provides processor simulators that range from an extremely fast functional 
simulator to a detailed  out-  of-  order issue, superscalar processor simulator that sup-
ports nonblocking caches and speculative execution. The instruction set architecture 
and organizational parameters may be modified to create a variety of experiments.

The IRC for this book includes a concise introduction to SimpleScalar for 
 students, with instructions on how to load and get started with SimpleScalar. The 
manual also includes some suggested project assignments.
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SimpleScalar is a portable software package the runs on most UNIX plat-
forms. The SimpleScalar software can be downloaded from the SimpleScalar Web 
site. It is available at no cost for noncommercial use.

SMPCache

SMPCache is a  trace-  driven simulator for the analysis and teaching of cache mem-
ory systems on symmetric multiprocessors [RODR01]. The simulation is based on 
a model built according to the architectural basic principles of these systems. The 
simulator has a full graphic and friendly interface. Some of the parameters that can 
be studied with the simulator are: program locality; influence of the number of pro-
cessors, cache coherence protocols, schemes for bus arbitration, mapping, replace-
ment policies, cache size (blocks in cache), number of cache sets (for set associative 
caches), and number of words by block (memory block size).

The IRC for this book includes a concise introduction to SMPCache for stu-
dents, with instructions on how to load and get started with SMPCache. The manual 
also includes some suggested project assignments.

SMPCache is a portable software package the runs on PC systems with Win-
dows. The SMPCache software can be downloaded from the SMPCache Web site. 
It is available at no cost for noncommercial use.

 A.4 ASSembly lAnguAge ProjectS

Assembly language programming is often used to teach students  low-  level hardware 
components and computer architecture basics. CodeBlue is a simplified assembly 
language program developed at the U.S. Air Force Academy. The goal of the work 
was to develop and teach assembly language concepts using a visual simulator that 
students can learn in a single class. The developers also wanted students to find the 
language motivational and fun to use. The CodeBlue language is much simpler than 
most simplified architecture instruction sets such as the SC123. Still it allows students 
to develop interesting assembly level programs that compete in tournaments, similar 
to the far more complex SPIMbot simulator. Most important, through CodeBlue 
programming, students learn fundamental computer architecture concepts such as 
instructions and data  co-  residence in memory, control structure implementation, 
and addressing modes.

To provide a basis for projects, the developers have built a visual develop-
ment environment that allows students to create a program, see its representation in 
memory, step through the program’s execution, and simulate a battle of competing 
programs in a visual memory environment.

Projects can be built around the concept of a Core War tournament. Core 
War is a programming game introduced to the public in the early 1980s, which was 
popular for a period of 15 years or so. Core War has four main components: a mem-
ory array of 8000 addresses, a simplified assembly language Redcode, an execu-
tive program called MARS (an acronym for Memory Array Redcode Simulator), 
and the set of contending battle programs. Two battle programs are entered into 
the memory array at randomly chosen positions; neither program knows where the 
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other one is. MARS executes the programs in a simple version of  time-  sharing. The 
two programs take turns: a single instruction of the first program is executed, then 
a single instruction of the second, and so on. What a battle program does during the 
execution cycles allotted to it is entirely up to the programmer. The aim is to destroy 
the other program by ruining its instructions. The CodeBlue environment substi-
tutes CodeBlue for Redcode and provides its own interactive execution interface.

The IRC includes the CodeBlue environment, a user’s manual for students, 
other supporting material, and suggested assignments.

 A.5 reAdIng/rePort ASSIgnmentS

Another excellent way to reinforce concepts from the course and to give students 
research experience is to assign papers from the literature to be read and analyzed. 
The IRC includes a suggested list of papers to be assigned, organized by chapter. 
The Premium Content Web site provides a copy of each of the papers. The IRC also 
includes a suggested assignment wording.

 A.6 WrItIng ASSIgnmentS

Writing assignments can have a powerful multiplier effect in the learning process 
in a technical discipline such as computer organization and architecture. Adherents 
of the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/) 
report substantial benefits of writing assignments in facilitating learning. Writing 
assignments lead to more detailed and complete thinking about a particular topic. In 
addition, writing assignments help to overcome the tendency of students to pursue 
a subject with a minimum of personal engagement, just learning facts and  problem- 
 solving techniques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by 
chapter. Instructors may ultimately find that this is the most important part of their 
approach to teaching the material. I would greatly appreciate any feedback on this 
area and any suggestions for additional writing assignments.

 A.7 teSt bAnk

A test bank for the book is available at the IRC site for this book. For each chapter, 
the test bank includes true/false, multiple choice, and  fill-  in-  the-  blank questions. The 
test bank is an effective way to assess student comprehension of the material.

http://wac.colostate.edu/
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Assembly lAnguAge And 
RelAted topics

B.1 Assembly Language
Assembly Language Elements
Type of Assembly Language Statements
Example: Greatest Common Divisor Program

B.2 Assemblers
Two-Pass Assembler
One-Pass Assembler
Example: Prime Number Program

B.3 Loading and Linking
Relocation
Loading
Linking

B.4 Key Terms, Review Questions, and Problems
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The topic of assembly language was briefly introduced in Chapter 13. This appendix 
provides more detail and also covers a number of related topics. There are a number 
of reasons why it is worthwhile to study assembly language programming (as com-
pared with programming in a higher-level language), including the following:

1. It clarifies the execution of instructions.

2. It shows how data are represented in memory.

3. It shows how a program interacts with the operating system, processor, and 
the I/O system.

4. It clarifies how a program accesses external devices.

5. Understanding assembly language programmers makes students better high-
level language (HLL) programmers, by giving them a better idea of the target 
language that the HLL must be translated into.

We begin this chapter with a study of the basic elements of an assembly lan-
guage, using the x86 architecture for our examples.1 Next, we look at the operation 
of the assembler. This is followed by a discussion of linkers and loaders.

Table B.1 defines some of the key terms used in this appendix.

 B.1 AssemBly lAnguAge

Assembly language is a programming language that is one step away from machine 
language. Typically, each assembly language instruction is translated into one 
machine instruction by the assembler. Assembly language is hardware dependent, 
with a different assembly language for each type of processor. In particular, assem-
bly language instructions can make reference to specific registers in the processor, 
include all of the opcodes of the processor, and reflect the bit length of the various 
registers of the processor and operands of the machine language. An assembly lan-
guage programmer must therefore understand the computer’s architecture.

Programmers rarely use assembly language for applications or even systems 
programs. HLLs provide an expressive power and conciseness that greatly eases the 
programmer’s tasks. The disadvantages of using an assembly language rather than 
an HLL include the following [FOG08]:

1. Development time. Writing code in assembly language takes much longer 
than writing in a high-level language.

2. Reliability and security. It is easy to make errors in assembly code. The assem-
bler is not checking if the calling conventions and register save conventions are 
obeyed. Nobody is checking for you if the number of PUSH and POP instruc-
tions is the same in all possible branches and paths. There are so many possibili-
ties for hidden errors in assembly code that it affects the reliability and security of 
the project unless you have a very systematic approach to testing and verifying.

1There are a number of assemblers for the x86 architecture. Our examples use NASM (Netwide Assem-
bler), an open source assembler. A copy of the NASM manual is at this book’s Premium Content site.
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3. Debugging and verifying. Assembly code is more difficult to debug and verify 
because there are more possibilities for errors than in high-level code.

4. Maintainability. Assembly code is more difficult to modify and maintain 
because the language allows unstructured spaghetti code and all kinds of 
tricks that are difficult for others to understand. Thorough documentation and 
a consistent programming style are needed.

5. Portability. Assembly code is platform-specific. Porting to a different platform 
is difficult.

Table B.1 Key Terms for this Appendix

Assembler

A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor, augmented by additional 
types of statements that facilitate program writing and that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or programming language) 
to machine language (object code). Some compilers output assembly language which is then con-
verted to machine language by a separate assembler. A compiler is distinguished from an assembler 
by the fact that each input statement does not, in general, correspond to a single machine instruc-
tion or fixed sequence of instructions. A compiler may support such features as automatic allocation 
of variables, arbitrary arithmetic expressions, control structures such as FOR and WHILE loops, 
variable scope, input/output operations, higher-order functions and portability of source code.

Executable Code

The machine code generated by a source code language processor such as an assembler or compiler. 
This is software in a form that can be run in the computer.

Instruction Set

The collection of all possible instructions for a particular computer; that is, the collection of 
machine language instructions that a particular processor understands.

Linker

A utility program that combines one or more files containing object code from separately compiled 
program modules into a single file containing loadable or executable code.

Loader

A program routine that copies an executable program into memory for execution.

Machine Language, or Machine Code

The binary representation of a computer program which is actually read and interpreted by the 
computer. A program in machine code consists of a sequence of machine instructions (possibly 
interspersed with data). Instructions are binary strings which may be either all the same size (e.g., 
one 32-bit word for many modern RISC microprocessors) or of different sizes.

Object Code

The machine language representation of programming source code. Object code is created by a 
compiler or assembler and is then turned into executable code by the linker.



B.1 / AssemBly lAnguAge  777

6. System code can use intrinsic functions instead of assembly. The best modern 
C++ compilers have intrinsic functions for accessing system control registers 
and other system instructions. Assembly code is no longer needed for device 
drivers and other system code when intrinsic functions are available.

7. Application code can use intrinsic functions or vector classes instead of assembly. 
The best modern C++ compilers have intrinsic functions for vector operations 
and other special instructions that previously required assembly programming.

8. Compilers have been improved a lot in recent years. The best compilers are 
now quite good. It takes a lot of expertise and experience to optimize better 
than the best C++ compiler.

Yet there are still some advantages to the occasional use of assembly lan-
guage, including the following [FOG08a]:

1. Debugging and verifying. Looking at compiler-generated assembly code or 
the disassembly window in a debugger is useful for finding errors and for 
checking how well a compiler optimizes a particular piece of code.

2. Making compilers. Understanding assembly coding techniques is necessary 
for making compilers, debuggers, and other development tools.

3. Embedded systems. Small embedded systems have fewer resources than PCs 
and mainframes. Assembly programming can be necessary for optimizing 
code for speed or size in small embedded systems.

4. Hardware drivers and system code. Accessing hardware, system control regis-
ters, and so on may sometimes be difficult or impossible with high level code.

5. Accessing instructions that are not accessible from high-level language. Cer-
tain assembly instructions have no high-level language equivalent.

6. Self-modifying code. Self-modifying code is generally not profitable because it 
interferes with efficient code caching. It may, however, be advantageous, for 
example, to include a small compiler in math programs where a user-defined 
function has to be calculated many times.

7. Optimizing code for size. Storage space and memory is so cheap nowadays 
that it is not worth the effort to use assembly language for reducing code size. 
However, cache size is still such a critical resource that it may be useful in 
some cases to optimize a critical piece of code for size in order to make it fit 
into the code cache.

8. Optimizing code for speed. Modern C++ compilers generally optimize code 
quite well in most cases. But there are still cases where compilers perform 
poorly and where dramatic increases in speed can be achieved by careful 
assembly programming.

9. Function libraries. The total benefit of optimizing code is higher in function 
libraries that are used by many programmers.

10. Making function libraries compatible with multiple compilers and operating 
systems. It is possible to make library functions with multiple entries that are 
compatible with different compilers and different operating systems. This 
requires assembly programming.
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The terms assembly language and machine language are sometimes, erro-
neously, used synonymously. Machine language consists of instructions directly 
executable by the processor. Each machine language instruction is a binary string 
containing an opcode, operand references, and perhaps other bits related to execu-
tion, such as flags. For convenience, instead of writing an instruction as a bit string, it 
can be written symbolically, with names for opcodes and registers. An assembly lan-
guage makes much greater use of symbolic names, including assigning names to spe-
cific main memory locations and specific instruction locations. Assembly language 
also includes statements that are not directly executable but serve as instructions 
to the assembler that produces machine code from an assembly language program.

Assembly Language Elements

A statement in a typical assembly language has the form shown in Figure B.1. It con-
sists of four elements: label, mnemonic, operand, and comment.

label If a label is present, the assembler defines the label as equivalent to the 
address into which the first byte of the object code generated for that instruction 
will be loaded. The programmer may subsequently use the label as an address or as 
data in another instruction’s address field. The assembler replaces the label with the 
assigned value when creating an object program. Labels are most frequently used in 
branch instructions.

As an example, here is a program fragment:

L2: SUB EAX, EDX ;subtract contents of register EDX from
  ;contents of EAX and store result in EAX
 JG L2 ;jump to L2 if result of subtraction is
  ;positive

The program will continue to loop back to location L2 until the result is zero 
or negative. Thus, when the jg instruction is executed, if the result is positive, the 
processor places the address equivalent to the label L2 in the program counter.

Reasons for using a label include the following;

1. A label makes a program location easier to find and remember.

2. The label can easily be moved to correct a program. The assembler will auto-
matically change the address in all instructions that use the label when the 
program is reassembled.

3. The programmer does not have to calculate relative or absolute memory 
addresses, but just uses labels as needed.

Label Mnemonic Operand(s) ;comment

Optional Opcode name
or

directive name
or

macro name

Zero or more Optional

Figure B.1 Assembly-Language Statement Structure
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mnemonic The mnemonic is the name of the operation or function of the 
assembly language statement. As discussed subsequently, a statement can 
correspond to a machine instruction, an assembler directive, or a macro. In the 
case of a machine instruction, a mnemonic is the symbolic name associated with a 
particular opcode.

Table 12.8 lists the mnemonic, or instruction name, of many of the x86 instruc-
tions. Appendix A of [CART06] lists the x86 instructions, together with the oper-
ands for each and the effect of the instruction on the condition codes. Appendix B 
of the NASM manual provides a more detailed description of each x86 instruction. 
Both documents are available at this book’s Premium Content site.

operand(s) An assembly language statement includes zero or more operands. Each 
operand identifies an immediate value, a register value, or a memory location. Typically, 
the assembly language provides conventions for distinguishing among the three types 
of operand references, as well as conventions for indicating addressing mode.

For the x86 architecture, an assembly language statement may refer to a regis-
ter operand by name. Figure B.2 illustrates the general-purpose x86 registers, with 
their symbolic name and their bit encoding. The assembler will translate the sym-
bolic name into the binary identifier for the register.

