
Abaqus Analysis User’s Guide

Abaqus Version 6.6 ID:

Printed on:

Abaqus 6.13
Analysis User’s Guide

Volume I: Introduction,
Spatial Modeling,

Execution & Output

Abaqus Analysis

User’s Guide

Volume I

Abaqus Version 6.6 ID:

Printed on:

Legal Notices
CAUTION: This documentation is intended for qualified users who will exercise sound engineering judgment and expertise in the use of the Abaqus

Software. The Abaqus Software is inherently complex, and the examples and procedures in this documentation are not intended to be exhaustive or to apply

to any particular situation. Users are cautioned to satisfy themselves as to the accuracy and results of their analyses.

Dassault Systèmes and its subsidiaries, including Dassault Systèmes Simulia Corp., shall not be responsible for the accuracy or usefulness of any analysis

performed using the Abaqus Software or the procedures, examples, or explanations in this documentation. Dassault Systèmes and its subsidiaries shall not

be responsible for the consequences of any errors or omissions that may appear in this documentation.

The Abaqus Software is available only under license from Dassault Systèmes or its subsidiary and may be used or reproduced only in accordance with the

terms of such license. This documentation is subject to the terms and conditions of either the software license agreement signed by the parties, or, absent

such an agreement, the then current software license agreement to which the documentation relates.

This documentation and the software described in this documentation are subject to change without prior notice.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.

The Abaqus Software is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA.

© Dassault Systèmes, 2013

Abaqus, the 3DS logo, SIMULIA, CATIA, and Unified FEA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the United

States and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning

trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.13 Installation and Licensing Guide.

Abaqus Version 6.6 ID:

Printed on:

Preface

This section lists various resources that are available for help with using Abaqus Unified FEA software.

Support

Both technical software support (for problems with creating a model or performing an analysis) and systems

support (for installation, licensing, and hardware-related problems) for Abaqus are offered through a global

network of support offices, as well as through our online support system. Regional contact information is

accessible from the Locations page at www.3ds.com/simulia. The online support system is accessible from

the Support page at www.3ds.com/simulia.

Online support

SIMULIA provides a knowledge database of answers and solutions to questions that we have answered, as

well as guidelines on how to use Abaqus, SIMULIA Scenario Definition, Isight, and other SIMULIA products.

The knowledge database is available from the Support page at www.3ds.com/simulia.

By using the online support system, you can also submit new requests for support. All support incidents

are tracked. If you contact us by means outside the system to discuss an existing support problem and you

know the support request number, please mention it so that we can query the database to see what the latest

action has been.

Anonymous ftp site

To facilitate data transfer with SIMULIA, an anonymous ftp account is available at ftp.simulia.com.
Login as user anonymous, and type your e-mail address as your password. Contact support before placing

files on the site.

Training

All support offices offer regularly scheduled public training classes. The courses are offered in a traditional

classroom form and via the Web. We also provide training seminars at customer sites. All training classes

and seminars include workshops to provide as much practical experience with Abaqus as possible. For a

schedule and descriptions of available classes, see the Training page at www.3ds.com/simulia or call your

support office.

Feedback

We welcome any suggestions for improvements to Abaqus software, the support program, or documentation.

We will ensure that any enhancement requests you make are considered for future releases. If you wish to

make a suggestion about the service or products, refer to www.3ds.com/simulia. Complaints should be made

by contacting your support office or by visiting the Quality Assurance page at www.3ds.com/simulia.

Abaqus Version 6.6 ID:

Printed on:

Abaqus Version 6.6 ID:

Printed on:

CONTENTS

Contents

Volume I

PART I INTRODUCTION, SPATIAL MODELING, AND EXECUTION

1. Introduction

Introduction: general 1.1.1

Abaqus syntax and conventions

Input syntax rules 1.2.1

Conventions 1.2.2

Abaqus model definition

Defining a model in Abaqus 1.3.1

Parametric modeling

Parametric input 1.4.1

2. Spatial Modeling

Node definition

Node definition 2.1.1

Parametric shape variation 2.1.2

Nodal thicknesses 2.1.3

Normal definitions at nodes 2.1.4

Transformed coordinate systems 2.1.5

Adjusting nodal coordinates 2.1.6

Element definition

Element definition 2.2.1

Element foundations 2.2.2

Defining reinforcement 2.2.3

Defining rebar as an element property 2.2.4

Orientations 2.2.5

Surface definition

Surfaces: overview 2.3.1

Element-based surface definition 2.3.2

Node-based surface definition 2.3.3

Analytical rigid surface definition 2.3.4

i

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Eulerian surface definition 2.3.5

Operating on surfaces 2.3.6

Rigid body definition

Rigid body definition 2.4.1

Integrated output section definition

Integrated output section definition 2.5.1

Mass adjustment

Adjust and/or redistribute mass of an element set 2.6.1

Nonstructural mass definition

Nonstructural mass definition 2.7.1

Distribution definition

Distribution definition 2.8.1

Display body definition

Display body definition 2.9.1

Assembly definition

Defining an assembly 2.10.1

Matrix definition

Defining matrices 2.11.1

3. Job Execution

Execution procedures: overview

Execution procedure for Abaqus: overview 3.1.1

Execution procedures

Obtaining information 3.2.1

Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution 3.2.2

SIMULIA Co-Simulation Engine director execution 3.2.3

Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD co-simulation execution 3.2.4

Dymola model execution 3.2.5

Abaqus/CAE execution 3.2.6

Abaqus/Viewer execution 3.2.7

Python execution 3.2.8

Parametric studies 3.2.9

Abaqus documentation 3.2.10

Licensing utilities 3.2.11

ASCII translation of results (.fil) files 3.2.12

Joining results (.fil) files 3.2.13

ii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Querying the keyword/problem database 3.2.14

Fetching sample input files 3.2.15

Making user-defined executables and subroutines 3.2.16

Input file and output database upgrade utility 3.2.17

Generating output database reports 3.2.18

Joining output database (.odb) files from restarted analyses 3.2.19

Combining output from substructures 3.2.20

Combining data from multiple output databases 3.2.21

Network output database file connector 3.2.22

Mapping thermal and magnetic loads 3.2.23

Element matrix assembly utility 3.2.24

Fixed format conversion utility 3.2.25

Translating Nastran bulk data files to Abaqus input files 3.2.26

Translating Abaqus files to Nastran bulk data files 3.2.27

Translating ANSYS input files to Abaqus input files 3.2.28

Translating PAM-CRASH input files to partial Abaqus input files 3.2.29

Translating RADIOSS input files to partial Abaqus input files 3.2.30

Translating Abaqus output database files to Nastran Output2 results files 3.2.31

Translating LS-DYNA data files to Abaqus input files 3.2.32

Exchanging Abaqus data with ZAERO 3.2.33

Translating Abaqus data to msc.adams modal neutral files 3.2.34

Encrypting and decrypting Abaqus input data 3.2.35

Job execution control 3.2.36

Environment file settings

Using the Abaqus environment settings 3.3.1

Managing memory and disk resources

Managing memory and disk use in Abaqus 3.4.1

Parallel execution

Parallel execution: overview 3.5.1

Parallel execution in Abaqus/Standard 3.5.2

Parallel execution in Abaqus/Explicit 3.5.3

Parallel execution in Abaqus/CFD 3.5.4

File extension definitions

File extensions used by Abaqus 3.6.1

FORTRAN unit numbers

FORTRAN unit numbers used by Abaqus 3.7.1

iii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

PART II OUTPUT

4. Output

Output 4.1.1

Output to the data and results files 4.1.2

Output to the output database 4.1.3

Error indicator output 4.1.4

Output variables

Abaqus/Standard output variable identifiers 4.2.1

Abaqus/Explicit output variable identifiers 4.2.2

Abaqus/CFD output variable identifiers 4.2.3

The postprocessing calculator

The postprocessing calculator 4.3.1

5. File Output Format

Accessing the results file

Accessing the results file: overview 5.1.1

Results file output format 5.1.2

Accessing the results file information 5.1.3

Utility routines for accessing the results file 5.1.4

OI.1 Abaqus/Standard Output Variable Index

OI.2 Abaqus/Explicit Output Variable Index

OI.3 Abaqus/CFD Output Variable Index

iv

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Volume II

PART III ANALYSIS PROCEDURES, SOLUTION, AND CONTROL

6. Analysis Procedures

Introduction

Solving analysis problems: overview 6.1.1

Defining an analysis 6.1.2

General and linear perturbation procedures 6.1.3

Multiple load case analysis 6.1.4

Direct linear equation solver 6.1.5

Iterative linear equation solver 6.1.6

Static stress/displacement analysis

Static stress analysis procedures: overview 6.2.1

Static stress analysis 6.2.2

Eigenvalue buckling prediction 6.2.3

Unstable collapse and postbuckling analysis 6.2.4

Quasi-static analysis 6.2.5

Direct cyclic analysis 6.2.6

Low-cycle fatigue analysis using the direct cyclic approach 6.2.7

Dynamic stress/displacement analysis

Dynamic analysis procedures: overview 6.3.1

Implicit dynamic analysis using direct integration 6.3.2

Explicit dynamic analysis 6.3.3

Direct-solution steady-state dynamic analysis 6.3.4

Natural frequency extraction 6.3.5

Complex eigenvalue extraction 6.3.6

Transient modal dynamic analysis 6.3.7

Mode-based steady-state dynamic analysis 6.3.8

Subspace-based steady-state dynamic analysis 6.3.9

Response spectrum analysis 6.3.10

Random response analysis 6.3.11

Steady-state transport analysis

Steady-state transport analysis 6.4.1

Heat transfer and thermal-stress analysis

Heat transfer analysis procedures: overview 6.5.1

Uncoupled heat transfer analysis 6.5.2

v

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Fully coupled thermal-stress analysis 6.5.3

Adiabatic analysis 6.5.4

Fluid dynamic analysis

Fluid dynamic analysis procedures: overview 6.6.1

Incompressible fluid dynamic analysis 6.6.2

Electromagnetic analysis

Electromagnetic analysis procedures 6.7.1

Piezoelectric analysis 6.7.2

Coupled thermal-electrical analysis 6.7.3

Fully coupled thermal-electrical-structural analysis 6.7.4

Eddy current analysis 6.7.5

Magnetostatic analysis 6.7.6

Coupled pore fluid flow and stress analysis

Coupled pore fluid diffusion and stress analysis 6.8.1

Geostatic stress state 6.8.2

Mass diffusion analysis

Mass diffusion analysis 6.9.1

Acoustic and shock analysis

Acoustic, shock, and coupled acoustic-structural analysis 6.10.1

Abaqus/Aqua analysis

Abaqus/Aqua analysis 6.11.1

Annealing

Annealing procedure 6.12.1

7. Analysis Solution and Control

Solving nonlinear problems

Solving nonlinear problems 7.1.1

Analysis convergence controls

Convergence and time integration criteria: overview 7.2.1

Commonly used control parameters 7.2.2

Convergence criteria for nonlinear problems 7.2.3

Time integration accuracy in transient problems 7.2.4

vi

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

PART IV ANALYSIS TECHNIQUES

8. Analysis Techniques: Introduction

Analysis techniques: overview 8.1.1

9. Analysis Continuation Techniques

Restarting an analysis

Restarting an analysis 9.1.1

Importing and transferring results

Transferring results between Abaqus analyses: overview 9.2.1

Transferring results between Abaqus/Explicit and Abaqus/Standard 9.2.2

Transferring results from one Abaqus/Standard analysis to another 9.2.3

Transferring results from one Abaqus/Explicit analysis to another 9.2.4

10. Modeling Abstractions

Substructuring

Using substructures 10.1.1

Defining substructures 10.1.2

Submodeling

Submodeling: overview 10.2.1

Node-based submodeling 10.2.2

Surface-based submodeling 10.2.3

Generating matrices

Generating structural matrices 10.3.1

Generating thermal matrices 10.3.2

Symmetric model generation, results transfer, and analysis of cyclic symmetry models

Symmetric model generation 10.4.1

Transferring results from a symmetric mesh or a partial three-dimensional mesh to

a full three-dimensional mesh 10.4.2

Analysis of models that exhibit cyclic symmetry 10.4.3

Periodic media analysis

Periodic media analysis 10.5.1

Meshed beam cross-sections

Meshed beam cross-sections 10.6.1

vii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Modeling discontinuities as an enriched feature using the extended finite element method

Modeling discontinuities as an enriched feature using the extended finite element

method 10.7.1

11. Special-Purpose Techniques

Inertia relief

Inertia relief 11.1.1

Mesh modification or replacement

Element and contact pair removal and reactivation 11.2.1

Geometric imperfections

Introducing a geometric imperfection into a model 11.3.1

Fracture mechanics

Fracture mechanics: overview 11.4.1

Contour integral evaluation 11.4.2

Crack propagation analysis 11.4.3

Surface-based fluid modeling

Surface-based fluid cavities: overview 11.5.1

Fluid cavity definition 11.5.2

Fluid exchange definition 11.5.3

Inflator definition 11.5.4

Mass scaling

Mass scaling 11.6.1

Selective subcycling

Selective subcycling 11.7.1

Steady-state detection

Steady-state detection 11.8.1

12. Adaptivity Techniques

Adaptivity techniques 12.1.1

ALE adaptive meshing

ALE adaptive meshing: overview 12.2.1

Defining ALE adaptive mesh domains in Abaqus/Explicit 12.2.2

ALE adaptive meshing and remapping in Abaqus/Explicit 12.2.3

Modeling techniques for Eulerian adaptive mesh domains in Abaqus/Explicit 12.2.4

Output and diagnostics for ALE adaptive meshing in Abaqus/Explicit 12.2.5

viii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Defining ALE adaptive mesh domains in Abaqus/Standard 12.2.6

ALE adaptive meshing and remapping in Abaqus/Standard 12.2.7

Adaptive remeshing

Adaptive remeshing: overview 12.3.1

Selection of error indicators influencing adaptive remeshing 12.3.2

Solution-based mesh sizing 12.3.3

Analysis continuation after mesh replacement

Mesh-to-mesh solution mapping 12.4.1

13. Optimization Techniques

Structural optimization: overview

Structural optimization: overview 13.1.1

Optimization models

Design responses 13.2.1

Objectives and constraints 13.2.2

Creating Abaqus optimization models 13.2.3

14. Eulerian Analysis

Eulerian analysis 14.1.1

Defining Eulerian boundaries 14.1.2

Eulerian mesh motion 14.1.3

Defining adaptive mesh refinement in the Eulerian domain 14.1.4

15. Particle Methods

Discrete element method

Discrete element method 15.1.1

Continuum particle analyses

Smoothed particle hydrodynamics 15.2.1

Finite element conversion to SPH particles 15.2.2

16. Sequentially Coupled Multiphysics Analyses

Predefined fields for sequential coupling 16.1.1

Sequentially coupled thermal-stress analysis 16.1.2

Predefined loads for sequential coupling 16.1.3

17. Co-simulation

Co-simulation: overview 17.1.1

ix

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Preparing an Abaqus analysis for co-simulation

Preparing an Abaqus analysis for co-simulation 17.2.1

Co-simulation between Abaqus solvers

Structural-to-structural co-simulation 17.3.1

Fluid-to-structural co-simulation and conjugate heat transfer 17.3.2

Electromagnetic-to-structural and electromagnetic-to-thermal co-simulation 17.3.3

Executing a co-simulation 17.3.4

Co-simulation using Abaqus and discrete models

Structural-to-logical co-simulation 17.4.1

18. Extending Abaqus Analysis Functionality

User subroutines and utilities

User subroutines: overview 18.1.1

Available user subroutines 18.1.2

Available utility routines 18.1.3

19. Design Sensitivity Analysis

Design sensitivity analysis 19.1.1

20. Parametric Studies

Scripting parametric studies

Scripting parametric studies 20.1.1

Parametric studies: commands

aStudy.combine(): Combine parameter samples for parametric studies. 20.2.1

aStudy.constrain(): Constrain parameter value combinations in parametric studies. 20.2.2

aStudy.define(): Define parameters for parametric studies. 20.2.3

aStudy.execute(): Execute the analysis of parametric study designs. 20.2.4

aStudy.gather(): Gather the results of a parametric study. 20.2.5

aStudy.generate(): Generate the analysis job data for a parametric study. 20.2.6

aStudy.output(): Specify the source of parametric study results. 20.2.7

aStudy=ParStudy(): Create a parametric study. 20.2.8

aStudy.report(): Report parametric study results. 20.2.9

aStudy.sample(): Sample parameters for parametric studies. 20.2.10

x

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Volume III

PART V MATERIALS

21. Materials: Introduction

Material library: overview 21.1.1

Material data definition 21.1.2

Combining material behaviors 21.1.3

General properties

Density 21.2.1

22. Elastic Mechanical Properties

Overview

Elastic behavior: overview 22.1.1

Linear elasticity

Linear elastic behavior 22.2.1

No compression or no tension 22.2.2

Plane stress orthotropic failure measures 22.2.3

Porous elasticity

Elastic behavior of porous materials 22.3.1

Hypoelasticity

Hypoelastic behavior 22.4.1

Hyperelasticity

Hyperelastic behavior of rubberlike materials 22.5.1

Hyperelastic behavior in elastomeric foams 22.5.2

Anisotropic hyperelastic behavior 22.5.3

Stress softening in elastomers

Mullins effect 22.6.1

Energy dissipation in elastomeric foams 22.6.2

Linear viscoelasticity

Time domain viscoelasticity 22.7.1

Frequency domain viscoelasticity 22.7.2

Nonlinear viscoelasticity

Hysteresis in elastomers 22.8.1

Parallel rheological framework 22.8.2

xi

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Rate sensitive elastomeric foams

Low-density foams 22.9.1

23. Inelastic Mechanical Properties

Overview

Inelastic behavior 23.1.1

Metal plasticity

Classical metal plasticity 23.2.1

Models for metals subjected to cyclic loading 23.2.2

Rate-dependent yield 23.2.3

Rate-dependent plasticity: creep and swelling 23.2.4

Annealing or melting 23.2.5

Anisotropic yield/creep 23.2.6

Johnson-Cook plasticity 23.2.7

Dynamic failure models 23.2.8

Porous metal plasticity 23.2.9

Cast iron plasticity 23.2.10

Two-layer viscoplasticity 23.2.11

ORNL – Oak Ridge National Laboratory constitutive model 23.2.12

Deformation plasticity 23.2.13

Other plasticity models

Extended Drucker-Prager models 23.3.1

Modified Drucker-Prager/Cap model 23.3.2

Mohr-Coulomb plasticity 23.3.3

Critical state (clay) plasticity model 23.3.4

Crushable foam plasticity models 23.3.5

Fabric materials

Fabric material behavior 23.4.1

Jointed materials

Jointed material model 23.5.1

Concrete

Concrete smeared cracking 23.6.1

Cracking model for concrete 23.6.2

Concrete damaged plasticity 23.6.3

Permanent set in rubberlike materials

Permanent set in rubberlike materials 23.7.1

xii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

24. Progressive Damage and Failure

Progressive damage and failure: overview

Progressive damage and failure 24.1.1

Damage and failure for ductile metals

Damage and failure for ductile metals: overview 24.2.1

Damage initiation for ductile metals 24.2.2

Damage evolution and element removal for ductile metals 24.2.3

Damage and failure for fiber-reinforced composites

Damage and failure for fiber-reinforced composites: overview 24.3.1

Damage initiation for fiber-reinforced composites 24.3.2

Damage evolution and element removal for fiber-reinforced composites 24.3.3

Damage and failure for ductile materials in low-cycle fatigue analysis

Damage and failure for ductile materials in low-cycle fatigue analysis: overview 24.4.1

Damage initiation for ductile materials in low-cycle fatigue 24.4.2

Damage evolution for ductile materials in low-cycle fatigue 24.4.3

25. Hydrodynamic Properties

Overview

Hydrodynamic behavior: overview 25.1.1

Equations of state

Equation of state 25.2.1

26. Other Material Properties

Mechanical properties

Material damping 26.1.1

Thermal expansion 26.1.2

Field expansion 26.1.3

Viscosity 26.1.4

Heat transfer properties

Thermal properties: overview 26.2.1

Conductivity 26.2.2

Specific heat 26.2.3

Latent heat 26.2.4

Acoustic properties

Acoustic medium 26.3.1

xiii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Mass diffusion properties

Diffusivity 26.4.1

Solubility 26.4.2

Electromagnetic properties

Electrical conductivity 26.5.1

Piezoelectric behavior 26.5.2

Magnetic permeability 26.5.3

Pore fluid flow properties

Pore fluid flow properties 26.6.1

Permeability 26.6.2

Porous bulk moduli 26.6.3

Sorption 26.6.4

Swelling gel 26.6.5

Moisture swelling 26.6.6

User materials

User-defined mechanical material behavior 26.7.1

User-defined thermal material behavior 26.7.2

xiv

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Volume IV

PART VI ELEMENTS

27. Elements: Introduction

Element library: overview 27.1.1

Choosing the element’s dimensionality 27.1.2

Choosing the appropriate element for an analysis type 27.1.3

Section controls 27.1.4

28. Continuum Elements

General-purpose continuum elements

Solid (continuum) elements 28.1.1

One-dimensional solid (link) element library 28.1.2

Two-dimensional solid element library 28.1.3

Three-dimensional solid element library 28.1.4

Cylindrical solid element library 28.1.5

Axisymmetric solid element library 28.1.6

Axisymmetric solid elements with nonlinear, asymmetric deformation 28.1.7

Fluid continuum elements

Fluid (continuum) elements 28.2.1

Fluid element library 28.2.2

Infinite elements

Infinite elements 28.3.1

Infinite element library 28.3.2

Warping elements

Warping elements 28.4.1

Warping element library 28.4.2

29. Structural Elements

Membrane elements

Membrane elements 29.1.1

General membrane element library 29.1.2

Cylindrical membrane element library 29.1.3

Axisymmetric membrane element library 29.1.4

xv

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Truss elements

Truss elements 29.2.1

Truss element library 29.2.2

Beam elements

Beam modeling: overview 29.3.1

Choosing a beam cross-section 29.3.2

Choosing a beam element 29.3.3

Beam element cross-section orientation 29.3.4

Beam section behavior 29.3.5

Using a beam section integrated during the analysis to define the section behavior 29.3.6

Using a general beam section to define the section behavior 29.3.7

Beam element library 29.3.8

Beam cross-section library 29.3.9

Frame elements

Frame elements 29.4.1

Frame section behavior 29.4.2

Frame element library 29.4.3

Elbow elements

Pipes and pipebends with deforming cross-sections: elbow elements 29.5.1

Elbow element library 29.5.2

Shell elements

Shell elements: overview 29.6.1

Choosing a shell element 29.6.2

Defining the initial geometry of conventional shell elements 29.6.3

Shell section behavior 29.6.4

Using a shell section integrated during the analysis to define the section behavior 29.6.5

Using a general shell section to define the section behavior 29.6.6

Three-dimensional conventional shell element library 29.6.7

Continuum shell element library 29.6.8

Axisymmetric shell element library 29.6.9

Axisymmetric shell elements with nonlinear, asymmetric deformation 29.6.10

30. Inertial, Rigid, and Capacitance Elements

Point mass elements

Point masses 30.1.1

Mass element library 30.1.2

xvi

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Rotary inertia elements

Rotary inertia 30.2.1

Rotary inertia element library 30.2.2

Rigid elements

Rigid elements 30.3.1

Rigid element library 30.3.2

Capacitance elements

Point capacitance 30.4.1

Capacitance element library 30.4.2

31. Connector Elements

Connectors: overview 31.1.1

Connector elements 31.1.2

Connector actuation 31.1.3

Connector element library 31.1.4

Connection-type library 31.1.5

Connector element behavior

Connector behavior 31.2.1

Connector elastic behavior 31.2.2

Connector damping behavior 31.2.3

Connector functions for coupled behavior 31.2.4

Connector friction behavior 31.2.5

Connector plastic behavior 31.2.6

Connector damage behavior 31.2.7

Connector stops and locks 31.2.8

Connector failure behavior 31.2.9

Connector uniaxial behavior 31.2.10

32. Special-Purpose Elements

Spring elements

Springs 32.1.1

Spring element library 32.1.2

Dashpot elements

Dashpots 32.2.1

Dashpot element library 32.2.2

Flexible joint elements

Flexible joint element 32.3.1

Flexible joint element library 32.3.2

xvii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Distributing coupling elements

Distributing coupling elements 32.4.1

Distributing coupling element library 32.4.2

Cohesive elements

Cohesive elements: overview 32.5.1

Choosing a cohesive element 32.5.2

Modeling with cohesive elements 32.5.3

Defining the cohesive element’s initial geometry 32.5.4

Defining the constitutive response of cohesive elements using a continuum approach 32.5.5

Defining the constitutive response of cohesive elements using a traction-separation

description 32.5.6

Defining the constitutive response of fluid within the cohesive element gap 32.5.7

Two-dimensional cohesive element library 32.5.8

Three-dimensional cohesive element library 32.5.9

Axisymmetric cohesive element library 32.5.10

Gasket elements

Gasket elements: overview 32.6.1

Choosing a gasket element 32.6.2

Including gasket elements in a model 32.6.3

Defining the gasket element’s initial geometry 32.6.4

Defining the gasket behavior using a material model 32.6.5

Defining the gasket behavior directly using a gasket behavior model 32.6.6

Two-dimensional gasket element library 32.6.7

Three-dimensional gasket element library 32.6.8

Axisymmetric gasket element library 32.6.9

Surface elements

Surface elements 32.7.1

General surface element library 32.7.2

Cylindrical surface element library 32.7.3

Axisymmetric surface element library 32.7.4

Tube support elements

Tube support elements 32.8.1

Tube support element library 32.8.2

Line spring elements

Line spring elements for modeling part-through cracks in shells 32.9.1

Line spring element library 32.9.2

xviii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Elastic-plastic joints

Elastic-plastic joints 32.10.1

Elastic-plastic joint element library 32.10.2

Drag chain elements

Drag chains 32.11.1

Drag chain element library 32.11.2

Pipe-soil elements

Pipe-soil interaction elements 32.12.1

Pipe-soil interaction element library 32.12.2

Acoustic interface elements

Acoustic interface elements 32.13.1

Acoustic interface element library 32.13.2

Eulerian elements

Eulerian elements 32.14.1

Eulerian element library 32.14.2

User-defined elements

User-defined elements 32.15.1

User-defined element library 32.15.2

33. Particle Elements

Discrete particle elements

Discrete particle elements 33.1.1

Discrete particle element library 33.1.2

Continuum particle elements

Continuum particle elements 33.2.1

Continuum particle element library 33.2.2

EI.1 Abaqus/Standard Element Index

EI.2 Abaqus/Explicit Element Index

EI.3 Abaqus/CFD Element Index

xix

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Volume V

PART VII PRESCRIBED CONDITIONS

34. Prescribed Conditions

Overview

Prescribed conditions: overview 34.1.1

Amplitude curves 34.1.2

Initial conditions

Initial conditions in Abaqus/Standard and Abaqus/Explicit 34.2.1

Initial conditions in Abaqus/CFD 34.2.2

Boundary conditions

Boundary conditions in Abaqus/Standard and Abaqus/Explicit 34.3.1

Boundary conditions in Abaqus/CFD 34.3.2

Loads

Applying loads: overview 34.4.1

Concentrated loads 34.4.2

Distributed loads 34.4.3

Thermal loads 34.4.4

Electromagnetic loads 34.4.5

Acoustic and shock loads 34.4.6

Pore fluid flow 34.4.7

Prescribed assembly loads

Prescribed assembly loads 34.5.1

Predefined fields

Predefined fields 34.6.1

PART VIII CONSTRAINTS

35. Constraints

Overview

Kinematic constraints: overview 35.1.1

Multi-point constraints

Linear constraint equations 35.2.1

xx

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

General multi-point constraints 35.2.2

Kinematic coupling constraints 35.2.3

Surface-based constraints

Mesh tie constraints 35.3.1

Coupling constraints 35.3.2

Shell-to-solid coupling 35.3.3

Mesh-independent fasteners 35.3.4

Embedded elements

Embedded elements 35.4.1

Element end release

Element end release 35.5.1

Overconstraint checks

Overconstraint checks 35.6.1

PART IX INTERACTIONS

36. Defining Contact Interactions

Overview

Contact interaction analysis: overview 36.1.1

Defining general contact in Abaqus/Standard

Defining general contact interactions in Abaqus/Standard 36.2.1

Surface properties for general contact in Abaqus/Standard 36.2.2

Contact properties for general contact in Abaqus/Standard 36.2.3

Controlling initial contact status in Abaqus/Standard 36.2.4

Stabilization for general contact in Abaqus/Standard 36.2.5

Numerical controls for general contact in Abaqus/Standard 36.2.6

Defining contact pairs in Abaqus/Standard

Defining contact pairs in Abaqus/Standard 36.3.1

Assigning surface properties for contact pairs in Abaqus/Standard 36.3.2

Assigning contact properties for contact pairs in Abaqus/Standard 36.3.3

Modeling contact interference fits in Abaqus/Standard 36.3.4

Adjusting initial surface positions and specifying initial clearances in Abaqus/Standard

contact pairs 36.3.5

Adjusting contact controls in Abaqus/Standard 36.3.6

Defining tied contact in Abaqus/Standard 36.3.7

Extending master surfaces and slide lines 36.3.8

xxi

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Contact modeling if substructures are present 36.3.9

Contact modeling if asymmetric-axisymmetric elements are present 36.3.10

Defining general contact in Abaqus/Explicit

Defining general contact interactions in Abaqus/Explicit 36.4.1

Assigning surface properties for general contact in Abaqus/Explicit 36.4.2

Assigning contact properties for general contact in Abaqus/Explicit 36.4.3

Controlling initial contact status for general contact in Abaqus/Explicit 36.4.4

Contact controls for general contact in Abaqus/Explicit 36.4.5

Defining contact pairs in Abaqus/Explicit

Defining contact pairs in Abaqus/Explicit 36.5.1

Assigning surface properties for contact pairs in Abaqus/Explicit 36.5.2

Assigning contact properties for contact pairs in Abaqus/Explicit 36.5.3

Adjusting initial surface positions and specifying initial clearances for contact pairs

in Abaqus/Explicit 36.5.4

Contact controls for contact pairs in Abaqus/Explicit 36.5.5

37. Contact Property Models

Mechanical contact properties

Mechanical contact properties: overview 37.1.1

Contact pressure-overclosure relationships 37.1.2

Contact damping 37.1.3

Contact blockage 37.1.4

Frictional behavior 37.1.5

User-defined interfacial constitutive behavior 37.1.6

Pressure penetration loading 37.1.7

Interaction of debonded surfaces 37.1.8

Breakable bonds 37.1.9

Surface-based cohesive behavior 37.1.10

Thermal contact properties

Thermal contact properties 37.2.1

Electrical contact properties

Electrical contact properties 37.3.1

Pore fluid contact properties

Pore fluid contact properties 37.4.1

38. Contact Formulations and Numerical Methods

Contact formulations and numerical methods in Abaqus/Standard

Contact formulations in Abaqus/Standard 38.1.1

xxii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

CONTENTS

Contact constraint enforcement methods in Abaqus/Standard 38.1.2

Smoothing contact surfaces in Abaqus/Standard 38.1.3

Contact formulations and numerical methods in Abaqus/Explicit

Contact formulation for general contact in Abaqus/Explicit 38.2.1

Contact formulations for contact pairs in Abaqus/Explicit 38.2.2

Contact constraint enforcement methods in Abaqus/Explicit 38.2.3

39. Contact Difficulties and Diagnostics

Resolving contact difficulties in Abaqus/Standard

Contact diagnostics in an Abaqus/Standard analysis 39.1.1

Common difficulties associated with contact modeling in Abaqus/Standard 39.1.2

Resolving contact difficulties in Abaqus/Explicit

Contact diagnostics in an Abaqus/Explicit analysis 39.2.1

Common difficulties associated with contact modeling using contact pairs in

Abaqus/Explicit 39.2.2

40. Contact Elements in Abaqus/Standard

Contact modeling with elements

Contact modeling with elements 40.1.1

Gap contact elements

Gap contact elements 40.2.1

Gap element library 40.2.2

Tube-to-tube contact elements

Tube-to-tube contact elements 40.3.1

Tube-to-tube contact element library 40.3.2

Slide line contact elements

Slide line contact elements 40.4.1

Axisymmetric slide line element library 40.4.2

Rigid surface contact elements

Rigid surface contact elements 40.5.1

Axisymmetric rigid surface contact element library 40.5.2

41. Defining Cavity Radiation in Abaqus/Standard

Cavity radiation 41.1.1

xxiii

Abaqus ID:usb-toc

Printed on: Wed January 16 -- 15:50:59 2013

Part I: Introduction, Spatial Modeling, and
Execution

• Chapter 1, “Introduction”

• Chapter 2, “Spatial Modeling”

• Chapter 3, “Job Execution”

Abaqus Version 6.6 ID:

Printed on:

INTRODUCTION

1. Introduction

Introduction 1.1

Abaqus syntax and conventions 1.2

Abaqus model definition 1.3

Parametric modeling 1.4

Abaqus Version 6.6 ID:

Printed on:

INTRODUCTION

1.1 Introduction

• “Introduction: general,” Section 1.1.1

1.1–1

Abaqus Version 6.6 ID:

Printed on:

INTRODUCTION

1.1.1 INTRODUCTION: GENERAL

Overview of the Abaqus finite element system

The Abaqus finite element system includes:

• Abaqus/Standard, a general-purpose finite element program;

• Abaqus/Explicit, an explicit dynamics finite element program;

• Abaqus/CFD, a general-purpose computational fluid dynamics program;

• Abaqus/CAE, an interactive environment used to create finite element models, submit Abaqus

analyses, monitor and diagnose jobs, and evaluate results; and

• Abaqus/Viewer, a subset of Abaqus/CAE that contains only the postprocessing capabilities of the

Visualization module.

Several add-on options are available to further extend the capabilities of Abaqus/Standard and

Abaqus/Explicit. The Abaqus/Aqua option works with Abaqus/Standard and Abaqus/Explicit. The

Abaqus/Design and Abaqus/AMS options work with Abaqus/Standard. Abaqus/Aqua contains optional

features that are specifically designed for the analysis of beam-like structures installed underwater

and subject to loading by water currents and wave action. The Abaqus/Design option enables you to

perform design sensitivity analysis (DSA). Abaqus/AMS is an optional eigensolver that works within

Abaqus/Standard providing very fast solution of large symmetric eigenvalue problems. The Abaqus

co-simulation technique provides several applications, available as separate add-on capabilities, for

coupling between Abaqus and third-party analysis programs. Abaqus/Foundation is an optional subset

of Abaqus/Standard that provides more cost-efficient access to the linear static and dynamic analysis

functionality in Abaqus/Standard. These options are available only if your license includes them.

For a comprehensive list of Abaqus products, utilities, and add-on options, see “Abaqus products,”

Section 1.2 of the Abaqus Release Notes.

Overview of this guide

This guide is a reference to using Abaqus/Standard (including Abaqus/Aqua, Abaqus/Design, and

Abaqus/Foundation), Abaqus/Explicit (including Abaqus/Aqua), and Abaqus/CFD. Abaqus/Standard

solves a system of equations implicitly at each solution “increment.” In contrast, Abaqus/Explicit

marches a solution forward through time in small time increments without solving a coupled system

of equations at each increment (or even forming a global stiffness matrix). Abaqus/CFD provides a

computational fluid dynamics capability with extensive support for preprocessing, simulation, and

postprocessing in Abaqus/CAE.

Throughout the guide the term Abaqus is most commonly used to refer collectively to both

Abaqus/Standard and Abaqus/Explicit and, when applicable, Abaqus/CFD; the individual product

names are used to indicate when information applies to only that product. Product identifiers appear

1.1.1–1

Abaqus Version 6.6 ID:

Printed on:

INTRODUCTION

at the beginning of each section in the guide (excluding overview sections) indicating the products to

which the information in the section applies.

The guide is divided into several parts:

• Part I, “Introduction, Spatial Modeling, and Execution,” discusses basic modeling concepts in

Abaqus, such as defining nodes, elements, and surfaces; the conventions and input formats that

should be followed when using Abaqus; and the execution procedures for Abaqus/Standard,

Abaqus/Explicit, Abaqus/CFD, Abaqus/CAE, and several utilities that are provided with the

Abaqus system.

• Part II, “Output,” describes how to obtain output from Abaqus and the format of the results (.fil)
file. It also describes the output variable identifiers that are available.

• Part III, “Analysis Procedures, Solution, and Control,” describes the analysis types (static stress

analysis, dynamics, eigenvalue extraction, etc.) that are available. Detailed discussions of the

differences between how Abaqus/Standard and Abaqus/Explicit solve finite element analyses are

provided in this chapter.

• Part IV, “Analysis Techniques,” discusses various analysis techniques available in Abaqus such as

submodeling, removing elements or surfaces, and importing results from a previous simulation to

define the initial conditions for the current model.

• Part V, “Materials,” describes the material modeling options and how to calibrate some of the more

advanced material models.

• Part VI, “Elements,” describes the elements available in Abaqus.

• Part VII, “Prescribed Conditions,” describes the use of prescribed conditions, such as distributed

loads and nodal velocities.

• Part VIII, “Constraints,” discusses the use of constraints, such as multi-point constraints.

• Part IX, “Interactions,” discusses the contact and interaction models available in Abaqus.

The guide also includes indexes of all of the output variables and elements available in Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD.

Using Abaqus

Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD can be run as batch applications (see

“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2, for details)or through

the interactive Abaqus/CAE environment (see “Abaqus/CAE execution,” Section 3.2.6, for details on

how to start Abaqus/CAE). The main input to the Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD

analysis products is a file containing the options required for the simulation and the data associated

with those options. There may also be supplementary files, such as restart or results files from previous

analyses, or auxiliary data files, such as a file containing an acceleration record or an earthquake record

for dynamic analysis. The input file is usually created by Abaqus/CAE or another preprocessor. Both

input file usage and Abaqus/CAE usage information are provided in this guide.

As described in “Defining a model in Abaqus,” Section 1.3.1, the main input file consists of two

sections: model input and history input. The input is organized around a few natural concepts and

conventions, which means that even though input files for complex simulations can be large, they can

1.1.1–2

Abaqus Version 6.6 ID:

Printed on:

INTRODUCTION

be managed without difficulty. The basic syntax rules that govern an Abaqus input file are discussed

in “Input syntax rules,” Section 1.2.1. The Abaqus Keywords Reference Guide contains a complete

description of all the input options available in Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD.

For a detailed introduction to using Abaqus for your analyses, it is recommended that you follow the

self-paced tutorials in Getting Started with Abaqus: Interactive Edition. Refer to the Abaqus/CAEUser’s

Guide for detailed information on working with Abaqus/CAE.

In addition, many analyses that demonstrate the numerous capabilities of Abaqus are discussed

in the Abaqus Example Problems Guide, the Abaqus Benchmarks Guide, and the Abaqus Verification

Guide. As a supplement to the Abaqus Analysis User’s Guide, these examples can help you become

familiar with the functionality that Abaqus provides and the structure of the Abaqus input file. For

example, “Beam impact on cylinder,” Section 1.6.12 of the Abaqus Verification Guide, discusses the

various modeling techniques that can be used to analyze the dynamic response of a cantilever beam.

Reviewing the results of an Abaqus simulation

Information on requesting output from an Abaqus simulation is discussed in “Output,” Section 4.1.1.

Requested results from an Abaqus simulation are viewed through the Visualization module in

Abaqus/CAE (also licensed separately as Abaqus/Viewer). The output database file is read by the

Visualization module in Abaqus/CAE to create contour plots, animations, X–Y plots, and tabular

output of Abaqus results. See Part V, “Viewing results,” of the Abaqus/CAE User’s Guide for detailed

information on using the Visualization module in Abaqus/CAE.

1.1.1–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus SYNTAX AND CONVENTIONS

1.2 Abaqus syntax and conventions

• “Input syntax rules,” Section 1.2.1

• “Conventions,” Section 1.2.2

1.2–1

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

1.2.1 INPUT SYNTAX RULES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Defining a model in Abaqus,” Section 1.3.1

Overview

This section describes the syntax rules that govern an Abaqus input file.

All data definitions in Abaqus are accomplished with option blocks—sets of data describing a part

of the problem definition. You choose those options that are relevant for a particular application. Options

are defined by lines in the input file. Three types of input lines are used in an Abaqus input file: keyword

lines, data lines, and comment lines. Only 7-bit ASCII characters are supported, and a carriage return is

required at the end of each line in an input file.

• Keyword lines introduce options and often have parameters, which appear as words or phrases

separated by commas on the keyword line. Parameters are used to define the behavior of an option.

Parameters can stand alone or have a value, and they may be required or optional.

• Data lines, which are used to provide numeric or alphanumeric entries, follow most keyword lines.

• Any line that begins with stars in columns 1 and 2 (**) is a comment line. Such lines can be placed

anywhere in the file. They are ignored by Abaqus, so they will be printed only in the initial listing

of the file. There is no restriction on how many or where such lines occur in the file.

Relevant parameters and data lines (including the number of entries per data line) are described in the

sections of the Abaqus Keywords Reference Guide describing each option. This section describes the

general rules that apply to all keyword and data lines.

Keyword lines

The following rules apply when entering a keyword line:

• The first non-blank character of each keyword line must be a star (*).

• The keyword must be followed by a comma (,) if any parameters are given.

• Parameters must be separated by commas.

• Blanks on a keyword line are ignored.

• A line can include no more than 256 characters, including blanks.

• Keywords and parameters are not case sensitive.

• Parameter values usually are not case sensitive. The only exceptions to this rule are those imposed

externally to Abaqus, such as file names on case-sensitive operating systems.

• Keywords, parameters, and, in most cases, parameter values need not be spelled out completely,

but there must be enough characters given to distinguish them from other keywords, parameters,

1.2.1–1

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

and parameter values that begin in the same way. Abaqus first searches each associated text string

for an exact match. If an exact match is not found, Abaqus then searches based upon the minimum

number of unique characters in each keyword, parameter, or parameter value, as the case may be.

Embedded blanks can be omitted from any item in a keyword line. If a parameter value is used to

provide a number or a file name, the complete value should be provided.

• If a parameter has a value, the equal sign (=) is used. The value can be an integer, a floating point

number, or a character string, depending on the context. For example,

*ELASTIC, TYPE=ISOTROPIC, DEPENDENCIES=1

• When the parameter value is a character string that represents the name of an item, you should not

use case as a method of distinguishing values unless the values are enclosed within quotation marks.

For example, Abaqus does not distinguish between the following definitions:

*MATERIAL, NAME=STEEL

*MATERIAL, NAME=Steel

• The same parameter should not appear more than once on a single keyword line. If a parameter has

multiple settings on a single keyword line, Abaqus ignores all but one of the settings.

• Continuation of a keyword line is sometimes necessary; for example, because of a large number

of parameters. If the last character on a keyword line is a comma, the next line is interpreted as a

continuation of the line. For example, the *ELASTIC keyword line above could also be given as

*ELASTIC, TYPE=ISOTROPIC,
DEPENDENCIES=1

• Certain keywords must be used in conjunction with other keywords; for example, the *ELASTIC

and *DENSITY keywords must be used in conjunction with the *MATERIAL keyword. These

related keywords must be grouped in a block in the input file; unrelated keywords cannot be specified

within this block.

• Some options allow the INPUT or FILE parameter to be set equal to the name of an alternate file.

Such file names can include a full path name or a relative path name. Relative path names must be

with respect to the directory from which the job was submitted. If no path is specified, the file is

assumed to be in the directory from which the job was submitted. A substructure library must be in

the same directory from which the job was submitted; a full path name cannot be used to specify a

substructure library name.

For files referenced by the INPUT parameter, the file name must include any extension (e.g.,

elem.inp). For files referenced by the FILE parameter, the name must be given without an

extension in most cases since Abaqus assumes that the file to be read has the correct extension for the

file type that is relevant to the option: .res for restart files (“Restarting an analysis,” Section 9.1.1)

and .fil for results files (“Output,” Section 4.1.1). However, special rules may apply when a

results file (.fil) or an output database file (.odb) is relevant for the option (see “Initial conditions
in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1, and “Sequentially coupled thermal-stress

analysis,” Section 16.1.2, for details).

1.2.1–2

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

The file or substructure library name must have the correct case on computers with case-

sensitive operating systems. Regardless of whether the user specifies only a file name, a relative

path name, or a full path name, the complete name including the path can have a maximum of

256 characters.

Data lines

Data lines are used to provide data that are more easily given in lists than as parameters on an option.

Most options require one or more data lines; if they are required, the data lines must immediately follow

the keyword line introducing the option. The following rules apply when entering a data line:

• A data line can include no more than 256 characters, including blanks. Trailing blanks are ignored.

• All data items must be separated by commas (,). An empty data field is specified by omitting data

between commas. Abaqus will use values of zero for any required numeric data that are omitted

unless a default value is specified.

• A line must contain only the number of items specified.

• Empty data fields at the end of a line can be ignored.

• Floating point numbers can occupy a maximum of 20 spaces including the sign, decimal point, and

any exponential notation.

Floating point numbers can be given with or without an exponent. Any exponent, if input,

must be preceded by E or D and an optional (−) or (+). The following line shows four acceptable

ways of entering the same floating point number:

-12.345 -1234.5E-2 -1234.5D-2 -1.2345E1

• Integer data items can occupy a maximum of 9 digits.

• Character strings can be up to 80 characters long and are not case sensitive.

• Continuation lines are allowed in specific instances (see “Element definition,” Section 2.2.1). If

allowed, such lines are indicated by a comma as the last character of the preceding line. A single

data item cannot be entered over multiple lines.

In many cases the choice of parameters used with an option determines the type of data lines required. For

example, there are five different ways to define a linear elastic material (“Elastic behavior: overview,”

Section 22.1.1). The data lines you specify must be consistent with the value of the TYPE parameter

given on the *ELASTIC option.

Sets

One of the most useful features of the Abaqus data definition method is the availability of sets. A set can

be a set of nodes or a set of elements. You provide a name (1–80 characters, the first of which must be a

letter) for each set. That name then provides a means of referencing all of the members of the set. As an

example suppose that, for the structure shown in Figure 1.2.1–1, we wish to apply symmetry boundary

conditions at all of the nodes in the set MIDDLE and that the edge SUPPORT is pinned. We assemble the

relevant nodes into sets and specify the boundary conditions by

*BOUNDARY

1.2.1–3

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

y

x

z

NSET middle
NSET support

Figure 1.2.1–1 Example of the use of sets.

MIDDLE, ZSYMM
SUPPORT, PINNED

Sets are the basic reference throughout Abaqus, and the use of sets is recommended. Choosing

meaningful set names makes it simple to identify which data belong to which part of the model.

Further discussion of sets is provided in “Node definition,” Section 2.1.1, and “Element definition,”

Section 2.2.1.

Labels

Labels such as set names, surface names, and rebar names are case insensitive unless enclosed

within quotation marks (except when they are accessed from user subroutines; see “User subroutines:

overview,” Section 18.1.1). Labels can be up to 80 characters long. All spaces within a label are ignored

unless the label is enclosed in quotation marks, in which case all spaces within the label are maintained.

A label that is not enclosed within quotation marks must begin with a letter, may not include a period

(.), and should not contain characters such as commas and equal signs. These restrictions do not apply

to labels enclosed within quotation marks except if the label is a material name. A material name must

always start with a letter, even if the name is enclosed within quotation marks.

Labels cannot begin and end with a double underscore (e.g., __STEEL__). This label format is

reserved for internal use by Abaqus.

1.2.1–4

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

The following are examples of labels entered with and without the use of quotation marks:

*ELEMENT, TYPE=SPRINGA, ELSET="One element"
1,1,2

*SPRING, ELSET="One element"
1.0E-5,

*NSET, ELSET="One element", NSET=NODESET

*BOUNDARY
nodeset,1,2

Repeating data lines

Some options list only a single data line. In cases where only one data line is allowed, this is indicated

by the data line title “First (and only) line.” An example of this is the *DYNAMIC option. In many cases

the single data line shown can be repeated to define one variable as a function of another; this choice is

indicated by a note after the data line. For example, a table of biaxial test data can be given to define a

hyperelastic material:

*BIAXIAL TEST DATA
,
,
,

Etc.

There is no limit on the number of data lines allowed, but the data must be given in a certain order, as

explained below.

Many options require more than one data line; these are indicated by the data line titles “First line:”,

“Second line:”, etc. For example, exactly two data lines must be used to define a local orientation for a

shell element (*ORIENTATION), and at least three data lines are required to define anisotropic elasticity

(*ELASTIC).

In many cases the data lines can be repeated, which is indicated by a note after the data lines. As

with repetition of a single data line, it is important that sets of data lines be given in the correct order so

that Abaqus can interpolate the data properly.

Example: Multiple data lines due to field variable dependence

Any time an option can be defined as a function of field variables, you must determine the number of data

lines required to define the option completely. (See “Specifying field variable dependence” in “Material

data definition,” Section 21.1.2 for more information.) For example, two data lines are required if stress-

based failure criteria (*FAIL STRESS) are defined as a function of two field variables. This pair of data

lines is repeated as often as necessary to define the failure criteria completely:

1.2.1–5

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

t c t c biax

*FAIL STRESS, DEPENDENCIES=2

X1, X1, Y1, Y1, S1, , σ1
t c t c biax

1 2fv1, fv1
first
pair

fv2, fv2
1 2

X2, X2, Y2, Y2, S2, , σ2
t c t c biaxsecond

pair

Etc.

third
pair

X3, X3, Y3, Y3, S3, , σ3

fv3, fv3
 1 2

⎬
⎭

⎫

⎬
⎭

⎫

⎬
⎭

⎫

(In this example the last field on the first data line of each pair was omitted, which means that the stress-

based failure criteria are not temperature dependent.)

If the stress-based failure criteria were defined as a function of nine field variables, a set of three

data lines would be repeated as often as necessary:

*FAIL STRESS, DEPENDENCIES=9

X1, X1, Y1, Y1, S1, , σ1
t c t c biax

1 2 3 4 5 6 7 8fv1, fv1, fv1, fv1, fv1, fv1, fv1, fv1

fv1
9

⎬
⎭

⎫
first
set

fv2, fv2, fv2, fv2, fv2, fv2, fv2, fv2
1 2 3 4 5 6 7 8

X2, X2, Y2, Y2, S2, , σ2
t c t c biax

fv2
9

⎬
⎭

⎫second
set

Etc.

Ordering the data lines

Whenever one variable is defined as a function of another, the data must be given in the proper order so

that Abaqus can interpolate for intermediate values correctly. The variable being defined is assumed to be

constant outside the range of independent variables given, except for nonlinear elastic gasket thickness

behavior involving damage where the data are extrapolated based on the last slope computed from the

user-specified data.

If the property being defined is a function of only one variable (such as the *BIAXIAL TEST DATA

shown above), the data should be given in the order of increasing value of the independent variable.

If the property being defined is a function of multiple independent variables, the variation of the

property with respect to the first variable must be given at fixed values of the other variables, in ascending

values of the second variable, then of the third variable, and so on. The data lines must always be ordered

so that the independent variables are given increasing values. This process ensures that the value of the

1.2.1–6

Abaqus Version 6.6 ID:

Printed on:

INPUT SYNTAX RULES

material property is completely and uniquely defined at any values of the independent variables upon

which the property depends.

As an example, consider isotropic elasticity defined as a function of three field variables (but not of

temperature):

*ELASTIC, DEPENDENCIES=3
, , , 1, 1, 1
, , , 2, 1, 1
, , , 1, 2, 1
, , , 2, 2, 1
, , , 1, 3, 1
, , , 2, 3, 1
, , , 1, 1, 2
, , , 2, 1, 2
, , , 1, 2, 2
, , , 2, 2, 2
, , , 1, 3, 2
, , , 2, 3, 2
, , , 1, 1, 3
, , , 2, 1, 3
, , , 1, 2, 3
, , , 2, 2, 3
, , , 1, 3, 3
, , , 2, 3, 3

1.2.1–7

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

1.2.2 CONVENTIONS

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD Abaqus/CAE

References

• Chapter 2, “Spatial Modeling”

• Part II, “Output”

• “Boundary conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.3.1

• “Boundary conditions in Abaqus/CFD,” Section 34.3.2

Overview

The conventions that are used throughout Abaqus are defined in this section. The following topics are

discussed:

• Degrees of freedom

• Coordinate systems

• Self-consistent units

• Time measures

• Local directions on surfaces in space

• Stress and strain conventions

• Stress and strain measures in geometrically nonlinear analysis

• Conventions for finite rotations

• Conventions for tabular data input

Degrees of freedom

Except for axisymmetric elements, fluid continuum elements, and electromagnetic elements, the degrees

of freedom are always referred to as follows:

1 x-displacement

2 y-displacement

3 z-displacement

4 Rotation about the x-axis, in radians

5 Rotation about the y-axis, in radians

6 Rotation about the z-axis, in radians

7 Warping amplitude (for open-section beam elements)

8 Pore pressure, hydrostatic fluid pressure, or acoustic pressure

9 Electric potential

1.2.2–1

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

10 Connector material flow (units of length)

11 Temperature (or normalized concentration in mass diffusion analysis)

12 Second temperature (for shells or beams)

13 Third temperature (for shells or beams)

14 Etc.

Here the x-, y-, and z-directions coincide with the globalX-,Y-, and Z-directions, respectively; however,

if a local transformation is defined at a node (see “Transformed coordinate systems,” Section 2.1.5), they

coincide with the local directions defined by the transformation.

A maximum of 20 temperature values (degrees of freedom 11 through 30) can be defined for shell

or beam elements in Abaqus/Standard.

Axisymmetric elements

The displacement and rotation degrees of freedom in axisymmetric elements are referred to as follows:

1 r-displacement

2 z-displacement

5 Rotation about the z-axis (for axisymmetric elements with twist), in radians

6 Rotation in the r–z plane (for axisymmetric shells), in radians

Here the r- and z-directions coincide with the global X- and Y-directions, respectively; however, if a

local transformation is defined at a node (see “Transformed coordinate systems,” Section 2.1.5), they

coincide with the local directions defined by the transformation.

Fluid continuum elements

Fluid continuum elements in Abaqus/CFD are used to define the element shape and to discretize the

continuum. Degrees of freedom in a fluid flow analysis are not determined by the element type but by

the analysis procedure and options specified (e.g., turbulence models and auxiliary transport equations).

Electromagnetic elements

Electromagnetic elements in Abaqus/Standard are used to define the element shape and to discretize the

continuum. The eddy current and magnetostatic analyses formulations use magnetic vector potential as a

degree of freedom (see “Boundary conditions” in “Eddy current analysis,” Section 6.7.5, and “Boundary

conditions” in “Magnetostatic analysis,” Section 6.7.6).

Activation of degrees of freedom

Abaqus/Standard and Abaqus/Explicit activate only those degrees of freedom needed at a node. Thus,

some of the degrees of freedom listed above may not be used at all nodes in a model, because each

element type uses only those degrees of freedom that are relevant. For example, two-dimensional solid

(continuum) stress/displacement elements use only degrees of freedom 1 and 2. The degrees of freedom

actually used at any node are the envelope of those needed in each element that shares the node.

1.2.2–2

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

In Abaqus/CFD the active degrees of freedom in a fluid flow analysis are determined by the analysis

procedure and the options specified. For example, using the energy equation in conjunction with the

incompressible flow procedure activates the velocity, pressure, and temperature degrees of freedom.

For more information, see “Active degrees of freedom” in “Boundary conditions in Abaqus/CFD,”

Section 34.3.2.

Internal variables in Abaqus/Standard

In addition to the degrees of freedom listed above, Abaqus/Standard uses internal variables (such as

Lagrange multipliers to impose constraints) for some elements. Normally you need not be concerned

with these variables, but they may appear in error and warning messages and are checked for satisfaction

of nonlinear constraints during iteration. Internal variables are always associated with internal nodes,

which have negative numbers to distinguish them from user-defined nodes.

Coordinate systems

The basic coordinate system in Abaqus is a right-handed, rectangular Cartesian system. You can choose

other systems locally for input (see “Node definition,” Section 2.1.1), for output of nodal variables

(displacements, velocities, etc.) and point load or boundary condition specification (see “Transformed

coordinate systems,” Section 2.1.5), and for material or kinematic joint specification (see “Orientations,”

Section 2.2.5). All coordinate systems must be right-handed.

Units

Abaqus has no units built into it except for rotation and angle measures. Therefore, the units chosen must

be self-consistent, which means that derived units of the chosen system can be expressed in terms of the

fundamental units without conversion factors.

Rotation and angle measures

In Abaqus rotational degrees of freedom are expressed in radians, and all other angle measures are

expressed in degrees (for example, phase angles).

International System of units (SI)

The International System of units (SI) is an example of a self-consistent set of units. The fundamental

units in the SI system are length in meters (m), mass in kilograms (kg), time in seconds (s), temperature

in degrees kelvin (K), and electric current in amperes (A). The units of secondary or derived quantities

are based on these fundamental units. An example of a derived unit is the unit of force. A unit of force

in the SI system is called a newton (N):

newton kg m s

Similarly, a unit of electrical charge in the SI system is called a coulomb (C):

coulomb A s

1.2.2–3

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

Another example is the unit of energy, called a joule (J):

joule N m A volt s kg m s

The unit of electrical potential in the SI system is the volt, which is chosen such that

joule volt C volt A s

Sometimes the standard units are not convenient to work with. For example, Young’s modulus is

frequently specified in terms of megapascals (MPa) (or, equivalently, N/mm2), where 1 pascal = 1 N/m2 .

In this case the fundamental units could be tonnes (1 tonne = 1000 kilograms), millimeters, and seconds.

American or English units

American or English units can cause confusion since the naming conventions are not as clear as in the

SI system. For example, 1 pound force (lbf) will give 1 pound mass (lbm) an acceleration of g ft/sec2 ,

where g is the value of acceleration due to gravity. If pounds force, feet (ft), and seconds are taken as

fundamental units, the derived unit of mass is lbf sec2 /ft. Since density is commonly given in handbooks

as lbm/in3 , it must be converted to lbf sec2 /ft4 by

lbm in lbf sec ft

Frequently it is not made clear in handbooks whether lb stands for lbm or lbf. You need to check that the

values used make up a consistent set of units.

Two other units that cause difficulty are the slug, defined as the mass that will be accelerated at

1 ft/sec2 by 1 lbf, and the poundal, defined as the force required to accelerate 1 lbm at 1 ft/sec2 . Useful

conversions are

slug lbm

and

lbf poundals

where g is the magnitude of the acceleration due to gravity in ft/sec2 .

Symbols used in Abaqus for units

Units are indicated for the value to be given on load and flux types as follows:

Dimension Indicator Example (S.I. units)

length L meter

mass M kilogram

1.2.2–4

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

Dimension Indicator Example (S.I. units)

time T second

temperature degree Celsius

electric current A ampere

force F newton

energy J joule

electric charge C coulomb

electric potential volt

mass concentration P Parts per million

Time

Abaqus has two measures of time—step time and total time. Except for certain linear perturbation

procedures, step time is measured from the beginning of each step. Total time starts at zero and is the total

accumulated time over all general analysis steps (including restart steps; see “Restarting an analysis,”

Section 9.1.1). Total time does not accumulate during linear perturbation steps.

Local tangent directions on surfaces in space

Local tangent directions are needed on surfaces in space; for example, to provide a convention for

describing components of slip on an element-based contact surface or components of stress and strain in

a shell. The convention used in Abaqus for such directions is as follows.

The default local 1-direction is the projection of the global x-axis onto the surface. If the global

x-axis is within 0.1° of being normal to the surface, the local 1-direction is the projection of the global

z-axis onto the surface. The local 2-direction is then at right angles to the local 1-direction, so that the

local 1-direction, local 2-direction, and the positive normal to the surface form a right-handed set (see

Figure 1.2.2–1). The positive normal direction is defined in an element by the right-hand rotation rule

going around the nodes of the element. The local surface directions can be redefined; see “Orientations,”

Section 2.2.5.

The local 1- and 2-directions become local 2- and 3-directions, respectively, when considering

gasket elements or the local systems associatedwith integrated output sections (“Integrated output section

definition,” Section 2.5.1) or user-defined sections (“Section output from Abaqus/Standard” in “Output

to the data and results files,” Section 4.1.2).

For “line”-type surfaces defined on beam, pipe, or truss elements in space, the default local

1-direction and 2-direction are tangential and transverse to the elements. In this case the local surface

directions can also be redefined as described in “Orientations,” Section 2.2.5.

1.2.2–5

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

x

z

y

surface normal

surface
normal

projection of x-axis
onto surface

2

1

1

3

3

4

4

2

2

2

1

1

Figure 1.2.2–1 Default local surface directions.

Rotation of the local directions

For geometrically linear analysis, stress and strain components are given by default in the material

directions in the reference (initial) configuration.

For geometrically nonlinear analysis, small-strain shell elements in Abaqus/Standard (S4R5,

S8R, S8R5, S8RT, S9R5, STRI3, and STRI65) use a total Lagrangian strain, and the stress and strain

components are given relative to material directions in the reference configuration. Gasket elements

are small-strain small-displacement elements, and the components are output by default in the behavior

directions in the reference configuration.

For finite-membrane-strain elements (all membrane elements, S3/S3R, S4, S4R, SAX, and SAXA

elements) and for small-strain shell elements in Abaqus/Explicit, the material directions rotate with the

average rigid body motion of the surface to form the material directions in the current configuration.

Stress and strain components in these elements are given relative to these material directions in the

current configuration.

For a more thorough discussion of the definition of the rotated coordinate directions in membrane

elements; S3/S3R, S4, and S4R elements; S3RS, S4RS, and S4RSW elements; and SAXA elements, see:

• “Membrane elements,” Section 3.4.1 of the Abaqus Theory Guide,

• “Finite-strain shell element formulation,” Section 3.6.5 of the Abaqus Theory Guide,

1.2.2–6

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

• “Small-strain shell elements in Abaqus/Explicit,” Section 3.6.6 of the Abaqus Theory Guide, and

• “Axisymmetric shell element allowing asymmetric loading,” Section 3.6.7 of the Abaqus Theory

Guide.

You can determine whether the local system associated with a user-defined section is fixed or rotates

with the average rigid body motion; see “Section output from Abaqus/Standard” in “Output to the data

and results files,” Section 4.1.2, for details.

You can determine whether the local system associated with an integrated output section is fixed,

translates with average rigid body motion, or translates and rotates with the average rigid body motion;

see “Integrated output section definition,” Section 2.5.1, for details.

See “Contact formulations in Abaqus/Standard,” Section 38.1.1, for information on how the local

tangent directions evolve during an Abaqus/Standard contact analysis.

Convention used for stress and strain components

When defining material properties, the convention used for stress and strain components in Abaqus is

that they are ordered:

Direct stress in the 1-direction

Direct stress in the 2-direction

Direct stress in the 3-direction

Shear stress in the 1–2 plane

Shear stress in the 1–3 plane

Shear stress in the 2–3 plane

For example, a fully anisotropic, linear elasticity matrix is

symm.

The 1-, 2-, and 3-directions depend on the element type chosen. For solid elements the defaults for

these directions are the global spatial directions. For shell and membrane elements the defaults for the

1- and 2-directions are local directions in the surface of the shell or membrane, as defined in Part VI,

“Elements.” In both cases the 1-, 2-, and 3-directions can be changed as described in “Orientations,”

Section 2.2.5.

For geometrically nonlinear analysis with solid elements, the default (global) directions do not rotate

with the material. However, user-defined orientations do rotate with the material.

Abaqus/Explicit stores the stress and strain components internally in a different order: , ,

, , , . For geometrically nonlinear analysis, the internally stored components rotate with the

material, regardless of whether or not a user-defined orientation is used. This distinction is important

when a user subroutine (such as VUMAT) is used.

1.2.2–7

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

Nonisotropic material behavior

When nonisotropic material behavior is defined in continuum elements, a user-defined orientation is

necessary for the anisotropic behavior to be associated with material directions. See “State storage,”

Section 1.5.4 of the Abaqus Theory Guide, for a description of how material directions rotate.

Zero-valued stress components

Stress components that are always zero are omitted from storage. For example, in plane stress Abaqus

stores only the two direct components and one shear component of stress and strain in the plane where

the stress values are nonzero.

Shear strains

Abaqus always reports shear strain as engineering shear strain, :

Stress and strain measures

The stress measure used in Abaqus is Cauchy or “true” stress, which corresponds to the force per current

area. See “Stress measures,” Section 1.5.2 of the Abaqus Theory Guide, and “Stress rates,” Section 1.5.3

of the Abaqus Theory Guide, for more details on stress measures.

For geometrically nonlinear analysis, a large number of different strain measures exist. Unlike

“true” stress, there is no clearly preferred “true” strain. For the same physical deformation different

strain measures will report different values in large-strain analysis. The optimal choice of strain measure

depends on analysis type, material behavior, and (to some degree) personal preference. See “Strain

measures,” Section 1.4.2 of the Abaqus Theory Guide, for more details on strain measures.

By default, the strain output in Abaqus/Standard is the “integrated” total strain (output variable E).

For large-strain shells, membranes, and solid elements in Abaqus/Standard two other measures of total

strain can be requested: logarithmic strain (output variable LE) and nominal strain (output variable NE).

Logarithmic strain (output variable LE) is the default strain output in Abaqus/Explicit; nominal

strain (output variable NE) can be requested as well. The “integrated” total strain is not available in

Abaqus/Explicit.

Total (integrated) strain

The default “integrated” strain measure, E, output by Abaqus/Standard to the data (.dat) and results

(.fil) files for all elements that can handle finite strain is obtained by integrating the strain rate

numerically in a material frame of reference:

where and are the total strains at increments and n, respectively; is the incremental

rotation tensor; and is the total strain increment from increment n to . For elements that use

1.2.2–8

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

a corotational coordinate system (finite-strain shells, membranes, and solid elements with user-defined

orientations), the above equation simplifies to

The strain increment is obtained by integration of the rate of deformation over the time increment:

This strain measure is appropriate for elastic-(visco)plastic or elastic-creeping materials, because the

plastic strains and creep strains are obtained by the same integration procedure. In such materials the

elastic strains are small (because the yield stress is small compared to the elastic modulus), and the total

strains can be compared directly with the plastic strains and creep strains.

If the principal directions of straining rotate with respect to the material axes, the resulting strain

measure cannot be related to the total deformation, regardless whether a spatial or corotational coordinate

system is used. If the principal directions remain fixed in the material axes, the strain is the integration

of the rate of deformation,

which is equivalent to the logarithmic strain discussed later.

Green’s strain

For small-strain shells and beams in Abaqus/Standard, the default strain measure, E, is Green’s strain:

where is the deformation gradient and is the identity tensor. This strain measure is appropriate for

the small-strain, large-rotation approximation used in these elements. The components of represent

strain along directions in the original configuration. The small-strain shells and beams should not be

used in finite-strain analysis with either elastic-plastic or hyperelastic material behavior, since incorrect

analysis results may be obtained or program failure may occur.

Nominal strain

The nominal strain, NE, is

1.2.2–9

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

where is the left stretch tensor, are the principal stretches, and are the principal

stretch directions in the current configuration. The principal values of nominal strain are, therefore, the

ratios of change in length to length in the reference configuration in the principal directions, thus giving

a direct measure of deformation.

Logarithmic strain

The logarithmic strain, LE, is

where the variables are as defined earlier for nominal strain. This is also the strain output for hyperelastic

materials. For a hyper-viscoleastic material, the logarithmic elastic strain EE is computed from the

current (relaxed) stress state, and the viscoelastic strain CE is computed as LE − EE.

Stress invariants

Many of the constitutive models in Abaqus are formulated in terms of stress invariants. These invariants

are defined as the equivalent pressure stress,

the Mises equivalent stress,

and the third invariant of deviatoric stress,

where is the deviatoric stress, defined as

Finite rotations

The following convention is used for finite rotations in space: Define , , as “rotations” about the

global X, Y, and Z-axes (that is, degrees of freedom 4, 5, and 6 at a node). Then define

where

1.2.2–10

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

The direction is then the axis of rotation, and is the angular rotation (in radians) about the axis

according to the right-hand rule (see Figure 1.2.2–2).

z p

y

Same vector rotated
by (φ , φ , φ)

φ
x y z

Initial vector

x

Figure 1.2.2–2 Definition of finite rotation.

The value of is not uniquely determined. In large-rotation problems where the overall rotation

exceeds , anymultiple of can be added or subtracted, whichmay lead to discontinuous output values

for the rotation components. If rotations larger than about one axis occur in the positive (negative)

direction in Abaqus/Standard, the rotation output varies discontinuously between 0 and (). In

Abaqus/Explicit the rotation output varies in all cases between and .

This convention provides straightforward input of kinematic boundary conditions and moments in

most cases and simple interpretation of the output. The rotations output by Abaqus represent a single

rotation from the reference configuration to the current configuration about a fixed axis. The output does

not follow the history of rotation at a node. In addition, this convention reduces to the usual convention

1.2.2–11

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

for small rotations, even in the case of small rotations superposed on an initial finite rotation (such as

might be considered in the study of small vibrations about a predeformed state).

Compound rotations

Because finite rotations are not additive, the way they must be specified is a bit different from the way

other boundary conditions are specified: the increment in rotation specified over a step must be the

rotation needed to rotate the node from the configuration at the beginning of the step to that desired at

the end of the step. It is not enough to rotate the node over this step to a total rotation vector that would

have taken the node into its final configuration if applied on the node in some other initial reference

configuration. If an increment of rotation is needed to rotate from the rotation

boundary condition at the beginning of the step (and at the end of the previous step) to

its final position at the end of the step, the boundary condition must be specified such that the rotation

vector is at the end of the step. If the direction of the rotation vector

is constant, this method of specifying rotation boundary conditions and the total rotation vector will be

the same.

Example

As an example of how to specify compound finite rotations and to interpret finite rotation output, consider

the following example of the rotation of a beam.

The beam initially lies along the x-axis. We want to perform the compound rotation, where (Step 1)

the beam is rotated by 60° about the z-axis, followed by (Step 2) a 90° spin of the beam about itself,

followed by (Step 3) a 90° rotation of the beam about an axis perpendicular to the beam in the x–y plane,

such that the beam finishes on the z-axis.

This compound rotation is achieved in three steps with applied rotation vectors , , and ,

where

For this example , , and . Here represents the magnitude of each

finite rotation about the (unit length) rotation axis. The rotation vectors above are applied in each of the

three steps on the configuration at the beginning of that step. It is most straightforward to prescribe these

rotations with velocity-type boundary conditions. For convenience, the default amplitude reference in

Abaqus for a velocity-type boundary condition is a constant value of one.

A typical Abaqus step definition for this example, where node 1 is pinned at the origin and the

rotation is applied to node 2, is as follows:

*STEP, NLGEOM
Step 1: Rotate 60 degrees about the z-axis

*STATIC

*BOUNDARY, TYPE=VELOCITY

1.2.2–12

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

2, 4, 5
2, 6, 6, 1.047198

*END STEP
**

*STEP, NLGEOM
Step 2: Rotate 90 degrees about the beam axis

*STATIC

*BOUNDARY, TYPE=VELOCITY
2, 4, 4, 0.785398
2, 5, 5, 1.36035
2, 6, 6

*END STEP
**

*STEP, NLGEOM
Step 3: Rotate beam onto z-axis

*STATIC

*BOUNDARY, TYPE=VELOCITY
2, 4, 4, 1.36035
2, 5, 5, -0.785398
2, 6, 6

*END STEP

The above method for applying finite-rotation boundary conditions (using a velocity-type boundary

condition with the default constant amplitude definition) is strongly recommended. However, if the

rotation boundary conditions are applied as displacement-type boundary conditions, the input syntax

would change.

The Abaqus/Standard convention for boundary condition specification within a step is to specify

the total or final boundary state. In such a case the specified boundary conditions from all of the previous

stepsmust be added to the incremental rotation vector components. The Abaqus/Standard step definitions

from above would change to:

*STEP, NLGEOM
Step 1: Rotate 60 degrees about the z-axis

*STATIC

*BOUNDARY
2, 4, 5
2, 6, 6, 1.047198

*END STEP
**

*STEP, NLGEOM
Step 2: Rotate 90 degrees about the beam axis

*STATIC

*BOUNDARY

1.2.2–13

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

2, 4, 4, 0.785398
2, 5, 5, 1.36035
2, 6, 6, 1.047198

*END STEP
**

*STEP, NLGEOM
Step 3: Rotate beam onto z-axis

*STATIC

*BOUNDARY
2, 4, 4, 2.145748
2, 5, 5, 0.574952
2, 6, 6, 1.047198

*END STEP

The boundary conditions in Steps 2 and 3 are the sum of the incremental rotation components plus the

rotation boundary conditions specified in the previous steps.

In Abaqus/Explicit references to amplitude definitions should be used such that there are no jumps

in displacement across the steps. It is often convenient to use amplitude definitions given in terms of

total time for this purpose. The displacement boundary conditions will be applied incrementally based

on the increment in the value of amplitude curve over the time increment. Therefore, any sudden jumps

in displacement at the beginning of a step introduced either without the amplitude curves or with two

amplitude curves will be ignored (see “Boundary conditions in Abaqus/Standard and Abaqus/Explicit,”

Section 34.3.1). The Abaqus/Explicit step definitions for the above example would change to:

*AMPLITUDE, TIME=TOTAL TIME, NAME=RAMPUR1
0., 0., 0.001, 0., 0.002, 0.785398, 0.003, 2.145748

*AMPLITUDE, TIME=TOTAL TIME, NAME=RAMPUR2
0., 0., 0.001, 0., 0.002, 1.36035, 0.003, 0.574952

*AMPLITUDE, TIME=TOTAL TIME, NAME=RAMPUR3
0., 0., 0.001, 1.047198, 0.002, 1.047198, 0.003, 1.047198

*STEP
Step 1: Rotate 60 degrees about the z-axis

*DYNAMIC, EXPLICIT
, 0.001

*BOUNDARY, AMP=RAMPUR1
2, 4, 4, 1.0

*BOUNDARY, AMP=RAMPUR2
2, 5, 5, 1.0

*BOUNDARY, AMP=RAMPUR3
2, 6, 6, 1.0

*END STEP
**

*STEP

1.2.2–14

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

Step 2: Rotate 90 degrees about the beam axis

*DYNAMIC, EXPLICIT
, 0.001

*END STEP
**

*STEP
Step 3: Rotate beam onto z-axis

*DYNAMIC, EXPLICIT
, 0.001

*END STEP

The boundary conditions in Steps 2 and 3 are the sum of the incremental rotation components plus the

rotation boundary conditions specified in the previous steps.

The Abaqus output of the rotation field at the end of Step 3 is

We see that none of the individual components of the specified boundary conditions appears in the

final rotation output. The final rotation output represents the rotation vector required to obtain the final

orientation in a single step.

Suppose that in Step 3 of the previous example we want to apply the rotation vector at node 1

instead of at node 2. If the rotation is applied incrementally, the Abaqus/Standard step definition is as

follows:

*STEP, NLGEOM
Step 3: Rotate beam onto z-axis

*STATIC

*BOUNDARY, TYPE=VELOCITY, OP=NEW
1, 1, 3
1, 4, 4, 1.36035
1, 5, 5, -0.785398
1, 6, 6

*END STEP

and the Abaqus/Explicit step definition is similar. It is necessary to remove the rotation boundary

conditions that are in effect at node 2.

As mentioned previously, using velocity-type boundary conditions is the preferred method for

applying finite-rotation boundary conditions. If the rotation boundary condition is to be applied as a

displacement-type boundary condition, we must first retrieve the rotation field at node 1 at the end of

Step 2. The Abaqus output of this rotation field is

1.2.2–15

Abaqus Version 6.6 ID:

Printed on:

CONVENTIONS

These rotation vector components must then be added to the incremental rotation vector components we

wish to prescribe in Step 3. The Abaqus/Standard step definition would change to

*STEP
Step 3: Rotate beam onto z-axis

*STATIC

*BOUNDARY, OP=NEW
1, 1, 3
1, 4, 4, 2.772
1, 5, 5, 0.0301
1, 6, 6, 0.8155

*END STEP

and the Abaqus/Explicit step definition would change to:

*STEP
Step 3: Rotate beam onto z-axis

*DYNAMIC, EXPLICIT
, 0.001

*AMPLITUDE, TIME=STEP TIME, NAME=NODE1UR1
0., 1.412, 0.001, 2.772

*AMPLITUDE, TIME=STEP TIME, NAME=NODE1UR2
0., 0.8155, 0.001, 0.0301

*AMPLITUDE, TIME=STEP TIME, NAME=NODE1UR3
0., 0.8155, 0.001, 0.8155

*BOUNDARY, OP=NEW
1, 1, 3

*BOUNDARY, OP=NEW, AMP=NODE1UR1
1, 4, 4, 1.

*BOUNDARY, OP=NEW, AMP=NODE1UR2
1, 5, 5, 1.

*BOUNDARY, OP=NEW, AMP=NODE1UR3
1, 6, 6, 1.

*END STEP

The boundary conditions are again specified in the Abaqus/Explicit input using amplitude curves to avoid

any sudden jump in their values at the beginning of the step. As stated above and in “Boundary conditions

in Abaqus/Standard and Abaqus/Explicit,” Section 34.3.1, any jumps in the displacement values will be

ignored and the boundary will be maintained at the previous values.

As this last procedure clearly demonstrates, it is simpler to apply finite-rotation boundary conditions

as velocity-type boundary conditions rather than as displacement-type boundary conditions. The

recommended method of specifying finite-rotation boundary conditions is also described in “Boundary

conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.3.1. For further discussion of how

finite rotations are accumulated, see “Rotation variables,” Section 1.3.1 of the Abaqus Theory Guide.

1.2.2–16

Abaqus Version 6.6 ID:

Printed on:

Abaqus MODEL DEFINITION

1.3 Abaqus model definition

• “Defining a model in Abaqus,” Section 1.3.1

1.3–1

Abaqus Version 6.6 ID:

Printed on:

MODEL DEFINITION

1.3.1 DEFINING A MODEL IN Abaqus

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

References

• “Input syntax rules,” Section 1.2.1

• Abaqus Keywords Reference Guide

• Abaqus/CAE User’s Guide

Overview

An analysis in Abaqus is defined by an input file, which

• contains keyword lines and data lines; and

• is divided into model data and history data.

The input file

An Abaqus input file is an ASCII data file. It can be created by using a text editor or by using a graphical

preprocessor such as Abaqus/CAE. The input file consists of a series of lines containing Abaqus options

(keyword lines) and data (data lines). The input syntax for keyword and data lines is described in “Input

syntax rules,” Section 1.2.1.

Most input files have the same basic structure. The following portions of the input file are specified

to define a finite element model:

1. An input file often begins with the *HEADING option, which is used to define a title for the analysis.

Any number of data lines can be used to give the title; they will appear at the beginning of the output

files (“Output,” Section 4.1.1). The first heading line will appear as a heading at the top of each page

of the output.

While including a title can be helpful for users examining your input file, the *HEADING

option is not required.

2. After the heading the input file usually contains a model data section to define nodes, elements,

materials, initial conditions, etc. The model data section is explained below.

3. If the model is organized into an assembly of part instances, the model data are further categorized

and must fall within the proper level: part, assembly, instance, or model. Models defined in terms

of an assembly of part instances are discussed in “Defining an assembly,” Section 2.10.1.

4. Finally, the input file contains history data to define the analysis type, loading, output requests, etc.

Step definitions divide the model data from the history data in an input file: everything appearing

before the first step definition is model data, and everything appearing within and following the first

step definition is history data. The history data section is explained below.

1.3.1–1

Abaqus Version 6.6 ID:

Printed on:

MODEL DEFINITION

The input file is processed by the “analysis input file processor” prior to executing the appropriate analysis

product, Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD. The functions of the analysis input file

processor are to interpret the Abaqus options, to perform the necessary consistency checking, and to

prepare the data for the analysis products.

Most computational mechanics modeling options (element types, loading types, etc.) are available

in both Abaqus/Standard and Abaqus/Explicit, although some options are available in only one analysis

product or the other. All of the step procedure types used in an input file must be from the same analysis

product; however, it is possible to import a solution from Abaqus/Standard into Abaqus/Explicit and vice

versa (see “Importing and transferring results,” Section 9.2), which allows each analysis product to be

used at the various stages of an analysis for which it is best suited (for example, a static preloading in

Abaqus/Standard followed by a dynamic analysis in Abaqus/Explicit).

Model data

Model data define the nodes, elements, materials, initial conditions, etc.

Required model data

The following model data must be included in an input file to define a finite element model:

• Geometry: The geometry of a model is described by elements and their nodes. The rules

and methods for defining nodes and elements are described in “Node definition,” Section 2.1.1;

“Element definition,” Section 2.2.1; and “Defining an assembly,” Section 2.10.1. Cross-sections

for structural elements (such as beams) must be defined. Special features can be defined with

special elements such as springs, dashpots, point masses, etc. The element types available for

modeling are described in Part VI, “Elements,” along with explanations of how to define the

elements. You can view the initial mesh or the configuration after adjustment for initial overclosure

in the Visualization module of Abaqus/CAE after a data check run (see “Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2).

• Material definitions: A material type must be associated with most portions of the geometry.

The material library is described in Part V, “Materials.” Special elements such as springs or dashpots

do not have an associated material, but their properties must be defined.

Optional model data

The following model data can be included as necessary:

• Parts and an assembly: The geometry of a model can be defined by organizing it into

parts, which are positioned relative to one another in an assembly (“Defining an assembly,”

Section 2.10.1).

• Initial conditions: Nonzero initial conditions such as initial stresses, temperatures, or velocities

can be specified (“Initial conditions,” Section 34.2).

• Boundary conditions: Zero-valued boundary conditions (including symmetry conditions)

can be imposed on individual solution variables such as displacements or rotations (“Boundary

conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.3.1).

1.3.1–2

Abaqus Version 6.6 ID:

Printed on:

MODEL DEFINITION

• Kinematic constraints: Equations involving several of the fundamental solution variables in the

model (“Linear constraint equations,” Section 35.2.1) or multi-point constraints (“General multi-

point constraints,” Section 35.2.2) can be defined.

• Interactions: Contact and other interactions between parts can be defined (“Contact interaction

analysis: overview,” Section 36.1.1).

• Amplitude definitions: Amplitude curves can be defined for later use in specifying

time-dependent loading or boundary conditions (“Amplitude curves,” Section 34.1.2).

• Output control: You can control model definition output to the data file (“Output,” Section 4.1.1).

• Environment properties: Environment properties, such as the attributes of a fluid surrounding

the model, may have to be defined.

• Analysis continuation: It is possible to write restart data or to use the results from a previous

analysis and continue the analysis with new model or history data (“Restarting an analysis,”

Section 9.1.1), with a new mesh (“Submodeling: overview,” Section 10.2.1; “Mesh-to-mesh

solution mapping,” Section 12.4.1; and “Symmetric model generation,” Section 10.4.1), or with the

same or a different Abaqus program (“Transferring results between Abaqus analyses: overview,”

Section 9.2.1).

History data

The purpose of an analysis is to predict the response of a model to some form of external loading or

to some nonequilibrium initial conditions. An Abaqus analysis is based on the concept of steps, which

are described in the history data portion of the input file. (For more information on steps, see “Defining

an analysis,” Section 6.1.2.) The history input data are combined within a step as needed to define the

history of the analysis.

Multiple steps can be defined in an analysis. Steps can be introduced simply to change the output

requests or to change the loads, boundary conditions, analysis procedure, etc. There is no limit on the

number of steps in an analysis.

There are two kinds of steps in Abaqus: general response analysis steps, which can be linear or

nonlinear; and, in Abaqus/Standard, linear perturbation steps (see “General and linear perturbation

procedures,” Section 6.1.3). A general analysis step contributes to the response history of the system;

a linear perturbation step allows the investigation of the linearized response of the system at any stage

during the response history.

The state at the end of a general step provides the initial conditions for the next step, making it easy

to simulate consecutive loadings of a model, such as a dynamic response following a static preload or

the loading of a product during its usage following a simulation of the manufacturing process.

The optional history data described below prescribing the loading; boundary conditions; output

controls; auxiliary controls; and, in Abaqus/Explicit, contact conditions are continued from one general

analysis step to the next general analysis step unless modified. For example, the solution controls

prescribed in a general analysis step in Abaqus/Standard (see “Convergence and time integration

criteria: overview,” Section 7.2.1) will remain in effect for all subsequent general analysis steps until

they are modified or reset. For linear perturbation steps only the output controls are continued from

one linear perturbation step to the next if there are no intermediate general analysis steps and the

1.3.1–3

Abaqus Version 6.6 ID:

Printed on:

MODEL DEFINITION

output controls are not redefined (see “Output,” Section 4.1.1). Similarly, conditions specified in an

Abaqus/CFD analysis are continued from one step to the next unless modified.

Input File Usage: Use the following option to begin a step definition:

*STEP

Use the following option to end a step definition:

*END STEP

Required history data

The following history data must be included in an input file to define an analysis procedure:

• Response type: An option to define the analysis procedure type must appear immediately after

the beginning of the step definition.

Abaqus can perform many types of analyses—linear or nonlinear, static or dynamic, etc. (see

“Defining an analysis,” Section 6.1.2). The type of analysis can be changed from step to step. For

example, in Abaqus/Standard a static preload can be analyzed first, then the response type can be

changed to transient dynamic. In this way a linear or nonlinear dynamic analysis can be performed

based on the conditions at the end of the static solution.

Optional history data

The following history data can be included as necessary:

• Loading: Usually some form of external loading is defined. For example, concentrated or

distributed loads can be applied (“Applying loads: overview,” Section 34.4.1), temperature changes

leading to thermal expansion can be prescribed (“Thermal expansion,” Section 26.1.2), or contact

conditions can be used to apply loads (“Contact interaction analysis: overview,” Section 36.1.1).

The loading can be prescribed as a function of time (“Amplitude curves,” Section 34.1.2).

This feature can be used to prescribe loadings such as the ground motion during a seismic event,

known accelerations, or the temperature and pressure history during a transient in an engine. If an

amplitude curve is not defined, Abaqus assumes either that the loading varies linearly over the step

or that the load is applied instantaneously at the beginning of the step, depending on the chosen

response type (see “Defining an analysis,” Section 6.1.2).

• Boundary conditions: Boundary conditions can be added, modified, or removed during an

analysis (“Boundary conditions,” Section 34.3).

• Output control: Quantities such as stress, strain, reaction force, temperature, and energy are

available as output. The output options are described in “Output to the data and results files,”

Section 4.1.2, and “Output to the output database,” Section 4.1.3; and all of the output variables

are listed in “Output variables,” Section 4.2. The available output files are described in “Output,”

Section 4.1.1.

• Contact: Contact surfaces and contact interactions can be added, modified, or removed as

step-dependent history data during an Abaqus/Explicit analysis (see “Contact interaction analysis:

overview,” Section 36.1.1).

1.3.1–4

Abaqus Version 6.6 ID:

Printed on:

MODEL DEFINITION

• Auxiliary controls: You can overwrite the solution controls that are built into Abaqus.

In some procedures these values are given in the procedure definition. More generally in

Abaqus/Standard they are given by defining solution controls (“Commonly used control

parameters,” Section 7.2.2). Solution controls for contact problems (“Adjusting contact controls

in Abaqus/Standard,” Section 36.3.6; “Common difficulties associated with contact modeling

using contact pairs in Abaqus/Explicit,” Section 39.2.2; or “Contact controls for general contact in

Abaqus/Explicit,” Section 36.4.5) can also be defined.

• Element and surface removal/reactivation: In Abaqus/Standard portions of the model can be

removed or reactivated from step to step. See “Element and contact pair removal and reactivation,”

Section 11.2.1.

• Co-simulation: The steps in the Abaqus model must be defined such that the co-simulation fits

entirely within a single Abaqus step. Further, there can be only one co-simulation in the Abaqus

job.

Including model or history data from an external file

You can specify an external file that contains a portion of the Abaqus input file. This file can include

model and history definition data, comment lines, and other references to external files. When a reference

to an external file is encountered, Abaqus will immediately process the data within the specified file.

When the end-of-file is reached, Abaqus will return to processing the original file.

A maximum of five levels of nested external file references can be used. UNIX environment

variables can be used to specify the file names.

Input File Usage: *INCLUDE, INPUT=file_name

Including an encrypted data file

You can include an encrypted file by reference in an Abaqus input file or in another data file. When

you refer to the encrypted file, you must also provide the file’s password. If the password is correct,

Abaqus processes the data within the specified file as it would for an unencrypted external file. Material

and connector behavior definitions within an encrypted input file are not written to the output database.

In addition, all material and connector behavior definitions output to the data file are suppressed if an

encrypted file is used as input for any portion of the model. See “Encrypting and decrypting Abaqus

input data,” Section 3.2.35, for details about the encryption utility.

Some encrypted files are eligible for inclusion only by users with a license for a particular Abaqus

feature (such as Abaqus/Explicit) or to users at a particular site. If you attempt to include an encrypted

file for which you do not have the proper privileges, Abaqus issues an error message.

You cannot include encrypted input files that contain parametric input.

Input File Usage: *INCLUDE, INPUT=file_name, PASSWORD=password

1.3.1–5

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC MODELING

1.4 Parametric modeling

• “Parametric input,” Section 1.4.1

1.4–1

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

1.4.1 PARAMETRIC INPUT

Products: Abaqus/Standard Abaqus/Explicit

References

• “Scripting parametric studies,” Section 20.1.1

• “Parametric shape variation,” Section 2.1.2

• *PARAMETER

• *PARAMETER DEPENDENCE

• *PARAMETER SHAPE VARIATION

• Chapter 4, “Introduction to Python,” of the Abaqus Scripting User’s Guide

Overview

The parametric input capability allows you to create an Abaqus input file in which:

• Any number of input parameters is defined by assigning a value to each one of them.

• The parameters defined in the input file are used in place of input quantities.

• The parameters are evaluated according to their definition and are substituted for the parametrized

input quantities before an analysis is run.

Parametric input allows greater flexibility in building and manipulating models. The different kinds of

parameters and the different ways of parametrizing the Abaqus input quantities are discussed in this

section.

Introduction

You must define all the parameters you wish to use in an analysis by assigning a value to them. The

Python language (Lutz, 1999) is used to perform parameter evaluation and substitution; hence, parameter

definitions are required to follow the Python syntax rules discussed later in this section. These parameters

can then be used in place of input quantities.

Input File Usage: Use the following option to define parameters:

*PARAMETER

Use these parameters in place of input quantities by delimiting them with < >.

For example, the following input defines the two parameters width and

height, which are then used to define beam section properties:

*PARAMETER
width = 2.5
height = width*2

*BEAM SECTION, SECTION=RECT, ELSET=name,

1.4.1–1

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

MATERIAL=name
<width>, <height>

In this simple example models with beams of different cross-sections can be

obtained simply by changing the values of the parameters.

Parameters

Parameters are user-named variables to which you assign values. When a parameter is used instead of a

value, the value of that parameter is substituted. There are two basic types of parameters: independent

parameters and dependent parameters.

Independent parameters

Independent parameters are those that do not depend on any other parameters. The following are

examples of independent parameters:

thickness = 10.0
area = 5.0**2
length = 3.0*sin(45*pi/180.0) # convert degrees to radians

Python expressions using numbers and numerical operations (such as addition, multiplication, and

exponentiation) can be used to define independent parameters. Arithmetic support in Python is

discussed later in this section.

Dependent parameters

Dependent parameters are those that depend on other parameters (dependent or independent). Dependent

parameters can be defined in one of two ways: using a mathematical expression or using a tabular

dependence.

Expressional dependence

Python parametric expressions involving operations between numbers and parameters are used to

define expressionally dependent parameters. In the following example area and mom_inertia are

dependent parameters:

width = 2.0
height = 5.0
area = width*height
mom_inertia = area*height**2/12.0

Tabular dependence

Tabular dependence between parameters is defined by specifying the dependent and independent

parameters as well as a dependence table. The table that defines the dependence between the parameters

must have as many values per line as the number of dependent parameters plus the number of

independent parameters for which it is going to be used. The table must contain only real values;

1.4.1–2

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

dependent parameter values are given first, followed by independent parameter values. Parameter

names and character strings cannot be used in a table.

The evaluation of tabularly dependent parameters by interpolation between values in a table will

result in these parameters being assigned real values. If it is necessary that the tabularly dependent

parameters be integer numbers, the real numbers must be converted to integer numbers as described

later in the Python language section.

When the tabularly dependent parameters are functions of only one independent parameter, the

tabular data must be given in order of increasing values of the independent parameter. Abaqus then

interpolates linearly for values between those given. The dependent parameters are assumed to be

constant outside the range of the independent parameters used in a table. When the tabularly dependent

parameters depend on several independent parameters, the variation of the dependent parameters

with respect to the first independent parameter must be given at fixed values of the other independent

parameters, in ascending values of the second independent parameter, then of the third independent

parameter, and so on. The table lines must always be ordered so that the independent parameters are

given increasing values. This process ensures that the value of each dependent parameter is completely

and uniquely defined for all values of the independent parameters.

The fact that the definition of the dependence table is separate from the assignment of the

dependence to particular parameters means that the same table can be used for multiple sets of

dependent/independent parameters. This is useful when there are different instances of the same kind

of input data; for example, multiple material definitions that use the same dependence but different sets

of parameters.

Because the evaluation of parameters is procedural (see “Parameter evaluation” below), a parameter

dependence table must always be defined before it is used to specify tabular parameter dependencies.

Independent parameters in tabular dependence definitions are treated as independent for the purpose

of defining this dependency; however, these “independent” parameters can be defined to depend on other

parameters in a preceding parameter definition.

Input File Usage: Use the following option to define a parameter dependence table:

*PARAMETER DEPENDENCE, TABLE=name, NUMBER VALUES=n

table with n values per line

Use the following option to define the dependent and independent parameters

that are used in the dependence table:

*PARAMETER, TABLE=name, DEPENDENT=(parList),

INDEPENDENT=(parList)

Rules for parameters

Some general rules apply to all parameters used in Abaqus input files. These rules are described in the

following subsections.

Parameter evaluation

Parameters are evaluated by ordered execution of the parameter definitions as they appear in the input

file. For example, the input

1.4.1–3

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

*PARAMETER
x = 2
y = x + 3
x = 4

gives x=4 and y=5, not x=4 and y=7. The input

*PARAMETER
y = x + 3
x = 4

is flagged as an error because y cannot be evaluated by ordered execution of the input. In other words,

there is no deferred execution of the parameter definitions.

It is possible to define parameters anywhere in the input file, even after parameters have been used

in place of input quantities, since the parameter definitions are always processed before any other input

options are processed.

Parameters can also be defined and used in place of input quantities in an input file used for a restart

analysis. However, parameters defined in the input file for the original analysis (from which the restart

run is continued) are not available in the restart analysis.

Parameter substitution

When the parameterized data are processed, Abaqus assigns the parameter values as determined at the

end of parameter evaluation. An error is reported if a parameter used in place of input quantities has not

been assigned a value. Later, the analysis input file processor performs its usual checks on the validity

of the parameter values with respect to the options in which they are being used.

Data given to define a parameter, a parameter dependence table, or a parameter shape variation

cannot be parameterized. For example, the input

*PARAMETER SHAPE VARIATION
<x>

is not valid; however, the analysis input file processor will not report an error for this input.

Data types

The data type of a parameter is deduced from its definition. An integer parameter results from assigning

an integer literal value to the parameter. Similarly, a real parameter arises from assigning a real literal

value to the parameter. Integers are promoted to reals if they are used in operations containing reals. A

character string parameter results from assigning a character string literal value to the parameter.

The input option context in which the parameter is used dictates the data type that the parameter must

have. Parameters of real data type should be used in place of real Abaqus input quantities. Parameters

of integer (or character string) type should be used in place of integer (or character string) type input

quantities, respectively. In some instances, mismatches between the input context and the type of the

substituted parameter will cause the analysis input file processor to flag these instances as input errors.

For example, the input

1.4.1–4

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

*PARAMETER
int_pts = 5.0

*SHELL SECTION
10.0, <int_pts>

will cause the analysis input file processor to report an error because the number of integration points

specified for a shell section must be an integer. However, the input

*PARAMETER
thick = 5/4

*SHELL SECTION
<thick>,

will be accepted by the analysis input file processor without a warning being flagged; as a result of doing

integer division, this input gives a shell thickness of 1 (not 1.25). In conclusion, you can rely on the

analysis input file processor to catch only some data type errors.

Continuous and discrete parameters

From the point of view of design activities (sensitivity analysis, parametric studies, etc.) parameters can

be continuous valued or discrete valued. A continuous-valued parameter is differentiable and can, thus,

be used for design sensitivity analysis purposes. A discrete-valued parameter is not differentiable and

can, thus, not be used for design sensitivity analysis purposes; however, it can be used for parametric

studies. Examples of continuous-valued parameters may be a shell thickness or a material property.

Examples of discrete-valued parameters may be the number of integration points through the thickness

of a shell, or an element type. Continuous-valued parameters generally coincide with physical (design)

input quantities, while discrete-valued parameters generally coincide with finite element (numerical

approximation) input quantities.

Auxiliary input files

Parameters can be defined in *INCLUDE input files but not in any other auxiliary input files. Names of

auxiliary input files can be parameterized, except those used in the *INCLUDE option.

Parametrization of input quantities

Abaqus treats parametrization of “size” and “shape” quantities somewhat differently. Parametrization of

shape input quantities is discussed in a separate section (see “Parametric shape variation,” Section 2.1.2).

Size input quantities are understood to include all Abaqus input quantities except those that relate

to shape. Size input quantities include section properties, material properties, orientation properties,

prescribed conditions, interaction definitions and properties, and analysis procedure data.

Parametrizing individual input quantities

The following example shows the parametrization of shell section input using three independent

parameters of differing data types:

1.4.1–5

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

*ELSET, ELSET=<shell_set>, GEN
1, 111, 10

*PARAMETER
shell_set = 'lining'
shell_thick = 1.E2
num_int_pts = 5

*SHELL SECTION, ELSET=<shell_set>, MATERIAL=name
<shell_thick>, <num_int_pts>

Parametrizing groups of input quantities (expressional dependence)

The following example shows the parametrization of a three-layer composite shell section using

expressional-dependent parameters. In this example the thickness parameter can be used to change

the thickness of the layers of the composite section uniformly.

*PARAMETER
thickness = 10.
layer1_thick = 0.15*thickness
layer2_thick = 0.6*thickness
layer3_thick = 0.25*thickness

*SHELL SECTION, ELSET=, COMPOSITE
<layer1_thick>,num int pts, material name, orientation

<layer2_thick>,num int pts, material name, orientation

<layer3_thick>,num int pts, material name, orientation

This parametrization requires that dependent parameters be created for the three input quantities

(layer1_thick, layer2_thick, layer3_thick) that each depend on the independent

parameter (thickness).

Parametrizing groups of input quantities (tabular dependence)

The following example shows the parametrization of the section properties of a box beam. The height

and wall thicknesses of the beam section are parameters that depend tabularly on the section width.

*PARAMETER
a = 60.

*PARAMETER DEPENDENCE, TABLE=sectprop, NUMBER VALUES=6
25.0, 1.04, 1.04, 1.04, 1.04, 50.0
50.0, 4.17, 3.13, 2.08, 2.50, 100.0
75.0, 9.38, 6.24, 3.13, 4.90, 150.0

*PARAMETER, TABLE=sectprop, DEPENDENT=(b, t1, t2, t3, t4),
INDEPENDENT=(a)

*BEAM SECTION, SECTION=BOX, ELSET=beams, MATERIAL=steel
<a>, , <t1>, <t2>, <t3>, <t4>

1.4.1–6

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

The above parametrization creates dependent parameters (b, t1, t2, t3, t4) that each depend on the

independent parameter (a). Usage of tabular dependence allows the definition of the dependencies of

input quantities on parameters to be confined to the parameter definitions; i.e., separate from the options

where parametrization of input quantities is done. An advantage of this method of parametrization is

that the same parameter dependence table can be used for different parameters in different input options.

For example, you may wish to use beams of different cross-section dimensions in different parts of the

structure being modeled. The parameter dependence table can be reused with new dependent (bb, tt1,
tt2, tt3, tt4) and independent (aa) parameters.

*PARAMETER
aa = 65.

*PARAMETER, TABLE=sectprop, DEPENDENT=(bb, tt1, tt2, tt3, tt4),
INDEPENDENT=(aa)

*BEAM SECTION, SECTION=BOX, ELSET=columns, MATERIAL=steel
<aa>, <bb>, <tt1>, <tt2>, <tt3>, <tt4>

In options where predefined field variable dependence is supported, this method of parametrization

provides a clear separation between predefined field variable dependence and parameter dependence;

therefore, field variable and parameter dependence can never be confused. Consider, for example, the

case of perfect plasticity properties for a metal where the yield stress depends on a field variable and is

also parametrized to depend tabularly on the carbon content of the metal alloy.

*PARAMETER
carbon = 0.01

*PARAMETER DEPENDENCE, TABLE=yield_data, NUMBER=4
ys_fv1 val 1, ys_fv2 val 1, ys_fv3 val 1, carbon val 1

ys_fv1 val 2, ys_fv2 val 2, ys_fv3 val 2, carbon val 2

ys_fv1 val 3, ys_fv2 val 3, ys_fv3 val 3, carbon val 3

ys_fv1 val 4, ys_fv2 val 4, ys_fv3 val 4, carbon val 4

*PARAMETER, TABLE=yield_data, DEPENDENT=(ys_fv1, ys_fv2, ys_fv3),
INDEPENDENT=(carbon)

*MATERIAL, NAME=alloy

*PLASTIC, DEPENDENCIES=1
<ys_fv1>, , , fv val 1

<ys_fv2>, , , fv val 2

<ys_fv3>, , , fv val 3

Consider, for example, the case of metal creep properties where the creep material data are parameters

that depend tabularly on the carbon content of the metal alloy. In addition, one of the creep parameters,

A, also depends on a predefined field variable.

*PARAMETER
carbon = 0.01

*PARAMETER DEPENDENCE, TABLE=creepdata, NUMBER=6
A_fv1 val 1, A_fv2 val 1, A_fv3 val 1, n val 1, m val 1, carbon val 1

1.4.1–7

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

A_fv1 val 2, A_fv2 val 2, A_fv3 val 2, n val 2, m val 2, carbon val 2

A_fv1 val 3, A_fv2 val 3, A_fv3 val 3, n val 3, m val 3, carbon val 3

A_fv1 val 4, A_fv2 val 4, A_fv3 val 4, n val 4, m val 4, carbon val 4

*PARAMETER, TABLE=creepdata, DEPENDENT=(A_fv1, A_fv2, A_fv3,
n, m), INDEPENDENT=(carbon)

*MATERIAL, NAME=alloy

*CREEP, DEPENDENCIES=1
<A_fv1>, <n>, <m>, , fv val 1

<A_fv2>, <n>, <m>, , fv val 2

<A_fv3>, <n>, <m>, , fv val 3

This example shows that any combination of dependencies on predefined field variables and/or dependent

parameters can be defined.

Python language

Parameter statements in parameter definitions are required to follow the syntax and semantics of the

Python language (note that the parameter dependence table and parameter shape variation definitions

follow the usual Abaqus input syntax rules). The subset of the Python language that is endorsed is

documented here.

Statement length and continuation lines

Python statements in parameter definitions can be continued over multiple lines by terminating each line

with a backslash character (\). The *PARAMETER keyword lines can be continued onto the following

line using a trailing comma since they are treated like other Abaqus keyword lines.

Comments

Comments in a parameter definition start with the number character (#) and continue to the end of the

line. However, comments in a parameter dependence table or parameter shape variation definition are

indicated by the usual Abaqus input syntax convention (**).

Parameter names

Parameter names must begin with a letter and can contain the underscore character (_) and numbers.

Parameter names are case sensitive.

Data types

Data types are limited to character strings, integers, and reals.

Strings are delimited with single or double quotation marks (’ ’ or ” ”). Backward single quotation

marks (‘ ‘) are not permitted. Character strings should not contain the backslash character (\).

Integers are created by assignment to integer literals (for example, aInt = 2).

1.4.1–8

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

Reals are created by assignment to real literals (for example, aReal = 1.0). Real numbers can be

given with or without an exponent. Any exponent must be preceded by E or e. The following line shows
five acceptable ways of entering the same real number:

-12.345, -1234.5E-2, -0.12345E+2, -0.12345E2, -0.12345e2

The syntax

-0.12345D+2

(allowed elsewhere in the Abaqus input file) is not valid in Python.

Type conversion

If integers and reals are mixed in expressions, integers are promoted automatically to reals. Explicit type

conversion can be obtained using:

int(aReal) aReal converted to integer type

float(anInt) anInt converted to real type (float is the same as real)

str(anIntOrReal) anIntOrReal converted to character string type

’anIntOrReal’ anIntOrReal converted to character string type

Numeric operators

Standard support for operators is provided:

− x x negated

+ x x unchanged

x + y sum of x and y

x − y difference of x and y

x * y product of x and y

x / y quotient of x and y

x**y x to the power y

Functions

The following utility functions are supported:

abs(x) absolute value of x

acos(x) arc cosine of x (result is in radians)

asin(x) arc sine of x (result is in radians)

atan(x) arc tangent of x (result is in radians)

cos(x) cosine of x (x is in radians)

log(x) natural logarithm of x

log10(x) base 10 logarithm of x

pow(x,y) x to the power y (equivalent to x**y)

1.4.1–9

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

sin(x) sine of x (x is in radians)

sqrt(x) square root of x

tan(x) tangent of x (x is in radians)

Character string operators

’abc’ + ’def’ concatenation of character string ’abc’ and character string ’def’

Execution of parametrized input

Jobs with parametrized input files are submitted to Abaqus in the usual way; for example,

abaqus job=job-name input=input-file

where it is assumed that an input file named input-file.inp exists.

Abaqus searches input-file.inp and any *INCLUDE input files for parameter, parameter

dependence table, and parameter shape variation (“Parametric shape variation,” Section 2.1.2)

definitions, as well as parameter names inside < > that may have been used in place of input quantities.

If any of the above are found, Abaqus will interpret the parametrized input file and perform the tasks

of parameter evaluation and substitution.

As a result, a modified input file that is free of parameter and parameter dependence table

definitions and <parameter> instances is produced. This file is named job-name.pes and is

subsequently submitted for execution of an analysis. The execution procedure of a parametrized input

file, except for the additional processing of parameter shape variation definitions in the analysis input

file processor, does not differ from that of a non-parametrized input file. All the files generated by the

parametrized input job will be named job-name with the appropriate extension appended to it.

Parameter check jobs

You can specify an execution mode in which only parameter processing (evaluation and substitution) is

carried out. The parameter check execution mode is mutually exclusive of other execution modes, such

as complete analysis, data check, continuation of a data check, conversion of results, or recovery (see

“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2).

A parameter check run is useful in situations where you have defined complex parametrization in

the input. In these cases you may want to study the results of parameter evaluation and substitution

before proceeding further.

A parameter check run does not permit continuation of the execution in a subsequent run; the job

must be rerun from the beginning.

Input File Usage: Enter the following input on the command line:

abaqus job=job-name input=input-file parametercheck

Display of parametric input

Display of the results of parameter evaluation and substitution in the data file is described in this section.

Visualization of parameter shape variations is described in “Parametric shape variation,” Section 2.1.2.

1.4.1–10

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC INPUT

Data file display

The data (.dat) file contains information about the model definition generated by the analysis input

file processor. You can control the amount of output generated by the analysis input file processor; see

“Controlling the amount of analysis input file processor information written to the data file” in “Output,”

Section 4.1.1, for details. In particular, you can specify whether or not the original input (.inp) file is
echoed to the data file (by default, it is not).

In the case of parametric input this file will generally contain a number of parameter, parameter

dependence table, and parameter shape variation definitions, as well as a number of <parameter>

instances. To verify the definition of parametric input, you can create a modified version of the original

input file showing the parameters and their values (this file is named job-name.par). You can also

create the job-name.pes file, which is the modified version of the original input file that is free of

parameter and parameter dependence table definitions, as well as <parameter> instances.

Input File Usage: Use the following option to print the contents of the job-name.par file to the

data file:

*PREPRINT, PARVALUES=YES

Use the following option to print the contents of the job-name.pes file to the

data file:

*PREPRINT, PARSUBSTITUTION=YES

Additional reference

• Lutz, M., and D. Ascher, Learning Python, O’Reilly & Associates, Inc., 1999.

1.4.1–11

Abaqus Version 6.6 ID:

Printed on:

SPATIAL MODELING

2. Spatial Modeling

Node definition 2.1

Element definition 2.2

Surface definition 2.3

Rigid body definition 2.4

Integrated output section definition 2.5

Mass adjustment 2.6

Nonstructural mass definition 2.7

Distribution definition 2.8

Display body definition 2.9

Assembly definition 2.10

Matrix definition 2.11

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

2.1 Node definition

• “Node definition,” Section 2.1.1

• “Parametric shape variation,” Section 2.1.2

• “Nodal thicknesses,” Section 2.1.3

• “Normal definitions at nodes,” Section 2.1.4

• “Transformed coordinate systems,” Section 2.1.5

• “Adjusting nodal coordinates,” Section 2.1.6

2.1–1

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

2.1.1 NODE DEFINITION

Products: Abaqus/Standard Abaqus/Explicit

References

• *NCOPY

• *NFILL

• *NGEN

• *NMAP

• *NODE

• *NSET

• *SYSTEM

Overview

This section describes the methods for defining nodes in an Abaqus input file. In a preprocessor such as

Abaqus/CAE, you define the model geometry rather than the nodes and elements; when you mesh the

geometry, the preprocessor automatically creates the nodes and elements needed for analysis. Although

the concepts discussed in this section apply in general to the node definitions in the input file that is

created by Abaqus/CAE, the methods and techniques described here apply only if you are creating the

input file manually.

Node definition consists of:

• assigning a node number to the node;

• optionally specifying a local coordinate system in which to define nodes;

• defining individual nodes by specifying their coordinates;

• grouping nodes into node sets;

• creating nodes from existing nodes by generating them incrementally, by copying existing nodes,

or by filling in nodes between the bounds of a region; and

• mapping a set of nodes from one coordinate system to another.

If any node is specified more than once, the last specification given is used.

Abaqus will eliminate all unnecessary nodes before proceeding with the analysis. This feature is

useful because it allows points to be defined as nodes for mesh generation purposes only.

Assigning a node number to the node

Each individual node must have a numeric label called the node number, which is assigned when the

node is defined. The node number must be a positive integer, and the maximum node number allowed

is 999999999 (for information on integer input, see “Input syntax rules,” Section 1.2.1). The nodes do

not need to be numbered continuously.

2.1.1–1

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an

assembly,” Section 2.10.1). In such a model all nodes must belong to either a part, part instance, or, in

the case of reference nodes, to the assembly. Node numbers must be unique within a part, part instance,

or the assembly; but they can be repeated in different parts or part instances.

Specifying a local coordinate system in which to define nodes

Sometimes it is convenient to define nodal coordinates in a local coordinate system and then transform

these coordinates to the global coordinate system. You can define a nodal coordinate system; Abaqus

will translate and rotate the local () coordinate values into the global coordinate system. The

transformation is done immediately after input and will be applied to all nodal coordinates entered or

generated after the nodal coordinate system is defined.

The transformation affects only the input of nodal coordinates in node definitions. Nodal coordinate

system definitions cannot be used

• for applying loads and boundary conditions—see “Transformed coordinate systems,” Section 2.1.5,

instead; or

• for output of components of stress, strain, and element section forces—see “Orientations,”

Section 2.2.5, instead.

In addition to defining nodal coordinate systems, you can define individual nodes or node sets in local

rectangular, cylindrical, or spherical systems (see “Specifying a local coordinate system for the nodal

coordinates”). If a nodal coordinate system is in effect and you specify a local coordinate system for a

particular node or node set definition, the input coordinates are first transformed according to the local

system specified in the node definition and then according to the nodal coordinate system.

Defining the nodal coordinate system

You set up the coordinate system specification by specifying the global coordinates of three points in

the local system: the origin of the local system (point a in Figure 2.1.1–1), a point on the local -axis

(point b in Figure 2.1.1–1), and a point in the plane of the local system on (or near) the local

-axis (point c in Figure 2.1.1–1).

Z

Y

X

X

Y

Z
1

1

1
(local)

(global)

a
b

c

Figure 2.1.1–1 Nodal coordinate system.

2.1.1–2

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

If only one point (the origin) is given, Abaqus assumes that you need a translation only. If only two

points are given, the direction of the -axis will be the same as that of the Z-axis; that is, the -axis

will be projected onto the plane.

To change the nodal coordinate system that is in effect, define another nodal coordinate system;

to revert to input in the global coordinate system, use a nodal coordinate system definition without any

associated data.

Input File Usage: Use the following option to define a nodal coordinate system:

*SYSTEM

, , , , ,

, ,

For example, in the following input, nodes 1 through 3 are defined in the

first nodal coordinate system, nodes 4 and 5 are defined in the second nodal

coordinate system, and nodes 6 and 7 are defined in the global coordinate

system:

*SYSTEM
0, 0, 0, 5, 5, 5

*NODE
1, 0, 0, 1
2, 0, 0, 2
3, 0, 1, 2

*SYSTEM
2, 3, 4

*NODE
4, 0, 0, 1
5, 1, 4, 0

*SYSTEM

*NODE
6, 1, 0, 1
7, 0, 4, 2

Defining a nodal coordinate system within part definitions

When you define a nodal coordinate system within a part (or part instance) definition, it is in effect only

within that part (or part instance) definition. Nodes defined in other parts are not affected.

You specify the local () coordinate values relative to the part coordinate system, which

subsequently may be translated and/or rotated according to the positioning data given for the instance

(see “Defining an assembly,” Section 2.10.1).

Defining individual nodes by specifying their coordinates

You can define individual nodes by specifying the node number and the coordinates that define the

node. Abaqus uses a right-handed, rectangular Cartesian coordinate system for all nodes except for

2.1.1–3

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

axisymmetric models, when the coordinates of the nodes must be given as the radial and axial positions.

For more information about direction definitions, see “Conventions,” Section 1.2.2.

In a model defined in terms of an assembly of part instances, give nodal coordinates in the local

coordinate system of the part (or part instance). See “Defining an assembly,” Section 2.10.1.

Input File Usage: *NODE

Reading node definitions from a file

Node definitions can be read into Abaqus from an alternate file. The syntax of such file names is described

in “Input syntax rules,” Section 1.2.1.

Input File Usage: *NODE, INPUT=file_name

Specifying a local coordinate system for the nodal coordinates

You can specify that a local rectangular Cartesian, cylindrical, or spherical coordinate system be used

for a particular node definition. These coordinate systems are shown in Figure 2.1.1–2.

(X,Y,Z)

Rectangular Cartesian
(default)

R
θ

Cylindrical
(θ and φ are given in degrees)

(R,θ,φ)

θ

φ

Spherical

Z

Y

X

Y Y

Z Z

X

X

(R,θ,Z)

Figure 2.1.1–2 Coordinate systems.

2.1.1–4

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

This coordinate system specification is entirely local to the node definition. As the nodal data

are read, the coordinates are transformed to rectangular Cartesian coordinates immediately. If a nodal

coordinate system is also in effect (see “Specifying a local coordinate system in which to define nodes”),

these are local rectangular Cartesian coordinates as defined by the nodal coordinate system, which are

subsequently transformed to global Cartesian coordinates.

Input File Usage: Use the following option to specify the nodal coordinates in a rectangular

Cartesian system (this is the default):

*NODE, SYSTEM=R

Use the following option to specify the nodal coordinates in a cylindrical

system:

*NODE, SYSTEM=C

Use the following option to specify the nodal coordinates in a spherical system:

*NODE, SYSTEM=S

For example, the following lines define node number 1 with coordinates

(10cos20°, 10sin20°, 5.) in a local cylindrical system (R, , Z):

*NODE, NSET=DISC, SYSTEM=C
1, 10., 20., 5.

If the following lines appeared in the input file before the above node definition,

the coordinates of node 1 would be transformed first to rectangular Cartesian

coordinates in the nodal coordinate system defined by the *SYSTEM option

and then to coordinates in the global system:

*SYSTEM
2, 0, 2

Grouping nodes into node sets

Node sets are used as convenient cross-references when defining loads, constraints, properties, etc. Node

sets are the fundamental references of the model and should be used to assist the input definition. The

members of a node set can be individual nodes or other node sets. An individual node can belong to

several node sets.

Nodes can be grouped into node sets when they are created or after they have already been defined.

In either case each node set is assigned a name. Node set names can be up to 80 characters long.

The same name can be used for a node set and for an element set.

By default, the nodes within a node set will be arranged in ascending order, and duplicate nodes

will be removed. Such a set is called a sorted node set. You may choose to create an unsorted node set

as described later, which is often useful for features that match two or more node sets. For example, if

you define multi-point constraints (“General multi-point constraints,” Section 35.2.2) between two node

sets, a constraint will be created between the first node in Set 1 and the first node in Set 2, then between

the second node in Set 1 and the second node in Set 2, etc. It is important to ensure that the nodes are

2.1.1–5

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

combined in the desired way. Therefore, it is sometimes better to specify that a node set be stored in

unsorted order.

Once nodes are assigned to a node set, additional nodes can be added to the same node set; however,

nodes cannot be removed from a node set.

Creating an unsorted node set

You can choose to assign nodes to a new node set (or to add nodes to an existing node set) in the order

in which they are given. The node numbers will not be rearranged, and duplicates will not be removed.

This unsorted node set will affect node copies, node fills, linear constraint equations, multi-point

constraints, and substructure nodes associated with retained degrees of freedom. An unsorted node set

can be created only by directly defining an unsorted node set as described here or by copying an unsorted

node set. Any additions or modifications to a node set using other means will result in a sorted node set.

Input File Usage: *NSET, NSET=name, UNSORTED

Assigning nodes to a node set as they are created

There are several ways that nodes can be assigned to node sets as they are created.

Input File Usage: Use any of the following options:

*NODE, NSET=name

*NCOPY, NEW SET=name

*NFILL, NSET=name

*NGEN, NSET=name

*NMAP, NSET=name

Assigning previously defined nodes to a node set

You can assign nodes that you have defined previously (by specifying their coordinates, by filling in nodes

between two bounds, or by generating them incrementally) to a node set by listing the nodes forming the

set directly, by generating the node set, or by generating a node set from an element set.

Listing the nodes that define the set directly

You can list the nodes that form a node set directly. Previously defined node sets, as well as individual

nodes, can be assigned to node sets.

Input File Usage: *NSET, NSET=name

For example, the following lines add nodes 1, 3, 10, 11, and all the nodes in set

A11 to set A12:

*NSET, NSET=A12
1, 3
10, 11,
A11

Node set A11 can be assigned to node set A12 only if the definition of A11
occurs before the definition of A12.

2.1.1–6

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

All the nodes in node set A12 will be sorted into ascending numerical order. If

the UNSORTED parameter were included on the *NSET option, node set A12
would contain the nodes in the order in which they are specified on the data

lines.

Generating the node set

To generate a node set, you must specify a first node, ; a last node, ; and the increment in node

numbers between these nodes, i. All nodes going from to in increments of i will be added to the

set. Therefore, imust be an integer such that is a whole number (not a fraction). The default

is .

Input File Usage: *NSET, NSET=name, GENERATE

For example, the following lines add all nodes from 100 to 120 in increments

of 10 to set A13:

*NSET, NSET=A13, GENERATE
100, 120, 10

Generating a node set from an element set

You can specify the name of a previously defined element set (“Element definition,” Section 2.2.1),

in which case the nodes that define the elements contained in this element set will be assigned to the

specified node set. This method can be used only to define sorted node sets.

Input File Usage: *NSET, NSET=name, ELSET=name

For example, the following lines add all nodes that define elements 50 and 100

(nodes 1, 2, 3, and 4) to node set A14:

*ELEMENT, TYPE=B21
50, 1, 2
100, 3, 4

*ELSET, ELSET=B1
50, 100

*NSET, NSET=A14, ELSET=B1

Element set B1 can be assigned to node set A14 since the definition of B1
occurs before the definition of A14.

Limitation on updating node sets that are used to define other node sets

If a node set is constructed from previously defined node sets, subsequent updates to these sets are not

taken into account.

Input File Usage: *NSET, NSET=name

For example, the following lines add nodes 1 and 2, but not 3, to the setSET-AB
while adding nodes 1 and 3 to set SET-A:

*NSET, NSET=SET-A

2.1.1–7

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

1,

*NSET, NSET=SET-B
2,

*NSET, NSET=SET-AB
SET-A, SET-B

*NSET, NSET=SET-A
3,

Defining part and assembly sets

In a model defined in terms of an assembly of part instances, all node sets must be defined within a part,

part instance, or the assembly definition. If a node set is defined within a part (or part instance) definition,

you can refer to the node numbers directly. To define an assembly-level node set, you must identify the

nodes to be added to the set by prefixing each node number with the part instance name and a “.” (as

explained in “Defining an assembly,” Section 2.10.1). An assembly-level node set can have the same

name as a part-level node set.

Example

The following input defines a node set, set1, that belongs to part PartA and will be inherited by every

instance of PartA:

*PART, NAME=PartA
...
*NSET, NSET=set1
1,3,26,500

*END PART

A node set with the same name is defined at the assembly level as follows:

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE
*NSET, NSET=set1
PartA-1.1, PartA-1.3, PartA-1.26, PartA-1.500
PartA-2.1, PartA-2.3, PartA-2.26, PartA-2.500

*END ASSEMBLY

Assembly-level node set set1 contains all the nodes from node sets set1 belonging to part instances

PartA-1 and PartA-2. Therefore, the nodes are assigned to two separate node sets: one at the part

instance level and one at the assembly level. An assembly-level node set called set1 could be created

with entirely different nodes than those that belong to the part set; part- and assembly-level node sets

2.1.1–8

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

are independent. However, since in this example the same nodes are assigned to both the part- and

assembly-level node sets set1, the assembly-level set could alternatively be defined by

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE
*NSET, NSET=set1
PartA-1.set1, PartA-2.set1

*END ASSEMBLY

This node set definition is equivalent to the previous example, where the nodes are listed individually.

Alternate method for defining assembly-level node sets

Sometimes it is not convenient to define an assembly-level node set by referring to part-level node sets.

In such cases a set definition containing many nodes can get quite lengthy. Therefore, an alternate method

is provided.

Input File Usage: *NSET, NSET=NsetName, INSTANCE=InstanceName

The following example shows two equivalent ways to define an assembly-level

node set; once by prefixing each node number with a part instance name (as

shown above) and once using the more compact INSTANCE notation:

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE
*NSET, NSET=set2
PartA-1.11, PartA-1.12, PartA-1.13, PartA-1.14,
PartA-2.21, PartA-2.22, PartA-2.23, PartA-2.24

*NSET, NSET=set3, INSTANCE=PartA-1
11, 12, 13, 14

*NSET, NSET=set3, INSTANCE=PartA-2
21, 22, 23, 24

*END ASSEMBLY

When the *NSET option is used more than once with the same name, as it

is with set3, the nodes in the second use of *NSET are appended to the set

created by the first use of *NSET.

2.1.1–9

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Internal node sets created by Abaqus/CAE

In Abaqus/CAE many modeling operations are performed by picking geometry with the mouse. For

example, a concentrated load can be applied by picking a point on a geometric part instance. Since the

*CLOAD option refers to a node set, this “picked” geometry must be translated into a node set in the

input file. Such sets are assigned a name by Abaqus/CAE and marked as internal. You can view these

internal sets using display groups in the Visualization module of Abaqus/CAE (see Chapter 78, “Using

display groups to display subsets of your model,” of the Abaqus/CAE User’s Guide).

Input File Usage: *NSET, NSET=NsetName, INTERNAL

Transferring of node sets

If the results of an Abaqus/Explicit analysis are imported into an Abaqus/Standard analysis (or vice

versa) or results from an Abaqus/Standard analysis are imported into another Abaqus/Standard analysis

(see “Transferring results between Abaqus analyses: overview,” Section 9.2.1), all node set definitions

in the original analysis are imported by default. Alternatively, you can import only selected node set

definitions; see “Importing element set and node set definitions” in “Transferring results between Abaqus

analyses: overview,” Section 9.2.1, for details.

If a three-dimensional model is generated from a symmetric model (see “Symmetric model

generation,” Section 10.4.1), all node sets in the original model will be used (and expanded) in the

generated model.

Creating nodes from existing nodes by generating them incrementally

You can generate nodes incrementally from existing nodes. All of the nodes along a straight or curved

line can be generated by giving the coordinates of the two end nodes and defining the type of curve.

The two end nodes must already be defined, usually by specifying their coordinates, but it is also

possible to have them defined by an earlier generation.

Defining a straight line between the two end nodes

To define a straight line between the two end nodes, specify the number of the first end node, ; the

number of the last end node, ; and the increment in node numbers between each node along the line,

i. Therefore, i must be an integer such that is a whole number (not a fraction). The default

is .

Input File Usage: *NGEN

For example, in the following input node number 1 with coordinates (0., 0.,

0.) and node number 6 with coordinates (10., 0., 0.) are defined and nodes 2,

3, 4, and 5 with coordinates (2., 0., 0.), (4., 0., 0.), (6., 0., 0.), and (8., 0., 0.),

respectively, are generated automatically:

*NODE
1, 0., 0., 0.
6, 10., 0., 0.

2.1.1–10

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

*NGEN
1, 6, 1

Defining a circular arc between the two end nodes

To define a circular arc between the two end nodes, specify the number of the first end node, ; the

number of the last end node, ; and the increment in node numbers between each node along the arc,

i. Therefore, i must be an integer such that is a whole number (not a fraction). The default

is .

In addition, you must specify the coordinates of one extra point, the center of the circle, either

by giving the node number of a node that has already been defined or by giving the nodal coordinates

directly. If both are supplied, the node number will take precedence over the coordinates.

If the coordinates are defined directly, they can be specified in a local coordinate system as described

later.

The coordinates of the end nodes will be adjusted radially if the circle cannot be passed through

both points. An arc of a circle of 180° through 360° will require more extensive definition. For this case

you must define the plane of the circular disc by giving the normal to the disc; the nodes will then be

numbered according to the right-hand rule about this normal.

Input File Usage: *NGEN, LINE=C

Defining a parabola between the two end nodes

To define a parabola between the two end nodes, specify the number of the first end node, ; the number

of the last end node, ; and the increment in node numbers between each node along the parabola, i.

Therefore, i must be an integer such that is a whole number (not a fraction). The default is

.

In addition, you must specify the coordinates of one extra point, the midpoint on the arc between

the two end points, either by giving the node number of a node that has already been defined or by

giving the nodal coordinates directly. If both are supplied, the node number will take precedence over

the coordinates.

If the coordinates are defined directly, they can be specified in a local coordinate system as described

later.

Input File Usage: *NGEN, LINE=P

Defining the extra point and the normal direction in a local coordinate system

You can specify the coordinates of the extra point that is required for a circle or a parabola in a local

rectangular Cartesian system, a cylindrical system, or a spherical system. These coordinate systems are

shown in Figure 2.1.1–2.

If a nodal coordinate system is in effect (see “Specifying a local coordinate system in which to

define nodes”), the coordinates and normal direction specified in the node definition are assumed to be

in the nodal coordinate system. If a nodal coordinate system is in effect and you specify the extra point

for a circle or parabola in a local coordinate system, the input is first transformed according to the local

system specified in the node definition and subsequently according to the nodal coordinate system.

2.1.1–11

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Input File Usage: Use the following option to specify the extra point in a rectangular Cartesian

system (this is the default):

*NGEN, SYSTEM=RC

Use the following option to specify the extra point in a cylindrical system:

*NGEN, SYSTEM=C

Use the following option to specify the extra point in a spherical system:

*NGEN, SYSTEM=S

Creating nodes by copying existing nodes

You can create new nodes by copying existing nodes. The coordinates of the new nodes can be translated

and rotated, reflected from the nodes being copied, or projected from the nodes being copied by using a

polar projection with respect to a pole node.

You must identify the existing node set to copy and specify an integer constant, n, that will be added

to the node numbers of existing nodes to define node numbers for the nodes being created.

You can assign the newly created nodes to a node set. If you do not specify a node set name for the

newly created nodes, they are not assigned to a node set.

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, NEW SET=new_name

Translating and rotating the coordinates of the old nodes

You can create new nodes by translating and/or rotating the nodes in the old node set (see Figure 2.1.1–3).

You specify the value of the translation in the X-, Y-, and Z-directions.

In addition, you specify the coordinates of the first point defining the rotation axis (point a in

Figure 2.1.1–3), the coordinates of the second point defining the rotation axis (point b in Figure 2.1.1–3),

and the angle of rotation (in degrees) about the a–b axis. The rotation can be applied multiple times as

described later.

If you specify both translation and rotation, the translation is applied once before the rotation.

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, SHIFT

Applying the rotation multiple times

You can specify the number of times the rotation should be applied, m. For example, if nodes are to

be created at angles of 30°, 60°, and 90°, set m=3. The identifiers of the nodes created are incremented

sequentially by the value of n, as described above.

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, SHIFT, MULTIPLE=m

Reflecting the coordinates of the old nodes

You can create new nodes by reflecting the coordinates of the old nodes through a line, a plane, or a point.

2.1.1–12

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

b

a

Figure 2.1.1–3 Translation and rotation of existing nodes.

Reflecting the coordinates through a line

To reflect the old nodal coordinates through a line, you specify the coordinates of points a and b (see

Figure 2.1.1–4).

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, REFLECT=LINE

a, b define the line

New Set

a

b
Old set

Figure 2.1.1–4 Reflection of coordinates through a line.

2.1.1–13

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Reflecting the coordinates through a plane

To reflect the old nodal coordinates through a plane, you specify the coordinates of points a, b, and c (see

Figure 2.1.1–5).

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, REFLECT=MIRROR

a, b, c define the mirror plane

New Set Old Set

a

c
b

Figure 2.1.1–5 Reflection of coordinates through a plane.

Reflecting the coordinates through a point

To reflect the old nodal coordinates through a point, you specify the coordinates of point a (see

Figure 2.1.1–6).

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, REFLECT=POINT

Projecting the nodes in the old set from a pole node

You can create new nodes by projecting the nodes in the old set from a pole node. Each new node will

be located such that the corresponding old node is equidistant between the pole node and the new node.

The pole node (see Figure 2.1.1–7) is identified by giving its number or, alternatively, its coordinates.

This method is particularly useful for creating nodes that are associated with infinite elements

(“Infinite elements,” Section 28.3.1). In this case the pole node should be located at the center of the

far-field solution.

Input File Usage: *NCOPY, OLD SET=name, CHANGE NUMBER=n, POLE

2.1.1–14

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

New Set Old set

a is the point through which the nodes are reflected

a

Figure 2.1.1–6 Reflection of coordinates through a point.

L

L

pole
node a old set new set

Figure 2.1.1–7 Projection of existing nodes from a pole node.

2.1.1–15

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Creating nodes by filling in nodes between two bounds

You can create nodes by filling in nodes between two bounds. In this case you specify the two node sets

whose members form the bounds, the number of intervals along each line between the bounding nodes,

and the increment in node numbers from the node number at the first bound set end.

Let l equal the number of lines of nodes to be created between the two bounding node sets; the

number of intervals along each line between the bounding nodes is then given by .

Let n equal the increment in node numbers from the node number at the first bound set end; for each

node () in the first bounding node set, the corresponding node in the other bounding node set ()

must be numbered such that is a whole number.

The node sets that define the bounds of the region are used as they exist at the time the node fill

definition appears in the input file: only those nodes that have been added to the sets prior to the node fill

definition are used. Both sorted and unsorted node sets can be used. Nodes that have not yet been given

coordinates are assumed to be at the origin, (0.,0.,0.).

The nodes created by this method lie on straight lines between corresponding nodes in the two sets.

If the sets do not have the same number of nodes, the extra nodes in the longer set are ignored. By default,

the spacing between nodes along the lines is uniform.

Input File Usage: *NFILL

Example

For example, Figure 2.1.1–8 shows a simple quarter-cylinder model.

1505

6105

6505

6501

6101

OUTSIDE A

OUTSIDE B

INSIDE B

INSIDE A

1105

1101

1501

Figure 2.1.1–8 Filling a three-dimensional region.

The quarter circles INSIDEA (nodes 1101–1105), OUTSIDEA (nodes 1501–1505), INSIDEB (nodes

6101–6105), and OUTSIDEB (6501–6505) have already been defined by specifying their coordinates

2.1.1–16

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

directly or generating them incrementally. The region is filled by first filling the end planes and placing

the nodes on those planes into sets A and B and then filling between those sets with the following options:

*NFILL, NSET=A
INSIDEA, OUTSIDEA, 4, 100

*NFILL, NSET=B
INSIDEB, OUTSIDEB, 4, 100

*NFILL
A, B, 5, 1000

Concentrating the nodes toward one bound or the other

You can concentrate the nodes toward one bound or the other by specifying b, the ratio of adjacent

distances between nodes along each line of nodes generated as the nodes go from the first bounding node

set to the second.

Thus, if b is less than one, the nodes are concentrated toward the first bounding node set; if b is

greater than one, the nodes are concentrated toward the second bounding set. The value of b must be

positive.

The bias intervals along the line from the first bounding node are L, , , , , ,

… (where L is the length of the first interval). In Abaqus/Standard the bias value can be applied at every

interval along the line or at every second interval along the line as described later.

Input File Usage: *NFILL, BIAS=b

Example

For example, suppose the lines of nodes shown in Figure 2.1.1–9 have already been generated by other

methods and placed into node sets INSIDE and OUTSIDE. The following option will fill the region as

shown in Figure 2.1.1–10:

*NFILL, BIAS=0.6
INSIDE, OUTSIDE, 5, 100

Applying the bias value at every second interval along the line

In Abaqus/Standard you can apply the bias value at every second interval along the line. In this case the

nodes will be positioned along the line correctly for use with second-order elements, so that the midside

nodes are at the middle of the interval between the corner nodes of the elements.

The bias intervals along the line from the first bounding node are L, L, , , , , …

(where L is the length of the first interval).

Input File Usage: *NFILL, BIAS=b, TWO STEP

Creating quarter-point spacing

In Abaqus/Standard you can create quarter-point spacing for fracture mechanics calculations with

second-order isoparametric elements (“Fracture mechanics: overview,” Section 11.4.1). This spacing

2.1.1–17

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

105

104

103

102

101

Inside Outside

605

604

603

602

601

Figure 2.1.1–9 Node sets defining bias example.

105

104

103

102

101

605

604

603

602

601

205 305
405

505

204 304 404
504

203 303 403 503

202 302 402 502

201 301 401 501

Figure 2.1.1–10 Result of bias example.

gives a square root singularity in the strain field at the crack tip by placing the first node away from

2.1.1–18

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

that point at one-quarter of the distance to the second point. The remaining nodes on each line are

spaced so that the size of the elements will grow as the square of the distance from the singularity, with

the midside nodes exactly at the midsides of the elements. This spacing produces a reasonable mesh

gradation for this type of problem; however, better results can be obtained for crude meshes by making

the size of the crack element smaller than the quarter-point spacing technique does.

Input File Usage: *NFILL, SINGULAR

Example

Figure 2.1.1–11 shows a simple fracture mechanics example.

507 506 505 504 503

107 106 105 104 103

108

109

102

101

Node set TOP

Node set MID

Nodes 101-109 in
node set OUTER

Nodes 1-9 at crack tip (node set TIP)

Figure 2.1.1–11 Node fill used in a singular problem.

(The mesh shown is very coarse, and a finer mesh would probably be used in an actual case.) The nodes

on the top edge have been placed in node set TOP, those on the horizontal line at the upper end of the

focused region are in node set MID, all of the nodes around the focused region are in node set OUTER,
and there are multiple nodes at the crack tip in node set TIP. The following options are used to fill in the
region as shown in Figure 2.1.1–12 (note the quarter-point nodes adjacent to the crack tip):

*NFILL, BIAS=0.8
MID, TOP, 4, 100

*NFILL, SINGULAR=1
TIP, OUTER, 5, 20

Mapping a set of nodes from one coordinate system to another

You can map a set of nodes from one coordinate system to another. You can also rotate, translate, or scale

the nodes in a set by using a more direct method instead of coordinate systemmapping. These capabilities

2.1.1–19

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

101
1

503

403

303

203

103

102

42 62
82

21 41 61 81

22

Figure 2.1.1–12 Node fill used in a singular problem.

are useful for many geometric situations: a mesh can be generated quite easily in a local coordinate

system (for example, on the surface of a cylinder) using other methods and then can be mapped into the

global (X, Y, Z) system. In other cases some parts of your model need to be translated or rotated along

a given axis or scaled with respect to one point.

The mapping capability cannot be used in a model defined in terms of an assembly of part instances.

The following different mappings are provided: a simple scaling; a simple shift and/or rotation;

skewed Cartesian; cylindrical; spherical; toroidal; and, in Abaqus/Standard only, blended quadratic.

The first five of these mappings are shown in Figure 2.1.1–13. Blended quadratic mapping is shown in

Figure 2.1.1–14.

In all cases the coordinates of the nodes in the set are assumed to be defined in the local system:

these local coordinates at each node are replaced with the global Cartesian (X,Y, Z) coordinates defined

by the mapping. All angular coordinates should be given in degrees.

You can use either coordinates or node numbers to define the new coordinate system, the axis of

rotation and translation, or the reference point used for scaling.

The mapping capability can be used several times in succession on the same nodes, if required.

Scaling the local coordinates before they are mapped

For all mappings except the blended quadratic mapping, you can specify a scaling factor to be applied

to the local coordinates before they are mapped.

This facility is useful for “stretching” some of the coordinates that are given. For example, in

cases where the local system uses some angular coordinates and some distance coordinates (cylindrical,

spherical, etc.), it may be preferable to generate the mesh in a system that uses distance measures in the

angular directions and then scale onto the angular coordinate system for the mapping.

Two different scaling methods are available.

2.1.1–20

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

(R, θ, φ)

φ

X

Y

a

b

c

^

Z
^

^

z
y
x

z
y
x

b

(θ = 0)
(φ = 0)

θ

θ
R

(R, θ, Z)

(θ = 0)

rectangular skewed Cartesian

 spherical cylindrical

z
y
x

(r, θ, φ)

φ

rθ

R

b (φ = 0)

 toroidal

a

d

c

b

Z
^

Y
^

X̂

c

a

Ẑ

b

a

c

c

a

R

z
y
x

z
y
x

z
y
x

z
y
x

Z
^

Figure 2.1.1–13 Coordinate systems; angles are in degrees.

2.1.1–21

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

136

130

126

124
122

10122

5122

5134

5138

10130

10126

10134
10136

10138

10001

122
124

126
5122

101225126130
10124

10001

10124

10126

10138

10136
10134

10130
5134

5138

134 136

ORIGINAL CONFIGURATION

MAPPED CONFIGURATION

z
y

x

134

1

1
5126

138

138

Figure 2.1.1–14 Use of blended quadratic mapping to develop a solid mesh onto a curved block.

2.1.1–22

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Specifying the scaling factors directly

A first method of scaling the nodes with respect to the origin of the local system is to specify the scale

factors directly. In this case the scaling is done at the same time as the mapping from one coordinate

system to another.

Input File Usage: *NMAP, NSET=name

first data line

second data line

scale factor for first local coord, scale factor for second local coord,

scale factor for third local coord

Specifying the scaling with respect to a reference point

Alternatively, you can scale with respect to a point other than the origin. The reference point with respect

to which the scaling is done can be defined by using either its coordinates or the user node number.

Input File Usage: Use the following option to define the scaling reference point by using its

coordinates (default):

*NMAP, TYPE=SCALE, DEFINITION=COORDINATES

X-coordinate of reference point, Y-coordinate of reference point,

Z-coordinate of reference point

scale factor for first local coord, scale factor for second local coord,

scale factor for third local coord

Use the following option to define the scaling reference point by using its node

number:

*NMAP, TYPE=SCALE, DEFINITION=NODES

Local node number of the reference point

scale factor for first local coord, scale factor for second local coord,

scale factor for third local coord

Introducing a simple shift and/or rotation by mapping from one coordinate system to another

In the case of a simple shift and/or rotation, point a in Figure 2.1.1–13 defines the origin of the local

rectangular coordinate system defining the map. The local -axis is defined by the line joining points a

and b. The local – plane is defined by the plane passing through points a, b, and c.

Input File Usage: *NMAP, NSET=name, TYPE=RECTANGULAR

Introducing a pure shift by specifying the axis and magnitude of the translation

You can define a pure translation (or shift) to move a set of nodes by a prescribed value along a desired

axis. Youmust specify the axis of translation by providing either the coordinates or the two node numbers

defining this axis, and you must prescribe the magnitude of the translation.

2.1.1–23

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

Input File Usage: Use the following option to specify the axis of translation using coordinates

(default):

*NMAP, NSET=name, TYPE=TRANSLATION,

DEFINITION=COORDINATES

Use the following option to specify the axis of translation using node numbers:

*NMAP, NSET=name, TYPE=TRANSLATION, DEFINITION=NODES

Introducing a pure rotation by specifying the axis, origin, and angle of the rotation

You can define a rotation of a set of nodes by providing the axis of rotation, the origin of rotation, and the

magnitude of the rotation. You must specify the axis of rotation by providing either the coordinates or

the two node numbers defining this axis. You must specify the origin of the rotation by providing either

the coordinates or the node number at the origin of rotation. Finally, you must specify the angle of the

rotation in degrees.

Input File Usage: Use the following option to specify the axis of rotation using coordinates

(default):

*NMAP, NSET=name, TYPE=ROTATION,

DEFINITION=COORDINATES

Use the following option to specify the axis of rotation using node numbers:

*NMAP, NSET=name, TYPE=ROTATION, DEFINITION=NODES

Mapping from cylindrical coordinates

For mapping from cylindrical coordinates, point a in Figure 2.1.1–13 defines the origin of the local

cylindrical coordinate system defining the map. The line going through point a and point b defines the

-axis of the local cylindrical coordinate system. The local – plane for is defined by the plane

passing through points a, b, and c.

Input File Usage: *NMAP, NSET=name, TYPE=CYLINDRICAL

Mapping from skewed Cartesian coordinates

For mapping from skewed Cartesian coordinates, point a in Figure 2.1.1–13 defines the origin of the

local diamond coordinate system defining the map. The line going through point a and point b defines

the -axis of the local coordinate system. The line going through point a and point c defines the -axis

of the local coordinate system. The line going through point a and point d defines the -axis of the local

coordinate system.

Input File Usage: *NMAP, NSET=name, TYPE=DIAMOND

Mapping from spherical coordinates

For mapping from spherical coordinates, point a in Figure 2.1.1–13 defines the origin of the local

spherical coordinate system defining the map. The line going through point a and point b defines the

polar axis of the local spherical coordinate system. The plane passing through point a and perpendicular

2.1.1–24

Abaqus Version 6.6 ID:

Printed on:

NODE DEFINITION

to the polar axis defines the plane. The plane passing through points a, b, and c defines the local

plane.

Input File Usage: *NMAP, NSET=name, TYPE=SPHERICAL

Mapping from toroidal coordinates

For mapping from toroidal coordinates, point a in Figure 2.1.1–13 defines the origin of the local toroidal

coordinate system defining the map. The axis of the local toroidal system lies in the plane defined by

points a, b, and c. The R-coordinate of the toroidal system is defined by the distance between points a

and b. The line between points a and b defines the position. For every value of the -coordinate

is defined in a plane perpendicular to the plane defined by the points a, b, and c and perpendicular to the

axis of the toroidal system. lies in the plane defined by the points a, b, and c.

Input File Usage: *NMAP, NSET=name, TYPE=TOROIDAL

Mapping by means of blended quadratics

To map by means of blended quadratics in Abaqus/Standard, you define the new (mapped) coordinates

of up to 20 “control nodes”: these are the corner and midedge nodes of the block of nodes being mapped.

The mapping in this case is like that of a 20-node brick isoparametric element. Any of the midedge nodes

can be omitted, thus allowing linear interpolation along that edge of the block. Abaqus/Standard does

not check whether the nodes in the set lie within the physical space of the block defined by the corner

and midedge nodes: these control nodes simply define mapping functions that are then applied to all of

the nodes in the set.

The control nodes should define a “well”-shaped block; for example, midedge nodes should be close

to the midpoint of the edge. Otherwise, the mapping can be very distorted. For example, the nodes of a

crack-tip 20-node element with midside nodes at the quarter points will not map correctly and, therefore,

should not be used as the control nodes.

Blended mapping is only available for three-dimensional analyses.

Input File Usage: *NMAP, NSET=name, TYPE=BLENDED

2.1.1–25

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

2.1.2 PARAMETRIC SHAPE VARIATION

Products: Abaqus/Standard Abaqus/Explicit

References

• “Parametric input,” Section 1.4.1

• *PARAMETER SHAPE VARIATION

Overview

Shape parametrization can be accomplished in an Abaqus input file by:

• parametrizing nodal coordinates; or

• relating nodal coordinates to shape parameters using shape variations.

The different approaches to shape parametrization are described in this section.

Parametrization of nodal coordinates

Any individual nodal coordinates can be parametrized directly. This is usually of limited value

because it often leads to designs with irregular shape that cannot be manufactured easily. In addition,

parametrization of individual nodal coordinates generally requires an excessive number of parameters

to define the parametrized shape.

Parametrization of nodal coordinates used in conjunction with node generation in Abaqus provides

a more practical method of shape parametrization. However, this method is still of somewhat limited

practical use because the simple node generation capabilities available in Abaqus cannot describe

complex shapes.

Direct parametrization of individual nodal coordinates

The simplest form of parametrization of nodal coordinates is to define individual parameters and use them

in place of the nodal coordinates to be parametrized, as described in “Parametric input,” Section 1.4.1.

For example,

*PARAMETER
x_coord_node_1 = 10.
y_coord_node_1 = 20.

*NODE
1, <x_coord_node_1>, <y_coord_node_1>

Parametrization of nodal coordinates using node generation

Shape parametrization can be accomplished by parametrizing the coordinates of some nodes, then using

these nodes to generate other nodes and their coordinates. For example:

2.1.2–1

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

*PARAMETER
x_coord_node_1 = 10.
x_coord_node_11 = 20.

*NODE
1, <x_coord_node_1>, 50.
11, <x_coord_node_11>, 50.

*NGEN
1, 11, 1

This method of shape parametrization reduces the number of user-defined parameters necessary for shape

parametrization by implicitly making the nodal coordinates of the generated nodes dependent on the

shape parameters.

Shape change by linear combination of shape variations

The definition of shape in Abaqus includes a basic shape plus any number of additional shape variations

that are added to the basic shape using a linear combination. Mathematically, we can express the nodal

coordinates, , as

where is the basic shape, is the shape variation, and is the value of the shape parameter.

This calculation is always done in the global rectangular Cartesian coordinate system. Although it is not

necessarily so, it is frequently the case that the input to define a shape variation is simply the gradient of

the basic shape taken with respect to the corresponding shape parameter.

You specify the basic shape of a model in the Abaqus input file by providing nodal definitions either

directly or through node generation; see “Node definition,” Section 2.1.1.

You can specify shape variations and associated shape parameters, as described here.

In addition, you can specify perturbations of the shape as a linear combination of other shapes

(for example, buckling mode shapes); see “Introducing a geometric imperfection into a model,”

Section 11.3.1.

The definition of the nodal coordinates for a model in the Abaqus input file is then possible using a

combination of four types of methods:

• You can directly define individual nodes and their respective coordinates; these coordinates are part

of the definition of the basic shape, , and can be parametrized.

• Node generation can be used to create nodes and their coordinates according to geometrically simple

mappings that rely on existing node definitions; these generated coordinates are also part of the

definition of the basic shape, . If necessary, the node generation input can be parametrized.

• Parameter shape variations can be used to vary the coordinates of nodes defined using the above

methods.

2.1.2–2

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

• Geometric imperfections can be used to perturb nodal coordinates previously defined using any

combination of the above three types of methods.

Shape parametrization using shape variations

Instead of parametrizing nodal coordinates directly, you can specify shape variations. Each shape

variation must be associated with a single shape parameter. The names of the parameters associated

with the shape variations must be chosen such that the names remain unique when interpreted in a

case-insensitive manner. The values of the shape parameters are assigned using parameter definitions.

A parameter shape variation can be defined more than once for the same parameter so that different

parts of a shape variation can be specified separately. In these cases if the same node is specified in

multiple parameter shape variation definitions, the last definition for the node prevails.

A node that is specified under a parameter shape variation definition that has not also been defined

directly or through node generation will be ignored.

You can specify shape variations using a combination of three possibilities: directly specifying

them, reading them from an alternate input file, and reading them from the results files of auxiliary

analyses. These methods are described in the following sections.

Defining shape variations directly or reading them from an alternate input file

You can define the shape variation data directly by specifying the node number and corresponding

variations of coordinate components. Alternatively, the data can be given in an ASCII file.

Input File Usage: Use the following option to specify the shape variation data directly:

*PARAMETER SHAPE VARIATION, PARAMETER=name

Use the following option to specify the shape variation data in an alternate input

file:

*PARAMETER SHAPE VARIATION, PARAMETER=name,

INPUT=input file

Defining shape variations in alternative coordinate systems

By default, the shape variation data are interpreted in the global rectangular Cartesian coordinate system.

You can specify the shape variation data (either directly or in an alternate input file) in cylindrical or

spherical coordinate systems. In such cases the computation of the shape variation is done as follows.

The nodal coordinate components that define the basic shape are first transformed from the global

rectangular Cartesian coordinate system in which they are stored to the specified coordinate system. The

shape variation coordinate components are then added to give updated coordinate components, which

are transformed back to the global rectangular Cartesian coordinate system. Finally, the shape variation

is taken as the difference between the updated coordinate components and the original coordinate

components, using the components expressed in the global rectangular Cartesian coordinate system.

The value of the shape parameter associated with the shape variation is not used at any point in the

calculation of the shape variation.

2.1.2–3

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

Input File Usage: Use the following option to specify the shape variation data in a rectangular

coordinate system (the default):

*PARAMETER SHAPE VARIATION, PARAMETER=name, SYSTEM=R

Use the following option to specify the shape variation data in a cylindrical

coordinate system:

*PARAMETER SHAPE VARIATION, PARAMETER=name, SYSTEM=C

Use the following option to specify the shape variation data in a spherical

coordinate system:

*PARAMETER SHAPE VARIATION, PARAMETER=name, SYSTEM=S

Using auxiliary analyses to generate shape variations

Auxiliary models are additional finite element models that are used to generate shape variations for a

primary model. Rather than defining shape variations directly on a node-by-node basis, auxiliary models

can be used to simplify this process. Auxiliary analyses are finite element analyses of these auxiliary

models.

An auxiliary model usually has the same geometry, element connectivity, and material type as the

primary model. However, the boundary conditions are usually different. Applying loading to an auxiliary

model results in sets of displacements that we may interpret as shape variations. For example, we may

be interested in studying the sensitivity of the nonlinear buckling behavior of a structure with respect

to imperfections in the structure. In this case we could perform an auxiliary eigenvalue linear buckling

analysis and then use the resulting mode shapes as shape variations to be added to the basic geometry of

the primary model. (This particular problem could also be addressed by using a geometric imperfection.)

Abaqus reads the shape variation data from auxiliary analyses through the user node labels. Abaqus

does not check model compatibility between both analysis runs. Shape variation data cannot be read from

the results file for models defined in terms of an assembly of part instances (“Defining an assembly,”

Section 2.10.1).

Reading shape variations from a static analysis results file

To define a shape variation based on the deformed geometry of a previous static analysis, specify the

results file and step from a previous static analysis. Optionally, you can specify the increment number

from which displacement data are read. (By default, Abaqus will read data from the last increment

available for the specified step on the results file.) In addition, you can read shape variation data for a

specified node set.

Input File Usage: *PARAMETER SHAPE VARIATION, PARAMETER=name,

FILE=results file, STEP=step, INC=inc, NSET=name

Reading shape variations from an eigenvalue analysis results file

To define a shape variation based on a mode shape from a previous eigenvalue analysis, specify the

results file and step from a previous eigenfrequency extraction or eigenvalue buckling prediction analysis.

Optionally, you can specify the mode number from which eigenvector data are read. (By default, Abaqus

2.1.2–4

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

will read data from the first eigenvector available for the specified step on the results file.) In addition,

you can read eigenmode data for a specified node set.

Input File Usage: *PARAMETER SHAPE VARIATION, PARAMETER=name,

FILE=results file, STEP=step, MODE=mode, NSET=name

Shape parametrization and design sensitivity analysis

For the purpose of design sensitivity analysis with Abaqus/Design (“Design sensitivity analysis,”

Section 19.1.1) if the parameter specified for a parameter shape variation is also specified as a design

parameter, the shape variation is used to define the design gradient of the nodal coordinates and nodal

normals with respect to the design parameter. If you wish to perform design sensitivity analysis for the

basic shape, all shape parameters must be given a value of zero. In addition, if any parameter specified

in a parameter shape variation definition is also specified as a design parameter, the parameters of all

parameter shape variations must be specified as design parameters.

In DSA calculations for shell and beam elements Abaqus always computes the design gradients of

nodal normals using the design gradients of nodal coordinates. To overwrite the gradients computed by

Abaqus, you must provide the nodal normal as part of the node definition and design gradients of the

normals using a parameter shape variation. To prescribe a design-independent normal, you must provide

a zero design gradient explicitly. For shape variations read from the results file, Abaqus computes the

gradients of the normals based on the displacements and ignores the nodal rotations.

For beam elements Abaqus computes the design gradients for the -direction of the beam cross-

section using the gradients of the node coordinates and the gradients for the -direction specified using a

parameter shape variation. You cannot provide the shape variation for the -direction. Abaqus ignores

any such design gradients implicitly provided in either the beam section definition or as an extra node in

the beam element connectivity.

In cases where the data defining a shape variation are given in a cylindrical or spherical coordinate

system it is important that you understand how the shape variation is calculated from the data. This

calculation is described in the previous section.

Visualization of shape variations

Shape variations can be visualized only after the parametrized input file has been processed by the

analysis input file processor. Therefore, at least a data check run must be executed before parameter

shape variations can be visualized using Abaqus/CAE.

The shape variations associated with each individual shape parameter can be visualized as displaced

shape plots at step zero of the analysis. The basic shape is interpreted as the undeformed shape, and the

shape generated by adding the shape variation to the basic shape is interpreted as the displaced

shape.

The combination of all shape variations added to the basic shape represents the true undeformed

shape of the analysis.

2.1.2–5

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC SHAPE VARIATION

Using Abaqus/CAE to compute shape variations

A capability for computing shape variations is provided by the Abaqus Scripting Interface command

_computeShapeVariations(). Using the command requires some familiarity with the Abaqus

Scripting Interface and the execution of scripts in Abaqus/CAE. The procedure that must be followed

is described and illustrated in “Design sensitivity analysis: overview,” Section 14.1.1 of the Abaqus

Example Problems Guide.

2.1.2–6

Abaqus Version 6.6 ID:

Printed on:

NODAL THICKNESSES

2.1.3 NODAL THICKNESSES

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Membrane elements,” Section 29.1.1

• “Using a shell section integrated during the analysis to define the section behavior,” Section 29.6.5

• “Using a general shell section to define the section behavior,” Section 29.6.6

• *NODAL THICKNESS

• *MEMBRANE SECTION

• *RIGID BODY

• *SHELL GENERAL SECTION

• *SHELL SECTION

Overview

Nodal thicknesses are used to define continuously varying thicknesses for:

• shell structures;

• membrane structures; or

• in Abaqus/Explicit rigid elements.

Defining nodal thicknesses

You can specify the thickness of a shell, membrane, or rigid element at a particular node or node set.

Input File Usage: *NODAL THICKNESS

node_number or node_set_name, thickness

Abaqus/CAE Usage: Use the following option for a conventional shell composite layup:

Property module: composite layup editor: Shell Parameters: Nodal
distribution: select an analytical field or a node-based discrete field

Use the following option for a homogeneous shell section:

Property module: shell section editor: Basic: Nodal distribution:
select an analytical field or a node-based discrete field

Use the following option for a composite shell section:

Property module: shell section editor: Advanced: Nodal distribution:
select an analytical field or a node-based discrete field

2.1.3–1

Abaqus Version 6.6 ID:

Printed on:

NODAL THICKNESSES

Reading nodal thicknesses from an alternate file

The nodal thickness data can be stored in a separate file and read from there at the start of the analysis.

For details on the syntax of such file names, see “Input syntax rules,” Section 1.2.1.

Input File Usage: *NODAL THICKNESS, INPUT=file_name

Abaqus/CAE Usage: Reading nodal thicknesses from an alternate file is not supported in

Abaqus/CAE.

Generating continuously varying thicknesses between two nodes or node sets

Abaqus can linearly interpolate the thickness between two bounding nodes or node sets. The thicknesses

at the bounding nodes must first be defined.

Input File Usage: Use the following options:

*NODAL THICKNESS

first bounding node or node set, thickness

second bounding node or node set, thickness

*NODAL THICKNESS, GENERATE

first bounding node or node set, second bounding node or node set,

number of intervals, increment in node numbers

Abaqus/CAE Usage: Generating thicknesses between bounding nodes or node sets is not supported

in Abaqus/CAE.

Specifying a continuously varying thickness for shell, membrane, and rigid elements

You must specify that a shell or membrane element is going to have a continuously varying thickness

rather than a homogeneous thickness when you define the element section. See “Membrane elements,”

Section 29.1.1; “Using a shell section integrated during the analysis to define the section behavior,”

Section 29.6.5; and “Using a general shell section to define the section behavior,” Section 29.6.6, for

details.

In Abaqus/Explicit you must specify that a rigid element is going to have a continuously varying

thickness when you define the rigid body to which the element belongs; see “Rigid elements,”

Section 30.3.1. In Abaqus/Standard rigid elements cannot have a continuously varying thickness.

Every node that is part of a shell, membrane, or rigid element using a continuously varying thickness

must have a nodal thickness defined. Abaqus will issue an error message if there is a node with no nodal

thickness in an element that is using a continuously varying thickness.

Specifying a continuously varying thickness for a composite shell

When a composite shell structure has a continuously varying thickness, the total thickness of the shell at

any node is defined by the nodal thickness value. The total thickness at an integration point is interpolated

from the nodal thicknesses. The layer thicknesses given in the shell section definition are used as relative

thicknesses and are scaled proportionally such that the sum of the layer thicknesses equals the total

thickness at the integration point.

2.1.3–2

Abaqus Version 6.6 ID:

Printed on:

NODAL THICKNESSES

Example

For example, if a composite shell section were defined with the following input:

*SHELL SECTION, COMPOSITE, NODAL THICKNESS, ELSET=name
1.5, 3, STEEL
2.5, 3, FOAM
1.0, 3, STEEL

and the total thickness at a point was only 1.0, the thicknesses of the individual layers at the point would

be 0.3 for the first steel layer, 0.5 for the foam layer, and 0.2 for the second steel layer.

Creating a discontinuity in the shell, membrane, or rigid element thicknesses

You can specify only a single thickness at each node. Therefore, use separate nodes along the interface

on shell, membrane, or rigid elements where there is a discontinuity in the thickness and assign the

appropriate thickness to each group of nodes. For elements that are not part of a rigid body, multi-point

constraints must be used to make the displacements (and rotations, for shells) the same at corresponding

nodes.

2.1.3–3

Abaqus Version 6.6 ID:

Printed on:

NORMAL DEFINITIONS AT NODES

2.1.4 NORMAL DEFINITIONS AT NODES

Products: Abaqus/Standard Abaqus/Explicit

References

• *NORMAL

• *NODE

Overview

Normals can be defined at nodes:

• with a user-specified normal definition;

• following the nodal coordinates as part of the node definition for beam and shell elements;

• on rigid master surfaces used in contact pairs in Abaqus/Standard;

• in beam and shell elements;

• for line spring elements to give the direction normal to the flaw in the structure;

• for gasket elements to give the thickness direction of the elements; and

• for contour integral evaluation.

The normals defined at nodes do not affect the element face normals, which are defined by the element

connectivity. They need not be of unit length.

Contact surfaces in Abaqus/Standard

User-specified surface normals for contact surfaces in Abaqus/Standard are relevant only when the small-

sliding contact approach is used or when the finite-sliding contact approach is used with rigid elements

that make up the master surface. User-specified surface normals defined on deformable master surfaces

in contact pairs are ignored when finite sliding is used.

The small-sliding contact formulation uses the surface normals at each node along themaster surface

to define a normal vector that varies smoothly from point to point on the surface. For a detailed discussion

on how the “master plane” is constructed for each slave node using the surface normals, see “Contact

formulations in Abaqus/Standard,” Section 38.1.1.

For master surfaces composed of rigid elements Abaqus/Standard smooths any discontinuous

surface normal transitions between the rigid elements. The surface normals at the nodes are used to

control the surface normal interpolation. For a detailed discussion on the smoothing of such master

surfaces, see “Analytical rigid surface definition,” Section 2.3.4.

To define the normal, specify the components of the normal in the global coordinate system.

Input File Usage: *NORMAL, TYPE=CONTACT SURFACE

2.1.4–1

Abaqus Version 6.6 ID:

Printed on:

NORMAL DEFINITIONS AT NODES

Elements

User-specified normals may be necessary for beam and shell elements, line spring elements, gasket

elements, or elements involved in contour integral evaluations. In such cases specify the components of

the normal in the global coordinate system.

Input File Usage: *NORMAL, TYPE=ELEMENT

Beam and shell elements

User-specified normals may be needed to define the desired normal directions at shell surface

intersections or at beam intersections where the automatically determined normals may be inappropriate

for the model (see “Beam element cross-section orientation,” Section 29.3.4, or “Defining the initial

geometry of conventional shell elements,” Section 29.6.3).

The nodal normals can also be defined as part of the node definition. While you can define a

single normal for all elements connected to a node as part of the node definition, a user-specified normal

definition defines a normal for a particular element at a node, thus allowing you to define separate normals

for each element connected to a node. User-specified normal definitions supersede normals defined as

part of a node definition.

Input File Usage: *NODE

Specify the normals in the fifth, sixth, and seventh positions on the data line.

For example, the following lines define some normals as part of node

definitions; the normal to be used at node 7 in element 2 is then redefined using

a user-specified normal definition:

*NODE
6, 5., 5., , -0.5, .8
7, 10., 8., , -0.5, .8
9, 14., 4., , .6, .6

*NORMAL
2, 7, .6, .6

Line spring elements

For line spring elements user-specified normals can be used to give the direction normal to the flaw in

the structure. See “Line spring elements for modeling part-through cracks in shells,” Section 32.9.1, for

a description of these elements.

Gasket elements

For gasket elements user-specified normals can be used to specify the thickness direction of the elements.

The nodal thickness directions can also be defined as part of the gasket section definition. Thickness

directions defined by user-specified normals supersede thickness directions defined as part of the gasket

section definition. See “Defining the gasket element’s initial geometry,” Section 32.6.4, for a description

of the definition of the thickness direction for these elements.

2.1.4–2

Abaqus Version 6.6 ID:

Printed on:

NORMAL DEFINITIONS AT NODES

Contour integral evaluation

For contour integral evaluations (“Contour integral evaluation,” Section 11.4.2) surface normals should

be specified at all surface nodes lying within the bounds of the requested contours. These nodes are

printed out under the “Contour Integral” information in the data (.dat) file. For accurate contour integral
evaluation it is important that the virtual crack extension direction is in the plane of the surface for the

following cases: when a crack front intersects the external surface of a three-dimensional solid, when

the crack front intersects a surface of material discontinuity, or when the crack is in a curved shell. If no

normals are specified, Abaqus will calculate the normals automatically.

The nodal normal data specified as part of a node definition will not be activated for solid elements

unless a user-specified normal definition is used in the model; it suffices to include a user-specified normal

definition for only one node to activate the utilization of the nodal normal data specified as part of a node

definition.

The coordinate system in which normals are defined

Abaqus models can be defined in terms of an assembly of part instances (see “Defining an assembly,”

Section 2.10.1). Normals at nodes defined within a part (or part instance) are defined relative to the part

coordinate system. These normals are rotated according to the positioning data given for each instance of

the part. Normals can be defined at reference nodes at the assembly level if necessary. Normals defined

at the assembly level are defined in the global coordinate system.

For models that are not defined in terms of an assembly of part instances, normals are defined in the

global coordinate system.

2.1.4–3

Abaqus Version 6.6 ID:

Printed on:

TRANSFORM

2.1.5 TRANSFORMED COORDINATE SYSTEMS

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Prescribed conditions: overview,” Section 34.1.1

• *TRANSFORM

• “Transforming results into a new coordinate system,” Section 42.6.8 of the Abaqus/CAE User’s

Guide, in the HTML version of this guide

• “An overview of the methods for creating a datum coordinate system,” Section 62.5.4 of the

Abaqus/CAE User’s Guide

Overview

A nodal transformation is used to define a local coordinate system for:

• the definition of concentrated forces and moments;

• the definition of displacement and rotation boundary conditions;

• the definition of linear constraint equations; and

• the output of vector-valued quantities.

A nodal transformation cannot be used to specify a local coordinate system for defining:

• nodal coordinates—see “Specifying a local coordinate system in which to define nodes” in “Node

definition,” Section 2.1.1, or “Specifying a local coordinate system for the nodal coordinates” in

“Node definition,” Section 2.1.1, instead; or

• material properties or rebars—see “Orientations,” Section 2.2.5, instead.

Defining a local coordinate system

Normally displacement and rotation components are associated with the global, rectangular Cartesian

axis system. When a transformed coordinate system is associated with a node, all input data for

concentrated forces and moments and for displacement and rotation boundary conditions at the node

are given in the local system. The following transformations are available:

• Rectangular Cartesian

• Cylindrical

• Spherical

The coordinate transformation defined at a node must be consistent with the degrees of freedom that

exist at the node. For example, a transformed coordinate system should not be defined at a node that is

connected only to a SPRING1 or SPRING2 element, since these elements have only one active degree

of freedom per node.

2.1.5–1

Abaqus Version 6.6 ID:

Printed on:

TRANSFORM

Input File Usage: You must identify the node set for which the local transformed system is

defined.

*TRANSFORM, NSET=name

Abaqus/CAE Usage: In Abaqus/CAE you define a local coordinate system independent of its use and

then refer to it when you apply a load or boundary condition at a node.

Any module: Tools→Datum: Type: CSYS

Interaction module: load or boundary condition editor: CSYS:
Edit: select local coordinate system

Defining a local coordinate system in a model that contains an assembly of part instances

In a model defined in terms of an assembly of part instances, you can define a nodal transformation at

the part, part instance, or assembly level. A nodal transformation defined at the part or part instance

level will be rotated according to the positioning data given for each instance of that part (or for the

part instance). See “Defining an assembly,” Section 2.10.1. Multiple transformation definitions are not

allowed at a node, even if one of them is at the part level and another is at the assembly level.

Large-displacement analysis

The transformed coordinate system is always a set of fixed Cartesian axes at a node (even for cylindrical

or spherical transforms). These transformed directions are fixed in space; the directions do not rotate

as the node moves. Therefore, even in large-displacement analysis, the displacement components must

always be given with respect to these fixed directions in space.

Defining a rectangular Cartesian coordinate transformation

In a rectangular Cartesian transformation the transformed directions are parallel at all nodes of the set.

The coordinates of two points must be given, as shown in Figure 2.1.5–1.

X

Y

Z

Y1
Z1

(global)

b

a X1

Figure 2.1.5–1 Cartesian transformation.

2.1.5–2

Abaqus Version 6.6 ID:

Printed on:

TRANSFORM

The first point, a, must be on a line through the global origin; this point defines the transformed

-direction. The second point, b, must be in the plane containing the global origin and the transformed

- and -directions. This second point should be on or near the positive -axis.

Input File Usage: *TRANSFORM, NSET=name, TYPE=R (default)

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Rectangular

Defining a cylindrical coordinate transformation

The radial, tangential, and axial directions must be defined based on the original coordinates of each

node in the node set for which the transformation is invoked. The global () coordinates of the

two points defining the axis of the cylindrical system (points a and b as shown in Figure 2.1.5–2) must

be given.

X

Y

Z X

Y

Z
1

(global)

b

a

1

1
(radial)

(axial)

(tangential)

Figure 2.1.5–2 Cylindrical transformation.

The origin of the local coordinate system is at the node of interest. The local -axis is defined by a

line through the node, perpendicular to the line through points a and b. The local -axis is defined by a

line that is parallel to the line through points a and b. The local -axis forms a right-handed coordinate

system with and .

A cylindrical coordinate system cannot be defined for a node that lies along the line joining points

a and b.

Input File Usage: *TRANSFORM, NSET=name, TYPE=C

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Cylindrical

Defining a spherical coordinate transformation

The radial, circumferential, and meridional directions must be defined based on the original coordinates

of each node in the node set for which the transformation is invoked. The global () coordinates

2.1.5–3

Abaqus Version 6.6 ID:

Printed on:

TRANSFORM

of the center of the spherical system, a, and of a point on the polar axis, b, must be given as shown in

Figure 2.1.5–3.

X

Y

Z

(global)

a

b

Z
1
 (meridional)

Y
1
 (circumferential)

X
1

(radial)

Figure 2.1.5–3 Spherical transformation.

The origin of the local coordinate system is at the node of interest. The local -axis is defined by

a line through the node and point a. The local -axis lies in a plane containing the polar axis (the line

between points a and b) and is perpendicular to the local -axis. The local -axis forms a right-handed

coordinate system with and .

A spherical coordinate system cannot be defined for a node that lies along the line joining points a

and b.

Input File Usage: *TRANSFORM, NSET=name, TYPE=S

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Spherical

Output at a node associated with a coordinate transformation

Printed and file output of vector-valued quantities from Abaqus/Standard at transformed nodes can be

in the local or global system (see “Specifying the directions for nodal output” in “Output to the data

and results files,” Section 4.1.2). By default, the values are written to the data file in the local system,

whereas the values are written to the results file in the global system (since this is more convenient for

postprocessing). Consequently, reaction forces printed using the default will not appear to equilibrate

loads applied in the global system. However, these reaction forces and loads should equilibrate if you

output them to the data file in the global system.

File output from Abaqus/Explicit is always in the global system.

Output database output of field vector-valued quantities at transformed nodes is in the global system.

The local transformations are also written to the output database. You can apply these transformations to

2.1.5–4

Abaqus Version 6.6 ID:

Printed on:

TRANSFORM

the results in the Visualization module of Abaqus/CAE to view the vector components in the transformed

systems.

Output database output of history vector-valued quantities at transformed nodes can be in the local

or global system (see “Output to the output database,” Section 4.1.3). By default, the values are written

in the global system (since this is more convenient for postprocessing).

2.1.5–5

Abaqus Version 6.6 ID:

Printed on:

ADJUSTING NODAL COORDINATES

2.1.6 ADJUSTING NODAL COORDINATES

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• *ADJUST

• “Defining adjust points constraints,” Section 15.15.5 of the Abaqus/CAE User’s Guide

Overview

Nodal adjustment is used for:

• adjusting user-specified nodal coordinates so that the nodes lie on a given surface; and

• specifying the direction along which the nodes are moved.

Adjusting nodal coordinates

In general, user-specified nodal coordinates are not modified during input file processing. However,

there are some situations where mesh coordinates are known only in a generic way and it is inconvenient

to determine their coordinates for their actual usage. For example, when using fasteners the specified

reference node should be positioned at its projection point on the associated surface. Since that location

may be known only approximately, you can use nodal adjustment to move the reference node to that

location automatically. For typical usage of the nodal adjustment feature, refer to “About assembled

fasteners,” Section 29.1.3 of the Abaqus/CAE User’s Guide.

When using this feature, the nodes are adjusted to lie on the specified surface without regard for

shell thickness or shell offsets. Therefore, it is not advisable to use this feature as a way of correcting

initial overclosures for contact or for tie constraints. In addition, care should be taken when choosing the

nodes to be adjusted because the feature does not respect any constraints relating the relative position of

the adjusted node with other nodes (e.g., rigid body definitions).

Input File Usage: Use the following option to identify the nodes to be moved and the surface onto

which the nodes are to be moved:

*ADJUST, NODE SET=name, SURFACE=name

Abaqus/CAE Usage: Use the following option to move the control point of a coupling constraint onto

the coupling surface:

Interaction module: Constraint→Create: Coupling; Adjust
control point to lie on surface

Use the following option to move any point or points onto any surface:

Interaction module: Constraint→Create: Adjust points

2.1.6–1

Abaqus Version 6.6 ID:

Printed on:

ADJUSTING NODAL COORDINATES

Specifying the nodal adjustment direction

A node can be moved to the surface using a normal adjustment or a directed adjustment. By default,

the node is adjusted to the closest point on the specified surface along the normal to the surface. You

can specify an orientation to move the node to the surface along a given direction rather than along the

normal to the surface. The vector along the local Z-direction from the orientation definition is used to

move the node to the surface (see “Orientations,” Section 2.2.5). If no projection can be found, the nodal

coordinates are left unmodified.

Input File Usage: *ADJUST, ORIENTATION=name

Abaqus/CAE Usage: The orientation projection option is not supported in Abaqus/CAE.

2.1.6–2

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

2.2 Element definition

• “Element definition,” Section 2.2.1

• “Element foundations,” Section 2.2.2

• “Defining reinforcement,” Section 2.2.3

• “Defining rebar as an element property,” Section 2.2.4

• “Orientations,” Section 2.2.5

2.2–1

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

2.2.1 ELEMENT DEFINITION

Products: Abaqus/Standard Abaqus/Explicit

References

• *ELCOPY

• *ELEMENT

• *ELGEN

• *ELSET

Overview

This section describes the methods for defining elements in an Abaqus input file. In a preprocessor such

as Abaqus/CAE, you define the model geometry rather than the nodes and elements; when you mesh the

geometry, the preprocessor automatically creates the nodes and elements needed for analysis. Although

the concepts discussed in this section apply in general to the element definitions in the input file that is

created by Abaqus/CAE, the methods and techniques described here apply only if you are creating the

input file manually.

Element definition consists of:

• assigning an element number to the element;

• defining individual elements by specifying their nodes;

• grouping elements into element sets; and

• creating elements from existing elements by generating them incrementally or by copying existing

elements.

If any element is specified more than once, the last specification given is used.

Assigning an element number to the element

Each individual element must have a numeric label called the element number, which is assigned when

the element is defined. The element numbermust be a positive integer, and the maximum element number

allowed is 999999999 (for information on integer input, see “Input syntax rules,” Section 1.2.1). The

elements do not need to be numbered continuously.

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an

assembly,” Section 2.10.1). In such a model almost all elements must belong to a part or part instance.

The only exceptions are mass, rotary inertia, capacitance, connector, spring, and dashpot elements, which

can belong to a part or to the assembly. Element numbers must be unique within a part, part instance, or

the assembly; but they can be repeated in different parts or part instances.

2.2.1–1

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

Defining individual elements by specifying their nodes

You can define individual elements by specifying the element number and the nodes that define the

element. In addition, you must specify the element type. The element must be chosen from one of the

element types specified in Part VI, “Elements”; or, in Abaqus/Standard, it can be a user-defined element

(“User-defined elements,” Section 32.15.1) or a substructure (“Using substructures,” Section 10.1.1).

Input File Usage: *ELEMENT, TYPE=name

For example, the following lines create element number 11, which is of type

C3D8R, by defining its nodes (2, 3, 9, 7, 5, 8, 12, 16):

*ELEMENT, TYPE=C3D8R
11, 2, 3, 9, 7, 5, 8, 12, 16

Using large node numbers with elements that use many nodes

The following rules apply when defining elements:

• The connectivity for each element is considered a logical record, and any number of input lines can

be used to specify it. Abaqus will read the first line for an element and consider the next line a

continuation line if a comma ends the line and the element definition is not complete.

• Any number of continuation lines can be used.

• For elements such as C3D27 with a variable number of nodes (see “Solid (continuum) elements,”

Section 28.1.1), the last line should not end with a comma or Abaqus will interpret the next element

definition as a continuation of the current element.

For example,

*ELEMENT, TYPE=C3D20
100001, 100001, 100002, 100003, 100004, 100005, 100006, 100007,
100008, 100009, 100010, 100011, 100012, 100013, 100014, 100015,
100016, 100017, 100018, 100019, 100020

Reading element definitions from a file

Element definitions can be read into Abaqus from an alternate file. The syntax of such file names is

described in “Input syntax rules,” Section 1.2.1.

Input File Usage: *ELEMENT, INPUT=file_name

Reading substructure definitions from a substructure library

Substructure definitions can be read from the substructure library in which the substructure resides

(“Using substructures,” Section 10.1.1).

Input File Usage: *ELEMENT, FILE=substructure_library_name

If the FILE parameter is used without a value, the default substructure library

name is used.

2.2.1–2

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

Defining axisymmetric elements with asymmetric deformation

You can define a positive offset number that will be used to specify nodes for axisymmetric elements with

asymmetric deformation (see “Choosing the element’s dimensionality,” Section 27.1.2; “Axisymmetric

solid elements with nonlinear, asymmetric deformation,” Section 28.1.7; and “Axisymmetric shell

elements with nonlinear, asymmetric deformation,” Section 29.6.10, for more information on

axisymmetric elements with asymmetric deformation; they are available only in Abaqus/Standard).

The default offset is 100000.

Input File Usage: *ELEMENT, OFFSET=number

Defining gasket elements

There are several methods for defining gasket elements. (See “Gasket elements: overview,”

Section 32.6.1; “Including gasket elements in a model,” Section 32.6.3; and “Defining the gasket

element’s initial geometry,” Section 32.6.4, for more information on gasket elements; they are available

only in Abaqus/Standard.)

In the first method you define individual elements by specifying the element number and the nodes

that define the element.

In the second method you specify only the nodes on the bottom surface of the gasket element and

a positive offset number that will be used to define the corresponding nodes for the top surface. For the

18-node gasket element you give the first eight nodes followed by the midsurface node; i.e., node 17 in

the full element nodal connectivity.

Abaqus/Standard can generate the midface nodes of the 18-node gasket elements automatically if

both element faces are part of contact surfaces. To invoke this feature, you enter a blank instead of the

actual node numbers in either of the above input methods. Abaqus/Standard will then generate the node

numbers and coordinates of the midface nodes automatically.

Input File Usage: Use the following option to specify the element number and the nodes that

define the element:

*ELEMENT, TYPE=name

Use the following option to specify the nodes on the bottom surface of the

element and a positive offset number for the top surface:

*ELEMENT, TYPE=name, OFFSET=offset number

Using solid element connectivity to define gasket elements

The node numbering scheme for gasket elements does not correspond to the node numbering scheme

for continuum elements, which can be inconvenient if the mesh generator used does not support gasket

elements directly or in thermal-stress analysis where continuum elements are used to model the heat

conduction in the gasket. For such cases you can specify that solid element connectivity is used to

define the gasket element. By default, it is assumed that the first (S1) face of the solid element coincides

with the first (SNEG) face of the gasket element. If the equivalent solid element is oriented differently,

specify the face number on the solid element that corresponds to the first face of the gasket element. The

2.2.1–3

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

solid element must have the same number of nodes on each face as the corresponding gasket element;

any nodes between the faces will be ignored. The 18-node gasket element is an exception. If both

element faces are part of contact surfaces, the connectivity of a 20-node brick element can be used, and

Abaqus/Standard will generate the node numbers and coordinates of the midface nodes automatically.

Abaqus/Standard will transform the solid element connectivity to the normal gasket element

connectivity immediately upon reading the data. Hence, all output to the data (.dat), results (.fil),
and output database (.odb) files will use the normal gasket element connectivity.

Input File Usage: Use the following option to specify solid element connectivity for a gasket

element in which the first face of the solid element corresponds to the first face

of the gasket element:

*ELEMENT, TYPE=name, SOLID ELEMENT NUMBERING

Use the following option to specify solid element connectivity for a gasket

element and the face of the solid element that corresponds to the first face of

the gasket element:

*ELEMENT, TYPE=name, SOLID ELEMENT NUMBERING=face number

Examples

The following lines create GK3D12M element number 11 that has node numbers 1, 2, 3, 4, 5, 6, 1001,

1002, 1003, 1004, 1005, and 1006:

*ELEMENT, TYPE=GK3D12M
11, 1, 2, 3, 4, 5, 6, 1001, 1002, 1003, 1004, 1005, 1006

The same element connectivity is also created by the following lines:

*ELEMENT, TYPE=GK3D12M, OFFSET=1000
11, 1, 2, 3, 4, 5, 6

The equivalent solid element would be C3D15, with the following input:

*ELEMENT, TYPE=GK3D12M, SOLID ELEMENT NUMBERING
11, 1, 2, 3, 1001, 1002, 1003, 4, 5, 6, 1004, 1005, 1006,
501, 502, 503

where nodes 501, 502, and 503 would not be used.

Defining cohesive elements

There are three methods for defining cohesive elements. (See “Cohesive elements: overview,”

Section 32.5.1; “Modeling with cohesive elements,” Section 32.5.3; and “Defining the cohesive

element’s initial geometry,” Section 32.5.4, for more information on cohesive elements.)

• In the first method you specify the element number and all of the nodes that define the element.

2.2.1–4

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

• In the second method you specify only the nodes on the bottom face of the cohesive element and

Abaqus will create the remaining nodes, numbering them according to an offset number that you

specify.

• In the third method, which is applicable only to pore pressure cohesive elements, you specify the

nodes on the bottom and top faces. Abaqus will create the remaining middle-face nodes according

to an offset number that you specify.

Defining a cohesive element by specifying all nodes

With this method you specify all nodes that define the cohesive element. See “Two-dimensional cohesive

element library,” Section 32.5.8; “Three-dimensional cohesive element library,” Section 32.5.9; and

“Axisymmetric cohesive element library,” Section 32.5.10, for the element node numbering definition.

Input File Usage: Use the following option to specify the element number and the nodes that

define the element:

*ELEMENT, TYPE=name

For example, the following lines create COH3D8 element number 11 that has

node numbers 1, 2, 3, 4, 1001, 1002, 1003, and 1004:

*ELEMENT, TYPE=COH3D8
11, 1, 2, 3, 4, 1001, 1002, 1003, 1004

Defining a cohesive element by specifying only the bottom face nodes

With this method you specify only the nodes on the bottom face of the cohesive element and a positive

offset number. With displacement cohesive elements, the offset number is added to the bottom face node

numbers to create the corresponding nodes on the top face. With pore pressure cohesive elements, the

offset number first is added to the bottom face node numbers to create the corresponding nodes on the

top face, then the offset number is added to the top face node numbers to create the corresponding nodes

on the middle face.

Input File Usage: Use the following option to specify the nodes on the bottom face of the element

and a positive offset number for nodes on the remaining face or faces:

*ELEMENT, TYPE=name, OFFSET=offset number

For example, the following lines create COH3D8 element number 11 that has

node numbers 1, 2, 3, 4, 1001, 1002, 1003, and 1004:

*ELEMENT, TYPE=COH3D8, OFFSET=1000
11, 1, 2, 3, 4

and the following lines create pore pressure cohesive element COH3D8P

element number 11 that has node numbers 1, 2, 3, 4, 1001, 1002, 1003, 1004,

2001, 2002, 2003, and 2004 (nodes 1, 2, 3, and 4 define the bottom face; nodes

1001, 1002, 1003, and 1004 define the top face; and nodes 2001, 2002, 2003,

and 2004 define the middle face):

*ELEMENT, TYPE=COH3D8P, OFFSET=1000
11, 1, 2, 3, 4

2.2.1–5

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

Defining a pore pressure cohesive element by specifying only the bottom and top face nodes

With this method you specify only the nodes on the bottom and top faces of the pore pressure cohesive

element and a positive offset number. The offset number is added to the bottom face node numbers to

create the corresponding nodes on the middle face.

Input File Usage: Use the following option to specify the nodes on the bottom and top faces of the

pore pressure cohesive element and a positive offset number for the remaining

middle-face nodes:

*ELEMENT, TYPE=name, OFFSET=offset number

For example, the following lines create a pore pressure cohesive element

COH3D8P element number 11 that has node numbers 1, 2, 3, 4, 1001, 1002,

1003, 1004, 2001, 2002, 2003, and 2004 (nodes 1, 2, 3, and 4 define the bottom

face; nodes 1001, 1002, 1003, and 1004 define the top face; and nodes 2001,

2002, 2003, and 2004 define the middle face):

*ELEMENT, TYPE=COH3D8P, OFFSET=2000
11, 1, 2, 3, 4, 1001, 1002, 1003, 1004

Grouping elements into element sets

Element sets are used as convenient cross-references for defining loads, properties, etc. Element sets are

the fundamental references of the model and should be used to assist the input definition. The members

of an element set can be individual elements or other element sets. An individual element can belong to

several element sets.

Elements can be grouped into element sets when they are created or after they have already been

defined. In either case each element set is assigned a name. Element set names can be up to 80 characters

long.

The same name can be used for a node set and for an element set.

All elements within an element set will be arranged in ascending order of their element number, and

duplicates will be removed.

Once elements are assigned to an element set, additional elements can be added to the same element

set; however, elements cannot be removed from an element set.

Assigning elements to an element set as they are created

There are several ways that elements can be assigned to element sets as they are created.

Input File Usage: Use any one of the following options:

*ELEMENT, ELSET=name

*ELGEN, ELSET=name

*ELCOPY, NEW SET=name

2.2.1–6

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

Assigning previously defined elements to an element set

You can assign elements that you have defined previously (by specifying their nodes, by generating them

incrementally, or by copying existing elements) to an element set by listing the elements forming the set

directly or by generating the element set.

Listing the elements that form the set directly

You can list the elements that form the element set directly. Previously defined element sets, as well as

individual elements, can be assigned to element sets.