0

AXAH AL

BH BL

CH CL

DH DL

BX

CX

DX

EAX (000)

EBX (011)

ECX (001)

EDX (010)

16-bit 32-bit

ESI (110)

EDI (111)

EBP (101)

ESP (100)

31
General-purpose registers

Segment registers
0

CS

DS

SS

ES

FS

GS

15

Figure B.2 Intel x86 Program Execution Registers
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As discussed in Section 11.2, the x86 architecture has a rich set of addressing 
modes, each of which must be expressed symbolically in the assembly language. 
Here we cite a few of the common examples. For register addressing, the name of the 
register is used in the instruction. For example, MOV ECX, EBX copies the contents 
of register EBX into register ECX. Immediate addressing indicates that the value 
is encoded in the instruction. For example, MOV EAX, 100H copies the hexadeci-
mal value 100 into register EAX. The immediate value can be expressed as a binary 
number with the suffix B or a decimal number with no suffix. Thus, equivalent state-
ments to the preceding one are MOV EAX, 100000000B and MOV EAX, 256. Direct 
addressing refers to a memory location and is expressed as a displacement from the 
DS segment register. This is best explained by example. Assume that the 16-bit data 
segment register DS contains the value 1000H. Then the following sequence occurs:

MOV AX, 1234H

MOV [3518H], AX

First the 16-bit register AX is initialized to 1234H. Then, in line two, the contents 
of AX are moved to the logical address DS:3518H. This address is formed by shifting the 
contents of DS left 4 bits and adding 3518H to form the 32-bit logical address 13518H.

comment All assembly languages allow the placement of comments in the 
program. A comment can either occur at the right-hand end of an assembly 
statement or can occupy an entire text line. In either case, the comment begins with 
a special character that signals to the assembler that the rest of the line is a comment 
and is to be ignored by the assembler. Typically, assembly languages for the x86 
architecture use a semicolon (;) for the special character.

Type of Assembly Language Statements

Assembly language statements are one of four types: instruction, directive, macro 
definition, and comment. A comment statement is simply a statement that consists 
entirely of a comment. The remaining types are briefly described in this section.

instructions The bulk of the noncomment statements in an assembly language 
program are symbolic representations of machine language instructions. Almost 
invariably, there is a one-to-one relationship between an assembly language 
instruction and a machine instruction. The assembler resolves any symbolic 
references and translates the assembly language instruction into the binary string 
that comprises the machine instruction.

directives Directives, also called pseudo-instructions, are assembly language 
statements that are not directly translated into machine language instructions. 
Instead, directives are instruction to the assembler to perform specified actions 
doing the assembly process. Examples include the following:

 ■ Define constants
 ■ Designate areas of memory for data storage
 ■ Initialize areas of memory
 ■ Place tables or other fixed data in memory
 ■ Allow references to other programs
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Table B.2 lists some of the NASM directives. As an example, consider the 
following sequence of statements:

(b) Directives

Name Description Example

DB, DW, 
DD, DQ, 
DT

Initialize locations L6 DD 1A92H
;doubleword at L6 initialized to 1A92H

RESB, 
RESW, 
RESD, 
RESQ, 
REST

Reserve uninitialized 
locations

BUFFER RESB 64
;reserve 64 bytes starting at BUFFER

INCBIN Include binary file in 
output

INCBIN “file.dat” ; include this file

EQU Define a symbol to a 
given constant value

MSGLEN EQU 25
;the constant MSGLEN equals decimal 25

TIMES Repeat instruction 
multiple times

ZEROBUF TIMES 64 DB 0
;initialize 64-byte buffer to all zeros

Table B.2 Some NASM Assembly-Language Directives

(a) Letters for RESx and Dx Directives

Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

L2 DB “A” ;byte initialized to ASCII code for A (65)
 MOV AL, [L1] ;copy byte at L1 into AL
 MOV EAX, L1 ;store address of byte at L1 in EAX
 MOV [L1], AH ;copy contents of AH into byte at L1

If a plain label is used, it is interpreted as the address (or offset) of the data. If 
the label is placed inside square brackets, it is interpreted as the data at the address.

macro definitions A macro definition is similar to a subroutine in several ways. 
A subroutine is a section of a program that is written once, and can be used multiple 
times by calling the subroutine from any point in the program. When a program is 
compiled or assembled, the subroutine is loaded only once. A call to the subroutine 
transfers control to the subroutine and a return instruction in the subroutine returns 
control to the point of the call. Similarly, a macro definition is a section of code that 
the programmer writes once, and then can use many times. The main difference is 
that when the assembler encounters a macro call, it replaces the macro call with the 
macro itself. This process is called macro expansion. So, if a macro is defined in an 
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assembly language program and invoked 10 times, then 10 instances of the macro will 
appear in the assembled code. In essence, subroutines are handled by the hardware 
at run time, whereas macros are handled by the assembler at assembly time. Macros 
provide the same advantage as subroutines in terms of modular programming, but 
without the runtime overhead of a subroutine call and return. The tradeoff is that 
the macro approach uses more space in the object code.

In NASM and many other assemblers, a distinction is made between a sin-
gle-line macro and a multi-line macro. In NASM, single-line macros are defined 
using the %DEFINE directive. Here is an example in which multiple single-line 
macros are expanded. First, we define two macros:

%DEFINE B(X) = 2*X
%DEFINE A(X) = 1 + B(X)

At some point in the assembly language program, the following statement 
appears:

MOV AX, A(8)

The assembler expands this statement to:

MOV AX, 1+2*8

which assembles to a machine instruction to move the immediate value 17 to  
register AX.

Multiline macros are defined using the mnemonic %MACRO. Here is an 
example of a multiline macro definition:

%MACRO PROLOGUE 1
 PUSH EBP ;push contents of EBP onto stack
  ;pointed to by ESP and
  ;decrement contents of ESP by 4
 MOV EBP, ESP ;copy contents of ESP to EBP
 SUB ESP, %1 ;subtract first parameter value from ESP

The number 1 after the macro name in the %MACRO line defines the number of 
parameters the macro expects to receive. The use of %1 inside the macro definition 
refers to the first parameter to the macro call.

The macro call

MYFUNC: PROLOGUE 12

expands to the following lines of code:

 MYFUNC: PUSH EBP
 MOV EBP, ESP
 SUB ESP, 12

Example: Greatest Common Divisor Program

As an example of the use of assembly language, we look at a program to compute 
the greatest common divisor of two integers. We define the greatest common divisor 
of the integers a and b as follows:



B.2 / AssemBleRs  783

gcd(a, b) = max[k, such that  k  divides  a  and  k  divides  b]

where we say that k divides a if there is no remainder. Euclid’s algorithm for the 
greatest common divisor is based on the following theorem. For any nonnegative 
integers a and b,

gcd(a, b) = gcd(b, a  mod  b)

Here is a C language program that implements Euclid’s algorithm:

unsigned int gcd (unsigned int a, unsigned int b)

{
  if (a == 0 && b == 0)
      b = 1;
  else if (b == 0)
      b = a;
  else if (a != 0)
      while (a != b)
         if (a < b)
             b -= a;
         else
             a -= b;
  return b;

}

Figure B.3 shows two assembly language versions of the preceding program. 
The program on the left was done by a C compiler; the program on the right was 
programmed by hand. The latter program uses a number of programmer’s tricks to 
produce a tighter, more efficient implementation.

 B.2 AssemBlers

The assembler is a software utility that takes an assembly program as input and pro-
duces object code as output. The object code is a binary file. The assembler views this 
file as a block of memory starting at relative location 0.

There are two general approaches to assemblers: the two-pass assembler and 
the one-pass assembler.

Two-Pass Assembler

We look first at the two-pass assembler, which is more common and somewhat 
 easier  to understand. The assembler makes two passes through the source code 
 (Figure B.4):

first pass In the first pass, the assembler is only concerned with label definitions. 
The first pass is used to construct a symbol table that contains a list of all labels 
and their associated location counter (LC) values. The first byte of the object code 
will have the LC value of 0. The first pass examines each assembly statement. 
Although the assembler is not yet ready to translate instructions, it must examine 
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each instruction sufficiently to determine the length of the corresponding machine 
instruction and therefore how much to increment the LC. This may require not only 
examining the opcode but also looking at the operands and the addressing modes.

Directives such as DQ and REST (see Table B.2) cause the location counter 
to be adjusted according to how much storage is specified.

When assembler encounters a statement with a label, it places the label into 
the symbol table, along with the current LC value. The assembler continues until it 
has read all of the assembly language statements.

second pass The second pass reads the program again from the beginning. Each 
instruction is translated into the appropriate binary machine code. Translation 
includes the following operations:

1. Translate the mnemonic into a binary opcode.

2. Use the opcode to determine the format of the instruction and the location 
and length of the various fields in the instruction.

3. Translate each operand name into the appropriate register or memory code.

4. Translate each immediate value into a binary string.

5. Translate any references to labels into the appropriate LC value using the 
symbol table.

6. Set any other bits in the instruction that are needed, including addressing 
mode indicators, condition code bits, and so on.

 Figure B.3 Assembly Programs for Greatest Common Divisor 

(a) Compiled program (b) Written directly in assembly language

gcd: mov ebx,eax gcd: neg eax

 mov eax,edx  je L3

 test ebx,ebx L1: neg eax

 jne L1       xchg eax,edx

 test edx,edx L2: sub eax,edx

 jne L1       jg L2

 mov eax,1    jne L1

 ret             L3: add eax,edx

L1: test eax,eax  jne L4

 jne L2       inc eax

 mov eax,ebx L4: ret

 ret

L2: test ebx,ebx

 je L5

L3: cmp ebx,eax

 je L5

 jae L4

 sub eax,ebx

 jmp L3

L4: sub ebx,eax

 jmp L3

L5: ret 
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A simple example, using the ARM assembly language, is shown in Figure B.5. 
The ARM assembly language instruction ADDS r3, r3, #19 is translated in to the 
binary machine instruction 1110 0010 0101 0011 0011 0000 0001 0011.

zeroth pass Most assembly language includes the ability to define macros. When 
macros are present there is an additional pass that the assembler must make before 
the first pass. Typically, the assembly language requires that all macro definitions 
must appear at the beginning of the program.

Pass 1

Pass 2

Read line
from source

�le

eof?

Label
de�ned?

Determine
size of

instruction

LC = LC + size

Write source line
& other info on
intermediate �le

Close  source
�le and rewind

intermediate �le

Store name and
value in symbol table

1

Yes

Yes

No

No

1

Pass 2

Stopeof?

Assemble
instruction

Read next line from
intermediate �le

Write object instruction
into object �le

Write source & object
lines into listing �le

Yes

No

2

2

Figure B.4 Flowchart of Two-Pass Assembler
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The assembler begins this “zeroth pass” by reading all macro definitions. 
Once all the macros are recognized, the assembler goes through the source code 
and expands the macros with their associated parameters whenever a macro call is 
encountered. The macro processing pass generates a new version of the source code 
with all of the macro expansions in place and all of the macro definitions removed.

One-Pass Assembler

It is possible to implement an assembler that makes only a single pass through the 
source code (not counting the macro processing pass). The main difficulty in trying 
to assemble a program in one pass involves forward references to labels. Instruction 
operands may be symbols that have not yet been defined in the source program. 
Therefore, the assembler does not know what relative address to insert in the trans-
lated instruction.

In essence, the process of resolving forward references works as follows. 
When the assembler encounters an instruction operand that is a symbol that is not 
yet defined, the assembler does the following:

1. It leaves the instruction operand field empty (all zeros) in the assembled bin-
ary instruction.

2. The symbol used as an operand is entered in the symbol table. The table entry 
is flagged to indicate that the symbol is undefined.

3. The address of the operand field in the instruction that refers to the undefined 
symbol is added to a list of forward references associated with the symbol 
table entry.

When the symbol definition is encountered so that a LC value can be asso-
ciated with it, the assembler inserts the LC value in the appropriate entry in the 
symbol table. If there is a forward reference list associated with the symbol, then the 
assembler inserts the proper address into any instruction previously generated that 
is on the forward reference list.

Example: Prime Number Program

We now look at an example that includes directives. This example looks at a program 
that finds prime numbers. Recall that prime numbers are evenly divisible by only 1 
and themselves. There is no formula for doing this. The basic method this program 
uses is to find the factors of all odd numbers below a given limit. If no factor can be 

0 1 1 0 00 0 10 00 10 1 10 11 11 0 0 0 0 0 010 0 0 1 1ADDS r3, r3, #19

Data processing
immediate format

012345678910111214 131517 161820 1922 2124 2326 2528 2730 2931

Always
condition
code

Update
condition
�ags

Zero
rotation

instr
format S Rn Rd rotate immediatecond opcode

Figure B.5 Translating an ARM Assembly Instruction into a Binary Machine Instruction
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found for an odd number, it is prime. Figure B.6 shows the basic algorithm written in 
C. Figure B.7 shows the same algorithm written in NASM assembly language.

 B.3 loAding And linking

The first step in the creation of an active process is to load a program into main 
memory and create a process image (Figure B.8). Figure B.9 depicts a scenario typi-
cal for most systems. The application consists of a number of compiled or assembled 
modules in object-code form. These are linked to resolve any references between 
modules. At the same time, references to library routines are resolved. The library 
routines themselves may be incorporated into the program or referenced as shared 
code that must be supplied by the operating system at run time. In this section, we 
summarize the key features of linkers and loaders. First, we discuss the concept of 
relocation. Then, for clarity in the presentation, we describe the loading task when 
a single program module is involved; no linking is required. We can then look at the 
linking and loading functions as a whole.

Relocation

In a multiprogramming system, the available main memory is generally shared among 
a number of processes. Typically, it is not possible for the programmer to know in 
advance which other programs will be resident in main memory at the time of exe-
cution of his or her program. In addition, we would like to be able to swap active 
processes in and out of main memory to maximize processor utilization by providing 
a large pool of ready processes to execute. Once a program has been swapped out 
to disk, it would be quite limiting to declare that when it is next swapped back in, it 
must be placed in the same main memory region as before. Instead, we may need to 
relocate the process to a different area of memory.

unsigned guess; /* current guess for prime */

unsigned factor; /* possible factor of guess */

unsigned limit; /* find primes up to this value */

printf (“Find primes up to : ”);

scanf(“%u”, &limit);

printf (“2\n”); /* treat first two primes as */

printf (“3\n”); /* special case */

guess = 5; /* initial guess */

while (guess < = limit) { /* look for a factor of guess */

factor = 3;

while (factor * factor < guess && guess% factor != 0)

factor + = 2;

if (guess % factor != 0)

printf (“%d\n”, guess);

guess += 2; /* only look at odd numbers */

}

Figure B.6 C Program for Testing Primality
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%include “asm_io.inc”
segment .data
Message db “Find primes up to: ”, 0

segment .bss
Limit resd 1 ; find primes up to this limit
Guess resd 1 ; the current guess for prime

segment .text
global _asm_main

_asm_main:
enter 0,0 ; setup routine
pusha

mov eax, Message
call print_string
call read_int ; scanf(“%u”, & limit);
mov [Limit], eax
mov eax, 2 ; printf(“2\n”);
call print_int
call print_nl
mov eax, 3 ; printf(“3\n”);
call print_int
call print_nl

mov dword [Guess], 5 ; Guess = 5;
while_limit: ; while (Guess <= Limit)

mov eax, [Guess]
cmp eax, [Limit]
jnbe end_while_limit ; use jnbe since numbers are unsigned

mov ebx, 3 ; ebx is factor = 3;
while_factor:

mov eax,ebx
mul eax ; edx:eax = eax*eax
jo end_while_factor ; if answer won’t fit in eax alone
cmp eax, [Guess]
jnb end_while_factor ; if !(factor*factor < guess)
mov eax,[Guess]
mov edx,0
div ebx ; edx = edx:eax% ebx
cmp edx, 0
je end_while_factor ; if !(guess% factor != 0)

add ebx,2; factor += 2;
jmp while_factor

end_while_factor:
je end_if ; if !(guess% factor != 0)
mov eax,[Guess] ; printf(“%u\n”)
call print_int
call print_nl

end_if:
add dword [Guess], 2 ; guess += 2
jmp while_limit

end_while_limit:

popa
mov eax, 0 ; return back to C
leave
ret

Figure B.7 Assembly Program for Testing Primality
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Thus, we cannot know ahead of time where a program will be placed, and we 
must allow that the program may be moved about in main memory due to swap-
ping. These facts raise some technical concerns related to addressing, as illustrated 
in Figure B.10. The figure depicts a process image. For simplicity, let us assume 
that the process image occupies a contiguous region of main memory. Clearly, the 
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Figure B.9 A Linking and Loading Scenario
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operating system will need to know the location of process control information and 
of the execution stack, as well as the entry point to begin execution of the program 
for this process. Because the operating system is managing memory and is respon-
sible for bringing this process into main memory, these addresses are easy to come 
by. In addition, however, the processor must deal with memory references within 
the program. Branch instructions contain an address to reference the instruction 
to be executed next. Data reference instructions contain the address of the byte or 
word of data referenced. Somehow, the processor hardware and operating system 
software must be able to translate the memory references found in the code of the 
program into actual physical memory addresses, reflecting the current location of 
the program in main memory.

Loading

In Figure B.9, the loader places the load module in main memory starting at location 
x. In loading the program, the addressing requirement illustrated in Figure B.10 must 
be satisfied. In general, three approaches can be taken:

 ■ Absolute loading
 ■ Relocatable loading
 ■ Dynamic run-time loading

absolute loading An absolute loader requires that a given load module 
always be loaded into the same location in main memory. Thus, in the load module 
presented to the loader, all address references must be to specific, or absolute, main 
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Figure B.10 Addressing Requirements for a Process
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memory addresses. For example, if x in Figure B.9 is location 1024, then the first 
word in a load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a program 
can be done either by the programmer or at compile or assembly time (Table B.3a).  
There are several disadvantages to the former approach. First, every programmer 
would have to know the intended assignment strategy for placing modules into main 
memory. Second, if any modifications are made to the program that involve inser-
tions or deletions in the body of the module, then all of the addresses will have to be 
altered. Accordingly, it is preferable to allow memory references within programs 
to be expressed symbolically and then resolve those symbolic references at the time 
of compilation or assembly. This is illustrated in Figure B.11. Every reference to 
an instruction or item of data is initially represented by a symbol. In preparing the 
module for input to an absolute loader, the assembler or compiler will convert all 
of these references to specific addresses (in this example, for a module to be loaded 
starting at location 1024), as shown in Figure B.11b.

Table B.3 Address Binding

(a) Loader

Binding Time Function

Programming time All actual physical addresses are directly specified by the programmer in the 
program itself.

Compile or assembly time The program contains symbolic address references, and these are converted to 
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates 
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynami-
cally to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming time No external program or data references are allowed. The programmer 
must place into the program the source code for all subprograms that are 
referenced.

Compile or assembly time The assembler must fetch the source code of every subroutine that is refer-
enced and assemble them as a unit.

Load module creation All object modules have been assembled using relative addresses. These mod-
ules are linked together and all references are restated relative to the origin of 
the final load module.

Load time External references are not resolved until the load module is to be loaded into 
main memory. At that time, referenced dynamic link modules are appended 
to the load module, and the entire package is loaded into main or virtual 
memory.

Run time External references are not resolved until the external call is executed by the 
processor. At that time, the process is interrupted and the desired module is 
linked to the calling program.
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relocatable loading The disadvantage of binding memory references to 
specific addresses prior to loading is that the resulting load module can only be 
placed in one region of main memory. However, when many programs share main 
memory, it may not be desirable to decide ahead of time into which region of memory 
a particular module should be loaded. It is better to make that decision at load time. 
Thus we need a load module that can be located anywhere in main memory.

To satisfy this new requirement, the assembler or compiler produces not 
actual main memory addresses (absolute addresses) but addresses that are relative 
to some known point, such as the start of the program. This technique is illustrated 
in Figure B.11c. The start of the load module is assigned the relative address 0, and 
all other memory references within the module are expressed relative to the begin-
ning of the module.

With all memory references expressed in relative format, it becomes a simple 
task for the loader to place the module in the desired location. If the module is to be 
loaded beginning at location x, then the loader must simply add x to each memory 
reference as it loads the module into memory. To assist in this task, the load module 
must include information that tells the loader where the address references are and 
how they are to be interpreted (usually relative to the program origin, but also pos-
sibly relative to some other point in the program, such as the current location). This 
set of information is prepared by the compiler or assembler and is usually referred 
to as the relocation dictionary.

dynamic run-time loading Relocatable loaders are common and provide 
obvious benefits relative to absolute loaders. However, in a multiprogramming 
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environment, even one that does not depend on virtual memory, the relocatable 
loading scheme is inadequate. We have referred to the need to swap process images 
in and out of main memory to maximize the utilization of the processor. To maximize 
main memory utilization, we would like to be able to swap the process image back into 
different locations at different times. Thus, a program, once loaded, may be swapped 
out to disk and then swapped back in at a different location. This would be impossible 
if memory references had been bound to absolute addresses at the initial load time.

The alternative is to defer the calculation of an absolute address until it is 
actually needed at run time. For this purpose, the load module is loaded into main 
memory with all memory references in relative form (Figure B.11c). It is not until 
an instruction is actually executed that the absolute address is calculated. To assure 
that this function does not degrade performance, it must be done by special proces-
sor hardware rather than software. This hardware is described in Chapter 8.

Dynamic address calculation provides complete flexibility. A program can be 
loaded into any region of main memory. Subsequently, the execution of the pro-
gram can be interrupted and the program can be swapped out of main memory, to 
be later swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and pro-
duce a load module, consisting of an integrated set of program and data modules, to 
be passed to the loader. In each object module, there may be address references to 
locations in other modules. Each such reference can only be expressed symbolically 
in an unlinked object module. The linker creates a single load module that is the 
contiguous joining of all of the object modules. Each intramodule reference must be 
changed from a symbolic address to a reference to a location within the overall load 
module. For example, module A in Figure B.12a contains a procedure invocation 
of module B. When these modules are combined in the load module, this symbolic 
reference to module B is changed to a specific reference to the location of the entry 
point of B within the load module.

linkage editor The nature of this address linkage will depend on the type 
of load module to be created and when the linkage occurs (Table B.3b). If, as is 
usually the case, a relocatable load module is desired, then linkage is usually done 
in the following fashion. Each compiled or assembled object module is created with 
references relative to the beginning of the object module. All of these modules are 
put together into a single relocatable load module with all references relative to the 
origin of the load module. This module can be used as input for relocatable loading 
or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a link-
age editor. Figure B.12 illustrates the linkage editor function.

dynamic linker As with loading, it is possible to defer some linkage functions. 
The term dynamic linking is used to refer to the practice of deferring the linkage of 
some external modules until after the load module has been created. Thus, the load 
module contains unresolved references to other programs. These references can be 
resolved either at load time or run time.
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For load-time dynamic linking (involving upper dynamic library in Figure B.9),  
the following steps occur. The load module (application module) to be loaded is 
read into memory. Any reference to an external module (target module) causes the 
loader to find the target module, load it, and alter the reference to a relative address 
in memory from the beginning of the application module. There are several advan-
tages to this approach over what might be called static linking:

 ■ It becomes easier to incorporate changed or upgraded versions of the target 
module, which may be an operating system utility or some other general- 
purpose routine. With static linking, a change to such a supporting module 
would require the relinking of the entire application module. Not only is this 
inefficient, but it may be impossible in some circumstances. For example, in the 
personal computer field, most commercial software is released in load module 
form; source and object versions are not released.

 ■ Having target code in a dynamic link file paves the way for automatic code 
sharing. The operating system can recognize that more than one application is 
using the same target code because it loaded and linked that code. It can use 
that information to load a single copy of the target code and link it to both 
applications, rather than having to load one copy for each application.
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 ■ It becomes easier for independent software developers to extend the function-
ality of a widely used operating system such as Linux. A developer can come 
up with a new function that may be useful to a variety of applications and 
package it as a dynamic link module.

With run-time dynamic linking (involving lower dynamic library in Figure B.9),  
some of the linking is postponed until execution time. External references to target 
modules remain in the loaded program. When a call is made to the absent module, 
the operating system locates the module, loads it, and links it to the calling module. 
Such modules are typically shareable. In the Windows environment, these are called 
 dynamic-link libraries (DLLs) Thus, if one process is already making use of a dynam-
ically linked shared module, then that module is in main memory and a new process 
can simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell. 
DLL hell occurs if two or more processes are sharing a DLL module but expect dif-
ferent versions of the module. For example, an application or system function might 
be re-installed and bring in with it an older version of a DLL file.

We have seen that dynamic loading allows an entire load module to be moved 
around; however, the structure of the module is static, being unchanged throughout 
the execution of the process and from one execution to the next. However, in some 
cases, it is not possible to determine prior to execution which object modules will 
be required. This situation is typified by transaction-processing applications, such as 
an airline reservation system or a banking application. The nature of the transaction 
dictates which program modules are required, and they are loaded as appropriate 
and linked with the main program. The advantage of the use of such a dynamic 
linker is that it is not necessary to allocate memory for program units unless those 
units are referenced. This capability is used in support of segmentation systems.

One additional refinement is possible: An application need not know the 
names of all the modules or entry points that may be called. For example, a charting 
program may be written to work with a variety of plotters, each of which is driven 
by a different driver package. The application can learn the name of the plotter that 
is currently installed on the system from another process or by looking it up in a 
configuration file. This allows the user of the application to install a new plotter that 
did not exist at the time the application was written.

 B.4 key Terms, review QuesTions, And ProBlems
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Review Questions

 B.1 List some reasons why it is worthwhile to study assembly language programming.
 B.2 What is an assembly language?
 B.3 List some disadvantages of assembly language compared to high-level languages.
 B.4 List some advantages of assembly language compared to high-level languages.
 B.5 What are the typical elements of an assembly language statement?
 B.6 List and briefly define four different kinds of assembly language statements.
 B.7 What is the difference between a one-pass assembler and a two-pass assembler?

Problems

 B.1 Core War is a programming game introduced to the public in the early 1980s 
[DEWD84], which was popular for a period of 15 years or so. Core War has four 
main components: a memory array of 8000 addresses; a simplified assembly language 
Redcode; an executive program called MARS (an acronym for Memory Array Red-
code Simulator); and the set of contending battle programs. Two battle programs are 
entered into the memory array at randomly chosen positions; neither program knows 
where the other one is. MARS executes the programs in a simple version of time-shar-
ing. The two programs take turns; a single instruction of the first program is executed, 
then a single instruction of the second, and so on. What a battle program does during 
the execution cycles allotted to it is entirely up to the programmer. The aim is to 
destroy the other program by ruining its instructions. In this problem and the next 
several, we use an even simpler language, called CodeBlue, to explore some Core War 
concepts.

CodeBlue contains only five assembly language statements and uses three ad-
dressing modes (Table B.4). Addresses wrap around, so that for the last location in 
memory, the relative address of +1 refers to the first location in memory. For example, 
ADD #4, 6 adds 4 to the contents of relative location 6 and stores the results in loca-
tion 6; JUMP @5 transfers execution to the memory address contained in the location 
five slots past the location of the current JUMP instruction.
a. The program Imp is the single instruction COPY 0, 1. What does it do?
b. The program Dwarf is the following sequence of instructions:

ADD #4, 3
COPY 2, @2
JUMP –2
DATA 0

What does it do?
c. Rewrite Dwarf using symbols, so that it looks more like a typical assembly lan-

guage program.
 B.2 What happens if we pit Imp against Dwarf?
 B.3 Write a “carpet bombing” program in CodeBlue that zeros out all of memory (with 

the possible exception of the program locations).
 B.4 How would the previous program fare against Imp?
 B.5 a. What is the value of the C status flag after the following sequence:

mov al, 3
add al, 4

b. What is the value of the C status flag after the following sequence:

mov al, 3
sub al, 4
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 B.6 Consider the following NAMS instruction:

cmp vleft, vright

For signed integers, there are three status flags that are relevant. If vleft = vright, then 
ZF is set. If vleft 7 vright, ZF is unset (set to 0) and SF = OF. If vleft 6 vright, ZF 
is unset and SF ≠ OF. Why does SF = OF if vleft 7 vright?

 B.7 Consider the following NASM code fragment:

mov al, 0
cmp al, al
je next

Write an equivalent program consisting of a single instruction.
 B.8 Consider the following C program:

/* a simple C program to average 3 integers */
main ()
{ int avg;
  int i1 = 20;
  int i2 = 13;
  int i3 = 82;
  avg = (i1 + i2 + i3)/3;
}

Write an NASM version of this program.

(b) Addressing Modes

Mode Format Meaning

Literal # followed by value This is an immediate mode, the operand value is in the 
instruction.

Relative Value The value represents an offset from the current location, 
which contains the operand.

Indirect @ followed by value The value represents an offset from the current location; the 
offset location contains the relative address of the location 
that contains the operand.

Loop COPY #0, −1

JUMP −1

Hint: Remember that instruction execution alternates between the two opposing programs.

Table B.4 CodeBlue Assembly Language

(a) Instruction Set

Format Meaning

DATA       <value> <value> set at current location

COPY        A, B copies source A to destination B

ADD         A, B adds A to B, putting result in B

JUMP        A transfer execution to A

JUMPZ     A, B if B = 0, transfer to A
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a. A 2-pass assembler can handle future symbols and an instruction can therefore 
use a future symbol as an operand. This is not always true for directives. The EQU 
directive, for example, cannot use a future symbol. The directive “A EQU B + 1” 
is easy to execute if B is previously defined, but impossible if B is a future symbol. 
What’s the reason for this?

 B.9 Consider the following C code fragment:

if (EAX == 0) EBX = 1;

else EBX = 2;

Write an equivalent NASM code fragment.
 B.10 The initialize data directives can be used to initialize multiple locations. For example,

db 0x55,0x56,0x57

reserves three bytes and initializes their values.

NASM supports the special token $ to allow calculations to involve the current as-
sembly position. That is, $ evaluates to the assembly position at the beginning of the 
line containing the expression. With the preceding two facts in mind, consider the 
following sequence of directives:

message db ‘hello, world’
msglen equ $-message

What value is assigned to the symbol msglen?
 B.11 Assume the three symbolic variables V1, V2, V3 contain integer values. Write an 

NASM code fragment that moves the smallest value into integer ax. Use only the 
instructions mov, cmp, and jbe.

 B.12 Describe the effect of this instruction: cmp eax, 1 Assume that the immediately pre-
ceding instruction updated the contents of eax.