Input File Usage: *ELSET, ELSET=name

For example, the following lines add elements 3, 13, and 20 to set LEFT:

*ELSET, ELSET=LEFT
20
3, 13

The following lines add elements 5 and 16 to the existing set LEFT:

*ELSET, ELSET=LEFT
5, 16
** The above data line is equivalent to
specifying 5, 16, LEFT

The following lines add elements 22, 14, and all elements in set LEFT to set B:

*ELSET, ELSET=B
22, 14, LEFT

Thus, element set B contains the following elements: 3, 5, 13, 14, 16, 20, and

22. Element set LEFT can be assigned to element set B since the definition of

LEFT occurs before the definition of B.

Generating the element set

To generate an element set, you must specify a first element, ; a last element, ; and the increment in

element numbers between these elements, i. All elements going from to in steps of i will be added

to the set. Therefore, i must be an integer such that is a whole number (not a fraction). The

default is .

Input File Usage: *ELSET, ELSET=name, GENERATE

For example, the following lines add elements 1, 3, 5, …, 19, 21 and elements

39, 49, 59, …, 129, 139 to set UP:

*ELSET, ELSET=UP, GENERATE
1, 21, 2
39, 139, 10

2.2.1–7

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

Limitation on updating element sets that are used to define other element sets

If an element set is constructed from previously defined element sets, subsequent updates to these sets

are not taken into account.

Input File Usage: *ELSET, ELSET=name

For example, the following lines add elements 1 and 2, but not 3, to the set

SET-AB while adding elements 1 and 3 to set SET-A:

*ELSET, ELSET=SET-A
1,

*ELSET, ELSET=SET-B
2,

*ELSET, ELSET=SET-AB
SET-A, SET-B

*ELSET, ELSET=SET-A
3,

Defining part and assembly sets

In a model defined in terms of an assembly of part instances, all element sets must be defined within a

part, part instance, or the assembly definition. If an element set is defined within a part (or part instance),

you can refer to the element numbers directly. To define an assembly-level element set, you must identify

the elements to be added to the set by prefixing each element number with the part instance name and a

“.” (as explained in “Defining an assembly,” Section 2.10.1). An assembly-level element set can have

the same name as a part-level element set.

Example

The following input defines an element set, set1, that belongs to part PartA and will be inherited by

every instance of PartA:

*PART, NAME=PartA
...
*ELSET, ELSET=set1
1,3,26,500

*END PART

An element set with the same name is defined at the assembly level as follows:

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE

2.2.1–8

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

*ELSET, ELSET=set1
PartA-1.1, PartA-1.3, PartA-1.26, PartA-1.500
PartA-2.1, PartA-2.3, PartA-2.26, PartA-2.500

*END ASSEMBLY

Assembly-level element set set1 contains all the elements from element sets set1 belonging to part

instances PartA-1 and PartA-2. Therefore, the elements are assigned to two separate element sets:

one at the part instance level and one at the assembly level. An assembly-level element set called set1
could be created with entirely different elements than those that belong to the part set; part- and assembly-

level element sets are independent. However, since in this example the same elements are assigned

to both the part- and assembly-level element sets set1, the assembly-level set could alternatively be

defined by

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE
*ELSET, ELSET=set1
PartA-1.set1, PartA-2.set1

*END ASSEMBLY

This element set definition is equivalent to the previous example, where the elements are listed

individually.

Alternate method for defining assembly-level element sets

Sometimes it is not convenient to define an assembly-level element set by referring to part-level element

sets. In such cases a set definition containingmany elements can get quite lengthy. Therefore, an alternate

method is provided.

Input File Usage: *ELSET, ELSET=ElsetName, INSTANCE=InstanceName

The following example shows two equivalent ways to define an assembly-level

element set; once by prefixing each element number with a part instance name

(as shown above) and once using the more compact INSTANCE notation:

*ASSEMBLY, NAME=Assembly-1
*INSTANCE, NAME=PartA-1, PART=PartA
...

*END INSTANCE
*INSTANCE, NAME=PartA-2, PART=PartA
...

*END INSTANCE
*ELSET, ELSET=set2

2.2.1–9

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

PartA-1.11, PartA-1.12, PartA-1.13, PartA-1.14,
PartA-2.21, PartA-2.22, PartA-2.23, PartA-2.24

*ELSET, ELSET=set3, INSTANCE=PartA-1
11, 12, 13, 14

*ELSET, ELSET=set3, INSTANCE=PartA-2
21, 22, 23, 24

*END ASSEMBLY

When the *ELSET option is used more than once with the same name, as it is

with set3, the elements in the second use of *ELSET are appended to the set

created by the first use of *ELSET.

Internal element sets created by Abaqus/CAE

In Abaqus/CAE many modeling operations are performed by picking geometry with the mouse. For

example, a surface can be created by picking a face on a geometric part instance. Since the *SURFACE

option refers to an element set, this “picked” geometry must be translated into an element set in the input

file. Such sets are assigned a name by Abaqus/CAE and marked as internal. You can view these internal

sets using display groups in the Visualization module of Abaqus/CAE (see Chapter 78, “Using display

groups to display subsets of your model,” of the Abaqus/CAE User’s Guide).

Input File Usage: *ELSET, ELSET=ElsetName, INTERNAL

Transferring of element sets

If the results of an Abaqus/Explicit analysis are imported into an Abaqus/Standard analysis (or vice versa)

or results from an Abaqus/Standard analysis are imported into another Abaqus/Standard analysis (see

“Transferring results between Abaqus analyses: overview,” Section 9.2.1), all element set definitions

in the original analysis are imported by default. Alternatively, you can import only selected element set

definitions; see “Importing element set and node set definitions” in “Transferring results between Abaqus

analyses: overview,” Section 9.2.1, for details.

If a three-dimensional model is generated from a symmetric model (see “Symmetric model

generation,” Section 10.4.1), all element sets in the original model will be used (and expanded) in the

generated model.

Creating elements from existing elements by generating them incrementally

You can generate elements incrementally from existing elements. The newly created elements are always

the same element type as that of the master element.

Abaqus first generates a row of elements by copying the node pattern of a given element with

prescribed increments in the node and element numbers. This row can then be repeated to form a layer,

which can also be repeated to form a block.

To generate a row of elements, you must specify the following information:

• The master element number. The master element must exist at the time that the generation is

specified, although it can be an element that has just been defined in this same element generation.

2.2.1–10

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

• The number of elements to be defined in the first row generated, including the master element.

• The increment in node numbers of corresponding nodes from element to element in the row. The

default is 1. All element node numbers (except special-purpose nodes, discussed later) will increase

by the same value.

• The increment in element numbers in the row. The default is 1.

To copy this newly created master row to create a layer of elements, you must specify the following

additional information:

• The number of rows to be defined, including the master row.

• The increment in node numbers of corresponding nodes from row to row.

• The increment in element numbers of corresponding elements from row to row.

To copy this newly created master layer to create a block of elements, you must specify the following

additional information:

• The number of layers to be defined, including the master layer.

• The increment in node numbers of corresponding nodes from layer to layer.

• The increment in element numbers of corresponding elements from layer to layer.

Input File Usage: *ELGEN

For example, the elements forming the quarter cylinder shown in Figure 2.2.1–1

can be generated by the following lines:

*ELGEN
1, 3, 1, 1, 5, 10, 10, 6, 100, 100

Incrementing special-purpose nodes

By default, the following nodes are not incremented:

• rigid body reference nodes for IRS-type and drag chain elements; and

• nodes used to define the direction of the first cross-section axis for beams or frames in space.

You can specify that all nodes should be incremented. You define the increment between node numbers

as described above. Usually the incrementation of all nodes is needed only for nodes used to define the

direction of the first cross-section axis for beams in space.

Input File Usage: *ELGEN, ALL NODES

Creating elements by copying existing elements

You can create new elements by copying existing elements. You must identify the existing element set

to copy and specify an integer constant that will be added to the node numbers of the existing elements

to define the node numbers of the new elements. Likewise, you must specify an integer constant that

will be added to the element numbers of existing elements to define element numbers for the elements

being created.

2.2.1–11

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

1

2

3

4

11

12

13

34
44

33

43

53

14
24

54

23

22

21

31
32

4142

52 51

101

111

121

131

141

151

201

211

221

231

241

251

301

311

321

331

341

351

401

411

421

431

441

451

501

511

521

531

541

551

601

611

621

631

641

651

b. Node numbers
(Only visible nodes shown).

1

2

3

11

12

13

33

43

23
22

21

31
32

4142

101

111

121

131

141

201

211

221

231

241

301

311

321

331

341

401

411

421

431

441

501

511

521

531

541

a. Element numbers
(Only visible elements shown).

Figure 2.2.1–1 Element generation example.

2.2.1–12

Abaqus Version 6.6 ID:

Printed on:

ELEMENT DEFINITION

You can assign the newly created elements to an element set. If you do not specify an element set

name for the newly created elements, they are not assigned to an element set.

Input File Usage: *ELCOPY, OLD SET=name, NEW SET=new_name,

SHIFT NODES=number, ELEMENT SHIFT=number

For example, the following data lines will generate new elements in set B that

are copies of all elements in set A at the time this option is processed, with 1000

added to each element number and to each node number in the definitions of

the new elements. The members of set A at the time the line is processed are

those elements defined to be in set A by all element generation and element set

definition lines that appear in the input file prior to this *ELCOPY option.

*ELCOPY, OLD SET=A, NEW SET=B, ELEMENT SHIFT=1000,
SHIFT NODES=1000

Special considerations for continuum elements

When copying existing elements, you can choose to modify the node numbering sequence for the

elements being created to avoid creating continuum elements that violate the Abaqus convention for

counterclockwise element numbering. This modification is normally required when the nodes have

been generated by copying existing nodes (“Creating nodes by copying existing nodes” in “Node

definition,” Section 2.1.1).

Input File Usage: *ELCOPY, REFLECT

For example, assume element 1 is in element set A and is defined by nodes 1,

2, 3, 4. The following data line will generate element number 11, also in set A,
with nodes 11, 14, 13, and 12:

*ELCOPY, OLD SET=A, NEW SET=A, ELEMENT SHIFT=10,
SHIFT NODES=10, REFLECT

If the REFLECT parameter is not used, the new element will be defined by the

node sequence 11, 12, 13, 14 and will violate the counterclockwise element

numbering convention used with continuum elements (see Figure 2.2.1–2).

13

14

11
12 2

3
4

1
y

x

Figure 2.2.1–2 Example of modification of node numbering sequence.

2.2.1–13

Abaqus Version 6.6 ID:

Printed on:

ELEMENT FOUNDATIONS

2.2.2 ELEMENT FOUNDATIONS

Products: Abaqus/Standard Abaqus/CAE

References

• *FOUNDATION

• “Defining foundations,” Section 15.13.20 of the Abaqus/CAE User’s Guide, in the HTML version

of this guide

Overview

Elastic element foundations:

• can be defined for stress/displacement elements in Abaqus/Standard according to the load identifiers

described in Part VI, “Elements”;

• act like springs to ground; and

• are a simple way of including the stiffness effects of a support (such as the soil under a building)

without modeling the details of the support.

Defining element foundation behavior

Foundation pressures act normal to the element faces on which they are applied. In large-displacement

analysis the direction of action of the foundation is based on the deformed configuration; foundations

rotate with the element sides.

Convergence difficulties may arise with large-deformation problems since no corresponding

foundation load stiffness terms are included in the element stiffness matrices.

To define the foundation behavior, you specify the foundation stiffness per unit area (per unit length

for beams).

Input File Usage: Use the following option in the model definition portion of the input file:

*FOUNDATION

Abaqus/CAE Usage: Interaction module: Create Interaction: Step: Initial, Elastic foundation

2.2.2–1

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

2.2.3 DEFINING REINFORCEMENT

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• *EMBEDDED ELEMENT

• *MEMBRANE SECTION

• *PRESTRESS HOLD

• *REBAR

• *REBAR LAYER

• *SHELL SECTION

• *SURFACE SECTION

• “Defining rebar layers,” Section 12.13.19 of the Abaqus/CAE User’s Guide, in the HTML version

of this guide

Overview

Rebar:

• are used to define layers of uniaxial reinforcement in membrane, shell, and surface elements (such

layers are treated as a smeared layer with a constant thickness equal to the area of each reinforcing

bar divided by the reinforcing bar spacing);

• can be used to add layers of reinforcement in a solid by embedding reinforced surface or membrane

elements in the “host” solid elements as described in “Embedded elements,” Section 35.4.1;

• can be used to add additional stiffness, volume, and mass to the model;

• can be used to add discrete axial reinforcement in beam elements in Abaqus/Standard;

• can be used in coupled temperature-displacement analysis but do not contribute to the thermal

conductivity and specific heat;

• can be used in coupled thermal-electrical-structural analysis but do not contribute to the electrical

conductivity, thermal conductivity and specific heat;

• cannot be used in heat transfer or mass diffusion analysis; and

• have material properties that are distinct from those of the underlying or host element.

• do not include the mass or volume of the underlying elements.

Defining a rebar layer

You can specify one or multiple layers of reinforcement in membrane, shell, or surface elements. For

each layer you specify the rebar properties including the rebar layer name; the cross-sectional area of

each rebar; the rebar spacing in the plane of the membrane, shell, or surface element; the position of

2.2.3–1

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

the rebars in the thickness direction (for shell elements only), measured from the midsurface of the shell

(positive in the direction of the positive normal to the shell); the rebar material name; the initial angular

orientation, in degrees, measured relative to the local 1-direction; and the isoparametric direction from

which the rebar angle output will be measured.

You can model rebar layers in solid (continuum) elements by embedding a set of surface or

membrane elements with rebar layers defined as discussed above in a set of host continuum elements.

Input File Usage: Use the following options to define one or more rebar layers in membrane

elements:

*MEMBRANE SECTION, ELSET=memb_set_name

*REBAR LAYER

Use the following options to define one or more rebar layers in shell elements:

*SHELL SECTION, ELSET=shell_set_name

*REBAR LAYER

Use the following options to define one ormore rebar layers in surface elements:

*SURFACE SECTION, ELSET=surf_set_name

*REBAR LAYER

Use the following option to model rebar layers in solid (continuum) elements:

*EMBEDDED ELEMENT, HOST ELSET=solid_set_name

memb_set_name or surf_set_name

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar Layers

Interaction module: Create Constraint: Embedded region

Assigning a name to the rebar layer

You must assign each layer of rebar in a particular element or element set a separate name. This name

can be used in defining rebar prestress and output requests.

Input File Usage: *REBAR LAYER

rebar layer name

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar
Layers: Layer Name rebar layer name

Specifying rebar geometry

The rebar geometry is always defined with respect to a local coordinate system. Defining an appropriate

local system is described in the next section. The rebar geometry can be constant, vary as a function of

radial position in a cylindrical coordinate system, or vary according to the tire “lift” equation. In each

case you must specify the spacing, s, and the area, A, which are used to determine the thickness of the

equivalent rebar layer, , as well as the angular orientation, , of the rebar with respect to this

local system.

In addition, for shell elements you must specify the position of the rebars in the shell thickness

direction measured from the midsurface of the shell (positive in the direction of the positive normal to

2.2.3–2

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

the shell). If the shell’s thickness is defined by nodal thicknesses (“Nodal thicknesses,” Section 2.1.3),

this distance will be scaled by the ratio of the thickness defined by the nodal thickness to the thickness

defined by the section definition. If the shell’s thickness is defined with a distribution (“Distribution

definition,” Section 2.8.1), this distance is scaled by the ratio of the element thickness defined by the

distribution to the default thickness.

Defining rebar with constant spacing

You can specify the geometry to be constant in the local rebar coordinate system. In this case the spacing,

s, is specified as a length measure.

Input File Usage: *REBAR LAYER, GEOMETRY=CONSTANT

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar
Layers: Rebar geometry: Constant

Defining rebar spacing as a function of radial position

You can specify the spacing, s, in terms of angular spacing in degrees as shown in Figure 2.2.3–1.

z

r

rebar angular spacing
in degrees

radial rebar (orientation angle 0o)

position in shell
thickness direction

middle surface
of shell

s

Figure 2.2.3–1 Example of radial rebars in axisymmetric shell elements.

Angular spacing values can also be used for non-radial rebars as well as for rebars having nonzero

orientation angles from the meridional plane. In these cases the orientation angles of the rebars do not

change. The angular spacing option is used only to compute the spacing between rebars in units of length

by multiplying the angular spacing by the radial distance of the concerned point on the rebar from the

axis of axisymmetry. A local cylindrical coordinate system must be defined for the rebar if the rebar is

associated with three-dimensional elements.

Input File Usage: *REBAR LAYER, GEOMETRY=ANGULAR

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar
Layers: Rebar geometry: Angular

2.2.3–3

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

Defining rebar using the tire “lift” equation

Structural tire analysis is often performed using the cured tire geometry as the reference configuration

for the finite element model. However, the cord geometry is more conveniently specified with respect

to the “green,” or uncured, tire configuration. The tire lift equation provides mapping from the uncured

geometry to the cured geometry (see Figure 2.2.3–2).

αο

rο

r

αο

α
α

revolution axis

rd

a) uncured geometry

b) cured geometry

revolution axis
rd

Figure 2.2.3–2 Mapping between uncured and cured tire rebar geometry.

You can specify the spacing and orientation of the rebar cords with respect to the uncured configuration

and let Abaqus map these properties to the reference configuration of the cured tire. Using a cylindrical

coordinate system, the spacing, s, and angular orientation, , in the cured tire are obtained from

and

where r is the position of the rebar along the radial direction in the cured geometry, is the position of

the rebar in the uncured geometry, is the spacing in the uncured geometry, is the angle measured

2.2.3–4

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

with respect to the projected local 1-direction in the uncured geometry, and e is the cord extension ratio.

In a tire e represents the pre-strain that occurs during the curing process; e =1 means a 100% extension.

When is equal to 90°, the rebar is assumed to have a constant spacing of .

A local cylindrical coordinate system must be defined for the rebar if the rebar is associated with

three-dimensional elements.

Input File Usage: *REBAR LAYER, GEOMETRY=LIFT EQUATION

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar
Layers: Rebar geometry: Lift equation–based

Local rebar orientation system

The rebar geometry, such as rebar orientation and spacing, is defined with respect to a local orientation

system. This local rebar orientation system is entirely independent from the local orientation system

used for the underlying assignment.

The rebar angle is always defined with respect to the local 1-direction as shown in Figure 2.2.3–3.

Default projected local surface directions
or user-defined local surface directions

Initial rebar angle, α

2n

1

Figure 2.2.3–3 Rebar in a three-dimensional shell, membrane, or surface element.

Rebar defined with either angular spacing or spacing defined by the tire lift equation is specified with

respect to a cylindrical orientation system. For axisymmetric analysis the global coordinate system

is used as the cylindrical system. For three-dimensional analysis you must provide a user-defined

cylindrical orientation definition.

Local orientation system for three-dimensional elements

You can define the local system by referring to a user-defined local coordinate system. See

“Orientations,” Section 2.2.5, for a description of how the local coordinate system is calculated from

the user-defined directions for definition of rebar in shell, membrane, and surface elements.

If you do not specify a user-defined orientation, the local 1-direction is based on the default projected

local coordinate system. See “Conventions,” Section 1.2.2, for a definition of the default projected local

directions on a surface in space.

2.2.3–5

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

A positive angle defines a rotation from local direction 1 to local direction 2 around the element’s

normal direction or the user-defined normal direction. If the shell, membrane, or surface element is

curved in space, the local 1-direction will vary across the element and the initial rebar angular orientation

will also vary accordingly. The orientation definition that can optionally be associated with a shell or

membrane section definition has no influence on the rebar angular orientation definitions. For example,

in a membrane section, shell section, or surface section, the following data would result in the rebar layer

definition shown in Figure 2.2.3–4: A=0.01; s=0.1; distance of rebar from the shell midsurface=0.0;

=30.; and the rebar definition refers to a local rectangular orientation defined to have its X-axis go

through the point (−0.7071, 0.7071, 0.0), its plane include the point (−0.7071, −0.7071, 0.0), and

an additional rotation of 0.0 degrees about the 3-direction.

x
z

y

OR1

OR2

3

2

2

1

1

4

ORn = user-defined local directions
1, 2 = default local directions

o

Figure 2.2.3–4 Rebar defined relative to user-defined local coordinate directions.

The following data would result in the rebar layer definition shown in Figure 2.2.3–5: A=0.01, s=0.1,

distance of rebar from the shell midsurface=0.0, and =45.

Input File Usage: Use the following options to define the local 1-direction for a rebar layer:

*ORIENTATION, NAME=name

*REBAR LAYER, ORIENTATION=name

Abaqus/CAE Usage: Property module:

Tools→Datum: Type: CSYS
Assign→Rebar Reference Orientation

Local orientation system for axisymmetric elements

Rebars in an axisymmetric membrane element or an axisymmetric surface element must lie in the element

reference surface, whereas rebars in an axisymmetric shell can lie in the shell reference surface or can

be offset from the midsurface. Rebars in axisymmetric membrane, shell, and surface elements can be

2.2.3–6

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

xz

y

4

1

1

2

2

3

α = 45°

local directions

Figure 2.2.3–5 Rebar defined relative to default local coordinate directions.

defined to have any angular orientation with respect to the r–z plane. See Figure 2.2.3–6 for an example

of circumferential rebars and Figure 2.2.3–1 for an example of radial rebars in axisymmetric shells.

n

10

20

spacing
of rebar

position in shell
thickness direction

CL

circumferential rebar (90o orientation)

middle surface
of shell

z

r

Figure 2.2.3–6 Example of circumferential rebars in axisymmetric shell elements.

2.2.3–7

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

You cannot specify a user-defined orientation for rebar layers in axisymmetric membrane, shell, and

surface elements. Instead, in the rebar layer definition you specify the angular orientation of the rebar

layer, in degrees, with respect to the r–z plane; this orientation is measured positive about the positive

normal to the membrane, shell, or surface element.

If you specify an orientation angle other than 0° or 90° for rebar in an axisymmetric membrane

without twist, axisymmetric shell, or axisymmetric surface without twist, Abaqus assumes that the

rebars are balanced (i.e., half the rebar lie at the specified angle and the other half at an angle of

) and internal calculations are handled accordingly. Such a rebar definition should not be used

with the symmetric model generation capability (“Symmetric model generation,” Section 10.4.1). The

recommended modeling technique is to define unbalanced rebar in axisymmetric elements with twist.

Balanced rebar, on the other hand, can be defined in regular axisymmetric elements or in axisymmetric

elements with twist and should be defined by specifying half the rebar at the specified angle and the

other half at an angle of .

Large-displacement considerations

In geometrically nonlinear analyses as the rebar-reinforced element deforms, the initially defined

geometric properties and orientation of the rebar layer can change as a result of finite-strain effects.

The deformation of the rebar layer is determined from the deformation gradient of the underlying shell,

membrane, or surface element. Rebars rotate with the actual deformation and not with the average rigid

body rotation of the material point in the underlying element. See “Rebar modeling in shell, membrane,

and surface elements,” Section 3.7.3 of the Abaqus Theory Guide, for details.

For example, consider a plate modeled with a first-order element under large pure shear deformation

as shown in Figure 2.2.3–7, where rebars are initially aligned with the element isoparametric directions.

1

2 2

1

Figure 2.2.3–7 Rebar orientation evolves in a geometrically nonlinear analysis.

As a result of finite-strain effects, rebars rotate but remain aligned with the element isoparametric

directions. If the same problem is modeled using anisotropic material properties rather than rebars and

the material directions (1 and 2) are initially aligned with the element isoparametric directions, under

such large shear deformation the material directions rotate and are no longer aligned with the element

isoparametric directions. The material directions in this case are determined based on the average rigid

body rotation of the material point. Hence, if the material is not truly a continuum, the anisotropic

behavior is better modeled with rebars.

2.2.3–8

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

Defining rebar in Abaqus/Standard beam elements

You must use element-based rebar, described in “Defining rebar as an element property,” Section 2.2.4,

to model discrete rebar in beam elements in Abaqus/Standard. You specify the elements that contain the

rebar, the cross-sectional area of each rebar, and the location of each rebar with respect to the local beam

section axis (see Figure 2.2.3–8).

2

1

Local beam
section axes

X

X

1

2

Rebar

Figure 2.2.3–8 Rebar location in a beam section.

Each individual rebar must be assigned a separate name in a particular element or element set. This name

can be used in defining rebar prestress and output requests.

Input File Usage: *REBAR, ELEMENT=BEAM, MATERIAL=mat, NAME=name

Abaqus/CAE Usage: Rebar in Abaqus/Standard beam elements are not supported in Abaqus/CAE.

Defining the rebar material

The material properties of the rebars are distinct from those of the underlying element and are defined by

a separate material definition (“Material data definition,” Section 21.1.2). You must associate each rebar

layer (or, for beam elements in Abaqus/Standard, each rebar definition) with a set of material properties.

The following material behavior cannot be used in Abaqus/Standard to define rebar materials:

• “Porous metal plasticity,” Section 23.2.9.

The following material behaviors cannot be used in Abaqus/Explicit to define rebar materials:

• “Defining fully anisotropic elasticity” in “Linear elastic behavior,” Section 22.2.1;

• “Defining orthotropic elasticity by specifying the terms in the elastic stiffness matrix” in “Linear

elastic behavior,” Section 22.2.1;

• “Equation of state,” Section 25.2.1;

• “Anisotropic yield/creep,” Section 23.2.6;

• “Porous metal plasticity,” Section 23.2.9;

• “Extended Drucker-Prager models,” Section 23.3.1;

2.2.3–9

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

• “Modified Drucker-Prager/Cap model,” Section 23.3.2;

• “Crushable foam plasticity models,” Section 23.3.5; or

• “Cracking model for concrete,” Section 23.6.2.

Although Abaqus/Standard will allow for a rebar material to be defined with orthotropic elasticity

(“Defining orthotropic elasticity by specifying the terms in the elastic stiffness matrix” in “Linear elastic

behavior,” Section 22.2.1) or anisotropic elasticity (“Defining fully anisotropic elasticity” in “Linear

elastic behavior,” Section 22.2.1), is the only meaningful material constant in these definitions.

is used to compute the strain in the rebar direction, , using the corresponding stress component,

, as discussed in “Linear elastic behavior,” Section 22.2.1; no other strain or stress components exist

in rebars.

If a nonzero density is specified for the material in a rebar layer, the mass of the rebar is taken into

account for dynamic analysis as well as for gravity, centrifugal, and rotary acceleration distributed loads.

The mass is not taken into account for rebar in beam elements (available only in Abaqus/Standard);

you should adapt the density of the beam material to account for the rebar mass.

Input File Usage: *REBAR LAYER

rebar layer name, A, s, distance of rebar from shell midsurface,

rebar material name

Abaqus/CAE Usage: Property module: membrane, shell, or surface section editor: Rebar
Layers: Material rebar material name

Initial conditions

Initial conditions (“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1) can be

used to define prestress or solution-dependent values for rebars.

Defining prestress in rebar

For structures in which reinforcing is defined (such as reinforced concrete structures), you can use initial

conditions to define the prestress in the rebars.

In such cases in Abaqus/Standard the structure must be brought to a state of equilibrium before

it is actively loaded by means of an initial static analysis step (“Static stress analysis,” Section 6.2.2)

with no external loads applied (or, perhaps, with the “dead” loads only)—see “Initial conditions in

Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1.

Input File Usage: *INITIAL CONDITIONS, TYPE=STRESS, REBAR

element number or element set name, rebar name, prestress value

Abaqus/CAE Usage: Rebar prestress is not supported in Abaqus/CAE.

Holding prestress in rebar in Abaqus/Standard

If prestress is defined in the rebars and unless the prestress is held fixed, it will be allowed to change

during an equilibrating static analysis step; this is a result of the straining of the structure as the self-

equilibrating stress state establishes itself. An example is the pretension type of concrete prestressing in

which reinforcing tendons are initially stretched to a desired tension before being covered by concrete.

2.2.3–10

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

After the concrete cures and bonds to the rebar, release of the initial rebar tension transfers load to the

concrete, introducing compressive stresses in the concrete. The resulting deformation in the concrete

reduces the stress in the rebar.

Alternatively, you can keep the initial stress defined in some or all of the rebars constant during

this initial equilibrium solution. An example is the post-tension type of concrete prestressing; the rebars

are allowed to slide through the concrete (normally they are in conduits), and the prestress loading is

maintained by some external source (prestressing jacks). The magnitude of the prestress in the rebar is

normally part of the design requirements and must not be reduced as the concrete compresses under the

loading of the prestressing. Normally, the prestress is held constant only in the first step of an analysis.

This is generally the more common assumption for prestressing.

If the prestress is not held constant in analysis steps following the step in which it is held constant,

the stress in the rebar will change due to additional deformation in the concrete. If there is no additional

deformation, the stress in the rebar will remain at the level set by the initial conditions. If the loading

history is such that no plastic deformation is induced in the concrete or rebar in steps subsequent to the

steps in which the prestress is held constant, the stress in the rebar will return to the level set by the initial

conditions upon removal of the loading applied in those steps.

Input File Usage: *PRESTRESS HOLD

Abaqus/CAE Usage: Rebar prestress is not supported in Abaqus/CAE.

Defining the initial values of solution-dependent state variables for rebars

You can define the initial values of solution-dependent state variables for rebars within elements. See

“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1, for details.

Input File Usage: *INITIAL CONDITIONS, TYPE=SOLUTION, REBAR

Abaqus/CAE Usage: Initial solution-dependent state variables are not supported in Abaqus/CAE.

Output

Rebar force output is available at the rebar integration locations with output variable RBFOR. The rebar

force is equal to the rebar stress times the current rebar cross-sectional area. The current cross-sectional

area of the rebar is calculated by assuming the rebar is made of an incompressible material, regardless

of the actual material definition. For rebars in membrane, shell, or surface elements output variables

RBANG and RBROT identify the current orientation of rebar within the element and the relative

rotation of the rebar as a result of finite deformation, respectively. These quantities are measured with

respect to the user-specified isoparametric direction in the element, not the default local element system

or the orientation-defined system. See “Rebar modeling in shell, membrane, and surface elements,”

Section 3.7.3 of the Abaqus Theory Guide.

See “Abaqus/Standard output variable identifiers,” Section 4.2.1, and “Abaqus/Explicit output

variable identifiers,” Section 4.2.2, for information on additional output quantities such as stress and

strain. For rebars in membrane, shell, or surface elements with multiple integration points, output

quantities are available at the integration points and at the centroid of the element.

2.2.3–11

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

Specifying the direction for rebar angle output

The output quantities RBANG and RBROT can be measured from either of the isoparametric directions

in the plane of the membrane, shell, or surface elements. You can specify the desired isoparametric

direction from which the rebar angle will be measured (1 or 2). The rebar angle is measured from the

isoparametric direction to the rebar with a positive angle defined as a counterclockwise rotation around

the element’s normal direction. The default direction is the first isoparametric direction.

In axisymmetric shell, surface, and membrane elements the first isoparametric direction coincides

with the meridional direction, and the second isoparametric direction coincides with the hoop direction.

In triangular elements Abaqus defines the isoparametric directions as follows: for a 3-node triangle the

first isoparametric direction is a straight line going from node 1 to the midpoint of the second element

edge, and the second isoparametric direction is a straight line going from the midpoint of the first element

edge to the midpoint of the third element edge; for a 6-node triangle the first isoparametric direction is a

straight line going from node 1 to node 5, and the second isoparametric direction is a straight line going

from node 4 to node 6 (see “Element library: overview,” Section 27.1.1, for the element node ordering).

Input File Usage: *REBAR LAYER

rebar layer name, A, s, distance of rebar from shell midsurface,

rebar material name, angular orientation of rebar, isoparametric direction

Abaqus/CAE Usage: You cannot specify the direction for rebar angle output in Abaqus/CAE; the

first isoparametric direction is always used.

Example

As an example, a user-defined local coordinate system is used to define rebar in a shell element (=),

and the output value of RBANG is 75°, as illustrated in Figure 2.2.3–9:

*REBAR LAYER, ORIENTATION=ORIENT
Rbname, 0.01, 0.1, 0.0, Rbmat, 30., 2

*ORIENTATION, SYSTEM=RECTANGULAR, NAME=ORIENT
-0.7071, 0.7071, 0.0, -0.7071, -0.7071, 0.0
3, 0.0

The rebars are located at the midsurface of the shell. Output variable RBANG is measured from the

second isoparametric direction to the rebar. If the first isoparametric direction were chosen instead,

output variable RBANG would report an angle of 165°.

Visualizing rebar orientation and results in rebar

Abaqus/CAE supports visualization of rebar direction and results in rebar layers. Plots of rebar

orientation are available only if you request element output for rebars (see “Element output” in “Output

to the output database,” Section 4.1.3). Element variables for rebar can be contoured as field output

or plotted as history output in the Visualization module. Each rebar layer will have a unique name

and represents one additional section point in a membrane, shell, or surface element. You can select a

2.2.3–12

Abaqus Version 6.6 ID:

Printed on:

REINFORCEMENT

x
z

y

OR1

OR2

3

2

2, ISO2

1, ISO1

1

4

RBANG = 75

ISOn = isoparametric directions

ORn = user-defined local directions
1, 2 = default local directions

o

o

Figure 2.2.3–9 RBANG measurement for rebar defined relative

to user-defined local coordinate directions.

named rebar layer in a membrane, shell, or surface element to display its results in the Visualization

module. Abaqus/CAE does not yet support rebar in beams.

2.2.3–13

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

2.2.4 DEFINING REBAR AS AN ELEMENT PROPERTY

Products: Abaqus/Standard Abaqus/Explicit

References

• *PRESTRESS HOLD

• *REBAR

Overview

The preferred method for defining rebar in shell and membrane elements is defining layers of

reinforcement as part of the element section definition (documented in “Defining reinforcement,”

Section 2.2.3). The preferred method for defining rebar in solids is embedding reinforced surface or

membrane elements in “host” solid elements as described in “Embedded elements,” Section 35.4.1.

This section describes an alternative method of defining rebar in shell, membrane, and continuum

elements as an element property. This method is more cumbersome than the method described in

“Defining reinforcement,” Section 2.2.3, and does not allow visualization of the rebar and rebar results

in Abaqus/CAE.

Element-based rebars:

• are used to define uniaxial reinforcement in solid, membrane, and shell elements;

• can be defined as individual reinforcing bars in solid elements;

• can be defined as layers of uniformly spaced reinforcing bars in shell, membrane, and solid elements

(such layers are treated as a smeared layer with a constant thickness equal to the area of each

reinforcing bar divided by the reinforcing bar spacing);

• can be used with coupled temperature-displacement elements but do not contribute to the thermal

conductivity and specific heat;

• can be used with coupled thermal-electrical-structural elements but do not contribute to the electrical

conductivity, thermal conductivity and specific heat;

• do not contribute to the mass of the model in Abaqus/Standard;

• cannot be used in elements intended for heat transfer or mass diffusion analysis;

• cannot be used with triangular shell and membrane elements or with triangular, triangular prism,

and tetrahedral solid elements; and

• have material properties that are distinct from those of the underlying element.

Assigning a name to the rebar set

You must assign a name to the rebar set. This name can be used in defining rebar prestress and output

requests. Each layer of rebar must be assigned a separate name in a particular element or element set.

Input File Usage: *REBAR, ELEMENT=elem, MATERIAL=mat, NAME=name

2.2.4–1

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Defining rebars in three-dimensional shell and membrane elements

Both isoparametric and skew rebars can be defined in three-dimensional shell and membrane elements.

Rebars cannot be used with triangular shells or membranes.

If triangular-shaped shells or membranes are needed, collapsed quadrilateral shells or membranes

can be used. The resulting rebar directions will depend on the type of rebar (isoparametric or skew) used.

The rebar must be defined carefully since the element is distorted. This technique should be used only

in regions of the mesh where results are not critical and stress gradients are not high.

The stiffness calculations for the rebars use the same integration points as the calculations for

the underlying shell or membrane elements. See “Shell elements: overview,” Section 29.6.1, and

“Membrane elements,” Section 29.1.1, for more information about shell and membrane elements.

Defining isoparametric rebars in three-dimensional shell and membrane elements

Isoparametric rebars are aligned along the mapping of constant isoparametric lines in the element (see

Figure 2.2.4–1).

3

2

1

4

Similar to
edge 1 or 3

Similar to
edge 2 or 4

1 1-2
2 2-3
3 3-4
4 4-1

Edge Corner nodes

4

2

2

3

��
��
��
��
��
��
��
��
��
��

�����������
�����������

1

1

physical space isoparametric space

Figure 2.2.4–1 “Isoparametric” rebar in an undistorted

three-dimensional shell or membrane element.

If opposite edges of the element containing the rebar are not parallel, the rebar directions will be different

at each of the integration points within an element (see Figure 2.2.4–2).

The spacing of the rebar will be fixed in physical space. The spacing, s, and the area of the rebar, A,

are used to determine the thickness of the equivalent smeared layer, . If the edges of the element

containing the rebar are not parallel, the number of actual rebar with this spacing passing through one

edge will be different than the number passing through the opposite edge (opposite in isoparametric

space).

You specify the elements that contain the rebars; the cross-sectional area,A, of each rebar; the rebar

spacing in the plane of the shell, s; and the edge number to which the rebars are parallel when plotted

in isoparametric space (see Figure 2.2.4–1). In addition, for shell elements you specify the position of

the rebars in the shell thickness direction measured from the midsurface of the shell (positive in the

direction of the positive normal to the shell). If the shell’s thickness is defined by nodal thicknesses

2.2.4–2

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

2

1

3
4

Figure 2.2.4–2 “Isoparametric” rebar directions in a distorted three-dimensional shell or

membrane element (dashed lines indicate rebar directions).

(“Nodal thicknesses,” Section 2.1.3), this distance is scaled by the ratio of the thickness defined by the

nodal thickness to the thickness defined by the section definition. If the shell’s thickness is defined with

a distribution (“Distribution definition,” Section 2.8.1), this distance is scaled by the ratio of the element

thickness defined by the distribution to the default thickness. If the shell has a composite section whose

layer thicknesses are defined with distributions (“Distribution definition,” Section 2.8.1), this distance is

scaled by the ratio of the sum of the element layer thicknesses defined by the distributions to the sum of

the default layer thicknesses.

Input File Usage: Use the following option to define isoparametric rebars in three-dimensional

shell elements:

*REBAR, ELEMENT=SHELL, MATERIAL=mat,

GEOMETRY=ISOPARAMETRIC

Use the following option to define isoparametric rebars in general membrane

elements:

*REBAR, ELEMENT=MEMBRANE, MATERIAL=mat,

GEOMETRY=ISOPARAMETRIC

Defining skew rebars in three-dimensional shell and membrane elements

Skew rebars need not be similar to an element edge; they can lie at any prescribed angle from the local

1-axis. The direction of the rebars must be defined in one of two ways, as indicated in Figure 2.2.4–3:

1. The rebars can be defined relative to the default projected local coordinate system (see

“Conventions,” Section 1.2.2).

2. The rebars can be defined relative to a user-defined local coordinate system (see “Orientations,”

Section 2.2.5).

2.2.4–3

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Projected local surface directions
or user-defined local
surface directions

Skew angle, α

2n

1

Figure 2.2.4–3 “Skew” rebar in a three-dimensional shell or membrane.

The orientation definition that can optionally be associated with a shell or membrane section definition

has no influence on the rebar angular orientation definitions. If the shell or membrane is curved in space,

the local 1-direction will vary across the element and the skew rebar will also vary accordingly.

For shell elements the definition of a local coordinate system using distributions (“Distribution

definition,” Section 2.8.1) has no influence on the rebar angular orientation definitions.

If the rebar cross-sectional area is A, the rebar spacing, s, should be given so that the thickness of

the equivalent “smeared” layer of reinforcing is .

Defining skew rebars relative to the default projected local coordinate system

To define skew rebars relative to the default projected local coordinate system, you specify the elements

that contain the rebars; the cross-sectional area, A, of each rebar; the rebar spacing in the plane of the

shell, s; the position of the rebars in the thickness direction (for shell elements only), measured from the

midsurface of the shell (positive in the direction of the positive normal to the shell); and the angle , in

degrees, between the default local 1-direction and the rebars. See “Conventions,” Section 1.2.2, for a

definition of the default projected local directions on a surface in space. If the shell’s thickness is defined

by nodal thicknesses (“Nodal thicknesses,” Section 2.1.3), the rebar position in the thickness direction

will be scaled by the ratio of the thickness defined by the nodal thickness to the thickness defined by

the section definition. If the shell’s thickness is defined with a distribution (“Distribution definition,”

Section 2.8.1), the rebar position in the thickness direction is scaled by the ratio of the element thickness

defined by the distribution to the default thickness. A positive angle defines a rotation from local

direction 1 to local direction 2 around the element’s normal direction. For example, in a membrane the

following data would result in the rebar definition shown in Figure 2.2.4–4: A=0.05, s=0.1, and =45.

When a user-defined local orientation definition is not used to define the angular orientation of the

rebar and the normal to the shell is nearly parallel to the global 1-axis, the local 1-axis may change

significantly within an element or from one element to the next (see “Conventions,” Section 1.2.2).

2.2.4–4

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

xz

y

4

1

1

2

2

3

α = 45°

local directions

Figure 2.2.4–4 Skew rebar defined relative to default local coordinate directions.

Input File Usage: Use the following option to define skew rebars relative to the default projected

local coordinate system in three-dimensional shell elements:

*REBAR, ELEMENT=SHELL, MATERIAL=mat, GEOMETRY=SKEW

Use the following option to define skew rebars relative to the default projected

local coordinate system in general membrane elements:

*REBAR, ELEMENT=MEMBRANE, MATERIAL=mat,

GEOMETRY=SKEW

Defining skew rebars relative to a user-defined local coordinate system

To define skew rebars relative to a user-defined local coordinate system, you specify the elements that

contain the rebars; the cross-sectional area,A, of each rebar; the rebar spacing in the plane, s; the position

of the rebars in the thickness direction (for shell elements only), measured from the midsurface of the

shell (positive in the direction of the positive normal to the shell); and the angle, , in degrees, between

the user-defined 1-direction and the rebars. See “Orientations,” Section 2.2.5, for a description of how the

local coordinate system is calculated from the user-defined directions for definition of rebar in shells and

membranes. A positive angle defines a rotation from local direction 1 to local direction 2 around the

user-defined normal direction. For example, in a shell the following data would result in the skew rebar

definition shown in Figure 2.2.4–5: A=0.01; s=0.1; distance of rebar from the shell midsurface=0.0;

=30.; and the rebar definition refers to a local rectangular orientation defined to have its X-axis go

through the point (−0.7071, 0.7071, 0.0), its X–Y plane include the point (−0.7071, −0.7071, 0.0), and

an additional rotation of 0.0 degrees about the 3-direction.

Input File Usage: Use the following option to define skew rebars relative to a user-defined local

coordinate system in three-dimensional shell elements:

*REBAR, ELEMENT=SHELL, MATERIAL=mat, GEOMETRY=SKEW,

ORIENTATION=name

2.2.4–5

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

x
z

y

OR1

OR2

3

2

2

1

1

4

ORn = user-defined local directions
1, 2 = default local directions

o

Figure 2.2.4–5 Skew rebar defined relative to user-defined local coordinate directions.

Use the following option to define skew rebars relative to a user-defined local

coordinate system in general membrane elements:

*REBAR, ELEMENT=MEMBRANE, MATERIAL=mat,

GEOMETRY=SKEW, ORIENTATION=name

Defining rebars in axisymmetric shell and membrane elements

Rebars in an axisymmetric membrane must lie in the membrane reference surface, whereas rebars in an

axisymmetric shell can lie in the shell reference surface or can be offset from the midsurface. Rebars in

axisymmetric shells and membranes can be defined to have any orientation with respect to the r–z plane.

See Figure 2.2.4–6 for an example of circumferential rebars and Figure 2.2.4–7 for an example of radial

rebars in axisymmetric shells.

You specify the cross-sectional area, A, of each rebar; the rebar spacing, s; for shell elements the

position of the rebars in the shell thickness direction, measured from the midsurface of the shell (positive

in the direction of the positive normal to the shell); the angular orientation with respect to the r–z plane,

, measured in degrees; and the radial position at which the rebar spacing is measured. The angular

orientation is measured positive about the positive normal to the shell or membrane element. If the

shell’s thickness is defined by nodal thicknesses (“Nodal thicknesses,” Section 2.1.3), the distance from

the midsurface will be scaled by the ratio of the thickness defined by the nodal thickness to the thickness

defined by the section definition. If the shell’s thickness is defined with a distribution (“Distribution

definition,” Section 2.8.1) the distance from the midsurface will be scaled by the ratio of the element

thickness defined by the distribution to the default thickness.

If an orientation angle other than 0 or 90° is specified for rebar in an axisymmetric shell or

membrane without twist, Abaqus assumes that the rebars are balanced (i.e., half the rebar lie at the

specified angle and the other half at an angle of) and internal calculations are handled accordingly.

2.2.4–6

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

n

10

20

spacing
of rebar

position in shell
thickness direction

CL

circumferential rebar (90o orientation)

middle surface
of shell

z

r

Figure 2.2.4–6 Example of circumferential rebars in axisymmetric shell elements.

z

radial position where
rebar spacing is given

r

rebar spacing

radial rebar (orientation angle 0o)

position in shell
thickness direction

middle surface
of shell

Figure 2.2.4–7 Example of radial rebars in axisymmetric shell elements.

See “Rebar modeling in two dimensions,” Section 3.7.1 of the Abaqus Theory Guide, for details. If

the symmetric model generation capability (“Symmetric model generation,” Section 10.4.1) is used

to create a three-dimensional model from an axisymmetric shell or membrane model, only balanced

rebars will be translated appropriately. The definition of balanced rebars in the axisymmetric model will

result in balanced rebars in the three-dimensional model; such a translation with unbalanced rebars is

2.2.4–7

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

not available. Unbalanced rebars in generalized axisymmetric membranes with twist will be translated

properly.

If the radial position for the rebar spacing is given, the total cross-sectional area of rebar will

remain constant as the radial position changes; this behavior corresponds to the number of rebar in the

circumferential direction remaining constant and implies that the thickness of the smeared layer of rebar

decreases and that the spacing of the rebars increases as r increases (see Figure 2.2.4–7). If the radial

position for the rebar spacing is omitted (or is set to zero), Abaqus assumes that the spacing of the rebar

remains constant; the thickness of the corresponding smeared layer is held fixed such that .

Input File Usage: Use the following option to define rebars in an axisymmetric shell element:

*REBAR, ELEMENT=AXISHELL, MATERIAL=mat

Use the following option to define rebars in an axisymmetric membrane

element:

*REBAR, ELEMENT=AXIMEMBRANE, MATERIAL=mat

Defining rebars in continuum elements

Two- or three-dimensional continuum (solid) elements can contain rebars; rebars cannot be defined in

triangular, prism, tetrahedral, or infinite elements. If triangular or wedge-shaped elements are needed,

collapsed quadrilateral or brick elements can be used. Be careful when collapsing elements that contain

rebar. It is important to check that the location and orientation of the rebar are correct.

Rebars are defined as single bars or in layers. In the latter case the layer is a surface in each element;

you provide the rebar orientation in the surface.

Defining layers of rebars in planar and axisymmetric continuum elements

By default, the rebars form a layer that lies in a surface that is at right angles to the plane of the model.

You define the line where this rebar surface intersects the plane of the model, as described below.

The orientation of the rebars within the rebar surface is defined by giving an angle, in degrees,

between the line of intersection in the plane of the model and the rebars. This angle is measured in

physical three-dimensional space, not in isoparametric space. See “Rebar modeling in two dimensions,”

Section 3.7.1 of the Abaqus Theory Guide, for details. The positive direction along the line of intersection

is from the lower to the higher numbered element edge that is intersected, and a positive angle indicates

rebars oriented down into the plane of the model (where the plane is parallel to the z-axis in plane strain

analysis or the -axis for axisymmetric analysis), as shown in Figure 2.2.4–8.

If an orientation angle other than 0 or 90° is specified for rebar in an axisymmetric element without

twist, it is assumed that the rebar in the element are balanced (i.e., half the rebar lie at the specified angle

and the other half at the angle).

Defining isoparametric rebars

For isoparametric rebars the intersection of the rebar layer with the plane of the model will lie along the

mapping of a constant isoparametric line in the element. You specify the elements that contain the rebars;

the cross-sectional area, A, of each rebar; the rebar spacing, s; the rebar orientation, (as described

2.2.4–8

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

2

1

3

Positive direction
from lower to
higher numbered
edge.

4

Orie
ntatio

n angle

Rebar

y

x

z

z

r

θ

edge 1

edge 3

edge 4

edge 2

rebar
spacing

Figure 2.2.4–8 Orientation of rebars in plane and axisymmetric solid elements.

above); the fractional distance from the edge, f (the ratio of the distance between the edge and the rebar

to the distance across the element); and the edge number from which the rebars are defined. In addition,

for axisymmetric elements you specify the radial position at which the rebar spacing is measured.

If the radial position for the rebar spacing is given for rebar in axisymmetric elements, the total

cross-sectional area of rebar will remain constant as the radial position changes; this behavior corresponds

to the number of rebar remaining constant as r increases; that is, the thickness of the smeared layer

of rebar decreases as r increases. If the radial position for the rebar spacing is omitted (or is set to

zero), Abaqus assumes that the spacing of the rebar remains constant; the thickness of the corresponding

smeared layer is held fixed such that .

Figure 2.2.4–9 shows an example of isoparametric rebar. In the isoparametric mapping of the

element, the line of rebars is parallel to one of the edges of the element. In this figure the line for rebar

layerA can be defined using edges 1 or 3 and rebar layer B can be defined by edges 2 or 4. The fractional

distance from edge 1 for rebar layer A is the ratio ; alternatively, layer A can

be defined from edge 3, so that .

Input File Usage: Use the following option to define layers of isoparametric rebars in planar and

axisymmetric continuum elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat,

GEOMETRY=ISOPARAMETRIC

2.2.4–9

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Edge Corner nodes
 1 1-2
 2 2-3
 3 3-4
 4 4-1

rebar layer B

LA2

L2

21

4 3

Isoparametric mapping of
element with rebar

4
3

rebar layer A, defined with

edge 1 and f = =

rebar layer B,
defined with
edge 2 or 4

2

1

y

x Actual element

rebar layer A

A4
L

2

1

A2L
L2

A4L
L4

4L

Figure 2.2.4–9 Isoparametric rebar layer definition in solid elements.

Defining skew rebars

For skew rebars the intersection of the rebar layer with the plane of the model can intersect any two edges

of an element. You specify the elements that contain the rebars; the cross-sectional area,A, of each rebar;

the rebar spacing, s; and the rebar orientation, (as described above). In addition, for axisymmetric

elements you specify the radial position at which the rebar spacing is measured. You also specify the

fractional distance along the element edge, from the first node of the edge (as listed in Figure 2.2.4–10)

to where the rebar layer intersects the edge, for all edges. Only the two values corresponding to the two

edges that the rebar intersects can be nonzero.

Figure 2.2.4–10 shows an example of skew rebar. In the isoparametric mapping of the element,

the line of rebars intersects two of the element edges. The intersection points are located by defining

a fractional distance along each intersected edge. In this figure rebar layer A is defined by the ratio

along edge 1 and the ratio along edge 2. Rebar layer B is defined by the

ratio along edge 3 and the ratio along edge 4.

Defining skew rebars in continuum elements can increase the run time for an Abaqus/Explicit

analysis significantly. The element’s stable time increment will, in most cases, be determined by

the stable time increment of the rebar, which is proportional to the rebar length. The rebar length is

determined by factors including the rebar surface position in the element, the rebar spacing, the rebar

area, and the rebar orientation within the rebar surface. If a skew rebar in a continuum element is defined

2.2.4–10

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Edge Corner nodes
 1 1-2
 2 2-3
 3 3-4
 4 4-1

Isoparametric mapping of
element with rebar

y

x

Actual element

21

4 3
4 3

2

1

rebar layer A

A1
L

2

1L2

L
A2

rebar layer A defined with

f1 = , f2 = , f3 = 0 and f4 = 0A1L
L1

A2L
L2

rebar layer B defined with

f1 = 0, f2 = 0, f3 = and f4 =
B3L
L3

B4L
L4

3L

B3
L

4L

1L

rebar layer B

B4
L

Figure 2.2.4–10 Skew rebar layer definition in solid elements.

such that it intersects two adjacent element edges, the resulting rebar length could be considerably less

than the average element edge length, thus resulting in a very small element stable time increment.

Input File Usage: Use the following option to define layers of skew rebars in planar and

axisymmetric continuum elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat,

GEOMETRY=SKEW

Defining single rebars in two-dimensional axisymmetric and generalized plane strain continuum
elements

You can define single rebars in axisymmetric and generalized plane strain continuum elements. In this

case the rebar is assumed to be at right angles with the plane of the model—in the thickness direction for

generalized plane strain elements or the hoop direction for axisymmetric elements.

2.2.4–11

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

The intersection of the rebar with the plane of the model is defined by the fractional distances along

edges 1 and 2 of the intersections of constant isoparametric lines that pass through the rebar location (see

Figure 2.2.4–11). The fractional distances are measured from the first edge node listed in Figure 2.2.4–11.

Edge Corner nodes
 1 1-2
 2 2-3

L2

21

4 3

Isoparametric mapping of
element with rebar

4
3

2

1

y

x

single rebar

2

1

Actual element

single rebar defined with

f1 = and f2 =

1l

L2

2l
L1

1l

2l

1L

Figure 2.2.4–11 Single rebar in a solid element.

You specify the elements that contain the rebars; the cross-sectional area, A, of each rebar; and the

fractional distances locating the rebar’s position in the element, and .

Input File Usage: Use the following option to define single rebars in axisymmetric and

generalized plane strain continuum elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat, SINGLE

Defining layers of rebars in three-dimensional continuum elements

By default, the rebars in three-dimensional continuum elements are defined as layers lying in surfaces.

The surfaces are most easily defined with respect to the isoparametric mapped cube of the element.

Therefore, you must consider how the rebar will be defined before generating the mesh; if the rebar

surfaces are not taken into account in designing the mesh, the rebar definition can be very inefficient.

In the isoparametric mapped cube the rebar surface always has two edges (opposite to one

another) that are parallel to an isoparametric direction. The isoparametric directions are defined in

Figure 2.2.4–12. You specify this isoparametric direction (1, 2, or 3).

2.2.4–12

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Isoparametric direction: 1 (parallel to the 1-2 edge of the element and intersecting
 face 1-4-8-5)

Isoparametric direction: 2 (parallel to the 1-4 edge of the element and intersecting
 face 1-5-6-2)

Isoparametric direction: 3 (parallel to the 1-5 edge of the element and intersecting
 face 1-2-3-4)

Edge Corner nodes
 1 1-4
 2 4-8
 3 8-5
 4 5-1

Edge Corner nodes
 1 1-5
 2 5-6
 3 6-2
 4 2-1

Edge Corner nodes
 1 1-2
 2 2-3
 3 3-4
 4 4-1

z
y

x

1

8

4 3

7

5

2

6

8

1

5

7

6

4 3

2

3
2

1

⇒

actual element isoparametric mapping

Figure 2.2.4–12 Isoparametric direction and edge definitions for three-dimensional elements.

2.2.4–13

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

A particular face of the element, which is perpendicular to this isoparametric direction in the

isoparametric mapped cube, is used to define the position of the other two edges of the surface; the faces

are defined in Figure 2.2.4–12, where the edges of the faces are also defined.

If isoparametric rebars are defined, the two edges of the rebar surface that are not parallel to the

user-specified isoparametric direction will be parallel to one of the other two isoparametric directions;

in the isoparametric-mapped cube one isoparametric coordinate is constant on the rebar surface.

Figure 2.2.4–13 illustrates this concept with an element containing two layers of isoparametric rebars.

The position of each surface is given by the fractional distance f from an edge of the face defined in

Figure 2.2.4–12 for the isoparametric direction chosen; you must specify the edge from which the

fractional distance is measured.

If skew rebars are defined, the two edges of the rebar surface, which are not parallel to the user-

specified isoparametric direction, are generally not parallel to one of the other isoparametric directions.

The positions of these two edges of the rebar surface are specified by the intersection of the rebar surface

with edges of the intersecting face, defined in Figure 2.2.4–12, for the isoparametric direction chosen; the

intersections are given by the fractional distance f along each edge of the face. (Note that the fractional

distance is along the edge for skew rebars; for isoparametric rebars the fractional distances are measured

from an edge.) The fractional distance along an edge is measured from the first node of the edge. All

four fractional distances must be given, but only two can be nonzero.

The orientation angle, , of the rebars within the rebar layer is defined in the isoparametric-mapped

cube; it is measured in degrees and is the angle between the line of intersection of the rebar surface

with the face for the isoparametric direction chosen and the rebar. The positive direction of the line of

intersection is from the lower numbered edge to the higher numbered edge; the positive direction for

the rebars points into the elements. An example is shown in Figure 2.2.4–14. The orientation angle

is defined in the rebar layer in the isoparametric-mapped cube; therefore, the definition is the same for

isoparametric and skew rebar.

If the rebar layer is not flat in physical space, the orientation angle at each integration point may

be different. Since it is possible to define only one orientation angle per element, an average value

orientation angle for the element must be used; for reasonable meshes this approximation should not

affect the results significantly.

Defining isoparametric rebars

You specify the elements that contain the rebars; the cross-sectional area, A, of each rebar; the rebar

spacing, s; the rebar orientation, (as described above); the fractional distance, f, from the edge; the

number of the edge from which the fractional distance is measured; and the isoparametric direction of

the rebar surface.

Input File Usage: Use the following option to define layers of isoparametric rebars in

three-dimensional continuum elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat,

GEOMETRY=ISOPARAMETRIC

2.2.4–14

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

5

8

7

4

1 2

3

6

f3L4
L4

f4L3

L3

LA

120o

135o

30o

45o

layer b

element in
physical space

WA
f4L1

63.4o

49.3o

153.4o

139.3o

layer b

layer a

layer a

8

5

6

7

1 2
34

corresponding
isoparametric-mapped

cube

2

1

3

L1

0.5

2.0

2.0

2.0

Figure 2.2.4–13 Element with two layers of isoparametric rebar.

2.2.4–15

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

f3L3

f1L1

8 7

65

1

4

2

3

Orientation
angle, α

Positive direction along line
of intersection

edge 1

edge 4

edge 3

L1 L3

edge 2

1

2
3

positive
direction
of rebar

1 1-5
2 5-6
3 6-2
4 2-1

Edge Corner nodes

Figure 2.2.4–14 Orientation example for three-dimensional skew rebar modeling, isoparametric

direction 2. Shown in the mapped isoparametric element.

Example: isoparametric rebar

For example, the following input defines the isoparametric rebar shown in Figure 2.2.4–13:

*HEADING
ISOPARAMETRIC REBAR

*NODE
1, 0., 0.
2, 10., 0.
3, 10., 5.
4, 0., 5.
5, 0., 0., 7.5
6, 10., 0., 12.5
7, 10., 5., 12.5
8, 0., 5., 7.5

2.2.4–16

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

*ELEMENT, TYPE=C3D8R, ELSET=ONE
1,1,2,3,4,5,6,7,8

*REBAR, ELEMENT=CONTINUUM, MATERIAL=STEEL,
GEOMETRY=ISOPARAMETRIC, NAME=LAYER_A
ONE,.04,2.5,49.32628,0.25,4,2

*REBAR, ELEMENT=CONTINUUM, MATERIAL=STEEL,
GEOMETRY=ISOPARAMETRIC, NAME=LAYER_B
ONE,.04,1.,63.43494,0.5,3,2

*MATERIAL, NAME=STEEL

*ELASTIC
30.E6,
…

Rebar layers A and B are defined using isoparametric direction 2. From Figure 2.2.4–12 the position of

the layers must be given with respect to the face with nodes 1-5-6-2.

The fractional distance defining the position of intersection of layerAwith this face can be measured

from edge 4 (edge with nodes 2–1) along edge 3 (edge with nodes 6–2), as shown in Figure 2.2.4–13. For

layerA, . It could also be given from edge 2 (edge with nodes 5–6), so that .

The orientation of rebar for layer A in physical space is defined by an angle, , equal to 30° for

layerA. This angle must be transformed into the corresponding angle in the isoparametric-mapped cube.

This transformation can be done as follows: consider a single rebar that intersects the intersecting line

(described above) and an adjacent edge (see Figure 2.2.4–15).

L

S

X

W

β = 120o β = 30o

rebar layer A in physical space
rebar layer A in

isoparametric-mapped cube

α = 49.3oα = 139.3o

Figure 2.2.4–15 Example defining isoparametric rebar.

From the figure . The length of the rebar layer along the intersecting line is L, and the

length of the opposite edge isW. Consider the same rebar in the rebar layer in the isoparametric-mapped

cube. The orientation angle, , is given by , where and . (The 2 is

included because the isoparametric-mapped cube is a 2 × 2 × 2 cube.) This expression can be simplified

to give

2.2.4–17

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

For layer A, , , , and , where is the orientation angle that

must be specified.

The fractional distance defining the position of the intersection of layer B with this face can be

measured from edge 3 (edge with nodes 6–2); . It could also be measured from edge 1 (edge

with nodes 1–5), such that . The orientation angle for layer B in the rebar layer is 45°. In

the isoparametric-mapped cube , , , and .

Since an isoparametric rebar layer always lies in two of the isoparametric directions, an alternative

but equivalent definition can be given. For example, layer A also lies in isoparametric direction 1, with

the intersecting face having nodes 1-4-8-5. The fractional distance for layer A, measured from edge 1

(edge with nodes 1–4), is . The positive sense of the line of intersection is from edge 2 (edge

with nodes 4–8) to edge 4 (edge with nodes 5–1); therefore, , , , and

.

Layer B also lies in isoparametric direction 3, with the intersecting face having nodes 1-2-3-4. The

fractional distance for layer B, measured from edge 2 (edge with nodes 2–3), is . The positive

sense of the intersecting line is from edge 1 (edge with nodes 1–2) to edge 3 (edge with nodes 3–4);

therefore, the orientation angle of the rebar in physical space is , , , and in the

isoparametric-mapped cube .

Defining skew rebars

You specify the elements that contain the rebars; the cross-sectional area, A, of each rebar; the rebar

spacing, s; the rebar orientation, (as described above); and the isoparametric direction. In addition,

you specify the fractional distance f along the element edge for each edge of the intersecting face defined

in Figure 2.2.4–12. Only the values corresponding to the two edges that the rebar intersects can be

nonzero.

Input File Usage: Use the following option to define layers of skew rebars in three-dimensional

continuum elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat,

GEOMETRY=SKEW

Example: skew rebar

For example, the following input defines the skew rebar shown in Figure 2.2.4–16:

*HEADING

*NODE
1, 0., 0.
2, 10., 0.
3, 10., 5.
4, 0., 5.
5, 0., 0., 7.5
6, 10., 0., 12.5
7, 10., 5., 12.5
8, 0., 5., 7.5

2.2.4–18

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

1

4

2

3

L1

L3

f1L1

f3L3

8

7

6

5

30o

Figure 2.2.4–16 Example defining skew rebar.

*ELEMENT, TYPE=C3D8R, ELSET=ONE
1,1,2,3,4,5,6,7,8

*REBAR, ELEMENT=CONTINUUM, MATERIAL=STEEL, GEOMETRY=SKEW,
NAME=LAYER_A
ONE, .04, 2.5, 55.28, , 2
.2, 0., .4, .0

*MATERIAL, NAME=STEEL

*ELASTIC
30.E6,
…

The rebar layer is defined using isoparametric direction 2. The intersecting face is defined in

Figure 2.2.4–12 and has nodes 1-5-6-2. The position of the rebar layer is given by its intersection

with the edges of this face; the fractional distances, and , are shown in Figure 2.2.4–16. The

orientation angle of the rebar in physical space is 30°. Following the same procedure for calculating

as was described for isoparametric rebar, , , and the orientation angle in the

isoparametric-mapped cube is 55.28°.

Defining single rebars in three-dimensional continuum elements

You can define single rebars in three-dimensional continuum elements; in this case the rebar is assumed to

be placed along one of the element’s isoparametric directions. The rebar is then located by its intersection

2.2.4–19

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

with the intersecting face (defined in Figure 2.2.4–12). The intersections of constant isoparametric lines

with edges 1 and 2 of the intersecting face are given by fractional distances along edges 1 and 2, measured

from the first node of each edge, as shown in Figure 2.2.4–11.

You specify the elements that contain the rebars; the cross-sectional area, A, of each rebar; the

fractional distances locating the rebar’s position in the element, and ; and the isoparametric

direction. Give the fractional distances with respect to edge 1 and edge 2 for the isoparametric direction

chosen, as defined in Figure 2.2.4–12.

Input File Usage: Use the following option to define single rebars in three-dimensional continuum

elements:

*REBAR, ELEMENT=CONTINUUM, MATERIAL=mat, SINGLE

Defining the rebar material

The material properties of the rebars are distinct from those of the underlying element and are defined

by a separate material definition (“Material data definition,” Section 21.1.2). You must associate each

rebar definition with a set of material properties.

The following material behavior cannot be used in Abaqus/Standard to define rebar materials:

• “Porous metal plasticity,” Section 23.2.9.

The following material behaviors cannot be used in Abaqus/Explicit to define rebar materials:

• “Defining fully anisotropic elasticity” in “Linear elastic behavior,” Section 22.2.1;

• “Defining orthotropic elasticity by specifying the terms in the elastic stiffness matrix” in “Linear

elastic behavior,” Section 22.2.1;

• “Equation of state,” Section 25.2.1;

• “Anisotropic yield/creep,” Section 23.2.6;

• “Porous metal plasticity,” Section 23.2.9;

• “Extended Drucker-Prager models,” Section 23.3.1;

• “Modified Drucker-Prager/Cap model,” Section 23.3.2;

• “Crushable foam plasticity models,” Section 23.3.5; or

• “Cracking model for concrete,” Section 23.6.2.

Although Abaqus/Standard will allow for a rebar material to be defined with orthotropic elasticity

(“Defining orthotropic elasticity by specifying the terms in the elastic stiffness matrix” in “Linear elastic

behavior,” Section 22.2.1) or anisotropic elasticity (“Defining fully anisotropic elasticity” in “Linear

elastic behavior,” Section 22.2.1), is the only meaningful material constant in these definitions.

is used to compute the strain in the rebar direction, , using the corresponding stress component,

, as discussed in “Linear elastic behavior,” Section 22.2.1; no other strain or stress components exist

in rebars.

In Abaqus/Standard density is ignored for the rebar material properties. Hence, the mass of the

rebar is neglected in eigenvalue extraction and implicit dynamic procedures and for gravity, centrifugal,

and rotary acceleration distributed loads.

2.2.4–20

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Input File Usage: Use the following option to associate a material definition with a rebar

definition:

*REBAR, ELEMENT=elem, MATERIAL=mat

Initial conditions

Initial conditions (“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1) can be

used to define rebar prestress or solution-dependent values for rebars.

Defining prestress in rebar

For structures in which reinforcing is defined (such as reinforced concrete structures), you can use initial

conditions to define the prestress in the rebars.

In such cases in Abaqus/Standard the structure must be brought to a state of equilibrium before it

is actively loaded by means of an initial static analysis step (“Static stress analysis,” Section 6.2.2) with

no external loads applied (or, perhaps, with the “dead” loads only)—see “Defining initial stresses” in

“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1.

Input File Usage: *INITIAL CONDITIONS, TYPE=STRESS, REBAR

element number or element set name, rebar name, prestress value

Holding prestress in rebar in Abaqus/Standard

If prestress is defined in the rebars and unless the prestress is held fixed, it will be allowed to change

during an equilibrating static analysis step; this is a result of the straining of the structure as the self-

equilibrating stress state establishes itself. An example is the pretension type of concrete prestressing in

which reinforcing tendons are initially stretched to a desired tension before being covered by concrete.

After the concrete cures and bonds to the rebar, release of the initial rebar tension transfers load to the

concrete, introducing compressive stresses in the concrete. The resulting deformation in the concrete

reduces the stress in the rebar.

Alternatively, you can keep the initial stress defined in some or all of the rebars constant during

this initial equilibrium solution. An example is the post-tension type of concrete prestressing; the rebars

are allowed to slide through the concrete (normally they are in conduits), and the prestress loading is

maintained by some external source (prestressing jacks). The magnitude of the prestress in the rebar is

normally part of the design requirements and must not be reduced as the concrete compresses under the

loading of the prestressing. Normally, the prestress is held constant only in the first step of an analysis.

This is generally the more common assumption for prestressing.

If the prestress is not held constant in analysis steps following the step in which it is held constant,

the stress in the rebar will change due to additional deformation in the concrete. If there is no additional

deformation, the stress in the rebar will remain at the level set by the initial conditions. If the loading

history is such that no plastic deformation is induced in the concrete or rebar in steps subsequent to the

steps in which the prestress is held constant, the stress in the rebar will return to the level set by the initial

conditions upon removal of the loading applied in those steps.

Input File Usage: *PRESTRESS HOLD

2.2.4–21

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

Defining the initial values of solution-dependent state variables for rebars

You can define the initial values of solution-dependent state variables for rebars within elements. See

“Initial conditions in Abaqus/Standard and Abaqus/Explicit,” Section 34.2.1, for details.

Input File Usage: *INITIAL CONDITIONS, TYPE=SOLUTION, REBAR

Output

Rebar force output is available at the rebar integration locations with output variable RBFOR. The rebar

force is equal to the rebar stress times the current rebar cross-sectional area. The current cross-sectional

area of the rebar is calculated by assuming the rebar is made of an incompressible material, regardless of

the actual material definition. For rebars in membrane or shell elements output variables RBANG and

RBROT identify the current orientation of isoparametric or skew rebar within the element and the relative

rotation of the rebar as a result of finite deformation, respectively. These quantities are measured with

respect to the user-specified isoparametric direction in the element, not the default local element system

or the orientation-defined system. See “Rebar modeling in shell, membrane, and surface elements,”

Section 3.7.3 of the Abaqus Theory Guide.

See “Abaqus/Standard output variable identifiers,” Section 4.2.1, and “Abaqus/Explicit output

variable identifiers,” Section 4.2.2, for information on additional output quantities such as stress and

strain. For rebars in membrane or shell elements with multiple integration points, output quantities are

available at the integration points and at the centroid of the element.

Specifying the direction for rebar angle output in shell and membrane elements

The output quantities RBANG and RBROT can be measured from either of the isoparametric directions

in the plane of the shell or the membrane. You can specify the desired isoparametric direction from which

the rebar angle will be measured (1 or 2). In axisymmetric shells and membranes the first isoparametric

direction coincides with the meridional direction, and the second isoparametric direction coincides with

the hoop direction. The rebar angle is measured from the isoparametric direction to the rebar with a

positive angle defined as a counterclockwise rotation around the element’s normal direction. The default

direction is the first isoparametric direction.

Input File Usage: Use any of the following options:

*REBAR, ELEMENT=SHELL, MATERIAL=mat, ISODIRECTION=n

*REBAR, ELEMENT=AXISHELL, MATERIAL=mat, ISODIRECTION=n

*REBAR, ELEMENT=MEMBRANE,MATERIAL=mat, ISODIRECTION=n

*REBAR, ELEMENT=AXIMEMBRANE, MATERIAL=mat,

ISODIRECTION=n

Example

As an example, a user-defined local coordinate system is used to define skewed rebar in a shell element

(skew angle), and the output value of RBANG is 75°, as illustrated in Figure 2.2.4–17:

2.2.4–22

Abaqus Version 6.6 ID:

Printed on:

REBAR AS ELEMENT PROPERTY

x
z

y

OR1

OR2

3

2

2, ISO2

1, ISO1

1

4

RBANG = 75

ISOn = isoparametric directions

ORn = user-defined local directions
1, 2 = default local directions

o

o

Figure 2.2.4–17 RBANG measurement for skew rebar defined

relative to user-defined local coordinate directions.

*REBAR, ELEMENT=SHELL, MATERIAL=MAT1, NAME=REBARB,
GEOMETRY=SKEW, ORIENTATION=ORIENT, ISODIRECTION=2
ELSET1, 0.01, 0.1, 0.0, 30.

*ORIENTATION, SYSTEM=RECTANGULAR, NAME=ORIENT
-0.7071, 0.7071, 0.0, -0.7071, -0.7071, 0.0
3, 0.0

The rebars are located at the midsurface of the shell. Output variable RBANG is measured from the

second isoparametric direction to the rebar. If the first isoparametric direction were chosen instead,

output variable RBANG would report an angle of 165°.

Visualizing rebar orientation and results in rebar

Abaqus/CAE does not support visualization of element-based rebar or rebar results. Abaqus/CAE does

support visualization of rebar defined as described in “Defining reinforcement,” Section 2.2.3.

2.2.4–23

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

2.2.5 ORIENTATIONS

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Distribution definition,” Section 2.8.1

• “Material library: overview,” Section 21.1.1

• “Material data definition,” Section 21.1.2

• “Fabric material behavior,” Section 23.4.1

• “Distributed loads,” Section 34.4.3

• “Kinematic coupling constraints,” Section 35.2.3

• “Coupling constraints,” Section 35.3.2

• “Inertia relief,” Section 11.1.1

• *ORIENTATION

• “Creating datum coordinate systems,” Section 62.9 of the Abaqus/CAE User’s Guide, in the HTML

version of this guide

Overview

A user-defined orientation is used to define a local coordinate system for:

• definition of material properties—for example, anisotropic materials or jointed materials (a local

coordinate system must be defined if anisotropic material properties are defined for solid elements);

• definition of local material directions, such as the in-plane fill and warp yarn directions of a fabric

material or the fiber directions of anisotropic hyperelastic materials;

• definition of rebars in shell, membrane, and surface elements;

• definition of rotary inertia and connector elements;

• definition of coupling constraints;

• definition of loading directions for distributed general tractions, shear tractions, and general edge

loads;

• definition of local tangent directions for contact in Abaqus/Standard;

• material calculations at integration points;

• output of components of stress, strain, and element section force; and

• definition of a local system of rigid body motion directions for inertia relief in Abaqus/Standard.

A user-defined orientation cannot be used:

• at points where the smeared crack concrete material behavior (“Concrete smeared cracking,”

Section 23.6.1) is also used in Abaqus/Standard;

2.2.5–1

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

• to specify a local coordinate system for defining nodal coordinates—see “Specifying a local

coordinate system in which to define nodes” in “Node definition,” Section 2.1.1, or “Specifying a

local coordinate system for the nodal coordinates” in “Node definition,” Section 2.1.1, instead; or

• to specify a local coordinate system for applying loads and boundary conditions—see “Transformed

coordinate systems,” Section 2.1.5, instead.

Considerable generality is provided in the way the local system can be defined, since this system must

often change from point to point because of the shape and construction of the structure being modeled.

You can define the local orientation directly. The direct data methods provided in Abaqus are intended

to give sufficient generality to model most cases easily: they are particularly useful for regular geometry.

Distributions (“Distribution definition,” Section 2.8.1) can be used to define spatially varying local

coordinate systems for solid continuum, shell, and membrane (in Abaqus/Standard) elements directly

for arbitrary geometries.

In Abaqus/Standard you can alternatively define the local orientation in user subroutine ORIENT.

Assigning a name to an orientation

You must assign a name to each orientation definition. This name is used by various features to refer to

the orientation definition.

Input File Usage: *ORIENTATION, NAME=name

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Name: name

Defining a local coordinate system in a model that contains an assembly of part instances

In a model defined in terms of an assembly of part instances, you can define a local orientation at

the part, part instance, or assembly level. An orientation defined at the part or part instance level is

rotated according to the positioning data given for each instance of that part (or for the part instance).

This includes the case when an orientation is defined using a distribution. See “Defining an assembly,”

Section 2.10.1, and “Distribution definition,” Section 2.8.1.

Defining a local coordinate system directly

A two-stage process is used to define the local system directly.

1. You define the local coordinate system at the particular location at which it is required. You can

select a rectangular, cylindrical, or spherical coordinate system. The coordinate system is defined

in terms of points a, b, and c, as shown in Figure 2.2.5–1. You can select the method for defining

points a, b, and c, as described below.

2. Optionally, you can specify an additional rotation by identifying one of these local directions (,

, or) as a rotation axis and giving a rotation, in degrees, about that axis. The local system is

then rotated through this angle about the specified axis. This method of defining a local system is

required for contact surfaces in Abaqus/Standard, shells, membranes, gasket elements, and when

the orientation is associated with a composite solid section. The additional rotation is illustrated in

Figure 2.2.5–2.

2.2.5–2

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Rectangular system
(a on X'-axis)

Y

ZSpherical system

Z (meridional)b

a

Y (circumferential)

X (radial)

X (radial)

Y (tangential)

Z
b

a

X (global)

Rectangular system
(a on Z'-axis)

a

b

 c

Y

X

Z

a

b

 c

Z

Y

X

Cylindrical system

Y

X (global)

Z

Y

X (global)

Z

Y

X (global)

Z

Figure 2.2.5–1 Orientation systems.

2.2.5–3

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Z

X

2 (3)

2 (3)

2 (3)

α

α
1 (2)

1 (2)

1 (2)

Z

Y

X

α

α

Z

X

α

α

a. 1-direction specified.

b. 2-direction specified.

c. 3-direction specified.

Y

Y

Figure 2.2.5–2 Specifying rotation about a local axis for shell elements, membrane elements, gasket

elements (in parentheses), composite solids (in parentheses), and contact surfaces in Abaqus/Standard.

The local coordinate system for composite solids is indicated by , , and . The local

coordinate system for other element types is indicated by 1, 2, and 3; the axis labels in parentheses

are oriented for gasket elements.

Available coordinate systems

Rectangular, cylindrical, and spherical coordinate systems are available.

Defining a rectangular coordinate system

A rectangular Cartesian coordinate system is shown in Figure 2.2.5–1(a). The rectangular coordinate

system is the default. Alternatively, you can define a rectangular Cartesian coordinate system as shown

in Figure 2.2.5–1(d).

Input File Usage: *ORIENTATION, NAME=name, SYSTEM=RECTANGULAR

*ORIENTATION, NAME=name, SYSTEM=Z RECTANGULAR

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Rectangular

2.2.5–4

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Defining a cylindrical coordinate system

A cylindrical coordinate system is shown in Figure 2.2.5–1(b). The local axes are =radial,

=tangential, =axial.

Input File Usage: *ORIENTATION, NAME=name, SYSTEM=CYLINDRICAL

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Cylindrical

Defining a spherical coordinate system

A spherical coordinate system is shown in Figure 2.2.5–1(c). The local axes are =radial,

=circumferential, =meridional.

Input File Usage: *ORIENTATION, NAME=name, SYSTEM=SPHERICAL

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: select any method,

and click OK: Spherical

Methods for defining a coordinate system

You can define a coordinate system by specifying the locations of points a, b, and c directly; by specifying

the locations of points a, b, and c relative to global node numbers; by specifying the locations of points

a, b, and c relative to local node numbers; by specifying an offset from another coordinate system; or by

specifying two lines in the coordinate system.

Defining a coordinate system by specifying the locations of points a, b, and c directly

You can specify the coordinates of points a, b, and c directly. These coordinates should be appropriate

to the system chosen. This method is the default.

You can define a rectangular Cartesian coordinate system by specifying three points

(a, b, and c) that lie on the - plane, as shown in Figure 2.2.5–1(a). Point c is the origin of the system,

point a must lie on the -axis, and point b must lie on the - plane. Although not necessary, it is

intuitive to select point b such that it is on or near the local -axis.

Alternatively in Abaqus/Standard you can define a rectangular Cartesian coordinate system

by specifying three points (a, b, and c) that lie on the - plane, as shown in

Figure 2.2.5–1(d). Point c is the origin of the system, point a must lie on the -axis, and point b must

lie on the - plane. Although not necessary, it is intuitive to select point b such that it is on or near

the local -axis.

For rectangular coordinate systems the default location of the origin (point c) is the global origin.

You define a cylindrical coordinate system by giving the two points, a and b, on the polar axis of

the cylindrical system, as shown in Figure 2.2.5–1(b).

You define a spherical coordinate system by giving the center of the sphere, a, and point b on the

polar axis, as shown in Figure 2.2.5–1(c).

To define a spatially varying local coordinate system directly on solid continuum and shell elements,

you can specify the coordinates of points a and b on an element-by-element basis using a distribution.

2.2.5–5

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Using a distribution to define the coordinates of the optional point c is not currently supported. See

“Distribution definition,” Section 2.8.1.

Input File Usage: *ORIENTATION, NAME=name, DEFINITION=COORDINATES

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS, Method: 3 points

Defining a coordinate system by giving global node numbers for points a, b, and c

You can locate points a, b, and c at nodes by specifying three global node numbers. For a rectangular

coordinate system the default location of the origin (point c) is the global origin.

Input File Usage: *ORIENTATION, NAME=name, DEFINITION=NODES

Abaqus/CAE Usage: You cannot define a coordinate system by giving global node numbers in

Abaqus/CAE.

Defining a coordinate system by giving local node numbers for points a, b, and c

You can locate points a, b, and c by specifying the local node numbers of an element. Local node

numbers refer to the order in which nodes are specified in the element connectivity. For example, local

node number 2 corresponds to the second node specified for the element definition. This definition

method allows for variation of the local coordinate system on an element-by-element basis with a single

orientation definition. For example, if local node number 2 is given as the location of point c and local

node number 3 is given as the location of point a, the local -direction is defined to be parallel to the

(2, 3) side of the element. By default, the origin (point c) of the local coordinate system is the first node

of the element (local node number 1).

Input File Usage: *ORIENTATION, NAME=name, DEFINITION=OFFSET TO NODES

Abaqus/CAE Usage: You cannot define a coordinate system by giving local node numbers in

Abaqus/CAE.

Defining a coordinate system by giving an offset from another coordinate system

You can define a coordinate system by specifying an offset from an existing coordinate system.

Input File Usage: You cannot define a coordinate system by giving an offset from another

coordinate system in the input file.

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: Offset from CSYS

Defining a coordinate system by giving two edges

You can define a coordinate system by specifying two edges. The first edge defines the X- or R-axis,

and the X–Y or plane passes through the second.

Input File Usage: You cannot define a coordinate system by giving two edges in the input file.

Abaqus/CAE Usage: Any module: Tools→Datum: Type: CSYS: 2 lines

2.2.5–6

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Defining local material directions for anisotropic hyperelastic materials

Whenmodeling anisotropic hyperelastic materials with an invariant-based formulation (“Invariant-based

formulation” in “Anisotropic hyperelastic behavior,” Section 22.5.3) you must define the local

directions that characterize each family of fibers. These directions need not be orthogonal in the initial

configuration. You can specify these local directions with respect to an orthogonal orientation system

at a material point. Up to three local directions can be specified as part of the definition of a local

orientation system. The local directions can be output as field variables to the output database (see

“Output” in “Anisotropic hyperelastic behavior,” Section 22.5.3).

Input File Usage: Use the following option to define an orthogonal system and N local directions

with respect to that system to identify the preferred directions of an anisotropic

hyperelastic material:

*ORIENTATION, LOCAL DIRECTIONS=N

Abaqus/CAE Usage: Local material directions cannot be defined in Abaqus/CAE.

Defining yarn directions in the reference configuration for a fabric material

In general, the yarn directions in a fabric material may not be orthogonal to each other in the reference

configuration (see “Fabric material behavior,” Section 23.4.1). You can specify these local directions

with respect to the in-plane axes of an orthogonal orientation system at a material point. Both the local

directions and the orthogonal system are defined together as a single orientation definition. If the local

directions are not specified, these directions are assumed to match the in-plane axes of the orthogonal

system defined. The local direction may not remain orthogonal with deformation. Abaqus updates the

local directions with deformation and computes the nominal strains along these directions and the angle

between them (the fabric shear strain). The constitutive behavior for the fabric defines the nominal

stresses in the local system in terms of the fabric strain. The local directions can be output as field

variables to the output database (see “Output” in “Fabric material behavior,” Section 23.4.1).

Input File Usage: Use the following option to define an orthogonal system and the local

directions with respect to that system to identify the yarn directions in the

reference configuration:

*ORIENTATION, LOCAL DIRECTIONS=2

Abaqus/CAE Usage: Yarn directions for fabric materials cannot be defined in Abaqus/CAE.

Defining a local coordinate system in Abaqus/Standard using a user subroutine

In some cases the simplest way to specify a local system is by means of a user subroutine. User subroutine

ORIENT is provided in Abaqus/Standard. In this case the user subroutine is called each time that an

orientation definition is needed. In a model defined in terms of an assembly of part instances, the local

directions defined by user subroutine ORIENT must be defined relative to the coordinate system of the

assembly.

Input File Usage: *ORIENTATION, NAME=name, SYSTEM=USER

2.2.5–7

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Abaqus/CAE Usage: You can enter the name of an orientation defined in user subroutine ORIENT
whenever a user-defined orientation is allowed.

Multiple references to an orientation definition

Because the orientation is independent of the material definition and they can both be referenced in any

element property definition, the ability to describe complex structural components (such as laminated

composite shells) is quite general and straightforward to use.

An orientation definition can be used as often as needed and with different material or element type

definitions; for example, it can be used for different layers of a shell where the orientation is the same.

Large-displacement considerations

In large-displacement analysis a user-defined orientation rotates with the average rigid bodymotion of the

material point, the rigid body when the orientation is used with ROTARYI elements, the first node of the

joint in JOINTC elements, the pipeline edge for pipe-soil interaction elements, the appropriate surface for

contact in Abaqus/Standard, or the reference node when the orientation is used with coupling constraints.

However, when an orientation is defined for spring, dashpot, or gasket elements in Abaqus/Standard, the

local directions always remain fixed in space.

Because the material directions rotate with the average rigid body motion at a material point, using

anisotropic elasticity to model a material that is not truly a continuum can give significant errors if shear

deformation is large. For example, an individual fiber in a reinforcing belt of a tire can shear relatively

easily with respect to fibers in other directions. The fibers rotate with the actual deformation of the

material point and not with the average rigid body motion. In this case the anisotropic behavior is better

modeled with rebars or as a fabric material. The fabric material model in Abaqus/Explicit tracks the

current yarn directions as local directions with respect to the orthogonal coordinate system.

Use with two-dimensional solid elements

When a user-defined orientation is used with two-dimensional solid elements such as plane stress, plane

strain, or torsionless axisymmetric elements, the orientation must redefine only the X- and Y-directions:

the third direction must remain unchanged (Z-direction for plane strain and plane stress elements,

-direction for axisymmetric elements). When a user-defined orientation is used with axisymmetric

elements with twist, all three directions can be redefined. For axisymmetric elements, including the

CGAX and CAXA families of elements, the global 1-, 2-, and 3-directions are the radial, axial, and

hoop directions, respectively. Cylindrical or spherical orientations may be appropriate for axisymmetric

elements only if the local -direction is in the global 3-, or hoop, direction.

Use with shell, membrane, or gasket elements or contact surfaces

When a user-defined orientation is used with shell, membrane, or gasket elements or with contact

surfaces, Abaqus first rotates and then projects the orientation system onto the element or contact

surface using the algorithm described in this section.

2.2.5–8

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Abaqus first rotates (through the additional rotation angle) the user-defined local coordinate system

about the specified rotation axis. If you do not specify a rotation axis or an additional angle, Abaqus

will by default use the local 1-axis and a rotation of 0°. After the rotation, Abaqus follows a cyclic

permutation (1, 2, 3) of the axes and projects the axis following the axis for additional rotation onto

the contact surface or onto the surface of the element to form the local material 1-direction (or the local

material 2-direction for gaskets). The remaining material direction is then defined by the cross product

of the element normal and the projected direction. Thus, for example:

1. If you choose the user-defined 1-axis as the axis for additional rotation, Abaqus projects the 2-axis

onto the element or contact surface. This will be local direction 1 for contact surfaces, shells, and

membranes and local direction 2 for gaskets.

2. Abaqus takes the positive element or contact surface normal as the local 3-direction for contact

surfaces, shells, and membranes and the local 1-direction for gaskets.

3. Abaqus computes the local 2-direction (3-direction for gaskets) by taking the cross product of the

element or contact surface normal and the local 1-direction (2-direction for gaskets), such that the

three local axes form an orthonormal, right-handed local coordinate system.

When the axis for additional rotation points in a direction that is opposite to the element or contact surface

normal, the local 2-direction (3-direction for gaskets) is reversed with respect to the corresponding user-

defined axis; see Figure 2.2.5–3. This does not apply in the case of an orientation used to define rebars;

see below.

S = user-defined directionsx
z

y

3

21

4 3

21

4

normal defined by
local orientation
definition is opposite
to element normal

orientation used
by Abaqus

S1 S1S2

S2

n

Figure 2.2.5–3 The local 3-direction (1-direction for gaskets) will

be in the same direction as the element or contact surface normal.

As an example, the orientation of the spiral-wound layer of the cylindrical shell shown in

Figure 2.2.5–4 would be given by defining a cylindrical coordinate system and then specifying the

rotation axis as the 1-axis and giving the rotation angle (in degrees). The local 1- and 2-directions for

material property specification and material calculations are then those indicated in the figure.

2.2.5–9

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

αZ

X

2

1 Y

α

Figure 2.2.5–4 Spiral-wound cylindrical shell layer: material orientation example.

The projected directions are most easily understood when the axis for additional rotation is

approximately perpendicular to the element or contact surface.

To define a spatially varying local coordinate system directly on solid continuum and shell elements,

as well as membrane elements in Abaqus/Standard, you can specify the additional angle of rotation on

an element-by-element basis using a distribution. See “Distribution definition,” Section 2.8.1.

Defining rebars in shell, membrane, and surface elements

The orientation of skew rebars in shell, membrane, and surface elements can be defined relative to a

user-defined orientation (see “Defining reinforcement,” Section 2.2.3). In this case the local coordinate

system is calculated as follows:

1. The local 1-direction follows a cyclic permutation of the additional rotation direction; for example,

if you choose the user-defined 1-axis as the axis for additional rotation, Abaqus projects the 2-axis

onto the element. This will be the local 1-direction.

2. The axis for additional rotation is made orthogonal to the element to create the local 3-direction.

This local 3-direction need not be in the same direction as the element normal; in fact it will be

in the opposite direction when the dot product of the axis for additional rotation and the element

normal is negative.

3. Abaqus computes the local 2-direction by taking the cross product of the local 3-direction and the

local 1-direction, such that the three local axes form an orthonormal, right-handed local coordinate

system.

Since the local 3-direction may be opposite to the element normal, the definition of rebars is independent

of the element connectivity.

2.2.5–10

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Special considerations when defining orientations on contact surfaces in Abaqus/Standard

When a user-defined orientation is used to define the local tangent directions on a surface of a

three-dimensional contact pair in Abaqus/Standard (see “Contact formulations in Abaqus/Standard,”

Section 38.1.1), you cannot define points a and b by giving local node numbers (see Figure 2.2.5–1).

For geometrically nonlinear analysis the local tangent directions of a contact pair rotate with the

surface on which the directions were defined initially. These rotated local tangent directions are further

rotated to ensure that the normal vector, computed using the cross product of the rotated local tangent

directions, corresponds to the normal vector on the master surface when the slave node comes into

contact.

Arbitrary local tangent directions can be defined for a “line”-type slave surface defined on three-

dimensional beam, truss, or pipe elements. When this surface comes into contact with the master surface

during a large-displacement analysis, the local tangent directions are projected onto the master surface.

Use with laminated shells

There are two ways in which a user-defined orientation can be used in the section definition of a laminated

shell. In each case the name referenced in the shell section definition is the name of the user-defined

orientation.

The first is to associate the user-defined orientation with the entire composite shell section definition.

Then each layer’s orientation angle can be given relative to this section orientation (or the default shell

coordinate directions if no section orientation is used). The angle is given as an additional rotation about

the shell normal after the orientation directions have been projected onto the shell surface. Section forces

(available only from Abaqus/Standard) are given in the local system specified for the section.

The second is to specify the name of each layer’s orientation separately; this method allows different

orientation definitions to be referenced for the different layers. Section forces and strains are still reported

in the local orientation defined for the entire section (or the default shell coordinate directions if no section

orientation is used). The individual layer orientations are used for material calculations and for output

of stress and strain.

See “Using a shell section integrated during the analysis to define the section behavior,”

Section 29.6.5, and “Using a general shell section to define the section behavior,” Section 29.6.6, for

more information.

Use with laminated three-dimensional solid elements

When a user-defined orientation is used with composite solid elements (available only in

Abaqus/Standard), one of the local directions must be identified as the axis for additional rotation.

There are two ways in which this orientation can be used with a composite solid section definition to

specify the material orientation for individual layers. In each case the name referenced in the solid

section definition is the name of the user-defined orientation.

The first is to associate the user-defined orientationwith the entire composite solid section definition.

Then each layer’s orientation angle can be given relative to this section orientation. The angle is given

as an additional rotation about the local direction defined as the axis for additional rotation.