 B.13 The xchg instruction can be used to exchange the contents of two registers. Suppose 
that the x86 instruction set did not support this instruction.
a. Implement xchg ax, bx using only push and pop instructions.
b. Implement xchg ax, bx using only the xor instruction (do not involve other 

registers).
 B.14 In the following program, assume that a, b, x, y are symbols for main memory loca-

tions. What does the program do? You can answer the question by writing the equiva-
lent logic in C.

 mov eax,a
 mov ebx,b
 xor eax,x
 xor ebx,y
 or eax,ebx
 jnz L2
L1: ;sequence of instructions…
 jmp L3
L2: ;another sequence of instructions…
L3:

 B.15 Section B.1 includes a C program that calculates the greatest common divisor of two 
integers.
a. Describe the algorithm in words and show how the program does implement the 

Euclid algorithm approach to calculating the greatest common divisor.
b. Add comments to the assembly program of Figure B.3a to clarify that it imple-

ments the same logic as the C program.
c. Repeat part (b) for the program of Figure B.3b.

 B.16 
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b. Suggest a way for the assembler to eliminate this limitation such that any source 
line could use future symbols.

 B.17 Consider a symbol directive MAX of the following form: symbol MAX list of 
expressions

The label is mandatory and is assigned the value of the largest expression in the 
operand field. Example:

MSGLEN MAX A, B, C ;where A, B, C are defined symbols

How is MAX executed by the Assembler and in what pass?
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inactive interrupt, 679
interprocessor interrupts (IPIs), 679
interrupt handling, 678–680
L1 cache coherency, 681
L2 cache coherency, 681
legacy FIQ line, 680
migratory lines, 681
pending interrupt, 679
private timer and/or watchdog interrupts, 680
program trace, 677
snoop control unit (SCU), 677, 680–681

ARM  Cortex-  A7 core, 671–673
ACE cache line states, 675
energy consumption, 673
pipelines, 672

ARM  Cortex-  M3, 604–607
branch forwarding, 606
branch speculation, 606
bus matrix, 605
data watchpoint and trace (DWT), 605
dealing with branches, 606–607
debug access port, 605
decode stage, 606
embedded trace macrocell, 605
flash patch and breakpoint unit, 604
memory protection unit, 604
nested vectored interrupt controller  

(NVIC), 604
pipeline, 607
pipeline structure, 605–606
processor core, 604
serial wire viewer, 605
 Thumb-  2 instruction, 605–606
 wake-  up interrupt controller (NVIC), 604

ARM instruction format, 479–482
immediate constants, 479
Thumb instruction set, 479–481
 Thumb-  2 instruction set, 481–482

ARM memory management, 309–314
access control, 313–314
Domain Access Control Register, 314
formats, 310–313
organization of memory, 309–310
parameters, 313
translation lookaside buffer (TLB),  

309–310
virtual memory address translation, 310–311

ARM processor, 524–530
attributes, 525
interrupt processing, 529–530
processor organization, 525
registers, 527–529

Array processor, 615
Assemblers, 761, 763
Assembly language, 413, 415, 482–484. See also 

Instruction formats
BASIC statement, 482

ARM addressing modes (continued )
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pseudoinstruction, 483
symbolic program in, 483

Asserting, signal, 377
Associative access, 123
Associative mapping, 138–140
Associative memory, 123
Autoindexing, 462
Auxiliary memory, 127

B
Backward compatibility, 29
Balanced transmission, 105
Bank groups, 184
Base, 307
Base address, 297
Base digit, 319
 Base-  register addressing, 462
Batch system, 280
Bell Labs, 17
Benchmark programs, 68
BFU (binary  floating-  point unit), 10
Biased representation, 351
Big endian ordering, 452
Big.Little Chip, 671
Binary adder, 339
Binary addition, 392
Binary Coded Decimal (BCD), 384
Binary system, 321
 Bit-  interleaved parity disk performance  

(RAID level 3), 210–211
Bit length conversion, 332
Bit ordering, endian, 455
Blade servers, 638–639
Blocked multithreaded scalar, 631
Blocked multithreaded superscalar, 632
Blocked multithreaded VLIW, 632
Blocked multithreading, 630
 Block-  level distributed parity disk performance 

(RAID level 5), 212
 Block-  level parity disk performance  

(RAID level 4), 211–212
Block multiplexor, 262
Blocks, 122, 690

Booth’s algorithm, 346–347
cache, 160
I/O, 408
logic, 408
m, 129, 134–135
memory, 133, 137, 140–142, 619
packets or protocol, 257
process control, 494
SDRAMs, 182
SPLD, 406
tape, 222
thread, 690–691, 696

 Blu-  ray DVD, 217, 221
Boole, George, 373

Boolean algebra, 373–375, 392
AND operation, 374
basic identities of, 375
Boolean operators, 375
 exclusive-  or (XOR) operation, 374
NAND function, 374
NOT operation, 374
OR operation, 374

Boolean functions, implementation of
algebraic simplification, 381
canonical form, 381
Karnaugh maps, 381–386
NAND and NOR gates, 388
 Quine–  McCluskey method, 384–387
rules for simplification, 382–383
sum of products (SOP) form, 379, 380
of three combinations, 379

Boolean (logic) instructions, 416
Booth’s algorithm, 344–347
Branches

conditional instructions, 509–515
control hazard (branch hazard), 508–509
as correlator, 515
 Cortex-  M3 processor, 606–607
delayed, 515, 557–558
dynamic strategies, 51–512
history approach, 513–515
history table, 513
instruction fetch stage, 513–514
loop buffer for, 510–511
 loop-  closing, 515
microinstructions, 744
multiple streams for, 509–510
pipelining and, 509–515
prediction, 511–515, 589, 593–594
prefetched branch target, 510

Branch prediction, 47–48
Branch target buffer (BTB), 511, 513, 593
British Broadcasting Corporation  

(BBC), 34
Buffers, 83
Bus arbitration technique, I/O, 243
Bus interconnection, 100–102
Bus master, 146
Bus watching approach, 146
Bus width, 25–27
Byte, 111
Byte multiplexor, 262
Byte ordering, endian, 452

C
Cache, 6

banking, 703
 Cortex-  R, 35
injection, 259
miss, 130, 146, 152, 258–259, 261, 310, 581, 594, 

630, 632, 677, 681
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Cache coherence, 621–624
directory protocols, 623
 hardware-  based solutions, 623–624
multicore computers, 674–675
snoopy protocols, 623–624
software, 622–623
 write-  invalidate approach, 624
write policies, 622
 write-  update protocol, 624

 Cache-  coherent nonuniform memory access 
( CC-  NUMA), 640

advantages and disadvantages, 643
organization, 641–642

Cache Disable (CD), 521
Cache hit, 130, 148
Cache line, 133
Cache memory, 128–149, 536

addresses, 131–133
 high-  performance computing (HPC), 131
lines, 129
line size, 129, 147
logical cache, 132
mapping function, 133–144
multilevel cache, 147–149
number of caches, 147–149
physical cache, 132–133
read operation, 129–130
replacement algorithms, 145
sizes, 133, 134
split cache, 149
structure of, 128, 129
tag, 129
unified cache, 149
virtual address, 133
virtual cache, 132
write policy, 145–147

Cache miss, 130
Cache set, 140
Call/return instructions, 438–439
Capacitors, 20
Carry lookahead, 395
 CD-  ROM, 217
 CD-  RW, 217
Central processing unit (CPU), 83, 689

of  general-  purpose microcomputer, 25
Intel 8085, 721
interconnection, 6
internal structure, 490
involvement in I/O channels, 261–262
memory and, 83
multicore computer, 6, 667–671
performance and performance per watt, 692
in second generation computers, 18
 single-  processor computer, 4
vs. GPU, 691–692
with system bus, 490

Chaining, 301
Character data operands, 470
Characteristic table, 397
Chip multiprocessing, 630
Chip multiprocessor (multicore), 628–633, 657
Chips, 7–8, 21

ARM, 34
control store, 752
DDR, 183
DRAM memory, 172–173
EPROM package of, 172–173
 four-  core, 52
 high-  speed, 50
integrated circuit, 21, 24
Intel  Quad-  Core Xeon processor, 8–9
I/O controller, 8
LSI, 751
memory, 8, 9, 25, 47–48, 172–173
microcontroller, 32
microprocessor, 32
multicore, 102, 268, 657, 663, 665, 668, 682
PU, 683
RAM, 390
semiconductor memory, 170–172
 two-  core, 52
 ultra-  large-  scale integration (ULSI), 24

Chipset, PCI Express, 108
Clock (bus) cycle, 57
Clocked  S–  R  flip-  flop, 397–399
Clock rate, 57
Clock speed, 57
Clock tick, 57
Cloud auditor, 648–649
Cloud broker, 648–649
Cloud carrier, 648–649
Cloud computing, 39–42

actors, 648–649
broad network access, 644
community cloud, 646
computing, 39
deployment models, 646
elements, 643–647
essential characteristics of, 644–645
hybrid cloud, 646
infrastructure as a service (IaaS), 42
measured service, 644
networking, 40
 on-  demand  self-  service, 644–645
platform as a service (PaaS), 41
private cloud, 646
public cloud, 646
rapid elasticity, 644
reference architecture, 647–649
resource pooling, 645
service models (SaaS, PaaS, IaaS), 645–646, 

649
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software as a service (SaaS), 40–41
storage, 40

Cloud consumers, 649
Cloud provider, 648–649
Clusters, 615, 633–639

active secondary, 635
benefits and limitations, 633, 635
blade servers, 638–639
compared to SMP, 639
computer architecture, 637–638
configurations, 633–636
load balancing, 636
middleware services and functions, 638
operating system design, 636–637
parallelizing computation, 636–637
passive standby, 635
separate server, 635
server, 634
 shared-  disk, 634
shared disk approach, 636
shared nothing approach, 636
 single-  system image, 637

 Coarse-  grained threading, 663
Combinational circuit

Boolean equations, 378–388
decoders, 390–392
defined, 378
graphical symbols, 378
multiplexers, 388–390
 read-  only memory (ROM), 392
sequential circuits, 396–405
truth table of, 378

Commercial computers, 11
Committing (retiring) instructions, 590
Communication devices, 231
Community cloud, 646
Compact disk (CD), 217–220

CD recordable ( CD-  R), 219–220
CD rewritable ( CD-  RW), 220
 CD-  ROM (compact disk  read-  only memory), 

217–219
 CD-  R optical disk, 220

Compaction, I/O memory, 296
 Compiler-  based register optimization,  

547–549
Complex instruction set computer (CISC), 27, 

540
characteristics, 538
motivations for contemporary, 549–551
vs. RISC design, 553–555, 570–571

Complex PLDs (CPLDs), 406, 408
Computer architecture, 2
Computer instruction, 413
Computer on a chip, 32
Computer organization, 2
Computers

architecture, 2
components, 81–83
family concept, 536
function, 83–98
fundamental elements of, 11
generations, 17
 generation-  to-  generation compatibility  

of, 2
history of, 11–27
instruction, fetch and execute function,  

84–89
instruction set architecture (ISA), 2
interconnection structures, 99–100
organization, 2
structure and function, 3–11

Computer system performance
Amdahl’s law, 53–55
benchmark principles, 67–68
calculating a mean value, 59–67
clock speed, 57
designing for, 46–52
following improvements in chip organization 

and architecture, 50–52
 general-  purpose computing on GPUs 

(GPGPU), 52–53
graphics processing units (GPUs), 52–53
instruction execution rate, 58–59
Little’s law, 55–56
many integrated core (MIC), 52
microprocessor speed, 47–48
multiple processors, 52
performance balance, 48–49
SPEC benchmarks, 68–74

Conditional branch instructions, 433
Conditional jump, 439
Condition codes, 492, 744, 757

advantages and disadvantages, 493
ARM architecture, 444–445
EFLAGS register, 518
Intel x86, 438–440
program status word (PSW), 495
 RISC-  based machines, 560

Constant angular velocity (CAV), 198, 218
Constant linear velocity (CLV), 198, 218
Control, 85

access, 313–314
interrupt, 720
I/O modules, 231, 232–233
lines, 101–102
logical, 13
machine instructions, 415
storage control (SC), 683
and timing, 232–233

Control hazard (branch hazard), pipelining, 
508–509

Control hazards, pipelining, 509
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Controllers
cache, 146, 623
disk, 107
disk drive, 231
fanouts, 269
I/O, 108, 121, 235, 236, 262
mass storage, 35
memory and peripheral, 657, 668
microcontrollers, 32, 187
network interface, 107

Control lines, 101
Control registers, 519–521
Control signals, 716–719
Control unit (CU), 4, 6, 490

characterization of, 715
control signals, 716–719
execute cycle, 712–713
fetch cycle, 709–711
functional requirements, 714–715
hardwired implementation, 724–727
IAS computer, 11, 13
indirect cycle, 711–712
inputs and outputs, 716–717
instruction cycle, 713–714
internal processor organization and, 719–720
interrupt cycle, 712
 micro-  operations, 708–714
of processor, 714–724

COP (dedicated  co-  processor), 11
Core i7 EE 4960X microprocessor, 29
 Cortex-  A and  Cortex-  A50, 35
 Cortex-  M series processors, 35–39

analog interfaces, 38
bus matrix, 38
clock management, 38
core, 38
debug access port (DAP), 36
debug logic, 36
embedded trace macrocell (ETM)  

module, 36
energy management, 38
ICode interface, 38
memory, 38
memory protection unit, 38
nested vector interrupt controller (NVIC), 36
parallel I/O ports, 38
peripheral bus, 39
security, 38
serial interfaces, 38
SRAM & peripheral interface, 38
32-bit bus, 39
timers and triggers, 38

 Cortex-  R, 35
Counters, 402–405

ripple, 402–403
synchronous, 403–404

Texas Instruments 8800 Software 
Development Board (SDB), 759

C programming, 159
CRAY C90, 122
CUDA (Compute Unified Device Architecture), 

689–691
cores, 690, 696, 697
CUDA core/SM count, 694
programming language, 689, 690

Current program status registers (CPSR), ARM, 
527

Cycles per instruction (CPI) for a program, 58
Cycle stealing, 249
Cycle time, 57–58, 525, 562, 620

instruction, 18, 501, 503, 716
memory, 18, 58, 123
pipeline, 504–506
processor, 58

Cyclic redundancy check (CRC), 106

D
Daisy chain technique, I/O, 243
Database scaling, 618
Data buffering, I/O modules, 233
Data bus, 101
Data cache, 152
Data channel, 18
Data communication, 4
Data exchanges, 636
Data flow, instruction cycles, 497–499
Data flow analysis, 48
Data formatting, magnetic disks, 196–199
Data hazards, pipelining, 508–509
Data (bus) lines, 101
 Data-  L2, 11
Data movement, 4
Data processing, 4, 20, 85, 416, 421, 444, 601, 667

ARM, 525
instruction addressing, 468
load/store model of, 525
machine instructions, 415

Data processing instruction addressing, 468
Data registers, 491
Data storage, 4, 20, 40, 42, 124, 167, 265, 416

machine instructions, 415
Data transfer, 427–428

IAS computer, 16
instructions, 427–428
I/O modules, 231
packetized, 103

Data types
ARM architecture, 423–425
IEEE 754 standard, 424
Intel x86 architecture, 422–423
packed SIMD, 422

Debug access port (DAP), 36
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Debug logic, 36
Decimal system, 319–320
Decode instruction unit,  Cortex-  A8 processor, 