2.2.5–11

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

The second is to specify the name of each layer’s orientation separately; this method allows different

orientation definitions to be referenced for the different layers. (In this case any user-defined orientation

associated with the entire solid section will be ignored.)

See “Defining the element’s section properties” in “Solid (continuum) elements,” Section 28.1.1,

for more information.

Use with pipe-soil interaction elements

An arbitrary user-defined orientation can be defined for pipe-soil interaction elements (available only in

Abaqus/Standard). In a large-displacement analysis the local orientation system rotates with the rigid

body motion of the underlying pipeline. In a small-displacement analysis the local system is defined by

the initial geometry of the PSI element and remains fixed in space during the analysis.

Use with beam, frame, and truss elements

See “Beam element cross-section orientation,” Section 29.3.4, for information on defining local material

directions for beams, frames, or trusses.

Use with the fabric material model

The fill and the warp yarn directions in the fabric plane are allowed to rotate with respect to each other

under shear deformations (“Fabric material behavior,” Section 23.4.1). The current yarn directions are

tracked with respect to the orthogonal coordinate system that also rotates with the material.

Use with the jointed material model

When a user-defined orientation is used to define a joint system orientation for the jointed material

model available in Abaqus/Standard (“Jointed material model,” Section 23.5.1), only the local coordinate

system need be defined. It is assumed that the first direction is the direction normal to the plane of the

joint and the other directions are in the plane of the joint. An additional axis of rotation cannot be used.

Use with rotary inertia and connector elements

A user-defined orientation must be used to define the local directions for certain connection types used

to define connector elements (see “Connection-type library,” Section 31.1.5).

A user-defined orientation can be used with SPRING1, SPRING2, DASHPOT1, DASHPOT2,

JOINTC, JOINT2D, JOINT3D, and ROTARYI elements to provide a local system for defining the

direction of action of such elements. Points a, b, and c (see Figure 2.2.5–1) cannot be defined by giving

local node numbers when the orientation is used for these elements. If you do not specify an axis for

additional rotation, the local 1-direction with no additional rotation will be chosen as the default.

Use with the kinematic coupling constraint

User-defined orientations can be used in Abaqus/Standard to define the local coordinate systems in

which constraint directions are specified for a kinematic coupling constraint (see “Kinematic coupling

2.2.5–12

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

constraints,” Section 35.2.3). In this case you cannot define points a, b, and c by giving local node

numbers (see Figure 2.2.5–1).

Use with surface-based coupling constraints

User-defined orientations can be used to define the local coordinate systems in which surface-based

coupling constraint directions are specified (see “Coupling constraints,” Section 35.3.2). In this case

you cannot define points a, b, and c by giving local node numbers (see Figure 2.2.5–1).

Use with inertia relief

A user-defined orientation can be used in Abaqus/Standard to define a local system of directions along

which the inertia relief loads are computed (see “Inertia relief,” Section 11.1.1). In this case you cannot

define points a, b, and c by giving local node numbers (see Figure 2.2.5–1).

Use with distributed general traction, shear traction, and general edge loads

User-defined orientations can be used in Abaqus to define the local coordinate systems in which the

loading directions for distributed general tractions, shear tractions, and general edge loads are specified.

See “Distributed loads,” Section 34.4.3.

Orientations defined with distributions

Spatially varying local coordinate systems (for material definitions, material calculations, and output)

defined with a distribution can be applied only to solid continuum, membrane (in Abaqus/Standard),

and shell elements. See “Solid (continuum) elements,” Section 28.1.1; “Membrane elements,”

Section 29.1.1; “Using a shell section integrated during the analysis to define the section behavior,”

Section 29.6.5; and “Using a general shell section to define the section behavior,” Section 29.6.6.

Output

When a user-defined orientation is used in an element section definition, the stress, the strain, and the

element section force components are output in the local system.

For a fabric material the output of the regular material point tensors such as stress and strain are given

in an orthogonal coordinate system even when the local yarn directions are non-orthogonal. However,

the nominal fabric stress SFABRIC and the nominal fabric strain EFABRIC are also available for output

(see “Fabric material behavior,” Section 23.4.1).

This use of a local system is indicated by a footnote in the printed output tables from

Abaqus/Standard. An orientation used with the jointed material model does not affect the output.

When a user-defined orientation is used in Abaqus/Standard with kinematic or distributing coupling

constraints, the local system is indicated in the analysis input file processor output tables.

Local coordinate systems are written automatically to the output database with the exception of

systems defined by specifying points a and b relative to local or global node numbers or systems defined

through a user subroutine. Any additional rotations specified are ignored.

2.2.5–13

Abaqus Version 6.6 ID:

Printed on:

ORIENTATIONS

Material directions are written automatically to the output database. They can also be written to the

Abaqus/Standard results file (with at least one output variable specified; see “Output of local directions

to the results file” in “Output to the data and results files,” Section 4.1.2). The material directions can be

visualized in Abaqus/CAE by selecting Plot→Material Orientations in the Visualization module.

2.2.5–14

Abaqus Version 6.6 ID:

Printed on:

SURFACE DEFINITION

2.3 Surface definition

• “Surfaces: overview,” Section 2.3.1

• “Element-based surface definition,” Section 2.3.2

• “Node-based surface definition,” Section 2.3.3

• “Analytical rigid surface definition,” Section 2.3.4

• “Eulerian surface definition,” Section 2.3.5

• “Operating on surfaces,” Section 2.3.6

2.3–1

Abaqus Version 6.6 ID:

Printed on:

SURFACES: OVERVIEW

2.3.1 SURFACES: OVERVIEW

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Element-based surface definition,” Section 2.3.2

• “Node-based surface definition,” Section 2.3.3

• “Analytical rigid surface definition,” Section 2.3.4

• “Eulerian surface definition,” Section 2.3.5

• “Operating on surfaces,” Section 2.3.6

• “Integrated output section definition,” Section 2.5.1

• “Acoustic, shock, and coupled acoustic-structural analysis,” Section 6.10.1

• “Distributed loads,” Section 34.4.3

• “Prescribed assembly loads,” Section 34.5.1

• “Mesh tie constraints,” Section 35.3.1

• “Coupling constraints,” Section 35.3.2

• “Shell-to-solid coupling,” Section 35.3.3

• “Contact interaction analysis: overview,” Section 36.1.1

• “Defining tied contact in Abaqus/Standard,” Section 36.3.7

• “Cavity radiation,” Section 41.1.1

Overview

In Abaqus surfaces:

• can be used to define contact and interactions, including acoustic-structural interactions;

• can define regions used to prescribe distributed surface loads;

• can be used to tie dissimilar meshes together;

• can define cavities used for a cavity radiation analysis in Abaqus/Standard;

• can define pre-tensioned sections used in prescribing assembly loads in Abaqus/Standard;

• can define sections used for tracking the average motion of a surface in Abaqus/Explicit;

• can define sections for output quantities such as the total force transmitted through a surface;

• are geometric entities that have an area associated with them but have zero volume;

• have an identifiable orientation defined by their normals;

• are defined by specifying nodes or node sets, an analytic curve or surface, an Eulerian material

instance, or element faces, edges, or ends; and

• can be deformable, rigid, or partially deformable and partially rigid.

2.3.1–1

Abaqus Version 6.6 ID:

Printed on:

SURFACES: OVERVIEW

This section describes the general rules that apply when creating surfaces in Abaqus.

Why use surfaces?

Surfaces can be used to model the interaction of two or more distinct bodies in a mechanical, acoustic,

coupled acoustic-structural, coupled thermal-mechanical, coupled thermal-electrical-structural, thermal,

coupled thermal-electrical, or cavity radiation analysis. A rigid surface can be used to represent a body

that is much stiffer than the rest of the model in a mechanical or coupled thermal-mechanical analysis,

with the limitation that no heat can be transferred to the rigid body. In acoustic-structural analysis,

surfaces can be used to define impedance boundary conditions, including first-order conditions for

modeling acoustic radiation.

Surfaces can be used to define a region on which a distributed surface load is prescribed; this

can facilitate user input of distributed surface loads for complex models. In addition, surfaces can be

used to define multi-point or coupling constraints. Surfaces can also define pre-tension sections used in

prescribing assembly loads in Abaqus/Standard.

Finally, surfaces can be used to define sections to obtain output of accumulated quantities;

this provides a “free body diagram” output, allowing analyses of “force-flow” through a statically

indeterminate structure.

The following types of surfaces can be defined in Abaqus:

• Element-based surfaces are defined on the faces, edges, or ends of elements. The elements can be

deformable or rigid, leading to a surface that is deformable or rigid. When some of the deformable

elements underlying a surface are part of a rigid body, the surface will become partially deformable

and partially rigid.

In Abaqus/Explicit a default element-based surface that includes all bodies in the model is

provided for use with the general contact algorithm.

• Node-based surfaces are defined on nodes and, hence, are by definition discontinuous. A user-

defined area can be associated with each node on the surface.

• Analytical surfaces are defined directly in geometric terms and are always rigid.

• Eulerian material surfaces are defined on material instances in an Eulerian section. These surfaces

are available in Abaqus/Explicit for use with the general contact algorithm.

Element-based surfaces contain more intrinsic information than either node-based surfaces or

analytical rigid surfaces. When an element-based surface is used in a mechanical contact analysis,

Abaqus can associate a surface area with each node and can calculate the contact stress acting on the

surface. In contrast, Abaqus may not be able to calculate accurate contact stresses when a node-based

surface (“Node-based surface definition,” Section 2.3.3) is used because the actual area associated

with each node may not be correct. In addition, when a surface formed by shell, membrane, or rigid

elements is used, Abaqus can consider the thickness and possibly the offset of the reference surface of

these elements in some applications that refer to surfaces. For example, these thicknesses are accounted

for by all contact algorithms available in Abaqus/Explicit and by the surface-to-surface, small-sliding

contact formulation in Abaqus/Standard.

Contact between two node-based surfaces or a node-based surface with itself is not allowed;

contact between two analytical rigid surfaces is not allowed. Contact between two rigid surfaces defined

2.3.1–2

Abaqus Version 6.6 ID:

Printed on:

SURFACES: OVERVIEW

using rigid elements is not allowed in Abaqus/Standard and is allowed only with penalty contact in

Abaqus/Explicit.

Surface definitions cannot change from step to step; however, new surfaces can be defined upon

restart.

Internal surfaces created by Abaqus/CAE

In Abaqus/CAE many modeling operations are performed by picking geometry with the mouse. For

example, a contact pair can be defined by picking faces on geometric part instances. Each such face

must be translated into a surface in the input file. Such a surface is assigned a name by Abaqus/CAE and

is marked as internal. These internal surfaces can be viewed using display groups in the Visualization

module of Abaqus/CAE (see Chapter 78, “Using display groups to display subsets of your model,” of

the Abaqus/CAE User’s Guide).

Input File Usage: *SURFACE, NAME=surface_name, INTERNAL

Restrictions on surfaces

Refer to the subsequent sections on the different surface types available in Abaqus for details on the

general restrictions that apply to all surface definitions of a given type. In addition, some features

in Abaqus that use surfaces impose other restrictions on surface characteristics. These limitations are

discussed in the following sections:

• “Integrated output section definition,” Section 2.5.1

• “Distributed loads,” Section 34.4.3

• “Mesh tie constraints,” Section 35.3.1

• “Coupling constraints,” Section 35.3.2

• “Shell-to-solid coupling,” Section 35.3.3

• “Contact interaction analysis: overview,” Section 36.1.1

• “Defining contact pairs in Abaqus/Standard,” Section 36.3.1

• “Defining general contact interactions in Abaqus/Explicit,” Section 36.4.1

• “Defining contact pairs in Abaqus/Explicit,” Section 36.5.1

In models that are defined in terms of an assembly of part instances, all surfaces must belong to a

part, part instance, or the assembly. All of the general restrictions on surfaces still apply in such models.

Additional rules are given in “Defining an assembly,” Section 2.10.1.

2.3.1–3

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

2.3.2 ELEMENT-BASED SURFACE DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Surfaces: overview,” Section 2.3.1

• “Integrated output section definition,” Section 2.5.1

• “Distributed loads,” Section 34.4.3

• “Prescribed assembly loads,” Section 34.5.1

• “Mesh tie constraints,” Section 35.3.1

• “Coupling constraints,” Section 35.3.2

• “Shell-to-solid coupling,” Section 35.3.3

• “Contact interaction analysis: overview,” Section 36.1.1

• “Cavity radiation,” Section 41.1.1

• *SURFACE

• “What is a surface?,” Section 73.2.3 of the Abaqus/CAE User’s Guide

Overview

An element-based surface:

• can be defined on solid, structural, rigid, surface, gasket, or acoustic elements;

• can be deformable or rigid;

• can be defined on any combination of elements in many cases;

• can be defined on the exterior of any body; and

• can be defined on the interior of any body that is modeled with continuum, shell, membrane, surface,

beam, pipe, truss, or rigid elements (e.g., to define a cross-section through a body) either by simply

cutting the body with a plane or by identifying the elements and the corresponding interior facets.

For details about defining node-based surfaces, see “Node-based surface definition,” Section 2.3.3.

For details about defining analytical rigid surfaces, see “Analytical rigid surface definition,”

Section 2.3.4. For details about defining surfaces using Boolean combinations of existing surfaces, see

“Operating on surfaces,” Section 2.3.6.

Defining element-based surfaces

You must assign a name to all element-based surfaces; this name can be used with various features to

define a contact model, a surface-based load, or a surface-based constraint. In addition, you must specify

the region of your model on which the surface is defined. In an input file you can define element-based

surfaces on element faces, edges, or ends. In Abaqus/CAE you can define element-based surfaces on

2.3.2–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

geometric or element faces, edges, or ends. The methods for defining surfaces depend on the underlying

element type and are discussed later in this section.

In an input file you need only specify an element number or element set name and all exposed

element faces of these elements (or “contact edges” of beam, pipe, and truss elements) will be included

in the surface. Optionally(and the only available method in Abaqus/CAE), you can specify individual

faces, edges, or ends, which allows you direct control over which faces, edges, or ends are to be included

in the surface.

For general contact in Abaqus/Explicit the surface perimeter edges are generated automatically

from the surface facets for use in edge-to-edge contact constraints; you can specify that geometric

feature edges should be included as well (see “Defining general contact interactions in Abaqus/Explicit,”

Section 36.4.1, and “Assigning surface properties for general contact in Abaqus/Explicit,” Section 36.4.2,

for more information).

Input File Usage: *SURFACE, NAME=surface_name, TYPE=ELEMENT (default)

An element number or element set name is specified as the first entry of each

data line. Optionally, an element face, edge, or end identifier can be specified

as the second entry on a data line. The face and edge identifiers used in Abaqus

are discussed later in this section.

Multiple data lines can be used to define a surface. For example, SURF_1 can

be specified by the following input:

*SURFACE, NAME=SURF_1, TYPE=ELEMENT
ELSET_1,
ELSET_2, S2

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name

General restrictions on element-based surfaces

Elements defining a single surface must satisfy the following rules, regardless of how the surface is used

in Abaqus:

• Two-dimensional, axisymmetric, and three-dimensional elements cannot be mixed in the same

surface definition.

• In Abaqus/Standard deformable elements cannot be combined with rigid elements to define a single

surface, but can be combined with other deformable elements that are part of a rigid body (see

“Rigid body definition,” Section 2.4.1).

• The following element types cannot be mixed with other element types in the same surface

definition:

– Coupled thermal-electrical-structural elements

– Coupled temperature-displacement elements

– Heat transfer elements

– Pore pressure elements

2.3.2–2

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

– Coupled thermal-electrical elements

– Acoustic finite or infinite elements

• The axisymmetric solid Fourier elements with nonlinear, asymmetric deformation (CAXA

elements) cannot form element-based surfaces.

Surface discretization

For element-based surfaces Abaqus uses a faceted geometry defined by the finite element mesh as the

surface definition. The surface in a coarse finite element model may not be a very good approximation

for contact modeling if the physical surface is curved. Therefore, sufficient mesh refinement must be

used to ensure that the faceted surface is a reasonable approximation of the curved physical surface.

Alternatively, some curved surface geometries may be more effectively modeled with analytical rigid

surfaces (see “Analytical rigid surface definition,” Section 2.3.4).

Creating surfaces on solid, continuum shell, and cohesive elements

There are three ways to define the facets of an element-based surface on solid, continuum shell, and

cohesive elements:

1. by instructing Abaqus to generate the “free surface” from the exposed faces of elements,

2. by specifying the particular faces for each element, and

3. in Abaqus/Explicit by instructing Abaqus to generate an interior surface from element faces that are

not exposed (i.e., not part of the “free surface” of the model).

The automatic free surface generation approach is the simplest method of defining exterior surfaces on

solid elements. Specifying the element faces gives you exact control over which element faces (any

combination of exterior and interior faces) form the surface. Automatic generation of an interior surface

is the simplest method of defining interior surfaces on solid elements (interior surfaces can be useful for

modeling surface erosion due to element failure).

It is possible to use all three approaches in the same surface definition when creating a single surface.

Generating the free surface automatically

You can define the facets of a surface by specifying a series of elements. The faces of these elements

that are on the exterior (free) surface of the model are included in the surface definition.

When the free surface generation method is used to define surfaces, the specified elements can be a

mixture of continuum and structural elements.

Multi-point constraints (“General multi-point constraints,” Section 35.2.2) involving nodes

on exposed surfaces are not taken into account during free surface generation, which can result

in faces that are not on the exterior of a body being included in surface definitions. For example,

the nodes of the elements in element set REFINED shown in Figure 2.3.2–1 are used in linear,

mesh-refinement constraints. The surfaces generated with and without multi-point constraints are

shown in Figure 2.3.2–1.

2.3.2–3

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

with MPCs:

 without MPCs:

element set "REFINED"

⇒

element set "REFINED"

⇒

resulting surface "SURF"

resulting surface "SURF"

Surface SURF generated by
specifying element set REFINED

Figure 2.3.2–1 Effect of multi-point constraints on automatic surface generation.

Input File Usage: *SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set,

For example, if the name of the shaded element set in Figure 2.3.2–2 is ESETA,
the surface named ASURF is specified by

*SURFACE, NAME=ASURF, TYPE=ELEMENT
ESETA,

Abaqus/CAE Usage: The automatic free surface generation method is not supported in Abaqus/CAE.

Special treatment of cohesive elements for automatic free surface generation

The definition of exposed faces of elements for the purpose of automatic free surface generation has the

following unique aspects regarding cohesive elements:

• Faces of non-cohesive elements along an interface of shared nodes with cohesive elements are

considered exposed.

• The top and bottom faces of all cohesive elements are considered exposed; side faces of cohesive

elements are never considered exposed.

See “Modeling with cohesive elements,” Section 32.5.3, for examples of surfaces on or near cohesive

elements.

2.3.2–4

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

perimeter

automatically generated surface

FEM model

user-specified element set

⇒

Figure 2.3.2–2 Automatic free surface generation.

Creating surface facets by specifying solid, continuum shell, and cohesive element faces

You can define the facets of a surface by identifying the element faces that should be included in the

surface definition.

Input File Usage: *SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or set, face identifier

Element face numbers are defined in Part VI, “Elements.” Table 2.3.2–1

contains a list of valid face identifiers for all solid, continuum shell, and

cohesive elements. The face identifier can refer to individual elements or to

entire element sets. When you specify the element faces to define surfaces, the

specified elements cannot be a mixture of continuum and structural elements;

however, each data line of the surface definition can refer to different element

types.

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick faces in viewport

Generating an interior surface automatically

In Abaqus/Explicit you can define the facets of a surface on the interior of a solid element mesh. The

faces of the specified elements that are not on the exterior (free) surface of the model will be included

in the surface definition. For example, interior surfaces are used with the general contact algorithm

in Abaqus/Explicit for modeling surface erosion due to element failure (see “Defining general contact

interactions in Abaqus/Explicit,” Section 36.4.1).

2.3.2–5

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

Table 2.3.2–1 Surface definition face identifier labels for solid, continuum shell, and cohesive elements.

Elements Face Labels

DCCAX2(D) SPOS, SNEG

CPEG3(H)(T)

CPS3(T)

CPE3(H)(T)

CAX3(H)(T)

CGAX3(H)

AC2D3

ACAX3

DC2D3(E)

DCAX3(E)

CPEG6(M)(H)(T)

CPS6M(T)

CPE6(M)(H)(T)

CAX6(M)(H)(T)

CGAX6(M)(H)(T)

AC2D6

ACAX6

DC2D6(E)

DCAX6(E)

S1, S2, S3

CGAX4(R)(H)(T)

CPEG4(H)(I)(R)(T)

CPS4(I)(R)(T)

CPE4(H)(I)(R)(T)(P)

CAX4(H)(I)(R)(T)(P)

C3D4(H)(T)

AC2D4(R)

ACAX4(R)

AC3D4

DC2D4(E)

DCAX4(E)

DC3D4(E)

DCC2D4(D)

COH2D4

CGAX8(R)(H)

CPEG8(R)(H)(T)

CPS8(R)(T)

CPE8(H)(R)(T)(P)

CAX8(R)(H)(T)(P)

C3D10(M)(H)(I)(T)

AC2D8

ACAX8

AC3D10

DC2D8(E)

DCAX8(E)

DC3D10(E)

DCCAX4(D)

COHAX4

S1, S2, S3, S4

C3D6(H)(T)

AC3D6

CCL9(H)

DC3D6(E)

SC6R

C3D15(H)(V)

AC3D15

CCL18(H)

DC3D15(E)

COH3D6

S1, S2, S3, S4, S5

C3D8(H)(I)(R)(T)(P)

C3D27(R)(H)

AC3D8(R)

CCL12(H)

DC3D8(E)

DCC3D8(D)

SC8R

C3D20(H)(R)(T)(P)

AC3D20

CCL24(R)(H)

DC3D20(E)

COH3D8

S1, S2, S3, S4, S5, S6

2.3.2–6

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

The automatic generation of an interior surface is equivalent to constructing a surface consisting of

all faces of the elements and then subtracting the free surfaces of those elements. Shell elements, beam

elements, pipe elements, membrane elements, etc. are ignored since they do not have any interior faces

by definition.

Multi-point constraints are not taken into account when generating interior surfaces. This can result

in faces that are on the interior of a body being excluded from the surface definition.

Input File Usage: *SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, INTERIOR

For example, if the name of the shaded element set in Figure 2.3.2–3 is ESETA,
the surface named ASURFINTR (the elements in the figure have been reduced

in size to differentiate faces that share the same nodes) is specified by

*SURFACE, NAME=ASURFINTR, TYPE=ELEMENT
ESETA, INTERIOR

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, Type: Mesh; pick element faces or

edges from an interior surface

You can use the selection tools to select from an interior entity of a model; see

“Selecting interior surfaces,” Section 6.2.12 of the Abaqus/CAE User’s Guide.

surface ASURFINTR
drawn with solid lines

FEM model

user-specified element set

⇒

Figure 2.3.2–3 Automatic interior surface generation.

2.3.2–7

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

Creating surfaces on structural, surface, and rigid elements

There are five ways to define surfaces on structural, surface, and rigid elements:

1. You can create a single-sided surface with a well-defined orientation by indicating either the top or

bottom surface of each specified element.

2. You can create a double-sided surface by specifying only the elements and letting Abaqus generate

the “free surface” from the exposed faces.

3. You can create an edge-based surface.

4. You can create a cross-section surface on the ends of beam, pipe, and truss elements.

5. You can create a three-dimensional curve-type surface along the length of beam, pipe, and truss

elements by specifying only the elements and letting Abaqus generate the “free surface.”

It is possible to use any or all of the above approaches in the same surface definition as long as it

makes sense in the use of that surface with other features in Abaqus. Table 2.3.2–2 contains a list of

valid face and edge identifiers for structural, surface, and rigid elements.

Table 2.3.2–2 Surface definition face and edge identifier labels

for structural, surface, and rigid elements.

Elements Face and Edge
Labels

SAX1

MAX1

MGAX1

M3D6

M3D9(R)

MCL9

DS8

DSAX2

SFMAX2

SFMGAX2

SFM3D4(R)

SFM3D8(R)

SFMCL6

SAX2(T)

MAX2

MGAX2

M3D8(R)

MCL6

DS4

DSAX1

SFMAX1

SFMGAX1

SFM3D3

SFM3D6

SFMCL9

RAX2

SPOS, SNEG

B21(H)

B23(H)

PIPE21(H)

T2D2(H)(T)

B22(H) (Abaqus/Standard)

PIPE22(H)

T2D3(H)(T)

END1, END2

2.3.2–8

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

Elements Face and Edge
Labels

B22 (Abaqus/Explicit)

B32(H)(OS)

ELBOW31(B)(C)

PIPE31(H)

T3D2(H)(T)

B31(H)(OS)

B33(H)

ELBOW32

PIPE32(H)

T3D3(H)(T)

END1, END2; must use

node-based surfaces with

the contact pair algorithm

in Abaqus/Explicit.

STRI3

S3(R)(S)

M3D3

STRI65

R3D3

SPOS, SNEG,

E1, E2, E3

ACIN2D2

ACINAX2

ACIN2D3

ACINAX3

SPOS

E1, E2

S4(R)(S)(W)(5)

S9R5

M3D4(R)

S8R5(T)

R3D4

SPOS, SNEG,

E1, E2, E3, E4

ACIN3D3 ACIN3D6 SPOS

E1, E2, E3

ACIN3D4 ACIN3D8 SPOS

E1, E2, E3, E4

Defining single-sided surfaces

You can define a single-sided surface on the positive or negative face of structural, surface, or rigid

elements. The positive face is defined as the one in the direction of the positive element normal, and the

negative face is defined as the one in the direction opposite to the element normal. The definition of the

element normal for all elements is given in Part VI, “Elements.”

You must ensure that all of the specified elements have their normals oriented consistently. If they

are oriented as shown in Figure 2.3.2–4, the surface normals will reverse direction as the surface is

traversed and improper results may occur when the surface is used with features requiring an orientation

such as distributed surface loads. Further, an error message will be issued and the analysis will terminate

if this condition is detected for surfaces used with mesh tie constraints in Abaqus/Standard or with contact

pairs. To correct the surface orientations in this figure, two separate element sets with different face

identifiers should be used.

Input File Usage: Use the following option to define a surface on the positive face of a structural,

surface, or rigid element:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, SPOS

Use the following option to define a surface on the negative face of a structural,

surface, or rigid element:

2.3.2–9

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

element set SHELL

element normals

Figure 2.3.2–4 Inconsistent orientation of structural element

normals can result in an invalid surface.

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, SNEG

For example, single-sided surfaces on the positive faces of the elements in

element set SHELL can be defined using input similar to

*SURFACE, NAME=BSURF, TYPE=ELEMENT
SHELL, SPOS

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick face in viewport, click mouse button 2,

and specify the side of the selected face

Defining double-sided surfaces

You can create double-sided surface facets on three-dimensional shell, membrane, surface, and rigid

elements using the automatic surface facet generation approach (i.e., specifying only the element

numbers or sets). Some applications that refer to surfaces do not allow the use of double-sided surfaces:

examples include contact pairs in Abaqus/Standard and features requiring an oriented surface such

as distributed surface loads. When double-sided surfaces can be used, they are often preferred to

single-sided surfaces. In some applications, such as when defining the contact domain for general

contact, it does not matter whether single- or double-sided surfaces are used.

When double-sided surfaces are used with contact pairs in Abaqus/Explicit, the normals of all the

underlying elements do not need to have a consistent positive orientation: Abaqus/Explicit will define

the contact surface such that its facets have consistent normals, even if the underlying elements do not

have consistent normals. The facet normals will be the same as the element normals if the element

normals are all consistent; otherwise, an arbitrary positive orientation is chosen for the surface. The

positive orientation is significant only with respect to the sign of the contact pressure output variable

for the contact pair algorithm, CPRESS (see “Output” in “Defining contact pairs in Abaqus/Explicit,”

Section 36.5.1).

2.3.2–10

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

Although contact is enforced unconditionally on both sides of a surface when self-contact is used

with contact pairs, contact is enforced on both sides of a surface used in two-body contact only when that

surface is double-sided (if allowed). The use of single-sided surfaces with contact pairs is sometimes

desirable: the resolution of large initial overclosures in contact pairs is more robust with single-sided

surfaces than with double-sided surfaces (see “Adjusting initial surface positions and specifying initial

clearances for contact pairs in Abaqus/Explicit,” Section 36.5.4). However, single-sided contact is

generally more limiting than double-sided contact; it may cause an analysis to fail due to excessive

element distortion or not enforce the contact conditions realistically if a slave node unexpectedly moves

behind a master surface. This condition can occur, for example, when large deformations or rigid-body

motions are present or due to complex tool shapes in a forming analysis.

Input File Usage: Use the following option to define a double-sided surface on three-dimensional

shell, membrane, surface, or rigid elements in Abaqus/Explicit:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set,

For example, double-sided surfaces on the elements in element set SHELL can

be defined using input similar to

*SURFACE, NAME=BSURF, TYPE=ELEMENT
SHELL,

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick face in viewport, click mouse

button 2, and choose Both sides

Defining edge-based surfaces

You can define an edge-based surface on three-dimensional shell, membrane, surface, or rigid elements

by specifying the individual edges. Alternatively, you can specify that all the edges of the elements that

are on the exterior (free) surface of the model are used to form the surface; this method cannot be used

to define edge-based surfaces that are in the interior of the model. It is possible to use both methods in

the same surface definition when creating a single surface.

Input File Usage: Use the following option to specify the individual edges that form the surface:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, edge identifier

The individual edge identifiers used in Abaqus are listed in Table 2.3.2–2.

Use the following option to specify that all the edges of the elements that are

on the exterior (free) surface of the model are used to form the surface:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, EDGE

For example, if the shaded element set in Figure 2.3.2–2 is composed of three-

dimensional shell elements and is named ESETA, the surface named ESURF
could be specified by the following input:

2.3.2–11

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

*SURFACE, NAME=ESURF, TYPE=ELEMENT
ESETA, EDGE

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick edges in viewport

In Abaqus/CAE you can specify that all the edges of the elements that are on

the exterior (free) surface of the model are used to form the surface by directly

picking all the free edges in the viewport.

Defining a surface over the cross-section at the ends of beam, pipe, and truss elements

To define a surface over the cross-section of beam, pipe, or truss elements, you must specify the end

on which the surface is defined. Surfaces created on the ends of these elements can be used only for

integrated output request (see “Integrated output in Abaqus/Explicit” in “Output to the output database,”

Section 4.1.3) and integrated output section (see “Integrated output section definition,” Section 2.5.1)

definitions.

Input File Usage: Use the following option to define a surface over the cross-section of a beam,

pipe, or truss element:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, END1 or END2

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick three-dimensional wire region in viewport, click

mouse button 2, and choose End (Magenta) or End (Yellow)

Defining a surface along the length of three-dimensional beam, pipe, and truss elements

You cannot specify the faces to define a surface along the length of three-dimensional beams, pipes, or

trusses because their element connectivity cannot define a unique element or surface normal. Instead,

you must specify that Abaqus should generate a surface for these elements. Therefore, the use of surfaces

along the length of these elements is restricted.

In Abaqus/Standard element-based surfaces created along the length of three-dimensional beam,

pipe, or truss elements can be used in tie constraints but can be used only as slave surfaces in contact

interactions. However, there are several advantages to using an element-based surface rather than a

node-based surface when modeling contact in Abaqus/Standard with three-dimensional beams, pipes, or

trusses:

1. The default local tangent directions are parallel and orthogonal to the element axis.

2. Abaqus/Standard calculates the contact results as contact forces per unit length rather than just

contact forces.

3. It can be easier to define an element-based surface than a node-based surface.

In Abaqus/Standard a surface definition is not allowed for cases where three or more three-dimensional

beams, pipes, or trusses are joined at a common node because of the lack of uniquely defined element

tangents.

2.3.2–12

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

In Abaqus/Explicit element-based surfaces created along the length of three-dimensional beam,

pipe, or truss elements can be used only with the general contact algorithm or tie constraints. To

define contact for these elements using the contact pair algorithm, the nodes forming the beam, pipe,

or truss elements can be included in a node-based surface definition (“Node-based surface definition,”

Section 2.3.3) and a contact pair can be defined for this node-based surface and a non-node-based

surface.

Surfaces along the length of three-dimensional beam, pipe, or truss elements cannot be used to

prescribe a distributed surface load since the loading direction is not unique.

Input File Usage: Use the following option to define a surface along the length of a

three-dimensional beam, pipe, or truss element:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set,

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick three-dimensional wire region in viewport,

click mouse button 2, and choose Circumferential

Surfaces along the length of two-dimensional beam, pipe, and truss elements

Surfaces created along the length of two-dimensional beam, pipe, and truss elements can be used as

master surfaces in a contact pair simulation because the underlying elements have unique element

normals that lie in the plane of the model. These surfaces can also be used to prescribe distributed

surface loads.

Shell, membrane, or rigid element thickness and shell offset

Some applications that refer to surfaces will account for underlying element thicknesses and any offset of

the midsurface relative to the reference surface for surfaces based on shell, membrane, or rigid elements.

For example, all of the contact algorithms available in Abaqus/Explicit can account for these effects. Of

the contact algorithms available in Abaqus/Standard, only the surface-to-surface small-sliding contact

formulation can account for these effects. See the following sections for additional details on applications

that can account for surface thickness and offset:

• “Mesh tie constraints,” Section 35.3.1

• “Contact formulations in Abaqus/Standard,” Section 38.1.1

• “Assigning surface properties for general contact in Abaqus/Explicit,” Section 36.4.2

• “Assigning surface properties for contact pairs in Abaqus/Explicit,” Section 36.5.2

Creating surfaces on gasket elements

When surfaces are defined on gasket elements, automatic surface facet generation cannot be used because

only the top and bottom element faces can be used to create surfaces (see “Gasket elements: overview,”

Section 32.6.1). Abaqus/Standard cannot create surfaces on gasket link elements since the top and bottom

surfaces are each reduced to a single node. For other gasket elements you must specify the top and

bottom surfaces directly. The positive face of the element is in the thickness direction of the element.

2.3.2–13

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

The definition of the thickness direction of all gasket elements is given in “Defining the gasket element’s

initial geometry,” Section 32.6.4. The negative face is defined as the face in the direction opposite to the

thickness direction of the element.

Input File Usage: Use the following option to define a surface on the positive face of a gasket

element:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, SPOS

Use the following option to define a surface on the negative face of a gasket

element:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

element number or element set, SNEG

For example, single-sided surfaces on the positive faces of the elements in

element set GASKET can be defined using input similar to

*SURFACE, NAME=BSURF, TYPE=ELEMENT
GASKET, SPOS

Abaqus/CAE Usage: Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
Name: surface_name, pick top or bottom faces in viewport

Surfaces on three-dimensional gasket line elements

There are several advantages to using an element-based surface rather than a node-based surface when

modeling contact in Abaqus/Standard with three-dimensional gasket line elements:

1. The local tangent directions are parallel and orthogonal to the gasket line element, which is useful

for output purposes and for anisotropic friction definition.

2. Abaqus/Standard calculates the contact results as contact forces per unit length rather than just

contact forces.

Surfaces created on three-dimensional gasket line elements can be used only as slave surfaces because

Abaqus/Standard cannot form unique normals for these surfaces.

Creating interior cross-section surfaces

To study the “force-flow” through various paths in a model, you must create interior surfaces that cut

through one or more components (similar to a cross-section) so that you can request integrated output

of the total force transmitted across these surfaces (see “Requesting integrated output for “force-flow”

studies” in “Output to the output database,” Section 4.1.3). Abaqus provides a simple method to create

such an interior surface over the element facets, edges, or ends by cutting through a region of the model

with a plane. The region can be identified using one or more element sets. If no element sets are specified,

the region consists of the whole model. The cutting plane is defined by specifying the coordinates of a

point on the plane and a vector normal to the plane. Alternatively, the cutting plane can be defined by

specifying the global node numbers of point a on the plane and point b that lies off the cutting plane with

the normal determined as the vector from point a to point b. Abaqus then automatically forms a surface

2.3.2–14

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

close to the specified cutting plane by selecting the element facets, edges, or ends of the continuum

solid, shell, membrane, surface, beam, pipe, truss, or rigid elements in the selected region. The surface

generated in this manner is an approximation for the cutting plane.

Multi-point mesh constraints are ignored while generating the interior surface based on the cutting

plane; therefore, the result may be a surface that is not continuous if these constraints stitch disjointed

meshes together in a region that is cut by the cutting plane. When the cutting plane intersects a beam,

pipe, or truss element, the entire element is shown in the Visualization module of Abaqus/CAE as being

part of the surface. However, if this surface is used for integrated output, only the element nodal forces

from the element end that lies on the positive side as defined by the normal to the cutting plane are

included in the integrated output. Point mass and rotary elements, connector elements, spot welds, and

spring elements will not be part of the generated surface even if they are cut by the cutting plane.

Input File Usage: Use the following option to define the cutting surface by specifying coordinates

of a point on the plane and a vector normal to the plane:

*SURFACE, NAME=surface_name, TYPE=CUTTING SURFACE,

DEFINITION=COORDINATES

Use the following option to define the cutting surface by specifying global node

numbers of points a and b:

*SURFACE, NAME=surface_name, TYPE=CUTTING SURFACE,

DEFINITION=NODES

Abaqus/CAE Usage: Interior cross-section surfaces are not supported in Abaqus/CAE.

Whole-model free surface in an Abaqus/Explicit input file

In an Abaqus/Explicit input file you can create a surface containing the exposed faces of all elements (and

“contact edges” of beam, pipe, and truss elements) in the model except cohesive elements by specifying

a blank element set name and a blank face identifier. This “free” surface of the model can be used as

the base surface for the cropping and combining operations; without modifications this surface is similar

to the default all-inclusive surface commonly used in general contact (see “Defining general contact

interactions in Abaqus/Explicit,” Section 36.4.1).

Input File Usage: *SURFACE, NAME=surface_name, TYPE=ELEMENT

,

Abaqus/CAE Usage: The whole-model automatic free surface generation method is not supported in

Abaqus/CAE.

Trimming the perimeter of an open surface

An “open” surface is one that has ends in two dimensions or an outside edge in three dimensions. The

ends of a two-dimensional surface and the edge of a three-dimensional surface are called the surface’s

“perimeter.” Since Abaqus allows a surface to be defined as only a part of the surface of a body, it may

have a perimeter even though it is defined on a closed body. Abaqus automatically performs surface

“trimming” on solid element meshes. You can change the default setting when a surface is created,

providing some basic control over the extent of surfaces.

2.3.2–15

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

Surface trimming:

• is a recursive procedure that removes undesirable convex corners near the perimeter of an open

surface (see the example below for details);

• has no effect on closed surfaces (ones with no ends or edges);

• is performed automatically, unless the surface is used as a master surface in a finite-sliding

simulation in Abaqus/Standard or the surface is used with the contact pair algorithm in

Abaqus/Explicit;

• can be used only for external surfaces on solid element meshes (either specified surfaces or

automatically generated free surfaces); and

• has no effect on surfaces used with the contact pair algorithm in Abaqus/Explicit.

Input File Usage: Use the following option to suppress automatic surface trimming:

*SURFACE, TYPE=ELEMENT, NAME=surface_name, TRIM=NO

Abaqus/CAE Usage: Automatic surface trimming cannot be suppressed in Abaqus/CAE.

The effect of surface trimming

The effect of surface trimming is best explained by means of an example. Figure 2.3.2–5 illustrates the

effect of trimming for two different surfaces defined on the same simple two-dimensional mesh.

In Case I the surface definition consists of a single layer of elements on the perimeter of the model.

Using automatic surface facet generation, the resulting default surface (curve) includes the vertical

element faces A and B since these faces lie on the perimeter of the model. Trimming the default surface

created in Case I eliminates faces A and B since their presence results in the two spurious corners near

the perimeter of the curve.

Abaqus uses a special criterion in deciding to remove faces A and B from the original open curve.

A face is removed if one of its end nodes is an endpoint and either of the following is true: another face

node is a node on an element corner belonging to the curve or the face normal differs by more than 30°

from the normal of an adjacent face also belonging to the curve. To be a node on an element corner

belonging to the curve means to be a node on two different faces of the same element, both of which

are part of the curve. The face removal criterion is applied recursively to the curve definition until all

corners on or near the perimeter of the curve have been removed. This procedure is generalized for

three-dimensional surface definitions.

In Case II in Figure 2.3.2–5 trimming would not result in the elimination of faces A and B because

neither of the endpoints of these two faces meets the criterion described above.

Why Abaqus will, by default, trim most surfaces

Trimming of surfaces used for application of distributed loads is usually desired since loads are normally

applied to specific sides of a body. Any surface that is used for application of a distributed load will, by

default, be trimmed.

In Abaqus/Standard trimming the slave surface in contact or interaction simulations results in more

accurate estimates of the contact pressures, heat fluxes, and electrical current densities along the perimeter

of the surface. Any surface that is used as a slave surface in a contact or interaction simulation will, by

default, be trimmed. If the slave surface is left untrimmed, the nodes at the corners of the surface will be

2.3.2–16

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

⇒

automatically generated surface
user-specified element set

⇒

A B

Case I

Case II

A B

automatically generated surface

trim

trim

Figure 2.3.2–5 Case I: Faces A and B are removed when trimming is done since one node of each of the

faces is an end node and the other is a corner node. Case II: Faces A and B are not removed when trimming

is done since one node of each of the faces is an end node but the other is not a corner node.

assigned additional contact area from the element faces around the corners that may never be involved

in the interaction between the surfaces. This additional contact area introduces errors into the estimates

2.3.2–17

Abaqus Version 6.6 ID:

Printed on:

DEFINING ELEMENT-BASED SURFACES

of the contact output variables at those nodes. Master surfaces in small-sliding simulations will, by

default, be trimmed; Abaqus/Standard will normally form a better approximate surface. However, master

surfaces in finite-sliding contact simulations will, by default, be left untrimmed, and they should extend

far enough away from all expected regions of contact. This practice protects against the possibility of

the slave surface nodes sliding off the master surface (see “Common difficulties associated with contact

modeling in Abaqus/Standard,” Section 39.1.2).

2.3.2–18

Abaqus Version 6.6 ID:

Printed on:

DEFINING NODE-BASED SURFACES

2.3.3 NODE-BASED SURFACE DEFINITION

Products: Abaqus/Standard Abaqus/Explicit

References

• “Surfaces: overview,” Section 2.3.1

• “Mesh tie constraints,” Section 35.3.1

• “Contact interaction analysis: overview,” Section 36.1.1

• *SURFACE

Overview

A node-based “surface”:

• can be used only as a “slave surface” in contact calculations;

• can be used as a “slave” or “master surface” in a surface-based tie constraint;

• is convenient in three-dimensional cases where Abaqus cannot construct a unique physical surface

on the elements, such as a pipe modeled with pipe elements contacting the ocean floor or cables

modeled with trusses contacting the ground after they break;

• should be used with caution or not at all if accurate contact stresses are needed or if heat will be

exchanged between the two surfaces;

• can be assigned a nonzero thickness for use with the general contact algorithm in Abaqus/Explicit;

• should not be used to model a shell or membrane surface if the thickness and midsurface offset need

to be considered in the problem;

• must either contain nodes that are all part of the same rigid body or not contain any nodes that are part

of a rigid body if the node-based surface is to be used in a penalty contact pair in Abaqus/Explicit;

• in Abaqus/Standard does not provide heat conduction between surfaces in fully coupled

temperature-displacement analysis or pore fluid flow between surfaces in coupled pore

pressure–displacement analysis;

• in Abaqus/Standard does not provide heat conduction and electrical conduction between surfaces

in a fully coupled thermal-electrical-structural analysis; and

• does not include circumferential friction when used with axisymmetric elements with twist (CGAX,

MGAX elements).

Alternatives to node-based surfaces are element-based surfaces (see “Element-based surface

definition,” Section 2.3.2) and, in the case of rigid surfaces, analytical rigid surfaces (see “Analytical

rigid surface definition,” Section 2.3.4). See “Operating on surfaces,” Section 2.3.6, for information on

defining surfaces using Boolean combinations of existing surfaces.

2.3.3–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING NODE-BASED SURFACES

Creating a node-based surface

You create a node-based surface by specifying the nodes or node sets that form the surface. You must

assign a name to the node-based surface; this name will be used when defining contact interactions that

involve the surface.

An optional associated area can be defined for each node. If no area is defined for a node and the

surface is defined in a contact pair, the area specified as part of the contact property definition is used. If

no area is specified as part of the contact property definition, a unit area is used.

In Abaqus/Explicit the area used in contact pair calculations for a node in a node-based surface

is always 1.0, regardless of the user-specified value. Therefore, the contact pressure output variable in

Abaqus/CAE should be interpreted as the contact force when a node-based surface is used for contact

pairs in Abaqus/Explicit.

In models that are defined in terms of an assembly of part instances, all surfaces must belong to a

part, part instance, or the assembly. Additional rules are given in “Defining an assembly,” Section 2.10.1.

When the nodes of shell and membrane elements are used in a node-based surface, the thickness

and midsurface offset of the shell or membrane at each node are not considered. However, a nonzero

thickness can be assigned to node-based surfaces when used with the general contact algorithm

in Abaqus/Explicit (see “Assigning surface properties for general contact in Abaqus/Explicit,”

Section 36.4.2, for more information).

Input File Usage: *SURFACE, NAME=name, TYPE=NODE

node number or node set, area

2.3.3–2

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

2.3.4 ANALYTICAL RIGID SURFACE DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Surfaces: overview,” Section 2.3.1

• “Contact interaction analysis: overview,” Section 36.1.1

• “RSURFU,” Section 1.1.16 of the Abaqus User Subroutines Reference Guide

• *RIGID BODY

• *SURFACE

Overview

An analytical rigid surface:

• can be two-dimensional or three-dimensional;

• must be defined as model data;

• can be used with the infinitesimal-sliding, small-sliding, or finite-sliding mechanical contact

formulations;

• should be oriented such that the analytical rigid surface’s outward normal points toward any body

it may contact; and

• is associated with a node, known as the rigid body reference node, whose motion governs the motion

of the surface.

What are analytical rigid surfaces and why use them?

Analytical rigid surfaces are geometric surfaces with profiles that can be described with straight and

curved line segments. These profiles can be swept along a generator vector or rotated about an axis to

form a three-dimensional surface. An analytical rigid surface is associated with a rigid body reference

node, whose motion governs the motion of the surface. An analytical rigid surface does not contribute

to the rigid body’s mass or inertia properties (see “Rigid body definition,” Section 2.4.1). The degrees

of freedom of the rigid body reference node become active only when the analytical surface is used in a

contact interaction or when an element (such as a spring element or a mass element) is connected to the

rigid body reference node.

Analytical rigid surfaces are always single-sided with their orientation specified through their

definition. Therefore, contact interaction is recognized only on the outer boundary of an analytical rigid

surface. To model contact on both sides of a thin structure, use an analytical rigid surface that wraps

around the boundary of the thin structure.

2.3.4–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

Advantages

Using analytical rigid surfaces instead of defining element-based rigid surfaces provides two important

advantages in contact modeling.

• Many curved geometries can be modeled exactly with analytical rigid surfaces because of the ability

to parameterize the surface with curved line segments. The result is a smoother surface description,

which can reduce contact noise and provide a better approximation to the physical contact constraint.

• Using analytical rigid surfaces instead of rigid surfaces formed by element faces may result in

decreased computational cost incurred by the contact algorithm.

The use of curved line segments instead of many linear facets will decrease the time spent in

contact tracking operations. Additional computational savings may be realized in three dimensions

because of the intrinsic two-dimensional descriptions of the analytical surfaces.

Disadvantages

There are also some disadvantages to using analytical rigid surfaces for contact modeling.

• An analytical rigid surface must always act as a master surface in a contact interaction. Therefore,

contact cannot be modeled between two analytical rigid surfaces.

• Contact forces and pressures cannot be contoured on an analytical rigid surface. However, contact

forces and pressures can be plotted on the slave surface.

• The use of a very large number (thousands) of segments to define an analytical rigid surface can

degrade performance. In most cases it is not necessary to use a large number of segments to define

an analytical rigid surface, because curved segment types are allowed. In rare cases in which a very

large number of segments would be necessary, the analysis may be more efficient if an element-

based rigid surface is used instead (see “Element-based surface definition,” Section 2.3.2).

• An analytical rigid surface does not contribute to the mass and rotary inertia properties of the rigid

body with which it is associated. Therefore, if the mass distribution on an analytical rigid surface

needs to be accounted for, equivalent mass and rotary inertia properties must be defined for the

rigid body by using MASS and ROTARYI elements, or a finite element discretization of the surface

should be used instead of an analytical rigid surface (see “Rigid body definition,” Section 2.4.1).

• In Abaqus/Explicit reaction force output for a rigid body containing an analytical rigid surface is

calculated only for constraints that are active at the reference node (e.g., constraints specified as

boundary conditions). If the net contact force on the rigid body corresponding to an unconstrained

degree of freedom is desired, it must be calculated from the rigid body’s acceleration and mass.

Creating an analytical rigid surface

You can define the following types of simple, two- or three-dimensional, geometric analytical surfaces:

• planar (two-dimensional) surfaces,

• three-dimensional cylindrical (swept) surfaces, and

• three-dimensional surfaces of revolution.

2.3.4–2

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

In Abaqus/Standard if none of these surfaces is adequate, you can define a more general analytical surface

with user subroutine RSURFU.
Analytical rigid surfaces are useful when the cross-sections of the surfaces can be represented by

straight and curved line segments. The curved segments can be either circular or parabolic arcs. In two-

dimensional simulations the line segments are defined in the global coordinate system of the deformable

model. In three-dimensional simulations a local, two-dimensional coordinate system must be created,

and the line segments are then defined in that system. The two standard types of three-dimensional

analytical rigid surfaces available are shown in Figure 2.3.4–1.

cylindrical surfacesurface of revolution

Figure 2.3.4–1 Examples of three-dimensional rigid surfaces.

You must indicate which type of analytical surface (planar, cylindrical, or revolution) is being

created and assign a name to the surface. In addition, you must define the analytical surface as part

of a rigid body by specifying the name of the analytical surface and the rigid body reference node that

will control the motion of the surface in a rigid body definition.

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an

assembly,” Section 2.10.1). A part can contain only one analytical surface. A part containing an

analytical surface definition cannot also contain elements.

Input File Usage: Use both of the following options to create an analytical rigid surface:

*SURFACE, TYPE=analytical_surface_type, NAME=name

*RIGID BODY, ANALYTICAL SURFACE=name, REF NODE=n

Abaqus/CAE Usage: Part module: Create Part: Name: analytical_rigid_part: select
Analytical rigid as the Type

Then do one of the following:

Anymodule except Sketch, Job, andVisualization: Tools→Surface→Create:
select analytical_rigid_part

Interaction module: Create Constraint: Rigid body: Analytical
Surface: Edit: select analytical_rigid_part

Interaction module: Create Interaction: any valid type: select

analytical_rigid_part as one of the regions involved in contact

2.3.4–3

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

Defining a surface profile

The surface profile is the collection of line segments defining the cross-section of the surface. The surface

type determines whether the profile is swept (cylindrical surfaces), revolved (surfaces of revolution), or,

in the two-dimensional case, used as is (planar surfaces).

You construct a profile by providing the endpoint of each line segment in the profile; the starting

point is always the endpoint of the previous segment, or, in the case of the first segment, the point specified

as the starting point. The center points of circular arcs must be given. Abaqus can define only arcs that

are less than 179.74°; thus, it will use the shorter arc defined by the data provided (use two adjacent arcs

to define a longer arc). For parabolic arcs you must give a third point that lies on the parabola and within

the arc.

Two-dimensional rigid surfaces

To define a planar rigid surface, specify the line segments forming the rigid surface’s profile in the global

coordinate system. If the analytical surface is being defined inside a part, specify the line segments in

the local part coordinate system.

Input File Usage: *SURFACE, TYPE=SEGMENTS, NAME=name

data lines to define the line segments forming the surface

For example, the definition of the two-dimensional rigid surface depicted in

Figure 2.3.4–2 is

*SURFACE, TYPE=SEGMENTS, NAME=BSURF
START, ,
CIRCL, , , ,
LINE, ,
CIRCL, , , ,

*RIGID BODY, ANALYTICAL SURFACE=BSURF, REF NODE=101

where and are the global coordinates of the points shown in Figure 2.3.4–2.

Abaqus/CAE Usage: Part module: Create Part: Name: analytical_rigid_part: select 2D Planar or
Axisymmetric as the Modeling Space and Analytical rigid as the Type

Three-dimensional cylindrical rigid surfaces

To define a cylindrical rigid surface in a model that is not defined in terms of an assembly of part

instances, specify the points a, b, and c shown in Figure 2.3.4–3 that define the local coordinate system.

Give the coordinates of these points—(), (), and ()—in the default global

coordinate system. As shown in Figure 2.3.4–3, point a defines the origin of the local system; point b

defines the local x-axis; and point c defines the generator vector, which is the negative local z-axis. If the

segment is not perpendicular to , Abaqus will automatically adjust point c within the plane defined

by points a, b, and c, such that they become perpendicular. The line segments forming the profile of the

rigid surface are defined in the local x–y plane. The three-dimensional surface is formed by sweeping

this profile along the generator vector. The resulting surface extends to infinity in both the positive and

negative directions of the generator vector.

2.3.4–4

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

ASURF

BSURF

r

101

rigid reference node

a

c

r

e

f

d b

Figure 2.3.4–2 Two-dimensional analytical rigid surface contacting a deformable body.

Start Line segment

Local y-axis

c

Local x-axis

b

a

n

n Outward
normal

Circular arc segment

Local z-axis

Generator
direction

Figure 2.3.4–3 Cylindrical rigid surface.

2.3.4–5

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

To define a cylindrical rigid surface within a part, specify the line segments forming the profile of

the rigid surface in the part coordinate system. For an analytical surface defined within a part (or part

instance), point a is located at the origin of the part coordinate system, point b is located on the part

x-axis, and point c is located on the negative part z-axis. If the segment is not perpendicular to ,

Abaqus will automatically adjust point c within the plane defined by points a, b, and c, such that they

become perpendicular. You cannot redefine this analytical surface coordinate system; instead, you can

position the surface in the model by giving positioning data when you instance the part (see “Defining

an assembly,” Section 2.10.1).

Input File Usage: *SURFACE, TYPE=CYLINDER, NAME=name

data lines to define the line segments forming the surface

For example, the following input, where and are points in the local

coordinate system, would define the rigid surface shown in Figure 2.3.4–3

in a model that is not defined in terms of an assembly of part instances (the

reference node is not shown in the figure):

*SURFACE, TYPE=CYLINDER, NAME=CSURF
, , , , ,
, ,

START, ,
LINE, ,
CIRCL, …
…

*RIGID BODY, ANALYTICAL SURFACE=CSURF, REF NODE=n

Leave the first two data lines blank to define a cylindrical rigid surface within

a part.

Abaqus/CAE Usage: Part module: Create Part: Name: analytical_rigid_part: select
3D as the Modeling Space, Analytical rigid as the Type, and
Extruded shell as the Base Feature

Three-dimensional surfaces of revolution

To define a rigid surface of revolution in a model that is not defined in terms of an assembly of part

instances, specify the two points a and b shown in Figure 2.3.4–4 that define the local coordinate system.

Give the coordinates of these points—() and ()—in the default global coordinate

system. As shown in Figure 2.3.4–4, point a defines the origin of the local system, and the vector from

a to b defines the local z-axis, which is the axis of a cylindrical coordinate system. The line segments

forming the profile of the surface of revolution are defined in the local r–z plane, where the local r-axis

aligns with the radial axis of the cylindrical coordinate system. The three-dimensional surface is formed

by revolving this profile about the axis of the cylindrical system, the local z-axis.

To define a rigid surface of revolution within a part, specify the line segments forming the cross-

section of the rigid surface in the local part coordinate system. For an analytical surface defined within a

2.3.4–6

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

local r

line segment

circular arc segment

n

a

b

local z

Start

n

Figure 2.3.4–4 Rigid surface of revolution.

part (or part instance), point a is located at the origin of the part coordinate system, the part x-axis aligns

with the radial axis of the cylindrical coordinate system, and point b is located on the part y-axis. You

cannot redefine this local axis; instead, you can position the surface in the model by giving positioning

data when you instance the part (see “Defining an assembly,” Section 2.10.1).

Input File Usage: *SURFACE, TYPE=REVOLUTION, NAME=name

data lines to define the line segments forming the surface

For example, the following input would define the rigid surface shown in

Figure 2.3.4–4 (the reference node is not shown in the figure):

*SURFACE, TYPE=REVOLUTION, NAME=REVSURF
, , , , ,

START, ,
LINE, …
CIRCL, …
…

2.3.4–7

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

*RIGID BODY, ANALYTICAL SURFACE=REVSURF,
REF NODE=999

Leave the first data line blank to define a rigid surface of revolution within a

part.

Abaqus/CAE Usage: Part module: Create Part: Name: analytical_rigid_part: select
3D as the Modeling Space, Analytical rigid as the Type, and
Revolved shell as the Base Feature

Defining the surface normals

The outward surface normal for analytical rigid surfaces is determined by the direction of the line

segments forming the profile of the surface. The sequence of line segments defines a vector along

the rigid surface from the starting point of the first segment to the ending point of the last segment.

The outward surface normal is created by taking the cross product of the vector , the unit normal

to the plane in which the surface is defined, and the vector , the tangent to the surface: .

Figure 2.3.4–5 shows the vector in the definition plane of an analytical rigid surface.

Start S

Line segment

Circular segments

Line segment

n

n

n
ne2

e1e3

Figure 2.3.4–5 Orientation of surface normals for a rigid surface.

The unit vector is defined such that , , and form a right-handed orthonormal coordinate system.

In-plane coordinate directions and depend on the type of analytical rigid surface being defined. For

two-dimensional analytical rigid surfaces they correspond to the global X- and Y-axes in planar models

and the r- and z-axes in axisymmetric models. For cylindrical rigid surfaces they correspond to the local

x- and y-axes, and for rigid surfaces of revolution they correspond to the local r- and z-axes. The outward

normals for a cylindrical rigid surface and rigid surface of revolution are shown in Figure 2.3.4–3 and

Figure 2.3.4–4, respectively.

2.3.4–8

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

If the line segments are specified in the wrong order, the surface normals of a rigid surface will

appear in exactly the opposite direction to what was intended. Such a mistake can be corrected only by

specifying the line segments in the opposite sequence.

Smoothing analytical rigid surfaces

In many cases it can be beneficial to smooth surfaces to more accurately represent the surface geometry.

In particular, it can be very difficult to obtain a converged solution in a finite-sliding Abaqus/Standard

simulation if the master surface does not have continuous normal and surface tangent vectors (see

“Contact formulations in Abaqus/Standard,” Section 38.1.1); therefore, it is important to smooth any

sharp corners on the master surface so that discontinuities in these vectors are eliminated.

By default, Abaqus does not smooth master surfaces that are analytical rigid surfaces. Smooth

transitions between adjacent line segments can always be created by manually inserting additional curved

line segments. Alternatively, smooth surfaces can be generated automatically by Abaqus. You specify

the radius of curvature, r, in the units of length used in the model, that Abaqus will use to construct a

smooth transition between any discontinuous line segments forming the rigid surface. The default value

of zero provides no smoothing of the surface.

The effect of a fillet radius on adjoining line segments and on adjoining line and circular arc

segments is illustrated in Figure 2.3.4–6.

OUTWARD
NORMAL

X-local

Y-local

STARTEND

fillet radius

Figure 2.3.4–6 Effect of fillet radius on an analytical rigid surface.

The sharp corners have been smoothed using the fillet radius so that the normal and tangent surface

vectors are continuous along the entire master surface. Any value r can be used in a model. However, if

2.3.4–9

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

r is greater than the length of either of the two adjacent segments, no smoothing will occur. Therefore,

a practical limit on the size of r is the length of the smallest line segment forming the surface.

Input File Usage: *SURFACE, TYPE=analytical_surface_type, NAME=name,

FILLET RADIUS=r

Abaqus/CAE Usage: When you create an analytical rigid part in Abaqus/CAE, you can create a

fillet radius between segments or join the segments using arcs. See “Sketching

simple objects,” Section 20.10 of the Abaqus/CAE User’s Guide, in the HTML

version of this guide.

Surface tangent conventions

Abaqus forms analytical rigid surfaces such that the first surface tangent, , is always along the direction

of the line segments forming the surface . The second surface tangent, , is defined such that the

outward surface normal and the two surface tangents form a right-handed orthonormal system, as shown

in Figure 2.3.4–7.

a. Two-dimensional cases

n

t1

b. Three-dimensional cases

n

t2

t1

Figure 2.3.4–7 Surface tangent and outward normal definitions for analytical rigid surfaces.

Creating an analytical rigid surface in a user subroutine

More complicated analytical rigid surfaces can be defined in Abaqus/Standard by user subroutine

RSURFU. Writing subroutine RSURFU to create a smooth surface is usually difficult, and convergence

problems are often caused by inadequate surface definition in this subroutine. When using RSURFU,
ensure that the outward surface normal and the two surface tangents form a right-handed orthonormal

system. In two-dimensional cases the second surface tangent is always (0, 0, −1). You must also ensure

that the surface is smooth in finite-sliding simulations and that the orientation of the rigid surface relative

to the deformable surface is reasonable (i.e., the rigid surface cannot be inside the deformable surface).

Input File Usage: *SURFACE, TYPE=USER, NAME=name

Abaqus/CAE Usage: User subroutine RSURFU is not supported in Abaqus/CAE.

2.3.4–10

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

Defining analytical rigid surfaces when drag chain or rigid surface elements are used

An alternative method of defining analytical rigid surfaces must be used to define the surface of the

seabed when three-dimensional drag chain elements (available only in Abaqus/Standard) are used. This

alternative method must also be used when rigid surface elements are used; these elements are required

only when CAXA or SAXA elements contact a rigid surface. For this method the rigid surface must be

flat and parallel to the x–y plane.

In a model defined in terms of an assembly of part instances, the rigid surface definition must appear

inside the same part definition as the drag chain or rigid surface elements.

You must indicate which type of analytical surface (planar, cylindrical, or user-defined) is being

created. Cylindrical rigid surfaces are not valid for use with CAXA or SAXA elements. In addition, you

must assign a name to the surface and identify the rigid body reference node that will control the motion

of the surface.

Input File Usage: *RIGID SURFACE, TYPE=surface_type, NAME=name, REF NODE=n

Abaqus/CAE Usage: Drag chain and rigid surface elements are not supported in Abaqus/CAE.

Two-dimensional rigid surfaces

To define a planar rigid surface, define the line segments forming the rigid surface’s cross-section in

the global coordinate system. You must provide the endpoint of each line segment; the starting point is

always the endpoint of the previous segment, or, in the case of the first segment, the point specified as the

starting point. The centers of the circular arcs, points c and f in Figure 2.3.4–2, must be given. Abaqus

can define only arcs that are less than, but not equal to, 179.74°; thus, it will use the shorter arc defined

by the data provided (use two adjacent arcs to define a longer arc). For parabolic arcs you must give a

third point that lies on the parabola and within the arc.

Input File Usage: *RIGID SURFACE, TYPE=SEGMENTS, NAME=name, REF NODE=n

START, starting point X- or r-coordinate, starting point Y- or z-coordinate

data lines to define the endpoints of the line segments forming the surface,

beginning with the word LINE (for straight line segments), CIRCL (for

circular arc segments), or PARAB (for parabolic arc segments)

Abaqus/CAE Usage: Drag chain and rigid surface elements are not supported in Abaqus/CAE.

Three-dimensional cylindrical rigid surfaces

To define a cylindrical rigid surface, specify the points a, b, and c shown in Figure 2.3.4–3 that define

the local coordinate system. Give the coordinates of these points—(), (), and

()—in the default global coordinate system. As shown in Figure 2.3.4–3, point a defines the

origin of the local system; point b defines the local x-axis; and point c defines the generator vector,

which is the negative local z-axis. The line segments forming the cross-section of the rigid surface are

defined in the local x–y plane. The three-dimensional surface is formed by sweeping this cross-section

along the generator vector. The resulting surface extends to infinity in both the positive and negative

directions of the generator vector.

2.3.4–11

Abaqus Version 6.6 ID:

Printed on:

DEFINING ANALYTICAL RIGID SURFACES

Input File Usage: *RIGID SURFACE, TYPE=CYLINDER, NAME=name, REF NODE=n

START, starting point x-coordinate, starting point y-coordinate

data lines to define the endpoints of the line segments forming the surface,

beginning with the word LINE (for straight line segments), CIRCL (for

circular arc segments), or PARAB (for parabolic arc segments)

Abaqus/CAE Usage: Drag chain and rigid surface elements are not supported in Abaqus/CAE.

2.3.4–12

Abaqus Version 6.6 ID:

Printed on:

DEFINING EULERIAN SURFACES

2.3.5 EULERIAN SURFACE DEFINITION

Product: Abaqus/Explicit

References

• “Surfaces: overview,” Section 2.3.1

• “Eulerian analysis,” Section 14.1.1

• “Contact interaction analysis: overview,” Section 36.1.1

• *EULERIAN SECTION

• *SURFACE

Overview

An Eulerian surface:

• must be three-dimensional;

• must be defined as model data;

• can be used with the general contact algorithm in Abaqus/Explicit; and

• is created by specifying the name of an Eulerian material instance.

What are Eulerian surfaces and why use them?

An Eulerian surface represents the exterior surface of a particular Eulerian material instance in an

Abaqus/Explicit analysis. Since Eulerian materials flow through the Eulerian mesh, their surfaces

cannot be defined by a simple list of element faces. Instead, these surfaces often lie within Eulerian

elements and must be computed in each time increment using element volume fraction data.

You can use Eulerian surfaces to define specific interactions with Lagrangian surfaces in

Abaqus/Explicit’s general contact algorithm. Once defined, you can reference Eulerian surfaces in

inclusions, exclusions, and interaction definitions. You cannot combine or crop Eulerian surfaces.

Eulerian surface definitions are not required for the use of Eulerian-Lagrangian contact. If you

specify “automatic” contact for the entire model, the exterior surface of all Eulerian materials will

automatically be considered for contact.

Advantages of creating Eulerian surfaces

You can use Eulerian surfaces to:

• Assign contact properties for contact interactions involving a particular Eulerian material instance.

• Exclude interactions between Eulerian materials and Lagrangian bodies that are unlikely to make

contact, simplifying the contact problem and reducing computational cost.

2.3.5–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING EULERIAN SURFACES

Creating an Eulerian surface

To create an Eulerian surface, you must specify the name of a material instance that is present in the

model. The material instance names are defined as part of the Eulerian section (see “Eulerian elements,”

Section 32.14.1). Abaqus/Explicit calculates the exterior boundary of the specified material instance and

defines a surface corresponding to that boundary. The surface is recalculated in each time increment as

the material deforms.

Input File Usage: *SURFACE, TYPE=EULERIAN MATERIAL, NAME=name

material instance name,

2.3.5–2

Abaqus Version 6.6 ID:

Printed on:

OPERATING ON SURFACES

2.3.6 OPERATING ON SURFACES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Surfaces: overview,” Section 2.3.1

• “Coupling constraints,” Section 35.3.2

• “Mesh-independent fasteners,” Section 35.3.4

• “Defining general contact interactions in Abaqus/Explicit,” Section 36.4.1

• *SURFACE

Overview

Combined surfaces:

• are created by performing a Boolean operation (union, intersection, or difference) on existing

surfaces;

• can be formed from element-based or node-based surfaces;

• cannot be formed from Eulerian surfaces;

• can be used in the same way as other element-based or mode-based surfaces in Abaqus/Standard;

and

• cannot be used with contact pairs in Abaqus/Explicit (but can be used with general contact in

Abaqus/Explicit).

Cropped surfaces:

• are created by cropping an existing surface and keeping only that part of the surface that is enclosed

in a specified rectangular box;

• can be formed from element-based or node-based surfaces;

• cannot be formed from Eulerian surfaces;

• can be used in the same way as other element-based or mode-based surfaces in Abaqus/Standard;

and

• cannot be used with contact pairs in Abaqus/Explicit (but can be used with general contact in

Abaqus/Explicit).

Creating a combined surface

You must assign a name to the combined surface; this name can be used with other features that refer to

surfaces.

2.3.6–1

Abaqus Version 6.6 ID:

Printed on:

OPERATING ON SURFACES

In models that are defined in terms of an assembly of part instances, all surfaces must belong to

a part, part instance, or the assembly. Surfaces can be created at the part level and combined at the

assembly level. Additional rules are given in “Defining an assembly,” Section 2.10.1.

The surfaces being combined must be the same type; i.e., an element-based surface can be combined

with another element-based surface but not with a node-based surface. Combined surfaces can be used

to create another combined surface.

Union of existing surfaces

Any number of existing surfaces can be combined to create a new surface. If the surfaces being combined

are element-based surfaces, the new surface will also be an element-based surface and any overlap among

the surfaces will be merged. Similarly, if the surfaces being combined are node-based surfaces, the new

surface will be a node-based surface and any overlap among the surfaces will be merged.

Input File Usage: *SURFACE, NAME=name, COMBINE=UNION

list of surface names

Intersection or difference of existing surfaces

The intersection or difference of two existing surfaces can be used to create a new surface. The

difference operation subtracts the second surface from the first surface. When the intersection or

difference operations are performed on element-based surfaces, they act only on the facets. A warning

message is issued if the intersection operation results in an empty surface.

Input File Usage: Use the following option to create a new surface based on the intersection of

two existing surfaces:

*SURFACE, NAME=name, COMBINE=INTERSECTION

first surface name, second surface name

Use the following option to create a new surface based on the difference of two

existing surfaces:

*SURFACE, NAME=name, COMBINE=DIFFERENCE

first surface name, second surface name

Creating a cropped surface

You can create a new surface that will contain only those faces of an existing surface that have nodes

inside a specified cropping box. For a node-based surface the new surface will contain only those nodes

that are enclosed inside the cropping box. If the face has at least one node inside the box, the entire face

is accepted as valid. You must assign a name to the new surface and specify the name of the existing

surface from which the new surface is to be generated. Only one surface can be specified.

To define the location of the box, specify the coordinates of the lower corner of the box (,

,) and the coordinates of the opposite (upper) corner of the box (, ,). The

cutting box can be rotated about the lower corner (, ,) if an optional rotation is defined.

The coordinates of the two points, a and b, that define the rotation are given in the unrotated system.

2.3.6–2

Abaqus Version 6.6 ID:

Printed on:

OPERATING ON SURFACES

These points should be defined such that point a lies on the rotated X-axis and point b lies on the X–Y

plane and close to the Y-axis.

Input File Usage: *SURFACE, NAME=name, CROP

old_surface_name

, , , , ,

, , , , ,

For example, to crop the surface that contains all exposed faces in the model,

use the following input:

*SURFACE, TYPE=ELEMENT, NAME=entire_surface
,

*SURFACE, NAME=name, CROP
entire_surface

, , , , ,

, , , , ,

2.3.6–3

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

2.4 Rigid body definition

• “Rigid body definition,” Section 2.4.1

2.4–1

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

2.4.1 RIGID BODY DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Surfaces: overview,” Section 2.3.1

• “Element-based surface definition,” Section 2.3.2

• “Analytical rigid surface definition,” Section 2.3.4

• “Rigid elements,” Section 30.3.1

• *RIGID BODY

• “Defining rigid body constraints,” Section 15.15.2 of the Abaqus/CAE User’s Guide, in the HTML

version of this guide

Overview

A rigid body:

• can be two-dimensional planar, axisymmetric, or three-dimensional;

• is associated with a node, called the rigid body reference node, whose motion governs the motion

of the entire rigid body;

• can consist of nodes, elements, and surfaces;

• can act as a method of constraint;

• can be used with connector elements in multibody dynamic simulations;

• can be used to prescribe the motion of a rigid surface for contact modeling;

• can be computationally efficient and, in Abaqus/Explicit, does not affect the global time increment;

and

• can have temperature gradients or be isothermal in a fully coupled temperature-displacement

analysis where thermal interactions are considered.

What is a rigid body?

A rigid body is a collection of nodes, elements, and/or surfaces whose motion is governed by the motion

of a single node, called the rigid body reference node. The relative positions of the nodes and elements

that are part of the rigid body remain constant throughout a simulation. Therefore, the constituent

elements do not deform but can undergo large rigid body motions. The mass and inertia of a rigid body

can be calculated based on contributions from its elements or can be assigned specifically. Analytical

surfaces can also be made part of the rigid body, whereas any surfaces based on the nodes or elements

of a rigid body are associated automatically with the rigid body.

The motion of a rigid body can be prescribed by applying boundary conditions at the rigid body

reference node. Loads on a rigid body are generated from concentrated loads applied to nodes and

2.4.1–1

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

from distributed loads applied to elements that are part of the rigid body. Rigid bodies interact with the

remainder of the model in several ways. Rigid bodies can connect at the nodes to deformable elements,

and surfaces defined on rigid bodies can continue on these deformable elements, provided that compatible

element types are used. Rigid bodies can also be connected to other rigid bodies by connector elements

(see “Connectors: overview,” Section 31.1.1). Surfaces defined on rigid bodies can contact surfaces

defined on other bodies in the model.

Determining when to use a rigid body

Rigid bodies can be used to model very stiff components, either fixed or undergoing large motions. For

example, rigid bodies are ideally suited for modeling tooling (i.e., punch, die, drawbead, blank holder,

roller, etc.). They can also be used to model constraints between deformable components, and they

provide a convenient method of specifying certain contact interactions. Rigid bodies can be used with

connector elements to model a wide variety of multibody dynamic problems.

It may be useful to make parts of a model rigid for model verification purposes. For example, in

complex models elements far away from the particular region of interest could be included as part of a

rigid body, resulting in faster run times at the model development stage. When you are satisfied with the

model, you can remove the rigid body definitions and incorporate an accurate deformable finite element

representation throughout.

In multibody dynamic simulations rigid bodies are useful for many reasons. Although the motion

of the rigid body is governed by the six degrees of freedom at the reference node, rigid bodies allow

accurate representation of the geometry, mass, and rotary inertia of the rigid body. Furthermore, rigid

bodies provide accurate visualization and postprocessing of the model.

The principal advantage to representing portions of a model with rigid bodies rather than deformable

finite elements is computational efficiency. Element-level calculations are not performed for elements

that are part of a rigid body. Although some computational effort is required to update the motion of the

nodes of the rigid body and to assemble concentrated and distributed loads, the motion of the rigid body

is determined completely by a maximum of six degrees of freedom at the reference node.

Rigid bodies are particularly effective for modeling relatively stiff parts of a model in

Abaqus/Explicit for which tracking waves and stress distributions are not important. Element stable

time increment estimates in the stiff region can result in a very small global time increment. Since rigid

bodies and elements that are part of a rigid body do not affect the global time increment, using a rigid

body instead of a deformable finite element representation in a stiff region can result in a much larger

global time increment, without significantly affecting the overall accuracy of the solution.

Creating a rigid body

You must assign a rigid body reference node to the rigid body.

Input File Usage: *RIGID BODY, REF NODE=n

Abaqus/CAE Usage: Interaction module:

Tools→Reference Point: select a point to act as a reference point

Create Constraint: Rigid body: Point: Edit: select reference point region

2.4.1–2

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

The rigid body reference node

A rigid body reference node has both translational and rotational degrees of freedom and must be defined

for every rigid body. If the reference node has not been assigned coordinates, Abaqus will assign it the

coordinates of the global origin by default. Alternatively, you can specify that the reference node should

be placed at the center of mass of the rigid body. In fully coupled temperature-displacement analysis

where a rigid body is considered as isothermal, a single temperature degree of freedom describing the

temperature of the rigid body exists at the rigid body reference node. The rigid body reference node:

• can be connected to mass, rotary inertia, capacitance, or deformable elements;

• cannot be a rigid body reference node for another rigid body; and

• can have a temperature degree of freedom if the body is an isothermal rigid body.

Positioning the reference node at the center of mass

The specific location of the rigid body reference node relative to the rest of the rigid body or to its center of

mass is important if nonzero boundary conditions are to be applied to the rigid body or concentrated loads

are to be applied at the reference node. In many problems of rigid body dynamics, it may be desirable

to apply loads and boundary conditions to the rigid body at its center of mass. In addition, it may be

useful to monitor the configuration of the rigid body at its center of mass for output purposes. However,

it may be difficult to locate the center of mass a priori when the rigid body mass and inertia properties

(discussed below) contain contributions from a finite element discretization or a complex arrangement

of MASS and ROTARYI elements.

By default, the rigid body reference node will not be repositioned. You can specify that it should

be repositioned at the calculated center of mass. In this case if a MASS element is defined at the rigid

body reference node, the calculated center of mass used for repositioning includes all mass contributions

except the mass at the reference node. The MASS element is then repositioned at the center of mass and

included in the mass properties of the rigid body. If the only mass contribution to the rigid body is from

a MASS element defined at the rigid body reference node, the reference node will not be repositioned.

Input File Usage: Use the following option to indicate that the reference node should not be

repositioned (the default):

*RIGID BODY, REF NODE=n, POSITION=INPUT

Use the following option to specify that the rigid body reference node should

be repositioned at the calculated center of mass:

*RIGID BODY, REF NODE=n, POSITION=CENTER OF MASS

Abaqus/CAE Usage: Interaction module: Create Constraint: Rigid body: toggle Adjust
point to center of mass at start of analysis

The collection of nodes that constitute the rigid body

In addition to the rigid body reference node, rigid bodies consist of a collection of nodes that is generated

by assigning elements and nodes to the rigid body. These nodes provide a connection to other elements.

Nodes that are part of a rigid body are one of two types:

2.4.1–3

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

• pin nodes, which have only translational degrees of freedom associated with the rigid body, or

• tie nodes, which have both translational and rotational degrees of freedom associated with the rigid

body.

The rigid body node type is determined by the type of elements on the rigid body to which the node

is attached. You can also specify the node type when you assign nodes directly to a rigid body. For

pin nodes only the translational degrees of freedom are part of the rigid body, and the motion of these

degrees of freedom is constrained by the motion of the rigid body reference node. For tie nodes both

the translational and rotational degrees of freedom are part of the rigid body and are constrained by the

motion of the rigid body reference node.

The node type has important implications when the node is connected to rotary inertia elements,

deformable structural elements, or connector elements or when the node has concentrated moments or

follower loads applied to it. Rotary inertia elements and applied concentrated moments affect the rigid

body only when associated with a tie node. Rigid body connections to deformable elements always

involve the translational degrees of freedom; rigid body connections to deformable shell, beam, pipe,

and connector elements also involve the rotational degrees of freedom if the connection is at a tie node.

The behavior of the two types of connections is illustrated in Figure 2.4.1–1, which shows an octagonal

rigid body connected to two deformable shell elements through nodes at opposite ends subjected to an

applied rotational velocity.

initial configuration

Final configuration after counterclockwise rotation through 45

tie node pin node

o

Figure 2.4.1–1 Rigid body with tie node and pin node connections.

2.4.1–4

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

The shell elements are assumed to be stiff (negligible bending is shown in the figure). When the nodes

common to the rigid body and the shell elements are tie nodes, the rotation applied to the rigid body is

transmitted directly to the shell elements. When the common nodes are pin nodes, the rigid body rotation

is not transmitted directly to the shell elements, which can result in large relative motions between the

rigid body and the adjacent shell structure.

Assigning elements to a rigid body

To include elements in the rigid body definition, you specify the region of your model containing all of

the elements that are part of the rigid body. Elements in this region or nodes connected to the elements

in this region cannot be part of any other rigid body. Table 2.4.1–1 lists the continuum, structural, and

rigid element types that can be included in a rigid body and the respective node types generated in the

rigid body.

Table 2.4.1–1 List of valid elements that can be included in a rigid body

(* indicates all elements beginning with the preceding label).

Elements Nodal Degrees of
FreedomRigid Body

Geometry Generate Pin Nodes Generate Tie Nodes Pin
Nodes

Tie
Nodes

Planar

CPE3*, CPE4*,

CPE6*, CPE8*, CPS3,

CPS4*, CPS6*, CPS8*,

GK2D2, GKPS*,

GKPE*, R2D2, T2D2*

B21*, B22*, B23*,

FRAME2D, PIPE2*,

RB2D2

Axisymmetric

CAX3, CAX4*,

CAX6*, CAX8*,

GKAX*, MAX*,

RAX2

CGAX*, MGAX*,

SAX1, SAX2*

Three-

dimensional

C3D4*, C3D6*,

C3D8*, C3D10*,

C3D15*, C3D20*,

C3D27*, GK3D*,

M3D3, M3D4*, M3D6,

M3D8*, M3D9*,

SFM3D*, SFMAX*,

SFMGAX*, R3D3,

R3D4, T3D2*, CCL*,

MCL*, SFMCL*

B31*, B32*, B33*,

FRAME3D, PIPE*,

RB3D2, S3*, S4*, S8*,

S9*

2.4.1–5

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

When connector elements are included in the rigid body, the type of generated nodes depends on

whether the rotational degrees of freedom are active for their connection type. If connector elements that

activate material flow degree of freedom at nodes are included in the rigid body, the material and flow

through the rigid body as that degree of freedom is constrained to the motion of the rigid body.

The following elements cannot be declared as rigid:

• Acoustic elements

• Axisymmetric-asymmetric continuum and shell elements

• Coupled thermal-electrical elements

• Diffusive heat transfer/mass diffusion elements and forced convection/diffusion elements

• Eulerian elements

• Generalized plane strain elements

• Gasket elements with thickness-direction behavior

• Heat capacitance elements

• Inertial elements (mass and rotary inertia)

• Infinite elements

• Piezoelectric elements

• Special-purpose elements

• Substructures

• Thermal-electrical-structural elements

• User-defined elements

If elements of more than one type or section definition are part of a rigid body, the specified region

will contain elements with different section definitions. When continuum or structural elements are

assigned to a rigid body, they are no longer deformable and their motion is governed by the motion

of the rigid body reference node. Element stiffness calculations are not performed for these elements,

and they do not affect the global time increment in Abaqus/Explicit. However, the mass and inertia of

the rigid body includes contributions from these elements as calculated from their section and material

density definitions (see Part VI, “Elements”). Mass and rotary inertia elements, as well as point heat

capacitance elements, should not be included in the specified region. Contributions to a rigid body from

mass, rotary inertia, and heat capacitance elements are accounted for automatically when these elements

are connected to nodes that are part of the rigid body.

A list of nodes that are part of a rigid body is generated automatically when you assign elements to

a rigid body. The node list is constructed as a unique list including all the nodes that are connected to

elements in the specified region. Nodes in this list cannot be part of any other rigid body. The type of each

node, pin or tie, is determined by the type of elements on the rigid body to which it is connected. Shell,

beam, pipe, and rigid beam elements generate tie nodes; solid, membrane, truss, and rigid (other than

beam) elements generate pin nodes (see Table 2.4.1–1). For nodes that are connected to both elements

that generate pin nodes and elements that generate tie nodes, the common node is defined as the tie type.

2.4.1–6

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

All elements that are part of a rigid body must be of like geometry. Therefore, elements contained

in the specified region must be either planar, axisymmetric, or three-dimensional. The geometry of the

elements determines the geometry of the rigid body as shown in Table 2.4.1–1.

Input File Usage: Use the following option to assign elements to a rigid body:

*RIGID BODY, REF NODE=n, ELSET=name

Abaqus/CAE Usage: Interaction module: Create Constraint: Rigid body: Body
(elements): Edit: select body regions

Assigning nodes to a rigid body

To assign nodes directly to a rigid body, you specify all the desired pin nodes and all the tie nodes

separately. These nodes become part of the rigid body in addition to any nodes that have been generated

from elements assigned to the rigid body. The following rules apply when assigning nodes directly to a

rigid body:

• The rigid body reference node cannot be contained in either the set of pin nodes or the set of tie

nodes.

• Nodes that are part of the set of pin nodes cannot also be contained in the set of tie nodes.

• Nodes that are contained in the set of pin nodes or the set of tie nodes cannot be part of any other

rigid body definition.

• Nodes that are generated automatically from elements assigned to the rigid body that are also

contained in the set of pin nodes are classified as pin nodes, regardless of their element connections.

• Nodes that are generated automatically from elements assigned to the rigid body that are also

contained in the set of tie nodes are classified as tie nodes, regardless of their element connections.

The types of nodes generated by elements included in a rigid body can, therefore, be overridden by

assigning the nodes directly to the rigid body, thereby allowing you greater flexibility to define a

constraint with a rigid body by easily specifying the type of connection the rigid body makes with its

attached deformable finite elements.

Input File Usage: Use the following option to assign nodes to a rigid body:

*RIGID BODY, REF NODE=n, PIN NSET=name, TIE NSET=name

Abaqus/CAE Usage: Interaction module: Create Constraint: Rigid body: Pin (nodes): Edit:
select pin regions, and Tie (nodes): Edit: select tie regions

Assigning analytical surfaces to a rigid body

You can assign an analytical surface to a rigid body. The procedure for creating and naming an analytical

rigid surface is described in “Analytical rigid surface definition,” Section 2.3.4. Only one analytical

surface can be defined as part of the rigid body definition.

Input File Usage: Use the following option to assign an analytical rigid surface to a rigid body:

*RIGID BODY, REF NODE=n or name, ANALYTICAL SURFACE=name

2.4.1–7

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

Abaqus/CAE Usage: Interaction module: Create Constraint: Rigid body: Analytical
Surface: Edit: select analytical surface regions

Defining a rigid body in a model that is defined in terms of an assembly of part instances

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an assembly,”

Section 2.10.1). A rigid body in such a model can be created from deformable elements at either the part

level or the assembly level. In either case all node and element definitions must belong to one or more

parts. If all nodes making up the rigid body belong to the same part, create a rigid part by defining the

rigid body at the part level.

Multiple deformable part instances can be combined into a single rigid body by creating an

assembly-level node or element set that spans the part instances, then defining the rigid body at the

assembly level to refer to that set. The rigid body reference node can also be defined at the assembly

level, if necessary.

Rigid body mass and inertial properties

When a rigid body is not constrained fully, the mass and inertia properties of the rigid body are important

to its dynamic response. In Abaqus/Explicit an error message will be issued if there is no mass (or rotary

inertia) corresponding to an unconstrained degree of freedom. Abaqus automatically calculates the mass,

center of mass, and rotary inertia of each rigid body and prints the results to the data (.dat) file if model

definition data are requested (see “Controlling the amount of analysis input file processor information

written to the data file” in “Output,” Section 4.1.1). The following rules are used to determine the mass

and inertia of a rigid body:

• The mass of each continuum, structural, and rigid element that is part of the rigid body contributes

to the rigid body’s mass, center of mass, and rotary inertia properties.

• Point mass elements that are connected to any node that is part of a rigid body or to the rigid body

reference node contribute to the rigid body’s mass, center of mass, and rotary inertia properties.

• Rotary inertia elements that are connected to any tie node or to the rigid body reference node

contribute to the rigid body’s rotary inertia properties.

Since the rotational degrees of freedom at a pin node are not part of a rigid body, rotary inertia elements

connected to a pin node do not contribute to the rigid body inertia but are rather associated with the

independent rotation of the node.

Defining mass and inertia properties by discretization

In many cases it is desirable to model rigid components for which the mass, center of mass, and

rotary inertia are not readily available. In Abaqus it is not necessary to define the mass and inertia

properties of the rigid body directly. Instead, a finite element discretization can be used to model the

rigid components, and Abaqus will automatically calculate the properties from the discretization. Rigid

structures with one-dimensional rod or beam geometries can be modeled with beam or truss elements,

structures containing two-dimensional surface geometries can be modeled with shell or membrane

elements, and solid geometries can be modeled with solid elements. The mass contributions to the rigid

2.4.1–8

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

body for each of these elements are based on that element’s section properties (see Part VI, “Elements”)

and the material density (see “Density,” Section 21.2.1). Although both shell and membrane elements

in a rigid body can yield similar mass contributions given similar section and density definitions, they

will generate different node types (tie nodes for shells and pin nodes for membranes), which may affect

the overall results. The same holds true for beam and truss elements.

In situations where one portion of a rigid component can be modeled with a finite element

discretization but it is not convenient to do so for other portions, point mass and rotary inertia elements

can be used to represent the mass distribution of these other portions. The mass, center of mass, and

rotary inertia for the rigid body will then include the contributions from both the finite elements and

the point mass and rotary inertia elements.

Abaqus uses the lumped mass formulation for low-order elements. As a consequence, the second

mass moments of inertia can deviate from the theoretical values, especially for coarse meshes. This

inaccuracy can be circumvented by adding point mass and rotary inertia elements with the correct inertia

properties and eliminating the mass contribution from the solid elements. Alternatively, second-order

elements could be used in Abaqus/Standard.

Defining mass and inertia properties directly

When the mass, center of mass, and rotary inertia properties of the actual rigid component are known

or can be approximated, it is not necessary to use a finite element discretization or to use an array of

point masses to generate the rigid body properties. You can assign these properties directly by locating

the rigid body reference node at the center of mass (see “Positioning the reference node at the center of

mass”) and by specifying the rigid body mass and rotary inertia at the reference node (see “Point masses,”

Section 30.1.1, and “Rotary inertia,” Section 30.2.1).

It may also be desirable to input mass properties directly at the center of mass but to specify boundary

conditions at a location other than the center of mass. In this case you should place the rigid body

reference node at the desired boundary condition location. In addition, you must define a tie node at the

center of mass of the rigid body by correctly specifying its coordinates to coincide with the coordinates

of the center of mass of the rigid body and then assigning it to a tie node set in the rigid body definition.

You can then define the rigid body mass and rotary inertia at the tie node.

For most applications where mass properties are input directly, it may be necessary to assign

additional elements or nodes to a rigid body so that the rigid body can interact with the rest of the

model. For example, contact pair definitions could require rigid surfaces formed with element faces on

the rigid body and additional pin or tie nodes may be necessary to provide the desired constraints with

deformable elements attached to the rigid body. Abaqus will account for the mass and rotary inertia

contributions from all elements on a rigid body; therefore, if you want to assign the rigid body mass

properties directly, you should take care to ensure that contributions from other element types that are

part of the rigid body do not affect the desired input mass properties. If rigid elements are part of the

rigid body definition, you can set their mass contribution to zero by not specifying a density for these

elements in the rigid body definition. If other element types are used to define the rigid body, you

should set their density to zero.

2.4.1–9

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

Kinematics of a rigid body

The motion of a rigid body is defined entirely by the motion of its reference node. The active degrees

of freedom at the reference node depend on the geometry of the rigid body (see “Conventions,”

Section 1.2.2). The geometry of a rigid body is planar, axisymmetric, or three-dimensional and is

determined by the type of elements that are assigned to the rigid body. In the case where no elements

are assigned to a rigid body, the geometry of the rigid body is assumed to be three-dimensional.

The calculated mass and rotary inertia properties for each of the active degrees of freedom for all

rigid bodies are printed to the data (.dat) file if model definition data are requested (see “Controlling the

amount of analysis input file processor information written to the data file” in “Output,” Section 4.1.1).

These properties include the contributions from elements that are part of the rigid body, as well as point

mass and rotary inertia elements at the nodes of the rigid body.

Although this calculated mass represents the true mass of the rigid body, Abaqus/Explicit actually

uses an augmented mass in the integration of the equation of motion, which is conceptually similar to an

addedmass formulation. Essentially, the calculatedmass and rotary inertia of the rigid body is augmented

with the mass contributions of all of its attached deformable elements to create a larger, augmented mass

and rotary inertia. Rotary inertia contributions from adjacent deformable elements are also included in

the augmented rotary inertia if the nodal connection is at a tie node.

Rigid body motions

A rigid body can undergo free rigid body motion in each of its active translational degrees of freedom,

as well as each of its active rotational degrees of freedom.

Boundary conditions

Boundary conditions for rigid bodies should be defined as described in “Boundary conditions in

Abaqus/Standard and Abaqus/Explicit,” Section 34.3.1, at the rigid body reference node. Reaction

forces and moments can be recovered for all degrees of freedom that are constrained at the reference

node. If a nodal transformation is defined at the rigid body reference node, boundary conditions are

applied in the local system (see “Transformed coordinate systems,” Section 2.1.5).

In Abaqus/Standard, if boundary conditions are applied to any nodes on a rigid body other than the

rigid body reference node, Abaqus will attempt to transfer these boundary conditions to the reference

node. If successful, you are warned that this transfer has taken place. Otherwise, an error message is

produced (see “Overconstraint checks,” Section 35.6.1, for more details).

In Abaqus/Explicit, if boundary conditions are applied to any nodes on a rigid body other

than the rigid body reference node, these boundary conditions are ignored with the exception of the

symmetry-type boundary conditions that can affect the contact logic at the perimeter of a surface in the

Abaqus/Explicit contact pair algorithm (see “Contact formulations for contact pairs in Abaqus/Explicit,”

Section 38.2.2, and “Common difficulties associated with contact modeling using contact pairs in

Abaqus/Explicit,” Section 39.2.2).

2.4.1–10

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

Constraints

In Abaqus/Standard nodes on a rigid body, excluding the rigid body reference node, cannot be used in a

multi-point constraint or linear constraint equation definition.

In Abaqus/Explicit a multi-point constraint or linear constraint equation can be defined for any node

on a rigid body, including the reference node.

Connector elements

Connector elements can be used at any node of a rigid body, including the reference node, to define a

connection between rigid bodies, between a rigid body and a deformable body, or from a rigid body to

ground. Connector elements are convenient for providing multiple points of attachment on rigid bodies;

modeling complex nonlinear kinematic constraints; specifying zero or nonzero boundary conditions at a

point on a rigid body that is not the rigid body reference node; applying force actuation; and modeling

discrete interactions, such as spring, dashpot, node-to-node contact, friction, locking mechanisms, and

failure joints. Unlike multi-point constraints or linear constraint equations, connector elements retain

degrees of freedom in the connection, thereby allowing output of information related to the connection

(such as constraint forces and moments, relative displacements, velocities, accelerations, etc.). See

“Connector elements,” Section 31.1.2, for a detailed description of connector elements.

Planar rigid body

A rigid body with a planar geometry has three active degrees of freedom: 1, 2, and 6 (, , and

). Here, the x- and y-directions coincide with the global X- and Y-directions, respectively. If a nodal

transformation is defined at the rigid body reference node, the x- and y-directions coincide with the user-

defined local directions. The coordinate transformation defined at the reference node must be consistent

with the geometry; the local directions must remain in the global X–Y plane. All nodes and elements

that are part of a planar rigid body should lie in the global X–Y plane.

Planar rigid bodies should be connected only to planar deformable elements. To model the

connection of a rigid component with a planar geometry to three-dimensional deformable elements,

model the planar rigid component as a three-dimensional rigid body consisting of the appropriate

three-dimensional elements.

Axisymmetric rigid body

A rigid body with an axisymmetric geometry has three active degrees of freedom in Abaqus: 1, 2, and

6 (, ,). Classical axisymmetric theory admits only one rigid body mode, which is displacement

in the z-direction. To maximize the flexibility of using rigid bodies for axisymmetric analysis, Abaqus

allows for three active degrees of freedom, although only the axial displacement is a rigid body mode.

The r- and z-directions coincide with the global X- and Y-directions, respectively. If a nodal

transformation is defined at the rigid body reference node, the r- and z-directions coincide with the

user-defined local directions. The coordinate transformation defined at the reference node must be

consistent with the geometry; the local directions must remain in the global X–Y plane. All nodes and

elements that are part of an axisymmetric rigid body should lie in the global X–Y plane.

2.4.1–11

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

Translation in the r-direction is associated with a radial mode, and rotation in the r–z plane is

associated with a rotary mode (see Figure 2.4.1–2). For an axisymmetric rigid body in Abaqus each

of these modes develop no hoop stress, but mass and inertia computed for these degrees of freedom

represent the modal mass associated with their modal motion. The mass properties for an axisymmetric

rigid body are, therefore, calculated based on the initial configuration assuming the following:

• Point masses defined on nodes of the rigid body (see “Point masses,” Section 30.1.1) are assumed

to account for the entire mass around the circumference of the body.

• Mass contributions from axisymmetric elements assigned to the rigid body include the integrated

value around the circumference.

• The center of mass of the rigid body is located at the center of mass of the circumferential slice, as

shown in Figure 2.4.1–2.

If the rigid body reference node is positioned at the center of mass, the reference node for an axisymmetric

rigid body will, thus, be repositioned at the center of mass of the circumferential slice.

These assumptions are consistent with the manner in which Abaqus handles other axisymmetric

features but are noted here because of the deviation from classical rigid body theory.

Axisymmetric rigid bodies should be connected only to axisymmetric deformable elements. To

model the connection of a rigid component with an axisymmetric geometry to three-dimensional

deformable elements, model the axisymmetric rigid component as a three-dimensional rigid body

consisting of the appropriate three-dimensional elements.

Three-dimensional rigid body

A rigid body with a three-dimensional geometry has six active degrees of freedom: 1, 2, 3, 4, 5, and

6 (, , , , ,). Here, the x-, y-, and z-directions coincide with the global X-, Y- and Z-

directions, respectively. If a nodal transformation is defined at the rigid body reference node, the x-, y-,

and z-directions coincide with the user-defined local directions.

In general, three-dimensional rigid bodies will possess a full, nonisotropic inertia tensor and can

behave in a nonintuitive manner when they are spun about an axis that is not one of the principal inertia

axes. Classical phenomena of rigid body dynamics (e.g., precession, gyroscopic moments, etc.) can be

simulated using three-dimensional rigid bodies in Abaqus.

In most cases three-dimensional rigid bodies should be connected only to three-dimensional

deformable elements. If it is physically relevant, a three-dimensional rigid body can be connected to

two-dimensional plane stress, plane strain, or axisymmetric elements; however, you should always

constrain the z-displacement, x-axis rotation, and y-axis rotation of the rigid body. The above procedure

is useful when incorporating a two-dimensional plane strain approximation in one region of a model

and a three-dimensional discretization in another. Rigid bodies can be used to constrain the two finite

element geometries at their interface as shown in Figure 2.4.1–3. A unique rigid body should be used at

each node in the plane along the interface to handle the constraint properly.

Defining loads on rigid bodies

Loads on a rigid body are assembled from contributions of all of the loads on nodes and elements that

are part of the rigid body. Loads are defined on nodes and elements that are part of a rigid body in the

2.4.1–12

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

rigid body
center of mass

z

r

original configuration

FF

radial mode

rotary mode

F

F F

F

Figure 2.4.1–2 Axisymmetric rigid body modes.

same manner that they are specified if the nodes and elements are not part of a rigid body. Contributions

include:

• applied concentrated forces on pin nodes, tie nodes, and the rigid body reference node;

• applied concentrated moments on tie nodes and the rigid body reference node; and

• applied distributed loads on all elements and surfaces that are part of the rigid body.

2.4.1–13

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

rigid body

rigid body2D mesh

3D mesh

X

Y

Figure 2.4.1–3 Rigid body nodes used to connect a

two-dimensional and three-dimensional mesh.

Unless the point of action is through the rigid body center of mass, each of these loads will create both

a force at and a torque about the center of mass, which will tend to rotate an unconstrained rigid body.

If a nodal transformation is defined at any rigid body nodes, concentrated loads defined at these nodes

are interpreted in the local system. The local system defined by the nodal transformation does not rotate

with the rigid body.

Concentrated moments defined on rigid body pin nodes do not contribute load to the rigid body

but are rather associated with the independent rotation of that node. Independent rotation of a pin node

exists only if it is connected to a deformable element with rotational degrees of freedom or a rotary

inertia element. Follower forces (see “Specifying concentrated follower forces” in “Concentrated loads,”

Section 34.4.2) can be defined at pin nodes if the independent rotation exists. However, the results may

be nonintuitive since the direction of the force is determined by the independent rotation even though

the follower force acts on the rigid body.

Rigid bodies with temperature degrees of freedom

Only rigid bodies that contain coupled temperature-displacement elements have temperature degrees of

freedom. If it is reasonable to assume that a rigid body used in a fully coupled temperature-displacement

analysis has a uniform temperature, you can define the rigid body as isothermal. A transient heat transfer

process involving an isothermal rigid body assumes that the internal resistance of the body to heat is

negligible in comparison with the external resistance. Thus, the body temperature can be a function of

time but cannot be a function of position. The temperature degree of freedom that is created at the rigid

body reference node describes the temperature of the body.

Thermal interactions for rigid bodies with analytical rigid surfaces are available only in

Abaqus/Explicit and are activated by specifying that the rigid body is isothermal.

2.4.1–14

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

By default, rigid bodies are not considered isothermal and all nodes on a rigid body connected to

coupled temperature-displacement elements will have independent temperature degrees of freedom. The

fact that the nodes are part of a rigid body does not affect the ability of the coupled elements to conduct

heat within the rigid body. However, the mechanical response will be rigid.

The lumped heat capacitance associated with the rigid body reference node of an isothermal body

is calculated automatically if the rigid body is composed of coupled temperature-displacement elements

for which a specific heat and a density property are defined. Otherwise, you should specify a point

heat capacitance for the rigid body (see “Point capacitance,” Section 30.4.1). An error message will be

issued in Abaqus/Explicit if no heat capacitance is associated with an isothermal rigid body for which

temperature is not prescribed at the reference node.

• The capacitance of each coupled temperature-displacement element that is part of the rigid body

contributes to the isothermal rigid body’s capacitance. For an axisymmetric isothermal rigid body,

capacitance contributions from axisymmetric elements assigned to the rigid body include the

integrated value around the circumference.

• HEATCAP elements that are connected to any node that is part of a rigid body or the rigid

body reference node contribute to the isothermal rigid body’s capacitance. For an axisymmetric

isothermal rigid body the point capacitances defined on nodes of the rigid body are assumed to

account for the capacitance integrated around the circumference of the body.

Thermal loads acting on the reference node of an isothermal body are assembled from contributions

of all the thermal loads on nodes and elements that are part of the rigid body. Heat transfer between

a deformable body and an isothermal rigid body can occur during contact, as well as when the bodies

are not in contact if gap conductance and gap radiation are defined (see “Thermal contact properties,”

Section 37.2.1). Heat transfer between two isothermal rigid bodies can occur only via gap conduction

and gap radiation.

Input File Usage: *RIGID BODY, ISOTHERMAL=YES

Abaqus/CAE Usage: Interaction module: Create Constraint: Rigid body: toggle on

Constrain selected regions to be isothermal

Modeling contact with a rigid body

Contact with a rigid body is modeled by specifying a contact interaction formed with a rigid surface

and with a surface defined on another body (see “Defining contact pairs in Abaqus/Standard,”

Section 36.3.1; “Defining general contact interactions in Abaqus/Explicit,” Section 36.4.1; or “Defining

contact pairs in Abaqus/Explicit,” Section 36.5.1). A rigid surface can be formed by nodes, element

faces, or an analytical surface (see “Node-based surface definition,” Section 2.3.3; “Element-based

surface definition,” Section 2.3.2; and “Analytical rigid surface definition,” Section 2.3.4).

Contact modeling can be a primary factor when choosing the appropriate rigid body geometry.

Contact interactions should be formed with surfaces of like geometry. For example, a planar rigid

body should be used to model contact either with deformable surfaces formed by two-dimensional plane

stress or plane strain elements or via node-based surfaces with two-dimensional beam, pipe, or truss

elements. Similarly, an axisymmetric rigid body should be used to model contact with surfaces formed by

2.4.1–15

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

axisymmetric elements, and a three-dimensional rigid body should be used to model contact either with

surfaces formed by three-dimensional element faces or via node-based surfaces with three-dimensional

beam, pipe, or truss elements.

A rigid body must contain only two-dimensional or only three-dimensional elements. Nodes

cannot be shared between two rigid bodies. Contact between two analytical rigid surfaces or between

an analytical rigid surface and itself cannot be modeled.

Limitations in Abaqus/Standard

Contact between rigid bodies is allowed if the slave surface belongs to an elastic body that has been

declared as rigid. In this case softened contact should be prescribed to avoid possible overconstraints.

Contact between two rigid surfaces defined using rigid elements is not allowed.

Rigid beams and trusses cannot be included in a contact pair definition because surfaces from beams

and trusses can be node-based surfaces only. A node-based surface must be a slave surface, and elements

that are part of a rigid body should be part of the master surface in a contact pair.

Limitations in Abaqus/Explicit

Contact between two rigid surfaces can be modeled in Abaqus/Explicit only if the penalty contact pair

algorithm or the general contact algorithm is used; kinematic contact pairs cannot be used for rigid-

to-rigid contact. Therefore, when converting two deformable regions of a model to two distinct rigid

bodies for the purpose of model development, any contact interaction definitions between these rigid

bodies must use penalty contact pairs or general contact.

For rigid-to-rigid contact involving analytical rigid surfaces, at least one of the rigid surfaces must

be formed by element faces since contact between two analytical rigid surfaces cannot be modeled in

Abaqus.

The penalty contact pair algorithm, which introduces numerical softening to the contact

enforcement through the use of penalty springs, or the general contact algorithm must be used for all

contact interactions involving a rigid body if an equation constraint, a multi-point constraint, a tie

constraint, or a connector element is defined for a node on the rigid body.

Rigid beams and trusses cannot be included in a kinematic contact pair definition because surfaces

from beams and trusses can be node-based surfaces only. A node-based surface must be a slave surface,

and elements that are part of a rigid body must be part of the master surface in a kinematic contact pair.

When a rigid surface acts as a slave surface in a penalty contact pair or in general contact, initial

penetrations of the rigid slave nodes into the master surface will not be corrected with strain-free

corrections (see “Adjusting initial surface positions and specifying initial clearances for contact pairs

in Abaqus/Explicit,” Section 36.5.4, and “Controlling initial contact status for general contact in

Abaqus/Explicit,” Section 36.4.4). For contact pairs any initial penetrations of this type may cause

artificially large contact forces in the initial increments. For general contact these initial penetrations

are stored as contact offsets.

2.4.1–16

Abaqus Version 6.6 ID:

Printed on:

RIGID BODY DEFINITION

Using rigid bodies in geometrically linear Abaqus/Standard analysis

If rigid bodies are used in a geometrically linear Abaqus/Standard analysis (see “General and linear

perturbation procedures,” Section 6.1.3), the rigid body constraints are linearized. Consequently, except

for analytical rigid surfaces, the distance between any two nodes belonging to the rigid body may not

remain constant during the analysis if the magnitudes of the rotations are not small.

2.4.1–17

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION DEFINITION

2.5 Integrated output section definition

• “Integrated output section definition,” Section 2.5.1

2.5–1

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION

2.5.1 INTEGRATED OUTPUT SECTION DEFINITION

Products: Abaqus/Explicit Abaqus/CAE

References

• “Output to the output database,” Section 4.1.3

• *INTEGRATED OUTPUT SECTION

• *INTEGRATED OUTPUT

• *SURFACE

• “Defining integrated output sections,” Section 14.13.1 of the Abaqus/CAE User’s Guide, in the

HTML version of this guide

Overview

An integrated output section:

• can be two-dimensional or three-dimensional;

• can be used to track the average motion of a surface;

• can be used in association with integrated output requests to study the “force-flow” in the model;

and

• does not impose any constraint on the motion of the surface.

Introduction

An integrated output section is a way to associate a surface with a coordinate system and/or a reference

node for one or both of the following purposes:

• tracking the average motion of the surface; and/or

• expressing the force and the moment transmitted through the surface in a local coordinate system,

with the moment taken about a point that moves with the surface.

The average motion of a surface can be obtained as the displacement and/or rotation history at the

reference node on an integrated output section definition. You must define a reference node that is not

connected to any other part of the finite element model and select whether the reference node follows

only the average translation of the surface or both the translation and the rotation. Since the reference

node is not connected to the rest of the model, an integrated output section definition used to track the

average surface motion does not form a constraint on the motion of any nodes in the model.

The “force-flow” in a complicated model can be studied using integrated output sections defined

over a number of interior cross-section-like surfaces cutting through various parts of the model. It can

be equally useful to sum forces over an exterior surface in contact or to sum forces transmitted through

a tie constraint between surfaces, which is done by associating an integrated output section definition

with an integrated output request. The vector output quantities can be expressed in a coordinate system

2.5.1–1

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION

of choice by specifying an orientation on an integrated output section definition. This coordinate system

can rotate by an amount given by the rotational degrees of freedom at the reference node. In addition,

the output of the integrated moment across the surface can be taken about a location that can translate by

an amount given by the translational degrees of freedom at the reference node. Integrated output over

a given surface can be requested with different coordinate systems and reference nodes by employing

multiple integrated output section definitions over the same surface.

Creating an integrated output section

You must assign a name to each integrated output section. This name is used to associate the section

with an integrated output request. In addition, you must identify the surface over which the section is

being defined (see “Element-based surface definition,” Section 2.3.2).

Input File Usage: *INTEGRATED OUTPUT SECTION, NAME=section_name,

SURFACE=surface_name

Abaqus/CAE Usage: Step module: Output→Integrated Output Sections→Create:
Name: section_name: select surface region

Creating interior cross-section surfaces

To study the “force-flow” through various paths in a model, you must create interior surfaces that cut

through one or more regions (similar to a cross-section) so that you can request integrated output of the

total force and moment transmitted across these surfaces. You can create such interior surfaces over the

element facets, edges, or ends by simply cutting through one or more regions of the model with a plane;

see “Creating interior cross-section surfaces” in “Element-based surface definition,” Section 2.3.2, for

more information.

The integrated output section reference node

A reference node can be associated with an integrated output section for one or both of the following

purposes:

• tracking the average motion of the surface; and/or

• computing the variables from an integrated output request in a coordinate system that moves with

the motion of the reference node.

If the average surface motion must be tracked, you must define a reference node that is not connected to

any other part of the finite element model and select whether the reference node follows only the average

translation of the surface or both the translation and the rotation. The rotational degrees of freedom will

be activated in addition to the translational degrees of freedom at the reference node if it is selected to

follow the average rotation of the surface. Further, the initial position of the reference node may be

adjusted to lie at the center of the surface automatically.

When an integrated output section with a reference node is associated with an integrated output

request, the total moment transmitted through the section is computed with respect to the current location

of the reference node. If the reference node has active rotational degrees of freedom, the coordinate

system used to express the integrated output variables rotates with the rotation of the reference node.

2.5.1–2

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION

Positioning the reference node at the center of the surface

The reference node can be repositioned automatically at the center of the surface in the initial

configuration when the reference node is not connected to the rest of the model.

The default is to leave the reference node in its specified position.

Input File Usage: Use the following option to position the reference node at the center of the

surface:

*INTEGRATED OUTPUT SECTION, REF NODE=n, POSITION=CENTER

Abaqus/CAE Usage: Step module: integrated output section editor: Anchor at reference point:
Edit: select reference point: Move point to center of surface

Setting the reference node to track the average motion of the surface

It is often meaningful to obtain integrated output over a surface using a coordinate system and a point

that moves with the average surface motion. When the reference node is not connected to the rest of the

model, it can be specified to translate with the average translation of the surface without any rotation or

to both translate and rotate with the average motion of the surface. The average motion is based on the

mass weighted motion of the individual nodes that are on the surface and are not part of any rigid body.

By default, the reference node does not track the average motion of the surface.

Input File Usage: Use the following option if the reference node must translate with the average

translation of the surface:

*INTEGRATED OUTPUT SECTION, REF NODE=n,

REF NODE MOTION=AVERAGE TRANSLATION

Use the following option if the reference node must both translate and rotate

with the average translation of the surface:

*INTEGRATED OUTPUT SECTION, REF NODE=n,

REF NODE MOTION=AVERAGE

Abaqus/CAE Usage: Step module: integrated output section editor: Anchor at reference
point: Edit: select reference point: Point motion: Average translation
and rotation or Average translation

The integrated output section local coordinate system

You can define a local coordinate system on an integrated output section and associate the section with an

integrated output request to express the integrated output variables in the local coordinate system. You

can specify an orientation as the local coordinate system and, possibly, further project it onto the surface.

Alternatively, you can form a local coordinate system by projecting the global coordinate system onto

the surface following the Abaqus conventions (see “Conventions,” Section 1.2.2). If a local system is

not defined explicitly, the local system is initialized to the global coordinate system.

The initial coordinate system, whether explicitly defined or initialized to the global coordinate

system, will rotate with the deformation if a reference node is specified and that reference node has

active rotational degrees of freedom. If the reference node is not connected to the rest of the model

2.5.1–3

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION

and its motion is based on both the average translation and rotation of the surface, the rotational and

translational degrees of freedom are activated at the reference node.

Input File Usage: Use the following option to define the initial coordinate system for the section:

*INTEGRATED OUTPUT SECTION, ORIENTATION=orientation_name

Abaqus/CAE Usage: Step module: integrated output section editor: CSYS: Edit: select orientation

Projecting the coordinate system onto the section surface

Either the coordinate system defined by the specified orientation or the global coordinate system can

be projected onto the section surface to obtain a local coordinate system. Projection onto the surface is

based on the average normal of the surface; the local 1-direction is formed perpendicular to the surface

(see Figure 2.5.1–1).

Input File Usage: Use the following option to project the coordinate system onto the section

surface:

*INTEGRATED OUTPUT SECTION, PROJECT ORIENTATION=YES

Abaqus/CAE Usage: Step module: integrated output section editor: Project
orientation onto surface

2

a

3
b

1
defined section

2
a

1

anchor point

anchor point

Y
Y

X X
elements used to
define the section

2D and axisymmetric 3D

defined section

Z

Figure 2.5.1–1 User-defined local coordinate system.

2.5.1–4

Abaqus Version 6.6 ID:

Printed on:

INTEGRATED OUTPUT SECTION

Associating an integrated output section with an integrated output request

An integrated output request is used to obtain history output of variables such as total force transmitted

across a surface (see “Integrated output in Abaqus/Explicit” in “Output to the output database,”

Section 4.1.3). Such a request may refer to an integrated output section definition to identify the surface

where output is needed and to provide a local coordinate system and/or a reference node as a point

about which the total moment across the surface is computed.

Input File Usage: Use both of the following options to associate an integrated output section with

an integrated output request:

*INTEGRATED OUTPUT SECTION, NAME=section_name

*INTEGRATED OUTPUT, SECTION=section_name

Abaqus/CAE Usage: Step module:

Output→Integrated Output Sections→Create: Name: section_name

History output request editor: Domain: Integrated output
section: section_name

Limitations

Integrated output sections are subject to the following limitations:

• The surface associated with an integrated output section cannot be an analytical rigid surface.

• The surface associated with an integrated output section can contain facets over rigid or

axisymmetric elements. However, such an integrated output section cannot be associated with an

integrated output request (see “Output to the output database,” Section 4.1.3).

2.5.1–5

Abaqus Version 6.6 ID:

Printed on:

MASS ADJUSTMENT

2.6 Mass adjustment

• “Adjust and/or redistribute mass of an element set,” Section 2.6.1

2.6–1

Abaqus Version 6.6 ID:

Printed on:

MASS ADJUST

2.6.1 ADJUST AND/OR REDISTRIBUTE MASS OF AN ELEMENT SET

Product: Abaqus/Explicit

References

• “Density,” Section 21.2.1

• “Point masses,” Section 30.1.1

• “Nonstructural mass definition,” Section 2.7.1

• “Mass scaling,” Section 11.6.1

• *MASS ADJUST

Overview

Mass adjustment:

• is useful to set the net mass of one or more components in the model to a known value;

• is useful to account for any errors in mass due to modeling approximations;

• is useful to account for mass from nonstructural features otherwise omitted from the model, such

as paint;

• can be applied over all element types that have mass;

• adjusts the mass of the individual elements in an element set in proportion to their pre-adjusted mass

including any nonstructural mass, so as to meet the specified target value for the set;

• can be used to redistribute mass among elements in the set to raise the minimum stable time

increment to a target value;

• can be specified only once in an Abaqus/Explicit analysis during the model definition; and

• can be applied in a hierarchical fashion to adjust the mass for individual parts first and then for an

assembly of these parts.

Adjusting the total mass of an element set to a known value

The mass of a component in a numerical model may differ from its actual value for a number of reasons

including modeling approximations and omission of minor features from the model. You can specify

mass adjustment in the numerical model for such components by identifying the element sets defining

these components and their respective total mass values. For a given element set, the mass is adjusted

at the start of the analysis such that the adjustment in each element in that set is in proportion to the pre-

adjusted mass of that element, thus preserving the center of mass and the principal directions of the rotary

inertia. The pre-adjusted mass of an element includes the mass due to any associated material density;

any mass directly specified on the section definition as in the case of beam, pipe, shell, membrane, rigid,

and surface elements; and any nonstructural mass applied directly to that element. “Knee bolster impact

2.6.1–1

Abaqus Version 6.6 ID:

Printed on:

MASS ADJUST

with general contact,” Section 2.1.9 of the Abaqus Example Problems Guide, is an example of setting

the total mass of an element set using mass adjustment.

When mass is adjusted for an element with active rotational degrees of freedom, the rotary inertia

contribution from that element is also modified proportionally to correspond with the scaling in the

element mass from mass adjustment, thus preserving the principal directions of the rotary inertia. The

adjusted mass value is considered when calculating the stable time increment of an element. Loads such

as mass proportional damping (see “Material damping,” Section 26.1.1) and gravity take the adjusted

mass into account.

Mass adjustment can be applied in a hierarchical fashion to adjust the mass for individual parts first

and then for an assembly of these parts. In this scenario, the mass adjustment defined over the assembly

may further modify the adjusted mass of the individual parts. You must associate all of the mass-adjusted

element sets in the desired order with a single mass adjustment definition.

Abaqus/Explicit automatically calculates the mass, center of mass, and rotary inertia of each

element set and prints the results to the data (.dat) file if model definition data are requested (see

“Controlling the amount of analysis input file processor information written to the data file” in “Output,”

Section 4.1.1). The contributions from mass adjustment are also listed in these tables. Element output

variable MASSADJUST can be requested as output to the output database (.odb) file, and it will

indicate how the mass of the set is adjusted or redistributed to each element included in the set (see

“Abaqus/Explicit output variable identifiers,” Section 4.2.2). This output variable is available as field

output (contour plots) in the first output frame of the first analysis step.

Redistribution of mass to raise the minimum stable time increment to a target value

You can increase the minimum stable time increment in the initial configuration for an element set to

a specified target value by redistributing mass among the elements in that set. The redistribution of

mass to affect the stable time increment and adjustment of mass to achieve a target total mass can be

requested independently of each other. If both options are requested for a given element set, the mass

is first adjusted to meet the target total mass for the set and then redistributed among the elements to

achieve the target time increment.

You can set a default target time increment that is applicable for all of the mass-adjusted element sets

as well as specific targets for any of the individual element sets. Within each set, the mass is transferred to

the elements with time increments below the target value from the remaining elements. Abaqus/Explicit

prints the amount of mass available for redistribution along with the percentage of this amount that is

redistributed to the data (.dat) file if model definition data are requested (see “Controlling the amount of

analysis input file processor information written to the data file” in “Output,” Section 4.1.1). If a sufficient

amount of mass is not available tomeet the specified target time increment, the analysis terminates with an

error message. “Impact of a water-filled bottle,” Section 2.3.2 of the Abaqus Example Problems Guide,

is an example of maintaining the target stable time increment of an element set using mass adjustment.

When compared to the fixed mass scaling functionality, the redistribution feature above does not

alter the total mass of the set. However, both features affect the center of mass and the principal directions

of rotary inertia. The redistribution feature is performed only in the initial configuration at the start of

the analysis; whereas the fixed mass scaling is performed in the configuration at the start of the step

2.6.1–2

Abaqus Version 6.6 ID:

Printed on:

MASS ADJUST

requesting that mass scaling. When you specify mass adjustment and mass scaling, the mass scaling

adds mass as necessary on top of the adjusted mass.

Defining mass adjustment

To adjust the total mass of one or more components in the model, you first identify the corresponding

element sets. If you specify multiple elements sets, the mass is adjusted in the order in which the element

sets are specified. For element sets that share elements, you must determine the order in which to specify

the element sets to obtain the desired results.

Defining total mass for an element set without altering its center of mass

You must specify the total mass for each mass-adjusted element set.

Input File Usage: *MASS ADJUST

element_set_name, element_set_mass

Defining mass redistribution to raise the time increment

You can redistribute the mass of an element set to achieve a target time increment and specify the total

mass for each mass-adjusted element set, or you can redistribute the mass without changing the existing

total mass of the element set. You can set a default target time increment that is applicable for all of the

mass-adjusted sets as well as specific targets for any of the individual sets. When both a default target

and a specific target are specified, the specific target is used for that set.

Input File Usage: Use the following option to raise the time increment and specify the total mass:

*MASS ADJUST, TARGET DT=min_stable_time_increment

element_set_name, element_set_mass,

element_set_min_stable_time_increment

Use the following option to raise the time increment without altering the total

mass:

*MASS ADJUST, TARGET DT=min_stable_time_increment

element_set_name, CURRENT, element_set_min_stable_time_increment

2.6.1–3

Abaqus Version 6.6 ID:

Printed on:

NONSTRUCTURAL MASS DEFINITION

2.7 Nonstructural mass definition

• “Nonstructural mass definition,” Section 2.7.1

2.7–1

Abaqus Version 6.6 ID:

Printed on:

NONSTRUCTURAL MASS

2.7.1 NONSTRUCTURAL MASS DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Point masses,” Section 30.1.1

• “Density,” Section 21.2.1

• “Adjust and/or redistribute mass of an element set,” Section 2.6.1

• *NONSTRUCTURAL MASS

• “Defining nonstructural mass,” Section 33.4 of the Abaqus/CAEUser’s Guide, in the HTMLversion

of this guide

Overview

A nonstructural mass:

• is a contribution to the model mass from features that have negligible structural stiffness (such as

paint on sheet metal panels in a car);

• can be used to bring the net mass of one or more components in the model up to a known value;

• can be positive to add mass to the model and negative to remove mass from the model, with the

corresponding increase or decrease in the element stable time increment in an Abaqus/Explicit

analysis;

• can be specified in the form of a total mass of the nonstructural features to be distributed over one

or more components in the model;

• can be specified in the form of an increase in density over the smeared region;

• can be specified in the form of mass per unit area to be applied over a smeared region consisting of

shells, membranes, and/or surface elements; and

• can be specified in the form of mass per unit length to be applied over a smeared region consisting

of beam, pipe, and/or truss elements.

Nonstructural mass

The mass contribution from nonstructural features can be included in the model even if the features

themselves are omitted. The nonstructural mass is smeared over an element set that is typically adjacent

to the nonstructural feature. This element set can contain solid, shell, membrane, surface, beam, pipe, or

truss elements. The nonstructural mass can be specified in the following forms:

• a total mass value,

• a mass per unit volume,

2.7.1–1

Abaqus Version 6.6 ID:

Printed on:

NONSTRUCTURAL MASS

• a mass per unit area (for element sets that contain conventional shell, membrane, and/or surface

elements), or

• a mass per unit length (for element sets that contain beam, pipe, and/or truss elements).

When a total mass is spread over an element set region, it can be distributed either in proportion to the

underlying element “structural” mass or in proportion to the element volume in the initial configuration.

A “structural” mass is defined as the sum of all the mass contributions to an element outside of

the nonstructural features. This may include the mass due to any material definitions associated with

the element; any “mass per unit area” given on the section definition for shell, membrane, and surface

elements; mass from any rebars included in shell, membrane, and surface elements; and any additional

inertia given on the section definition of beam/pipe elements. A nonstructural mass contribution to an

element is not allowed if that element has no structural mass.

A given element in the model can have contributions from multiple nonstructural mass

specifications. The nonstructural mass in a given element will participate in any mass proportional

distributed loads, such as gravity loading, defined on that element. When a nonstructural mass is

added to a shell, beam, or pipe element with active rotational degrees of freedom, the nonstructural

contribution affects both the element mass and the element rotary inertia. The element stable time

increment increases with a positive nonstructural mass and decreases with a negative nonstructural

mass. In general, it is easier to use a nonstructural mass definition to bring an additional mass into the

model than to do the same with a group of point masses. It is also more beneficial in an Abaqus/Explicit

analysis due to a possibly higher time increment.

Anymass proportional damping specified as part of the material definition (see “Material damping,”

Section 26.1.1) will also apply to the nonstructural mass contribution assigned to the element or element

set using that material definition.

Defining nonstructural mass

To define a nonstructural mass contribution to the model mass, you must first identify the region over

which the contribution must be added. You then specify the value of the nonstructural mass using the

appropriate units and, if the total mass from the nonstructural features is known, determine how the

nonstructural mass is distributed over the region.

Input File Usage: *NONSTRUCTURAL MASS, ELSET=element_set_name

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create:
Nonstructural mass: select region

Specifying the units of the nonstructural mass

The nonstructural mass can be specified in different types of units, depending on the types of elements

contained in the specified region.

Specifying units of mass

A total nonstructural mass with units of “mass” can be spread over a region containing solid, shell,

membrane, beam, pipe, and/or truss elements.

2.7.1–2

Abaqus Version 6.6 ID:

Printed on:

NONSTRUCTURAL MASS

Input File Usage: *NONSTRUCTURAL MASS, UNITS=TOTAL MASS

total mass of the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create:
Nonstructural mass: select region: Units: Total Mass: Magnitude:
total mass of the nonstructural feature

Specifying units of mass per unit volume

A nonstructural mass with units of “mass per unit volume” can be spread over a region containing solid,

shell, membrane, beam, pipe, and/or truss elements.

Input File Usage: *NONSTRUCTURAL MASS, UNITS=MASS PER VOLUME

added density due to the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create: Nonstructural
mass: select region: Units: Mass per Volume: Magnitude: added
density due to the nonstructural feature

Specifying units of mass per unit area

A nonstructural mass with units of “mass per unit area” can be spread over a region containing

conventional shells, membranes, and/or surface elements.

Input File Usage: *NONSTRUCTURAL MASS, UNITS=MASS PER AREA

added mass per unit area due to the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create: Nonstructural
mass: select region: Units: Mass per Area: Magnitude: added
mass per unit area due to the nonstructural feature

Specifying units of mass per unit length

A nonstructural mass with units of “mass per unit length” can be spread over a region containing beam,

pipe, and/or truss elements.

Input File Usage: *NONSTRUCTURAL MASS, UNITS=MASS PER LENGTH

added mass per unit length due to the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create: Nonstructural
mass: select region: Units: Mass per Length: Magnitude: added
mass per unit length due to the nonstructural feature

Controlling the distribution of the total mass from nonstructural features

There are two methods available for distributing the nonstructural mass over the region when the total

mass from the nonstructural features is known.

2.7.1–3

Abaqus Version 6.6 ID:

Printed on:

NONSTRUCTURAL MASS

Distributing the nonstructural mass in proportion to the element structural mass

If you do not want to change the center of mass for the region, distribute the nonstructural mass in

proportion to the element structural mass. This method results in a uniform scaling of the structural

density of the region. Abaqus uses mass proportional distribution by default.

The element structural mass in shell, membrane, and surface elements includes any mass

contribution from rebar provided that the rebar are defined as a rebar layer (see “Defining

reinforcement,” Section 2.2.3).

Input File Usage: *NONSTRUCTURAL MASS, UNITS=TOTAL MASS,

DISTRIBUTION=MASS PROPORTIONAL

total mass of the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create: Nonstructural
mass: select region: Units: Total Mass: Magnitude: total mass of the
nonstructural feature: Distribution: Mass Proportional

Distributing the nonstructural mass in proportion to the element volume

Alternatively, you can distribute the nonstructural mass in proportion to the element volume in the initial

configuration. This method results in a uniform value added to the underlying structural density over

the region. Therefore, the center of mass for the region may be altered if the region has nonuniform

structural density.

Input File Usage: *NONSTRUCTURAL MASS, UNITS=TOTAL MASS,

DISTRIBUTION=VOLUME PROPORTIONAL

total mass of the nonstructural feature

Abaqus/CAE Usage: Property or Interaction module: Special→Inertia→Create: Nonstructural
mass: select region: Units: Total Mass: Magnitude: total mass of the
nonstructural feature: Distribution: Volume Proportional

2.7.1–4

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

2.8 Distribution definition

• “Distribution definition,” Section 2.8.1

2.8–1

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

2.8.1 DISTRIBUTION DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD Abaqus/CAE

References

• “Orientations,” Section 2.2.5

• “Material library: overview,” Section 21.1.1

• “Material data definition,” Section 21.1.2

• “Combining material behaviors,” Section 21.1.3

• “Density,” Section 21.2.1

• “Linear elastic behavior,” Section 22.2.1

• “Thermal expansion,” Section 26.1.2

• “Solid (continuum) elements,” Section 28.1.1

• “Membrane elements,” Section 29.1.1

• “Using a shell section integrated during the analysis to define the section behavior,” Section 29.6.5

• “Using a general shell section to define the section behavior,” Section 29.6.6

• “Connectors: overview,” Section 31.1.1

• “Controlling initial contact status for general contact in Abaqus/Explicit,” Section 36.4.4

• “Boundary conditions in Abaqus/CFD,” Section 34.3.2

• *DISTRIBUTION

• *DISTRIBUTION TABLE

• Chapter 63, “The Discrete Field toolset,” of the Abaqus/CAE User’s Guide

Overview

A distribution:

• is a spatially varying field defined over elements or nodes in an Abaqus model;

• can be used to define shell thicknesses on an element-by-element basis;

• can be used to define shell stiffness on an element-by-element basis;

• can be used to define local coordinate systems on solid continuum and shell elements on an element-

by-element basis;

• can be used to define orientation angles on the layers of composite shell elements;

• can be used to define orientation angles for connector elements;

• can be used to define thicknesses on the layers of conventional composite shell elements;

• can be used to specify initial contact clearances;

2.8.1–1

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

• can be used to specify pressure that varies with the total volume of fluid crossing a surface in an

Abaqus/CFD analysis; and

• in an Abaqus/Standard analysis can be used to define mass density, linear elastic material behavior,

and thermal expansion for solid continuum elements; shell offsets; orientation angles on the layers

of composite solid continuum elements; local coordinate systems on membrane elements; and

membrane thickness on an element-by-element basis.

Distributions

A distribution is a spatial analogy of an amplitude definition (see “Amplitude curves,” Section 34.1.2).

Amplitude definitions are used to provide arbitrary time variations of loads, displacements, and other

prescribed variables. Distributions are used to specify arbitrary spatial variations of selected element

properties, material properties, local coordinate systems, and spatial variations of initial contact

clearances.

The two main components of a distribution are its location and field data. The location identifies

where the distribution is defined, either on elements or nodes. Field data are a specified number of

floating point values defined for each element or node in the distribution.

To define a distribution, you must assign it a unique name. You must also specify the number and

physical dimension of each data value in the distribution by referring to a distribution table.

Input File Usage: *DISTRIBUTION, NAME=name, TABLE=distribution table name

Abaqus/CAE Usage: Abaqus/CAE supports distributions using discrete fields.

Property, Interaction, or Load module: Tools→Discrete Field→Create

Specifying the location of a distribution

You can define a distribution on elements or nodes. Currently distributions on nodes are supported

only for defining initial contact clearances as described in “Controlling initial contact status for general

contact in Abaqus/Explicit,” Section 36.4.4. For a distribution used with fluid boundary definitions in

Abaqus/CFD, you specify that no location is required. All other applications of distributions require

distributions defined on elements.

There is no limit on the number of distributions to which a given element or node may belong.

Elements and nodes cannot be combined within the same distribution definition.

Defining a distribution on elements

Defining a distribution on elements requires you to specify field data for each element or element set

included in the distribution definition. All distributions on elements require that default data be defined.

Default data are used for all elements that are not specifically assigned a value in the distribution.

Input File Usage: *DISTRIBUTION, LOCATION=ELEMENT

blank space, field data

element set or element number, field data

Default data are defined by using a blank space instead of an element number or

element set for the first data item on the first data line of a distribution definition.

2.8.1–2

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

Only one set of default data can be defined for a distribution. If you specify only

default data, all elements that reference that distribution use the default values.

If an element is specified more than once in a given distribution definition, the

last specification given is used.

Abaqus/CAE Usage: Property, Interaction, or Load module: Tools→Discrete
Field→Create: Definition: Elements

Defining a distribution on nodes

Defining a distribution on nodes requires you to specify field data for each node or node set included in

the distribution definition.

Input File Usage: *DISTRIBUTION, LOCATION=NODE

node set or node number, field data

If a node is specified more than once in a given distribution definition, the last

specification given is used.

Abaqus/CAE Usage: Defining a distribution on nodes for initial contact clearances is not supported

in Abaqus/CAE.

Defining a distribution used in Abaqus/CFD

For a distribution used to define fluid boundary conditions for pressure that varies with the total volume

of fluid crossing a surface, you specify field data and that no location is required.

Input File Usage: *DISTRIBUTION, LOCATION=NONE

field data, field data

Abaqus/CAE Usage: Defining a distribution used in Abaqus/CFD is not supported in Abaqus/CAE.

Defining a distribution table

Every distribution definition must refer to a distribution table. A distribution table defines the number of

field data items needed for each element or node in a distribution. The distribution table also defines the

physical dimension of each data value in a distribution. A distribution table can be referred to as many

times as needed by different distributions. The distribution table consists of a list of predefined labels

shown in Table 2.8.1–1 and Table 2.8.1–2. The combination of labels needed for a given distribution is

determined by how the distribution is applied.

Input File Usage: Use the following option to define a distribution table:

*DISTRIBUTION TABLE, NAME=distribution table name

list of distribution table labels

Abaqus/CAE Usage: Abaqus/CAE creates a distribution table when you specify a distribution by

selecting a discrete field.

Defining a distribution table used in Abaqus/CFD is not supported in

Abaqus/CAE.

2.8.1–3

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

Table 2.8.1–1 Distribution table labels—Abaqus/Standard and Abaqus/Explicit.

Data label Physical dimension Number of data
items per label

ANGLE angle in degrees 1

COORD3D (L, L, L) 3

DENSITY ML−3 1

EXPANSION −1 1

LENGTH L 1

MODULUS FL−2 1

RATIO dimensionless 1

SHELLSTIFF1 FL-1 1

SHELLSTIFF2 F 1

SHELLSTIFF3 FL 1

Table 2.8.1–2 Distribution table labels—Abaqus/CFD.

Data label Physical dimension Number of data
items per label

PRESSURE FL−2 1

VOLUME L3 1

Applying distributions

The data defined in a distribution are not used in an Abaqus analysis unless the distribution is referred

to by name by a feature that supports distributions, and the distribution is applied only to the elements

or nodes that are associated with the referenced feature. In addition, a distribution definition can be

referenced more than one time in a given model. These points are illustrated in the examples below.

If an element in an Abaqus/Standard or Abaqus/Explicit analysis is declared rigid (see “Rigid body

definition,” Section 2.4.1) any distributions used to define element properties, material properties (with

the exception of density), or local coordinate systems are ignored.

Examples

The simple examples below illustrate how distributions are defined. A large number of illustrative

example problems using distributions can be found in “Spatially varying element properties,”

Section 5.1.4 of the Abaqus Verification Guide.

2.8.1–4

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

Example 1

A distribution for shell thickness is defined and applied to two different shell section definitions through

the SHELL THICKNESS parameter—as noted above the distribution dist0 would not be used if it is

not referred to by a feature that supports distributions. See “Using a shell section integrated during the

analysis to define the section behavior,” Section 29.6.5, for more details. The distribution table defines

both the number of data values (one) and the physical dimension (LENGTH) of the thickness data. The

thicknesses defined in distribution dist0 are assigned only to shell elements that belong to the element

set elset1 or elset2. The default thickness (t0) defined in the first data line of dist0 will be

assigned to all elements in elset1 and elset2 that are not explicitly assigned a thickness in dist0.

*DISTRIBUTION TABLE, NAME=tab0
LENGTH

*DISTRIBUTION, NAME=dist0, LOCATION=element, TABLE=tab0
, t0

element set or number, t1

element set or number, t2

…

*SHELL SECTION, ELSET=elset1, SHELL THICKNESS=dist0

*SHELL SECTION, ELSET=elset2, SHELL THICKNESS=dist0

Example 2

A distribution for spatially varying isotropic elastic material behavior is defined and applied to a material

definition (“Linear elastic behavior,” Section 22.2.1). This material is then referred to by a solid section

definition. This is important because like any material definition, a material defined by a distribution is

not used unless it is referred to by a section definition, and then it is applied only to the elements associated

with the section definition. The distribution table defines both the number of data values (two) and the

physical dimensions (MODULUS and RATIO) of the isotropic elastic data. Other material behaviors (in

this case plasticity) can also be included in the material definition. The default elastic constants (E0 , 0)

in distribution dist1 will be assigned to all elements in elset3 that are not explicitly assigned elastic

constants in dist1.

*DISTRIBUTION TABLE, NAME=tab1
MODULUS, RATIO

*DISTRIBUTION, NAME=dist1, LOCATION=element, TABLE=tab1
, E0, 0

element set or number, E1, 1

element set or number, E2, 2

…

*MATERIAL, NAME=MAT

*ELASTIC
dist1

2.8.1–5

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

*PLASTIC
…

*SOLID SECTION, ELSET=elset3, MATERIAL=MAT

Example 3

A spatially varying local coordinate system (“Orientations,” Section 2.2.5) is defined by specifying both

spatially varying coordinates for points a and b as well as a spatially varying additional rotation angle.

This orientation is then referred to by a general shell section definition. This is important because like

any orientation definition, an orientation defined by a distribution is not used unless it is referred to by

a section definition, and then it is applied only to the elements associated with the section definition.

The distribution table for the coordinates specifies COORD3D twice to indicate that data for two three-

dimensional coordinates points must be specified for each element in the distribution.

*DISTRIBUTION TABLE, NAME=tab2
COORD3D, COORD3D

*DISTRIBUTION, NAME=dist2, LOCATION=element, TABLE=tab2
, aX0,aY0,aZ0,bX0,bY0,bZ0

element set or number, aX1,aY1,aZ1,bX1,bY1,bZ1

element set or number, aX2,aY2,aZ2,bX2,bY2,bZ2

…

*DISTRIBUTION TABLE, NAME=tab3
ANGLE

*DISTRIBUTION, NAME=dist3, LOCATION=element, TABLE=tab3
, 0

element set or number, 1

element set or number, 2

…

*ORIENTATION, NAME=ORI, DEFINITION=COORDINATES
dist2
3, dist3

*SHELL GENERAL SECTION, ELSET=elset4, ORIENTATION=ORI

Example 4

Spatially varying thicknesses and orientation angles are defined on the layers of a composite shell

element. The distribution table for the thicknesses specifies LENGTH, and the distribution table for

the orientation angles specifies ANGLE. A distribution of thicknesses is used on layers 1 and 3, while

a distribution of angles is used on layers 2 and 3.

*DISTRIBUTION TABLE, NAME=tableThick
LENGTH

*DISTRIBUTION, NAME=thickPly1, LOCATION=element, TABLE=tableThick
, t0

element set or number, t1

2.8.1–6

Abaqus Version 6.6 ID:

Printed on:

DISTRIBUTION DEFINITION

element set or number, t2

…

*DISTRIBUTION, NAME=thickPly3, LOCATION=element, TABLE=tableThick
, t0

element set or number, t1

element set or number, t2

…

*DISTRIBUTION TABLE, NAME=tableOriAngle
ANGLE

*DISTRIBUTION, NAME=oriAnglePly2, LOCATION=element,
TABLE=tableOriAngle

, 0

element set or number, 1

element set or number, 2

…

*DISTRIBUTION, NAME=oriAnglePly3, LOCATION=element,
TABLE=tableOriAngle

, 0

element set or number, 1

element set or number, 2

…

*SHELL SECTION, ELSET=elset1, COMPOSITE
thickPly1, 3, mat1, 0.

1., 3, mat2, oriAnglePly2
thickPly3, 3, mat3, oriAnglePly3

2.8.1–7

Abaqus Version 6.6 ID:

Printed on:

DISPLAY BODY DEFINITION

2.9 Display body definition

• “Display body definition,” Section 2.9.1

2.9–1

Abaqus Version 6.6 ID:

Printed on:

DISPLAY BODY DEFINITION

2.9.1 DISPLAY BODY DEFINITION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• *DISPLAY BODY

• “Defining display body constraints,” Section 15.15.3 of the Abaqus/CAE User’s Guide, in the

HTML version of this guide

Overview

A display body:

• can be two-dimensional planar, axisymmetric, or three-dimensional;

• is associated with a part instance and up to three reference nodes, such that the motion of the part

instance is governed by the motion of the reference nodes;

• is used for display purposes only and does not take part in the analysis;

• can be used to make the analysis more efficient while improving visualization of analysis results;

and

• is especially useful for mechanism or multibody dynamic analyses.

What is a display body?

A display body is a part instance that is used for display only. None of the nodes or elements of the

instance take part in the analysis, but they are still available during postprocessing. The motion of the

display body is governed by the motion of the associated reference nodes, if any. It behaves like a

rigid body since the relative positions of the nodes and elements of the part instance remain constant

throughout a simulation. The nodes and elements of the part instance cannot be used to define prescribed

conditions, interactions, constraints, etc. Section properties do not have to be assigned to the elements.

A display body is useful in cases where the physical model is different from the idealized model

used for the analysis. An idealized model may be difficult to visualize; it may help to include more

details in the model for realistic postprocessing purposes. Display bodies allow this without increasing

the analysis time.

Display bodies are especially useful in mechanism or multibody dynamics problems where rigid

parts interact with each other via connectors. In such cases a part can be represented by a very simple

rigid body and a more complex display body. In this case, the rigid body can be as simple as just a node,

along with mass and rotary inertia elements attached to that node.

Display bodies can also be used to model stationary objects that are not involved in the analysis but

aid in visualization.

2.9.1–1

Abaqus Version 6.6 ID:

Printed on:

DISPLAY BODY DEFINITION

Creating a display body

You must specify the part instance to be made a display body.

Input File Usage: *DISPLAY BODY, INSTANCE=name

Abaqus/CAE Usage: Interaction module: Create Constraint: Display body: select part instance

The reference nodes

If the display body is not associated with any reference nodes, it will remain fixed in space during the

analysis. However, you can specify that the motion of the display body should be governed by the motion

of selected reference nodes. These nodes must belong to another part instance in the assembly. They

cannot belong to another display body definition. If you specify only one reference node, the display

body will translate and rotate based on the translations and rotations of that node during the analysis.

If the reference node has no rotational degrees of freedom, the display body will not rotate during the

analysis.

If you specify three reference nodes, the display body will translate and rotate based on the

translations of all three nodes. The new position of the part instance at any time will be calculated from

the new position and orientation of the coordinate system defined by the three reference nodes: the first

node will be the origin, the second will be a point in the x-direction, and the third node will be a point

in the X–Y plane. Care should be taken when specifying the three nodes so that they do not become

colinear at any stage of the analysis. If this occurs, the position of the part instance may change abruptly

through that increment.

Input File Usage: *DISPLAY BODY, INSTANCE=name

first reference node number, second reference node number,

third reference node number

Abaqus/CAE Usage: Interaction module: Create Constraint: Display body: select part
instance, choose Follow single point or Follow three points,
click Edit, and select the reference points

Using display bodies with connectors

Display bodies can be used effectively in models containing rigid part instances that interact with each

other using connector elements. Such models need both rigid bodies and display bodies. The rigid body

should contain any nodes used by connectors, used to definemass and inertia properties, and used to apply

loads or boundary conditions. The display body should contain the nodes and elements representing the

physical part. Care should be taken to ensure that the nodes in the rigid body are not part of the display

body. The reference node of the display body will typically be the same as the rigid body reference node.

Figure 2.9.1–1(a) illustrates a model containing rigid bodies and a display body. Part instance A

is included in a display body definition. Figure 2.9.1–1(b) shows the same model without the display

body. This model will actually be involved in the analysis. The connector node and reference node form

a rigid body that represents the analysis version of part instance A. Both these nodes are assembly-level

nodes and are not included in the display body.

2.9.1–2

Abaqus Version 6.6 ID:

Printed on:

DISPLAY BODY DEFINITION

x

A

B

x

x

Connector node

Connector

Reference
node

x

B

x
Connector node

Connector

Reference
node

(a) (b)

Figure 2.9.1–1 Example of a display body.

Input file template

The following input shows how display bodies can be used in a model with rigid part instances and

connectors:

*ASSEMBLY
...
*INSTANCE, NAME=INST1
...
*END INSTANCE
*NODE, NSET=INST1-REFNODE
1001, -10, 0, 0
*NODE, NSET=INST1-CONNECTOR-NODE
1002, -5, -5, 0
*RIGID BODY, TIE NSET=INST1-CONNECTOR-NODE,
REF NODE=INST1-REFNODE
*DISPLAY BODY, INSTANCE=INST1
1001
...
*END ASSEMBLY

2.9.1–3

Abaqus Version 6.6 ID:

Printed on:

ASSEMBLY DEFINITION

2.10 Assembly definition

• “Defining an assembly,” Section 2.10.1

2.10–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

2.10.1 DEFINING AN ASSEMBLY

Products: Abaqus/Standard Abaqus/Explicit

References

• *ASSEMBLY

• *INSTANCE

• *PART

Overview

A finite element model in Abaqus can be defined as an assembly of part instances. The organization of

such a model:

• is consistent with models generated by Abaqus/CAE and displayed in the Visualization module

(Abaqus/Viewer); and

• allows reuse of part definitions, which is valuable for creating large, complex models.

By default, input files written by Abaqus/CAE are written in terms of an assembly of part instances.

For input files not written by Abaqus/CAE, the use of part and assembly definitions in the input file is

currently optional. However, since the Visualization module displays results in terms of an assembly of

part instances, an assembly and at least one part instance will be created automatically by the analysis

input file processor if they are not defined in the input file.

Introduction

A physical model is typically created by assembling various components. The assembly interface in

Abaqus allows analysts to create a finite element mesh using an organizational scheme that parallels

the physical assembly. In Abaqus the components that are assembled together are called part instances.

This section explains how to organize an Abaqus finite element model in terms of an assembly of part

instances.

The mesh is created by defining parts, then assembling instances of each part. Each part can be

used (instanced) one or more times, and each part instance has its own position within the assembly.

This organization of the model definition matches the way models are created in Abaqus/CAE, where

the assembly can be created interactively or imported from an input file (see the Abaqus/CAE User’s

Guide).

Terminology

Assembly
An assembly is a collection of positioned part instances. An analysis is conducted by defining

boundary conditions, constraints, interactions, and a loading history for the assembly.

2.10.1–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Part
A part is a finite element idealization of an object. Parts are the building blocks of an assembly

and can be either rigid or deformable. Parts are reusable; they can be instanced multiple times in

the assembly. Parts are not analyzed directly; a part is like a blueprint for its instances.

Part instance
A part instance is a usage of a part within the assembly. All characteristics (such as mesh and

section definitions) defined for a part become characteristics for each instance of that part—they are

inherited by the part instances. Each part instance is positioned independently within the assembly.

Example

A hinge can be modeled using two flanges and a pin, as shown in Figure 2.10.1–1. The flange geometry

is defined by creating a part, which is instanced twice inside the hinge assembly. Another part, the pin,

is created and instanced once. The pin is modeled as a rigid body created from an analytical surface (see

“Analytical rigid surface definition,” Section 2.3.4).

 Ref Ref Pt

The Hinge Assembly

Part instance Flange-1

Part instance Pin-1

Part instance Flange-2

Figure 2.10.1–1 The hinge assembly.

This hinge example is used throughout this section to illustrate the keyword interface for parts and

assemblies. This example is also used to illustrate the interactive assembly process (see Getting Started

with Abaqus: Interactive Edition).

2.10.1–2

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Defining parts, part instances, and the assembly

Everything defined within a part, instance, or the assembly is local to that part, instance, or the assembly.

This means that node/element identifiers and names (like set and surface names) need not be unique

throughout a model; they need only be unique within the part, instance, or assembly where they are

being defined (see “Viewing part and assembly information in the data file” in “Output,” Section 4.1.1).

Names should not use an underscore to join part instance names to element set, node set, orientation

names, or distribution names because the names may conflict with internal names used by Abaqus.

For example, consider Figure 2.10.1–2. In this model the assembly (Hinge) contains three part

instances (Flange-1, Flange-2, and Pin-1). Multiple sets named top can be defined: in this case

one is defined within the assembly and one is defined within each of the Flange part instances. The set

name top can be reused, and each set named top is independent from the others.

part instance

assembly

Hinge

Flange-1 Flange-2

set: top

set: top

Pin-1

set: top

Figure 2.10.1–2 The organization of the Hinge assembly.

Input File Usage: Use the following options to begin and end each part, instance, and assembly

definition:

*PART/*END PART

*INSTANCE/*END INSTANCE

*ASSEMBLY/*END ASSEMBLY

If any one of these options appears in an input file, they must all appear except

when you import a part instance from a previous analysis; in this case *PART

and *END PART are not required. The model must be consistently defined as

an assembly of part instances.

Defining a part

A part definition must appear outside the assembly definition. Multiple parts can be defined in a model;

each part must have a unique name.

Input File Usage: Use the following options to define a part:

*PART, NAME=PartName

Node, element, section, set, and surface definitions

*END PART

2.10.1–3

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Defining part instances

A part instance definition must appear within the assembly definition. If the part instance is not imported

from a previous analysis, each part instance must have a unique name and refer to a part name. A part

instance name of Assembly is not allowed. In addition, you can specify data that are used to position

the instance within the assembly. Give a translation and rotation for the part instance relative to the origin

of the assembly (global) coordinate system.

If the part instance is to be imported from a previous analysis, each part instance must specify the

name of the instance to be imported. For more information on defining part instances for use with the

import capability, see “Transferring results between Abaqus analyses: overview,” Section 9.2.1.

Additional sets and surfaces can be defined at the instance level, as explained later in this section.

Input File Usage: Use the following options to instance a part that is not imported from a previous

analysis:

*INSTANCE, NAME=InstanceName, PART=PartName

<positioning data>

Additional set and surface definitions (optional)

*END INSTANCE

Repeat these options, each time referring to the same part name, to instance a

part multiple times.

Use the following options to import a part instance from a previous analysis:

*INSTANCE, INSTANCE=instance-name

Additional set and surface definitions (optional)

*IMPORT

*END INSTANCE

Defining the assembly

Only one assembly can be defined in a model. All part instance definitions must appear within the

assembly definition.

Sets and surfaces can be defined at the assembly level by including the appropriate definitions within

the assembly definition.

Input File Usage: Use the following options to create an assembly:

*ASSEMBLY, NAME=name

Part instance definitions

Set and surface definitions

Connector and constraint definitions

Rigid body definitions

*END ASSEMBLY

Example

The hinge assembly shown in Figure 2.10.1–1 can be defined using the following syntax in the input file:

2.10.1–4

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

*PART, NAME=Flange

*NODE, NSET=Flange
1, ...
2, ...
...
360, ...

*ELEMENT, ELSET=Flange
1, ...
2, ...
...
200, ...

*SOLID SECTION, ELSET=Flange, MATERIAL=Steel

*ELSET, ELSET=Flat, GENERATE
176, 200, 1

*SURFACE, NAME=Flat
Flat, S1

*END PART

*PART, NAME=Pin

*NODE, NSET=RefPt
1, ...

*SURFACE, TYPE=REVOLUTION, NAME=Pin
...

*RIGID BODY, REF NODE=1, ANALYTICAL SURFACE=Pin

*END PART

*ASSEMBLY, NAME=Hinge

*INSTANCE, NAME=Flange-1, PART=Flange
<positioning data>

*END INSTANCE

*INSTANCE, NAME=Flange-2, PART=Flange
<positioning data>

*END INSTANCE

*INSTANCE, NAME=Pin-1, PART=Pin
<positioning data>

*END INSTANCE

*ELSET, ELSET=Top
...

*NSET, NSET=Output
...

*END ASSEMBLY

*MATERIAL, NAME=Steel
...

2.10.1–5

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Notes

• All of the nodes and elements that describe the Flange part are defined between the *PART and

*END PART options. The section definition (*SOLID SECTION) must also appear within the part

definition.

• At least one element set must be defined within the Flange part so that the section definition can

refer to it. Additional node and element sets can also be defined in the part.

• The Flange part is instanced twice in the Hinge assembly. Therefore, the model contains two

element sets named Flat: one belongs to part instance Flange-1, and the other belongs to part

instance Flange-2.

• When a meshed part is instanced, the node and element numbers are repeated in each part instance.

• The Pin part is instanced once. It is a rigid body created from an analytical surface (see “Analytical

rigid surface definition,” Section 2.3.4).

• Keywords can be indented to help clarify the definition of each part, part instance, and assembly.

Organizing the model definition

In a traditional Abaqus model without an assembly definition, the components of the model fall into one

of two categories: model data (step independent) and history data (step dependent). In an Abaqus model

that is organized into an assembly of part instances, all components are further categorized and must fall

within the proper level: part, assembly, instance, step, or model. Step-level components correspond to

history data; all step-dependent component definitions must appear within a step definition (see “Defining

an analysis,” Section 6.1.2). Model-level data include everything that does not fall into part-, assembly-,

instance-, or step-level data (for example, material definitions; see Figure 2.10.1–3). The proper level

within which a keyword option must appear in the input file is indicated at the top of each section in the

Abaqus Keywords Reference Guide.

Rules for defining an assembly

The organization shown in Figure 2.10.1–3 is achieved by following a few basic rules.

Referring to items between levels

When creating a model, it is often necessary to refer to something outside of the current level; for

example, a section definition within a part must refer to a material, which is defined at the model level.

Loads defined within a step must refer to sets within the assembly. But some references between levels

are not allowed; for example, a set in one part instance cannot refer to nodes in another part instance.

The following references are allowed:

2.10.1–6

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

An Abaqus model

Part Assembly

Load

Boundary
Condition

Predefined

Interaction

Interaction
Property

Material

Amplitude

Local Coordinate

Mesh

Section

System

Local
Coordinate
System

Part Instance

Surface
Mesh

Initial

Section

Constraint

Physical

Analysis Step

Output Database
Request

Restart Output
Request

Diagnostic Output
Request

Surface

Reference
Point

Surface

Section
Definition

Reference Point

Constraint

Reference
Point

FieldsPart level

Assembly level

Part instance level

Model level

Condition

Constants

Step level

Local

System
Coordinate

Model data History data

Boundary
Condition Interaction

Property

Interaction

Definition

Assignment

Section
Definition

Model Instance

Set

Set
Part Instance

Mesh

Surface

Reference
Point

Local

System
Coordinate

Set

Set

Figure 2.10.1–3 Organization of a model defined in terms of an assembly of part instances.

A definition
within:

Can refer to
items within:

an instancethe assembly

the model

an instance the model

a part the model

the assembly

an instance

a step

the model

These rules are illustrated in Figure 2.10.1–4.

Naming conventions

TheAbaqus naming conventions allow for a model that contains an assembly. When something is defined

within a part, instance, or the assembly and is referred to from outside its level, the complete name must

be used to identify it (set Flat of instance Flange-2 in assembly Hinge, for example). A complete

name is given in the input file using “dot” notation: each name in the hierarchy is separated by a “.”

(period). For example, some complete names in the Hinge assembly are

2.10.1–7

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Part instance Part instance

Assembly

Model

Part

Step

Allowable reference between levels

Figure 2.10.1–4 Allowable references between levels.

Hinge.Flange-2.Flat An element set that belongs to part

instance Flange-2.

Hinge.Output A node set that belongs to assembly

Hinge.

Such names would be used to refer to the sets from outside the assembly. The same syntax is used to

refer to individual nodes or elements.

Hinge.Flange-1.3 A node or element that belongs to part

instance Flange-1.

Hinge.Flange-2.11 A node or element that belongs to part

instance Flange-2.

As always, the context determines whether a node or element is being referred to. The “.” has special

meaning; it is used to separate the individual names in a complete name. Therefore, the “.” cannot be

used in labels such as set and surface names. For example,

*ELSET, ELSET=Set.1 Error

*ELSET, ELSET=Set1 OK

Complete names are limited to 80 characters, including the periods.

However, when referring to a name in an input file that is not defined in terms of an assembly of part

instances, the “.” in the name should be replaced by underscores. Such a situation can occur, for example,

when an element set from a previous analysis is referred to by the current analysis but the current input

file is not defined in terms of an assembly of part instances.

2.10.1–8

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Quoted labels

Labels for set and surface names can be defined by enclosing the label in quotation marks (see “Input

syntax rules,” Section 1.2.1). Any subsequent use of the label in a complete name must be enclosed in

quotation marks as well. For example,

*PART, NAME=Flange
...

*ELSET, ELSET="Set 1"
...

*END PART
...

*ELEMENT OUTPUT, ELSET=Hinge.Flange-1."Set 1"

Example

An assembly node set Top can be defined by the following syntax:

*ASSEMBLY, NAME=Hinge
...

*NSET, NSET=Top
Flange-1.2, Flange-1.5, ...
Flange-2.1, Flange-2.4, ...

*END ASSEMBLY

Since the node set is defined within the assembly level, Hinge. is not part of the complete names given

on the data lines. However, the prefix Hinge. would be required to request output for this node set,

since the output request exists within the step definition, which is outside the assembly level.

*STEP
...

*NODE OUTPUT, NSET=Hinge.Top

*END STEP

Similarly, a boundary condition could be applied to a set defined for part instance Flange-2.

*STEP
...

*BOUNDARY
Hinge.Flange-2.FixedEnd, 1, 3

*END STEP

The mesh (nodes and elements)

• The mesh can be defined either on a part or on an instance of that part (not both). Typically, parts

are meshed and instances inherit that mesh, but it is not required. If, for example, you want to use

fully integrated elements for one part instance and reduced-integration elements for another, or if

2.10.1–9

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

you want to define a more refined mesh on one part instance than on another, you must mesh the

instances separately.

– If the mesh is defined on a part, it is inherited by every instance of that part.

– If the mesh is defined on a part, it cannot be redefined (overridden) on an instance of that part.

In other words, if the node and element definitions appear within the part definition, they cannot

appear within the instance definition for that part.

– If a mesh is not defined on a part, it must be defined on every instance of that part.

• A part definition is required even if no mesh is defined on it. In such cases the empty part definition

is used only to relate various instances to each other via the instance definitions. This allows the

Visualization module to group information by part.

• Rebar must be defined within a part along with the elements that are being reinforced.

• Reference nodes can be created at the assembly level.

• Only mass, rotary inertia, capacitance, connector, spring, and dashpot elements can be created at the

part or the assembly level. All other element types must be defined within a part (or part instance).

To define assembly-level elements that refer to part-level nodes, include the part instance name

when defining the element connectivity. For example:

*ELEMENT, TYPE=MASS
1, Instance-1.10

Section definitions

• Sections must be assigned where the mesh is defined (either within a part definition or within each

instance of the part).

• If a part is meshed, all instances of that part have the same element types and are made of the same

materials.

• The set referred to by a section definition must be created at the same level as the mesh and section

definition.

• If the part is meshed, the section assignment cannot be overridden at the instance level.

Sets and surfaces

• Sets and surfaces (rigid or deformable) can be created within a part, part instance, or the assembly.

– Sets and surfaces can be created on a part if a mesh is defined on the part.

– Sets and surfaces defined on a part are inherited by each instance of that part.

– Assembly-level sets and, in Abaqus/Standard, slave surfaces can span part instances.

• If an element set or node set definition with the same name appears more than once at the same

level, the new members are appended to the set.

• A surface definition cannot appear more than once with the same surface name within the same

level.

2.10.1–10

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

• New sets and surfaces can be created on a part instance. If a set or surface is defined on a part

instance and a set or surface with that name was not defined on the part, the set or surface is added

to the instance.

• Sets and surfaces cannot be redefined on a part instance. If a set or surface is defined on a part

instance and a set or surface with that name was also defined on the part, an error will be generated.

• Sets and surfaces are not step dependent. All sets and surfaces must be defined within a part, part

instance, or the assembly.

Defining assembly-level sets

You can refer to a part instance from an element set or node set definition as a shortcut to using the

complete name when defining assembly-level sets. Specify the name of the instance that contains the

specified elements or nodes. To add elements or nodes from more than one instance to the set, repeat

the element set or node set definition (see “Node definition,” Section 2.1.1, and “Element definition,”

Section 2.2.1, for more details).

Input File Usage: Use the following options to define assembly-level sets:

*NSET, NSET=NsetName, INSTANCE=InstanceName

*ELSET, ELSET=ElsetName, INSTANCE=InstanceName

Adding sets and surfaces on restart

• Existing sets and surfaces cannot be redefined on restart.

• Analytical surfaces cannot be created on restart.

• New sets and surfaces (excluding analytical surfaces) can be added to part instances or the assembly

on restart. To add a set or surface, give the complete name. As in the original analysis, you can refer

to the part instance name from the element set or node set definition to define an assembly-level set

in the restart analysis. For example,

*HEADING

*RESTART, READ, STEP=1
** Add element set "Bottom" to assembly "Hinge":

*ELSET, ELSET=Hinge.Bottom
Flange-1.40, Flange-2.99

** Add node set "Top" to assembly "Hinge":

*NSET, NSET=Hinge.Top, Instance=Flange-1
21, 22, 23, 24, 26, 28, 31

*NSET, NSET=Hinge.Top, Instance=Flange-2
21, 22, 23, 24, 26, 28, 31

**
** Add element set "Right" to part instance "Flange-2":

*ELSET, ELSET=Hinge.Flange-2.Right
16, 18, 20, 29

**

2.10.1–11

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

** Add surface "surfR" to part instance "Flange-2":

*SURFACE, TYPE=ELEMENT, NAME=Hinge.Flange-2.surfR
Right, S1
**

*STEP
...

*END STEP

Rigid bodies

Rigid bodies can be defined at the part or assembly level.

• To define a rigid body at the part level, include the rigid body and rigid body reference node

definitions within the part definition.

– Rigid elements, deformable elements, and analytical surfaces cannot be combined within a

part.

– If a rigid body is defined within a part, all deformable, rigid, or connector elements in the part

must belong to the rigid body.

– Mass, rotary inertia, spring, dashpot, and heat capacitance elements can be included in a part

that contains a rigid body definition, but these elements cannot belong to the rigid body.

– To create a part-level rigid body from an analytical surface, include the surface definitionwithin

the part definition. Only one analytical surface is allowed per part.

• To define a rigid body at the assembly level, include the rigid body and reference node definitions

within the assembly definition.

– A rigid body can be created at the assembly level from any combination of rigid elements,

deformable elements, and up to one analytical surface.

– The rigid body definition can refer to assembly-level or part-level sets.

– A part that contains a rigid body definition cannot be included in an assembly-level rigid body.

• You can define a discrete surface at the part or assembly level independent from the rigid body

definition.

• An analytical surface definition can appear only within a part definition, even if the rigid body is

defined at the assembly level.

Materials

• Materials are defined at the model level so that they can be reused. The material definition cannot

appear within a part, part instance, or the assembly.

• All materials in a model must have unique names.

Interactions

An interaction is a relationship between surfaces or between a surface and its environment. Interactions

in Abaqus include contact, radiation, film conditions, and element foundations.

2.10.1–12

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

• Interactions are defined at the model level in Abaqus/Standard and at the model level or within steps

in Abaqus/Explicit; they cannot be defined within a part, assembly, or instance.

Constraints

Constraints are inflexible couplingmechanisms such asMPCs and equations (see “Kinematic constraints:

overview,” Section 35.1.1).

• Constraints can be defined within a part or the assembly. They can be defined within a part instance

if the mesh is defined within the part instance. Constraints should be defined at the assembly level

if they constrain the motion of one part instance relative to another.

• Constraints are translated and rotated according to the positioning data given for a part instance.

Distributions

Distributions are used to specify arbitrary spatial variations of selected element properties, material

properties, local coordinate systems, and spatial variations of initial contact clearances (see “Distribution

definition,” Section 2.8.1).

• Distributions should be defined at the level at which they are used. For example, if a distribution is

used to define shell thicknesses, the distribution should be defined at the same level as the section

definition that refers to it. If a distribution is used to define a material property, it should be defined

at the model level with the material definition.

Examples

In the following examples most parameters and data lines are omitted for clarity.

Example 1 Notes

*PART, NAME=PartA

*NODE ...

*ELEMENT ...

The mesh is defined on the part.

*SOLID SECTION, ELSET=setA,

MATERIAL=Mat1

Section assignment must appear within the

part level if the mesh is defined on the part.

*SURFACE, NAME=surf1

setB, ...

error Element set setB is not defined at the part

level.

*ELSET, ELSET=setA

*NSET, NSET=setA

*SURFACE, NAME=surf2

setA, ...

Sets and surfaces can be defined on the part

since the mesh is defined on the part.

*END PART

*ASSEMBLY, NAME=Assembly-1

*INSTANCE, NAME=I1, PART=PartA

2.10.1–13

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Example 1 Notes

*NODE error

*ELEMENT error

*SOLID SECTION error

Mesh and section assignment cannot be

defined on the instance if they are defined

on the part.

*ELSET, ELSET=setA error

*NSET, NSET=setA error

*SURFACE, NAME=surf2 error

Sets and surfaces cannot be redefined on the

instance.

*ELSET, ELSET=setB

*NSET, NSET=setB

New sets and surfaces can be defined on the

instance.

*SURFACE, NAME=surf3

setA, ...

Set and surface definitions can refer to

inherited sets.

*END INSTANCE

*END ASSEMBLY

In the second example the instances are meshed.

Example 2 Notes

*PART, NAME=PartB

*END PART

The *PART and *END PART options are

required, even when the instance is meshed.

*PART, NAME=PartC

*SOLID SECTION, ... error

*END PART

Section cannot be defined on the part if

mesh is not defined on the part.

*ASSEMBLY, NAME=Assembly-1

*INSTANCE, NAME=I1, PART=PartB

*NODE ...

*ELEMENT ...

The mesh is defined on the part instance.

*SOLID SECTION, ELSET=setA,

MATERIAL=Mat1

Section assignment must appear within the

same level as the mesh definition.

*ELSET, ELSET=setA

*NSET, NSET=setA

*SURFACE, NAME=surf2

setA, ...

Sets and surfaces are defined on the instance

since the mesh is defined on the instance.

*END INSTANCE

2.10.1–14

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Example 2 Notes

*INSTANCE, NAME=I3, PART=PartC

<positioning data>

*END INSTANCE

error The mesh and section must be defined for

each instance since the part is not meshed.

*END ASSEMBLY

Coordinate system definitions

Abaqus provides several methods for defining local coordinate systems.

Nodal coordinate systems

You can define nodal coordinates in a local coordinate system (see “Specifying a local coordinate

system in which to define nodes” in “Node definition,” Section 2.1.1). The coordinate system can

be defined within a part definition to define the nodes in that part. The nodal coordinate system

definition remains in effect until another nodal coordinate system is defined within the same level

or until the level ends.

Nodal transformations

A nodal transformation is used for applying loads and boundary conditions (see “Transformed

coordinate systems,” Section 2.1.5). It can be defined at the part or assembly level to define a local

coordinate system for application of loads and boundary conditions or for the definition of linear

constraint equations.

User-defined orientations

A user-defined orientation is used for defining material properties, coupling, connectors, and rebar

(see “Orientations,” Section 2.2.5). It can be defined at the part level for reference from a section,

connector, rebar, or coupling definition. An orientation definition can also be used at the assembly

level for reference from a connector or coupling definition.

Distributions

Distributions can be used to specify arbitrary spatial variations of local coordinate systems for

continuum and shell elements (see “Orientations,” Section 2.2.5). A distribution used by an

orientation should be defined at the level in which the orientation is defined.

Normal definitions at nodes

Normals can be defined at nodes as part of the node definition for beam, pipe, and shell elements

or with a user-specified normal definition (see “Normal definitions at nodes,” Section 2.1.4). These

normals can be defined at the part or assembly level.

A local coordinate system defined for a part using any of these methods is inherited by all instances of

the part.

2.10.1–15

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Translating and rotating a part instance

The assembly’s coordinate system is the global coordinate system. You can position part instances within

the assembly by giving a translation and/or rotation relative to the global origin. Specify a translation

by giving a translation vector. Specify a rotation by giving two points, a and b, to define a rotation axis

plus a right-handed angular rotation around that axis.

Local coordinate systems defined within a part or part instance will be translated and rotated

according to the specified positioning data, as shown in Figure 2.10.1–5. (In this figure details such as

element and section definitions are omitted for clarity.) Results given in a local coordinate system are

output in the transformed local system. Equations will also be translated and rotated according to the

positioning data for an instance. All data within a part (or part instance) definition are defined relative

to the part’s local coordinate system; positioning data are applied to a part instance after everything

within that instance is defined.

Limitations

The following capabilities are not supported in a model defined in terms of an assembly of part instances:

• “Mapping a set of nodes from one coordinate system to another” in “Node definition,” Section 2.1.1

• “Using auxiliary analyses to generate shape variations” in “Parametric shape variation,”

Section 2.1.2

• “Symmetric model generation,” Section 10.4.1

• “Transferring results from a symmetric mesh or a partial three-dimensional mesh to a full three-

dimensional mesh,” Section 10.4.2

• “Reading the element matrices from an Abaqus/Standard results file” in “User-defined elements,”

Section 32.15.1

The substructure library is not organized in terms of an assembly of part instances, so substructures

cannot be generated from models that have an assembly defined. None of the substructure options are

supported in models that have an assembly defined.

Input file template

This template shows an input file that is written in terms of parts and assemblies with the part instances

defined in this analysis. For templates that show how to import a part instance from a previous

analysis to transfer model data and results, see “Transferring results between Abaqus/Explicit and

Abaqus/Standard,” Section 9.2.2, and “Transferring results from one Abaqus/Standard analysis to

another,” Section 9.2.3.

*HEADING

*PART, NAME=Part-1
Node, element, section, set, and surface definitions

Connector and constraint definitions

*END PART

*PART, NAME=Part-2

2.10.1–16

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

Assembly-1 coordinate system

Instance-1

*Part, Name=P
*System

*End part

*Assembly, Name=Assembly-1
*Instance, Name=Instance-1, Part=Q
<positioning data>

*Instance, Name=Instance-2, Part=P
<positioning data>

*End assembly

*Node Nodes defined in local coordinate system

Instances positioned relative
to global coordinate system

*Part, Name=Q

*End part
*Node

Local coordinate system only applies
within this part definition

Position given relative to the assembly (global) coordinate system
(defined by ∗INSTANCE)

*End Instance

*End Instance
*Instance, Name=Instance-3, Part=P
<positioning data>

*End Instance

Instance-3

Instance-2

Part-local coordinate system (defined by ∗NORMAL, ∗ORIENTATION,
∗SYSTEM, or ∗TRANSFORM)

Local coordinate system defined relative to part coordinate system

Nodes defined in part coordinate system

Figure 2.10.1–5 Defining local coordinate systems.

2.10.1–17

Abaqus Version 6.6 ID:

Printed on:

DEFINING AN ASSEMBLY

**The instance is meshed, so the part definition is empty

*END PART

*MATERIAL, NAME=mat1
Suboptions and data lines to define this material

*ASSEMBLY, NAME=Assembly-1

*INSTANCE, NAME=i1, PART=Part-1
<positioning data>

Additional set and surface definitions (optional)

*END INSTANCE

*INSTANCE, NAME=i2, PART=Part-2
<positioning data>

Node, element, section, set, and surface definitions

Connector and constraint definitions

*END INSTANCE
Assembly-level set and surface definitions

Assembly-level connectors and constraints

Assembly-level reference node definitions

Assembly-level rigid body definitions

*END ASSEMBLY

*MATERIAL, NAME=mat2
Suboptions and data lines to define this material

*AMPLITUDE

*INITIAL CONDITIONS

*BOUNDARY
Zero-valued boundary conditions

*PHYSICAL CONSTANTS

*CONNECTOR BEHAVIOR
Suboptions and data lines to define this connector behavior

Interaction and interaction property definitions in Abaqus/Standard or Abaqus/Explicit

*STEP
Loads and boundary conditions

Predefined field definitions

Output requests

Contact interaction definitions in Abaqus/Explicit

*END STEP

2.10.1–18

Abaqus Version 6.6 ID:

Printed on:

MATRIX DEFINITION

2.11 Matrix definition

• “Defining matrices,” Section 2.11.1

2.11–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

2.11.1 DEFINING MATRICES

Product: Abaqus/Standard

References

• “Generating structural matrices,” Section 10.3.1

• *MATRIX ASSEMBLE

• *MATRIX GENERATE

• *MATRIX INPUT

• *MATRIX OUTPUT

Overview

A matrix:

• can be used to represent stiffness, mass, viscous damping, or structural damping for a part of the

model or for the entire model;

• is defined by giving it a unique name and by specifying matrix data, which may be scaled;

• can be symmetric or unsymmetric;

• can be given in text format in lower triangular, upper triangular, or square form or read from binary

.sim files generated by the matrix generation procedure;

• can be used to provide linear elastic response with large translations but not large rotations;

• can be used in static and natural frequency extraction procedures;

• can be used in matrix generation and substructure generation procedures;

• can be used in transient modal dynamics, mode-based steady-state dynamics, subspace-based

steady-state dynamics, random response, response spectrum, and complex eigenvalue extraction

procedures that use the SIM architecture;

• can have loads, boundary conditions, and constraints applied directly to any matrix nodal degrees

of freedom;

• can be used in submodeling analysis; and

• cannot be used in direct steady-state dynamic or mode-based analyses that do not use the SIM

architecture.

What is a matrix in Abaqus/Standard?

Designing complex models of structures like automobiles typically involves subcontracting the work

on various parts. When the entire model has to be put together, information about the parts needs to

be exchanged between different vendors. Often, to avoid the exchange of proprietary information, this

information is exchanged in terms of matrices representing the stiffness, mass, and damping for each

2.11.1–1

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

part. During an analysis these matrices are added to the corresponding global finite element matrices to

complete the assembly of the entire model.

Abaqus/Standard provides the capability to input stiffness, mass, viscous damping, and structural

damping matrices directly. You can define as many different matrices as are necessary to build the model.

Including matrices in a model

You must assign a name to the matrix to include it in the matrix usage model.

Input File Usage: *MATRIX INPUT, NAME=name

Specifying a matrix type

For matrices given in text format, you can specify the matrix type as symmetric (default) or unsymmetric.

If symmetric, it can be entered as a lower triangular, upper triangular, or square matrix.

For matrices read from a .sim file, the matrix type is automatically set according to the matrix data

stored on the SIM database.

Input File Usage: Use one of the following options to specify the type for matrices given in text

format:

*MATRIX INPUT, NAME=name, TYPE=SYMMETRIC

*MATRIX INPUT, NAME=name, TYPE=UNSYMMETRIC

Scaling the matrix data

You can define a multiplication scale factor for all matrix entries.

Input File Usage: *MATRIX INPUT, NAME=name, SCALE FACTOR=sval

Providing matrix data directly

You can specify data directly to define a symmetric matrix in lower triangular, upper triangular, or square

format. For a square matrix to be symmetric, corresponding entries above and below the diagonal must

have exactly the same values. You can specify data directly to define an unsymmetric matrix by providing

data for each matrix entry.

Input File Usage: *MATRIX INPUT

row node label, degree of freedom for row node, column node label,

degree of freedom for column node, matrix entry

Repeat this data line to specify data for each matrix entry.

Reading the matrix data in text format from an alternate file

Matrix data in text format can be contained in an alternate file. Typically, an alternate file is used for large

matrices. To ensure acceptable performance, the data lines in the alternate file are read without extensive

checking for data format. You should make sure that the data entries are specified in the proper format

without any comments or blank lines. Matrix data output in text format can be generated in the matrix

generation procedure (see “Output” in “Generating structural matrices,” Section 10.3.1).

Input File Usage: *MATRIX INPUT, NAME=name, INPUT=input_file_name

2.11.1–2

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

Reading the matrix data from the SIM database

Matrix data in binary format can be read from the .sim file generated by the matrix generation procedure

(see “Introduction” in “Generating structural matrices,” Section 10.3.1). The .sim file can contain

stiffness, mass, viscous damping, and structural damping matrices. You specify each matrix to be read

from the .sim file.

Input File Usage: Use the following options:

*MATRIX INPUT, NAME=stif_name, INPUT=sim_file_name,

MATRIX=STIFFNESS

*MATRIX INPUT, NAME=mass_name, INPUT=sim_file_name,

MATRIX=MASS

*MATRIX INPUT, NAME=dmpv_name, INPUT=sim_file_name,

MATRIX=VISCOUS DAMPING

*MATRIX INPUT, NAME=dmps_name, INPUT=sim_file_name,

MATRIX=STRUCTURAL DAMPING

Defining the stiffness, mass, and damping with matrices included in a model

You can assemble the stiffness, mass, viscous damping, and structural damping matrices that you have

specified into the corresponding global finite element matrices for the model. Many matrices with

different names can be defined and assembled.

Input File Usage: Use the following option to assemble matrices generated from the same original

model:

*MATRIX ASSEMBLE, STIFFNESS=stif_name, MASS=mass_name,

VISCOUS DAMPING=dmpv_name,

STRUCTURAL DAMPING=dmps_name

To assemble matrices generated from different original models, repeat the

*MATRIX ASSEMBLE option for each model.

Connecting a part of a model represented by matrices

A part of the model represented by user-defined matrices is connected to other parts and finite elements

through shared nodes. You must define these nodes directly in the model (see “Node definition,”

Section 2.1.1). In addition, there may be nodes that are used only by matrices but that are not shared.

You do not need to define nodes that are not shared and have no loads, boundary conditions, or

constraints associated with them; these nodes will be defined for you and placed at the origin of the

global coordinate system.

Input File Usage: Use the following option to define the shared nodes directly:

*NODE

2.11.1–3

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

Remapping user-defined nodes in assembled matrices

The nodes defined in the assembled matrices can be remapped (renamed) to different node labels in the

matrix usage model. You must define all the new node labels in the matrix usage model, create a node

set from them, and specify this node set when assembling the matrices. The size of the node set and the

order of the nodes in the set must fully correspond to the combined set of nodes of all the matrices that

are assembled. The matrix nodes are assumed to be sorted in ascending order of their original labels that

were defined at generation or specified in the matrix data.

Input File Usage: Use the following option to create a node set for the matrix nodes:

*NSET, NSET=nset_name, UNSORTED

Use the following option to assemble matrices with node remapping:

*MATRIX ASSEMBLE, STIFFNESS=stif_name, MASS=mass_name,

VISCOUS DAMPING=dmpv_name,

STRUCTURAL DAMPING=dmps_name, NSET=nset_name

Multiple instantiation of matrices

With the node remapping feature, the same matrix can be used multiple times in the matrix usage model.

You define the matrix once and assemble it several times, specifying the relevant node sets for remapping.

Input File Usage: *MATRIX INPUT, NAME=name

*MATRIX ASSEMBLE, STIFFNESS=name

*MATRIX ASSEMBLE, STIFFNESS=name, NSET=nset1_name

*MATRIX ASSEMBLE, STIFFNESS=name, NSET=nset2_name

Internal nodes in matrix data

Internal nodes are nodes with internal degrees of freedom associated with them (for example, Lagrange

multipliers and generalized displacements) that are created internally by Abaqus/Standard. By definition,

user-defined nodes have positive node labels, and internal nodes have negative node labels. You can use

the matrix generation procedure to designate some of the user-defined nodes as internal nodes to hide

them in the matrix usage model (see “Introduction” in “Generating structural matrices,” Section 10.3.1).

When using matrix data that contains internal nodes, these nodes are remapped automatically to

unique internal node labels in the matrix usage model. For assembled matrices that originate from the

same model, the internal nodes are shared. For assembled matrices that originate from different models,

the internal nodes are mapped to different internal nodes in the matrix usage model, even if they have

the same negative node labels.

Using matrices in nonlinear analyses

When you use matrices in a nonlinear analysis procedure, nonlinearities are not accounted for. Since

the matrix data remain unchanged during the analysis, only linear elastic material behavior can be

represented and only large translations can be modeled correctly in a geometrically nonlinear analysis.

2.11.1–4

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

Changes to the matrix due to large rotations or load stiffness are not computed in a geometrically

nonlinear analysis.

Using matrices in linear perturbation analyses

Matrices can be used in a static perturbation analysis as well as in a natural frequency extraction analysis

using the Lanczos or AMS eigensolver. For certain quantities (such as participation factors and global

inertia properties) to be computed properly, the coordinates of the nodes associated with the matrices

should be defined in the model using matrices. Matrices can also be used in modal analysis procedures

using the high-performance SIM architecture; namely, steady-state dynamic, modal dynamic, random

response, response spectrum, and complex frequency extraction analyses. Matrices can be used in the

substructure generation and matrix generation procedures as well.

Matrices cannot be used in the direct-solution steady-state dynamic analysis procedure and in modal

procedures that are not based on the high-performance SIM architecture.

Constraints and transformations

Kinematic constraints (for example, coupling constraints, linear constraint equations, multi-point

constraints, or surface-based tie constraints) can be applied to any nodes in a model containing matrices.

Since kinematic constraints in Abaqus/Standard are usually imposed by eliminating degrees of freedom

at the dependent nodes, matrix nodes should not be used as dependent nodes.

To apply contact constraints on matrix nodes, a node-based surface must be defined on these nodes

and this surface should be used as the slave surface in the contact pair definition.

Nodal transformations defined at nodes that appear in the matrix do not affect the matrix. The

matrix entries corresponding to these nodes are assumed to be in the local coordinates defined by the

nodal transformations.

Initial conditions

Initial conditions can be specified as usual; however, only node-based initial conditions can be applied

to nodes that appear in matrices. See “Initial conditions in Abaqus/Standard and Abaqus/Explicit,”

Section 34.2.1.

Boundary conditions

Boundary conditions can be specified as usual. See “Boundary conditions in Abaqus/Standard and

Abaqus/Explicit,” Section 34.3.1. Matrix nodes can be defined as driven nodes in a submodel analysis

(see “Submodeling: overview,” Section 10.2.1); they cannot be defined as driving nodes in a global

model. For shell-to-solid submodeling, matrix nodes that are defined as driven nodes are treated as lying

within the center zone no matter how far they are from the shell reference surface.

Loads

Concentrated nodal forces can be applied at displacement degrees of freedom (1–6) of any node as usual.

Distributed pressure forces can be applied to surface elements defined over matrix nodes (see “Surface

2.11.1–5

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

elements,” Section 32.7.1). Body forces cannot be applied to parts of the model represented by matrices.

User-defined loads can be applied with the same restrictions as above for distributed pressure forces and

body forces.

Predefined fields can be applied at any nodes as usual (see “Predefined field variables” in “Predefined

fields,” Section 34.6.1, and “Predefined temperature” in “Predefined fields,” Section 34.6.1); however,

matrix data are not affected by predefined fields. For example, if temperatures are specified as a

predefined field on nodes that appear on a matrix, only the elements that share these nodes with the

matrix experience thermal strains if thermal expansion is specified for those elements. The matrix does

not experience any thermal strains, but it may experience linear elastic forces due to displacements at

shared nodes.

Elements

All elements that can be used in static stress analysis are available (see “Choosing the appropriate element

for an analysis type,” Section 27.1.3).

Output

All nodal output variables that apply to static analysis are available (see “Abaqus/Standard output

variable identifiers,” Section 4.2.1).

Limitations

The following are known limitations to using matrices:

• Matrices cannot be used in a model containing parts and assemblies.

• Matrices containing acoustic pressure and mechanical degrees of freedom will disable the coupled

acoustic structural eigenvalue extraction.

• By default, using the matrix data containing internal nodes in text format is not supported. Usage

of such matrices in text format can be allowed for some special cases. This feature should be used

with caution.

• In an Abaqus/Standard analysis using matrix input data for the mass matrix, inertia quantities for

the global model that are reported in the data (.dat) file, including coordinates of the center of

mass and moments of inertia, may be calculated incorrectly.

• Matrices cannot be used in analyses with inertia relief loads.

• Matrices cannot be used in direct steady-state dynamic analysis or in mode-based analyses that do

not use the SIM-based architecture.

Input file template

*HEADING
…

*NODE
Data lines to specify nodes

2.11.1–6

Abaqus Version 6.6 ID:

Printed on:

DEFINING MATRICES

*NSET, NSET=NSET1, UNSORTED
Data lines to specify a node set with the nodes in a particular order

…

*BOUNDARY
Data lines to specify zero-valued boundary conditions

*MATRIX INPUT, NAME=MAT1, SCALE FACTOR=sval
Data lines to specify a stiffness matrix

*MATRIX INPUT, NAME=MAT2, SCALE FACTOR=sval
Data lines to specify a mass matrix

*MATRIX INPUT, NAME=MAT3, SCALE FACTOR=sval
Data lines to specify a viscous damping matrix

*MATRIX INPUT, NAME=MAT4, INPUT=input_file_name

*MATRIX INPUT, NAME=MAT5, INPUT=input_file_name

*MATRIX INPUT, NAME=MAT6, INPUT=sim_file_name, MATRIX=STIFFNESS

*MATRIX ASSEMBLE, STIFFNESS=MAT1, MASS=MAT2,
VISCOUS DAMPING=MAT3, STRUCTURAL DAMPING=MAT4

*MATRIX ASSEMBLE, STIFFNESS=MAT6, MASS=MAT5

*MATRIX ASSEMBLE, STIFFNESS=MAT6, MASS=MAT5, NSET=NSET1

*STEP(,NLGEOM)(,PERTURBATION)
Use NLGEOM to include nonlinear geometric effects; it will remain active in all subsequent steps.