599
Decoders, 390–392, 595

as demultiplexer, 390, 392
DEC P  DP-   8, 23–24
Dedicated processor, 32
Deeply embedded systems, 32–33
Delayed branch, pipelining, 557–558
Delayed load, pipelining, 558–559
Delay slot, 557
Demand paging, 299–300
DeMorgan’s theorem, 375, 377, 388
Device communication, I/O modules, 233
D  flip-  flop, 399, 401
DFU (decimal  floating-  point unit), 10
Differential signaling, 105
Digital computer, 20
Digital Equipment Corporation (DEC), PDP 

series computers, 23
Digital logic

Boolean algebra, 373–375
combinational circuits, 378–396
gates, 376–378
programmable logic device (PLD), 405–409
sequential circuits, 396–405

Digital versatile disk (DVD), 217, 220–221
Direct access, 122–123
 Direct-  access device, 223
Direct address, 463
Direct addressing, 459, 473
Direct cache access (DCA), 254–261

performance issue and benefits, 257–259
strategies, 259

Direct Data I/O, 254
cache write operation, 260
comparison of DMA with, 260
packet input, 259–261
packet output, 259–261
strategy, 261
TCP/IP protocol handler, 261
 write-  back strategy, 260
 write-  through strategy, 260

Direction flag (DF), 519
Directives, 704
Direct mapping technique, 134–138
Direct memory access (DMA), 98

comparison of DDIO with, 260
control/command registers of Intel 8237, 

253–254
8237 DMA usage of system bus, 252
 fly-  by DMA controller, 253
function, 249–251
interrupt breakpoints during an instruction 

cycle, 250

programmed and  interrupt-  driven I/O, 
248–249

SMPs, 619
using shared  last-  level cache, 255–257

Directory protocols, 623
Dirty (use) bit, 146
Disabled interrupt, 95
Discrete components, 20–21
Disk cache memory, 158
Disk drive, I/O, 232
Dispatcher, 288
Displacement addressing, 461–463

mode, 465
Distributed arbitration, 118
Dividend, 347
Division, 347–350

flowchart for unsigned binary, 348
partial remainder, 347–349
twos complement, 349

Divisor, 347
Double data rate, 183
 Double-  data-  rate DRAM (DDR RAM), 

183–184
 Double-  sided disks, 200
Drive, Pentium 4 processor, 517
Dual redundancy disk performance (RAID 

level 6), 212
DVD, 217
 DVD-  R, 217
 DVD-  ROM, 217
 DVD-  RW, 217
Dynamic access random memory (DRAM) 

technology, 104
Dynamic RAM (DRAM), 147, 167–168, 171–172, 

187
DDR SDRAM, 183–184
pin configuration, 172
synchronous DRAM (SDRAM), 181–182

E
EAS/390 memory system, 432
 Edge-  triggered  flip-  flop, 403
EDVAC (Electronic Discrete Variable 

Computer), 11
Effective address (EA), 458, 460
EFLAGS register, Intel x86 processors, 518–519
Electrically erasable programmable  read-  only 

memory (EEPROM), 170
Embedded Microprocessor Benchmark 

Consortium (EEMBC) benchmark, 482
Embedded systems, 29–33

deeply, 32–33
operating system (OS), 31
organization, 29–30

Embedded trace macrocell (ETM) module, 36
Emulation (EM), 520
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Enabled interrupt, 95, 712
Encoded microinstruction format, 748–751
Erasable programmable  read-  only memory 

(EPROM), 170, 172
Error control function, 106
 Error-  correcting codes, 175
Error correction, 216–217

semiconductor memory, 174–180
Error detection, I/O modules, 234
ESCON (Enterprise Systems Connection), 269
Ethernet, 265–266
Exceptions, interrupts and, 522–523, 529
Excitation table, 403
Execute cycle, 84, 87, 92

 micro-  operations ( micro-  ops), 712–713
Execution. See also Program execution

fetch and instruction, 496–497
fetched instruction, 85
IBM 3033 microinstruction, 743, 754–755
instruction execution rate, 58–59
I/O program, 89, 91
of loads and stores in MIPS R4000 

microprocessor, 565
 LSI-  11 microinstruction, 751–754
microprogramming, 745–755
multithreading, 628
RISC instruction, 537–542
speculative, 48
superscalar, 48, 589–590

Expansion boards, 7
Exponent overflow, 358
Exponent value, 351
Extended Binary Coded Decimal Interchange 

Code (EBCDIC), 421, 432
Extension Type (ET), 520
External interface standards, 263–266
External memory, 39, 121–122, 127, 185, 187

magnetic disk, 195–203
magnetic tape, 222–224
 optical-  disk systems, 217–222
RAID, 204–213
solid state drives (SSDs), 212–216

F
Failback, 636
Failover, 636
Failure management, clusters, 636
Family concept, 536
Fanouts, 269
Fetch cycle, 15, 84, 85, 87, 92, 93, 469, 497–498, 

709–711
 micro-  operations ( micro-  ops), 709–711

Fetched code bits, 175
Fetch instruction unit, 489, 496

 Cortex-  A8 processor, 599
execution of, 85

Fetch overlap, pipelining, 501
 Field-  programmable gate array (FPGA), 

406–409
I/O blocks, 408
logic block, 409
structure, 408

 Fine-  grained threading, 663
FireWire Serial Bus, 264
Firmware, 107, 215, 731
First generation of computers. See IAS 

computer
 First-  in  first-  out (FIFO) algorithm, 145
 Fixed-  head disk, 199
 Fixed-  point representation, 335
 Fixed-  size partitions, 294–295
Flag, register organization, 527–528
Flags. See Condition codes
Flash memory, 170, 185–187

NOR and NAND, 186–187
operation, 185–186

 Flip-  flops, 396–400
basic, 400
clocked  S–  R, 397–399
D, 399, 401
 edge-  triggered, 403
 J–  K, 399–400, 402–403

Flit, 104
 Floating-  point arithmetic, 358–367, 424, 576, 583, 

697
addition, 359–361
division, 361
exponent overflow, 358
exponent underflow, 358
IEEE standard for binary, 365–367
minus infinity, 365
multiplication, 361–362
normalization, 361
precision considerations, 362–365
rounding to plus, 365
round to nearest, 364
round toward zero, 365
significand overflow, 359
significand underflow, 359
subtraction, 359–361

 Floating-  point notation, 350–358
base, 351
biased representation, 351
with binary numbers, 350–352
exponent value, 351
of IBM S/390 architecture, 353–354
IEEE standard for binary, 354–358
negative overflow, 353
negative underflow, 353
normal number, 351–352
positive overflow, 353
positive underflow, 353
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principles, 350–354
significand, 351–352
sign of, 351

 Floating-  point operations per second (FLOPs), 
692

Floppy disk, 200
Floppy (contact) magnetic disks, 196, 199
Flow control function, 104, 106, 109, 115
Flow dependency, 580
FORTRAN programs, 159, 282, 540
Fractions, 322–324
Frames, I/O memory, 269
Front end, Pentium 4 processor, 593–594
Fully nested interrupt mode, 243
Functional encoding, 750
Functional mean, 60
Functions, 276–280

I/O, 98, 232–234
FXU ( fixed-  point unit), 10

G
Gaps, magnetic disks, 197
Gates, 20, 376–378

delay, 376
functionally complete sets of, 377
NAND, 377
NOR, 377–378

GeForce 8800 GTX, 693
 General-  purpose computing using a GPU 

(GPGPU), 52–53, 689
General purpose register, 460–462, 466, 491–492, 

517–518, 528
Geometric mean, 60, 64–67
Gigabit Ethernet, 107
Global history buffer (GHB), 599
Gradual underflow, 367
Graphical symbol, 376, 378
Graphics processing units (GPUs), 52–53, 689

architecture overview, 692–701
as a coprocessor, 704–706
CUDA cores, 696–697
dual warp scheduler, 696–697
Fermi, 694
 floating-  point operations per second for, 693
 floating-  point (FP) unit pipeline, 697
GDDR5 (graphic double data rate), 694–695
of Gen8 architecture, 701–704
grid and block dimensions, 691
hardware components equivalence mapping, 

691
integer (INT) unit pipeline, 697
load and store units, 697
L1 cache, 697–700
memory hierarchy attributes, 698
memory types, 700–701
multicore computers, 667–669

NVIDIA, 693–694
performance and performance per watt, 692
processor cores, 690
 read-  after-  write (RAW) data hazard, 701
registers, 697–700
shared memory, 697–700
special function units (SFU), 694, 697
streaming multiprocessor architecture, 

695–700
streaming multiprocessors (SMs), 691
vs. CPU, 691–692

Graphics technology interface (GTI), 704
Guard bits, 362

H
Hamming, Richard, 176
Hamming code, 176
Hard disk, 199, 201
Hard disk drives (HDDs), 212, 214

parameters, 201
Hard failure, 174
Hardware cache coherence, 623–624
Hardware transparency approach, 146
Hardwired implementation, 724–727

control unit inputs, 725–726
control unit logic, 726–727

Hardwired programs, 82
Harmonic mean, 60, 62–64
Hash functions, 300
Hashing technique, 301
Heterogeneous System Architecture (HSA) 

Foundation, 669
Hexadecimal, 324–326
Hexadecimal digits, 325
Hexadecimal notation, 324–326
 High-  definition optical disks (HD DVD), 

221–222
 High-  performance computing (HPC), 131
Hit ratio, 138, 140, 144
Horizontal loss, 632
Host channel adapter (HCA), 269
 Human-  readable devices, 230
Hybrid cloud, 646
Hybrid threading, 663

I
IAS computer, 11

arithmetic and logic unit (ALU), 11, 14, 16
computation of addresses, 17
conditional branch instruction, 17
control unit, 12, 14
data transfer, 16
execute cycle, 16
fetch cycle, 15
flowchart of, 15
 input–  output (I/O) equipment, 12
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instruction cycle, 15
instruction groups, 16–17
logical control, 13
memory of, 11, 14–15
operation code (opcode) instruction, 14, 16
registers, 14–15
storage locations, 14
structure of, 12
unconditional branch instruction, 16
von Neumann’s earlier proposal, 12–14

 IA-  64 architecture, 492
IBM 801 system, 558
IBM 7094, 18, 19

configuration, 18
Instruction Backup Register, 18

IBM system/360, 22–23
ALU, 23
CPU, 23
third generation of computers, 22–23

IBM 370/168, pipeline streams of, 510
IBM 360/91, pipeline streams of, 510
IBM 3033, pipeline streams of, 510
IBM 3033 microinstruction execution, 743, 

754–755
IBM zEnterprise EC12 I/O

channel path, 268
channels, 268
channel structure, 266–268
channel subsystems (CSS), 267
hardware system area (HSA), 267
I/O  frames–  front view, 269
I/O system organization, 268–270
logical partition, 267
subchannel, 268
system assist processor (SAP), 267
Z frame, 268

IBM zEnterprise EC12 mainframe computer, 9
cache structure, 683–684
embedded DRAM (eDRAM), 684
multichip module (MCM), 682
organization, 682–683
processor node structure, 682
processor unit (PU), 683
storage control (SC), 683

 I-  cache, 11
ICode interface, 38
Identification flag (ID), 519
IDU (instruction decode unit), 10
 If-  Then (IT) instruction, 481
IFU (instruction fetch unit), 9
Immediate address, 459
Immediate addressing mode, 459
Immediate constants, ARM, 479–480
Incremental scalability, 633
Indexed address, 492

Indexing, 462–463
Index registers, 462–463, 492
Indirect addressing, 459–460
Indirect cycle, 711–712
Indirect instruction cycle, 458
InfiniBand, 263, 265, 269
Infinity, IEEE interpretation, 365
Infinity arithmetic, 365
Information technology (IT), 31
Infrastructure as a service (IaaS), 42, 646
 In-  order completion, 583
 In-  order issue, 583–585
 Input–  output (I/O) process, 4–5
Institute of Electrical and Electronics Engineers 

(IEEE) standards
for binary  floating-  point arithmetic, 365–367
 double-  precision  floating-  point numbers, 560
802.11  Wi-  Fi, 266–267
802.3, 265
802.3 for ethernet, 265
 floating-  point representations, 422
1394 for FireWire, 264
for rounding, 364
754 Subnormal Numbers, 366–367
754-1985  floating-  point arithmetic standard, 

697
 Instr-  L2, 11
Instruction address register, 87–88
Instruction buffer register (IBR), 14
Instruction cache, Pentium 4, 150
Instruction cycle, 84, 85, 87, 496–499, 713–714

data operation (do), 88
execute cycle, 496, 498
fetch and instruction execution activities, 

496–497
fetch cycle, 496–498
instruction address calculation (iac), 87–88
instruction fetch (if), 88
instruction operation decoding (iod), 88
interrupts and, 91–96
interrupt stage, 496
operand address calculation (oac), 88
operand fetch (of), 88
operand store (os), 88

Instruction cycle code (ICC), 713
Instruction execution rate, 58–59
Instruction formats. See also Assembly language

ADD instruction, 557
addressing bits, 470–471
allocation of bits, 470–473
ARM, 479–482
 DEC-  10 instructions, 540
granularity of addressing, 471
 high-  level language (HLL), 537, 539–542, 545
 If-  Then (IT) instruction, 481
Intel x86, 477–479

IAS computer (continued )
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JUMP instruction, 557
length, 469–470
 memory-  transfer length, 469, 470
MIPS R4000 microprocessor, 560–561
multiple instructions per cycle, 632
NOOP instruction, 557
operand address, 470
Patterson programs, 539
 PDP-  8, 471–472
 PDP-  11, 474
 PDP-  10, 472–473
range of addresses, 471
reduced instruction set architectures, 551–553
register vs. memory address, 470–471
SETHI instruction, 569
set of registers, 471
SPARC (Scalable Processor Architecture), 

568–569
S/390 Move Characters (MVC) instruction, 

553
32-bit Thumb instructions, 482
 variable-  length instructions, 473–477
VAX, 474–477, 479, 537, 539, 540

Instruction issue, 582–583
Instruction pipelining, 500–516, 536, 576, 596, 

628, 672
branch prediction, 511–515
control hazard (branch hazard), 508–509
data hazard, 508–509
dealing with conditional branches, 509–515, 

516
delayed branch, 515, 557–558
delayed load, 558
Intel x86 architecture, 593
loop buffer, 510–511
loop unrolling, 559
measures of pipeline performance, 504–507
MIPS R4000 microprocessor, 561–565
multiple streams, 509–510
optimization of, 557–559
pipeline bubble, 507
prefetched branch target, 510
reduced instruction set computer (RISC), 

555–559
with regular instructions, 555–556
resource hazard, 507–508
strategy, 500–504

Instruction prefetch (fetch overlap), 501
Instruction register (IR), 14, 85, 493, 497, 710
Instruction set architecture (ISA), 2, 58, 278, 482, 

667, 671
ARM, 35, 481
 Thumb-  2, 35, 481

Instruction sets. See Addressing modes
Instruction window, 585
Integers, 321–322

addition, 337–340
division, 347–350
 fixed-  point, 335
negation, 336–337
nonnegative, 330, 424
overflow rule, 337–338
packed byte and packed byte, 422
packed doubleword and packed doubleword, 

423
packed quadword and packed qaudword, 423
packed  single-  precision  floating-  point and 

packed  double-   precision  floating-  point, 423
packed word and packed word, 422
radix point, 330
range extension, 333–335
signed, 424, 568
sign magnitude, 331
subtraction, 337–340
twos complement operation of, 331–333, 336, 

342–347
unsigned, 330

Integrated circuit (IC), 7, 20–22
pattern, 21

Integrated memory controller (IMC), 255
Intel cache evolution, 150
Intel Core i7-990X, 676–677
Intel Core microarchitecture, 592
Intel 82C55A programmable peripheral 

interface, 245–248
Intel 82C59A interrupt controller, 243–244

Interrupt Acknowledge (INTA) of, 243
Interrupt Request (INTR) of, 243
responsibility of, 243

Intel 3420 chipset, 9
Intel 8085, 720–724

Address Latch Enabled (ALE) pulse signals, 
723

control unit, 721
CPU block diagram, 721
external signals, 722
incrementer/decrementer address latch, 720
interrupt control, 720
machine cycles, 721
OUT instruction, 723–724
pin configuration, 723
serial I/O control, 720

Intel 80386
interrupt modes of, 243–244
multiple I/O modules of, 243
 user-  visible register organization for, 496

Intel 80486 pipelining
condition codes in, 516
decoding, 515
execute cycle, 515
fetch cycle, 515
write back stage, 516
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Intel 8237A
DMA controller, 251–253
DMA registers, 254

Intel 8255A programmable peripheral interface
architecture and operation, 245–247
keyboard/display terminal, 247–248
operating modes and configurations, 246–247
pin layout, 245–246

Intel Gen8 architecture, 701–704
execution unit (EU), 701
memory modules, 703
registers, 701
SIMD  floating-  point units, 701
simultaneous multithreading (SMT) 

architecture, 701
subslices, 702

Intel HD Graphics 5300 Gen8, 704
Intel microprocessors

Core M Processor, 704
present times, 27
1970s, 26
1980s, 26
1990s, 26

Intel  Quad-  Core Xeon processor chips, 8–9
Intel x86 addressing modes, 463–466

based scaled index with displacement mode, 
466

base mode, 465
base with displacement mode, 465–466
base with index and displacement mode, 466
displacement mode, 465
immediate mode, 464
mode calculation, 464
register operand mode, 464
relative addressing, 466
scaled index with displacement mode, 466
segment registers for, 464

Intel x86 architecture, 27–29
allocate stage, 595
branch prediction strategy, 593–594
branch target buffer (BTB), 593–594
cache/memory parameters, 592
control registers, 519–521
Core series microprocessor, 28
data hazards, 508
data types, 422–423
decode unit, 594–595
dispatching, 596
8080 microprocessor, 28
8086 microprocessor, 28
80286 microprocessor, 28
80386 microprocessor, 28
80486 microprocessor, 28
evolution of, 28
front ends, 593–595
hardware registers, 595

instruction fetch unit, 594
instruction queue unit, 594–595
instruction set, 28
instruction translation lookaside buffer 

(ITLB), 594
integer and  floating-  point register files, 596
interrupt processing, 522–524
microarchitecture, 591–596
 micro-  op queuing, 596
 micro-  op scheduling, 596
 out-  of-  order execution logic, 595–596
Pentium series microprocessor, 28
pipelining, 593
predecode unit, 594
register organization, 517–522
register renaming, 595–596
reorder buffer (ROB) entry, 595
static prediction algorithm, 594

Intel x86 instruction format, 477–479
address size, 478
displacement field, 478
instruction prefixes, 478
ModR/M byte, 478
opcode field, 478
operand size, 478
segment override, 478
SIB byte, 478

Intel x86 memory management, 304–309
address spaces, 304–305
4-Gbyte linear memory space, 308
logical address in, 305
OS design and implementation, 305
parameters, 307
privilege level and access attribute, 305
requested privilege level (RPL), 306
segmented paged memory, 305
segmented unpaged memory, 304
segment number, 306
table indicator (TI), 305
unsegmented paged memory, 304
unsegmented unpaged memory, 304
virtual memory in, 305

Intel x86 operation types
call/return mechanism, 438–439
memory management, 439
MMX instructions, 440–442
SIMD instructions, 440–444
status flags and condition codes, 439–440

Intel x86 processor family
exception and interrupt vector table, 524
exceptions, 522–523
 interrupt-  handling routine, 523–524
interrupt processing, 522–524
register organization, 517–522

Intel Xeon processors
direct cache access strategies, 259
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E5-2600/4600, 255–257
multicore processors, 255

Interconnection structures, 99–100
bus interconnection, 100–102
 point-  to-  point, 100, 102–107

Interconnection transfers
I/O to or from memory, 100
I/O to processor, 100
memory to processor, 100
processor to I/O, 100
processor to memory, 100

Interleaved memory, 173–174
Interleaved multithreaded scalar, 630–631
Interleaved multithreading, 629–630
Interleaved multithreading superscalar, 632
Interleaved multithreading VLIW, 632
Intermediate queues, 293
Internal processor bus, 490–491
International Reference Alphabet (IRA), 232, 

421
Internet of things (IoT), 30–31
Interrecord gaps, 222
 Interrupt-  driven I/O, 239–248

bus arbitration, 243
 daisy-  chain configuration, 243
design issues, 241–243
Intel 82C59A interrupt controller, 243–244
 interrupt-  handler program, 241
interrupt processing, 239–241
multiple interrupt lines, 242
software poll, 242
TESTI/O, 242
vectored interrupt, 243

Interrupt enable flag (IF), 518
Interrupts, 89–98

classes, 89
control lines, 102
cycle, 92, 498, 712
disabled, 95
handler, 91, 93
instruction cycle and, 91–96
multiple, 95–98
nested interrupt processing, 97
point of view of user program, 92
program flow of control without and with, 90
sequential interrupt processing, 97

Interrupt service routine (ISR), 95
Intertrack gaps, 197
Inverted page table, 301
I/O address register (I/OAR), 83
I/O buffer (I/OBR) register, 83
I/O channels, 261–263

architecture, 263
block multiplexor, 262
byte multiplexor, 262
characteristics of, 262

function, 261–262
IBM zEnterprise EC12 I/O, 268–270
multiplexor channel, 262
selector channel, 262

I/O command, 235
I/O components, 83
I/O controllers, 108, 121, 235, 236, 262
I/O devices

disk drive, 232
external, 230–232
 human-  readable devices, 230
keyboard/monitor arrangement, 231–232
 machine-  readable devices, 230

I/O driver software, 214
I/O functions, 98
I/O hub (IOH), 103–104
I/ O-  memory transfer, 98
I/O modules, 715

address recognition, 233
command decoding, 233
control function, 231, 232–233
control lines, 101–102
data buffering, 233
data transfer, 231
device communication, 231, 233
error detection, 234
 field-  programmable logic array, 408
functions or requirements for, 232–234
interconnection structures, 100
interconnection transfers, 100
interface to, 231
I/O requests in RAID schemes, 211
machine instructions, 414
PCIe TLP transaction types, 113
processor communication, 233
QPI connections, 103–104
 read-  write operation, 145–146
registers and, 494
semiconductor memory, 173
status reporting, 233
structure, 234–235
timing, 203, 232–233
transducer, role of, 231

I/O privilege flag (IOPL), 519
I/O processor, 235
I/O program

execution of, 89, 91
time required for, 94

IPC (instructions per cycle), 628
Isolated I/O, 237
ISU (instruction sequence unit), 9

J
Java applications, 662
Java Virtual Machine, 662
JEDEC Solid State Technology Association, 183
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 J–  K  flip-  flop, 399–400, 402–403
Job control language (JCL), 282
Job program, 280–282
Jump instruction, 433

K
Karnaugh maps, 381–386
Kernel (nucleus), 279
Khronos Group’s OpenCL, 689
 K-  way set associative cache organization, 

140–142

L
Lands, compact disks, 218
Lane, 104
 Large-  scale integration (LSI), 24
 Last-  in-  first-  out (LIFO) queue, 463
L1 cache, 128
L3 cache, 128
L2 cache, 128
L2 control, 11
 Least-  frequently used (LFU) algorithm, 132, 145
 Least-  recently used (LRU) algorithm, 132, 145, 

299
Least significant digit, 319
Linear  tape-  open (LTO) system, 224
Linear  tape-  open (LTO) tape drives, 224
Linking, 40, 281, 474
Link layer, 105–107, 115
Links, InfiniBand, 265
Linux, 18
Little endian ordering, 455
Little’s law, 55–56
Load balancing, clusters, 636
Load/store addressing, ARM, 466–468
Load/store multiple addressing, ARM,  

468–469
Locality of reference, 125, 128, 158
Local variable, 437
Locked operation, 113
Logical address, 297
Logical cache, 132
Logical data operands, 421–422
Logical operations (opcode), 429
Logical shift, 430
Logic block, 406, 408
Logic (Boolean) instructions, 417
 Logic-  memory performance balance, 48–50
 Long-  term data storage function, 4
 Long-  term scheduling, 287–288
Lookup table, 408
Loop buffer, pipelining, 510–511
Loop unrolling, pipelining, 559
 Low-  voltage differential signaling (LVDS), 105
 LSI-  11 microinstruction execution, 751–754
LSU ( load-  store unit), 10

M
Machine cycles, 721
Machine instructions. See also Instruction cycle; 

Instruction formats
addresses, 417–419
arithmetic instructions, 416
ARM architecture, 417
BASIC instruction, 416
branch instructions, 433–434
conditional branch instruction, 433
conversion instructions, 432
data transfer instructions, 427–428
elements of, 413–414
 high-  level language, 416
 increment-  and-  skip-  if-  zero(ISZ) instruction, 

434
input/output instructions, 432
instruction register (IR), 415
instruction set design, 419
I/O instructions, 416
logic (Boolean) instructions, 416
memory instructions, 416
MMX instructions, 440–442
 multiple-  address instructions, 419
next instruction reference, 414
operands, 420–422
operations (opcode), 413
reduced instruction set computer  

(RISC), 419
result operand reference, 414
SETEND instruction, 425
skip instructions, 434
source and result operands, 414
source operand reference, 413
stacks and, 418
symbolic representation, 415
system control instructions, 432
test instructions, 416
 transfer-  of-  control instructions, 433–438
unconditional branch instruction, 434
 zero-  address instructions, 418

Machine parallelism, 581–582, 588–589
 Machine-  readable devices, 230
 Magnetic-  core memory, 24
Magnetic disk

access time, 201
contemporary rigid, 196
cylinder, 200
data organization and formatting, 196–199
 double-  sided disks, 200
intertrack gaps, 197
multiple platters, 200
multiple zone recording (MZR), 198
performance parameters, 201–203
physical characteristics, 199–201
read and write mechanisms, 195–196
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rotational delay, 201–202
rotational positional sensing (RPS), 202
sectors, 197
seek time, 201, 202
sequential organization, 203
 single-  sided disks, 200
timing, 203
transfer time, 202

Magnetic RAM (MRAM), 189
Magnetic tapes, 222–224
Magnetic tunneling junction (MTJ), 189
Magnetoresistive (MR) sensor, 196
Mainframe computers, 23, 47
Mantissa, 351
Many integrated core (MIC), 52
Mapping function of cache memory,  

133–144
associative, 138–140
direct, 134–138
 k-  way set associative cache organization, 

140–142
 set-  associative, 140–144

Mask, 430
 Medium-  term scheduling, 288
Memory, 83. See also Cache memory

access time (latency), 123
associative access, 123
auxiliary, 127
bank, 173
capacity, 121
characteristics, 121–127
concepts for internal, 121–122
control lines, 102
cycle time, 123
direct access, 122–123
hierarchy, 124–127
instructions, 416
interconnection structures, 99–100
interconnection transfers, 100
levels of, 125
locality of reference, 125
method of accessing units, 122–123
“natural” unit of organization of, 122
noncacheable, 146
PCIe TLP transaction types, 113
performance parameters, 123
physical types of, 123
random access, 123
 read-  only memory (ROM), 124
real, 300
secondary, 127
sequential access, 122
transfer rate, 123
 two-  level, 157–164

Memory address register (MAR), 14, 83, 
493–494, 497, 709–710

Memory bank, 173
Memory buffer register (MBR), 14, 83, 493–494, 

497, 499, 709–710, 712–713
Memory cell, 20
Memory controller hub (MCH), 255–256
Memory cycle time, 18, 123
Memory hierarchy, 124–127
Memory instructions, 416
Memory management

ARM, 309–314
base addresses, 297
compaction, 296
Intel x86, 304–309
intermediate queue, 293
logical addresses, 297
page frames, 297
page table, 298
paging, 297, 308–309
partitioning, 294–297
physical addresses, 297
segmentation, 303–306
SMP, 621
swapping, 293–294
 time-  consuming procedure, 296
translation lookaside buffer  

(TLB), 301–303
virtual memory, 299–301

Memory management unit (MMU), 35, 132, 310, 
458

 Cortex-  A and  Cortex-  A50, 35
 Cortex-  R, 35

 Memory-  mapped I/O, 237–238
Memory modules, 83, 84, 99
Memory protection, OS, 289
Memory Protection Unit (MPU), 35
MESI (modified/exclusive/shared/invalid) 

protocol, 621–627
line states, 625
L1-L2 cache consistency, 627
read hit, 626
read miss, 626
 read-  with-  intent-  to-  modify (RWITM), 626
state transition diagram, 625
write hit, 627
write miss, 626–627

Metallization, 20
Microcomputers, 3, 24
Microcontroller chip, 32–33
Microelectronics, 19–23

control unit, 20
data movement, 20
data processing, 20
data storage, 20
development of, 20–22

Microinstruction bus (MIB), 751
Microinstruction spectrum, 747
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 Micro-  operations ( micro-  ops), 152, 708–714
execute cycle, 712–713
fetch cycle, 709–711
indirect cycle, 711–712
instruction cycle, 713–714
instruction set, 715
interrupt cycle, 712
rules, 711
sequencing, 715
time units, 711

Microprocessor chips, 32
Microprocessor register organizations, 495–496
Microprocessors, 25–26
Microprogrammed control units, 536, 733–735
Microprogrammed implementation, 6
Microprogramming, 727, 730

address generation techniques, 743–744
advantages, 737
design considerations, 739–740
disadvantages, 737
encoding, 748–751
execution, 745–755
hard, 748
horizontal, 748
interrupt testing, 744
 LSI-  11 microinstruction execution, 751–754
 LSI-  11 microinstruction sequencing, 744–745
microinstructions, 730–733
microprogrammed control unit, 733–735
next sequential address, 744
opcode mapping, 744
sequencing techniques, 740–742
soft, 748
subroutine facility, 744
taxonomy, 745–748
vertical, 748
Wilkes control, 735–739

Microprogramming language, 731
Migratory lines, 681
Millions of  floating-  point operations per second 

(MFLOPS) rate, 59
Millions of instructions per second (MIPS) rate, 

59
Minuend, 338
MIPS rate, 59
MIPS R4000 microprocessor, 559–565

enhancing pipelining, 563
execution of loads and stores, 565
instruction set, 560–561
partitioning of chip, 560
pipelining instructions, 561–565