*STATIC

*BOUNDARY
Data lines to prescribe zero-valued or nonzero boundary conditions

*CLOAD and/or *DLOAD
Data lines to specify loads

*END STEP

*STEP

*FREQUENCY

*BOUNDARY
Data lines to prescribe zero-valued or nonzero boundary conditions

*END STEP

*STEP

*STEADY STATE DYNAMICS

*CLOAD and/or *DLOAD
Data lines to specify loads

*END STEP

2.11.1–7

Abaqus Version 6.6 ID:

Printed on:

JOB EXECUTION

3. Job Execution

Execution procedures: overview 3.1

Execution procedures 3.2

Environment file settings 3.3

Managing memory and disk resources 3.4

Parallel execution 3.5

File extension definitions 3.6

FORTRAN unit numbers 3.7

Abaqus Version 6.6 ID:

Printed on:

EXECUTION PROCEDURES: OVERVIEW

3.1 Execution procedures: overview

• “Execution procedure for Abaqus: overview,” Section 3.1.1

3.1–1

Abaqus Version 6.6 ID:

Printed on:

EXECUTION PROCEDURE: OVERVIEW

3.1.1 EXECUTION PROCEDURE FOR Abaqus: OVERVIEW

Overview

Abaqus is executed by using the Abaqus execution procedure. In the following discussion the command

to run the execution procedure is assumed to be abaqus. However, you can customize the execution

procedure to run Abaqus using any alias you choose. (See the Abaqus Installation and Licensing Guide

for details.)

The abaqus command is described in “Execution procedures,” Section 3.2. The following sections

contain further information about running Abaqus jobs:

• “Using the Abaqus environment settings,” Section 3.3.1

• “Managing memory and disk use in Abaqus,” Section 3.4.1

• “Parallel execution,” Section 3.5

• “File extensions used by Abaqus,” Section 3.6.1

• “FORTRAN unit numbers used by Abaqus,” Section 3.7.1

Conventions

The following conventions are used in these sections:

• Each discussion includes a “Command summary” section that provides the syntax for the command

in the left column and the syntax for its options in the right column. The full command must appear

first, followed by the options. In some cases the command has multiple words, such as abaqus cae;

you must enter all words of the command before issuing any option statements.

• Options are presented in boldface. They can appear in any order and can be abbreviated.

• Default options are underlined (__).

• Items enclosed in square brackets ([]) are optional.

• Items appearing in a list separated by bars (|) are mutually exclusive.

• One value must be selected from a list of values enclosed by curly brackets ({ }).

• You must supply values in italics.

• Blanks are used as separators between options and must not precede nor follow an equal sign.

• An alternate syntax of -option value can be used instead of the option=value format.

The abaqus procedure will prompt for any information required that is not provided on the command

line. If abaqus is typed with no options, prompts are issued for all options.

3.1.1–1

Abaqus Version 6.6 ID:

Printed on:

EXECUTION PROCEDURE: OVERVIEW

Environment settings

The Abaqus execution procedure uses “environment” settings to customize the execution of a job.

These settings can be changed using the Abaqus environment file, abaqus_v6.env. The execution
procedure looks for this file in two places other than the installation location when running a job. The

first place it looks is in your home directory. If it exists, the settings in this file will be applied to all

jobs that you run. The second place the execution procedure looks is in the current directory. If the file

exists, the settings defined there will be applied to all jobs run from that directory.

If the same job parameter is defined in more than one environment file or is defined more than once

within the same environment file, the last definition encountered will be used. Some exceptions to this

rule are noted in “Using the Abaqus environment settings,” Section 3.3.1. These environment files can

be used to customize the behavior of Abaqus, including modification of the default options. See “Using

the Abaqus environment settings,” Section 3.3.1, for further information on the environment files.

Selecting TCP/UDP port numbers

Several of the execution procedure command line options, such as port and listenerport, require that

you specify a port number. TCP/UDP port numbers can range from 0 to 65535.

Port numbers 0 to 1023 are well-known ports used by system processes (such as FTP, SSH, SMTP,

etc.) and should never be used. Port numbers 1024 to 49151 are registered ports with the Internet

Assigned Number Authority (IANA) by software vendors. These ports can be used, but you should be

careful that you are not conflicting with any software installed on your system that may be using this

port. Port numbers 49152 to 65535 are unreserved and can be used freely, as long as no other application

uses them.

Ports may be blocked by a firewall. Contact your system administrator to ensure that the ports that

you want to specify are not blocked.

You can use the netstat command to obtain information on TCP/UDP network connections.

3.1.1–2

Abaqus Version 6.6 ID:

Printed on:

EXECUTION PROCEDURES

3.2 Execution procedures

• “Obtaining information,” Section 3.2.1

• “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2

• “SIMULIA Co-Simulation Engine director execution,” Section 3.2.3

• “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD co-simulation execution,” Section 3.2.4

• “Dymola model execution,” Section 3.2.5

• “Abaqus/CAE execution,” Section 3.2.6

• “Abaqus/Viewer execution,” Section 3.2.7

• “Python execution,” Section 3.2.8

• “Parametric studies,” Section 3.2.9

• “Abaqus documentation,” Section 3.2.10

• “Licensing utilities,” Section 3.2.11

• “ASCII translation of results (.fil) files,” Section 3.2.12

• “Joining results (.fil) files,” Section 3.2.13

• “Querying the keyword/problem database,” Section 3.2.14

• “Fetching sample input files,” Section 3.2.15

• “Making user-defined executables and subroutines,” Section 3.2.16

• “Input file and output database upgrade utility,” Section 3.2.17

• “Generating output database reports,” Section 3.2.18

• “Joining output database (.odb) files from restarted analyses,” Section 3.2.19

• “Combining output from substructures,” Section 3.2.20

• “Combining data from multiple output databases,” Section 3.2.21

• “Network output database file connector,” Section 3.2.22

• “Mapping thermal and magnetic loads,” Section 3.2.23

• “Element matrix assembly utility,” Section 3.2.24

• “Fixed format conversion utility,” Section 3.2.25

• “Translating Nastran bulk data files to Abaqus input files,” Section 3.2.26

• “Translating Abaqus files to Nastran bulk data files,” Section 3.2.27

• “Translating ANSYS input files to Abaqus input files,” Section 3.2.28

• “Translating PAM-CRASH input files to partial Abaqus input files,” Section 3.2.29

• “Translating RADIOSS input files to partial Abaqus input files,” Section 3.2.30

• “Translating Abaqus output database files to Nastran Output2 results files,” Section 3.2.31

• “Translating LS-DYNA data files to Abaqus input files,” Section 3.2.32

3.2–1

Abaqus Version 6.6 ID:

Printed on:

EXECUTION PROCEDURES

• “Exchanging Abaqus data with ZAERO,” Section 3.2.33

• “Translating Abaqus data to msc.adams modal neutral files,” Section 3.2.34

• “Encrypting and decrypting Abaqus input data,” Section 3.2.35

• “Job execution control,” Section 3.2.36

3.2–2

Abaqus Version 6.6 ID:

Printed on:

OBTAINING INFORMATION

3.2.1 OBTAINING INFORMATION

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The Abaqus execution procedure can be used to obtain help regarding command syntax or information

about the installation and computing environment.

Command summary

abaqus {help | information={environment | local | memory |
release | support | system | all} [job=job-name] |
whereami}

Command line options

help

This option prints a summary of the abaqus command syntax.

information

This option writes information about the installation and the environment that is in effect to the screen.

The following information is output for all information requests: the current release, the directory in

which Abaqus is located, and the directory in which the information files are located.

If information=environment, the current settings of the environment file options are displayed.

If information=local, the local installation notes are output.

If information=memory, some suggestions for setting memory parameters for analysis jobs are

output.

If information=release, information is provided about where to locate the current release notes.

If information=support, information on diagnosing hardware-related issues is provided. Please

send this information to systems support when requesting assistance.

If information=system, information is provided about system software and hardware resources

(operating system level, compiler levels, processor type, graphics board, memory, etc).

If information=all, information on all of the above information topics is output.

job

If a job-name is specified, the information text is written to the file job-name.log.

3.2.1–1

Abaqus Version 6.6 ID:

Printed on:

OBTAINING INFORMATION

whereami

This option prints the location of the Abaqus release directory.

Examples

Use the following command to display the local installation notes:

abaqus information=local

The following command will write the local installation notes to the file support.log:

abaqus information=local job=support

3.2.1–2

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

3.2.2 Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD EXECUTION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD are executed by running the Abaqus execution

procedure. Several parameters can be set either on the command line or in the environment file (see

“Using the Abaqus environment settings,” Section 3.3.1). Alternatively, you can use the convenient

Abaqus/CAE user interface to submit an Abaqus analysis from an input file and set the analysis

parameters; see “Understanding analysis jobs,” Section 19.2 of the Abaqus/CAE User’s Guide.

Abaqus enforces a character limit on file names. For any command line reference to a file, the total

length of the file name, including the path description, cannot exceed 256 characters.

Command summary

abaqus job=job-name

[analysis | datacheck | parametercheck | continue |
convert={select | odb | state | all} |
recover | syntaxcheck | information={environment | local |
memory | release | support | system | all}]
[input=input-file] [user={source-file | object-file}]
[oldjob=oldjob-name] [fil={append | new}]
[globalmodel={results file-name | output database file-name}]
[cpus=number-of-cpus] [parallel={domain | loop}]
[domains=number-of-domains]
[dynamic_load_balancing]
[mp_mode={mpi | threads}]
[standard_parallel={all | solver}]
[gpus=number-of-gpgpus] [memory=memory-size]
[interactive | background | queue=[queue-name] [after=time]]
[double={explicit | both | off | constraint}]
[scratch=scratch-dir]
[output_precision={single | full}]
[field={odb | exodus | nemesis}]
[history={odb | csv}]
[port=co-simulation port-number] [host=co-simulation hostname]

3.2.2–1

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

[csedirector=Co-Simulation Engine director host:port-number]
[timeout=co-simulation timeout value in seconds]
[unconnected_regions={yes | no}]

Command line options

Required option

job

The value of this option specifies the name of all files generated during the run and the name of files that

are read in the continue, convert, and recover phases.

If this option is omitted from the command line, you will be prompted for its value (except when

only the informational options described in “Obtaining information,” Section 3.2.1, are used). If the

input option is not supplied, the procedure will look for an input file called job-name.inp in the current

directory.

Mutually exclusive options that determine which phases of an analysis are performed

All options are order independent. If none of these options is present, the analysis option is assumed.

The convert option is an exception to the mutual exclusion rule: convert can appear with any

option except datacheck, parametercheck, syntaxcheck, and information. The convert and

parametercheck options are not available for Abaqus/CFD.

analysis

This option indicates that a complete Abaqus analysis (or a restart of an Abaqus analysis) is to be

performed.

datacheck

This option indicates that the run is for data checking only. No analysis will be performed. If this option

is used, all files necessary to continue the analysis are saved.

parametercheck

This option indicates that the run is for input parameter checking only (parameter definitions must have

been used; see “Parametric input,” Section 1.4.1). No analysis or data checking will be performed. This

option is not applicable for Abaqus/CFD.

continue

This option indicates that the run is to begin at the point at which a previous data check run ended.

convert

The value of this parameter indicates which files will be postprocessed. This option is not applicable for

Abaqus/CFD.

Results can be converted either immediately following an analysis run, as a separate run subsequent

to an analysis run, or while an analysis is running as follows:

3.2.2–2

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

1. To run an analysis including a subsequent conversion of the results, use the convert option in

conjunction with the job and analysis options.

2. To convert the results of a previously run analysis, use the convert option in conjunction with the

job option.

3. To convert results from a job that is currently running, use the convert option in conjunction with

the oldjob option (to name the running job) and the job option (to supply a new name for the files

generated by the convert option).

If convert=select, the Abaqus/Explicit selected results file (job-name.sel) will be

converted into a standard Abaqus results file (job-name.fil). If the analysis is run in parallel with

parallel=domain, the separate selected results files (job-name.sel.n) will be converted into a single

selected results file (job-name.sel) prior to being converted into a standard Abaqus results file.

If convert=odb, the output database (job-name.odb) will be converted using the postprocessing

calculator (see “The postprocessing calculator,” Section 4.3.1). This conversion is necessary only if the

types of output listed in “The postprocessing calculator,” Section 4.3.1, are requested.

If convert=state, the separate Abaqus/Explicit state files (job-name.abq.n) will be converted
into a single Abaqus/Explicit state file (job-name.abq) if the analysis is run in parallel with

parallel=domain.

If convert=all, all of the applicable convert options will be executed.

recover

This option applies only to Abaqus/Explicit. It indicates that an analysis is to be restarted at the last

available step and increment in the state file. This capability is available to restart after a catastrophic

failure, such as exceeding a CPU limit or a disk quota (see “Restarting an analysis,” Section 9.1.1). If the

original analysis was run in parallel with parallel=domain, it must be restarted with parallel=domain
and the same number of processors.

syntaxcheck

This option indicates that the run is for checking the syntax of the input file only. This option does not use

any license tokens. No analysis will be performed, and the continue option cannot be used to continue

with an analysis. Only the data (.dat) and output database (.odb) files are generated for viewing. In

an Abaqus/Explicit analysis, the model data in the output database may not be complete.

information

This option writes information about the installation and the environment that is in effect to the screen

or to the file job-name.log. For output information for each value of this option, see “Obtaining

information,” Section 3.2.1. If the information option is used in conjunction with the analysis option,

the job must be run in the background to write the information text to the log file.

3.2.2–3

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

Additional options available for the analysis module

input

This option is used to specify the input file name, whichmay be given with or without the .inp extension

(if the extension is not supplied, Abaqus will append it automatically). If this option is not supplied, the

procedure will look for an input file called job-name.inp in the current directory. If job-name.inp
cannot be found, the procedure will prompt for the input file name.

user

This option specifies the name of a source or object file that contains any user subroutines to be used in the

analysis. The name of the user routine may contain a path name and may be given with or without a file

extension. Abaqus/Standard and Abaqus/Explicit only accept user subroutines written in FORTRAN.

Abaqus/CFD accepts user subroutines written in C or C++.

If an extension is given, the program will take the appropriate action based on the file type. If the

file name has no extension, the program will search for a FORTRAN, C, or C++ source file depending

on the analysis type. If the source file does not exist, an object file will be searched for instead. The

execution procedure creates a shared library using the user subroutine file that is used by the analysis

during execution.

If the same user subroutine will be needed often, consider setting the usub_lib_dir environment

file parameter and using the abaqus make execution procedure to create a shared library containing the

user subroutine. This will avoid the need to recompile and/or relink the user subroutine each time it

is needed. The user option is not required if the user subroutine called by the analysis is contained in

the user library. User libraries contained in the directory given by the usub_lib_dir environment file

parameter will not be used if the user option is specified.

The user option cannot be used to specify an object file when the double option is used to run an

Abaqus/Explicit analysis because Abaqus/Explicit double precision runs need both single precision and

double precision objects. In this case you must set the usub_lib_dir environment file parameter and

place the single and double precision object files in the specified directory; alternatively, you can supply

the user subroutine source.

oldjob

This option specifies the name of the files from a previous run from which a restart or postprocessing

(Abaqus/Standard only; see “Recovering additional results output from restart data in Abaqus/Standard”

in “Output,” Section 4.1.1) run is to be started or from which results are to be imported. A path or

file extension is not allowed. This option is required when a restart, postprocessing, symmetric model

generation, or import analysis reads data from the restart or the results file. The oldjob-name must be

different from the current job-name.

fil

This option specifies whether the data from the old results file specified in a restart run are included at the

beginning of the new results file (default). If fil=new is used, the new results file will contain only the

data from the point in the analysis where the restart occurred. This feature is used for Abaqus/Standard

3.2.2–4

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

runs to join the output from restarted analyses into a single, continuous results file. Non-restart jobs

cannot use this feature to append results file output to an old results file; the abaqus append execution

procedure must be used for this purpose. Setting fil=new is not allowed for Abaqus/Explicit runs. This

option is not applicable for Abaqus/CFD.

globalmodel

This option specifies the name of the global model’s results file or output database file from which the

results are to be interpolated to drive a submodel analysis. This option is required whenever a submodel

analysis or submodel boundary condition reads data from the global model’s results. The file extension

is optional. If both a results file and an output database file exist for the global model and no extension

is given, the results file will be used. This option is not applicable for Abaqus/CFD.

cpus

This option specifies the number of processors to use during an analysis run if parallel processing is

available. The default value for this parameter is 1 and can be changed in the environment file (see

“Using the Abaqus environment settings,” Section 3.3.1).

parallel

This option specifies the method to use for thread-based parallel processing in Abaqus/Explicit. The

possible values are domain and loop. If parallel=domain, the domain-level method is used to break

the model into geometric domains. If parallel=loop, the loop-level method is used to parallelize low-

level loops. See “Parallel execution in Abaqus/Explicit,” Section 3.5.3, for more information on these

methods. The default value is domain, which can be changed in the environment file (see “Using the

Abaqus environment settings,” Section 3.3.1).

domains

This option specifies the number of parallel domains in Abaqus/Explicit. If the value is greater than

1, the domain decomposition will be performed regardless of the values of the parallel and cpus

options. However, if parallel=domain, the value of cpus must be evenly divisible into the value of

domains. The default value is set equal to the number of processors used during the analysis run if

parallel=domain and 1 if parallel=loop. The default value can be changed in the environment file

(see“Using the Abaqus environment settings,” Section 3.3.1). A restart analysis uses the same number

of parallel domains as the original analysis, and the value specified with this option will be ignored.

dynamic_load_balancing

For domain-parallel execution in Abaqus/Explicit (parallel=domain) where the number of domains is

larger than the number of cpus, this option activates the dynamic load balancing scheme. Abaqus/Explicit

will attempt to improve computational efficiency by periodically reassigning domains to processors in a

way that minimizes load imbalance (see “Parallel execution in Abaqus/Explicit,” Section 3.5.3).

mp_mode

If this option is set equal to mpi, the MPI-based parallelization method will be used when applicable.

Set mp_mode=threads to use the thread-based parallelization method. The default value is mpi on

3.2.2–5

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

Windows platforms if MPI components are installed; otherwise, thread-based parallel execution is the

default behavior. On all other platforms, the default value is mpi. The default setting can be changed

in the environment file (see “Using the Abaqus environment settings,” Section 3.3.1). For Abaqus/CFD

only mp_mode=mpi can be used.

standard_parallel

This option specifies the parallel execution mode in Abaqus/Standard. The possible values are all
and solver. If standard_parallel=all, both the element operations and the solver will run in

parallel. If standard_parallel=solver, only the solver will run in parallel. The default value is

standard_parallel=all on platforms where MPI-based parallelization is supported.

The parallel execution mode can also be set in the environment file (see “Using the Abaqus

environment settings,” Section 3.3.1).

gpus

This option specifies acceleration of the Abaqus/Standard direct solver. This option is meaningful only

on computers equipped with appropriate GPGPU hardware. By default, GPGPU solver acceleration

is not activated. The value of this parameter is the number of GPGPUs to use in an Abaqus/Standard

analysis.

GPGPU-based solver acceleration can also be set in the environment file (see “Using the Abaqus

environment settings,” Section 3.3.1).

memory

Maximum amount of memory or maximum percentage of the physical memory that can be allocated

during the input file preprocessing and during the Abaqus/Standard analysis phase (see “Managing

memory and disk use in Abaqus,” Section 3.4.1). The default values can be changed in the environment

file (see “Using the Abaqus environment settings,” Section 3.3.1). This option is not applicable for

Abaqus/CFD.

interactive

This option will cause the job to run interactively. For Abaqus/Standard and Abaqus/CFD the log file

will be output to the screen; for Abaqus/Explicit the status file and the log file will be output to the screen.

The default run_mode can be set in the environment file (see “Using the Abaqus environment settings,”

Section 3.3.1).

background

This option will submit the job to run in the background, which is the default. Log file output will be

saved in the file job-name.log in the current directory. The default method for submitting the job can

be set in the environment file by using the run_mode parameter (see “Using the Abaqus environment

settings,” Section 3.3.1).

queue

This option will submit the job to a batch queue. If the option appears with no value, the job will

be submitted to the system default queue. Quoted strings are allowed. The available queues are

3.2.2–6

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

site specific. Contact your site administrator to find out more about local queuing capabilities. Use

information=local to see what local queuing capabilities have been installed. The default method

for submitting the job can be set in the environment file by using the run_mode parameter (see “Using

the Abaqus environment settings,” Section 3.3.1).

after

This option is used in conjunction with the queue option to specify the time at which the job will start

in the selected batch queue. This capability is supported for each individual site through the Abaqus

environment file. (See the Abaqus Installation and Licensing Guide for details.)

double

This option is used to specify that the double precision executable is to be used for Abaqus/Explicit.

The possible values are both, constraint, explicit, and off. This capability is also supported

through the Abaqus environment file with the environment variable double_precision (see “Using the

Abaqus environment settings,” Section 3.3.1).

If double=both, both the Abaqus/Explicit packager and analysis will run in double precision.

If double=constraint, the constraint packaging and constraint solver in Abaqus/Explicit will

run in double precision, while the Abaqus/Explicit packager and Abaqus/Explicit analysis continue to

run in single precision.

If double=explicit, the Abaqus/Explicit analysis will run in double precision, while the

packager will still run in single precision. The default value is explicit.
If double=off, the environment file setting is overridden if necessary to invoke both the

Abaqus/Explicit packager and Abaqus/Explicit analysis in single precision. For a discussion of when to

use the double precision executable, see “Defining an analysis,” Section 6.1.2.

scratch

This option is used to specify the name of the directory used for scratch files. On UNIX platforms the

default value is the value of the $TMPDIR environment variable or /tmp if $TMPDIR is not defined.

On Windows platforms the default value is the value of the %TEMP% environment variable or \TEMP
if this variable is not defined. During the analysis a subdirectory will be created under this directory to

hold the analysis scratch files. The default value for this parameter can be set in the environment file (see

“Using the Abaqus environment settings,” Section 3.3.1).

output_precision

This option specifies the precision of the nodal field output written to the output database file

(job-name.odb). Using output_precision=full results in double precision field output for

Abaqus/Standard analyses. To obtain double precision field output for Abaqus/Explicit analyses, use

the double option in addition to using output_precision=full. Nodal history output is available only

in single precision. This option cannot be used with the recover option.

field

This option specifies the format of field output for Abaqus/CFD. If field=odb, field output is written to

the output database file. If field=exodus, the field output is written to files in EXODUS-II format, one

3.2.2–7

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

file per processor. To obtain a single file for parallel execution, use field=nemesis; the file is written in
EXODUS-II format using the NEMESIS library. The default value is odb. For more information, see

“Alternate output formats in Abaqus/CFD” in “Output,” Section 4.1.1.

history

This option specifies the format of history output for Abaqus/CFD. If history=odb, history output

is written to the output database file. If history=csv, history output is written to a file in comma-

separated values format.

The default value depends on the setting for the field option. When field=odb, the default

is history=odb. When field=exodus or nemesis, the default is history=csv. For more

information, see “Alternate output formats in Abaqus/CFD” in “Output,” Section 4.1.1.

port

This option is used to specify the TCP/UDP port number for co-simulation between solvers using the

direct coupling interface, which includes co-simulation between Abaqus and certain third-party analysis

programs. Set port equal to the port number used for the connection. The default value is 48000. The
default port number that Abaqus uses to initiate communication can be set with the cosimulation_port

parameter in the environment file (see “Using the Abaqus environment settings,” Section 3.3.1). This

option is used in conjunction with the host option. For more information, see “Selecting TCP/UDP port

numbers” in “Execution procedure for Abaqus: overview,” Section 3.1.1.

host

This option is used to specify the host name for co-simulation between solvers using the direct coupling

interface, which includes co-simulation between Abaqus and certain third-party analysis programs. This

option specifies the name of the machine that is hosting the connection. Refer to the third-party program

documentation to determine if the host option is required. This option is used in conjunction with the

port option.

csedirector

This option is used to specify the connection (e.g., host:port) for the SIMULIA Co-Simulation Engine

director process when performing a co-simulation using the SIMULIA Co-Simulation Engine. The

csedirector entry identifies the host name and the TCP/UDP port number for the listening port of the

SIMULIA Co-Simulation Engine director process.

timeout

This option is used to specify a timeout value in seconds for establishing the co-simulation connection

using the direct coupling interface or the SIMULIA Co-Simulation Engine. Abaqus terminates if it

does not receive any communication from the coupled analysis program during the time specified.

The default value is 3600 seconds. The default timeout value that Abaqus uses can be set with the

cosimulation_timeout parameter in the environment file when using the direct coupling interface (see

“Using the Abaqus environment settings,” Section 3.3.1).

3.2.2–8

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

Additional option available for the datacheck module

unconnected_regions

This option is used to request that Abaqus/Standard create element and node sets for unconnected regions

in the analysis output database. Set unconnected_regions=yes to create element and node sets that are

named MESH COMPONENT N, where N is the component number.

Examples

The following examples illustrate the different functions and capabilities of the abaqus execution procedure.

Running analyses in Abaqus/Standard

Use the following command to run a heat transfer analysis called “c8” in the background:

abaqus analysis job=c8 background

The following commandwill run the job c8 in the background and output the current environment settings

to the log file:

abaqus analysis job=c8 information=environment background

The follow-up analysis to the heat transfer analysis c8 is “c10,” which is a static analysis that uses

temperature data from c8 as input. The temperature data are read in from the c8 results file as predefined

fields. The execution procedure scans the Abaqus/Standard input file for file dependencies of this sort.

In this example the procedure will look for the c8 results file in the current directory with the extension

.fil. The results file identifier can include a path name (see “Input syntax rules,” Section 1.2.1), and

the execution procedure will then look in the directory specified. In either case an error message will be

issued if the file does not exist. The following command is used to run the job c10 in the “long” queue:

abaqus analysis job=c10 queue=long

This job is next restarted as “c11,” using the final results from c10 as the starting point for a creep analysis.

The following command is used to run this job in the default queue:

abaqus analysis job=c11 oldjob=c10 queue=

The following command is used to run an Abaqus/Standard analysis called “draw_imp” that imports the

results from a previously run Abaqus/Explicit analysis called “draw_exp”:

abaqus analysis job=draw_imp oldjob=draw_exp

Running analyses in Abaqus/Explicit

Use the following command to submit an Abaqus/Explicit analysis called “beam” to the default queue:

abaqus analysis job=beam convert=all queue=

3.2.2–9

Abaqus Version 6.6 ID:

Printed on:

ANALYSIS EXECUTION

Equivalent results would be obtained from the following series of commands:

abaqus datacheck job=beam interactive
abaqus continue job=beam queue=
abaqus convert=all job=beam interactive

Note that the CPU-intensive analysis option is run in batch, while the other options are run interactively.

Running analyses in Abaqus/CFD

Use the following command to submit an Abaqus/CFD analysis called “cylinder” using 128 cores in

parallel:

abaqus analysis job=cylinder cpus=128

Running different phases of an analysis

Use the following command to perform a parameter check run on an input file called “parmodel”:

abaqus job=parmodel parametercheck

Use the following command to perform a data check run on an input file called “parmodel” (the parameter

check is done again if this job is run after the previous one):

abaqus job=parmodel datacheck

The following command will continue the previous datacheck job to execute the analysis:

abaqus job=parmodel continue

3.2.2–10

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION DIRECTOR EXECUTION

3.2.3 SIMULIA Co-Simulation Engine DIRECTOR EXECUTION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Co-simulation between Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD is governed by an

additional process, the SIMULIA Co-Simulation Engine (CSE) director. Typically, you are not

required to invoke the CSE director process; it is invoked automatically when you run the Abaqus

co-simulation procedure (“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD co-simulation

execution,” Section 3.2.4) or if you submit the co-simulation from Abaqus/CAE.

If you are unable to use the Abaqus co-simulation procedure or Abaqus/CAE and are required to

submit the co-simulation analyses separately using the Abaqus execution procedure (“Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2), you must invoke the CSE director as

described in this section.

Command summary

abaqus cse job=cosim-job-name

configure=configuration file-name

listenerport=listener port-number

[datacheck]
[interactive]
[timeout=timeout value in seconds]

Command line options

job

The value of this option specifies the name of the co-simulation summary log file generated during the

run. If this option is omitted from the command line, you will be prompted for its value.

configure

This option specifies the name of the SIMULIA Co-Simulation Engine configuration file that governs

the co-simulation. For more information, see “Defining the coupling and rendezvousing scheme

with the SIMULIA Co-Simulation Engine configuration file” in “Preparing an Abaqus analysis for

co-simulation,” Section 17.2.1.

3.2.3–1

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION DIRECTOR EXECUTION

listenerport

This option is used to specify the TCP/UDP port number for co-simulation inbound messages to the

director. Set listenerport equal to the port number used for the connection.

datacheck

This option causes the director to check the correctness of the configuration file only.

interactive

This option causes the director to run interactively.

timeout

This option is used to specify a timeout value in seconds for the co-simulation director connection. The

director terminates if it does not receive any communication from the coupled analysis program during

the time specified. The default value is 3600 seconds.

Example

The following example illustrates the different functions and capabilities of the co-simulation director

execution procedure when you are required to submit the co-simulation analyses separately.

Running an Abaqus/Standard to Abaqus/Explicit co-simulation

Use the following command for the first Abaqus analysis, running on machine “earth,” to connect to the

co-simulation director, running on machine “mercury” and listening on port 44444:

abaqus job=explicit csedirector=mercury:44444

Use the following command for the second Abaqus analysis, running on machine “venus,” to connect to

the co-simulation director, running on machine “mercury” and listening on port 44444:

abaqus job=standard csedirector=mercury:44444

Use the following command for the co-simulation director, running on machine “mercury,” to operate

according to the co-simulation configuration defined in the file explicit_standard_config.xml
and to receive communication via port 44444:

abaqus cse job=cosim listenerport=44444
configure=explicit_standard_config.xml

3.2.3–2

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

3.2.4 Abaqus/Standard, Abaqus/Explicit, AND Abaqus/CFD CO-SIMULATION
EXECUTION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Co-simulation between Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD can be executed by

running the Abaqus co-simulation procedure. Several parameters can be set either on the command line

or in the environment file (see “Using the Abaqus environment settings,” Section 3.3.1).

A co-simulation analysis executes two “child” analyses and directs the communication of the

two processes using a co-simulation configuration file. The co-simulation execution procedure allows

you to enter a single command to run the co-simulation and should be used whenever possible

(see “Limitations” below). If you are unable to use the Abaqus co-simulation procedure, you are

required to submit the co-simulation analyses separately using the Abaqus execution procedure

(“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2) and to invoke

the SIMULIA Co-Simulation Engine (CSE) director (“SIMULIA Co-Simulation Engine director

execution,” Section 3.2.3).

The co-simulation execution procedure supports a subset of the options that are available for the

Abaqus execution procedure; these options are included in the command summary below.

Allocating CPUs for parallel processing

Three methods are available for allocating CPUs to child analysis jobs for parallel processing:

specifying the number of CPUs for each job, distributing CPUs between analysis jobs, and distributing

CPUs between analysis products.

Specifying the number of CPUs for each job

The most direct method of allocating CPUs is to specify the number of CPUs to be used for each child

analysis. You provide a comma-separated pair of values using the cpus parameter.

Distributing CPUs between analysis jobs

You can specify the total number of CPUs to be used for your co-simulation analysis and weighting

factors that determine the distribution of the CPUs between the two child analyses. This method enables

you to specify a CPU count that relates directly to your resource limits and to describe the relative

computational needs of the two child analyses. You provide one value for the number of CPUs to

allocate for the co-simulation using the cpus parameter, and you define weight factors using the cpuratio

parameter.

3.2.4–1

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

Weight factors are floating point numbers and are considered in a normalized sense. For example,

if you wish to specify that the CPU allocation for the first child job is four times that of the second job,

you can provide any of the following pairings:

cpuratio=4.0,1.0
cpuratio=16,4
cpuratio=0.8,0.2

Distributing CPUs between analysis products

You can specify the total number of CPUs to be used for your co-simulation analysis and weighting

factors that determine the distribution of the CPUs between the analysis products involved in the

co-simulation. This method enables you to specify a CPU count that relates directly to your resource

limits and to describe the relative computational needs of the two child analyses based on the analysis

product used (Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD). You provide one value for the

number of CPUs to allocate for the co-simulation using the cpus parameter, and you define weight

factors in the environment file using the cpus_weight_std, cpus_weight_xpl, and cpus_weight_cfd

environment variable parameters (see “Co-simulation parameters” in “Using the Abaqus environment

settings,” Section 3.3.1).

Weight factors are interpreted in a normalized sense. For example, if you wish to specify that the

CPU allocation for the Abaqus/CFD analysis is twice that of the Abaqus/Explicit analysis, you define

the parameters in the environment file as follows:

cpus_weight_xpl=1
cpus_weight_cfd=2

Rounding considerations for distributing CPUs

In cases where the distribution of the CPUs between analysis jobs or analysis products does not result

in whole numbers, Abaqus rounds down the CPU allocation for the first job listed in the job parameter

and rounds up the allocation for the second job listed. For example, if 8 CPUs are allocated and the CPU

allocation for the Abaqus/CFD analysis is twice that of the Abaqus/Explicit analysis, the distribution

between Abaqus/Explicit and Abaqus/CFD is 2/6 if the Abaqus/Explicit job is listed first and is 3/5 if the

Abaqus/CFD job is listed first.

Specifying options for child analyses

Command line options that pertain to the child analyses require you to enter a comma-separated pair

of values. The order of entries in the pairing must be consistent for all child analysis options to obtain

the desired co-simulation execution behavior. For example, in an Abaqus/Standard to Abaqus/Explicit

co-simulation, if you specify the job name for the Abaqus/Standard analysis as the first entry for the job

parameter, the first entry for the remainder of the child analysis options will apply to the Abaqus/Standard

analysis.

If an option is relevant for only one of the child analyses, you can enter a value of NONE for the

analysis in which the option is not relevant. In cases where you wish to use the default settings for an

3.2.4–2

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

option for both child analyses or wish to use environment settings to control the behavior, you need not

provide that option in the command line.

Performing a co-simulation with input files that specify co-simulation controls

With releases prior to Abaqus 6.13, all co-simulation parameters and co-simulation controls were

specified in the input files and a configuration file was not required. To support re-use of these input

files with Abaqus 6.13 and later, an automated configuration file creation capability is provided. In a

limited number of cases, you can generate a configuration file automatically; namely, if the following

conditions are met:

• Both of your input files contain *CO-SIMULATION CONTROLS options that are valid for co-

simulation with Abaqus 6.12.

• These controls conform to the recommended uses of co-simulation parameters, as described in the

Abaqus 6.12 Analysis User’s Manual.

If you omit the configure option for the co-simulation execution procedure, Abaqus attempts to

automatically generate a configuration file and, if successful, the generated configuration file will be used

in the analysis directly. The contents of the automatically generated configuration file are determined

from the *CO-SIMULATION CONTROLS options, the analysis procedure types, and the duration of

the co-simulation step.

Limitations

The following limitations apply to the co-simulation execution procedure:

• Only co-simulation between two analyses is supported.

• The analyses can be run only on a single machine or a compute cluster where the head node can be

shared by both child analysis jobs.

• Co-simulation with third-party applications is not supported with this execution procedure; for

information on Abaqus job execution for co-simulation with third-party applications, consult the

third-party program documentation.

Command summary

abaqus cosimulation cosimjob=cosim-job-name

configure=co-simulation configuration file name

job=comma-separated pair of job names

[cpus={number-of-cpus | comma-separated pair of number-of-cpus}]
[cpuratio=comma-separated pair of weight factors specifying cpu

allocation to child analyses]
[interactive | background | queue=[queue-name] [after=time]]
[timeout=co-simulation timeout value in seconds]
[portpool=colon-separated pair of socket port numbers]
[input=comma-separated pair of input-file names]

3.2.4–3

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

[user=comma-separated pair of {source-file | object-file} names]
[globalmodel=comma-separated pair of {results file | output database
file} names]
[memory=comma-separated pair of memory-sizes]
[oldjob=comma-separated pair of oldjob-names]
[double=comma-separated pair of double precision executable

settings]
[scratch=comma-separated pair of scratch-dir names]
[output_precision=comma-separated pair of {single | full}]
[field=comma-separated pair of field output format settings]
[history=comma-separated pair of history output format settings]

Command line options

Required global options

cosimjob

This option specifies the name of the co-simulation summary log file generated during the run. If this

option is omitted from the command line, you will be prompted for its value.

configure

This option specifies the name of the co-simulation configuration file. If this option is omitted from

the command line, an attempt is made to automatically generate a configuration file based on the

co-simulation controls specified in the input files for the child analyses. If successful, the generated

configuration file is used in the co-simulation; if unsuccessful, you will be prompted for a value. For

more information, see “Performing a co-simulation with input files that specify co-simulation controls.”

Required option for child analyses

job

The comma-separated values of this option specify the names of all child analysis files generated during

the run. If this option is omitted from the command line, you will be prompted for its value.

Parallel processing options

cpus

This option is used to specify how CPUs are allocated for the co-simulation during parallel processing.

The default value for this parameter is 2 and can be changed to a value greater than 2 in the environment

file (see “Using the Abaqus environment settings,” Section 3.3.1).

If this option is set equal to a single value, that value specifies the total number of processors

allocated for the co-simulation, which can be distributed between child analyses or between analysis

products. The distribution of the CPUs between child analyses is split evenly by default and may be

further controlled either by using the cpuratio parameter or by defining the distribution of the CPUs

3.2.4–4

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

between analysis products by setting the cpus_weight_std, cpus_weight_xpl, and cpus_weight_cfd

environment file parameters (see “Co-simulation parameters” in “Using the Abaqus environment

settings,” Section 3.3.1).

If this option is set equal to a comma-separated pair of values, these values specify the number of

processors to be used for each child analysis.

cpuratio

The comma-separated values of this option specify the relative weighting of the distribution of processors

allocated to each child analysis. This option is valid only when the cpus option is set to a single value.

Additional global options available

interactive

This option causes the co-simulation job to run interactively. A summary log file will be output to the

screen, and the child analysis summary output will be written to their separate log files.

background

This option submits the co-simulation job to run in the background, which is the default. Log file output

is saved for the co-simulation job in the file cosim-job-name.log and in the child analysis files job-

name.log in the current directory.

queue

This option submits the co-simulation job to a batch queue. If the option appears with no value, the

job is submitted to the system default queue. Quoted strings are allowed. The available queues are site

specific. Contact your site administrator to find out more about local queuing capabilities.

after

This option is used in conjunction with the queue option to specify the time at which the job will start

in the selected batch queue. This capability is supported for each individual site through the Abaqus

environment file. (See the Abaqus Installation and Licensing Guide for details.)

timeout

This option is used to specify a timeout value in seconds for the co-simulation connection. Abaqus

terminates if it does not receive any communication between the child analysis processes during the time

specified. The default value is 3600 seconds. The default timeout value that Abaqus uses can be set

with the cosimulation_timeout parameter in the environment file (see “Using the Abaqus environment

settings,” Section 3.3.1).

portpool

This option is used to specify a colon-separated pair of TCP/UDP port numbers that represent the start

and end value of port numbers to be used when establishing connections between the child processes.

The default range is 51000:52000. The default range that Abaqus uses can be set with the portpool

parameter in the environment file (see “Using the Abaqus environment settings,” Section 3.3.1).

3.2.4–5

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

Additional options for child analyses

input

The comma-separated values of this option specify the child analysis input file names, which may

be given with or without the .inp extension (if the extension is not supplied, Abaqus appends it

automatically). For each child analysis, if this option is not supplied, the procedure looks for an input

file called job-name.inp in the current directory. If job-name.inp cannot be found, the procedure

prompts for the input file name.

user

The comma-separated values of this option specify the names of FORTRAN source or object files that

contain any user subroutines to be used in the analysis. The names of the user routines may contain a path

name and may be given with or without a file extension. This option is not applicable for Abaqus/CFD.

globalmodel

The comma-separated values of this option specify the names of the global model’s results (.fil) file
or output database (.odb) file from which the results are to be interpolated to drive a submodel analysis.

This option is required whenever a submodel analysis or submodel boundary condition reads data from

the global model’s results. The file extension is optional. If both a results file and an output database file

exist for the global model and no extension is given, the results file is used. This option is not applicable

for Abaqus/CFD.

memory

The comma-separated values of this option specify the maximum amount of memory or maximum

percentage of the physical memory that can be allocated during the input file preprocessing and during

the Abaqus/Standard analysis phase (see “Managing memory and disk use in Abaqus,” Section 3.4.1).

This option is not applicable for Abaqus/CFD.

oldjob

The comma-separated values of this option specify the names of the files from a previous run from which

a restart run is to be started or from which results are to be imported. A path or file extension is not

allowed. This option is required when a restart or import analysis reads data from the restart file. The

oldjob-names must be different from the current job-names.

double

This option is applicable only for an Abaqus/Explicit analysis.

The comma-separated values of this option specify the double precision executable settings to be

used; the value for the Abaqus/Standard or Abaqus/CFD analysis is always NONE. The possible values
for the Abaqus/Explicit analysis are both, constraint, explicit, and off. This capability is

also supported through the Abaqus environment file with the environment variable double_precision

(see “Using the Abaqus environment settings,” Section 3.3.1).

If the double option is omitted for an Abaqus/Standard to Abaqus/Explicit co-simulation, the

Abaqus/Explicit packager and analysis will be run in double precision. If the double option is omitted

3.2.4–6

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

for an Abaqus/CFD to Abaqus/Explicit co-simulation, the Abaqus/Explicit packager and analysis will

be run in single precision.

If double=both, both the Abaqus/Explicit packager and analysis will run in double precision.

If double=constraint, the constraint packaging and constraint solver in Abaqus/Explicit will

run in double precision, while the Abaqus/Explicit packager and Abaqus/Explicit analysis continue to

run in single precision.

If double=explicit or the double option is specified without a value, the Abaqus/Explicit

analysis will run in double precision, while the packager will still run in single precision.

If double=off, the environment file setting is overridden if necessary to invoke both the

Abaqus/Explicit packager and Abaqus/Explicit analysis in single precision. For a discussion of when to

use the double precision executable, see “Defining an analysis,” Section 6.1.2.

scratch

The comma-separated values of this option specify the names of the directories used for scratch files.

On UNIX platforms the default value is the value of the $TMPDIR environment variable or /tmp
if $TMPDIR is not defined. On Windows platforms the default value is the value of the %TEMP%
environment variable or \TEMP if this variable is not defined. During the analysis a subdirectory will

be created under this directory to hold the analysis scratch files.

output_precision

The comma-separated values of this option specify the precision of the nodal field output written to

the output database files (job-name.odb). Using output_precision=full results in double precision

field output for Abaqus/Standard analyses. To obtain double precision field output for Abaqus/Explicit

analyses, use the double option in addition to using output_precision=full. Nodal history output is

available only in single precision. This option is not applicable for Abaqus/CFD.
field

This option is applicable only for an Abaqus/CFD analysis.

The comma-separated values of this option specify the format of the field output; the value for the

Abaqus/Standard or Abaqus/Explicit analysis is always NONE. The possible values for the Abaqus/CFD
analysis are odb, exodus, and nemesis.

If field=odb, field output is written to the output database file. If field=exodus, the field output

is written to files in EXODUS-II format, one file per processor. To obtain a single file for parallel

execution, use field=nemesis; the file is written in EXODUS-II format using the NEMESIS library.

The default value is odb. For more information, see “Alternate output formats in Abaqus/CFD” in

“Output,” Section 4.1.1.

history

This option is applicable only for an Abaqus/CFD analysis.

The comma-separated values of this option specify the format of the history output; the value for the

Abaqus/Standard or Abaqus/Explicit analysis is always NONE. The possible values for the Abaqus/CFD
analysis are odb and csv.

If history=odb, history output is written to the output database file. If history=csv, history
output is written to a file in comma-separated values format.

3.2.4–7

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

The default value depends on the setting for the field option. When field=odb, the default

is history=odb. When field=exodus or nemesis, the default is history=csv. For more

information, see “Alternate output formats in Abaqus/CFD” in “Output,” Section 4.1.1.

Examples

The following examples illustrate the different functions and capabilities of the abaqus cosimulation

execution procedure.

Running an Abaqus/Standard to Abaqus/CFD co-simulation interactively

Use the following command to run a co-simulation between a heat transfer analysis called “solid_heat”

and a fluids analysis called “fluid,” interactively:

abaqus cosimulation cosimjob=cosim_cht
job=solid_heat,fluid configure=cosim_cht_config interactive

Allocating CPUs in an Abaqus/Explicit to Abaqus/CFD co-simulation

Use the following command to run a co-simulation between an Abaqus/Explicit analysis called “beam”

and anAbaqus/CFD analysis called “fluid” and to allocate 8 cores to the Abaqus/Explicit job and 16 cores

to the Abaqus/CFD job:

abaqus cosimulation cosimjob=beam_fluid job=beam,fluid cpus=8,16
configure=beam_fluid_config

Equivalent results would be obtained using the following command:

abaqus cosimulation cosimjob=beam_fluid job=beam,fluid
cpus=24 cpuratio=1,2 configure=beam_fluid_config

Alternatively, you can specify settings for co-simulation environment variable parameters in the

environment file and run the co-simulation execution procedure. Use the following combination of

environment file settings:

ask_delete=OFF
The following parameters set the CPU
allocation by analysis product
cpus_weight_xpl=1
cpus_weight_std=1
cpus_weight_cfd=2

Use the following command:

abaqus cosimulation cosimjob=beam_fluid configure=beam_fluid_config
job=beam,fluid cpus=24

3.2.4–8

Abaqus Version 6.6 ID:

Printed on:

CO-SIMULATION EXECUTION

Submitting an Abaqus/Standard to Abaqus/Explicit co-simulation to a batch queue

Use the following command to submit a co-simulation for an Abaqus/Explicit analysis called “beam”

and an Abaqus/Standard analysis called “beam2” to a batch queue named “long” and to allocate 8 cores

to the Abaqus/Explicit analysis and 4 cores to the Abaqus/Standard analysis:

abaqus cosimulation cosimjob=beam job=beam,beam2
configure=beam_config cpus=8,4 queue=long

3.2.4–9

Abaqus Version 6.6 ID:

Printed on:

Dymola MODEL EXECUTION

3.2.5 Dymola MODEL EXECUTION

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “SIMULIA Co-Simulation Engine director execution,” Section 3.2.3

Overview

You can perform a co-simulation between an Abaqus/Standard or Abaqus/Explicit model and a model

exported from Dymola. This procedure requires that you have the following two files available in your

current working directory: dymosim.dll, which contains the Dymola export of your model details,

and libdsdll.dll, which contains a basic collection of Dymola libraries. See “Structural-to-logical

co-simulation,” Section 17.4.1, for details on creating or obtaining these files.

Command summary

abaqus dymola input=Dymola map file name

port=co-simulation port number

host=co-simulation host name

Command line options

input

This option is used to specify the map file name. The map file has a .sgn file extension.

port

This option is used to specify the TCP/UDP port number for co-simulation between solvers using the

direct coupling interface, which includes co-simulation between Abaqus and certain third-party analysis

programs. Set port equal to the port number used for the connection. The default value is 48000. The
default port number that Abaqus uses to initiate communication can be set with the cosimulation_port

parameter in the environment file (see “Using the Abaqus environment settings,” Section 3.3.1). This

option is used in conjunction with the host option. For more information, see “Selecting TCP/UDP port

numbers” in “Execution procedure for Abaqus: overview,” Section 3.1.1.

host

This option is used to specify the host name for co-simulation between solvers using the direct coupling

interface, which includes co-simulation between Abaqus and certain third-party analysis programs. This

option specifies the name of the machine that is hosting the connection. Refer to the third-party program

3.2.5–1

Abaqus Version 6.6 ID:

Printed on:

Dymola MODEL EXECUTION

documentation to determine if the host option is required. This option is used in conjunction with the

port option.

Example

The following example illustrates use of the Dymola execution procedure in a co-simulation involving

Abaqus/Explicit and an exported Dymola model.

Running the Dymola simulation

Use the following command to start the Dymola simulation, which will listen on port 44444 for a

connection from Abaqus/Explicit:

abaqus dymola input=inverted_pend_map port=44444

Running the Abaqus/Explicit simulation

Use the following command for the Abaqus/Explicit analysis, which will connect to the Dymola

simulation on machine “mecury,” via port 44444:

abaqus job=inverted_pend_xpl host=mercury port=44444

3.2.5–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CAE EXECUTION

3.2.6 Abaqus/CAE EXECUTION

Product: Abaqus/CAE

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Abaqus/CAE, an interactive environment for creating, submitting, monitoring, and evaluating results

from Abaqus simulations, is executed by running the Abaqus execution procedure and specifying the

cae parameter.

Command summary

abaqus cae [database=database-file] [replay=replay-file] [recover=journal-file]
[startup=startup-file] [script=script-file] [noGUI=[noGUI-file]]
[noenvstartup] [noSavedOptions] [noSavedGuiOptions]
[noStartupDialog] [custom=script-file] [guiTester=[GUI-script]]
[guiRecord] [guiNoRecord]

Command line options

database

This option specifies the name of the model database file or output database file to open. To specify

a model database file, include either the .cae file extension or no file extension in the file name. To

specify an output database file, include the .odb file extension in the file name.

replay

This option specifies the name of the file from which Abaqus/CAE commands are to be replayed. The

commands in replay-file will execute immediately upon startup of Abaqus/CAE. If no file extension is

given, the default extension is .rpy. You cannot use the replay option to execute a script with control

flow statements.

recover

This option specifies the name of the file from which a model database is to be rebuilt. The commands

in journal-file will execute immediately upon startup of Abaqus/CAE. If no file extension is given, the

default extension is .jnl.

startup

This option specifies the name of the file containing Python configuration commands to be run at

application startup. Commands in this file are run after any configuration commands that have been

3.2.6–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CAE EXECUTION

set in the environment file. Abaqus/CAE does not echo the commands to the replay file when they are

executed.

script

This option specifies the name of the file containing Python configuration commands to be run at

application startup. Commands in this file are run after any configuration commands that have been set

in the environment file.

Arguments can be passed into the file by entering -- on the command line, followed by the

arguments separated by one or more spaces. These arguments will be ignored by the Abaqus/CAE

execution procedure, but they will be accessible within the script.

noGUI

This option specifies that Abaqus/CAE is to be run without the graphical user interface (GUI). If no file

name is specified, an Abaqus/CAE license is checked out and the Python interpreter is initialized to allow

interactive entry of Python or Abaqus Scripting Interface commands.

If a file name is specified, Abaqus/CAE runs the commands in the file and exits upon their

completion. If no file extension is given, the default extension is .py. This option is useful for

automating pre- or post-analysis processing tasks without the added expense of running a display. Since

no interface is provided, the scripts cannot include any user interaction. If you use the noGUI option,

Abaqus/CAE ignores any other command line options that you provide.

Arguments can be passed into the file by entering -- on the command line, followed by the

arguments separated by one or more spaces. These arguments will be ignored by the Abaqus/CAE

execution procedure, but they will be accessible within the Python script. If you are using the noGUI
option, you can use an argument to pass in a variable that would otherwise be provided by a command

line option. For example, you can pass in the name of a file that would otherwise be specified by the

script option.

noenvstartup

This option specifies that all configuration commands in the environment files should not be run at

application startup. This option can be used in conjunction with the script command to suppress all

configuration commands except those in the script file.

noSavedOptions

This option specifies that Abaqus/CAE should not apply the display options settings stored in

abaqus_v6.13.gpr (for example, the render style and the display of datum planes). For more

information, see “Saving your display options settings,” Section 76.16 of the Abaqus/CAE User’s

Guide.

noSavedGuiOptions

This option specifies that Abaqus/CAE should not apply the GUI settings stored in

abaqus_v6.13.gpr (for example, the size and location of the Abaqus/CAE main window or its

dialog boxes).

3.2.6–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CAE EXECUTION

noStartupDialog

This option specifies that the Start Session dialog box for Abaqus/CAE should not be displayed.

custom

This option specifies the name of the file containing Abaqus GUI Toolkit commands. This option

executes an application that is a customized version of Abaqus/CAE. For more information, see

Chapter 1, “Introduction,” of the Abaqus GUI Toolkit User’s Guide.

guiTester

This option starts a separate user interface containing the Abaqus Python development environment

along with Abaqus/CAE. The Abaqus Python development environment allows you to create, edit, step

through, and debug Python scripts. For more information, see Part III, “The Abaqus Python development

environment,” of the Abaqus Scripting User’s Guide.

You can specify a script as the argument for this option, which prompts Abaqus/CAE to run a GUI

script. Abaqus/CAE closes when the end of the script is reached.

guiRecord

This option enables you to record your actions in the Abaqus/CAE user interface in a file named

abaqus.guiLog. You can also set this option at startup by using the environment variable

ABQ_CAE_GUIRECORD. The guiRecord option cannot be used with the guiTester option.

guiNoRecord

This option enables you to disable user interface recording when the environment variable

ABQ_CAE_GUIRECORD is set.

Examples

The following examples illustrate the command line options of the cae execution procedure and how

arguments are passed to Abaqus/CAE.

Opening a model database

The following command will execute Abaqus/CAE and load the model database file called “beam”:

abaqus cae database=beam

Passing arguments to a script

The following command will run the Python script in a file named “try.py” at application startup and

pass “argument1” to the script:

abaqus cae script=try.py -- argument1

The above command will print argument1 if “try.py” is defined as

import sys
print sys.argv[-1]

3.2.6–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CAE EXECUTION

Running Abaqus/CAE without the graphical user interface

The following command will run the Python script in a file named “checkPartValidity.py” and pass

arguments to the script specifying the model database, the model, and the part. The script is executed by

Abaqus/CAE; however, the graphical user interface is never displayed.

abaqus cae noGui=checkPartValidity.py -- test.cae Model-1 Part-1

The above command will print Part-1 is valid if “checkPartValidity.py” is defined as

import sys
import os

myMdb= sys.argv[-3]
myModel = sys.argv[-2]
myPart = sys.argv[-1]

mdb = openMdb(myMdb)
model = mdb.models[myModel]
part = model.parts[myPart]

if part.geometryValidity:
sys.__stderr__.write('%s is valid\n' % myPart)

else:
sys.__stderr__.write('%s is invalid\n' % myPart)

3.2.6–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Viewer EXECUTION

3.2.7 Abaqus/Viewer EXECUTION

Product: Abaqus/Viewer

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Abaqus/Viewer, a subset of Abaqus/CAE that contains only the postprocessing capabilities of the

Visualization module, is executed by running the Abaqus execution procedure and specifying the

viewer parameter.

Command summary

abaqus viewer [database=database-file] [replay=replay-file] [startup=startup-file]
[script=script-file] [noGUI=[noGUI-file]] [noenvstartup]
[noSavedOptions] [noSavedGuiOptions] [noStartupDialog]
[custom=script-file] [guiTester=[GUI-script]] [guiRecord]
[guiNoRecord]

Command line options

database

This option specifies the name of the output database file to use if it is different from job-name. The

procedure searches for database-file as entered on the command line with the .odb file extension.

replay

This option specifies the name of the file from which Abaqus/Viewer commands are read. The commands

in replay-file will execute immediately upon startup of Abaqus/Viewer. If no file extension is given, the

default extension is .rpy. You cannot use the replay option to execute a script with control flow

statements.

startup

This option specifies the name of the file containing the Python configuration commands to be run at

application startup. Commands in this file are run after any configuration commands that have been set

in the environment file. Abaqus/Viewer does not echo the commands to the replay file when they are

executed.

3.2.7–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Viewer EXECUTION

script

This option specifies the name of the file containing Python configuration commands to be run at

application startup. Commands in this file are run after any configuration commands that have been set

in the environment file.

noGUI

This option specifies that Abaqus/Viewer is to be run without the graphical user interface (GUI). If no

file name is specified, an Abaqus/Viewer license is checked out and the Python interpreter is initialized

to allow interactive entry of Python or Abaqus Scripting Interface commands.

If a file name is specified, Abaqus/Viewer runs the commands in the file and exits upon their

completion. If no file extension is given, the default extension is .py. This option is useful for

automating post-analysis processing tasks without the added expense of running a display. Since no

interface is provided, the scripts cannot include any user interaction.

noenvstartup

This option specifies that all configuration commands in the environment files should not be run at

application startup. This option can be used in conjunction with the script command to suppress all

configuration commands except those in the script file.

noSavedOptions

This option specifies that Abaqus/Viewer should not apply the display options settings stored in

abaqus_v6.13.gpr (for example, the render style and the display of boundary conditions). For

more information, see “Saving your display options settings,” Section 76.16 of the Abaqus/CAE User’s

Guide.

noSavedGuiOptions

This option specifies that Abaqus/Viewer should not apply the GUI settings stored in

abaqus_v6.13.gpr (for example, the size and location of the Abaqus/CAE main window or its

dialog boxes).

noStartupDialog

This option specifies that the Start Session dialog box for Abaqus/Viewer should not be displayed.

custom

This option specifies the name of the file containing Abaqus GUI Toolkit commands. This option

executes an application that is a customized version of Abaqus/Viewer. For more information, see

Chapter 1, “Introduction,” of the Abaqus GUI Toolkit User’s Guide.

guiTester

This option starts a separate user interface containing the Python development environment along

with Abaqus/Viewer. The Python development environment allows you to create, edit, step through,

and debug Python scripts. For more information, see Part III, “The Abaqus Python development

environment,” of the Abaqus Scripting User’s Guide.

3.2.7–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Viewer EXECUTION

You can specify a script as the argument for this option, which prompts Abaqus/Viewer to run a

GUI script. Abaqus/Viewer closes when the end of the script is reached.

guiRecord

This option enables you to record your actions in the Abaqus/Viewer user interface in a file named

abaqus.guiLog. You can also set this option at startup by using the environment variable

ABQ_CAE_GUIRECORD. The guiRecord option cannot be used with the guiTester option.

guiNoRecord

This option enables you to disable user interface recording when the environment variable

ABQ_CAE_GUIRECORD is set.

3.2.7–3

Abaqus Version 6.6 ID:

Printed on:

Python EXECUTION

3.2.8 Python EXECUTION

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The Python language is used throughout Abaqus: in the Abaqus Scripting Interface, in the Abaqus

environment file (abaqus_v6.env), and to perform parametric studies. The abaqus python facility

is used to access the Python interpreter.

Command summary

abaqus python [script-file]

Command line option

script-file

The Python interpreter executes the instructions in the specified script-file. If this option is omitted from

the command line, the Python interpreter is started in interactive mode.

3.2.8–1

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC STUDIES

3.2.9 PARAMETRIC STUDIES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2

Overview

The abaqus script facility indicates that a parametric study is to be done (see “Scripting parametric

studies,” Section 20.1.1). Each analysis involved in the design can be executed using the execute

command (see “Execute the analysis of parametric study designs.,” Section 20.2.4). You can add any

necessary Abaqus execution options (refer to “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD

execution,” Section 3.2.2) to the execution command for each of the analyses by specifying them on the

execOptions option of the execute command. If the script file contains references to other input files,

these files must be located in the same directory as the script file. The files created by the execution of

the script file are placed in the directory from which the Abaqus execution procedure is run.

Command summary

abaqus script [=script-file]
[startup=startup file-name]
[noenvstartup]

Command line options

script-file

When a script file name is specified, the parametric study module is imported and the instructions in the

parametric study script file are executed. If the script file name is omitted from the command line, the

Python interpreter is initialized by importing the parametric study module.

startup

This option specifies the name of the file containing Python configuration commands to be run at

application startup. Commands in this file are run after any configuration commands that have been set

in the environment file.

noenvstartup

This option specifies that all configuration commands in the environment files should not be run at

application startup. This option can be used in conjunction with the startup command to suppress all

configuration commands except those in the startup file.

3.2.9–1

Abaqus Version 6.6 ID:

Printed on:

PARAMETRIC STUDIES

Examples

Use the following command to execute the Python script in a file named “parstudy.psf”:

abaqus script=parstudy

The following command will initiate a Python scripting session:

abaqus script

In a Python scripting session the following commandwill execute the Python script in a file named “scriptfile”:

script("scriptfile")

3.2.9–2

Abaqus Version 6.6 ID:

Printed on:

DOCUMENTATION

3.2.10 Abaqus DOCUMENTATION

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CAE

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Getting help,” Section 2.6 of the Abaqus/CAE User’s Guide

Overview

Abaqus documentation is installed separately from the product and is viewed through a web browser or

PDF reader. See Chapter 2, “Installing Abaqus,” of the Abaqus Installation and Licensing Guide, for

information on installing the Abaqus documentation.

The documentation consists of the following books:

• Abaqus Analysis User’s Guide

• Abaqus/CAE User’s Guide

• Abaqus Keywords Reference Guide

• Abaqus Theory Guide

• Abaqus User Subroutines Reference Guide

• Abaqus Glossary

• Abaqus Example Problems Guide

• Abaqus Benchmarks Guide

• Abaqus Verification Guide

• Abaqus Release Notes

• Abaqus Installation and Licensing Guide

• Getting Started with Abaqus: Interactive Edition

• Getting Started with Abaqus: Keywords Edition

• Abaqus Scripting User’s Guide

• Abaqus Scripting Reference Guide

• Abaqus GUI Toolkit User’s Guide

• Abaqus GUI Toolkit Reference Guide

• Abaqus Interface for Moldflow User’s Guide

• Using Abaqus Online Documentation

3.2.10–1

Abaqus Version 6.6 ID:

Printed on:

DOCUMENTATION

Using Abaqus documentation

To view the documentation:

1. Type abaqus doc.

The documentation collection page (index.html or index.pdf file) opens in either a web

browser or Adobe Acrobat Reader, depending on which formats of documentation were installed

and configured by your system administrator. See “Information to enter during product installation,”

Section 2.4.2 of the Abaqus Installation and Licensing Guide, and “Configuration of documentation

application” below. The documentation collection page lists the book titles grouped by category.

2. Click the title of a book to display it.

In the HTML documentation, each book opens in a new browser window or tab. The book window

contains four HTML frames: the navigation frame (top frame), the expand/collapse frame (upper

left frame), the table of contents frame (lower left frame), and the text frame (right frame).

3. Navigate and search the book’s content.

• In the HTML documentation, use any of the following methods:

– Use the buttons in the expand/collapse frame to vary the level of detail displayed in the

table of contents frame.

– Use the back and forward arrows in the text frame to navigate sequentially through the

text. You can also use the web browser functions to return to recently viewed pages.

– Expand the topic headings in the table of contents by clicking the book icon to the left of

the heading. To jump directly to a section whose title is displayed in the table of contents,

click that title.

– Use the search panel located in the navigation frame to search for specific words or

phrases.

• In the PDF documentation, use the standard controls in Adobe Acrobat Reader to navigate and

search the books.

For more detailed information on viewing and searching the HTML or PDF documentation, refer to

Using Abaqus Online Documentation.

Configuration of documentation application

The abaqus doc command locates a web browser executable or the Adobe Acrobat Reader executable

depending on which documentation format was installed and configured by your system administrator.

Configuration of web browser

If the HTML documentation was installed and configured by your system administrator, the abaqus doc

command will locate a web browser executable as follows:

• Windows platforms: The abaqus doc command uses your default web browser.

3.2.10–2

Abaqus Version 6.6 ID:

Printed on:

DOCUMENTATION

• UNIX and Linux platforms: The abaqus doc command searches the system path for Firefox. If

the help system cannot find Firefox, an error is displayed.

The browser_type and browser_path variables can be set in the Abaqus environment file

to modify the behavior of this command. For more information, see “System customization

parameters,” Section 4.1.4 of the Abaqus Installation and Licensing Guide.

Configuration of PDF reader executable

If the PDF documentation was installed and configured by your system administrator, the abaqus doc

command will locate the Adobe Acrobat Reader executable as follows:

• Windows platforms: The abaqus doc command uses the default installed Acrobat Reader.

• UNIX and Linux platforms: The abaqus doc command searches the system path for the

acroread executable. You can also set the doc_resource variable (in the Abaqus environment

file) to the path of the acroread executable. For more information, see “System customization

parameters,” Section 4.1.4 of the Abaqus Installation and Licensing Guide.

Command summary

abaqus doc

3.2.10–3

Abaqus Version 6.6 ID:

Printed on:

LICENSING UTILITIES

3.2.11 LICENSING UTILITIES

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus licensing utilities provide management and monitoring tools for both types of Abaqus

licensing: FLEXnet andDassault Systèmes licensing. Executing the abaqus licensing commandwithout

additional arguments displays a command usage summary of all available utilities.

For a detailed description of all of the FLEXnet Licensing utilities, refer to the FLEXnet Licensing

End User Guide Version 11.6.1. You can download this document from the Licensing section of the

Support page at www.3ds.com/simulia. Several of the most useful licensing utilities are listed in the

command summary below.

For more information, see Chapter 3, “Abaqus licensing,” of the Abaqus Installation and Licensing

Guide.

Command summary

abaqus licensing [lmstat | lmdiag | lmpath | lmtools | dslsstat | reporttool]

Command line options

lmstat

This option displays information about the location and features served by the FLEXnet Licensing servers

used to serve the Abaqus license. Additional arguments may be used with this command to generate more

license usage information.

lmdiag

This option displays information relating to the various FLEXnet Licensing features and indicates

whether or not the feature may be checked out.

lmpath

This option can be used to control where Abaqus looks for licenses. Additional arguments are used to

print, set, or add license location information. Running the command without arguments will display the

command summary for each action.

lmtools

This option starts the FLEXnet Licensing toolchest on Windows platforms. This application can be used

to invoke most FLEXnet Licensing administration tool functions.

3.2.11–1

Abaqus Version 6.6 ID:

Printed on:

LICENSING UTILITIES

dslsstat

This option displays information about the location and features served by the Dassault Systèmes license

server (DSLS). See “Using the dslsstat utility for a Dassault Systèmes license server,” Section 3.9

of the Abaqus Installation and Licensing Guide, for more information.

reporttool

This option is used to generate reports from license usage history. See “Using the reporttool utility,”

Section 3.10 of the Abaqus Installation and Licensing Guide, for more information.

3.2.11–2

Abaqus Version 6.6 ID:

Printed on:

RESULTS FILE TRANSLATION

3.2.12 ASCII TRANSLATION OF RESULTS (.FIL) FILES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus ascfil translation facility:

• is provided to convert results (.fil) files (produced by an Abaqus analysis) to ASCII format for

porting between dissimilar operating systems;

• permits the movement of results data to a different system for postprocessing; and

• can also be used to convert a results file in ASCII format to binary format to save disk space.

Command summary

abaqus ascfil job=job-name

[input=input-file]

Command line options

job

This option specifies the input and output file names to use during results file translation. The job-name

value is used as the default input file name. The translated output file will have the name job-name.fin.
If the input file is in binary format (default), this utility will create the job-name.fin file in ASCII

format. To transfer the results file back to binary format after porting to a dissimilar operating system,

rename the job-name.fin file to job-name.fil, and use this utility again; the resulting job-name.fin
file will be in binary format.

If this option is omitted from the command line, you will be prompted for this value.

input

This option specifies the name of the input file if it is different from job-name.

Example

To convert the results file c4.fil from binary to ASCII format, use the following command:

abaqus ascfil job=c4

The translated file will have the name c4.fin.

3.2.12–1

Abaqus Version 6.6 ID:

Printed on:

JOINING RESULTS FILES

3.2.13 JOINING RESULTS (.FIL) FILES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus append postprocessing facility:

• is provided to join results (.fil) files into a single file;

• permits two results files that may be either ASCII or binary files, or a combination of ASCII and

binary, to be joined for further postprocessing; and

• will write a results file in the same format as the file specified with the oldjob option.

A similar utility, abaqus restartjoin, is used to join output database (.odb) files. See “Joining

output database (.odb) files from restarted analyses,” Section 3.2.19, for details.

Command summary

abaqus append job=job-name

oldjob=oldjob-name

input=input-file

Command line options

job

This option specifies the output file name to use during execution. The job-name value is used as the

output file name. The joined output file will have the name job-name.fil.
If this option is omitted from the command line, you will be prompted for this value.

oldjob

This option specifies the name of the first results file to use during execution. The oldjob-name value is

used as the results file name.

If this option is omitted from the command line, you will be prompted for this value.

input

This option specifies the name of the second results file to use during execution. The input-file results

file will be appended to the oldjob-name results file.

If this option is omitted from the command line, you will be prompted for this value.

3.2.13–1

Abaqus Version 6.6 ID:

Printed on:

JOINING RESULTS FILES

Example

The following command will append the history contents of the fjoin003.fil results file to the end of

the fjoin002.fil results file and create the file fjoin001.fil:

abaqus append job=fjoin001 oldjob=fjoin002 input=fjoin003

3.2.13–2

Abaqus Version 6.6 ID:

Printed on:

KEYWORD/PROBLEM DATABASE QUERY

3.2.14 QUERYING THE KEYWORD/PROBLEM DATABASE

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus findkeyword utility queries a keyword/problem database that contains information

on Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD example problems, verification problems,

problems used in training seminars, problems shown in the Abaqus technology briefs, benchmark timing

problems, and those in the tutorial book Getting Started with Abaqus: Keywords Edition. You specify

which keywords, parameters, and values are of interest; and this utility will list the input files that

contain those keywords, parameters, and values. You can specify multiple keywords, which causes the

findkeyword utility to list those input files that contain all of the specified keywords. You can then use

the abaqus fetch utility to fetch the input files (see “Fetching sample input files,” Section 3.2.15). The

output is grouped into problem sets; e.g., Abaqus Example Problems or Abaqus/Standard Technology

Brief Problems.

Command summary

abaqus findkeyword [job=job-name]
[maximum=maximum-output]

keyword data lines

Command line options

job

This option is used to specify the output file name for the output listing. If this option is omitted from

the command line, the output will be printed to the standard output device.

maximum

This option is used to limit the number of sample problems that are listed for each set. If this option is

omitted, a maximum of 100 sample problems are listed for each set.

keyword data lines

The keyword data lines specify whichAbaqus keywords, parameters, and values are of interest to the user.

The names of sample problems that contain the specified keywords, parameters, and values are printed

to the standard output device or to the file indicated by the job command line parameter. The keyword

is required, but parameters and values are optional. If a keyword is specified without a parameter or a

3.2.14–1

Abaqus Version 6.6 ID:

Printed on:

KEYWORD/PROBLEM DATABASE QUERY

value, all sample problems that use that keyword (with or without parameters and values) will be listed.

If a parameter is specified without a value, all sample problems that use that parameter with any value

will be listed. Parameter values that are user-specified data (e.g., numeric data, set names, orientation

names, etc.) are ignored. The end of the keyword data lines is indicated by an empty line or an end of

file.

Examples

The following examples illustrate the different types of search criteria utilized by the findkeyword execution

procedure.

Querying for keywords and parameters

To list the sample problems that use the *RESTART optionwith theWRITE parameter, type the following

command and data lines:

abaqus findkeyword

*RESTART,WRITE

To generate a list of sample problems that contain two keyword lines in the same file, both keywords are

included as data lines. For example,

abaqus findkeyword

*RESTART,WRITE

*NGEN

To list all sample problems that use a keyword and parameter with a value, the value must be included

on the data line. For example,

abaqus findkeyword job=beam

*BEAM SECTION,SECTION=ARBITRARY

The output is written to the file beam.dat.

Querying for user-specified parameter values

User-specified parameter values (e.g., numeric data, set names, orientation names, etc.) are ignored. The

following two examples are equivalent because the value MYSET is an element set name.

abaqus findkeyword

*ELSET,ELSET=MYSET

abaqus findkeyword

*ELSET,ELSET

3.2.14–2

Abaqus Version 6.6 ID:

Printed on:

FETCHING SAMPLE FILES

3.2.15 FETCHING SAMPLE INPUT FILES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus fetch utility is used to extract sample Abaqus input files, user subroutine files, journal files,

parametric study script files, or postprocessing programs from the compressed archive files provided with

the release (for problems in the Abaqus Example Problems Guide, the Abaqus Benchmarks Guide, and

the Abaqus Verification Guide). File names are specified in the guides. If no file extension is specified,

all files corresponding to the name given will be extracted.

Wildcard expressions can be used when specifying the file names and include the following:

• An asterisk (*) matches a sequence of zero or more characters.

• A question mark (?) matches exactly one character.

• A bracketed item [...] matches any single character found inside the brackets; ranges are specified

by a beginning character, a hyphen, and an ending character. If an exclamation point (!) or a caret

(^) follow the left bracket, the range of characters within the brackets is complemented; that is,

anything except the characters inside the brackets is considered a match.

Any character that might otherwise be interpreted or modified by the operating system, particularly on

UNIX platforms, should be placed inside quotation marks. If no matches are found using the wildcard

expressions, the abaqus fetch utility attempts to extract a file with the name specified.

Command summary

abaqus fetch job=job-name

[input=input-file]

Command line options

job

This option is used to specify the output file name for the fetched input file or files. It is also the default

name of the input file to fetch.

If this option is omitted from the command line, you will be prompted for this value.

input

This option is used to specify the name of the input file or files to fetch if it is different from the job-name.

3.2.15–1

Abaqus Version 6.6 ID:

Printed on:

FETCHING SAMPLE FILES

Examples

To fetch the example input file c2.inp from the archive files, use the following command:

abaqus fetch job=c2.inp

To fetch all files associated with job c8 from the archive files, do not specify a file extension. The following

command will extract both the input file (c8.inp) and the user subroutine file (c8.f):

abaqus fetch job=c8

To fetch the sample parametric study scripting file parstudy.psf from the archive files, use the following

command:

abaqus fetch job=parstudy.psf

3.2.15–2

Abaqus Version 6.6 ID:

Printed on:

MAKING USER-DEFINED EXECUTABLES

3.2.16 MAKING USER-DEFINED EXECUTABLES AND SUBROUTINES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus make utility is used to create user postprocessing executables and user-defined libraries

of Abaqus user subroutines. The commands used to compile and link a user-supplied program or user

subroutine source file can be changed using the appropriate Abaqus environment file parameters; i.e.,

compile_cpp, compile_fortran, link_exe, and link_sl. You can skip the compilation step by providing

a precompiled object as input for postprocessing programs.

Postprocessing executables created using this procedure must be run using the Abaqus execution

procedure. This is necessary to set the operating system environment variables for finding the Abaqus

utility libraries. To run a user postprocessing program, use the following command:

abaqus job-name

User subroutine shared libraries created using this procedure are used by specifying the

usub_lib_dir variable in the Abaqus environment file. The advantage of doing this is that an analysis

using user subroutines can execute without having to compile or link the user subroutine.

Command summary

abaqus make {job=job-name | library=source-file}
[user={source-file | object-file}]
[directory=library-dir]
[object_type={fortran | c | cpp}]

Command line options

job

This option is used to create a user-supplied postprocessing program. The value of the option specifies

the name of the executable created by this procedure. It is also used as the default source file name.

If no option is given on the command line, you will be prompted for this value.

library

This option is used to create user subroutine object files and shared libraries. The value of the option

specifies the name of the user subroutine source file to be compiled and linked. The resulting object

and shared library files are placed in the directory given by the command line directory option. If the

directory option is not used, the files are placed in the current working directory.

3.2.16–1

Abaqus Version 6.6 ID:

Printed on:

MAKING USER-DEFINED EXECUTABLES

The object file or files created have a suffix indicating if the user subroutine is for Abaqus/Standard

or Abaqus/Explicit. The Abaqus/Standard object file suffix is —std. Abaqus/Explicit has single and

double precision object files; the object file suffixes are —xpl and —xplD. The Abaqus/Standard user

subroutine shared library that is created is called standardU, and the Abaqus/Explicit shared libraries
are called explicitU and explicitU-D. If the directory option is used and it contains object files

with the appropriate suffix for the shared library that is being created, those files are linked to the shared

library.

user

This option is valid only when used in conjunction with the job option. It is used to specify the name of

the source or object file containing your program if it is different from job-name. If a file extension is

not provided, the option value with a FORTRAN source file extension is sought. If a file by this name

is not found, the option value with an object file extension is sought.

directory

This option is valid only when used in conjunction with the library option. It is used to specify the

destination of the user subroutine object and shared library files that will be created by the procedure.

It is also used to specify the location of additional object files that are to be linked to the shared library

or libraries being created. If the option is omitted, the files created by the procedure are placed in the

current working directory.

object_type

This option is valid only when used in conjunction with the job option. It is used to specify the type of

object file, either FORTRAN, C, or C++, given by the job or user option.

Example

To create an executable called “pprocess” given a FORTRAN source file of the same name, use the following

command:

abaqus make job=pprocess

This program can then be run using the command

abaqus pprocess

3.2.16–2

Abaqus Version 6.6 ID:

Printed on:

UPGRADE UTILITY

3.2.17 INPUT FILE AND OUTPUT DATABASE UPGRADE UTILITY

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Fixed format conversion utility,” Section 3.2.25

Overview

The abaqus upgrade utility will convert an input file or output database file from earlier releases of

Abaqus to the current release. Input files based on the syntax of Abaqus 5.8 or later can be upgraded;

output database files from Abaqus 6.1 or later can be upgraded. The abaqus upgrade utility will generate

a log file (job-name.log) that contains error, warning, diagnostic, and informational messages. You

should carefully review the conversion log file to ensure that changes made to the older release input file

or output database file are appropriate. If no conversions are necessary, a message will be issued to the

log file as well as to the screen.

Abaqus does not allow the use of dots (".") in set, surface, or rebar names in an input file except

as delimiters between a part instance name and a set, surface, or rebar name. The abaqus upgrade

utility will change dots to underscores ("_") for dots not used as delimiters. Manual conversion of dots

to underscores will improve performance for very large input or include files.

The abaqus upgrade utility expects input files to be in free format; you can use the abaqus free

utility to convert fixed format data to free format. See “Fixed format conversion utility,” Section 3.2.25.

Command summary

abaqus upgrade job=job-name

[input=old-input-file-name | odb=old-odb-file-name]
[fromversion=release] [previousdefaults]

Command line options

Required option

job

This option is used to specify the name of the upgraded input file or output database file to be output by

the utility.

3.2.17–1

Abaqus Version 6.6 ID:

Printed on:

UPGRADE UTILITY

Mutually exclusive options

input

This option is used to specify the name of the input file to be upgraded.

odb

This option is used to specify the name of the output database file to be upgraded.

Additional options

fromversion

This option is relevant for input file upgrades only. By default, the upgrade utility converts the input

file from Abaqus 6.12 to the current release. This option is used to upgrade an input file from an earlier

release. For the release number, specify the general release number (two numbers separated by a period,

such as 6.8).

previousdefaults

This option is relevant for input file upgrades only. This option is used to minimize modeling differences

between the old input file and the upgraded input file.

3.2.17–2

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

3.2.18 GENERATING OUTPUT DATABASE REPORTS

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Object model for the output database,” Section 10.5 of the Abaqus Scripting User’s Guide

Overview

The output database report utility prints information from an Abaqus output database (.odb) file to a

formatted report. By default, the report is printed in plain text format; however, you can also create

reports in HTML and CSV (comma-separated values) formats.

Output database structure

Every output database consists of two main sections: model data and results data. The database is further

broken down into a hierarchical structure of containers, as indicated in Figure 3.2.18–1.

steps

odb
mesh

sets

Model Data

frames

historyRegions

Results Data

historyOutputs

fieldOutputs invariants
components
orientation

Figure 3.2.18–1 Structure of an output database

The data that can appear in a report reside in the containers at the far right of each branch. These

containers can be used to classify the four main branches of the output database:

3.2.18–1

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

• The mesh branch terminates in a container holding nodal coordinates and element connectivity

information for the model.

• The sets branch terminates in a container holding the names and node or element labels of the sets

and surfaces in the model.

• The fieldOutputs branch terminates in a container holding the values of field output variables from

the analysis. These values are further broken down into their vector or tensor attributes: invariants,
components, and orientation.

• The historyOutputs branch terminates in a container holding the values of history output variables

from the analysis.

The containers in the model data section of the tree are singular containers: each model has one container

for mesh information and one container for sets information. The containers in the results section of the

tree, however, represent aggregates of multiple containers. For a multistep analysis, the output database

will have a separate step container for each step of the analysis. Within each step container will be

multiple frames and historyRegions containers. Within each individual frames container will be

multiple fieldOutputs containers, and so on. The output database assigns names or values to these

individual containers to help distinguish and identify them.

For a more detailed discussion of the output database structure, see “Object model for the output

database,” Section 10.5 of the Abaqus Scripting User’s Guide.

Generating summary reports

If you generate a report using only the required and file formatting command line options, the report will

be a brief summary of the output database. This summary contains a listing of the following information:

• Part instance names

• Number of nodes and elements in the model

• Names of sets and surfaces

• Names of steps and load cases

• Numbers of frames in the steps

• Names of field and history output variables

The information contained in this summary can help you determine the names and values of containers

in the output database.

Adding information to a report

You can create more comprehensive reports using additional command line options. Most of these

options correspond to a container in the output database structure outlined in Figure 3.2.18–1. Using

these options to specify the name or value of a container instructs the utility to extract the data found in

that container and to add it to the generated report. Container names and values are not always unique, and

may appear more than once in an output database. For example, a container corresponding to frame 1will

likely appear in every individual step container for a multistep analysis; similarly, a container holding

3.2.18–2

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

a specific field output variable usually appears inside every frame of the step. The utility will add all

instances of these containers to the report.

To refine the container selection, you can combine options. When more than one container from the

same branch is indicated on the command line, the utility only reports the data that are common to both

containers. For example, if two options specify the container for Step 1 and the container for frame 3,

the utility will add results data only from the third frame of the first step to the report. If you specify

containers from different branches, the data from each container are added to the report. For example, if

the two options specify the sets container and a history region container, both sets data and history output

data are added to the report.

You identify specific containers by setting the associated option equal to the name or value of that

container. To include multiple containers of the same type, set the option equal to a comma-separated

list. The names are case-sensitive. If the names include spaces, you must enclose the entire value in

double quotation marks ("container name").

Additional options

The output database report utility offers some additional options for controlling the organization and

details of a report. These options will have no effect unless they are invoked in conjunction with other

“container” options.

Command summary

abaqus odbreport [job=job-name] [odb=output-database-file] [mode={HTML | CSV}]
[all] [mesh] [sets] [results] [step={step-name | _LAST_}]
[frame={number | load-case-name | description | _LAST_}]
[framevalue={time | mode | frequency}]
[field=[field-variable]] [components] [invariants] [orientation]
[histregion=region-name] [history=[history-variable]]
[instance={instance-name | _NONE_}] [blocked] [extrema]

Command line options

Required options

You must include at least one of the following options when executing abaqus odbreport. They
tell the utility where to find the output database and where to print the report. Use both options together

to make the report’s file name unique from the output database name.

job

This option is used to specify the file name of the generated report. If you omit this option, the utility

prints the report to the standard output device.

3.2.18–3

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

odb

This option is used to specify the output database (.odb) file from which the report is generated. If you

omit this option, the utility looks for an output database called job-name.odb in the current directory.

File formatting option

mode

This option specifies the file format of the generated report. If you omit this option, the report is in

plain text format with the file extension .rep. If mode=HTML, the report is in HTML format with

the file extension .htm. If mode=CSV, the report is in comma-separated values format with the file

extension .csv.

Option to generate a full output database report

all

This option is used to report all available model information and results information from every step in

the analysis; data from the base state of each step (frame zero) is not included in the report. The report

will be very long for large output databases.

Options to report model data

The following options extract information from the model data section of the output database.

mesh

This option is used to report the nodal coordinates and element connectivity associated with the model’s

mesh.

sets

This option is used to report the names and contents of all sets and surfaces associated with the model.

Options to report results data

The following options extract information from the results data section of the output database.

results

This option is used to report all field and history output variable values from the output database. If you

include any other options corresponding to specific results containers, this option is ignored.

step

This option is used to report the field and history output variable values for the specified steps. When

invoking this option, you must set it equal to at least one step name. If step=_LAST_, the report includes
results from only the last step of the analysis.

The steps container is common to both the fieldOutputs and historyOutputs branches of the

output database. If you combine the step option with a field output variable option, only field output

3.2.18–4

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

variable data appear in the report. Similarly, if you combine the step option with a history output variable

option, only history output variable data appear in the report. If you combine the step option with both

field and history output variable options, both types of variable data appear in the report.

Options to report field output variables

The following options extract information from containers in the fieldOutputs branch of the output

database.

frame

This option is used to report field output variable values for the specified frames. When invoking this

option, you must set it equal to at least one frame number, load case name, or frame description. The

initial (or “zero increment”) frame can be identified only by setting frame=0. If frame=_LAST_, the
report includes results from only the last frame of each included step.

framevalue

This option is used to report field output variable values for the specified frame values. Each frame can

be identified by a frame value that may be unique from the frame number. The frame value is either the

time, eigenmode number, or frequency point associated with a frame.

This option can be used as an alternative or complement to the frame option. When invoking this

option, you must set it equal to at least one frame value. The values you provide do not need to be exact;

the utility will find the frame with the closest frame value.

field

This option is used to report the specified field output variable values. If you invoke this option without

setting it equal to any variable names, all field variable containers are included in the report.

Options to report different field variable attributes

If none of the following options is invoked, the utility automatically reports components and (if

applicable) orientations for each field variable. Otherwise, the utility reports only the attributes specified

by these options. These options will have an effect only if used in conjunction with other field output

variable options. Invariants and orientations are not available for all field variables.

components

This option is used to report components for all field output variables.

invariants

This option is used to report invariant values for all field output variables.

orientation

This option is used to report the local coordinate system for each field output variable.

3.2.18–5

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

Options to report history output variables

The following options extract information from containers in the historyOutputs branch of the output

database.

histregion

This option is used to report history output variable values for the specified history region. When

invoking this option, you must set it equal to at least one history region name.

history

This option is used to report the specified history output variable values. If you invoke this option without

setting it equal to any variable names, all history variable containers are included in the report.

Additional options

The following options add an additional level of control and detail to a report. They are not associated

directly with the output database structure and will not add database information to a report. They must

be used in conjunction with the previously described options.

instance

This option is used to limit reported model and results data to a specific part or assembly instance in the

model. It is not directly associated with any output database containers and will not add any data to a

report.

When invoking this option, youmust set it equal to at least one instance name. If instance=_NONE_,
the report includes data for the whole assembly and model.

blocked

This option is used to subdivide tables of field output variables into blocks according to part instance,

element type, and section point. It is useful if you are interested in separating output from different areas

of a large model. By default, the tables are organized according to variable name and frame.

This option instructs the report utility to access the output database using the field bulk data API. For

details about how the field bulk data API operates, see “Using bulk data access to an output database,”

Section 10.10.7 of the Abaqus Scripting User’s Guide. An additional benefit of this option is enhanced

performance of the utility when dealing with large volumes of field variables, leading to faster report

generation. The option has no effect if there are no field output variables in a report, or when the

invariants option is also specified.

extrema

This option is used to report maximum and minimum values at the end of each table of nodal coordinates

and field output variables. By default, these extrema do not appear in a report. The option will have no

effect if there are no nodal coordinates or field output variables in a report.

3.2.18–6

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

Examples

The following examples illustrate the capabilities of the odbreport execution procedure and the effects of

different option combinations.

File naming and formatting

The following command generates a brief summary of the output database beam.odb in a plain text

file named beam.rep:

abaqus odbreport job=beam

To create the same report in HTML format andwith the name beamreport.htm, execute the following
command:

abaqus odbreport job=beamreport odb=beam mode=html

Adding information to a report

Use additional command line options to add data from specified containers to a report. The following

command creates a report listing nodal coordinates and element connectivity from the model and all

output variable values associated with the step named Apply weight:

abaqus odbreport job=beam mesh step="Apply weight"

You can refine the results data listed by using combinations of options. In the following example,

the utility reports only history output variable values that were output from the history region named

Node350 in the Apply weight step:

abaqus odbreport job=beam step="Apply weight"
histregion=Node350

If a container is identified by a name or value that is not unique, the generated report will include all

occurrences of that container. The following command creates a report listing the values for field variable

RF that were output in the third frame of every individual step:

abaqus odbreport job=beam frame=3 field=RF

To report the magnitude of RF instead of its components, use the invariants option:

abaqus odbreport job=beam frame=3 field=RF invariants

To add multiple containers of the same type to a report, you can set an option equal to a comma-separated

list. The following command reports all values of field output variables U and S that were output during

the steps Apply weight and Side load:

abaqus odbreport job=beam step="Apply weight","Side load"
field=U,S

3.2.18–7

Abaqus Version 6.6 ID:

Printed on:

OUTPUT DATABASE REPORTS

Additional options

Use the instance option to limit reported information to a particular section of your model. The following

command reports set names and nodes, and values of S in the last frame of every step from the database

motor.odb. However, only information related to part instance pistonA appears in the report:

abaqus odbreport job=motor sets frame=_LAST_ field=S
instance=pistonA

Selecting frames

The frame and framevalue options can accept a wide variety of value types, making them powerful

report-building options. Because of this variety, it is sometimes necessary to invoke both options to

specify a particular frame. For example, consider the output database plate.odb, the results of a

steady-state dynamic analysis. The analysis investigated the response of a plate over a range of 20

different frequencies under three different load cases. The output database, therefore, includes results

for the three different load cases at each frequency. You are interested in the response at 45 Hz under the

load case named lc2. Setting frame=lc2 will report field variables for load case lc2 at every frequency

(a total of 20 frames). Setting framevalue=45 will report field variables for every load case associated

with the 45 Hz frequency (a total of three frames). To limit the report to the single frame of interest, you

must invoke both options together:

abaqus odbreport job=plate frame=lc2 framevalue=45

3.2.18–8

Abaqus Version 6.6 ID:

Printed on:

JOINING OUTPUT DATABASES UPON RESTART

3.2.19 JOINING OUTPUT DATABASE (.ODB) FILES FROM RESTARTED ANALYSES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Continuation of output upon restart” in “Restarting an analysis,” Section 9.1.1

Overview

The abaqus restartjoin utility appends an output database (.odb) file produced by a restart analysis of
a model to the output database produced by the original analysis of that model. Combining the original

and restart output database files into a single file enables you to examine all of the output data for the

analysis in Abaqus/CAE.

A similar utility, abaqus append, is used to join results (.fil) files. See “Joining results (.fil)
files,” Section 3.2.13, for details.

Appending data when the analysis restarts between steps versus midstep

You can append output database files from analyses that restart between steps and from analyses that

restart in the middle of a step. While the required syntax is the same for these two types of analyses,

Abaqus appends data differently, as follows:

• For an analysis that stops and restarts between steps, Abaqus simply appends the output from the

new steps to the output from the existing steps of the original analysis.

• For an analysis that stops and restarts in the middle of a step, the original and restart analyses overlap

because the restart analysis resumes at the beginning of the interrupted step. In this case the abaqus

restartjoin utility retains the results for any completed steps in the original analysis but replaces

the results for the interrupted step with the output data produced by the restart analysis.

Customizing the combined output database file

By default, Abaqus appends the output data produced by the restart analysis directly to the original output

database file. If you prefer to retain the original output database file, you can create a copy of it and

append the restart analysis output data to the copy instead. Abaqus names this copy using the format

Restart_original-odb-filename; for example, a copy of the original output database file job–1.odb
would be named Restart_job-1.odb.

Abaqus omits history data when you combine original and restart output databases; however, you

can override this default. You can also control whether Abaqus compresses the combined output database

file.

3.2.19–1

Abaqus Version 6.6 ID:

Printed on:

JOINING OUTPUT DATABASES UPON RESTART

Command summary

abaqus restartjoin originalodb=odb-file-name

restartodb=odb-file-name

[copyoriginal] [history] [compressresult]

Command line options

originalodb

This option specifies the output database file produced by the original analysis. If you omit the

copyoriginal option, Abaqus appends the output data from the restart output database file directly to

the original output database file.

If you omit this option from the command line, Abaqus will prompt you for its value.

restartodb

This option specifies the output database file produced by the restart analysis. You can specify only one

restart analysis output database file at a time.

If you omit this option from the command line, Abaqus will prompt you for its value.

copyoriginal

If this option is specified, Abaqus creates a copy of the output database file specified by the originalodb

option and appends the contents of the restartodb output database file to that copy instead of to the

original file. When this option is omitted, Abaqus appends the output data from the restart analysis

directly to the original output database file.

Abaqus names the copied output database file by adding the prefix Restart_ to the name of the

original output database file; for example, a copy of the original output database file original.odb
would be named Restart_original.odb.

history

If this option is specified, Abaqus copies history data from the restart output database to the original

output database or its copy. Abaqus omits history data in the joined output database file unless you

specify this option.

compressresult

If this option is specified, Abaqus compresses the resulting output database file.

Examples

If your model produced an initial output database file named Job-1.odb and a restart output database file

named Job-1_res.odb, issue the following command to append the contents of the restart database to the

initial output database file:

abaqus restartjoin originalodb=Job-1.odb restartodb=Job-1_res.odb

3.2.19–2

Abaqus Version 6.6 ID:

Printed on:

JOINING OUTPUT DATABASES UPON RESTART

If you prefer to retain the original output database file, you can create a copy of this original file and append

the contents of the restart output database file to the copy instead. Abaqus creates the name of the copied

output database file by adding the prefix Restart_ to the name of the original file; in the preceding example

the copy of the original file Job-1.odb would be named Restart_Job-1.odb. To perform the restart

join operation using a copy of the original file, issue the following command:

abaqus restartjoin originalodb=Job-1.odb restartodb=Job-1_res.odb
copyoriginal

By default, Abaqus does not copy history data to the combined output database. To include history data, issue

the following command:

abaqus restartjoin originalodb=Job-1.odb restartodb=Job-1_res.odb
history

3.2.19–3

Abaqus Version 6.6 ID:

Printed on:

COMBINING SUBSTRUCTURE ANALYSIS OUTPUT

3.2.20 COMBINING OUTPUT FROM SUBSTRUCTURES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Obtaining output of results within a substructure” in “Using substructures,” Section 10.1.1

Overview

The abaqus substructurecombine utility combines the model and results data produced by two of

a model’s substructures into a single output database (.odb) file. By combining all of a model’s

substructure analysis output database files, you can display all of the data produced by a substructure

analysis in Abaqus/CAE.

Abaqus combines output data by adding the contents of the second file you specify (the copy output

database) directly into the first file you specify (the base output database). Because this process changes

the base output database, consider backing up your data before using this utility.

Combining data for models with more than two substructures

Because the abaqus substructurecombine utility combines data from only two output databases at a

time, you must run the utility multiple times to create a single output database from an analysis with

more than two substructures. Combine data from two of the substructures first, then repeat the operation

to combine the resulting output database file with data from each remaining substructure.

Customizing the combined output database

You can customize the substructure combine operation by adding only a subset of the data from the copy

output database into the base output database. Abaqus enables you to add output data to the base output

database from a single step or frame in the copy output database. You can also include only output data

from the copy output database that relates to a particular variable; for example, you can copy output data

related to Mises stress.

Command summary

abaqus substructurecombine baseodb=odb-file-name

copyodb=odb-file-name

[all] [step=step-name]
[frame=frame-number] [variable=variable-key]

3.2.20–1

Abaqus Version 6.6 ID:

Printed on:

COMBINING SUBSTRUCTURE ANALYSIS OUTPUT

Command line options

baseodb

This option specifies the name of the base output database, to which Abaqus adds the contents of the

copy output database.

If you omit this option from the command line, Abaqus will prompt you for its value.

copyodb

This option specifies the name of the copy output database, which Abaqus adds to the contents of the

base output database. You can specify only one file at a time for this option.

If you omit this option from the command line, Abaqus will prompt you for its value.

all

This option indicates that data for all variables within all steps and frames of output should be copied

to the combined output database. When you specify this option, Abaqus ignores the step, frame, and

variable options.

step

This option indicates the name of the step from which Abaqus will copy results data. You can specify

only one step; if you omit this option, Abaqus copies data from the last step in the output database.

Abaqus ignores this option if you specify the all option.

frame

This option indicates the number of the frame from which Abaqus will copy results data. You can specify

only one frame; if you omit this option, Abaqus uses the last frame in the step specified by the step option.

Abaqus ignores this option if you specify the all option.

variable

This option indicates the variable key for the variable from which Abaqus will copy results data. If you

omit this option, Abaqus copies data for all variables in the output database. Abaqus ignores this option

if you specify the all option.

Only output variable keys that are valid for output database file output are available for use with

abaqus substructurecombine. In general, if a key corresponds to a collective output variable, rather

than an individual component, it can be used with this execution procedure. The collective output

variable keys are distinguished from their individual components by the fact that they have a bullet ()

in one of the .odb columns in the tables in “Abaqus/Standard output variable identifiers,” Section 4.2.1.

Examples

The following examples illustrate different methods of combining substructures using the abaqus

substructurecombine execution procedure.

3.2.20–2

Abaqus Version 6.6 ID:

Printed on:

COMBINING SUBSTRUCTURE ANALYSIS OUTPUT

Combining two substructures

If your model contains two substructures that produce output database files named subst1.odb and

subst2.odb, issue the following command to overwrite subst1.odb with the combined contents

of the two files:

abaqus substructureCombine baseodb=subst1.odb copyodb=subst2.odb

Combining more than two substructures

If your model contains more than two substructures, you must first combine the output database files from

two of the substructures, then combine the combined output database with each of the other substructures’

output databases in turn. In this example the substructure analysis produces four output database files

namedsubst1.odb, subst2.odb, subst3.odb andsubst4.odb, so youmust issue the abaqus

substructure command a total of three times to combine all four files into a single output database, as

shown in the following example:

abaqus substructureCombine baseodb=subst1.odb copyodb=subst2.odb
abaqus substructureCombine baseodb=subst1.odb copyodb=subst3.odb
abaqus substructureCombine baseodb=subst1.odb copyodb=subst4.odb

Combining specific elements of the substructures

If you want to include only the output data from the step Step-1 in the combined output database, issue

the following command:

abaqus substructureCombine baseodb=subst1.odb copyodb=subst2.odb
step="Step-1"

If you want to include only the output data from the Mises variable in the combined output database,

issue the following command:

abaqus substructureCombine baseodb=subst1.odb copyodb=subst2.odb
variable="Mises"

3.2.20–3

Abaqus Version 6.6 ID:

Printed on:

COMBINING OUTPUT DATABASES

3.2.21 COMBINING DATA FROM MULTIPLE OUTPUT DATABASES

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Joining output database (.odb) files from restarted analyses,” Section 3.2.19

• “Combining data from multiple output databases,” Section 82.13 of the Abaqus/CAE User’s Guide,

in the HTML version of this guide

Overview

The abaqus odbcombine utility combines the results data in two or more Abaqus output database files

(.odb) into a single output database (.odb) file. The abaqus odbcombine utility is intended for the

combination of output databases containing different results. If you want to combine output databases

from the same analysis before and after a restart, use the abaqus restartjoin execution procedure instead.

For more information, see “Joining output database (.odb) files from restarted analyses,” Section 3.2.19.

Abaqus includes all model data from the selected output databases in the combined output database;

however, for results data you can choose to include a subset of the data from the output databases that

you specify. Abaqus/CAE determines which results data are included in the combined output database

based on two factors: the filtering options you specify and your selection of master output database.

Filters

You can filter the data that the utility includes in the combined output database to include results only

from selected steps or frames, from selected output variables, or from a combination of these options.

For example, a filter can enable you to include results data only from the last step and the last frame of

the specified output databases, and the same filter can dictate that only Mises stress results are included

in the combined output database. You can also establish multiple filters if you want to set up different

filtering conditions for the first step than in the second step.

The abaqus odbcombine utility also provides two levels of filtering: output database–specific

filters, which filter results from only a single output database; and default filters, which apply to the

entire job. The output database–specific filters take precedence over the default filters, so Abaqus/CAE

employs the settings in the default filters only when the default filter you define does not conflict with

filters for one of the individual output databases.

The filtering syntax is flexible enough to allow you to specify multiple steps, frame, or output

variable values. You can specify multiple step names in a comma-separated list, such as Step-1,
Step-2, Step-4. For frames you can include ranges or individual values; for example, entering 1,
3, 5, 7:9 returns frames 1, 3, 5, 7, 8, and 9 to the combined output database.

3.2.21–1

Abaqus Version 6.6 ID:

Printed on:

COMBINING OUTPUT DATABASES

You can also use the symbolic constants ’ALL’, ’FIRST’, and ’LAST’ as shortcuts to specify

the data you want to include. These options enable you to include results data from all steps or frames

and data from all output variables rather than one or more selected variables.

Master output database

One output database in every combine operation is designated as the master output database. The utility

first transfers all field output data, subject to filtering selections, from the master output database to the

combined output database. The utility then locates results data from matching steps and frames in the

subsequent output databases and copies only those data into the combined output database. This strategy

provides a more coherent structure for the combined results data.

Configuration file usage

The abaqus odbcombine utility uses data in configuration files to determine which output databases to

combine, the file to designate as the master output database, and the filtering options to enforce by default

and for each output database. The configuration file must be in .xml format, and it can have three types

of elements in the following order:

• The <DefaultFilters> element specifies one or more default filtering definitions. This section

is optional, but you must include it if you want to set up default filtering for your combine operation.

• The <MasterOdb> element specifies the location of the master output database and, if desired,

one or more filtering definitions for the data in that output database. This section is required.

• One <Odb> element is required for each additional output database that you want to include in the

combine operation.

You can then specify default filters for output database–specific filters by embedding <Filter>
elements within the <DefaultFilters> element or within one of the output database elements.

Configuration file template

The following example illustrates the structure of the configuration file for the abaqus odbcombine

utility.

<?xml version='1.0' encoding='UTF-8'>
Your XML file declaration may differ from this one.

<OdbInput>
<DefaultFilters>
The default filtering element is optional. If you include this element in the configuration file,

you must include at least one <Filter> element within this section. Filter elements can

use the Steps or Frames attributes to refer to symbolic constants or the StepName or

FrameIndex attributes to refer to individual steps or frames, as shown in the following examples:

<Filter Steps='step names or symbolic constants'
Frames='frame numbers or symbolic constants'

3.2.21–2

Abaqus Version 6.6 ID:

Printed on:

COMBINING OUTPUT DATABASES

VariableName='variable' />
<Filter StepName='full step name'

FrameIndex='individual frame number'
VariableName='variable' />

</DefaultFilters>

<MasterOdb Name='path to master output database'>
Filtering elements for the master output database are optional. If you want to filter

the data from this output database, include a <Filter> element within this section

for each filtering option you want to define.

</MasterOdb>

<Odb Name='path to output database'>
Filtering elements for the output database are optional. If you want to filter

the data from this output database, include a <Filter> element within this section

for each filtering option you want to define.

</Odb>

Append an <Odb> element for each additional output database you want to include.

</OdbInput>

Data not included in combined output databases

The following types of output data are not included when you combine output database files:

• History output.

• Surface data.

• Data from analytical rigid part instances.

• Local coordinate systems associated with field output data.

Command summary

abaqus odbcombine {job=job-name}
[input=configuration-file-name] [verbose=level]

Command line options

job

This option specifies the name of the resulting combined output database and the name of the log file.

Abaqus also searches for a configuration file by this name.

If you omit this option from the command line, Abaqus will prompt you for its value.

3.2.21–3

Abaqus Version 6.6 ID:

Printed on:

COMBINING OUTPUT DATABASES

input

This option specifies the name of the configuration file that specifies the output databases you want to

combine and the steps, frames, and output variables to be included in the combination. The configuration

file must be in .xml format.

verbose

This option specifies the level of detail for the messages that Abaqus writes to the log file. Possible values

are 1 or 2. If you specify 1, Abaqus writes only errors and warnings to the log file; if you specify 2,
Abaqus also records the filtering options you select and lists the model data and field output data that

were successfully copied to the combined output database.

3.2.21–4

Abaqus Version 6.6 ID:

Printed on:

NETWORK OUTPUT DATABASE FILE CONNECTOR EXECUTION

3.2.22 NETWORK OUTPUT DATABASE FILE CONNECTOR

Products: Abaqus/CAE Abaqus/Viewer

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Accessing an output database on a remote computer,” Section 9.3 of the Abaqus/CAEUser’s Guide

Overview

A network ODB connector creates a connection to a network ODB server that can be used to access

a remote output database. The abaqus networkDBConnector command is used to start the network

ODB server. A network ODB connector can be created from any platform—Windows, UNIX, or Linux;

however, the network ODB server must reside on a UNIX or Linux platform.

Abaqus uses password files to authenticate the connection between the client and the server. The

password on the network ODB server must be stored in a file called .abaqus_net_passwd in your

home directory on the remote system. You must update this file after 30 days, and the password must be

at least 8 characters long.

In addition, your home directory on the local client machine can contain either of the following:

• A file called .abaqus_hostname_passwd. This file allows you to connect to the remote server

on the machine called hostname.

• A file called .abaqus_net_passwd. This file allows you to connect to the network ODB server

on any machine.

The contents of the password file on both the server and the client must be identical. In addition, Abaqus

checks that you are the only user with permission to read from or to write to the password files. If neither

file exists, Abaqus tries to use remote and secure shell commands to read the password from the network

ODB server. However, the security configuration at your site may prevent Abaqus from reading the

password.

Command summary

abaqus networkDBConnector port={serverPortNumber | auto_assigned}
[timeout=time out value in seconds]
[host=hostname]
[stop]
[ping]

3.2.22–1

Abaqus Version 6.6 ID:

Printed on:

NETWORK OUTPUT DATABASE FILE CONNECTOR EXECUTION

Command line options

port

This option specifies the port number on the network ODB server. If port=auto_assigned, Abaqus
automatically assigns the port number.

timeout

This option specifies the timeout period in seconds for the network ODB server. The server exits if it

does not receive any communication from the client during the time specified. A timeout value of zero

indicates that the server will run until it is terminated explicitly using the stop option.

host

This option specifies the name of the machine that is hosting the network ODB server. This option is

used with the stop and ping options. If this option is not provided, Abaqus uses the name of the machine

from which the execution procedure was issued.

stop

This option specifies that Abaqus should stop the network ODB server that was established using the

specified host name and port number.

ping

This option queries the network ODB file server that was established using the specified host name and

port number. Use this option to confirm that the network ODB server exists and that communications

have been established.

3.2.22–2

Abaqus Version 6.6 ID:

Printed on:

MAPPING LOADS

3.2.23 MAPPING THERMAL AND MAGNETIC LOADS

Product: Abaqus/Standard

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Eddy current analysis,” Section 6.7.5

• “Predefined loads for sequential coupling,” Section 16.1.3

• *CFLUX

• *CLOAD

Overview

The abaqus emloads utility converts results output from a time-harmonic eddy current analysis for use as

loads in a subsequent heat transfer, coupled temperature-displacement, or stress/displacement analysis.

For example, magnetic body force intensity output is converted to point loads. You specify the names

of the time-harmonic eddy current analysis results output database (.odb) file and the input file for the

subsequent analysis on the command line. The utility creates an output database file containing a mesh

that matches the mesh in your subsequent analysis and steady-state concentrated nodal fields consistent

with the time-harmonic eddy current analysis results. Your time-harmonic eddy current and subsequent

analysis meshes can be dissimilar, and results transfer ensures global conservation of the flux quantities

when your model domains match; i.e., the model boundaries are the same. You can then use this new

output database file to apply concentrated loads and concentrated heat fluxes in the subsequent analysis.

Results conversion

The utility converts whole element output quantities from a time-harmonic eddy current analysis to nodal

results. You use the options listed in Table 3.2.23–1 in the subsequent analysis to specify the output

database file (and optionally the step and increment) from which the data are to be read.

Utility execution

The utility executes in two phases. Abaqus writes progress information and, if appropriate, error

messages to the screen during each phase.

In the first phase a datacheck analysis is performed on your subsequent analysis input file to create an

output database representation of a “target” mesh. This phase requires that your input file be sufficiently

complete to successfully run abaqus datacheck, with the exception that you can have *CFLUX and

*CLOAD options that include the FILE parameter to refer to files that are not available. If this phase is

successful, the utility proceeds to the second phase; otherwise, an error message is issued.

In the second phase time-harmonic eddy current analysis load data are mapped from the source to

the target output database. In this phase all steps and increments found in the original analysis are defined

3.2.23–1

Abaqus Version 6.6 ID:

Printed on:

MAPPING LOADS

Table 3.2.23–1 Supported results conversion.

Electromagnetic
analysis output

variable

Converted
output variable

Input file option

Rate of Joule heat

dissipation

EMJH

Concentrated

heat flux

CFL11

*CFLUX, FILE=odb-name, STEP=step-number, INC=inc

Magnetic body force

intensity

EMBF

Point load

components

CF

*CLOAD, FILE=odb-name, STEP=step-number, INC=inc

in the target output database. This phase requires that your target model domain lie within the source

model domain. If it does not, an appropriate error message is issued.

Command summary

abaqus emloads job=target-odb-name

input=subsequent analysis input-file-name

sourceodb=time-harmonic eddy current analysis odb-file-name

Command line options

job

This option specifies the name of the resulting “target” output database file.

input

This option specifies the name of the subsequent analysis Abaqus input file. This file must be sufficiently

complete to successfully run, as described above.

sourceodb

This option specifies the name of the time-harmonic eddy current analysis output database file.

3.2.23–2

Abaqus Version 6.6 ID:

Printed on:

MATRIX ASSEMBLY UTILITY

3.2.24 ELEMENT MATRIX ASSEMBLY UTILITY

Product: Abaqus/Standard

Reference

• “Generating matrices,” Section 10.3

Overview

The abaqus mtxasm utility assembles element matrices contained in a SIM document and, optionally,

writes the assembled matrices to text files. If assembled matrices are already available in a SIM

document, you can use this utility to write them to text files.

Command summary

abaqus mtxasm job=name-of-assembled-mtx-sim-doc

[oldjob=name-of-element-mtx-sim-doc] [text]

Command line options

job

This option is used to specify the name of the SIM document containing assembled matrices or to which

assembled matrices will be written, depending on the mode of operation.

oldjob

This option is used to specify the name of the SIM document containing element matrices to be

assembled. If this option is not used, the SIM document specified using the job option must already

exist and contain assembled matrices.

text

This option is used to write assembled matrices to text files in the matrix input format. Each matrix is

written to a file that follows the naming convention jobname_matrixN.mtx, where jobname is the name

specified using the job option, matrix is a four-letter identifier (STIF, MASS, DMPV, DMPS, or LOAD)
indicating the matrix type relevant for structural or thermal matrices, and N is the increment number.

3.2.24–1

Abaqus Version 6.6 ID:

Printed on:

FIXED FORMAT CONVERSION

3.2.25 FIXED FORMAT CONVERSION UTILITY

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus free utility will convert the fixed format input files used with Abaqus 5.8 to the free format

input files used with subsequent Abaqus releases.

Command summary

abaqus free job=job-name

input=input-file

Command line options

job

This option is used to specify the name of the free format input file to be output by the utility.

input

This option is used to specify the name of the fixed format input file to be converted.

3.2.25–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

3.2.26 TRANSLATING NASTRAN BULK DATA FILES TO Abaqus INPUT FILES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Translating Abaqus files to Nastran bulk data files,” Section 3.2.27

• “Importing a model from a Nastran input file,” Section 10.5.4 of the Abaqus/CAE User’s Guide

Overview

The translator from Nastran to Abaqus converts certain entities in a Nastran input file into their equivalent

in Abaqus.

Using the translator

The Nastran data must be in a file with the extension .bdf, .dat, .nas, .nastran, .blk, or .bulk.
The Nastran data entries that are translated are listed in the tables below. Other valid Nastran data are

skipped over and noted in the log file.

The translator is designed to translate a complete Nastran input file. If only bulk data are present,

the first two lines in the file should be the terminators for the executive control and case control sections,

namely:

CEND
BEGIN BULK

For normal termination, end the Nastran input data with the line

ENDDATA

Nastran solution sequences are translated to the Abaqus procedures listed in Table 3.2.26–1. The

translator attempts to create a history section based on the contents of the case control data in the

Nastran file.

Summary of Nastran entities translated

Table 3.2.26–1 Executive control data.

Nastran Statement Abaqus Equivalent

SOL

3.2.26–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Statement Abaqus Equivalent

1 (STATICS1)

24 (STATICS)

101 (SESTATIC)

106 (NLSTATIC)

*STATIC

3 (MODES)

25 (OLDMODES)

103 (SEMODES)

*FREQUENCY

5 (BUCKLING)

105 (SEBUCKL)

*BUCKLE

26 (DFREQ)

108 (SEDFREQ)

*STEADY STATE DYNAMICS, DIRECT

27 (DTRAN)

109 (SEDTRAN)

*DYNAMIC

107 (SEDCEIG)

110 (SEMCEIG)

*COMPLEX FREQUENCY

30 (DFREQ)

111 (SEMFREQ)

*FREQUENCY and *STEADY STATE

DYNAMICS

31 (MTRAN)

112 (SEMTRAN)

*FREQUENCY and *MODAL DYNAMIC

Table 3.2.26–2 Case control data.

Nastran Command Comment

SPC Selects SPC sets alone or in combinations

LOAD Selects individual loads and load combinations

METHOD Selects EIGRL, EIGR, or EIGB from bulk data for

eigenfrequency extraction and eigenvalue buckling

prediction procedures

SUBCASE Delimiter for steps or load cases; optional if there

is only one step

3.2.26–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Command Comment

TITLE Echoed as comment at top of input file and for each

step

SUBTITLE Echoed as comment for the step to which it applies

LABEL Used as text following the *STEP option

DLOAD

LOADSET

Selects dynamic loads from bulk data

FREQUENCY Selects forcing frequencies from bulk data

MPC Selects MPCADD and MPC from bulk data if

referenced in the first SUBCASE

SUPORT1 Selects SUPORT1 from bulk data

TSTEP Selects TSTEP from bulk data

K2GG

K2PP

M2GG

M2PP

B2GG

B2PP

K42GG

Selects DMIG from bulk data using the matrix

name from the first SUBCASE

TEMPERATURE Selects nodal temperatures from bulk data

SET

DISPLACEMENT

VELOCITY

ACCELERATION

SPCFORCES

PRESSURE

Selects nodal quantities for output

3.2.26–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Table 3.2.26–3 Bulk data.

Nastran Data Entry Comment

PARAM Ignored except for:

1. WTMASS, which can be used to modify density,

mass, and rotary inertia values if the wtmass_fixup

command line parameter is used

2. INREL, which if equal to −1 or −2 will create

inertia relief loads

3. G, which is translated to *GLOBAL DAMPING,

STRUCTURAL, FIELD=MECHANICAL

4. GFL, which is translated to *GLOBAL DAMPING,

STRUCTURAL, FIELD=ACOUSTIC

CDAMP1

CDAMP2

PDAMP

PDAMPT

DASHPOT1/DASHPOT2 and *DASHPOT

CELAS1

CELAS2

PELAS

PELAST

SPRING1/SPRING2 and *SPRING

(CELAS2 at SPOINTs are translated to *MATRIX

INPUT, stiffness, and/or structural damping terms.)

CMASS2 *MATRIX INPUT mass terms

CBUSH

PBUSH

PBUSHT

CONN3D2 and *CONNECTOR SECTION

CWELD

PWELD

*FASTENER and *FASTENER PROPERTY

CONM1 MASS and/or ROTARY INERTIA and/or UEL

CONM2 MASS and/or ROTARY INERTIA

3.2.26–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Data Entry Comment

CHEXA

CPENTA

CTETRA

PSOLID

PLSOLID

C3D8I/C3D20R/C3D6/C3D15/C3D4/C3D10 and

*SOLID SECTION

CQUAD4

CTRIA3

CQUAD8

CTRIA6

CQUADR

CTRIAR

PSHELL

PCOMP

PCOMPG

S4/S3R/S8R/STRI65, and *SHELL SECTION,

*SHELL GENERAL SECTION, or *MEMBRANE

SECTION.

CSHEAR

PSHEAR

*USER ELEMENT, LINEAR and *MATRIX,

TYPE=STIFFNESS and TYPE=MASS

CBAR

CBEAM

PBAR

PBARL

PBEAM

PBEAML

B31 and *BEAM SECTION or *BEAM GENERAL

SECTION

CROD

CONROD

PROD

T3D2 and *SOLID SECTION

CGAP

PGAP

GAPUNI and *GAP

RBAR *COUPLING or *MPC, type BEAM

3.2.26–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Data Entry Comment

MAT1 *ELASTIC, TYPE=ISO; *EXPANSION, TYPE=ISO;

*DENSITY; and *DAMPING (G is used only for

*BEAM GENERAL SECTION)

MAT2 When used alone in a PSHELL, MAT2 is translated

to *ELASTIC, TYPE=LAMINA or *ELASTIC,

TYPE=ANISOTROPIC. When used in combination

with other materials, the coefficients relating

midsurface strains and curvatures to section forces

and moments are computed and entered following the

*SHELL GENERAL SECTION option.

MAT8 *ELASTIC, TYPE=LAMINA; *EXPANSION,

TYPE=ORTHO; *DENSITY; and *DAMPING

MAT9 *ELASTIC, TYPE=ANISOTROPIC unless the

data are found to be orthotropic, in which case

the data are analyzed to create *ELASTIC,

TYPE=ENGINEERING CONSTANTS. Also

*DENSITY; *EXPANSION, TYPE=ANISO or

ORTHO; and *DAMPING.

MAT10 *ACOUSTIC MEDIUM and *DENSITY

ACMODL *TIE between a *SURFACE, TYPE=ELEMENT

defining the exterior surfaces of all acoustic solid

elements and a *SURFACE, TYPE=NODE defined by

the SET1 referenced by the SSID.

NSM

NSM1

NSML

NSML1

NSMADD

*NONSTRUCTURAL MASS

GRID *NODE and *SYSTEM

3.2.26–6

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Data Entry Comment

CORD1R

CORD1C

CORD1S

CORD2R

CORD2C

CORD2S

*SYSTEM for nodes; *TRANSFORM if referred to

on GRID; *ORIENTATION for some elements

RBE2 *COUPLING and *KINEMATIC; or *KINEMATIC

COUPLING

(If the RBE2 has only two nodes and neither node has

rotational stiffness, the RBE2 is translated to *MPC,

type LINK)

RBE3 *COUPLING and *DISTRIBUTING; or DCOUP3D

and *DISTRIBUTING COUPLING

SPCADD Used to combine SPC/SPC1/SPCD data into a new set

SPC

SPC1

SPCD

*BOUNDARY

LOAD Used to combine FORCE, MOMENT, etc. data into

a new set

FORCE

FORCE1

FORCE2

MOMENT

MOMENT1

MOMENT2

*CLOAD

PLOAD

PLOAD1

PLOAD2

PLOAD4

RFORCE

*DLOAD

3.2.26–7

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Data Entry Comment

DLOAD

DAREA

LSEQ

RLOAD1

RLOAD2

TLOAD1

TABLED1

TABLED2

TABLED4

DELAY

DPHASE

Dynamic loads as functions of time or frequency

TEMP

TEMPD

*INITIAL CONDITIONS, TYPE=TEMPERATURE

and *TEMPERATURE

TSTEP Time step size for dynamic and modal dynamic

procedures

EIGB *BUCKLE

EIGR

EIGRL

*FREQUENCY

EIGC *COMPLEX FREQUENCY

TABDMP1 *MODAL DAMPING

FREQ

FREQ1

FREQ2

FREQ3

FREQ4

FREQ5

Forcing frequencies for steady-state dynamic

procedures

MPCADD

MPC

*EQUATION

3.2.26–8

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

Nastran Data Entry Comment

SUPORT

SUPORT1

*INERTIA RELIEF and *BOUNDARY

DMIG *MATRIX INPUT and *MATRIX ASSEMBLE

GENEL *USER ELEMENT, LINEAR and *MATRIX,

TYPE=STIFFNESS

PLOTEL Ignored unless the command line option plotel=ON.

Command summary

abaqus fromnastran job=job-name [input=input-file]
[wtmass_fixup={OFF | ON}] [loadcases={OFF | ON}]
[pbar_zero_reset=[small-real-number]]
[distribution={OFF | preservePID | ON}]
[surface_based_coupling={OFF | ON}]
[beam_offset_coupling={OFF | ON}]
[beam_orientation_vector={OFF | ON}]
[cbar=2-node-beam-element] [cquad4=4-node-shell-element]
[chexa=8-node-brick-element]
[ctetra=10-node-tetrahedron-element]
[plotel={OFF | ON}] [cdh_weld={OFF | RIGID | COMPLIANT}]

Command line options

job

This option is used to specify the name of the Abaqus input file to be output by the translator. It is also

the default name of the file containing the Nastran data. Diagnostics created by the translator will be

written to a file named job-name.log.

input

This option is used to specify the name of the file containing the Nastran data if it is different from

job-name.

wtmass_fixup

If wtmass_fixup=ON, the value on the Nastran data line PARAM, WTMASS, value is used as a

multiplier for all density, mass, and rotary inertia values created in the Abaqus input file.

This option can be defined in the Abaqus environment file as follows:

fromnastran_wtmass_fixup={OFF | ON}

3.2.26–9

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

loadcases

By default, each SUBCASE is translated to a *STEP option in Abaqus. If loadcases=ON, this behavior
is altered for linear static analyses: each SUBCASE is translated to a *LOAD CASE option, and all such

*LOAD CASE options are grouped in a single *STEP option.

This option can be defined in the Abaqus environment file as follows:

fromnastran_loadcases={OFF | ON}

pbar_zero_reset

Nastran allows beams to have zero values for cross-sectional area or moments of inertia; Abaqus does

not. Set this option equal to a small real number to reset any zero values forA, , , or J to the specified

small real number. If this option is omitted or present without a value, the default value of 1.0 × 10−20 is

used in place of the zeros. To retain the zeros in the translated Abaqus input file, set pbar_zero_reset=0.

This option can be defined in the Abaqus environment file as follows:

fromnastran_pbar_zero_reset=small-real-number

distribution

This option determines how shell and membrane sections in Nastran data are translated to Abaqus. If

distribution=OFF, a separate section is created for each combination of orientation, material offset,

and/or thickness. If distribution=preservePID or ON, element orientations and offsets are written

using the *DISTRIBUTION option. If distribution=preservePID, an Abaqus section is created

corresponding to each PSHELL or PCOMP property ID. If distribution=ON, a single Abaqus section is
created for all homogeneous elements referencing the same material.

This option can be defined in the Abaqus environment file as follows:

fromnastran_distribution={OFF | preservePID | ON}

surface_based_coupling

Certain Nastran rigid elements have more than one equivalent in Abaqus. If

surface_based_coupling=ON, RBE2 and RBE3 elements translate to *COUPLING with

the appropriate parameters. Otherwise, RBE2 elements translate to *KINEMATIC COUPLING and

RBE3 elements translate to *DISTRIBUTING COUPLING. This translation behavior also applies to

“implied” RBE2-type rigid elements used for offsets on CBAR, CBEAM, and CONM2 elements.

For input files created with surface_based_coupling=ON, the translated elements can be visualized

and manipulated in Abaqus/CAE. However, large numbers of these elements may cause slower

performance.

This option can be defined in the Abaqus environment file as follows:

fromnastran_surface_based_coupling={OFF | ON}

3.2.26–10

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

beam_offset_coupling

If beam_offset_coupling=ON, beam element offsets are translated by creating new nodes at the offset

locations, changing the beam connectivity to the new nodes, and rigidly coupling the new and original

nodes.

If beam_offset_coupling=OFF, beam element offsets are translated to the *CENTROID and

*SHEAR CENTER options, which are suboptions of the *BEAM GENERAL SECTION option.

The setting for this parameter is ignored if the beam element references a PBARL or PBEAML

property or if the beam offset has a significant component in the direction of the beam axis. In these

situations the beam offsets are always translated as if beam_offset_coupling=ON.
This option can be defined in the Abaqus environment file as follows:

fromnastran_beam_offset_coupling={OFF | ON}

beam_orientation_vector

If beam_orientation_vector=OFF, beam cross-section orientations are translated by creating new nodes

at the tips of vectors defining the first principal direction of the cross-section and changing the beam

connectivity to the new nodes.

If beam_orientation_vector=ON, beam cross-sections are translated by defining vectors on the

*BEAM SECTION and *BEAM GENERAL SECTION options.

This option can be defined in the Abaqus environment file as follows:

fromnastran_beam_orientation_vector={OFF | ON}

cbar

This option is used to define the 2-node beam that is created from CBAR and CBEAM elements. The

default is B31.

This option can be defined in the Abaqus environment file as follows:

fromnastran_cbar=2-node-beam-element

cquad4

This option is used to define the 4-node shell that is created from CQUAD4 elements. The default is S4R.

If a reduced-integration element is chosen, the enhanced hourglass formulation is applied automatically.

This option can be defined in the Abaqus environment file as follows:

fromnastran_cquad4=4-node-shell-element

chexa

This option is used to define the 8-node brick that is created from CHEXA elements. The default

is C3D8I. If a reduced-integration element is chosen, the enhanced hourglass formulation is applied

automatically.

This option can be defined in the Abaqus environment file as follows:

fromnastran_chexa=8-node-brick-element

3.2.26–11

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM NASTRAN

ctetra

This option is used to define the 10-node tetrahedron that is created from CTETRA elements. The default

is C3D10.

This option can be defined in the Abaqus environment file as follows:

fromnastran_ctetra=10-node-tetrahedron-element

plotel

By default, PLOTEL elements are not translated. If plotel=ON, PLOTEL elements are translated to T3D2

truss elements in an element set named PLOTEL_TRUSSES. The cross-sectional area of the trusses is

the value entered for pbar_zero_reset, and the material has a Young’s modulus, E, equal to 1.0.

cdh_weld

By default, CHEXA elements with RBE3 elements at all eight corner nodes are translated to the type of

8-node element specified in the chexa parameter. If cdh_weld=RIGID, CHEXA elements with RBE3

elements at all eight corner nodes are translated to rigid fasteners in Abaqus. If cdh_weld=COMPLIANT,
CHEXA elements with RBE3 elements at all eight corner nodes are translated to compliant fasteners in

Abaqus.

3.2.26–12

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO NASTRAN

3.2.27 TRANSLATING Abaqus FILES TO NASTRAN BULK DATA FILES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Translating Nastran bulk data files to Abaqus input files,” Section 3.2.26

Overview

The translator from Abaqus to Nastran converts certain entities in an Abaqus file into equivalent entities

in Nastran. Only “flat” Abaqus files can be translated; i.e., the Abaqus file cannot contain parts and

assemblies.

Using the translator

The Abaqus input data must be in a file with the extension .inp or .sim. If you specify an .inp
file, the execution procedure translates selected keywords and creates a Nastran bulk data file with the

extension .bdf. If you use the substructure option and specify a substructure .sim file, the execution

procedure translates the substructure data to Nastran DMIG coefficients and creates a Nastran bulk data

file with the extension .bdf.

Summary of Abaqus keywords translated

In the *ELEMENT usages listed below, an italicized x indicates that all Abaqus elements beginning with

the preceding label will be mapped to the Nastran entity shown. For example, the statement *ELEMENT,

C3D4x indicates that the selected Abaqus-to-Nastran translation applies to the Abaqus elements C3D4,

C3D4H, and C3D4T.

Table 3.2.27–1 Abaqus keyword–to–Nastran mapping.

Abaqus Keyword Nastran Complement

*BEAM GENERAL SECTION,

SECTION=GENERAL

PBAR

*BOUNDARY SPC

*CLOAD FORCE

*COUPLING, DISTRIBUTING RBE3

*COUPLING, KINEMATIC RBE2

3.2.27–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO NASTRAN

Abaqus Keyword Nastran Complement

*ELEMENT, B31 CBAR (for *BEAM GENERAL SECTION,

SECTION=GENERAL)

*ELEMENT, B33 CBAR (for *BEAM GENERAL SECTION,

SECTION=GENERAL)

*ELEMENT, C3D4x CTETRA

*ELEMENT, C3D10x CTETRA

*ELEMENT, C3D6x CPENTA

*ELEMENT, C3D15x CPENTA

*ELEMENT, C3D8x CHEXA

*ELEMENT, C3D20x CHEXA

*ELEMENT, MASS CONM2

*ELEMENT, ROTARYI CONM2

*ELEMENT, S3x CTRIA3

*ELEMENT, S4x CQUAD4

*ELEMENT, S8x CQUAD8

*ELEMENT, SPRING1 or SPRING2 CELAS

*ELEMENT, SPRINGA CROD

*ELEMENT, STRI65 CTRIA6

*ELEMENT, T3D2 CROD

*FREQUENCY SOL 103

*HEADING TITLE

*MATERIAL, DENSITY MAT1

*MATERIAL, ELASTIC, TYPE=ISO MAT1

*MATERIAL, ELASTIC, TYPE=LAMINA MAT8

*MATERIAL, EXPANSION, TYPE=ISO MAT1

*MATERIAL, EXPANSION, TYPE=ORTHO MAT8

*NODE GRID

*ORIENTATION,

DEFINITION=COORDINATES

CORD2R, CORD2C, or CORD2S

3.2.27–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO NASTRAN

Abaqus Keyword Nastran Complement

*SHELL GENERAL SECTION

(Non-composite)

*SHELL SECTION (Non-composite)

PSHELL

*SHELL SECTION (Composite)

*SHELL GENERAL SECTION (Composite)

PCOMP

*SOLID SECTION PSOLID

*SOLID SECTION (Trusses) PROD

*STATIC SOL 101

*SYSTEM

*TRANSFORM

CORD2R, CORD2C, or CORD2S

Command summary

abaqus tonastran job=job-name [input=input-file] [substructure]
[complex={YES | NO}]

Command line options

job

This option is used to specify the name of the Nastran bulk data file to be output by the translator. It is

also the default name of the Abaqus file. Diagnostics created by the translator are written to a file named

job-name.log.

input

This option is used to specify the name of the file containing the Abaqus data if it is different from

job-name.

substructure

This option is used to translate a substructure within an Abaqus .sim file into Nastran bulk data file

(.bdf) format.

complex

This option is used to determine how structural damping terms are represented. If complex=YES
(default), structural damping terms are written as the imaginary part of the stiffness matrix; if

complex=NO, structural damping terms are written as a separate real matrix.

3.2.27–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM ANSYS

3.2.28 TRANSLATING ANSYS INPUT FILES TO Abaqus INPUT FILES

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The translator from ANSYS to Abaqus converts certain entities in an ANSYS blocked coded database

file into their equivalent in an Abaqus input file.

Using the translator

The abaqus fromansys translator can convert ANSYS blocked coded database files (.cdb) into a “flat”
Abaqus input file; that is, an Abaqus input file that is not written in terms of parts and assemblies. The

.cdb file must be created in ANSYS using the following command:

CDWRITE , , <jobname>, cdb
The second field of the CDWRITE command may contain ALL or DB. The eighth field may contain

BLOCKED. Any other use of the CDWRITE command will create problems for the translator.

Summary of ANSYS entities translated

The translator from ANSYS to Abaqus supports the mappings shown in the tables below.

Table 3.2.28–1 Nodal data mapping for ANSYS commands.

ANSYS
command

Abaqus equivalent

NBLOCK *NODE

*TRANSFORM

Table 3.2.28–2 Element data mapping for ANSYS structural lines.

ANSYS
command

Abaqus equivalent

LINK1 *ELEMENT, TYPE=T2D2

LINK8 *ELEMENT, TYPE=T3D2

LINK10 *ELEMENT, TYPE=T3D2

3.2.28–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM ANSYS

ANSYS
command

Abaqus equivalent

LINK11 *ELEMENT, TYPE=T3D2

LINK180 *ELEMENT, TYPE=T3D2

Table 3.2.28–3 Element data mapping for ANSYS structural beams.

ANSYS
command

Abaqus equivalent

BEAM3 *ELEMENT, TYPE=B21

BEAM4 *ELEMENT, TYPE=B31

BEAM23 *ELEMENT, TYPE=B21

BEAM24 *ELEMENT, TYPE=B31

BEAM188 *ELEMENT, TYPE=B31 or B32

BEAM189 *ELEMENT, TYPE=B32

Table 3.2.28–4 Element data mapping for ANSYS structural shells.

ANSYS
command

Abaqus equivalent

SHELL43 *ELEMENT, TYPE=S4 or S3

SHELL63 *ELEMENT, TYPE=S4, S3, M3D4, or M3D3

SHELL93 *ELEMENT, TYPE=S8R or STRI65

SHELL181 *ELEMENT, TYPE=S4R or S3R

Table 3.2.28–5 Element data mapping for ANSYS structural pipes.

ANSYS
command

Abaqus equivalent

PIPE16 *ELEMENT, TYPE=PIPE32

PIPE20 *ELEMENT, TYPE=PIPE31

PIPE59 *ELEMENT, TYPE=PIPE31

3.2.28–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM ANSYS

Table 3.2.28–6 Element data mapping for ANSYS planar elements.

ANSYS
command

Abaqus equivalent

PLANE42

PLANE82

PLANE182

PLANE183

*ELEMENT, TYPE=CPSn, CAXn, or CPEn

Table 3.2.28–7 Element data mapping for ANSYS solid elements.

ANSYS
command

Abaqus equivalent

SOLID45 *ELEMENT, TYPE=C3D8I, C3D4, or C3D6

SOLID65 *ELEMENT, TYPE=C3D8I, C3D4, or C3D6

SOLID92 *ELEMENT, TYPE=C3D10

SOLID95 *ELEMENT, TYPE=C3D20, C3D10, or C3D15

SOLID147 *ELEMENT, TYPE=C3D20, C3D10, or C3D15

SOLID148 *ELEMENT, TYPE=C3D10

SOLID185 *ELEMENT, TYPE=C3D8, C3D4, or C3D6

SOLID186 *ELEMENT, TYPE=C3D20R, C3D10, or C3D15

SOLID187 *ELEMENT, TYPE=C3D10

Table 3.2.28–8 Load and boundary condition data mapping.

ANSYS command Abaqus equivalent

SFE, ELEM, LKEY, PRES, KVAL, VAL1, VAL2,

VAL3, VAL4,

where VAL1=VAL2=VAL3=VAL4=n

*SURFACE and *DSLOAD

SFE, ELEM, LKEY, HFLU, KVAL, VAL1, VAL2,

VAL3, VAL4,

where VAL1=VAL2=VAL3=VAL4=n

*SURFACE and *DSFLUX

BF, NODE, TEMP, VAL1, VAL2, VAL3, VAL4 *TEMPERATURE and

*CFLUX

3.2.28–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM ANSYS

ANSYS command Abaqus equivalent

BFE, NODE, HGEN, STLOCVAL1, VAL2, VAL3,

VAL4
*DFLUX

ACEL, 1-component, 2-component, 3-component *DLOAD

F, NODE, Lab, VALUE, VALUE2, NEND, NINC,

where Lab=FX, FY, or FZ
*CLOAD

D, NODE, Lab, VALUE, VALUE2, NEND, NINC,

where Lab=UX ,UY, UZ, ROTX, ROTY, or ROTZ
*BOUNDARY

Table 3.2.28–9 Material data mapping.

ANSYS command Abaqus equivalent

MPTEMP, …

MPDATA, … , EX

MPDATA, … , NUXY or PRXY

*MATERIAL and *ELASTIC

Minor Poisson’s ratios (such as NUXY),

if present, are automatically converted to

major Poisson’s ratios (such as PRXY).

MPTEMP, ….

MPDATA, … , EX

MPDATA, … , EY

MPDATA, … , EZ

MPDATA, … , NUXY or PRXY

MPDATA, … , NUXZ or PRXZ

MPDATA, … , NUYZ or PRYZ

MPDATA, … , GXY

MPDATA, … , GXZ

MPDATA, … , GYZ

*MATERIAL and *ELASTIC,

TYPE=ENGINEERING CONSTANTS

Minor Poisson’s ratios (such as NUXY),

if present, are automatically converted to

major Poisson’s ratios (such as PRXY).

MPTEMP, …

MPDATA, … , KXX
*MATERIAL and *CONDUCTIVITY

MPTEMP, …

MPDATA, … , DENS
*DENSITY

MPTEMP, …

MPDATA, … , C
*SPECIFIC HEAT

MPTEMP, …

MPDATA, … , CTEX or ALPX
*EXPANSION

3.2.28–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM ANSYS

Command summary

abaqus fromansys job=job-name [input=input-file]

Command line options

job

This option is used to specify the name of the Abaqus input file to be output by the translator. It is also

the default name of the input file containing the ANSYS data. Diagnostics created by the translator will

be written to a file named job-name.log.

input

This option is used to specify the name of the file containing the ANSYS data if it is different from

job-name.

3.2.28–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

3.2.29 TRANSLATING PAM-CRASH INPUT FILES TO PARTIAL Abaqus INPUT FILES

Product: Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The translator from PAM-CRASH to Abaqus converts certain keywords in a PAM-CRASH input file

into their equivalent in Abaqus/Explicit.

Using the translator

The translator requires an input file created by PAM-CRASH Version 2002 or later. The input file can

have any name and extension.

The PAM-CRASH data entries that are translated are listed in the tables below. Other PAM-CRASH

keywords and data are skipped over and noted in the log file.

The translator creates a partial Abaqus input file that contains only the model data. Youmust provide

history data (including output data) to complete the input.

Element numbering and grouping

All elements must have unique element numbers. Elements that are assigned the same PART

identification number are grouped together in an element set.

Except for connector elements that result from the translation of SPRING and KJOIN, section

properties need to be entered in the PART section rather than individually in the element section.

Elements that have different material or section properties should be given different PART identification

numbers; that is, the same material and section properties must be applicable to all elements grouped in

the same element set.

If elements that result from the translation of SPRING and KJOIN have different element data (such

as frame numbers used to define local directions), and they are assigned the same PART identification

number, the translator automatically separates them into different element sets.

Material models

The translator supports only the material models shown in Table 3.2.29–3. All unsupported material

models between Types 1 and 99 are translated as bilinear elastic-plastic, and all other material types

are translated as linear elastic if a stress-strain law definition is required. In these cases the translator

provides nominal values for the material properties.

3.2.29–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

History section data

The translator creates a history section based partially on keywords (except TITLE) from the control

section of the PAM-CRASH file as shown in Table 3.2.29–1. Other control data are unsupported.

Summary of PAM-CRASH entities translated

Table 3.2.29–1 Control section data.

PAM-CRASH keyword Abaqus equivalent

TITLE *HEADING

RUNEND *DYNAMIC, EXPLICIT time period

TCTRL / DYNA_MASS_SCALE *VARIABLE MASS SCALING

ECTRL / RATEFILTER *MATERIAL, SRATE FACTOR

Table 3.2.29–2 Part section data.

PAM-CRASH keyword Abaqus equivalent

PART / BAR Truss element properties and grouping data

PART / BEAM Beam element properties and grouping data

PART / SPRING Connector behavior and grouping data

PART / KJOIN Connector type, behavior, and grouping data

PART / SOLID Solid element properties and grouping data

PART / SHELL Shell element properties and grouping data

PART / MEMBR Membrane element properties and grouping data

PART / TIED Mesh tie constraint data and parameters

PART / PLINK Mesh-independent fastener data and parameters

Table 3.2.29–3 Material section data.

PAM-CRASH keyword Abaqus equivalent

MATER / Types 1, 16, 41, 99 C3D4/C3D6/C3D8R; solid material model data

MATER / Types 100, 101, 102, 103, 105 S3RS/S4RS; shell material model data

MATER / Types 150, 151 M3D3/M3D4/M3D4R and *USER MATERIAL

MATER / Types 200, 201, 202 T3D2/B31; beam and truss material model data

3.2.29–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

PAM-CRASH keyword Abaqus equivalent

MATER / Types 203, 204, 205, 230 CONN3D2; connector behavior data

MATER / Types 212, 213 B31; beam material model data

MATER / Type 3021 CONN3D2; connector behavior data

1 Material type 302 supports the use of a rupture model (see RUPMO in Table 3.2.29–10).

Table 3.2.29–4 Node section data.

PAM-CRASH keyword Abaqus equivalent

FRAME *ORIENTATION and *TRANSFORM

NODE *NODE

MASS *MASS and *ROTARY INERTIA

NSMAS *NONSTRUCTURAL MASS

INVEL *INITIAL CONDITIONS, TYPE=VELOCITY or

ROTATING VELOCITY

BOUNC *BOUNDARY

DIS3D *BOUNDARY and *AMPLITUDE

VEL3D *BOUNDARY and *AMPLITUDE

DAMP *DLOAD and *AMPLITUDE

TRSFM *NODE with transformed coordinates

Table 3.2.29–5 Element section data.

PAM-CRASH keyword Abaqus equivalent

SOLID C3D4/C3D6/C3D8R and *SOLID SECTION

TETR4 C3D4 and *SOLID SECTION

SHELL S3RS/S4RS and *SHELL SECTION

MEMBR M3D3/M3D4R and *MEMBRANE SECTION

BEAM B31 and *BEAM SECTION, SECTION=CIRC

BAR For MATER / Types 203 and 204: CONN3D2

and *CONNECTOR SECTION [AXIAL]

For all other MATER / Types: T3D2 and *SOLID

SECTION

3.2.29–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

PAM-CRASH keyword Abaqus equivalent

SPRING CONN3D2 and *CONNECTOR SECTION [CARTESIAN

+ CARDAN]

KJOIN CONN3D2 and *CONNECTOR SECTION

PLINK *FASTENER and *FASTENER PROPERTY; CONN3D2

and *CONNECTOR SECTION

Table 3.2.29–6 Constraint section data.

PAM-CRASH keyword Abaqus equivalent

RWALL

(Stationary, segmented finite rigid wall)

Velocity flag=0

Wall description=20

*RIGID BODY and *CONTACT

RBODY

Types 0, 3
*RIGID BODY and/or *MPC (type BEAM)

To define a group of elements as a rigid body, enter the part

identification number of that element group as the PART

entity1 .

To define an element as a rigid body, enter the element

number as the ELE entity or enter all the element node

numbers as the NOD entity2 .

RBODY

Type 1

CONN3D2, *CONNECTOR SECTION [PROJECTION

CARTESIAN + PROJECTION FLEXION-TORSION],

*CONNECTOR DAMAGE INITIATION, and

*CONNECTOR DAMAGE EVOLUTION

CNTAC

Sliding interface types:

33, 34, 36, 37, 46

*CONTACT, *CONTACT INCLUSIONS, *CONTACT

EXCLUSIONS, *CONTACT PROPERTY ASSIGNMENT,

*CONTACT FORMULATION, *SURFACE

INTERACTION, and *SURFACE PROPERTY

ASSIGNMENT

TIED *TIE

1 If PART entities are used to define a rigid body, RBODY is translated as *RIGID BODY.

2 If the ELE and NOD entities constitute all elements in a part, RBODY is translated as *RIGID BODY.

If the ELE and NOD entities do not constitute all elements in a part (i.e., if the part consists of both rigid

and deformable elements), RBODY is translated as *MPC (MPC type BEAM), a beam-type multi-point

constraint for the set of nodes that consists of all input NOD entities and nodes extracted from all ELE

entities.

3.2.29–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

Table 3.2.29–7 Nodes/faces/elements entity selection data.

PAM-CRASH keyword Abaqus equivalent

ELE *ELSET; data for elements to be grouped in a set using

*ELSET

PART Data for selecting element sets (*ELSET) already defined

NOD Data for nodes to be grouped in a set using *NSET

ELE>NOD Same procedure as ELE

PART>NOD Same procedure as PART

DELELE *ELSET and *NSET

DELPART *ELSET and *NSET

DELNOD *ELSET and *NSET

GRP Named set of entities defined in GROUP

Table 3.2.29–8 Airbag data.

PAM-CRASH keyword Abaqus equivalent

GASPEC *FLUID BEHAVIOR, *MOLECULAR WEIGHT, and

*CAPACITY

BAGIN *PHYSICAL CONSTANTS and *FLUID CAVITY

GEN_INI_COND *INITIAL CONDITIONS

GAS *FLUID CAVITY, BEHAVIOR or MIXTURE

CHAMBER *NODE, NSET=ref_node_name; *SURFACE,

TYPE=ELEMENT; and *FLUID CAVITY

EXT_SKIN M3D3/M3D4 and *SURFACE, TYPE=ELEMENT

WALL_OPENING *FLUID EXCHANGE, *FLUID EXCHANGE

ACTIVATION, and *FLUID EXCHANGE PROPERTY

WALL_FABRIC *FLUID EXCHANGE, *FLUID EXCHANGE

ACTIVATION, and *FLUID EXCHANGE PROPERTY

LEAKAGE *FLUID EXCHANGE, *FLUID EXCHANGE

ACTIVATION, and *FLUID EXCHANGE PROPERTY

3.2.29–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

PAM-CRASH keyword Abaqus equivalent

INI_COND *INITIAL CONDITIONS

INFLATOR *FLUID INFLATOR, *FLUID INFLATOR ACTIVATION,

*FLUID INFLATOR MIXTURE, and *FLUID INFLATOR

PROPERTY

Table 3.2.29–9 Seat belt data.

PAM-CRASH keyword Abaqus equivalent

SLIPR *ELEMENT, TYPE=CONN3D2; *CONNECTOR

SECTION; and *BOUNDARY

RETRA *ELEMENT, TYPE=CONN3D2; *CONNECTOR

SECTION; and *BOUNDARY

Table 3.2.29–10 Miscellaneous data.

PAM-CRASH keyword Abaqus equivalent

GROUP Convert entities to Abaqus equivalents

METRIC *INITIAL CONDITIONS, TYPE=REF COORDINATE

SENSOR Type-1: use activation time in *AMPLITUDE

Type-4: use belt feed rate in *CONNECTOR LOCK

FUNCT Data for material properties and time-dependent parameters,

such as *AMPLITUDE, *CONNECTOR ELASTICITY,

*PLASTIC, and *FLUID EXCHANGE PROPERTY

RUPMO Data for connector behavior, such as *CONNECTOR

DAMAGE INITIATION, *CONNECTOR DAMAGE

EVOLUTION, *CONNECTOR POTENTIAL, and

*CONNECTOR HARDENING

THELE Element sets defined as *ELSET; output quantities are not

specified for the element set

THNOD Node sets defined as *NSET; output quantities are not

specified for the node set

3.2.29–6

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM PAM-CRASH

Command summary

abaqus frompamcrash job=job-name

input=input-file

[pLinkConnectors={OFF | ON}]
[splitAirbagElements={OFF | ON}]
[autoKJoinStops={OFF | ON}]

Command line options

job

This option is used to specify the name of the Abaqus input file to be output by the translator. The name

of the Abaqus input file must be given without the .inp extension. Diagnostics created by the translator

are written to a file named job-name_frompam.log.

input

This option is used to specify the name of the file containing the PAM-CRASH data. The name of the

file must be given with the file extension.

pLinkConnectors

This option is used to specify the inclusion of connector elements in the PLINK translation. The default

value is ON.

splitAirbagElements

This option is used to specify the splitting of 4-node airbag membrane elements into two 3-node airbag

membrane elements. The default value is ON. Airbag membrane elements result from the translation of

MEMBR and MATER / Types 150 and 151. This option is valid only if the keyword BAGIN is specified

in the PAM-CRASH input file.

autoKJoinStops

This option is used to add connector stops to the behavior of all KJOIN connector elements. If the

stiffness interpolated at an endpoint on the force-displacement curve exceeds the stiffness interpolated

at an adjacent point by a factor of 10, a connector stop is defined at the point adjacent to the endpoint.

The default value is OFF.

3.2.29–7

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

3.2.30 TRANSLATING RADIOSS INPUT FILES TO PARTIAL Abaqus INPUT FILES

Product: Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The translator from RADIOSS to Abaqus converts certain keywords in a RADIOSS input file into their

equivalent in Abaqus/Explicit.

Using the translator

The translator requires an input file in block format created by RADIOSS Version 4.4 or 5.1. The input

file can have any name and an optional extension.

The RADIOSS data entries that are translated are listed in the tables below. Other RADIOSS

keywords and data are skipped over and noted in the log file.

The translator creates a partial Abaqus input file that contains only the model data and time history

output data. You can provide additional output data to complete the input.

Element numbering and grouping

All elements in the generated Abaqus input file will have unique element numbers. New element numbers

will be assigned automatically to elements with non-unique element numbers in the RADIOSS input.

Elements that are assigned the same PART identification number are grouped together in an element set.

Elements that have different material or properties must be given different PART identification

numbers; that is, the same material and properties must be applicable to all elements grouped in the same

element set.

If elements that result from the translation of SPRING have different element properties (such as

skew systems used to define local directions) and are assigned the same PART identification number, the

translator automatically separates them into different element sets.

Material models

The translator supports only the material models shown in Table 3.2.30–1. All unsupported material

models are translated as linear elastic if a stress-strain law definition is required. In these cases the

translator provides nominal values for the material properties.

3.2.30–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

Summary of RADIOSS entities translated

Table 3.2.30–1 Material data.

RADIOSS keyword Abaqus equivalent

MAT / LAW01 (ELAST) *ELASTIC

MAT / LAW02 (PLAS_JOHN) *PLASTIC, HARDENING=JOHNSON COOK

MAT / LAW03 (HYDPLA) *EOS, *TENSILE FAILURE, *DAMAGE INITIATION,

and *DAMAGE EVOLUTION

MAT / LAW19 (FABRI) *USER MATERIAL

MAT / LAW22 (DAMA) *PLASTIC, HARDENING=JOHNSON COOK; *RATE

DEPENDENT, TYPE=JOHNSON COOK; *DAMAGE

INITIATION; and *DAMAGE EVOLUTION

MAT / LAW35 (FOAM_VISC) *HYPERFOAM and *VISCOELASTIC

MAT / LAW36 (PLAS_TAB) *PLASTIC, HARDENING=ISOTROPIC

Table 3.2.30–2 Property data.

RADIOSS keyword Abaqus equivalent

PROP / TRUS Truss element properties and grouping data

PROP / BEAM Beam element properties and grouping data

PROP / SPRING Connector behavior and grouping data

PROP / SPR_BEAM Connector behavior and grouping data

PROP / SPR_GENE Connector behavior and grouping data

PROP / SOLID Solid element properties and grouping data

PROP / SOL_ORTH Solid element properties and grouping data

PROP / SHELL Shell element properties and grouping data

PROP / SH_ORTH Shell element properties and grouping data

Table 3.2.30–3 Nodal data.

RADIOSS keyword Abaqus equivalent

NODE *NODE

ADMAS *MASS and *ROTARY INERTIA

3.2.30–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

RADIOSS keyword Abaqus equivalent

BCS *BOUNDARY

IMPDISP *BOUNDARY and *AMPLITUDE

IMPVEL *BOUNDARY and *AMPLITUDE

INIVEL *INITIAL CONDITIONS, TYPE=VELOCITY or

ROTATING VELOCITY

CLOAD *CLOAD and *AMPLITUDE

GRAV *DLOAD and *AMPLITUDE

SKEW *ORIENTATION and *TRANSFORM

FRAME *ORIENTATION and *TRANSFORM

Table 3.2.30–4 Element data.

RADIOSS keyword Abaqus equivalent

BRICK C3D4/C3D6/C3D8R and *SOLID SECTION

SHELL1 S3RS/S4RS and *SHELL SECTION; or

M3D3/M3D4/M3D4R and *MEMBRANE SECTION

SH3N1 S3RS and *SHELL SECTION; or M3D3 and *MEMBRANE

SECTION

BEAM B31 and *BEAM SECTION, SECTION=CIRC

TRUSS T3D2 and *SOLID SECTION

SPRING CONN3D2 and *CONNECTOR SECTION

1Shell elements with one integration point through the thickness are translated as membrane elements.

Table 3.2.30–5 Constraint data.

RADIOSS keyword Abaqus equivalent

RWALL *RIGID BODY and *CONTACT

RBODY *RIGID BODY and/or *MPC (type BEAM)

To define an element as a rigid body, enter all the element

node numbers in the node group associated with the rigid

body.

3.2.30–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

RADIOSS keyword Abaqus equivalent

INTER / Type 2 *TIE and *FASTENER

INTER / Types 7, 10, 11 *CONTACT, *CONTACT CONTROLS ASSIGNMENT,

*CONTACT FORMULATION, *CONTACT INCLUSIONS,

*CONTACT EXCLUSIONS, *CONTACT PROPERTY

ASSIGNMENT, *SURFACE INTERACTION, and

*SURFACE PROPERTY ASSIGNMENT

CYL_JOINT CONN3D2 and *CONNECTOR SECTION

Table 3.2.30–6 Group data.

RADIOSS keyword Abaqus equivalent

SUBSET *ELSET; data for elements to be grouped in a set using

*ELSET

PART *ELSET; data for elements to be grouped in a set using

*ELSET

MAT *ELSET; data for elements to be grouped in a set using

*ELSET

PROP *ELSET; data for elements to be grouped in a set using

*ELSET

NODE *NSET; data for elements to be grouped in a set using *NSET

SH3N *ELSET; data for elements to be grouped in a set using

*ELSET

SHEL *ELSET; data for elements to be grouped in a set using

*ELSET

GRNOD *NSET; data for elements to be grouped in a set using *NSET

GRSH3N *ELSET; data for elements to be grouped in a set using

*ELSET

GRSHEL *ELSET; data for elements to be grouped in a set using

*ELSET

GRSPRI *ELSET; data for elements to be grouped in a set using

*ELSET

GENE *NSET; data for elements to be grouped in a set using *NSET

3.2.30–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

RADIOSS keyword Abaqus equivalent

SEG *ELSET; data for elements to be grouped in a set using

*ELSET

SURF *ELSET and *NSET

Table 3.2.30–7 Monitored volume and seat belt data.

RADIOSS keyword Abaqus equivalent

MONVOL / GAS

MONVOL / AIRBAG
*FLUID BEHAVIOR, *FLUID CAVITY, *FLUID

EXCHANGE, *FLUID EXCHANGE ACTIVATION,

*FLUID EXCHANGE PROPERTY, *FLUID INFLATOR,

*FLUID INFLATOR ACTIVATION, *FLUID INFLATOR

MIXTURE, *FLUID INFLATOR PROPERTY,

*MOLECULAR WEIGHT, *CAPACITY, and *PHYSICAL

CONSTANTS

SPRING with property SPR_PUL *ELEMENT, TYPE=CONN3D2; *CONNECTOR

SECTION; and *BOUNDARY

Table 3.2.30–8 Miscellaneous data.

RADIOSS keyword Abaqus equivalent

TITLE *HEADING

ACCEL CONN3D2 and connector type ACCELEROMETER

FUNCT Data for material properties and time-dependent parameters,

such as *AMPLITUDE, *CONNECTOR ELASTICITY,

*PLASTIC, and *FLUID EXCHANGE PROPERTY

SECT *INTEGRATED OUTPUT SECTION

SENSOR / Type 0 Use activation time in *AMPLITUDE

TH Data for time history output, such as *OUTPUT, HISTORY;

*NODE OUTPUT; *ELEMENT OUTPUT; and *ENERGY

OUTPUT

Command summary

abaqus fromradioss job=job-name input=input-file

[splitAirbagElements={OFF | ON}]
[readAbaqusDat=data-file] [userDefaultMass=real-number]
[userDefaultInertia=real-number] [userHistoryTime=real-number]

3.2.30–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM RADIOSS

Command line options

job

This option is used to specify the name of the Abaqus input file to be output by the translator. The name

of the Abaqus input file must be given without the .inp extension. Diagnostics created by the translator

are written to a file named job-name_fromradioss.log.

input

This option is used to specify the name of the file containing the RADIOSS data. The file extension is

optional.

splitAirbagElements

This option is used to specify the splitting of 4-node airbag membrane elements into two 3-node airbag

membrane elements. The default value is ON. Airbag membrane elements result from the translation

of SHELL or SH3N with one integration point through the thickness. This option is valid only if the

keyword MONVOL/AIRBAG is specified in the RADIOSS input file.

readAbaqusDat

This option enables the use of an Abaqus data (.dat) file from a previous Abaqus analysis to reformulate

spot weld definitions. The data file should identify spot welds that could not be formed. Using this option,

the attachment points for the identified spot welds are translated using distributed coupling constraints.

userDefaultMass

This option is used to specify the nodal mass that is assigned to additional nodes generated during the

translation that require nonzero mass. This value should be small (typically 10−6 times the mass for the

entire model). If this option is omitted, the default mass is set to 10−4 .

userDefaultInertia

This option is used to specify the rotary inertia that is assigned to additional nodes generated during the

translation that require nonzero rotary inertia. This value should be small (typically 10−6 times the inertia

for the entire model). If this option is omitted, the default rotary inertia is set to 10−3 .

userHistoryTime

This option is used to specify the time interval used for time history output. If this option is omitted, the

time history interval is set to 10−5 .

3.2.30–6

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO NASTRAN

3.2.31 TRANSLATING Abaqus OUTPUT DATABASE FILES TO NASTRAN OUTPUT2
RESULTS FILES

Product: Abaqus/Standard

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The translator converts certain results from an Abaqus output database (.odb) file to the Nastran

Output2 file format.

Using the translator

The toOutput2 translator can only be used to translate Abaqus output database of a *STATIC or

*FREQUENCY procedure. Results from an Abaqus analysis are written to the Abaqus output database

by using the *OUTPUT option. The following options should be included in the Abaqus input file to

ensure that the results to be translated are available in the Abaqus output database:

*OUTPUT, FIELD

*NODE OUTPUT
U,
RF,
CF,

*ELEMENT OUTPUT
S,
E,
SF,
NFORC,

Results in the Abaqus output database other than those specified above are skipped during translation.

Only results from spring elements and three-dimensional continuum, shell, membrane, beam, and truss

elements are translated.

For shell elements, the translator treats stresses and strains at the lowest numbered section point as

being at the bottom surface and stresses and strains at the highest numbered section point as being at the

top surface. Midsurface stresses and strains translated to the Output2 file are computed as the averages

of the stresses and strains at the bottom and top surfaces.

Nodal results are always in global coordinates. Element tensor results are in the Abaqus element

coordinate system.

Model data from the output database (nodal coordinates, element topology, material properties, and

element properties) are written to the Output2 file when applicable records exist.

3.2.31–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO NASTRAN

Command summary

abaqus toOutput2 job=job-name

[odb=odb-name] [step=step-number]
[increment=increment-number] [slim] [quad4corner]

Command line options

job

This option specifies the name of the Nastran Output2 file to be created by the translator. It is also the

default name for the Abaqus output database.

odb

This option specifies the name of the Abaqus output database if it is different from job-name.

step

This option specifies the step number of the Abaqus output database for the translator to translate. If the

specified step contains multiple load cases, all of the load cases are translated. The default value is the

last step of the analysis.

increment

This option is valid only when used in conjunction with the step option. It is used to specify the increment

number of the step in the Abaqus output database for the translator to translate. The default value is the

last increment of the specified step.

slim

This option is used to include data blocks required for postprocessing in the SLIM/VISION software

(available from Third Millennium Productions, Inc.) in the Output2 file.

quad4corner

This option is used to request shell output at corner nodes instead of at the centroid. This option is

relevant for stress, strain, and section force output.

3.2.31–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

3.2.32 TRANSLATING LS-DYNA DATA FILES TO Abaqus INPUT FILES

Product: Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The translator from LS-DYNA to Abaqus converts a set of supported keywords in an LS-DYNA input

file into their equivalent in Abaqus.

Using the translator

The translator supports translation of input files created by LS-DYNA Version 971 Rev 5 or earlier. The

input file can have any name and an optional extension.

The LS-DYNA keywords that are supported are listed in the tables below. Other LS-DYNA

keywords and data are skipped over and noted in the log file.

The translator creates an Abaqus input file that contains both the model data and history data.

However, the translator does not create exact Abaqus equivalents for specific output quantities for

nodal output, element output, and contact output; it uses preselected variables instead. You can provide

additional output entities to complete the requests.

Element numbering and grouping

All elements in the generated Abaqus input file have unique element numbers. New element numbers

are assigned automatically to elements with non-unique element numbers in the LS-DYNA input; all

element number reassignments are noted in the log file.

Elements that are assigned the same PART identification number are grouped together in an element

set. Elements that have different material or properties must be given different PART identification

numbers; that is, the same material and properties must be applicable to all elements grouped in the same

element set.

When a PART references a rigid material, the part is considered rigid. The element set that

corresponds to the part is used in the rigid body definition.

Material models

The translator supports only the material models shown in Table 3.2.32–1. All unsupported material

models are translated as linear elastic if a stress-strain law definition is required. In these cases the

translator provides nominal values for the material properties.

3.2.32–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

Mapping LS-DYNA elements that end in _ID or _TITLE

Many LS-DYNA keywords include the options _ID, _TITLE, or both of these options. Unless the

LS-DYNA keyword with _ID or _TITLE is specified in the mapping tables in this document, the

translator maps data from these options to the same Abaqus keywords specified for the main LS-DYNA

keyword.

Summary of LS-DYNA entities translated

The translator from LS-DYNA to Abaqus supports the mappings shown in the tables below.

Table 3.2.32–1 Material data.

LS-DYNA Keyword Abaqus Equivalent

*MAT_BLATZ-KO_RUBBER *HYPERELASTIC, NEO HOOKE

*MAT_CABLE_DISCRETE_BEAM *ELASTIC

*MAT_DAMPER_NONLINEAR

_VISCOUS
*CONNECTOR DAMPING, NONLINEAR

*MAT_DAMPER_VISCOUS *CONNECTOR DAMPING

*MAT_ELASTIC *ELASTIC

*ELASTIC

*PLASTIC

*MAT_ELASTIC_PLASTIC

_THERMAL

*EXPANSION

*MAT_FU_CHANG_FOAM *LOW DENSITY FOAM and

*UNIAXIAL TEST DATA

*MAT_HONEYCOMB Built-in VUMAT user material model

ABQ_HONEYCOMB1

*PLASTIC, HARDENING=JOHNSON COOK

*RATE DEPENDENT, TYPE=JOHNSON COOK

*SHEAR FAILURE, TYPE=JOHNSON COOK

*MAT_JOHNSON_COOK

*TENSILE FAILURE, TYPE=JOHNSON COOK

*MAT_LINEAR_ELASTIC

_DISCRETE_BEAM
*CONNECTOR ELASTICITY and

*CONNECTOR DAMPING

*MAT_LOW_DENSITY_FOAM *HYPERFOAM and *UNIAXIAL TEST DATA

3.2.32–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

LS-DYNA Keyword Abaqus Equivalent

*ELASTIC*MAT_NULL

Shell elements that reference a null material are

translated as surface elements

*MAT_OGDEN_RUBBER *HYPERELASTIC, OGDEN

*MAT_PIECEWISE_LINEAR

_PLASTICITY
*PLASTIC

*MAT_PLASTIC_KINEMATIC *PLASTIC, HARDENING=KINEMATIC

*ELASTIC*MAT_RIGID

*RIGID BODY (for LS-DYNA parts that refer to a

rigid material)

*MAT_SEATBELT *CONNECTOR ELASTICITY, NONLINEAR

*MAT_SPOTWELD *CONNECTOR ELASTICITY, RIGID

*MAT_SPRING_ELASTIC *CONNECTOR ELASTICITY

*MAT_SPRING_NONLINEAR

_ELASTIC
*CONNECTOR ELASTICITY, NONLINEAR

*MAT_VISCOELASTIC *VISCOELASTIC, TIME=PRONY

1 For more information about using ABQ_HONEYCOMB, refer to “Abaqus/Explicit

honeycomb material model,” which is available in the Dassault Systèmes Knowledge Base

at www.3ds.com/support/knowledge-base.

Table 3.2.32–2 Part data.

LS-DYNA Keyword Abaqus Equivalent

*PART

*PART_PRINT
*ELSET and the corresponding type of element section

*PART_CONTACT *SURFACE INTERACTION properties

*ELEMENT, TYPE=MASS*PART_INERTIA

*ELEMENT, TYPE=ROTARYI

3.2.32–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

Table 3.2.32–3 Auxiliary data.

LS-DYNA Keyword Abaqus Equivalent

*DEFINE_COORDINATE_NODES *ORIENTATION,

DEFINITION=NODES

*DEFINE_COORDINATE

_SYSTEM
*ORIENTATION,

DEFINITION=COORDINATES

*DEFINE_COORDINATE

_VECTOR
*ORIENTATION,

DEFINITION=COORDINATES

Data from a single curve used in the following

keywords:

*AMPLITUDE

*CONNECTOR DAMPING (nonlinear)

*CONNECTOR ELASTICITY (nonlinear)

*SURFACE BEHAVIOR

*DEFINE_CURVE

*UNIAXIAL TEST DATA

*DEFINE_SD_ORIENTATION *ORIENTATION

*DEFINE_TABLE Multi-curve data used in conjunction with

*PLASTIC and *LOW DENSITY FOAM in which

the stress-strain relationship is defined for various

strain rates

Table 3.2.32–4 Section data.

LS-DYNA Keyword Abaqus Equivalent

Beam elements: *BEAM SECTION or

*BEAM GENERAL SECTION

*SECTION_BEAM

Truss elements: *SOLID SECTION

*SECTION_DISCRETE *CONNECTOR SECTION

*SECTION_SEATBELT *CONNECTOR SECTION

Shell elements: *SHELL SECTION

Membrane elements: *MEMBRANE SECTION

*SECTION_SHELL

Surface elements: *SURFACE SECTION

3.2.32–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

LS-DYNA Keyword Abaqus Equivalent

*SECTION_SOLID *SOLID SECTION

*SECTION_TSHELL *SHELL SECTION

Table 3.2.32–5 Nodal data.

LS-DYNA Keyword Abaqus Equivalent

*NODE *NODE

Table 3.2.32–6 Output options data.

LS-DYNA Keyword Abaqus Equivalent

*DATABASE_BINARY_D3PLOT *OUTPUT, FIELD and

*ELEMENT OUTPUT

*DATABASE_BINARY_D3THDT *OUTPUT, FIELD and

*ELEMENT OUTPUT

*DATABASE_DEFORC *OUTPUT, FIELD and

*ELEMENT OUTPUT

*DATABASE_ELOUT *OUTPUT, FIELD and

*ELEMENT OUTPUT

*DATABASE_NODOUT *OUTPUT, FIELD and *NODE OUTPUT

*DATABASE_HISTORY_BEAM

*DATABASE_HISTORY_BEAM_ID

*DATABASE_HISTORY_BEAM_SET

*OUTPUT, HISTORY and

*ENERGY OUTPUT

*DATABASE_HISTORY_NODE

*DATABASE_HISTORY_NODE_ID

*DATABASE_HISTORY_NODE_SET

*OUTPUT, HISTORY and

*ENERGY OUTPUT

*DATABASE_HISTORY_SHELL

*DATABASE_HISTORY_SHELL_ID

*DATABASE_HISTORY_SHELL_SET

*OUTPUT, HISTORY and

*ENERGY OUTPUT

*DATABASE_HISTORY_SOLID

*DATABASE_HISTORY_SOLID_ID

*DATABASE_HISTORY_SOLID_SET

*OUTPUT, HISTORY and

*ENERGY OUTPUT

3.2.32–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

Table 3.2.32–7 Element data.

LS-DYNA Keyword Abaqus Equivalent

Beam elements: *ELEMENT, TYPE=B31*ELEMENT_BEAM

Truss elements: *ELEMENT, TYPE=T3D2

*ELEMENT_BEAM_PID *ELEMENT, TYPE=CONN3D2 and *FASTENER

*ELEMENT_DISCRETE *ELEMENT, TYPE=CONN3D2

*ELEMENT_MASS *ELEMENT, TYPE=MASS and *MASS

*ELEMENT_SEATBELT *ELEMENT, TYPE=CONN3D2

Shell elements: *ELEMENT, TYPE=S3R or S4R

Membrane elements: *ELEMENT, TYPE=M3D3 or

M3D4R

*ELEMENT_SHELL

Surface elements (with *MAT_NULL): *ELEMENT,

TYPE=SFM3D3 or SFM3D4R

*ELEMENT_SOLID *ELEMENT,

TYPE=C3D4, C3D6, C3D8R, or C3D10M

*ELEMENT_TSHELL *ELEMENT, TYPE=SC6R or SC8R

Table 3.2.32–8 Prescribed conditions data.

LS-DYNA Keyword Abaqus Equivalent

*BOUNDARY_PRESCRIBED

_MOTION_NODE
*BOUNDARY,

TYPE=DISPLACEMENT,

VELOCITY, or ACCELERATION

*BOUNDARY_PRESCRIBED

_MOTION_SET
*BOUNDARY,

TYPE=DISPLACEMENT,

VELOCITY, or ACCELERATION

*BOUNDARY_PRESCRIBED

_MOTION_RIGID
*BOUNDARY for reference node of rigid

body

*BOUNDARY_PRESCRIBED

_MOTION_RIGID_LOCAL
*BOUNDARY for reference node of rigid

body

*BOUNDARY_SPC_NODE *BOUNDARY

*BOUNDARY_SPC_SET *BOUNDARY

3.2.32–6

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

LS-DYNA Keyword Abaqus Equivalent

*INITIAL_VELOCITY

_GENERATION
*INITIAL CONDITIONS,

TYPE=ROTATING VELOCITY

*INITIAL_VELOCITY_NODE *INITIAL CONDITIONS,

TYPE=VELOCITY

Table 3.2.32–9 Miscellaneous constraints data.

LS-DYNA Keyword Abaqus Equivalent

*CONSTRAINED_NODE_SET *EQUATION

*CONSTRAINED_NODAL_RIGID

_BODY
*MPC type BEAM

*CONSTRAINED_EXTRA_NODES

_NODE

Node set used as TIE NSET in the

definition of *RIGID BODY

*CONSTRAINED_EXTRA_NODES

_SET

Node set used as TIE NSET in the

definition of *RIGID BODY

*CONSTRAINED_JOINT

_CYLINDRICAL
*ELEMENT, TYPE=CONN3D2

*CONSTRAINED_JOINT

_REVOLUTE
*ELEMENT, TYPE=CONN3D2

*CONSTRAINED_JOINT

_SPHERICAL
*ELEMENT, TYPE=CONN3D2

*ELEMENT, TYPE=CONN3D2*CONSTRAINED_JOINT

_STIFFNESS_GENERALIZED
*CONNECTOR SECTION, BEHAVIOR

*CONSTRAINED_JOINT

_TRANSLATIONAL
*ELEMENT, TYPE=CONN3D2

*CONSTRAINED_JOINT

_UNIVERSAL
*ELEMENT, TYPE=CONN3D2

*CONSTRAINED_RIGID_BODIES Merged element set used in the definition

of *RIGID BODY

*CONSTRAINED_SPOTWELD *MPC type BEAM

3.2.32–7

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

Table 3.2.32–10 Load data.

LS-DYNA Keyword Abaqus Equivalent

*LOAD_BODY_PARTS *ELSET for *DLOAD

*LOAD_BODY_X *DLOAD

*LOAD_BODY_Y *DLOAD

*LOAD_BODY_Z *DLOAD

*LOAD_NODE_POINT *CLOAD with node data

*LOAD_NODE_SET *CLOAD with node set data

Table 3.2.32–11 Set data.

LS-DYNA Keyword Abaqus Equivalent

*SET_NODE_LIST *NSET with node data

*SET_NODE_LIST_GENERATE *NSET with node data

*SET_PART *ELSET with element set data

*SET_PART_LIST *ELSET with element set data

*SET_PART_LIST_GENERATE *ELSET with element set data

*SET_SEGMENT *ELSET with element data

*SET_SHELL_LIST *ELSET with element data

*SET_SHELL_LIST_GENERATE *ELSET with element data

*SET_SOLID_LIST *ELSET with element data

Table 3.2.32–12 Contact data.

LS-DYNA Keyword Abaqus Equivalent

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_AUTOMATIC_GENERAL

*SURFACE PROPERTY ASSIGNMENT

3.2.32–8

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

LS-DYNA Keyword Abaqus Equivalent

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_AUTOMATIC

_NODES_TO_SURFACE

*SURFACE PROPERTY ASSIGNMENT

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_AUTOMATIC

_SINGLE_SURFACE

*SURFACE PROPERTY ASSIGNMENT

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_AUTOMATIC

_SURFACE_TO_SURFACE

*SURFACE PROPERTY ASSIGNMENT

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_NODES_TO_SURFACE

*SURFACE PROPERTY ASSIGNMENT

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_RIGID_NODES_TO

_RIGID_BODY

*SURFACE PROPERTY ASSIGNMENT

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_SINGLE_SURFACE

*SURFACE PROPERTY ASSIGNMENT

3.2.32–9

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

LS-DYNA Keyword Abaqus Equivalent

*CONTACT

*CONTACT INCLUSIONS

*CONTACT PROPERTY ASSIGNMENT

*SURFACE INTERACTION

*CONTACT_SURFACE_TO_SURFACE

*SURFACE PROPERTY ASSIGNMENT

*CONTACT_TIED_NODES

_TO_SURFACE
*TIE

*CONTACT_TIED_SURFACE

_TO_SURFACE
*TIE

Table 3.2.32–13 Miscellaneous data.

LS-DYNA Keyword Abaqus Equivalent

*CONTROL

_TERMINATION

Time period entered in *DYNAMIC, EXPLICIT

*END STEP *END STEP

*KEYWORD None

*TITLE *HEADING

*INCLUDE Process multiple LS-DYNA files

Command summary

abaqus fromdyna job=job-name

input=dyna-input-file

[splitFile={OFF | ON}]

Command line options

job

This option is used to specify the name of the Abaqus input file to be output by the translator. The name

of the Abaqus input file must be given without the .inp extension. Diagnostics created by the translator

are written to a file named job-name.log.

input

This option is used to specify the name of the file containing the LS-DYNA keyword data. The

LS-DYNA input file can have an extension.

3.2.32–10

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION FROM LS-DYNA

splitFile

This option specifies whether the Abaqus input file is to be split into multiple files. If splitFile=ON, the
following files are output:

• job-name_nodes.inc: include file that contains the nodal data

• job-name_elements.inc: include file that contains the element data

• job-name_model.inc: include file that contains the remaining model data

• job-name.inp: Abaqus input file that includes all of the above include files and the history data

3.2.32–11

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

3.2.33 EXCHANGING Abaqus DATA WITH ZAERO

Product: Abaqus/Standard

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus tozaero interface enables you to exchange aeroelastic data between the Abaqus and ZAERO

analysis products. By using this interface between the applications, you can perform structural modal

analysis on a model in Abaqus, transfer the model to ZAERO for aeroelastic analysis, then transfer it

back to Abaqus for stress analysis.

Universal file

The universal file is the means of data exchange between Abaqus and ZAERO. It consists of four data

sets: 2411, which describes node and coordinate data; 2414, which describes mass-normalized mode

shapes; 2420, which describes the global coordinate system; and 2453, which describes the mass matrix

in text format, or 2453b, which describes the mass matrix in binary format.

You can specify the universal file’s output format by using the mode parameter. Choosing text

format enables you to modify the universal file in a text editor but increases the file size to over twice that

of similar files in binary format. Text is the default format and the only format supported by ZAERO.

Table 3.2.33–1 and Table 3.2.33–2 describe the mass matrix data set text format and binary format,

respectively.

Table 3.2.33–1 Format for data set 2453 (text).

Record Field Description Format

1 1 Matrix Identifier

1: DOF

131: Mass

139: Stiffness

147: Back-expansion

(I10)

3.2.33–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

Record Field Description Format

1 Matrix Data Type

1: Integer

2: Real

4: Double Precision

5: Complex

6: Complex Double

Precision

2 Matrix Form

3: General Rectangular

3 Number of rows

4 Number of columns

5 Storage Key

1: Row

2: Column

11: Sparse (not supported for

IMAT=1)

2

6 Matrix Size Parameter

For IMAT=1 this is the

number of dynamic modes.

For sparse this is the number

of matrix entries.

Otherwise, 0.

(6I10)

3 for storage

keys 1 and 2

N/A Matrix Data For data type 1:

(8 I10)

For data type 2:

(4 E20.12)

For data type 4:

(4 D20.12)

For data type 5:

(2 (2 E20.12))

For data type 6:

(2 (2 D20.12))

3.2.33–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

Record Field Description Format

1 Row

2 Column

3 for storage

key 11

3 Value at cell

For data type 1:

(2 (2I10 1I10))

For data type 2:

(2 (2I10 1E20.12))

For data type 4:

(2 (2I10 1D20.12))

For data type 5:

(1 (2I10 2E20.12))

For data type 6:

(1 (2I10 2D20.12))

Table 3.2.33–2 Format for data set 2453b (binary).

Record Field Description Format

1 2453 (I6)

2 Lowercase b (IA1)

3 Byte Ordering Method

1: Little Endian (Windows

and DOS)

2: Big Endian (most UNIX)

(I6)

4 Floating Point Format

1: DEC VMS

2: IEEE 754 (UNIX)

3: IBM 5/370

(I6)

5 Number of ASCII lines

following

2 for data set 2453b

(I12)

6 Number of bytes following

ASCII lines

(I12)

Header

7–10 Not used (fill with zeros)

1 1 Matrix Identifier

1: DOF

131: Mass

139: Stiffness

147: Back-expansion

(I10)

3.2.33–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

Record Field Description Format

1 Matrix Data Type

1: Integer

2: Real

4: Double Precision

5: Complex

6: Complex Double

Precision

2 Matrix Form

3: General Rectangular

3 Number of rows

4 Number of columns

5 Storage Key

1: Row

2: Column

11: Sparse (not supported for

IMAT=1)

2

6 Matrix Size Parameter

For IMAT=1 this is the

number of dynamic modes.

For sparse this is the number

of matrix entries.

Otherwise, 0.

(6I10)

1 (4 bytes) Row

2 (4 bytes) Column

3 (Binary

Matrix Data)

3 Value at cell

For data type 1:

(2 Int32 1 Int32)

For data type 2:

(2 Int32 1 Flt32)

For data type 4:

(2 Int32 1 Dbl64)

For data type 5:

(2 Int32 2 Flt32)

For data type 6:

(2 Int32 2 Dbl64)

Preparing the Abaqus analysis input file

Before the interface can create the universal file, you must make the following additions to your Abaqus

input (.inp) file, then run Abaqus:

3.2.33–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

• Normalize the eigenvectors in the eigenfrequency extraction analysis with respect to the structure’s

mass matrix. This normalization is necessary because the translator assumes the mode shapes are

mass normalized; if you skip this step before the Abaqus run, the modes translated will be incorrect

and will give incorrect results with no warnings or errors. For more information, see “Natural

frequency extraction,” Section 6.3.5.

• Include the following line in the analysis step:

*ELEMENT MATRIX OUTPUT, ELSET=allelements, MASS=YES,
OUTPUT FILE=USER DEFINED, FILE NAME=mtx-file-name

where allelements is a defined element set containing all the elements that should be included

in the global mass matrix. The matrix output will be placed into the file mtx-file-name.mtx; you
should not specify the .mtx extension since Abaqus adds it automatically.

Workflow

This section describes the input and output of the three main steps in the workflow between Abaqus and

ZAERO.

Modal analysis in Abaqus

The Abaqus modal analysis uses an Abaqus input file and outputs the following data to an output database

(.odb) file and matrix (.mtx) file: structural model nodes, coordinate systems, mode frequencies,

generalized mass, mode shapes, and the mass matrix.

Aeroelastic analysis in ZAERO

Aeroelastic analysis requires a ZAERO input file and the universal file created by toZAERO. ZAERO

outputs force and moment data on structural nodes due to aeroelastic forces to the universal file.

Stress analysis in Abaqus

The forces and moments output from ZAERO can then be used in a static (linear or nonlinear) Abaqus

analysis to calculate deflections, stresses, and loads.

Command summary

abaqus tozaero job=job-name

[unvfile=unv-file-name]
[odbfile=odb-file-name]
[mtxfile=mtx-file-name]
[step=step-number]
[mode={text | binary}]

3.2.33–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO ZAERO

Command line options

job

This option is used to specify the name of the Abaqus input file. It is also the default name for the

universal output database and mass matrix files.

unvfile

This option is used to specify the name of the universal file if it is different from job-name. If the .unv
extension is not supplied, Abaqus adds it automatically.

odbname

This option is used to specify the name of the Abaqus output database file if it is different from job-name.

If the .odb extension is not supplied, Abaqus adds it automatically.

mtxfile

This option is used to specify the file containing the element mass matrices generated by Abaqus. If the

.mtx extension is not supplied, Abaqus adds it automatically.

step

This option specifies the step number containing the eigenfrequency extraction results from Abaqus. The

default value is 1.

Note: You must normalize the eigenvectors in the eigenfrequency extraction analysis with respect to

the structure’s mass matrix. For more information, see “Natural frequency extraction,” Section 6.3.5.

mode

This option specifies the output format of the universal file. If this option is set equal to binary, Abaqus
writes a portion of the universal file in binary format to save space. If this option is set equal to text,
Abaqus writes the entire file in all text format. The default value is text, which is the only mode

currently supported by ZAERO.

3.2.33–6

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

3.2.34 TRANSLATING Abaqus DATA TO MSC.ADAMS MODAL NEUTRAL FILES

Product: Abaqus/Standard

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Translating Abaqus data to modal neutral file format for analysis inMSC.ADAMS,” Section 15.1.7

of the Abaqus Example Problems Guide

Overview

The ADAMS/Flex product from MSC.Software Corporation can be used to account for flexibility in

a component when performing a dynamic analysis in MSC.ADAMS. ADAMS/Flex relies on a finite

element analysis code such as Abaqus to provide the component’s flexibility information in a form

that is usable by MSC.ADAMS. The abaqus adams translator can be used to create Abaqus models

of MSC.ADAMS components and to convert the Abaqus results into an MSC.ADAMS modal neutral

(.mnf) file, the format required by ADAMS/Flex.

The abaqus adams translator requires a SIM file created by the current version of Abaqus.

Using the translator

The following procedure summarizes the typical usage of the abaqus adams translator:

1. Create an Abaqus model for each flexible component of the MSC.ADAMSmodel. Each component

is modeled as an Abaqus substructure.

2. Run the Abaqus analysis. For more information, see “Preparing the substructure SIM database file.”

3. Run the abaqus adams translator to read the substructure SIM database produced by the analysis

and to create the modal neutral (.mnf) file for MSC.ADAMS.

4. Read the modal neutral file into MSC.ADAMS. A separate modal neutral file must be created for

each flexible part in MSC.ADAMS.

Contents of the modal neutral file

The abaqus adams execution procedure translates data from a substructure SIM database (.sim) and
creates an MSC.ADAMS modal neutral (.mnf) file. Depending on the contents of the results in the

substructure SIM database and the translation parameters, the translator creates a modal neutral file

containing the data blocks shown in Table 3.2.34–1.

3.2.34–1

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

Table 3.2.34–1 Modal neutral file contents.

Block Number Contents Created by the Translator

1 Version code Yes

2 Header Yes

3 Content summary Yes

4 Nodal coordinates Yes

5 <Not used> N/A

6 Global mass properties Yes

7 Eigenvalues Yes

8 Mode shapes Yes

9 Nodal masses Yes

10 Nodal inertias Yes

11 Units Yes

12 Generalized stiffness matrix Yes

13 Generalized mass matrix Yes

14 Element faces Yes

15 Generalized damping Yes

16 Mode shape transformation Yes

17 Interface nodes Yes

18 Modal stress Optional

19 to 26 Inertia invariants Yes

27 Modal preload No

28 Modal loads Yes

29 Modal strain Optional

Preparing the substructure SIM database file

This section describes the preparation of a substructure SIM database that will produce the results

quantities required by ADAMS/Flex.

3.2.34–2

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

The Abaqus substructure model

The first step in accounting for a component’s flexibility in MSC.ADAMS is to model that component

as an Abaqus substructure. This process involves creating an Abaqus finite element model of the

component. General guidelines for building Abaqus models with substructures are described in “Using

substructures,” Section 10.1.1.

Setting up the Abaqus model to create a modal neutral file

When you create a substructure to be translated to MSC.ADAMS, the substructure generation step must

specify that you are working with a flexible body. In addition, if you want stress and/or strain to be

translated to Adams, you must add the following data to the substructure generation step:

*ELEMENT RECOVERY MATRIX, POSITION=AVERAGED AT NODES
S,
E,

Units

The MSC.ADAMS programs require that you define the units used in the component model, while

Abaqus does not. Therefore, during the creation of the modal neutral file you must declare the units used

in the model explicitly. The approach to doing this in the abaqus adams execution procedure is very

similar to the way it is done in the ADAMS/View Units Settings dialog box. A predefined units system

can be specified by using the units option on the abaqus adams execution procedure. Alternatively, the

individual length, mass, force, and time units can be specified by using the length,mass, force, and time

options on the abaqus adams execution procedure. Any individual units that are specified override the

corresponding units in the units system. The default units system is mks. The valid units systems for

the units option are listed in Table 3.2.34–2.

Table 3.2.34–2 Valid units systems.

Units System Length Units Mass Units Force Units Time Units

mks meters kilograms newtons seconds

mmks millimeters kilograms newtons seconds

cgs centimeters grams dyne seconds

ips inches pound-mass pound-force seconds

The valid options for each of the length, mass, force, and time options are as follows:

Length units

Valid options for the length units are

• meters

• millimeters, mm

3.2.34–3

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

• centimeters, cm

• kilometers, km

• inches, inch, in

• feet, foot, ft

• mile

Mass units

Valid options for the mass units are

• kilograms, kg

• megagram, tonne

• gram, g

• pound_mass, lbm, pound

• slug

• kpound_mass

• ounce_mass

Force units

Valid options for the force units are

• newtons, N

• knewton, kN

• kilogram_force, kgf

• dyne

• ounce_force

• pound_force, lbf, pound

• kpound_force

Time units

Valid options for the time units are

• seconds, sec

• milliseconds, ms

• minutes, min

• hours

Default values for the units options can be defined in the Abaqus environment file

(abaqus_v6.env). The default for the units option can be defined with the adams_units_family

parameter. The defaults for the length, mass, time, and force options can be defined with the

adams_length_units, adams_mass_units, adams_time_units, and adams_force_units parameters,

respectively.

3.2.34–4

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

Translating modes with negative eigenvalues

Typically, for a non-prestressed, unrestrained substructure in three dimensions, you expect to find six

rigid body modes with associated zero eigenvalues. The situation is, in general, different for prestressed

substructures, which may have fewer than six modes with zero eigenvalues. Prestressing may change

the expected zeroes into values that are significantly positive or negative, depending on the sign of the

prestress.