Miss, 126, 138
MMX (multimedia task)

instructions, 440–442, 444, 521
registers, 521–522

Mnemonics, 415, 761

Monitor (simple batch OS), 281
Monitor arrangement, I/O, 231
Monitor Coprocessor (MP), 520
Moore, Gordon, 21
Moore’s law, 21, 47, 51, 692

consequences of, 21–22
Most significant digit, 319
Motherboard, 7
Motorola MC68000 microprocessor registers, 495
 Movable-  head disk, 199
Multicore computers, 6–8

arithmetic and logic unit (ALU), 8
cache coherence, 674–675
cache memory, 6
central processing unit (CPU), 6, 667–671
cores, 6, 8
digital signal processors (DSPs), 669–671
equivalent instruction set architectures, 

671–674
external memory interface (EMIF), 671
graphics processing units (GPUs), 667–669
hardware performance, 657–660
heterogeneous multicore organization, 

667–675
homogenous multicore organization, 667
instruction logic, 8
levels of cache, 665–666
load/store logic, 8
memory subsystem memory controller 

(MSMC), 675
MOESI model, 675
motherboard, 7–8
multicore shared memory (MSM), 671
multicore shared memory controller 

(MSMC), 671
organization, 665–667
power consumption, 659–660
printed circuit board (PCB), 7
processor, 6, 8
simplified view of major elements of, 7
software performance, 660–665

Multicore processors, 6, 8, 657
Multilane distribution, 105
Multilevel cache memory, 147–149
 Multiple-  bit adders, 394–395
Multiple instruction, multiple data (MIMD) 

stream, 615
Multiple instruction, single data (MISD) stream, 

615
Multiple interrupt lines, I/O, 242
Multiple parallel processing, 628
Multiple platters, magnetic disks, 200
Multiple streams, pipelining, 509–510
Multiplexers, 388–390

in digital circuits to control signal and data 
routing, 389
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4- to-  1, 388–389
using AND, OR, and NOT gates, 389

Multiplexor, 18
Multiplexor channel, 262
Multiple zone recording (MZR), 198, 218
Multiplicand, 340–341
Multiplication

arithmetic shift, 345
Booth’s algorithm, 344–347
flowchart for unsigned binary, 342
hardware implementation of unsigned binary, 

341
twos complement, 342–347
unsigned integers, 330

Multiplier quotient (MQ), 14
Multiprocessor OS design, SMP considerations 

for, 284
Multithreading, 628–633

blocked, 630–632
 coarse-  grained, 630
 fine-  grained, 629
implicit and explicit, 628–629
interleaved, 629–632
principal approaches, 629–630
process, 628–629
process switch, 629
resource ownership, 628
scheduling/execution, 628
simultaneous (SMT), 630, 632–633, 667
thread, 629
thread switch, 629

N
NAND flash memory, 186–187, 188, 214
NAND gate, 377, 388
NaNs, IEEE standards, 365–366
 N-  disk array, 212
Negation, integers, 336–337
Negative overflow, 353
Negative underflow, 353
Nested Task (NT) flag, 519
Nested vector interrupt controller (NVIC), 36
Neumann, John von, 11, 81
Nibble, 324
NIST  SP-  800-145, 39
NIST SP 500-292 (NIST Cloud Computing 

Reference Architecture), 647–648
Noncacheable memory approach, 146
Nonredundant disk performance (RAID level 

0), 205
Nonremovable disk, 199
Nonuniform memory access (NUMA) machines, 

614, 615, 640–643
advantages and disadvantages, 643
motivation, 640–641
organization, 641–642

processor 3 on node 2 (P2-3) requests, 642
Nonvolatile memory, 124, 127
Nonvolatile RAM technologies, 188, 190
NOR flash memory, 186–188
NOR gate, 377
Normalized numbers, 67
NOR  S–  R latch, 398
NOT operation, 429
Not Write Through (NW), 521
Number system

base digit, 319
binary system, 321
converting between binary and decimal, 

321–324
decimal system, 319–320
fractions, 322–324
hexadecimal notation, 324–326
integers, 321–322
least significant digit, 319
most significant digit, 319
nibble, 324
positional number system, 320
radix point, 320

Numeric Error (NE), 521
NVIDIA’s CUDA, 689

O
Offset addressing, ARM, 467
Omnibus, 24
Operands, 420–422

 bit-  oriented view, 422
characters, 421
logical data, 421–422
numbers, 420–421
packed decimal, 420–421

Operating system (OS), 494
batch system, 280
functions, 276–280
interactive, 280
 interrupt-  driven I/O or DMA operations, 

285–286
interrupts, 283
memory management, 286
memory protection, 283
Multics OS, 287
multiprogramming batch, 283–286
objectives, 276–280
privileged instructions, 283
scheduling, 280, 287–293
setup time, 280
simple batch, 281–283
symmetric multiprocessors (SMPs), 617–621
timer, 283
 time-  sharing, 286–287
types of, 280–287
uniprogramming, 286
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Operational technology (OT), 31
Operations (opcode), 425–438

AND, 430
arithmetic shift operation, 431
ARM architecture, 444–445
basic arithmetic, 429
common instruction set, 426–427
conversion, 432
data transfer, 427–428
IBM EAS/390 data transfer operations, 428
input/output, 432
Intel x86 operation types, 438–444
logical, 429–431
nested procedures, 435, 436
NOT, 429
procedure call instructions, 435–438
process actions for various, 427
reentrant procedure, 436
rotate or cyclic shift, 430–431
stack frame, 437
system control, 432
 transfer-  of-  control, 433–438
XOR, 430

Optical memory, 195
characteristics, 222
compact disk (CD), 217–220
 high-  definition optical disks, 221

OR gate, 376
Original equipment manufacturers (OEMs), 24
Orthogonality, 472–473
 Out-  of-  order execution, 595–596
 Out-  of-  order issue, 585–586
Output dependency, 509, 579, 583
Overflow, 337

P
Packed decimal representation, 421
Packets, data, 109
Page fault, 299
Page frame, 297
 Page-  level cache disable (PCD), 521
 Page-  level writes transparent (PWT) bit 

controls, 521
Page replacement, 300
Pages, 297
Page tables, 298, 300–301
Paging, 297–298, 303–304, 521

demand, 299–300
virtual memory, 158
x86, 308–309, 463

Parallelism, 576
 application-  level, 662
fundamental limitations to, 579–581
 instruction-  level, 579, 581–582
 machine-  level, 581–582, 588–589
multicore computers, 657–659

procedural dependency and, 581
 process-  level, 662
resource conflict and, 581
 thread-  level, 662
true data dependency and, 579–581

Parallelized application, 637
Parallelizing compiler, 637
Parallel organizations, 615–617
Parallel processing

cache coherence, 621–624
chip multiprocessing, 630
cloud computing, 643–649
clusters, 633–639
MESI (modified/exclusive/shared/invalid) 

protocol, 624–627
multiple instruction, multiple data (MIMD) 

stream, 615, 617
multiple instruction, single data (MISD) 

stream, 615
multiple processor organizations, 615–617
multithreading, 628–633
nonuniform memory access (NUMA), 

640–643
single instruction, multiple data (SIMD) 

stream, 615, 617
single instruction, single data (SISD) 

stream, 615
symmetric multiprocessors (SMP), 617–621
write policies, 622

Parallel recording, 222
Parallel register, 401
Parameters, magnetic disks, 201–203
Parametric computing, 637
Parity bits, 176
Partial product, 341
Partial remainder, 347–349
Partitioning, I/O memory management, 294–297
Pascal, 159
Passive standby clustering method, 635
Patterson programs, 539
PCI Express (PCIe), 104, 107–115, 214, 265, 704

address spaces and transaction types, 113–114
data link layer packets, 115
devices that implement, 108–109
I/O device or controller, 108
I/O drawers, 270
legacy endpoint category, 109
multilane distribution, 110
ordered set block, 111
physical layer, 109–111
protocol architecture, 109
root complex, 108
TLP packet assembly, 114–115
transaction layer (TL), 112–115
transaction layer packet processing, 115
Type 0 and Type 1 configuration cycles, 114
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PCI Special Interest Group (SIG), 107
 PC-  relative addressing, 461
 PDP-  8 Bus Structure, main memory, 24
 PDP-  8 instruction format, 471–472
 PDP-  8 instruction format design, 471–472
 PDP-  11 instruction format design, 474
 PDP-  11 processor, 87
 PDP-  10 instruction format, 472–473
 PDP-  10 instruction format design,  

472–473
Pentium 4 cache, 149–152

execution unit, 152
fetch/decode unit, 150
instruction cache, 152
memory subsystem, 152
operating modes, 152
 out-  of-  order execution logic, 150
 write-  back policy, 152

Peripheral component interconnect  
(PCI), 107

Peripheral (external) devices, I/O, 233
Personal technology, 31
Phase change disk, 220
 Phase-  change RAM (PCRAM), 188, 189

SET and RESET operation, 189
Phit (physical unit), 104
Physical address, 297
Physical cache, 133
Physical characteristics of data storage, 124
Physical layer, 104–105
Physical records, 222
Physical types of memory, 123
Pipelining, 47. See also Instruction pipelining
Pit, 218
Platform as a service (PaaS), 41, 646
Platters, 195, 200
 Point-  to-  point interconnection structures, 24, 

100, 102–107
QPI link layer, 105–107
QPI physical layer, 104–105
QPI protocol layer, 107
QPI routing layer, 107

 Point-  to-  point interfaces, 255
 Polarization-  current-  induced magnetization 

switching, 189
Pollack’s rule, 660
Polycarbonates, 217
POP stack operation, 469, 474
Positional number system, 320
Positive overflow, 353
Positive underflow, 353
Postindexing, 462–463
Power consumption, 659–660
Power density, 50
Preindexing, 463
Printed circuit board (PCB), 7

Printers, 230
Private cloud, 646
Privileged instructions, 283
Procedural dependency, parallelism, 581
Procedure return, 438
Process

block, 107, 489, 560
control block, 289
multithreading, 628–633
resource ownership, 628
scheduling, 287–293
states, 288–290
switch, 629

 Process-  level parallelism, 662
Processor organization, 489–491

common fields or flags, 494
functional elements of, 715
requirements, 489

Processors
interconnection structures, 100
interconnection transfers, 100
1970s, 26
1980s, 26
1990s, 26
present times, 27

Product of sums (POS), 380
Program counter (PC), 14, 84, 289, 389–390, 493, 

497, 499, 710
Program execution

example, 86
execute cycle, 84
fetch cycle, 84, 87
fetched instruction, execution of, 85
instruction cycle, 84, 85, 87
interrupts, 89–98
I/O program, 89, 91

Programmable array logic (PAL), 406
Programmable logic array (PLA), 405–406
Programmable logic device (PLD),  

405–409
complex PLDs (CPLDs), 408
 field-  programmable logic array, 406–409
programmable logic array (PLA), 405–406
simple PLD (SPLD), 406
terminology, 406

Programmable  read-  only memory (PROM), 
169, 170

Programmed I/O
commands, 236, 238
instructions, 236–238
 interrupt-  driven I/O and, 239–248
isolated, 237
 memory-  mapped, 237
 memory-  mapped I/O, 237–238
overview of, 236
techniques, 235
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Programming, 83
Program status word (PSW), 494
Protection Enable (PE), 520
Pseudoinstruction, 483
Public cloud, 646
Pushdown list, 463

Q
Queues, 55

I/O operations, 267
QuickPath Interconnect (QPI), 102–107

balanced transmission, 105
differential signaling, 105
direct connections, 103
error control function, 106
flow control function, 106
layered protocol architecture, 103
multiple direct connections, 103
packetized data transfer, 103
physical Interface, 105
QPI link layer, 105–107
QPI physical layer, 104–105
QPI protocol layer, 107
QPI routing layer, 107
use on multicore computer, 103

Quiet NaN, 365–366
 Quine-  McCluskey method, 384–388

R
Radix point, 320, 330
RAID (Redundant Array of Independent 

Disks), 195, 204–213
comparison, 213
RAID level 5, 212
RAID level 4, 211–212
RAID level 1, 209–210
RAID level 6, 212
RAID level 3, 210–211
RAID level 2, 210
RAID level 0, 205–209

Random access, 123
 Random-  access memory (RAM), 167
Rate metric measures, 71, 73
Read hit/miss, 626
Read mechanisms, magnetic disks, 196
 Read-  mostly memory, 170
 Read-  only memory (ROM), 124, 169–170, 392

truth table for, 393
 Read-  with-  intent-  to-  modify (RWITM), 626
 Read-  write dependency, 509
Real memory, 300
Recordable ( CD-  R), 219
Reduced instruction set computer (RISC), 3, 27, 

536
architecture, 549–555
Berkeley study, 541–542, 565

cache, 545–546
characteristics, 538
classic, 553–555
 compiler-  based register optimization, 547–549
complex instruction sets, 537
conditional statements, 539
elements of design, 537
global variables, 545
 high-  level language (HLL) and, 537, 539–542, 

545
instruction execution, 537–542
large register file, 545–546
line of reasoning of, 538
one machine instruction per machine cycle, 

551
operands, 540–541
operations, 539–540
pipelining, 555–559
procedure calls, 541
qualitative assessment, 570–571
quantitative assessment, 570–571
referencing a local scalar, 546–547
register to register operations, 551–552
register windows, 543–545
simple addressing modes, 552
simple instruction formats, 552
vs. CISC design, 553–555, 570–571
 window-  based register file, 546–547

Redundant disk performance via Hamming 
code (RAID level 2), 210

Reentrant procedure, 436
Register addressing, 460–461, 551–552
Register file, instruction pipe line, 542–547
Register indirect addressing, 461
Register organization, 491–496
Register renaming, 586–587
Registers, 401–402, 490

address, 492
ARM, 527–529
control and status, 491, 493–495, 518, 519–521
in control of I/O operations, 494
current program status register (CPSR), 

527–529
data, 491
devoted to  floating-  point unit, 518
EFLAGS and RFLAGS, 518–519
general purpose, 491–492, 517–518, 528
graphics processor unit (GPU), 697–700
index, 492
instruction register (IR), 493
instruction set design, 419
Intel x86, 517–524
memory address register (MAR), 493–494, 

497
memory buffer register (MBR), 493–494, 497, 

499



Index  829

microprocessor register organizations, 
495–496

MMX, 521–522
numeric, 518
program status, 527, 528
reduced instruction set computer (RISC), 

543–545, 551–552
saved program status register (SPSR), 

527–529
segment, 518
16-bit data, 496
 software-  visible, 527
tags, 518
Texas Instruments 8800 Software 

Development Board (SDB), 759
 user-  visible, 491–493, 496

 Register-  to-  register organization, 551
Register window, 543–545
Relative address, 298
Relative addressing, 461
Removable disk, 199
Replacement algorithms, cache memory, 145
Resident monitor, 281
 Resistive-  capacitive (RC) delay, 50
Resistive RAM (ReRAM), 188, 189
Resource conflict, parallelism, 581
Resource encoding, 750
Resource hazard (structural hazard), pipelining, 

507–508
Resource ownership process, 628
Resume flag (RF), 519
Retire, 598–600
Ripple counters, 402–403
Root complex, 108
Rotate (cyclic shift) operation, 431
Rotating interrupt mode, 244
Rotational delay (latency), magnetic disks, 201
Rotational positional sensing (RPS), 202
Rounding, 364–365
Rounding, IEEE standards, 364
RU (recovery unit), 10

S
Saturation arithmetic, 441
Scalar values, 452
Scheduling, 287–293

I/O queue, 292
 long-  term, 287–288
 long-  term queue, 292
 medium-  term, 288
process control block, 289–290
process states, 288–290
queuing diagram representation of processor, 

292
 short-  term, 288–293
 short-  term queue, 292

techniques, 290–293
 time-  sharing system, 288

Secondary (auxiliary) memory, 127
Second generation computers, 17–18

CPU, 18
data channel, 18
multiplexor schedules, 18

Sectors, magnetic disks, 197
Seek time, magnetic disks, 202
Segmentation, Pentium II processor, 303–304
Segment pointers, 492
Selector channel, 262
Semantic gap, 537
Semiconductor memory, 24–25, 167, 174

address lines, 171
arrangement of cells in array, 170
chip logic, 170–172
chip packaging, 172–173
dynamic RAM (DRAM), 167–168
electrically erasable programmable  read-  only 

memory (EEPROM), 170
erasable programmable  read-  only memory 

(EPROM), 170
error correction in, 174–180
flash memory, 170
interleaved memory, 173–174
I/O module, 173
organization, 166
programmable ROM (PROM), 169, 170
 random-  access memory (RAM), 167
 read-  mostly memory, 170
 read-  only memory (ROM), 169–170
SRAM vs. DRAM, 169
static RAM (SRAM), 168–169
 trade-  offs among speed, density, and  

cost, 170
types, 167
write enable (WE) and output enable (OE) 

pins, 172, 173
Semiconductors, 127, 185, 214
Sensor/actuator technology, 31
Sequencing, 739–745
Sequential access, 122
 Sequential-  access device, 223
Sequential circuits, 396–405

counters, 402–405
 flip-  flops, 396–400
registers, 401–402

Sequential organization, magnetic disks, 203
Serial ATA (SATA) sockets, 9
Serial ATA (Serial Advanced Technology 

Attachment), 265
Serial recording, 222
Serpentine recording, 222
Server clustering approaches, 635
 Set-  associative mapping, 140–144



830  Index

Setup time, operating system (OS) efficiency, 
280–281

Shannon, Claude, 373
Shift registers, 401–402
 Short-  term data storage function, 4
 Short-  term scheduling, 288–290
Signaling NaN, 365–366
Signal lines, PCI, 99
Sign bit, 331
Sign extension, 334
Significand, 359

overflow, 359
underflow, 359

 Sign-  magnitude representation, 331
Silicon, 20
Simple PLD (SPLD), 406
Simultaneous multithreading (SMT), 630, 667
 Single-  error-  correcting,  double-  error-  detecting 

( SEC-  DED) code, 179–180
Single  error-  correcting (SEC) code, 179
Single instruction, multiple data (SIMD) stream, 

615
Single instruction, single data (SISD) stream, 

615
Single large expensive disk (SLEP), 204
 Single-  processor computer, 4–6

arithmetic and logic unit (ALU), 6
central processing unit (CPU), 4
internal structure of, 9
main memory, 4
processor, 4
registers, 6
system bus, 5
system interconnection, 5

 Single-  sided disks, 200
 Single-  system image, 637
 Single-  threaded scalar, 630–631
Skip instructions, 434
Small Computer System Interface (SCSI), 264
 Small-  scale integration (SSI), 21, 405
Snoop control unit (SCU), 677
Snoopy protocols, cache coherence, 623–624
Soft errors, 175
Software, 18, 83

cache coherence solutions, 622–623
dynamic voltage and frequency scaling 

(DVFS), 673–674
I/O driver, 214
multicore computer performance, 660–665
poll, 242
processing models, 673–674
software as a service (SaaS) model, 40–41
Valve game threading, 663–665

Software as a service (SaaS), 40–41, 645
Software poll technique, I/O, 242
 Solid-  state component, 17, 20
Solid state drives (SSDs), 17, 187, 212–216

compared to HDD, 214
organization, 214–216
practical issues, 216

SPARC (Scalable Processor Architecture), 542
addressing modes, 568
ALU operations, 567
branch instruction, 568–569
current window pointer (CWP), 566
effective address (EA) of an operand, 568
instruction format, 568–570
instruction set, 567–568
processor status register (PSR), 566
register set, 565–567
register window layout, 566
Sun SPARC, 452
UltraSPARC, 71, 300
window invalid mask (WIM), 566

Spatial locality, 159, 160
SPEC documentation

base metric, 71
benchmark, 71
peak metric, 71
rate metric, 71
reference machine, 71
speed metric, 71
system under test, 71

Special interest group (SIG), PCI, 107
Special mask interrupt mode, 244
Speculative execution, 48
Speed metric measures, 71
Speedup factor, 506–507
Speedup of the system, 53–55, 660–661
 Spin-  transfer torque RAM ( STT-  RAM), 188, 

189
Split cache, 149

memory, 147
 S–  R Latch, 396–398
Stack addressing, 463
Stack pointer, 492
Standard Performance Evaluation Corporation 

(SPEC) benchmarks
 floating-  point benchmarks, 70
integer benchmarks, 69, 72
SPEC CPU2006, 68–71
SPECint_base2006, 72
SPECint_rate_base2006, 72
SPECint_rate2006, 72
SPECint2006, 72
SPECjbb2013 (Java Business Benchmark), 68
SPECjvm2008, 68
SPECsfs2008, 68
SPECviewperf, 68
SPECvirt_sc2013, 68
SPECwpc, 68

State diagrams, instruction cycles, 414
State of a process, 288–290
Static RAM (SRAM), 36, 38, 148, 168–169, 187



Index  831

Status flags, 439
Status registers, 493–495
Status signals, I/O, 231–232
 Stored-  program concept, 11
Streaming multiprocessors (SMs), 691
Stripe, 205, 211, 212
Striped data, 211
Striped disk performance (RAID level 0), 

205–209
Structured programming (SAL), 159
Subnormal numbers, 366–367
Substrate, 195
Subtraction, 337–340

rule, 338
twos complement, 338–339

Subtrahend, 338
Sum of products (SOP), 379
Superpipelined approach, 578–579
Superpipelined processor, 578–579
Superscalar, 9, 28, 51, 149, 474, 632

branch prediction, 589
committing or retiring of instruction, 590
dependency in, 579–581
execution, 48
execution of programs, 589–590
implementation, 590
 in-  order completion, 583
instruction fetch stage, 589
instruction issue policy, 582–586
 instruction-  level parallelism in, 581–582
machine parallelism in, 581–582, 588–589
organization, 577
 out-  of-  order completion, 583–586
overview, 576–581
pipelining and scheduling techniques, 152, 507
processors, characteristics, 538
register renaming, 586–587
reported speedups, 577
types of orderings, 582
vs. superpipelining, 578–579

SuperSpeed, 264
Swapping, I/O memory management, 293–294
Switch, 108
Symmetric multiprocessors (SMPs), 614, 615, 

617–621
availability, 618
bus organization, 620
characteristics, 617
DMA transfers, 619
existence of multiple processors, 618
incremental growth, 618
memory and I/O channels, 619
memory management, 621
operating system of, 617–621
performance, 617
reliability and fault tolerance, 621
scaling, 618

scheduling, 621
simultaneous concurrent processes, 621
synchronization, 621

SYNCH byte, 199
Synchronous counter, 403–405
Synchronous DRAM (SDRAM), 181–182

DDR SDRAM, 183–184
Syndrome words, 176
System buses, 5, 101
System control operations, 432
System interconnection (bus), 5
System Performance Evaluation Corporation 

(SPEC), 68. See also SPEC documentation
System software, 17

T
Tags, cache memory, 140
Task Switched (TS), 520
Temporal locality, 159–160
Test instructions, 416
Texas Instruments (TI) K2H SoC platform, 

669–670
Texas Instruments 8800 Software Development 

Board (SDB), 755–765
block diagram, 756
components, 756
control operations, 757
counters, 759
external environment, 762–763
microinstruction format, 757–758
microsequencer, 757–762
microsequencer microinstruction bits, 761
registered ALU, 762–765
registered ALU instruction field, 764–765
registers, 759
stack operations, 759–760
subfields, 760, 761

Third generation of computers, 18–24
DEC P  DP-   8, 23–24
IBM system/360, 22–23
microelectronics, 19–22

32-bit Thumb instructions, 482
Thrashing, 138, 299
Thread, 629, 690
Thread blocks, 690
Threading granularity, 663
Threading strategy

 coarse-  grained, 663
 fine-  grained, 663
hybrid, 663
simultaneous multithreading (SMT), 667
Valve game threading, 663–665

 Thread-  level parallelism, 662
Throughput, 71
Thumb instruction set, ARM, 479–481
Thunderbolt, 263, 265
 Time-  sharing operating systems (OS), 296–297



832  Index

Timing
I/O modules, 203, 232–233
magnetic disk, 203
memory system effects on instruction, 601

TinyOS, 31
TLP packet assembly, 114–115

Data field, 115
 end-  to-  end CRC field, 115
Header field, 115

Tracks, magnetic disks, 196–197
Transaction layer, 112–114
Transducer, I/O, 231
Transfer of control operations, 433
Transfer rate, 123
Transfer time, magnetic disks, 201–202
Transistors, 17–18
Translation lookaside buffer (TLB),  

301–303
Trap flag (TF), 518
True data (flow) dependency, parallelism, 

579–581
Truth table, 374, 378, 403

binary addition, 394
for  read-  only memory (ROM), 393
64-bit, 393

Turing, Alan, 11
 Two-  level cache memory, 157–164

characteristics of, 158
locality, 158–160
operation of, 160–161
performance parameters, 161–164
relative dynamic frequency of  high-  level 

language operations, 159
Twos complement operation of integers, 

331–333, 336, 342–347

U
Ultra Enterprise 2, 71
 Ultra-  large-  scale integration (ULSI), 24
UltraSPARC II processor, 71
Unary operator, 417
Unconditional branch instructions, 482
Unconditional jump, 754
Underflow, 353, 358
Unified cache memory, 149
Uniform memory access (UMA), 640
Uniprocessors, 615–617, 619, 621
Uniprogramming, operating systems  

(OS), 280
Unit of transfer, 122
Universal Serial Bus (USB), 263–264
Upward compatible, 496
Use bit, 146
User/computer interfacing, OS, 276–278
 User-  visible registers, 491–493
Utilities, OS, 277
Utility program, 277

V
Vacuum tubes, development of, 11–17
Valve game threading, 663–665
 Variable-  length instruction formats, 473–477
 Variable-  sized partitions, 295–296
VAX architecture, 300
VAX instruction format design, 474–477, 479, 537
Vector, 243
Vector  floating-  point (VFP) unit, 603
Vertical loss, 632
 Very-  large-  scale integration (VLSI), 24
Very long instruction word (VLIW), 632
Video display terminals (VDTs), 230
Virtual address fields, 305
Virtual cache memory, 132
Virtual Interrupt Flag (VIF), 519
Virtual memory, 299–301, 494

demand paging, 299
page fault, 299
page replacement, 299
page table, 300–301
thrashing, 299

Virtual Mode (VM) bit, 519
Volatile memory, 32, 124
Von Neumann architecture, 81–82
Von Neumann machines, 13

W
Wafer, silicon, 21
Warps, 696
Watchdog, 680
 Wi-  Fi, 266
Wilkes control, 735–739, 746
Winchester disk format, 199
Windows, 18
Words, 14

of memory, 85, 101, 167, 174, 495
packed, 441

Write after read (WAR) dependency, 509
Write after write (WAW) dependency, 509
Write back technique, 132, 146, 260, 516, 562, 565
Write hit/miss, 627
Write mechanisms, magnetic disks, 195–196
Write policy, cache memory, 145–147
Write Protect (WP), 521
Write through technique, 145, 260, 622
 Write-  update protocol, 624

X
X86 and ARM data types, 422–425
Xeon E5-2600/4600, 255–257
XOR operations, 430
XU (translation unit), 10

Z
 Zero-  address instructions, 418
Zones, defined, 198



833

Credits

Page 4: “There is remarkably . . . not at the time of design” based on Siewiorek,  D., Bell,  C., and 
Newell, A. Computer Structures: Principles and Examples. New York:  McGraw-  Hill, 1982.

pp. 12–13: “2.2 First: Since the device is primarily a computer. . . . It will be seen that it is again best to 
make all transfers from M (by O) into R, and never directly from C” based on Von Neumann, J. First 
Draft of a Report on the EDVAC. Moore School, University of Pennsylvania, 1945.

p. 39: Excerpt from: The NIST Definition of Cloud Computing (42 words). Grance, T., and Mell, P. “The 
NIST Definition of Cloud Computing.” NIST  SP-  800-145. National Institute of Standard and Technology.

p. 57: Figure 2.5: System Clock. Image courtesy of The Computer Language Company Inc., www 
.computerlanguage.com

p.  269: Figure 7.20: IBM zEC12 I/O  Frames–  Front View IBM, Reprinted by Permission. IBM  
zEnterprise EC12 Technical Guide, SG24-8049. http://www.redbooks.ibm.com/abstracts/sg248049 
.html?

p. 540: Table 15.2: Weighted Relative Dynamic Frequency of HLL Operations based on Patterson, D., 
and Dequin, C. “A VLSI RISC.” Computer, September 1982.

p. 634: Figure 17.8: Cluster Configurations based on Buyya, R. High Performance Cluster Computing: 
Architectures and Systems. Upper Saddle River, NJ: Prentice Hall, 1999.

p.  638: “Lists the following as desirable cluster middleware services and functions . . .” based on 
Hwang, K., et al. “Designing SSI Clusters with Hierarchical Checkpointing and Single I/O Space.” 
IEEE Concurrency,  January–  March 1999.

p. 652: Table 17.3: Typical Cache Hit Rate on S/390 SMP Configuration. MAK97.

p. 670: Figure 18.8: Texas Instruments 66AK2H12 Heterogenous Multicore Chip. Courtesy of Texas 
Instruments.

p. 693: Figure 19.3:  Floating-  Point Operations per Second for CPU and GPU. Image courtesy of NVIDIA 
Corporation.

p. 695: Figure 19.5: Single SM Architecture. Image courtesy of NVIDIA Corporation.

p. 703: Figure 19.11: Intel Gen8 Slice adapted from Intel Corp. The Computer Architecture of Intel 
Processor Graphics Gen8. Intel White Paper, September 2014.

833

http:\\www.computerlanguage.com
http:\\www.computerlanguage.com
http://www.redbooks.ibm.com/abstracts/sg248049.html?
http://www.redbooks.ibm.com/abstracts/sg248049.html?


This page intentionally left blank 



digital resources for students
Your new textbook provides 12-month access to digital resources that may include VideoNotes 
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes, and 
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