By default, the translator deletes modes with negative eigenvalues and reorthogonalizes the

reduced basis. If you want to retain modes with negative eigenvalues, define the environment variable

MDI_MNFWRITE_OPTIONS.

• On UNIX platforms type the following command:

setenv MDI_MNFWRITE_OPTIONS negative_roots_OK

• On Windows platforms type the following command:

set MDI_MNFWRITE_OPTIONS=negative_roots_OK

In this case the translator will treat modes with negative eigenvalues in the same manner as all other

modes.

To determine if a model will have negative eigenvalues when translated by the translator, you can

add an eigenfrequency extraction step with no boundary conditions to the input file.

Command summary

abaqus adams job=job-name

[substructure_sim=filename]
[model_odb=filename]
[units=mmks | mks | cgs | ips]
[length=length-units-name]
[mass=mass-units-name]
[time=time-units-name]
[force=force-units-name]

Command line options

job

This option specifies the input and output file names to use during results translation. The job-name

value is used to construct the default SIM database file name, job-name.sim. The output modal neutral

file is given the name job-name.mnf.

If this option is omitted from the command line, the user will be prompted for this value.

3.2.34–5

Abaqus Version 6.6 ID:

Printed on:

TRANSLATION TO MSC.ADAMS

substructure_sim

This option specifies the name of the substructure SIM database (.sim) file if it is different from job-

name.sim. The file will usually be named job-name_Znn.sim.

model_odb

This option specifies the name of the model output database (.odb) file if it is different from job-

name.odb.

units

This option specifies the units system for the model. The possible values are mmks, mks, cgs, or ips,
which correspond to the ADAMS/View options with the same names. The default value is mks.

This option can be defined in the Abaqus environment file as follows:

adams_unit_family=unit-family

length

This option specifies the length units for the model. If this option is specified, it overrides the length

units of the specified units system.

This option can be defined in the Abaqus environment file as follows:

adams_length_units=length-unit

mass

This option specifies the mass units for the model. If this option is specified, it overrides the mass units

of the specified units system.

This option can be defined in the Abaqus environment file as follows:

adams_mass_units=mass-unit

time

This option specifies the time units for the model. If this option is specified, it overrides the time units

of the specified units system.

This option can be defined in the Abaqus environment file as follows:

adams_time_units=time-unit

force

This option specifies the force units for the model. If this option is specified, it overrides the force units

of the specified units system.

This option can be defined in the Abaqus environment file as follows:

adams_force_units=force-unit

3.2.34–6

Abaqus Version 6.6 ID:

Printed on:

INPUT DATA ENCRYPTION/DECRYPTION

3.2.35 ENCRYPTING AND DECRYPTING Abaqus INPUT DATA

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Including an encrypted data file” in “Defining a model in Abaqus,” Section 1.3.1

• *INCLUDE

Overview

You can use the abaqus encrypt utility to prevent the unauthorized use of Abaqus input data. The

utility converts a data file into an encrypted, password-protected format that only authorized Abaqus

input parties can access. The utility is intended for the encryption of data that you include by reference

in input (.inp) files or in other data files. For example, you could encrypt a file that contains all of

the proprietary material data for your model, then include the encrypted data file by reference in an

unencrypted Abaqus input file. See “Including an encrypted data file” in “Defining a model in Abaqus,”

Section 1.3.1, for information on how to include an encrypted data file in an Abaqus input file.

You can encrypt any input file. However, Abaqus cannot run an encrypted Abaqus input file directly;

the encrypted file must be included in an unencrypted file.

Specifying additional access levels and controls

You can customize your encryption so that only users with a license for a particular Abaqus feature

or from a particular site can include or decrypt the file. For example, you can specify that only

Abaqus/Standard users can access the file. You can also prevent decryption of an encrypted file by

any user, regardless of their license and site; end users can still use the encrypted data in an analysis

by including it by reference in an unencrypted Abaqus input file, provided that the users know the

encrypted file’s password.

Security and support considerations

The primary intent of the Abaqus encryption implementation is to prevent unauthorized use of encrypted

input data, not to prevent disclosure of encrypted data to authorized users. Running an Abaqus analysis

input using encrypted data may produce output files that are not encrypted. Only material and connector

behavior information contained within an encrypted input file is prevented from being visible in the

output. This approach means that recipients of encrypted data who satisfy the access criteria, such as

the password, license feature, or SiteID, will be able to reconstruct some input in an unencrypted form.

Providers of encrypted data should consider establishing contractual agreements to protect proprietary

data. Users of encrypted data must accept responsibility for security of files produced from encrypted

input and should consider restricting access to resulting analysis files.

3.2.35–1

Abaqus Version 6.6 ID:

Printed on:

INPUT DATA ENCRYPTION/DECRYPTION

Abaqus technical support cannot retrieve lost passwords for encrypted data files. Users receiving

encrypted data should contact the data provider for any technical support issues.

Adding comments to the header of an encrypted file

When you encrypt a file, Abaqus adds the following unencrypted comment line to the beginning of the

file:

** encrypted input

Do not modify or delete this header comment. You can, however, insert additional comment lines

between this header comment and the first line of encrypted data. These post-encryption comment

lines can describe the encrypted file’s contents, provide release numbers, or display copyright and legal

information about the encrypted data. For more information about comment line syntax, see “Input

syntax rules,” Section 1.2.1.

You should not, however, add post-encryption comment lines within the lines of encrypted data. If

you want to edit or amend the comment lines within the data itself, you must first decrypt the data.

Command summary

abaqus {encrypt | decrypt} input=input-file-name

output=output-file-name

password=password

[license=feature_list] [siteid=site-id_list] [include_only]
[expiration=expiration_date]

Command line options

input

This option specifies the name of the data file that you want to encrypt or decrypt.

If you omit this option from the command line, Abaqus will prompt you for its value.

output

This option specifies the name of the data file after encryption or decryption.

If you omit this option from the command line, Abaqus will prompt you for its value.

password

This option specifies the password for this encryption or decryption. Passwords are case-sensitive.

If you omit this option from the command line while encrypting data, Abaqus will prompt you for

its value. If you enter the password incorrectly or omit it from the command line while decrypting data,

Abaqus reports that the input file is either corrupted or the password is incorrect.

license

This option applies only to file encryption.

3.2.35–2

Abaqus Version 6.6 ID:

Printed on:

INPUT DATA ENCRYPTION/DECRYPTION

This option specifies the Abaqus feature or features for which end users must be licensed if they

want to include or decrypt this encrypted data file. You can use a comma-separated list to allow access

to the file by licensees of any one of a series of Abaqus features.

Any feature name that appears in an Abaqus license file is valid. These might include the

following features: foundation, standard, explicit, design, aqua, ams, cae, viewer,
cae_nogui, cmold, moldflow, safe, cadporter_catia, cadporter_catiav5,
cadporter_ideas, cadporter_parasolid, cadporter_proe, afcv5_structural,
and afcv5_thermal.

siteid

This option applies only to file encryption.

This option specifies the Abaqus Site ID or IDswhere end users can include or decrypt this encrypted

data file. You can use a comma-separated list to allow multiple sites access to the file. You can use this

option only when you also use the license option.

To determine your Abaqus Site ID, run abaqus whereami from a command prompt.

include_only

This option applies only to file encryption.

This option specifies that encrypted input data cannot be decrypted using the abaqus decrypt

execution procedure; such data can only be included in an Abaqus input file.

If you attempt to decrypt a file that was encrypted with the include_only option, Abaqus issues an

error message stating that the input file can be included in an analysis but is not eligible for decryption.

expiration

This option applies only to file encryption.

This option specifies the date after which the end users can no longer decrypt or include the

encrypted data file. The date must be provided in the formYYYY-MM-DD.

Examples

The following examples illustrate the different encryption methods that are possible using the encrypt

execution procedure.

Creating encrypted files

In the simplest encryption scenario an Abaqus user creates an encrypted copy of a file named

material_data.inp, which contains all of the material data for a model, before sending the

encrypted version to an authorized end user. Encryption prevents unauthorized users from accessing the

encrypted file during its transmission. To create an encrypted copy of material_data.inp named

material_data_enc.inp, issue the following command:

abaqus encrypt input=material_data.inp
output=material_data_enc.inp password=e1No9c2z

Upon receiving the file, the end user can run the abaqus decrypt execution procedure to create a copy of

the original, non-encrypted material data file. Because of the encryption options selected in this example,

3.2.35–3

Abaqus Version 6.6 ID:

Printed on:

INPUT DATA ENCRYPTION/DECRYPTION

the end user requires only the encrypted file’s password to decrypt it. To decrypt the encrypted data file

material_data_enc.inp, producing the non-encrypted file material_data.inp, issue the

following command:

abaqus decrypt input=material_data_enc.inp
output=material_data.inp password=e1No9c2z

Alternatively, the end user can skip the decryption and run an analysis that includes the encrypted data by

reference. To include the encrypted file by reference in an Abaqus input file, add the following statement

to the input file:

*INCLUDE, INPUT=material_data_enc.inp, PASSWORD=e1No9c2z

Limiting access to decrypted files by license feature or site ID

You can specify that end users cannot access the file unless they have a valid license for a particular

Abaqus feature, run Abaqus at a particular site, or satisfy both of these criteria. To encrypt a data file

that can be accessed only by users who have an Abaqus/Explicit license and who run the software at site

09YYY, issue the following command:

abaqus encrypt input=material_data.inp
output=material_data_enc.inp password=e1No9c2z
license=explicit siteid=09YYY

An end user can attempt to access the file material_data_enc.inp using the same decryption

or inclusion syntax specified in the previous example. For this encrypted file, Abaqus would validate

that the end user has an Abaqus/Explicit license and is running Abaqus at site 09YYY before providing

access to the file. If the end user’s license or site settings do not match those specified during encryption,

Abaqus issues an error message that lists the licenses or sites that are required to access the file.

Creating encrypted files that must be included to be used by Abaqus

You can use the include_only option to prevent end users from decrypting the file directly using abaqus

decrypt. Authorized users can access a file encrypted with the include_only option by including the file

by reference in an Abaqus input file. Material and connector behavior definitions within an encrypted

input file are not written to the output database. In addition, all material and connector behavior

definitions output to the data file are suppressed if an encrypted file is used as input for any portion of

the model. To create an encrypted file that is available only for inclusion by reference in other input

files, issue the following command:

abaqus encrypt input=material_data.inp
output=material_data_enc.inp password=e1No9c2z include_only

The resulting encrypted file can be included by reference in an Abaqus input file using the same syntax

as in the previous example. If you attempt to decrypt a file that was encrypted with the include_only

option, Abaqus returns an error message.

3.2.35–4

Abaqus Version 6.6 ID:

Printed on:

JOB EXECUTION CONTROL

3.2.36 JOB EXECUTION CONTROL

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The execution procedures for job execution control include abaqus suspend, abaqus resume, and

abaqus terminate. These utilities are used to suspend, resume, and terminate Abaqus analysis jobs.

Suspending an analysis job will stop its execution and release its license tokens to the free-token pool.

Resuming an analysis will reactivate a suspended job and check out license tokens for that job if they

are available. The job will be placed in the license queue if license tokens are not available. Terminating

an analysis job will stop the executable for the analysis and release its license tokens. A terminated

analysis job cannot be resumed.

Command summary

abaqus {suspend | resume | terminate} job=job-name

Command line options

Required option

job

This option is used to specify the name of the analysis job to suspend, resume, or terminate.

3.2.36–1

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT FILE SETTINGS

3.3 Environment file settings

• “Using the Abaqus environment settings,” Section 3.3.1

3.3–1

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

3.3.1 USING THE Abaqus ENVIRONMENT SETTINGS

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The Abaqus environment settings allow you to control various aspects of an Abaqus job’s execution. For

example, you can

• “Tune” Abaqus to improve its performance by changing memory-related parameters.

• Control where and how scratch files are written.

• Provide default values for job parameters that would otherwise have to be given on the command

line.

Many other aspects of a job’s execution can be configured through the environment settings. Some of

these are discussed in this section; others, which are mainly of interest to the Abaqus site manager, are

discussed in detail in the Abaqus Installation and Licensing Guide.

Environment settings hierarchy

Abaqus environment settings are processed in the following order:

1. The host-level environment settings. These settings are applied to all Abaqus jobs run on the

designated computer.

2. The user-level environment settings. These settings are applied to all Abaqus jobs run in your

account.

For Abaqus to locate the environment file in your home directory on Windows platforms,

the full path to your home directory must be specified using the HOME environment variable or

a combination of the HOMEDRIVE and HOMEPATH environment variables.

3. The job-level environment settings. These settings are applied to only the designated Abaqus job.

Environment settings can be specified more than once. The last value processed will be the one

used for the setting if it is defined at more than one level or if it is given twice at the same level.

Abaqus environment settings are set using special files in specific directories. The host-level settings

are set in the site directory in the abaqus account directory. You can change these settings by creating

an environment file, abaqus_v6.env, in your home directory and/or the current directory. Settings in

the home directory file will be applied to all jobs that you run. Settings in the current directory file will

be applied only to jobs run from the current directory.

3.3.1–1

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

Syntax

The entries given in the environment file must be given using Python language syntax. Entries take the

form:

parameter=value

The following is a brief overview of the Python syntax rules:

• The parameter must always have a value. The value can be any valid Python constant or expression.

• A string value must be enclosed in a pair of double or single quotes.

• Comments are preceded by a number sign (#). All characters following a number sign on a line are

ignored. Number signs within a quoted string are part of the string, not the beginning of a comment.

• Blank lines are ignored.

• Embedded single quotes do not require special handling if they are placed within a double quoted

string. For example, "my value’s" is translated as my value’s. The same holds true for

double quotes embedded in a single quoted string. Quotes of the same type as the enclosing quotes

can be embedded if they are prefixed by the backslash (\) character.

• Triple quoted (""") strings can span more than one line, and no special treatment of quotes within

the string is necessary. Entries take the form:

parameter="""
multi-line
value
"""

• Lists must be enclosed in parentheses (()) or square brackets ([]). Individual items in the list are

separated by commas. If the list is enclosed in parentheses and contains only one value, a comma

has to follow the value. String list items must be enclosed in quotes. Entries take the form:

parameter=(value1, value2, value3)

Troubleshooting

Problems caused by faulty environment settings can be diagnosed by using the command

abaqus information=environment

This command prints all of the current environment settings.

Command line default parameters

The following parameters provide default values for various settings that would otherwise have to be

specified on the command line (see “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,”

Section 3.2.2, and “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD co-simulation execution,”

Section 3.2.4). Values given on the command line override values specified in the environment files.

3.3.1–2

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

cpus

Number of processors to use if parallel processing is available. The default is 2 for the co-simulation

execution procedure; otherwise, the default is 1.

domains

The number of parallel domains in Abaqus/Explicit. If the value is greater than 1, the domain

decomposition will be performed regardless of the values of the parallel and cpus parameters.

However, if parallel=domain, the value of cpus must be evenly divisible into the value of

domains. If this parameter is not set, the number of domains defaults to the number of processors

used during the analysis run if parallel=domain or to 1 if parallel=loop.

double_precision

The default precision version of Abaqus/Explicit to run if you do not specify the precision version

on the abaqus command line. Possible values are EXPLICIT (only the Abaqus/Explicit analysis is

run in double precision), BOTH (both the Abaqus/Explicit packager and analysis are run in double

precision), CONSTRAINT (the constraint packager and constraint solver in Abaqus/Explicit are

run in double precision, while the Abaqus/Explicit packager and analysis continue to run in single

precision), or OFF (both the Abaqus/Explicit packager and analysis are run in single precision). The

default is OFF.

parallel

The default parallel method in Abaqus/Explicit if you do not specify the parallel method on the

abaqus command line. Possible values are DOMAIN or LOOP; the default value is DOMAIN.

run_mode

Default run mode (interactive, background, or batch) if you do not specify the run mode on the

abaqus command line. The default for abaqus analysis is "background", while the default for
abaqus viewer is "interactive".

scratch

Directory to be used for scratch files. This directory must exist (i.e., it will not be created by Abaqus)

and must have write permission assigned. On UNIX platforms the default value is the value of the

$TMPDIR environment variable or /tmp if $TMPDIR is not defined. On Windows platforms the

default value is the value of the %TEMP% environment variable or \TEMP if this variable is not

defined. During the analysis a subdirectory will be created under this directory to hold the analysis

scratch files. The name of the subdirectory is constructed from your user name, the job id, and

the job’s process identifier. The subdirectory and its contents are deleted upon completion of the

analysis.

standard_parallel

The default parallel execution mode in Abaqus/Standard if you do not specify the parallel mode on

the abaqus command line. If this parameter is set equal to ALL, both the element operations and

3.3.1–3

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

the solver will run in parallel. If this parameter is set equal to SOLVER, only the solver will run in

parallel. The default parallel execution mode is ALL.

gpus

The GPGPU direct solver acceleration setting in Abaqus/Standard if you do not specify the

GPGPU solver acceleration option on the abaqus command line. By default, GPGPU solver

acceleration is not activated. The value of this parameter is the number of GPGPUs to be used in

an Abaqus/Standard analysis. In an MPI-based analysis, this is the number of GPGPUs to be used

on each host.

unconnected_regions

If this variable is set to ON, Abaqus/Standard will create element and node sets in the output database

for unconnected regions in the model during a datacheck analysis. Element and node sets created

with this option are named MESH COMPONENT N, where N is the component number. The default

value is OFF.

order_parallel

The ordering mode for the direct sparse solver in Abaqus/Standard if you do not specify the ordering

mode on the abaqus command line. If this parameter is set equal to OFF, the ordering procedure

will not run in parallel. If this parameter is set equal to ON, the ordering procedure will run in

parallel. The default ordering mode is ON.

System resource parameters

The following environment file variable can be set after the code has been installed to change the

resources used by Abaqus and, therefore, to improve system performance. By default, Abaqus detects

the physical memory on a machine (or on each compute node in a cluster) and allocates a percentage

of the available memory based on the machine platform (for details, refer to the Dassault Systèmes

Knowledge Base at www.3ds.com/support/knowledge-base). You can override the default percentage

by specifying a number followed by the percentage sign. The variable can also be defined as the

number of megabytes or the number of gigabytes. More detailed information about changing the system

resources used by Abaqus is given in “Managing memory and disk use in Abaqus,” Section 3.4.1.

memory

Maximum amount of memory or maximum percentage of the physical memory that can be allocated

during the input file preprocessing and during the Abaqus/Standard analysis phase. For parallel

execution on computer clusters, this memory limit specifies the maximum amount of memory that

can be allocated on each process.

System customization parameters

The following is a discussion of some additional environment file parameters that are commonly used.

A complete listing of parameters can be found in the Abaqus Installation and Licensing Guide.

3.3.1–4

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

ask_delete

If this parameter is set equal to OFF, you will not be asked whether old job files of the same file

name should be deleted; the files will be deleted automatically. The default value is ON.

auto_calculate

If this parameter is set equal to ON, the postprocessing calculator will be launched automatically

at the end of an analysis if the execution procedure detects that output database file conversion is

necessary. If this parameter is set to OFF, the postprocessing calculator will not run at the end of an
analysis even if the execution procedure detects that it is necessary. The default value is ON.

auto_convert

If this parameter is set equal to ON and an Abaqus/Explicit analysis is run in parallel with

parallel=domain, the convert=select, convert=state, and convert=odb options will be

run automatically at the end of the analysis. The default value is ON.

average_by_section

This parameter is used only for an Abaqus/Standard analysis. If this parameter is set equal to

OFF, the averaging regions for output written to the data (.dat) file and results (.fil) file are

based on the structure of the elements. If this parameter is set equal to ON, the averaging regions

also take into account underlying values of element properties and material constants. In problems

with many section and/or material definitions the default value of OFF will, in general, give much

better performance than the nondefault value of ON. See “Output to the data and results files,”

Section 4.1.2, for further details on the averaging scheme.

mp_host_list

List of host machine names to be used for an MPI-based parallel Abaqus analysis, including the

number of processors to be used on each machine; for example,

mp_host_list=[['maple',1],['pine',1],['oak',2]]

indicates that, if the number of cpus specified for the analysis is 4, the analysis will use one processor

on a machine called maple, one processor on a machine called pine, and two processors on a

machine called oak. The total number of processors defined in the host list has to be greater than

or equal to the number of cpus specified for the analysis. If the host list is not defined, Abaqus will

run on the local system. When using a supported queuing system, this parameter does not need to

be defined. If it is defined, it will get overridden by the queuing environment.

mp_mode

Set this variable equal to MPI to indicate that the MPI components are available on the system.

Setmp_mode=THREADS to use the thread-based parallelization method. The default value is MPI
where applicable.

3.3.1–5

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

odb_output_by_default

If this parameter is set equal to ON, output database output will be generated automatically. If this

parameter is set equal to OFF, output database request keywords must be placed in an input file to

obtain output database output. The default value is ON.

onCaeStartup

Optional function to be executed before Abaqus/CAE begins. See “Customizing Abaqus/CAE

startup,” Section 4.3.3 of the Abaqus Installation and Licensing Guide, for examples of this function.

Co-simulation parameters

The following environment file variables provide default settings for co-simulation between solvers

using the direct coupling interface. This includes Abaqus/Standard to Abaqus/Explicit co-simulation

and co-simulation between Abaqus and certain third-party analysis programs.

cosimulation_port

Set cosimulation_port equal to the port number used for the connection. The default value is

48000.

cosimulation_timeout

Set cosimulation_timeout equal to the timeout period in seconds. Abaqus terminates if it does

not receive any communication from the coupled analysis program during the time specified. The

default value is 3600 seconds.

The following environment file variables provide settings that allow you to allocate CPUs

for co-simulation jobs submitted using the co-simulation execution procedure. This includes

Abaqus/Standard to Abaqus/Explicit, Abaqus/Standard to Abaqus/CFD, and Abaqus/CFD

to Abaqus/Explicit co-simulation (see “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD

co-simulation execution,” Section 3.2.4).

cpus_weight_std

This option controls the allocation of CPUs to Abaqus/Standard analyses. The actual CPU allocation

for Abaqus/Standard analyses is made in proportion to this value and considering the settings of

cpus_weight_xpl, cpus_weight_cfd, and cpus.

cpus_weight_xpl

This option controls the allocation of CPUs to Abaqus/Explicit analyses. The actual CPU allocation

for Abaqus/Explicit analyses is made in proportion to this value and considering the settings of

cpus_weight_std, cpus_weight_cfd, and cpus.

cpus_weight_cfd

This option controls the allocation of CPUs to Abaqus/CFD analyses. The actual CPU allocation

for Abaqus/CFD analyses is made in proportion to this value and considering the settings of

cpus_weight_std, cpus_weight_xpl, and cpus.

3.3.1–6

Abaqus Version 6.6 ID:

Printed on:

ENVIRONMENT SETTINGS

portpool

Set this variable equal to a colon-separated pair of TCP/UDP port numbers that represents the

start and end value of port numbers to be used by the co-simulation execution procedure when

establishing connections between the child processes.

Environment file examples

Example environment files that use some of the previously discussed parameters are shown below. A

sample environment file, named abaqusinc.env, is included in the site subdirectory of the release

to show the options used at SIMULIA.

UNIX environment file:

ask_delete=OFF
The following parameter causes the scratch files to
be written to /tmp.
scratch="/tmp"

Windows environment file:

ask_delete=OFF
The following parameter causes the scratch files to
be written to the tmp directory on c:.
scratch="c:/tmp"

3.3.1–7

Abaqus Version 6.6 ID:

Printed on:

MANAGING MEMORY AND DISK RESOURCES

3.4 Managing memory and disk resources

• “Managing memory and disk use in Abaqus,” Section 3.4.1

3.4–1

Abaqus Version 6.6 ID:

Printed on:

MEMORY AND DISK USAGE

3.4.1 MANAGING MEMORY AND DISK USE IN Abaqus

Products: Abaqus/Standard Abaqus/Explicit

References

• “Execution procedure for Abaqus: overview,” Section 3.1.1

• “Using the Abaqus environment settings,” Section 3.3.1

Overview

For small analyses management of computer resources is generally of secondary concern, but with

large models intelligent use of disk and memory resources is a critical part of the analysis process. For

moderate to large analyses you will find it necessary to modify resource management settings.

Understanding resource use

For Abaqus disk and memory are effectively two similar means of storing data. Data that will be required

after an analysis completes must eventually be written to disk; but during an analysis, disk and memory

provide functionally equivalent storage mechanisms. Typically disk is a more abundant resource, while

memory provides faster access to stored data. Management of Abaqus resources hinges on this simple

trade-off.

Abaqus data

There are effectively two types of data generated by an Abaqus analysis. The first is “output” data that

must persist after an analysis is complete. Output data are typically either results that you require for

postprocessing or data that are necessary to restart an analysis. As mentioned above, these data must be

stored on disk before an analysis completes.

In addition, an analysis generates a considerable amount of “scratch” or temporary data. These

are data that are needed only while an analysis is running. The scratch data can be subdivided into two

groups: performance-critical data and generic data. The performance-critical data are always stored in

memory, while the generic data can be stored either in memory or on disk.

Requirements and considerations

To run an analysis, the following requirements must be satisfied:

• There must be sufficient disk space available to hold the requested output data.

• There must be sufficient memory available to hold all performance-critical data.

• There must be sufficient disk space or memory resource available to hold all generic scratch data.

If the above requirements are satisfied, an analysis can be completed; however, for Abaqus/Standard

you may find that allowing Abaqus to use additional memory will often improve performance. With the

increased availability of computer clusters, dedicated shared memory computers, and most importantly

3.4.1–1

Abaqus Version 6.6 ID:

Printed on:

MEMORY AND DISK USAGE

job queuing systems that allocate processors and memory for analyses, it makes most sense to be able to

use all the memory resources to improve performance.

Typically Abaqus/Standard allocates a large portion of the available system memory on a machine

during the analysis phase, but you can manually specify a limit for memory usage with the memory

parameter (see “Resource management parameters” below). No scratch data are written to disk during

the Abaqus/Explicit analysis phase, since the majority of scratch data are performance critical.

Resource management parameters

Abaqus resource management parameters fall into two classes: memory management and disk

management. Each can be adjusted through one environment file parameter. The following sections

explain how to best make use of this parameter. For information about the environment file, see “Using

the Abaqus environment settings,” Section 3.3.1.

Memory management parameters

The memory parameter is used to limit the amount of memory that can be used during the analysis

phase of Abaqus/Standard and during the input file processing phase, which is executed before both

Abaqus/Standard and Abaqus/Explicit analyses.

If you do not define the memory parameter, Abaqus automatically detects the physical memory

on the machine and allocates a percentage of this available memory. The default percentages are

platform specific, but they typically represent a large portion of the available physical memory. For

details on the default memory allocation settings, refer to the Dassault Systèmes Knowledge Base at

www.3ds.com/support/knowledge-base.

You can override the default memory allocation by specifying the percent of physical memory or

by specifying an absolute limit in units of megabytes or gigabytes. Percentages are indicated by a “%”

sign following the specified limit. Units of megabytes and gigabytes are indicated by “mb” or “gb”

following the specified limit. If no units are specified, megabytes are assumed. For example, with any

of the following settings:

memory="2048 mb"
memory="2 gb"
memory="25 %"

Abaqus uses up to 2 gigabytes of memory on a machine with 8 gigabytes physical memory. The memory

setting value must be surrounded by quotes. The values specified for memory must be reasonable for

the machine being used. Abaqus/Standard does not check the validity of the numerical values. To be

consistent with operating system memory measurement tools, a megabyte is defined by Abaqus to be

1,048,576 bytes, not 1,000,000 bytes. A similar rule applies to the unit of gigabyte.

There are no memory management parameters for the Abaqus/Explicit analysis phase, since no

scratch data are written to disk during this phase.

Environment file parameters can be set for a host, for a user, or for a particular job (see “Using the

Abaqus environment settings,” Section 3.3.1, for further discussion). Because a default memory setting

3.4.1–2

Abaqus Version 6.6 ID:

Printed on:

MEMORY AND DISK USAGE

that works well for one machine with a large amount of memory may not be ideal for another machine

that has less memory, it may be useful to vary the default memory settings by machine.

Disk management parameters

Management of output data is discussed in detail in “Output,” Section 4.1.1. Output data are written to

files in the directory from which you launched the job.

Abaqus/Standard scratch files are written to a separate scratch directory. You can control the

directory used to hold the scratch files with the scratch environment file parameter. Due to the frequent

access of the scratch data throughout the analysis phase, ensuring high I/O speed of the scratch disks

is essential to the analysis performance.

As explained above, no scratch data are written to disk for Abaqus/Explicit, so you have to be

concerned only with proper management of output data.

Input file processing and data check

In general, the amount of memory required during input file processing is not large. The amount of

memory and disk space needed for the analysis phase of a job is more likely to be a concern. It is

not possible for Abaqus to estimate the amount of memory that will be required to complete input file

processing. A data check run can be performed by using the datacheck parameter in the command for

running Abaqus (see “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2)

to obtain an estimate of the required memory for completing the analysis phase. General guidelines for

setting the memory parameter for performing the data check (which includes the input file processing

phase) are given below.

Guidelines for memory settings

You will usually not have to change the default memory setting. If a job fails as a result of insufficient

memory with the default setting, you will need to find a machine with more memory to run the job. If you

need to override the default behavior by specifying a value for the memory environment file parameter,

Table 3.4.1–1 lists some typical data check memory settings for problems of various sizes. The actual

values required formemory may vary considerably from problem to problem depending on the features

used in a model.

Table 3.4.1–1 Typical memory settings for performing the data check analysis.

Degrees of freedom Memory

250,000 250 megabytes

1 million 750 megabytes

2.5 million 1200 megabytes

5 million 2000 megabytes

3.4.1–3

Abaqus Version 6.6 ID:

Printed on:

MEMORY AND DISK USAGE

Abaqus/Standard analysis

Depending on the execution environment and typical job sizes run on the machine, memory can be set

by machine or by job. More detailed guidelines are provided in the following section. When setting

memory by job is needed, you are advised to run a data check analysis and set memory based on the

memory estimates. These estimates are written to the printed output (.dat) file in a table under the

heading “MEMORY ESTIMATE.” Two columns in this table are relevant to memory use. The first

relevant column is labeled “MINIMUMMEMORY REQUIRED” and specifies thememory setting that

is needed to hold critical scratch data in memory. An attempt to run the analysis withmemory set below

this value will result in a warning, and the job is not likely to run to completion due to the insufficient

memory. The second relevant column is labeled “MEMORY TO MINIMIZE I/O” and specifies the

memory that is required to hold all scratch data, both critical and generic, in memory. If the memory

specified by memory is larger than the “MINIMUM MEMORY REQUIRED,” Abaqus/Standard

automatically uses the additional memory up to the memory limit to improve speed of access to generic

scratch data that would otherwise be written to disk. When the memory is not enough to hold all the

generic scratch data in memory, Abaqus/Standard decides which data should be written to disk and

which should be kept in memory based on their relative importance with respect to their effect on the

analysis performance. Therefore, the actual disk space used by the scratch data can vary from very

close to zero to the “MEMORY TO MINIMIZE I/O” depending on the memory setting. The memory

setting can be changed in an analysis continued from a data check without the need of rerunning the

analysis input file processor.

Guidelines for memory settings

The memory parameter allows you to specify the memory limit that can be used by Abaqus during the

input file processing and analysis phases. You can specify the setting that should generally be available

to Abaqus on a particular machine in the host environment file. Settings can be modified as necessary for

individual jobs in job-specific environment files. Reasonable settings for a particular machine depend

on the size of the problems being run and how the machine is being used in addition to the physical

memory available on the machine. You should be aware of the difference between physical and virtual

memory. When virtual memory is used, a machine’s operating system simply uses disk for additional

memory. While this can be useful, memory access may require I/O operations that add a considerable

performance penalty. Therefore, the guidelines below for managing memory in Abaqus/Standard are

always given relative to the physical memory on a machine. Virtual memory should be used only when

necessary and with awareness of the associated performance penalty.

Setting memory on single-user machines

For a single-user machine that is dedicated to running Abaqus/Standard, using the default setting of

memory is sensible. If the estimates indicate that the job requires more than this value, the job is too

large to run efficiently on this machine. At this point you are urged to move the analysis to another

machine with more memory resources.

3.4.1–4

Abaqus Version 6.6 ID:

Printed on:

MEMORY AND DISK USAGE

For a single-user machine that is used to run both Abaqus/Standard and other applications

simultaneously, setting a lower memory limit makes sense. If an analysis requires more than the

specified value, you can decide to increase memory and continue the job. However, Abaqus/Standard

will have to contend with the other applications for memory, which will impair the efficiency of both

Abaqus/Standard and the other applications. If the other applications are interactive, the performance

degradation could be problematic. In such a case you might decide to delay continuing the analysis

until the machine can be dedicated to running Abaqus/Standard alone.

Setting memory on multi-user machines

The guidelines for setting memory on a multi-user machine are very similar to those for single-user

machines, except that a judgement must be made as to the amount of memory that each user on the

machine can expect to have for a single analysis. A reasonable approach might be to divide the machine’s

physical memory by the number of expected simultaneous jobs. Another sensible approach is to divide

the machine’s physical memory by the total number of CPUs and then multiply by the number of CPUs

used for the current job. If the memory requirement among the simultaneous jobs is not even, you might

want to divide the machine’s physical memory in an uneven way accordingly. In general, to ensure

acceptable performance, users on multi-user machines need to coordinate with each other to properly set

the memory limit.

Setting memory when using queues

Often queues have an associated memory limit, and determining the appropriate queue for a job requires

some judgement. You are advised to run a data check analysis and select a queue based on the estimates

provided in the printed output file. However, for large analyses even a data check analysis can require

a large amount of memory. Choosing an appropriate queue for a data check analysis requires some

experience with particular classes of problems. You may want to submit data check runs initially to

queues with very large memory limits to get the necessary estimates. An appropriate queue can then

be chosen to actually run the job. If the jobs are to be submitted to shared memory machines, it makes

sense to set memory to about 90% of the memory limit for the queue. If the jobs are to be submitted to

computer clusters, it is reasonable to use the default memory setting.

3.4.1–5

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION

3.5 Parallel execution

• “Parallel execution: overview,” Section 3.5.1

• “Parallel execution in Abaqus/Standard,” Section 3.5.2

• “Parallel execution in Abaqus/Explicit,” Section 3.5.3

• “Parallel execution in Abaqus/CFD,” Section 3.5.4

3.5–1

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION

3.5.1 PARALLEL EXECUTION: OVERVIEW

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

References

• “Obtaining information,” Section 3.2.1

• “Using the Abaqus environment settings,” Section 3.3.1

• “Parallel execution in Abaqus/Standard,” Section 3.5.2

• “Parallel execution in Abaqus/Explicit,” Section 3.5.3

• “Parallel execution in Abaqus/CFD,” Section 3.5.4

Overview

Parallel execution of Abaqus is implemented using two different schemes: threads and message

passing. Threads are lightweight processes that can perform different tasks simultaneously within

the same application. Threads can communicate relatively easily by sharing the same memory pool.

Thread-based parallelization is readily available on all shared memory platforms.

Parallelization with message passing uses multiple analysis processes that communicate with each

other via the Message Passing Interface (MPI). This requires MPI components to be installed. On the

command line you can setmp_mode=mpi to indicate that MPI components are available on the system.

Alternatively, setmp_mode=MPI in the environment file (see “Using the Abaqus environment settings,”

Section 3.3.1). The MPI-based implementation is the default on all platforms where it is supported.

Abaqus/CFD is implemented using only the MPI mode and does not support threads. The parallel

linear solvers used in Abaqus/CFD require that MPI components be installed even for single-processor

calculations.

Output the local installation notes for your system to learn about local multiprocessing capabilities

(see “Obtaining information,” Section 3.2.1). From the Support page at www.3ds.com/simulia, refer to

the System Information page for the current release of Abaqus for complete information about parallel

processing support on various platforms, including information about MPI requirements and availability.

Parallel processing support for Abaqus features

The following Abaqus/Standard features can be executed in parallel: the direct sparse solver, the

iterative solver, and element operations. The analysis input preprocessing is not executed in parallel. For

Abaqus/Explicit all of the computations other than those involving the analysis input preprocessor and

the packager can be executed in parallel. Each of the features that are available for parallel execution

has certain limitations, which are documented in detail; see “Parallel execution in Abaqus/Standard,”

Section 3.5.2, and “Parallel execution in Abaqus/Explicit,” Section 3.5.3. All features in Abaqus/CFD

are available for parallel execution without restrictions.

3.5.1–1

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION

Parallel execution on shared memory computers

Abaqus/Standard and Abaqus/Explicit can be executed in parallel on shared memory computers by using

threads or the MPI. When the MPI is available, Abaqus runs all available parallel features with MPI-

based parallelization and activates thread-based parallel implementations for cases where an equivalent

MPI-based implementation does not exist (e.g., direct sparse solver). Abaqus/CFD can also be executed

on shared memory computers but only with the MPI.

Parallel execution on computer clusters

Abaqus can be executed in parallel on computer clusters by usingMPI-based parallelization. For parallel

execution on computer clusters, the list of machines or hosts is given with themp_host_list environment

file parameter. This parameter also defines the number of processors to be used on each host.

Parallel execution using GPGPU hardware

The direct solver in Abaqus/Standard can be executed in parallel on computers equipped with compute-

capable GPGPU cards.

Use with user subroutines

User subroutines can be used when running jobs in parallel. However, user subroutines and any

subroutines called by them must be thread safe. This precludes the use of common blocks, data

statements, and save statements. Calling subroutines that are not thread safe will result in unpredictable

behavior of the executable.

3.5.1–2

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

3.5.2 PARALLEL EXECUTION IN Abaqus/Standard

Products: Abaqus/Standard Abaqus/CAE

References

• “Obtaining information,” Section 3.2.1

• “Using the Abaqus environment settings,” Section 3.3.1

• “Controlling job parallel execution,” Section 19.8.8 of the Abaqus/CAEUser’s Guide, in the HTML

version of this guide

Overview

Parallel execution in Abaqus/Standard:

• reduces run time for large analyses;

• is available for shared memory computers and computer clusters for the element operations, direct

sparse solver, and iterative linear equation solver; and

• can use compute-capable GPGPU hardware on shared memory computers for the direct sparse

solver.

Parallel equation solution with the default direct sparse solver

The direct sparse solver (“Direct linear equation solver,” Section 6.1.5) supports both shared memory

computers and computer clusters for parallelization. On shared memory computers or a single node of a

computer cluster, thread-based parallelization is used for the direct sparse solver, and high-end graphics

cards that support general processing (GPGPUs) can be used to accelerate the solution. On multiple

compute nodes of a computer cluster, a hybrid MPI and thread-based parallelization is used.

The direct sparse solver cannot be used on multiple compute nodes of a computer cluster if:

• the analysis also includes an eigenvalue extraction procedure, or

• the analysis requires features for which MPI-based parallel execution of element operations is not

supported.

In addition, the direct sparse solver cannot be used on multiple nodes of a computer cluster for analyses

that include any of the following:

• multiple load cases with changing boundary conditions (“Multiple load case analysis,”

Section 6.1.4), and

• the quasi-Newton nonlinear solution technique (“Convergence criteria for nonlinear problems,”

Section 7.2.3).

To execute the parallel direct sparse solver on computer clusters, the environment variable

mp_host_list must be set to a list of host machines (see “Using the Abaqus environment settings,”

Section 3.3.1). MPI-based parallelization is used between the machines in the host list. Thread-based

3.5.2–1

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

parallelization is used within a host machine if more than one processor is available on that machine

in the host list and if the model does not contain cavity radiation using parallel decomposition (see

“Decomposing large cavities in parallel” in “Cavity radiation,” Section 41.1.1). For example, if the

environment file has the following:

cpus=8
mp_host_list=[['maple',4],['pine',4]]

Abaqus/Standard will use four processors on each host through thread-based parallelization. A total of

two MPI processes (equal to the number of hosts) will be run across the host machines so that all eight

processors are used by the parallel direct sparse solver.

Models containing parallel cavity decomposition use only MPI-based parallelization. Therefore,

MPI is used on both shared memory parallel computers and distributed memory compute clusters.

The number of processes is equal to the number of CPUs requested during job submission. Element

operations are executed in parallel using MPI-based parallelization when parallel cavity decomposition

is enabled.

Input File Usage: Use the following option in conjunction with the command line input to execute

the parallel direct sparse solver:

*STEP

Enter the following input on the command line:

abaqus job=job-name cpus=n

For example, the following input will run the job “beam” on two processors:

abaqus job=beam cpus=2

Abaqus/CAE Usage: Step module: step editor: Other: Method: Direct

Job module: job editor: Parallelization: toggle on Use multiple
processors, and specify the number of processors, n

GPGPU acceleration of the direct sparse solver

The direct sparse solver supports GPGPU acceleration.

Input File Usage: Enter the following input on the command line to activate GPGPU direct sparse

solver acceleration:

abaqus job=job-name gpus=n

Abaqus/CAE Usage: Step module: step editor: Other: Method: Direct

Job module: job editor: Parallelization: toggle on Use GPGPU
acceleration, and specify the number GPGPUs

Memory requirements for the parallel direct sparse solver

The parallel direct sparse solver processes multiple fronts in parallel in addition to parallelizing the

solution of individual fronts. Therefore, the direct parallel solver requires more memory than the serial

3.5.2–2

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

solver. The memory requirements are not predictable exactly in advance since it is not determined a

priori which fronts will actually be processed simultaneously.

Equation ordering for minimum solve time

Direct sparse solvers require the system of equations to be ordered for minimum floating point operation

count. The ordering procedure is performed in parallel when multiple host machines are used on

a computer cluster. In a shared memory configuration the ordering procedure is not performed in

parallel. The parallel ordering procedure will compute different orders when run on different number

of host machines, which will affect the floating point operation count for the direct solver. Parallel

ordering can offer performance improvements, particularly for large models using many host machines

by significantly reducing the time to compute the order. Parallel ordering may cause performance

degradation if the order determined results in a higher floating point operation count for the direct solver.

The serial ordering procedure can be used in cases where the variability in the ordering inherent in

the parallel ordering procedure is not acceptable. You can deactivate parallel solver ordering from the

command line or by using the order_parallel environment file parameter (see “Command line default

parameters” in “Using the Abaqus environment settings,” Section 3.3.1).

Input File Usage: Enter the following input on the command line to deactivate parallel solver

ordering:

abaqus job=job-name order_parallel=OFF

Abaqus/CAE Usage: Deactivation of parallel solver ordering is not supported in Abaqus/CAE.

Parallel equation solution with the iterative solver

The iterative solver (“Iterative linear equation solver,” Section 6.1.6) uses only MPI-based

parallelization. Therefore, MPI is used on both shared memory parallel computers and distributed

memory compute clusters. To execute the parallel iterative solver, specify the number of CPUs for

the job. The number of processes is equal to the number of CPUs requested during job submission.

Element operations are executed in parallel using MPI-based parallelization when the parallel iterative

solver is used.

Input File Usage: Use the following option in conjunction with the command line input to execute

the parallel iterative solver:

*STEP, SOLVER=ITERATIVE

Enter the following input on the command line:

abaqus job=job-name cpus=n

For example, the following input will run the job “cube” on four processors

with the iterative solver:

abaqus job=cube cpus=4

Abaqus/CAE Usage: Step module: step editor: Other: Method: Iterative

Job module: job editor: Parallelization: toggle on Use multiple
processors, and specify the number of processors, n

3.5.2–3

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

Parallel execution of the element operations in Abaqus/Standard

Parallel execution of the element operations is the default on all supported platforms. The command

line and environment variable standard_parallel can be used to control the parallel execution of the

element operations (see “Using the Abaqus environment settings,” Section 3.3.1, and “Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2). If parallel execution of the element

operations is used, the solvers also run in parallel automatically. For analysis using the direct sparse

solver and not containing parallel cavity decomposition, thread-based parallelization of the element

operations is used on shared memory computers and a hybrid MPI and thread parallel scheme is used on

computer clusters. For analyses using the iterative solver or if parallel cavity decomposition is enabled,

only MPI-based parallelization of element operations is supported.

When MPI-based parallelization of element operations is used, element sets are created for each

domain and can be inspected in Abaqus/CAE. The sets are named STD_PARTITION_n, where n is the
domain number.

Parallel execution of the element operations (thread or MPI-based parallelization) is not supported

for the following procedures:

• eigenvalue buckling prediction (“Eigenvalue buckling prediction,” Section 6.2.3),

• natural frequency extraction (“Natural frequency extraction,” Section 6.3.5) that does not use the

SIM architecture,

• response spectrum analysis (“Response spectrum analysis,” Section 6.3.10),

• random response analysis (“Random response analysis,” Section 6.3.11), and

• mode-based linear dynamics (“Transient modal dynamic analysis,” Section 6.3.7; “Mode-based

steady-state dynamic analysis,” Section 6.3.8; “Subspace-based steady-state dynamic analysis,”

Section 6.3.9; and “Complex eigenvalue extraction,” Section 6.3.6) that do not use the SIM

architecture.

Parallel execution of element operations is available only through MPI-based parallelization for

analyses that include any of the following:

• static linear perturbation (“General and linear perturbation procedures,” Section 6.1.3),

• direct cyclic analysis (“Direct cyclic analysis,” Section 6.2.6),

• direct-solution steady-state dynamics (“Direct-solution steady-state dynamic analysis,”

Section 6.3.4),

• steady-state transport (“Steady-state transport analysis,” Section 6.4.1),

• coupled temperature-displacement (“Fully coupled thermal-stress analysis,” Section 6.5.3),

• coupled thermal-electrical-structural (“Fully coupled thermal-electrical-structural analysis,”

Section 6.7.4),

• coupled pore fluid diffusion and stress (“Coupled pore fluid diffusion and stress analysis,”

Section 6.8.1),

• crack propagation analysis (“Crack propagation analysis,” Section 11.4.3),

• pressure penetration loading (“Pressure penetration loading,” Section 37.1.7), and

3.5.2–4

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

• static, implicit dynamic, or direct-solution steady-state dynamic analyses for models using

substructures, if recovering results within substructures is not requested (“Static stress analysis,”

Section 6.2.2; “Implicit dynamic analysis using direct integration,” Section 6.3.2; “Direct-solution

steady-state dynamic analysis,” Section 6.3.4; “Substructuring,” Section 10.1).

Analyses using the direct sparse solver and any of the procedures above that support only MPI-based

parallelization of element operations can be run on computer clusters. However, only one processor per

compute node is used for the element operations since thread-based parallelization is not supported.

Parallel execution of element operations is available only through thread-based parallelization for:

• cavity radiation analyses where parallel decomposition of the cavity is not allowed and writing of

restart data is requested (“Cavity radiation,” Section 41.1.1),

• heat transfer analyses where average-temperature radiation conditions are specified (“Thermal

loads,” Section 34.4.4),

• natural frequency extraction (“Natural frequency extraction,” Section 6.3.5) that uses the SIM

architecture,

• mode-based linear dynamics (“Transient modal dynamic analysis,” Section 6.3.7; “Mode-based

steady-state dynamic analysis,” Section 6.3.8; “Subspace-based steady-state dynamic analysis,”

Section 6.3.9; and “Complex eigenvalue extraction,” Section 6.3.6) that use the SIM architecture,

• substructure generation(“Defining substructures,” Section 10.1.2), and

• matrix generation (“Introduction” in “Generating thermal matrices,” Section 10.3.2).

Finally, parallel execution of the element operations is not supported for analyses that include any of the

following:

• element matrix output requests (“Element matrix output in Abaqus/Standard” in “Output,”

Section 4.1.1),

• alternative solution techniques except for the quasi-Newton method (“Approximate

implementation” in “Fully coupled thermal-stress analysis,” Section 6.5.3; “Approximate

implementation” in “Coupled thermal-electrical analysis,” Section 6.7.3; and “Specifying the

separated method” in “Convergence criteria for nonlinear problems,” Section 7.2.3),

• continuation of output upon restart (“Continuation of output upon restart” in “Restarting an

analysis,” Section 9.1.1),

• import from Abaqus/Explicit (“Transferring results between Abaqus analyses: overview,”

Section 9.2.1),

• substructures, if recovering results within substructures is requested (“Substructuring,”

Section 10.1), and

• adaptive meshing (“Defining ALE adaptive mesh domains in Abaqus/Standard,” Section 12.2.6).

Input File Usage: Enter the following input on the command line:

abaqus job=job-name standard_parallel=all cpus=n

Abaqus/CAE Usage: Control of the parallel execution of the element operations is not supported in

Abaqus/CAE.

3.5.2–5

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Standard

Memory management with parallel execution of the element operations

When running parallel execution of the element operations in Abaqus/Standard, specifying the upper

limit of the memory that can be used (see “Abaqus/Standard analysis” in “Managing memory and disk

use in Abaqus,” Section 3.4.1) specifies the maximum amount of memory that can be allocated by each

process.

Transverse shear stress output for stacked continuum shells

The output variables CTSHR13 and CTSHR23 are currently not available when running parallel

execution of the element operations in Abaqus/Standard. See “Continuum shell element library,”

Section 29.6.8.

Consistency of results

Some physical systems (systems that, for example, undergo buckling, material failure, or delamination)

can be highly sensitive to small perturbations. For example, it is well known that the experimentally

measured buckling loads and final configurations of a set of seemingly identical cylindrical shells can

show significant scatter due to small differences in boundary conditions, loads, initial geometries, etc.

When simulating such systems, the physical sensitivities seen in an experiment can be manifested as

sensitivities to small numerical differences caused by finite precision effects. Finite precision effects can

lead to small numerical differences when running jobs on different numbers of processors. Therefore,

when simulating physically sensitive systems, youmay see differences in the numerical results (reflecting

the differences seen in experiments) between jobs run on different numbers of processors. To obtain

consistent simulation results from run to run, the number of processors should be constant.

3.5.2–6

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

3.5.3 PARALLEL EXECUTION IN Abaqus/Explicit

Products: Abaqus/Explicit Abaqus/CAE

References

• “Obtaining information,” Section 3.2.1

• “Using the Abaqus environment settings,” Section 3.3.1

• “Controlling job parallel execution,” Section 19.8.8 of the Abaqus/CAEUser’s Guide, in the HTML

version of this guide

Overview

Parallel execution in Abaqus/Explicit:

• reduces run time for analyses that require a large number of increments;

• reduces run time for analyses that contain a large number of nodes and elements;

• produces analysis results that are independent of the number of processors used for the analysis;

• is available for shared memory computers using a thread-based loop level or thread-based domain

decomposition implementation; and

• is available for both shared memory computers and computer clusters using an MPI-based domain

decomposition parallel implementation.

Invoking parallel processing

Parallelization in Abaqus/Explicit is implemented in two ways: domain level and loop level. The

domain-level method breaks the model up into topological domains and assigns each domain to a

processor. The domain-level method is the default. The loop-level method parallelizes low-level loops

that are responsible for most of the computational cost. The element, node, and contact pair operations

account for the majority of the low-level parallelized routines.

Parallelization can be invoked by specifying the number of processors to be used.

Input File Usage: Enter the following input on the command line:

abaqus job=job-name cpus=n

For example, the following input will run the job “beam” on two processors:

abaqus job=beam cpus=2

Abaqus/CAE Usage: Job module: job editor: Parallelization: toggle on Use multiple
processors, and specify the number of processors, n

3.5.3–1

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

Domain-level parallelization

The domain-level method splits the model into a number of topological domains. These domains are

referred to as parallel domains to distinguish them from other domains associated with the analysis.

The domains are distributed evenly among the available processors. The analysis is then carried out

independently in each domain. However, information must be passed between the domains in each

increment because the domains share common boundaries. Both MPI and thread-based parallelization

modes are supported with the domain-level method.

During initialization, the domain-level method divides the model so that the resulting domains

take approximately the same amount of computational expense. The load balance is defined as the

ratio of the computational expense of all domains in the most expensive process to that of all domains

in the least expensive process. For cases exhibiting significant load imbalance, either because the

initial load balancing is not adequate (static imbalance) or because imbalance develops over time

(dynamic imbalance), the dynamic load balancing technique may be applied (see “Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2). Dynamic load balancing is based

on over-decomposition: the user selects a number of domains that is a multiple of the number of

processors. During the calculation, Abaqus/Explicit will regularly measure the computational expense

and redistribute the domains over the processors so as to minimize the load imbalance. The following

functionality is not supported with dynamic load balancing:

• Selective subcycling (“Selective subcycling,” Section 11.7.1)

• Co-simulation (“Co-simulation,” Section 17.1)

• Predefined fields using a results file (“Predefined fields,” Section 34.6.1)

The efficiency of the dynamic load balancing scheme depends on the load imbalance inherent to the

problem, on the degree of overdecomposition, and on the efficiency of the hardware. Most imbalanced

problemswill see optimal performance improvement when the number of domains is two to four times the

number of processors. The efficiency may be significantly reduced on systems with a slow interconnect,

such as Gigabit Ethernet clusters. Best results are obtained when an external interconnect is not needed,

such as within a multicore node of a cluster, or on a shared-memory system. Applications most likely

to benefit from dynamic load balancing are problems with a strongly time-dependent and/or spatially

varying computational load. Examples are models containing airbags, where contact-impact activity is

highly localized and time dependent; and coupled Lagrangean-Eulerian problems, where constitutive

activity follows the material as it moves through empty space.

Element and node sets are created for each domain and can be inspected in Abaqus/CAE. The sets

are named domain_n, where n is the domain number.

During the analysis, separate state (job-name.abq) and selected results (job-name.sel) files
are created. There will be one state and one selected results file for each processor. The naming

convention is to append the processor number to the file name. For example, the state files are named

job-name.abq.n, where n is the processor number. At the completion of the analysis the individual

files are merged automatically into a single file (for example, job-name.abq), and the individual files

are deleted.

3.5.3–2

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

Input File Usage: Enter the following input on the command line:

abaqus job=job-name cpus=n parallel=domain domains=m

dynamic_load_balancing

For example, the following input will run the job “beam” on two processors

with the domain-level parallelization method:

abaqus job=beam cpus=2 parallel=domain domains=2

The domain-level parallelization method can also be set in the environment file

using the environment file parameters parallel=DOMAIN and domains.

Abaqus/CAE Usage: Job module: job editor: Parallelization: toggle on Use multiple processors
and specify the number of processors, n; Number of domains: m;
toggle on Activate dynamic load balancing; Parallelization method:
Domain

You can activate dynamic load balancing when the number of domains is a

multiple of the number of processors.

Consistency of results

The analysis results are independent of the number of processors used for the analysis. However, the

results do depend on the number of parallel domains used during the domain decomposition. Except

for cases in which the single- and multiple-domain models are different due to features that are not

yet available with multiple parallel domains (discussed below), these differences should be triggered

only by finite precision effects. For example, the order of the nodal force assembly may depend on

the number of parallel domains, which can result in differences in trailing digits in the computed force.

Some physical systems are highly sensitive to small perturbations, so a tiny difference in the force applied

in one increment can result in noticeable differences in results in subsequent increments. Simulations

involving buckling and other bifurcations tend to be sensitive to small perturbations.

To obtain consistent analysis results from run to run, the number of domains used in the domain

decomposition should be constant. Increasing the number of domains increases the computational cost

slightly; therefore, unless dynamic load balancing is being applied, it is recommended that the number

of domains be set equal to the maximum number of processors used for analysis execution for optimal

performance. If you do not specify the number of domains, the number defaults to the number of

processors.

Features that do not allow domain-level parallelization

The use of the domain-level parallelization method is not allowed with the following features:

• Extreme value output.

• Steady-state detection.

If these features are included, an error message will be issued.

3.5.3–3

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

Features that cannot be split across domains

Certain features cannot be split across domains. The domain decomposition algorithm automatically

takes this into account and forces these features to be contained entirely within one domain. If fewer

domains than requested processors are created, Abaqus/Explicit issues an error message. Even if the

algorithm succeeds in creating the requested number of domains, the load may be balanced unevenly. If

this behavior is not acceptable, the job should be run with the loop-level parallelization method.

Adaptive smoothing domains cannot span parallel domain boundaries. The nodes on the boundary

between an adaptive smoothing domain and a nonadaptive domain as well as the adaptive nodes on the

surface of the adaptive smoothing domain cannot be shared with another parallel domain. To enforce

this in a consistent manner when parallel domains are specified, all nodes shared by adjacent adaptive

smoothing domains will be set as nonadaptive. In this case the analysis results may be significantly

different from that of a serial run with no parallel domains. Set the number of parallel domains to 1,

and switch to the loop-level parallelization method if this behavior is undesirable. See “Defining ALE

adaptive mesh domains in Abaqus/Explicit,” Section 12.2.2, for details.

A contact pair cannot be split across parallel domains, but separate contact pairs are not restricted to

be in the same parallel domain. A contact pair that uses the kinematic contact algorithm requires that all

of the nodes associated with the involved surfaces be within a single parallel domain and not be shared

with any other parallel domains. A contact pair that uses the penalty contact algorithm requires that the

associated nodes be part of a single parallel domain, but these nodes may also be part of other parallel

domains. Analyses in which a large percentage of nodes are involved in contact may not scale well if

contact pairs are used, especially with kinematic enforcement of contact constraints. General contact

does not limit the domain decomposition boundaries.

Nodes involved in kinematic constraints (“Kinematic constraints: overview,” Section 35.1.1) will

be within a single parallel domain, and they will not be shared with another parallel domain. However,

two kinematic constraints that do not share nodes can be placed within different parallel domains.

In some cases beam elements that share a node may be forced into the same parallel domain. This

happens only for beams whose center of mass does not coincide with the location of the beam node or for

beams with additional inertia (see “Adding inertia to the beam section behavior for Timoshenko beams”

in “Beam section behavior,” Section 29.3.5).

Restart

There are certain restrictions for restart when using domain-level parallelization. To ensure that optimal

parallel speedup is achieved, the number of processors used for the restart analysis must be chosen so

that the number of parallel domains used during the original analysis can be distributed evenly among

the processors. Because the domain decomposition is based only on the features specified in the original

analysis and steps defined therein, features that affect domain decomposition are restricted from being

defined in restart steps only if they would invalidate the original domain decomposition. Because the

newly added features will be added to existing domains, there is a potential for load imbalance and a

corresponding degradation of parallel performance.

The restart analysis requires that the separate state and selected results files created during the

original analysis be converted into single files, as described in “Abaqus/Standard, Abaqus/Explicit, and

3.5.3–4

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

Abaqus/CFD execution,” Section 3.2.2. This should be done automatically at the conclusion of the

original analysis. If the original analysis fails to complete successfully, you must convert the state and

selected results files prior to restart. An Abaqus/Explicit analysis packaged to run with a domain-level

parallelization technique cannot be restarted or continued with a loop-level parallelization technique.

Co-simulation

The co-simulation technique (“Co-simulation: overview,” Section 17.1.1) for run-time coupling

of Abaqus/Explicit to Abaqus/Standard or to third-party analysis programs can be used with

Abaqus/Explicit running either in serial or parallel.

Loop-level parallelization

The loop-level method parallelizes low-level loops in the code that are responsible for most of the

computational cost. The speedup factor using loop-level parallelization may be significantly less than

what can be achieved with domain-level parallelization. The speedup factor will vary depending on the

features included in the analysis since not all features utilize parallel loops. Examples are the general

contact algorithm and kinematic constraints. The loop-level method may scale poorly for more than

four processors depending on the analysis. Using multiple parallel domains with this method will

degrade parallel performance and, hence, is not recommended. The loop-level method is not supported

on the Windows platform.

Analysis results for this method do not depend on the number of processors used.

Input File Usage: Enter the following input on the command line:

abaqus job=job-name cpus=n parallel=loop

The loop-level parallelization method can also be set in the environment file

using the environment file parameter parallel=LOOP.

Abaqus/CAE Usage: Job module: job editor: Parallelization: toggle on Use multiple processors,
and specify the number of processors, n; Parallelization method: Loop

Restart

There are no restrictions on features that can be included in steps defined in a restart analysis when using

loop-level parallelization. For performance reasons the number of processors used when restarting must

be a factor of the number of processors used in the original analysis. The most common case would

be restarting with the same number of processors as used in the original analysis. An Abaqus/Explicit

analysis packaged to run with a loop-level parallelization technique cannot be restarted or continued with

a domain-level parallelization technique.

Measuring parallel performance

Parallel performance is measured by comparing the total time required to run on a single processor

(serial run) to the total time required to run on multiple processors (parallel run). This ratio is referred

to as the speedup factor. The speedup factor will equal the number of processors used for the parallel

run in the case of perfect parallelization. Scaling refers to the behavior of the speedup factor as the

3.5.3–5

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/Explicit

number of processors is increased. Perfect scaling indicates that the speedup factor increases linearly

with the number of processors. For both parallelization methods the speedup factors and scaling behavior

are heavily problem dependent. In general, the domain-level method will scale to a larger number of

processors and offer the higher speedup factor.

Output

There are no output restrictions.

3.5.3–6

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/CFD

3.5.4 PARALLEL EXECUTION IN Abaqus/CFD

Products: Abaqus/CFD Abaqus/CAE

References

• “Obtaining information,” Section 3.2.1

• “Using the Abaqus environment settings,” Section 3.3.1

• “Controlling job parallel execution,” Section 19.8.8 of the Abaqus/CAEUser’s Guide, in the HTML

version of this guide

Overview

Parallel execution in Abaqus/CFD:

• reduces run time for analyses that require a large number of increments;

• reduces run time for analyses that contain a large number of nodes and elements;

• produces analysis results that are independent of the number of processors used for the analysis; and

• is available for both shared memory computers and computer clusters using an MPI-based domain

decomposition parallel implementation.

Invoking parallel processing

Abaqus/CFD uses domain-based parallelism implemented with explicit message passing for both

shared memory and distributed memory computers. All procedures provided by Abaqus/CFD and their

associated features are fully parallel (“Parallel execution: overview,” Section 3.5.1). Parallel execution

is invoked by specifying the number of processors to be used.

Input File Usage: Enter the following input on the command line:

abaqus job=job-name cpus=n

For example, the following input will run the job “manifold” on two processors:

abaqus job=manifold cpus=2

Abaqus/CAE Usage: Job module: job editor: Parallelization: toggle on Use multiple
processors, and specify the number of processors, n

Domain-based parallelism

Abaqus/CFD uses a domain-decomposition message passing paradigm for its parallel implementation.

An element-based decomposition strategy is used that minimizes the number of communications

required between subdomains while providing a nearly uniform computational work distribution among

the processors. The number of domains maps exactly to the number of user-specified processors

for a given calculation. The load-balancing procedures are implemented in parallel as well, so that

3.5.4–1

Abaqus Version 6.6 ID:

Printed on:

PARALLEL EXECUTION: Abaqus/CFD

you can avoid time consuming serial load-balancing procedures at the start of a calculation. Every

attempt has been made to ensure that Abaqus/CFD provides scalable parallel solutions for a broad

range of applications. All procedures and features in Abaqus/CFD are provided with a fully parallel

implementation. All output is serialized automatically for the user so that there is no translation between

parallel domains and the original user input. In addition, this permits Abaqus/CFD to restart seamlessly

on any number of processors, regardless of how many were used for the original computation.

Co-simulation

The co-simulation technique (“Co-simulation: overview,” Section 17.1.1) for run-time coupling of

Abaqus/CFD to Abaqus/Standard or to Abaqus/Explicit can be used with Abaqus/CFD running either

in serial or parallel.

Restart

There are no restrictions on features that can be included in steps defined in a restart analysis. The number

of processors used for the restart analysis is not required to be the same as the number of processors used

in the original analysis.

Output

There are no output restrictions.

3.5.4–2

Abaqus Version 6.6 ID:

Printed on:

FILE EXTENSION DEFINITIONS

3.6 File extension definitions

• “File extensions used by Abaqus,” Section 3.6.1

3.6–1

Abaqus Version 6.6 ID:

Printed on:

FILE EXTENSIONS

3.6.1 FILE EXTENSIONS USED BY Abaqus

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

The abaqus procedure generates several files. Some of these files contain analysis, postprocessing, and

translation results and are retained for use by other analysis options, restarting, or postprocessing. This

section describes the files that are created and retained by Abaqus.

Other files exist only while Abaqus is executing and are deleted when a run completes. These

temporary files are generated in the scratch directory. The number and types of temporary files generated

depend on the analysis procedures, memory management parameters, and environment settings.

Certain file extensions used by Abaqus are also used by other software applications. You must

handle any file extension conflicts with other applications.

File extensions

abq

State file, only used byAbaqus/Explicit. It is written by the analysis, continue, and recover options.

It is read by the convert and recover options. This file is required for restart.

axi

Symmetric model data file, only used by Abaqus/Standard. It is written during symmetric model

generation by the datacheck and analysis options.

bsp

Text file containing beam cross-section properties for meshed section profiles. It is written by

Abaqus/Standard during meshed beam cross-section generation.

c

User subroutine or other special-purpose C file.

c++

User subroutine or other special-purpose C++ file.

cpp

User subroutine or other special-purpose C++ file.

3.6.1–1

Abaqus Version 6.6 ID:

Printed on:

FILE EXTENSIONS

cid

Auto-release file, which contains information needed for license recovery and suspension.

com

Command file, created by the Abaqus execution procedure.

dat

Printed output file. It is written by the analysis, datacheck, parametercheck, and continue

options. Abaqus/Explicit and Abaqus/CFD do not write analysis results to this file.

f

User subroutine or other special-purpose FORTRAN file.

fil

Results file. It is written by the analysis and continue options in Abaqus/Standard and by the

convert=select and convert=all options in Abaqus/Explicit.

fin

Results file created when changing the format of the .fil file using the abaqus ascfil command.

It can be in either ASCII or binary format. (See “ASCII translation of results (.fil) files,”
Section 3.2.12.) The ASCII format is convenient for data transfer between machines that do not

have compatible binary data formats.

inp

Analysis input file. It is read when the analysis, datacheck, and parametercheck options are

selected.

ipm

Interprocess message file. It is written when an analysis is run from Abaqus/CAE, and it contains a

log of all messages sent from Abaqus/Standard, Abaqus/Explicit, or Abaqus/CFD to Abaqus/CAE.

lck

Lock file for the output database. This file is written whenever an output database file is opened

with write access; it prevents you from having simultaneous write permission to the output database

from multiple sources. It is deleted automatically when the output database file is closed or when

the analysis that creates it ends. The ask_delete environment file parameter setting will not affect

the lock file.

log

Log file, which contains start and end times for modules run by the current Abaqus execution

procedure.

3.6.1–2

Abaqus Version 6.6 ID:

Printed on:

FILE EXTENSIONS

mdl

Model file, used by Abaqus/Standard and Abaqus/Explicit. It is written by the datacheck option.

It is read and can be written by the analysis and continue options in Abaqus/Standard. It is read

by the analysis and continue options in Abaqus/Explicit. Multiple model files may exist if the

element operations are executed in parallel in an Abaqus/Standard analysis. In such a case a process

identifier is attached to the file name. This file is required for restart.

msg

Message file. It is written by the analysis, datacheck, and continue options in Abaqus/Standard

and Abaqus/Explicit. Multiple message files may exist if the element operations are executed in

parallel in an Abaqus/Standard analysis. In such a case a process identifier is attached to the file

name.

nck

Nickname file used by Abaqus/Standard. It stores a set of internal identifiers for the degrees of

freedom in a model.

odb

Output database. It is written by the analysis and continue options in Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD. It is read by the Visualization module in Abaqus/CAE

(Abaqus/Viewer) and by the convert=odb option. This file is required for restart.

pac

Package file, which contains model information and is used by Abaqus/Explicit only. It is written

by the analysis and datacheck options. It is read by the analysis, continue, and recover options.

This file is required for restart.

par

Modified version of original parametrized input file showing input parameters and their values.

pes

Modified version of original parametrized input file showing input free of parameter information

(after input parameter evaluation and substitution has been performed).

pmg

Parameter evaluation and substitution message file. It is written when the input file is parametrized.

prt

Part file, used by Abaqus/Standard and Abaqus/Explicit. This file is used to store part and assembly

information and is created even if the input file does not contain an assembly definition. The part

file is required for restart, import, sequentially coupled thermal-stress analysis, symmetric model

generation, and underwater shock analysis, even if the model is not defined in terms of an assembly

of part instances. This file may also be needed for submodeling analysis.

3.6.1–3

Abaqus Version 6.6 ID:

Printed on:

FILE EXTENSIONS

psf

Python scripting file. You must create this type of file to define a parametric study.

res

Restart file, which contains information necessary to continue a previous analysis and is used by

Abaqus/Standard and Abaqus/Explicit. The restart file is written by the analysis, datacheck, and

continue options. It is read by any restarted analysis.

sel

Selected results file, used by Abaqus/Explicit. It is written by the analysis, continue, and recover

options and is read by the convert=select option. This file is required for restart.

sim

Linear dynamics data file, used by Abaqus/Standard. It is written during the frequency extraction

procedure in SIM-based linear dynamics analyses (see “Using the SIM architecture for modal

superposition dynamic analyses” in “Dynamic analysis procedures: overview,” Section 6.3.1,

for details) and is used to store eigenvectors, substructure matrices, and other modal system

information. This file is required for restart.

Model file, used by Abaqus/CFD. It is written by the datacheck option. It is read and can be

written by the analysis and continue options. This file is required for restart.

sta

Status file. Abaqus writes increment summaries to this file in the analysis, continue, and recover

options.

stt

State file. It is written by the datacheck option in Abaqus/Standard and Abaqus/Explicit. It is

read and can be written by the analysis and continue options in Abaqus/Standard. It is read by

the analysis and continue options in Abaqus/Explicit. Multiple state files may exist if the element

operations are executed in parallel in anAbaqus/Standard analysis. In such a case a process identifier

is attached to the file name. This file is required for restart.

sup

Substructure file, used by Abaqus/Standard.

var

File containing information about the input file variations generated by a parametric study.

023

Communications file, used by Abaqus/Standard and Abaqus/Explicit. It is written by the analysis

and datacheck options and is read by the analysis and continue options.

3.6.1–4

Abaqus Version 6.6 ID:

Printed on:

FORTRAN UNIT NUMBERS

3.7 FORTRAN unit numbers

• “FORTRAN unit numbers used by Abaqus,” Section 3.7.1

3.7–1

Abaqus Version 6.6 ID:

Printed on:

FORTRAN UNIT NUMBERS

3.7.1 FORTRAN UNIT NUMBERS USED BY Abaqus

Products: Abaqus/Standard Abaqus/Explicit

Reference

• “Execution procedure for Abaqus: overview,” Section 3.1.1

Overview

Abaqus uses the FORTRAN unit numbers outlined in the table below. Unless noted otherwise, you

should not try to write to these FORTRAN units from user subroutines.

For Abaqus/Standard, you should specify unit numbers 15–18 or unit numbers greater than 100 .

For Abaqus/Explicit, specify units 16–18 or unit numbers greater than 100 ending in 5 to 9, e.g.

105, 268, etc. You cannot write to the.sta file.

FORTRAN unit numbers

Code Unit Number Description

Abaqus/Standard 1 Internal database

2 Solver file

6 Printed output (.dat) file (You can write output

to this file.)

7 Message (.msg) file (You can write output to this

file.)

8 Results (.fil) file

10 Internal database

12 Restart (.res) file

19–30 Internal databases (scratch files). Unit numbers 21

and 22 are always written to disk.

73 Text file containing meshed beam cross-section

properties (.bsp)

3.7.1–1

Abaqus Version 6.6 ID:

Printed on:

FORTRAN UNIT NUMBERS

Code Unit Number Description

Abaqus/Explicit 6 Printed output (.log) .

12 Restart (.res) file

13 Old restart (.res) file, if applicable

15 Analysis Preprocessor (.dat or .pre) file

23 Communications (.023) file

60 Global package (.pac) file

61 Global state (.abq) file

62 Temporary file

63 Global selected results (.sel) file

64 Message (.msg) file

65 Output database (.odb) file

67 Old package (.pac) file, if import from

Abaqus/Explicit

68 Old state (.abq) file, if import from

Abaqus/Explicit

69 Internal database; temporary file

If domain-parallel 70 Local package (.pac.1) file for CPU #1

71 Local state (.abq.1) file for CPU #1

73 Local selected results (.sel.1) file for CPU #1

80 Local package (.pac.2) file for CPU #2

81 Local state (.abq.2) file for CPU #2

83 Local selected results (.sel.2) file for CPU #2

... Add three files, incrementing units by 10, for each

additional CPU

3.7.1–2

Abaqus Version 6.6 ID:

Printed on:

Part II: Output

• Chapter 4, “Output”

• Chapter 5, “File Output Format”

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

4. Output

Output 4.1

Output variables 4.2

The postprocessing calculator 4.3

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

4.1 Output

• “Output,” Section 4.1.1

• “Output to the data and results files,” Section 4.1.2

• “Output to the output database,” Section 4.1.3

• “Error indicator output,” Section 4.1.4

4.1–1

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

4.1.1 OUTPUT

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD Abaqus/CAE

References

• “Output to the data and results files,” Section 4.1.2

• “Output to the output database,” Section 4.1.3

• “Abaqus/Standard output variable identifiers,” Section 4.2.1

• “Abaqus/Explicit output variable identifiers,” Section 4.2.2

• “Abaqus/CFD output variable identifiers,” Section 4.2.3

• “Diagnostic printing,” Section 14.5.3 of the Abaqus/CAE User’s Guide

• “Degree of freedom monitor requests,” Section 14.5.4 of the Abaqus/CAE User’s Guide

Overview

Abaqus can create the following output files during an analysis:

• a data file containing printed output of the model and history definition generated by the analysis

input file processor and, in Abaqus/Standard, printed output of results written during the analysis

run;

• an output database file containing results for postprocessing with the Visualization module of

Abaqus/CAE (Abaqus/Viewer) and, in Abaqus/Standard, diagnostic information;

• a selected results file in Abaqus/Explicit;

• a results file containing results for postprocessing with external software in Abaqus/Standard and

Abaqus/Explicit (in Abaqus/Explicit this file is generated by converting the selected results file);

• a message file containing diagnostic messages about the solution in Abaqus/Standard and

Abaqus/Explicit;

• a status file containing information about the status of the analysis and, in Abaqus/Explicit,

diagnostic messages and information about the stable time increment; and

• output files in Abaqus/CFD using alternate file formats.

Abaqus can create files for restarting an analysis—see “Restarting an analysis,” Section 9.1.1. In

Abaqus/Standard these files can also be used to extract results output not requested during an analysis.

The data file

The data file (job-name.dat) is a text file that contains information about the model definition (generated

by the analysis input file processor) and, in Abaqus/Standard, tabular output of results. The analysis input

file processor information includes the model definition, the history definition, and messages identifying

any error and warning conditions that were detected while processing the input data.

4.1.1–1

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Controlling the amount of analysis input file processor information written to the data file

You can control the amount of information written to the data file by the analysis input file processor in

Abaqus/Standard and Abaqus/Explicit.

Input File Usage: Use the following option in the model definition section of the input file:

*PREPRINT

Abaqus/CAE Usage: Job module: job editor: General: Preprocessor Printout

Input file echo

By default, the input file will not be echoed to the data file. You can choose to activate this printout. If

the input file is defined in terms of an assembly of part instances, the echo to the data file will be that of

the flattened input file (i.e., one that does not use parts and assemblies).

Input File Usage: *PREPRINT, ECHO=YES or NO

Abaqus/CAE Usage: Job module: job editor: General: Preprocessor Printout:
Print an echo of the input data

Input parameter information

For parametrized input files, information about input parameters and their values can be printed in the

data file. By default, the modified version of the original input file showing this information will not be

printed in the data file. You can choose to activate this printout.

Input File Usage: *PREPRINT, PARVALUES=YES or NO

Abaqus/CAE Usage: Parametrized input files are not supported in Abaqus/CAE.

Parameter-free input file information

For parametrized input files, a parameter-free version (after parameter evaluation and substitution) of the

original input file can be printed in the data file. By default, this modified version of the input file will

not be printed in the data file. You can choose to activate this printout.

Input File Usage: *PREPRINT, PARSUBSTITUTION=YES or NO

Abaqus/CAE Usage: Parametrized input files are not supported in Abaqus/CAE.

Model and history definition summaries

By default, the options defining the model and history data will not be summarized in the data file. You

can choose to activate this printout.

For an Abaqus/Explicit analysis the model summary data, when requested, includes the mass,

center of mass, and the rotary inertia information for the element sets in the model and for the whole

model. However, for two-dimensional models the reported rotary inertia includes the component

corresponding to the only active rotation degree of freedom; the remaining components are not included.

Input File Usage: *PREPRINT, MODEL=YES or NO, HISTORY=YES or NO

4.1.1–2

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Abaqus/CAE Usage: Job module: job editor: General: Preprocessor Printout: Print
model definition data and Print history data

Contact constraint information

In Abaqus/Standard you can choose to activate printout of detailed information about the contact

constraints generated by the contact pair definition data.

Input File Usage: *PREPRINT, CONTACT=YES or NO

Abaqus/CAE Usage: Job module: job editor: General: Preprocessor Printout:
Print contact constraint data

Mass information

In Abaqus/Explicit you can choose to activate printout of detailed information about the mass property

of each user-defined element set.

Input File Usage: *PREPRINT, MASS PROPERTY=YES or NO

Abaqus/CAE Usage: This parameter is not supported by Abaqus/CAE.

Requesting printed results

In Abaqus/Standard the values of output variables can be printed to the data file in tabular format

throughout the analysis. You can control the following types of printed output during the analysis run:

element output, node output, contact surface output, energy output, fastener interaction output, modal

output, section output, and radiation output—see “Output to the data and results files,” Section 4.1.2,

and “Cavity radiation,” Section 41.1.1. You specify the variables to be printed in each output table

and, for element variables, the locations at which they are to be printed (at the integration points, at the

element centroid, at the nodes, or averaged at the nodes). Nodal variables at nodes with transformations

can be written in either the global or the local coordinate system (see “Transformed coordinate systems,”

Section 2.1.5). The list of available variables is given in “Abaqus/Standard output variable identifiers,”

Section 4.2.1. Output of results to the data file is requested as part of a step definition.

Viewing part and assembly information in the data file

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an assembly,”

Section 2.10.1). In such a model node and element numbers can be repeated within the definitions of

different parts. These local numbers are converted internally by Abaqus to unique global numbers, and

the output written to the data file is given in terms of those internal numbers. A map between user-defined

numbers and internal numbers is printed to the data file (after the step data) if any output that includes

node and element numbers is requested in the data file.

Set and surface names that appear in the data file are prefixed by the assembly and part instance

names, separated by underscores (Assembly_Part1–1_setname, for example).

Local coordinate systems defined within a part or part instance are translated and rotated according

to the positioning data given in the part instance definition.

4.1.1–3

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

The output database

The Abaqus output database (job-name.odb) is a neutral binary file used to store model information

and analysis results in terms of an assembly of part instances. The Visualization module of Abaqus/CAE

(Abaqus/Viewer) uses the output database for postprocessing analysis results and viewing diagnostic

information.

Requesting output to the output database

You choose the variables to be written to the output database from the lists in “Abaqus/Standard

output variable identifiers,” Section 4.2.1, “Abaqus/Explicit output variable identifiers,” Section 4.2.2,

and “Abaqus/CFD output variable identifiers,” Section 4.2.3. The following types of output are

available: element output, node output, contact surface output, energy output, integrated output,

time incrementation output, fastener interaction output, modal output, and radiation output. In

addition, a subset of the diagnostic information that is written to the message file in Abaqus/Standard

and Abaqus/Explicit (see “The message file in Abaqus/Standard and Abaqus/Explicit”) and to the

Abaqus/Explicit status file (see “The status file”) is included in the output database. See “Output to the

output database,” Section 4.1.3, for a detailed explanation of how to generate output database requests.

Three types of information are stored in the output database: “field” output, “history” output, and

diagnostic information. Field output is intended to be relatively infrequent output for a large portion of

the model. Abaqus/CAE uses field output to generate contour plots, displaced shape plots, symbol plots,

and X–Y plots in the Visualization module. History output is intended to be output for a small portion of

the model requested at a fairly high frequency. Abaqus/CAE uses history output to generate X–Y plots in

the Visualization module. See “Output to the output database,” Section 4.1.3, for detailed descriptions of

field and history output. Diagnostic information is intended to provide convergence information for use

in Abaqus/CAE; for more information, see Chapter 41, “Viewing diagnostic output,” of the Abaqus/CAE

User’s Guide.

Format of the output database

The output database is a neutral binary, platform-independent file. Unlike the restart or binary results

files, it can be copied directly from one computing platform to another without translation.

By default, floating point data are written to the output database file in single precision. You can

choose to write floating point nodal field output data to the output database file in double precision; see

“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2, for details.

You can open an output database file from an older release of Abaqus in Abaqus/CAE, with the

exception that Abaqus 5.8 output database files cannot be opened in Version 6. Output database files

from previous releases of Abaqus must be converted to the current release when they are opened. If you

are using an older release of Abaqus/CAE, you cannot open an output database file created from a newer

release of Abaqus.

4.1.1–4

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

The selected results file

The Abaqus/Explicit selected results file (job-name.sel) stores user-selected results, which are

converted into the results file (job-name.fil) for postprocessing by other commercial postprocessing

packages.

Element output, node output, and energy output can be requested (see “Output to the data and results

files,” Section 4.1.2, for details); the variables available for output are listed in “Abaqus/Explicit output

variable identifiers,” Section 4.2.2. You can write a user-selected subset of the results for a given node

set or element set at more frequent intervals than the restart intervals. You specify the output requests

within a step definition, which allows you to be selective about the amount of data written to the selected

results file to avoid using excessive disk storage. For example, when dealing with a very large model,

you may choose to write only the current displacements and the equivalent plastic strain for the entire

model 20 times in the step and to write the acceleration history at one node 200 times in the step.

The results file

The Abaqus results file in Abaqus/Standard and Abaqus/Explicit (job-name.fil) can be read by

external postprocessors to produce X–Y plots or printed tabular output. Most commercial finite element

results-display packages provide translators that use the Abaqus results file as their input. The results

file can also be used as a convenient medium for importing analysis results into your own postprocessing

program. “Accessing the results file information,” Section 5.1.3, provides details on how to read this

file.

Results file output of temperature from a heat transfer, thermal-electrical, or thermal-electrical-

structural analysis can be used as input to a stress analysis of the same mesh (see “Sequentially coupled

thermal-stress analysis,” Section 16.1.2).

Obtaining results file output in Abaqus/Standard

In Abaqus/Standard you choose the variables to be written to the results file from the lists in

“Abaqus/Standard output variable identifiers,” Section 4.2.1, in a manner similar to that for output

printed to the data file. You must specifically request that values be written to the results file or none

will be provided. Element output, node output, contact surface output, energy output, modal output,

and radiation output are available—see “Output to the data and results files,” Section 4.1.2, and “Cavity

radiation,” Section 41.1.1, for details.

Obtaining results at the beginning of a step

You can request that the solution state at the beginning of a step (the zero increment) be written to the

Abaqus/Standard results file. Zero-increment file output is available only for steps inwhich the concept of

time governs the incrementation scheme of the selected procedure and, hence, the following procedures

are excluded:

• Linear static perturbation analysis (“Static stress analysis,” Section 6.2.2)

• “Eigenvalue buckling prediction,” Section 6.2.3

4.1.1–5

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

• “Natural frequency extraction,” Section 6.3.5

• “Mode-based steady-state dynamic analysis,” Section 6.3.8

• “Response spectrum analysis,” Section 6.3.10

• “Random response analysis,” Section 6.3.11

If you request zero-increment results file output, it will be generated for all valid procedures in a given

analysis.

You must request zero-increment results file output to generate a zero-increment results file in a data

check analysis (see “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2). It

is strongly recommended that you request zero-increment results file output if the results file is used to

drive a submodel; see “Node-based submodeling,” Section 10.2.2, for further discussion.

Input File Usage: *FILE FORMAT, ZERO INCREMENT

The *FILE FORMAT option can be given as model data or as history data, but

it can appear only once in the input file.

Abaqus/CAE Usage: Results file output cannot be requested in Abaqus/CAE.

Obtaining results file output in Abaqus/Explicit

The Abaqus/Explicit results file is a sequential access file generated from the selected results file (see

“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2). The results file

contains the requested results in the format described in “Results file output format,” Section 5.1.2.

Input File Usage: Use either of the following command line options to convert a selected results

file to a results file:

abaqus job=job-name convert=select

abaqus job=job-name convert=all

Abaqus/CAE Usage: The selected results file cannot be converted in Abaqus/CAE.

Part and assembly information

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an assembly,”

Section 2.10.1). However, the results file does not contain part and assembly records.

In a model defined in terms of an assembly of part instances, node and element numbers can be

repeated within the definitions of different parts. These local numbers are converted internally by Abaqus

to unique global numbers, and the output written to the results file is given in terms of the global (internal)

numbers. A map between user-defined numbers and internal numbers is printed to the data file if any

results file output that includes node and element numbers is requested.

Set and surface names that appear in the results file are prefixed by the assembly and part instance

names, separated by underscores (Assembly_Part1–1_setname, for example).

Local coordinate systems defined within a part or part instance are translated and rotated according

to the positioning data given in the part instance definition.

4.1.1–6

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Format of the results file

The Abaqus results file in Abaqus/Standard or Abaqus/Explicit is organized as a sequential file, in binary

or in ASCII format. ASCII format is necessary if the file is to be read on a computer system that is

different from the one on which the file was written. ASCII format allows the results file to be transferred

between different computer systems without having to translate binary data. ASCII format is not needed

if the file will always be used on the same system or on systems that use the same binary format. If the

results file output will always reside on the same computer, the default binary format is usually the most

efficient way of storing the file. For large problems a file in ASCII format will be significantly larger

than the same file in binary format.

Controlling the format of the results file in Abaqus/Standard

Abaqus/Standard can write the results file in either binary or ASCII format. The default format is binary.

The results file output must be written in the same format for the entire analysis. The format cannot

be changed upon restarting the problem.

The format of the Abaqus/Standard results file can also be controlled in the Abaqus/Standard

environment file (see “Using the Abaqus environment settings,” Section 3.3.1). The format specified in

an analysis supersedes the value defined in the enviroment file.

In addition, the ascfil facility in the Abaqus execution procedure (“ASCII translation of

results (.fil) files,” Section 3.2.12) can be used to convert a binary Abaqus/Standard results file

(job-name.fil) to ASCII format (job-name.fin) after the analysis completes.

Input File Usage: *FILE FORMAT, ASCII

The *FILE FORMAT option can be given as model data or as history data, but

it can appear only once in the input file.

Abaqus/CAE Usage: Results file output cannot be requested in Abaqus/CAE.

Controlling the format of the results file in Abaqus/Explicit

Abaqus/Explicit always writes the results file output in binary format during file conversion, but the

binary Abaqus/Explicit results file can be converted to ASCII format using the ascfil facility (“ASCII

translation of results (.fil) files,” Section 3.2.12).

ASCII format

“Results file output format,” Section 5.1.2, defines the contents of the records that are written to the

results file; these descriptions also hold if the results file is written in ASCII format. All the data items

in these files are either integers, floating point numbers, or character strings. When ASCII format is

requested, each data item is translated into an equivalent character string before it is written to the file.

These strings are written in 80-character logical records in the order described in the record definitions.

Each 80-character logical record is completely filled before the next one is started, so that any data

item can be split, with some of the characters that define the item in one logical record and the remainder

in the next. Each data item usually follows immediately behind its predecessor. The exception is that

for results file record key 2001 Abaqus will fill out the logical record with blank characters, so that the

4.1.1–7

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

record can be written immediately to the physical storage medium. Abaqus then inserts a logical record

consisting of 80 blanks, which allows the end-of-file to be handled correctly.

The beginning of each “record” is indicated by an asterisk (*). Each floating point number begins

with the character D, followed by the number in the format E22.15 or D22.15, depending on whether the

release of Abaqus that wrote the results file used single precision or double precision. Each character

string begins with the character A, followed by eight characters (if the character string has fewer than

eight characters, the right part of the string is blank; character strings longer than eight characters are

written eight characters at a time). Each integer begins with the character I, followed by a two digit

integer giving the number of decimal digits in the integer, followed by the integer itself (written as

decimal digits).

For example, record key 1900 for an S4R element with element number 5 and nodes 195, 198, 205,

and 204 would be written

*I 18I 41900I 15AS4R I 3195I 3198I 3205I 3204

and record key 101 for node 135 and 6 degrees of freedom would be written

*I 19I 3101I 3135D1.280271914214298E-10D1.500000000000036E+00
D-1.074629835784448E-46D 6.983222716550941E-12
D-4.084928798492785E-13D-1.072688441364597E-10

Precision of floating point data in the results file

The precision of floating point data written to the results file depends on the precision of the executable

that generates the data. Abaqus/Standard always uses double precision; thus, floating point data

are always written to the Abaqus/Standard results file in double precision. Abaqus/Explicit can be

run in single or double precision on most machines; see “Defining an analysis,” Section 6.1.2, for

details on the precision level of the Abaqus/Explicit executable. If the double precision executable for

Abaqus/Explicit is used, floating point data are written to the Abaqus/Explicit results file in double

precision; likewise, if the single precision executable for Abaqus/Explicit is used, floating point data are

written to the Abaqus/Explicit results file in single precision.

Maximizing the efficiency of the results file

In Abaqus/Standard each element output request (a collection of identifying keys entered on a single

line) is preceded by an “element header” record (see “Results file output format,” Section 5.1.2). Hence,

the size of the results file can be minimized by entering all element output variables of the same “type”

(element integration point variable, element section variable, whole element variable, etc.) on a single

line. (See “Output to the data and results files,” Section 4.1.2, for an explanation of the output variable

types.) Consolidating output variable entries is encouraged, since it will reduce the size of the results

file.

Example

For example, the following output requests can be used to request output of element variables in the

results file in a stress/displacement analysis:

4.1.1–8

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

*EL FILE
S, SINV, E, PE, CE, EE, ENER, TEMP, FV, COORD
SF, SE
LOADS, ELEN, EVOL

*EL FILE, REBAR
S, SINV, E, PE, CE, EE, RBFOR, RBANG
SF, SE
LOADS, ELEN

(The output requests for rebar quantities need not be the same as the underlying element output requests.)

The message file in Abaqus/Standard and Abaqus/Explicit

The message file (job-name.msg) is a text file that contains diagnostic messages about the progress of

the solution.

The Abaqus/Standard message file

In Abaqus/Standard the message file contains diagnostic or informative messages about the progress

of the solution. If any of these messages describe errors or warnings, the number of such errors or

warnings is also given at the end of the data file. The message file is written automatically during an

Abaqus/Standard analysis.

The Abaqus/Standard message file contains information about the increment number, step time,

fraction of a step completed, equilibrium iterations, severe discontinuity (contact) iterations, plasticity

algorithms, adaptive mesh smoothing, the load proportionality factor in a Riks analysis, etc. A portion of

the diagnostic information in the message file is also written to the output database for use in Abaqus/CAE

(for more information, see “Requesting diagnostic information in Abaqus/Standard andAbaqus/Explicit”

in “Output to the output database,” Section 4.1.3).

You can control the amount of information written to the message file for each step. This feature

is sometimes helpful in difficult analyses since it allows detailed diagnostic information to be written

about certain events (such as contact) during a nonlinear solution; this information can often be useful

in developing a strategy for the solution of highly nonlinear problems.

Input File Usage: *PRINT

The *PRINT option can appear only once within a step definition.

Abaqus/CAE Usage: Step module: Output→Diagnostic Print

Controlling the frequency of output to the message file

You can control the frequency at which information is printed to the message file by specifying the desired

output frequency in increments. The default output frequency is 1 (or 10 in a direct cyclic or a low-cycle

fatigue analysis). The output will always be printed at the last increment of each step unless you specify

a frequency of zero to suppress the output.

Input File Usage: *PRINT, FREQUENCY=N

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: Frequency N

4.1.1–9

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Requesting detailed contact printout

You can obtain a detailed printout of contact conditions during iteration. This information about which

points are contacting or separating in interface and gap problems is useful in tracking the development of

the solution in difficult contact problems. The details are written for every severe discontinuity iteration.

By default, the detailed contact output is suppressed.

Input File Usage: *PRINT, CONTACT=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Contact

Requesting detailed model change printout

You can obtain a detailed printout of model change operations (removal and reactivation) at the start of a

step. This information includes the new original coordinates and normals of elements being reactivated

strain free in a large-displacement analysis. By default, the detailed model change output is suppressed.

See “Element and contact pair removal and reactivation,” Section 11.2.1, for details on model change

operations.

Input File Usage: *PRINT, MODEL CHANGE=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Model Change

Requesting detailed printout of problems with the plasticity algorithms

You can activate printout of element and integration point numbers for which the plasticity algorithms

have failed to converge during an iteration. This information is useful for finding the place in the mesh

and/or the plasticity model at which Abaqus is encountering material model difficulties. Modeling

problems and material parameter specification problems can be identified using this detailed printout.

By default, this printout is suppressed.

Input File Usage: *PRINT, PLASTICITY=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Plasticity

Requesting output of equilibrium residuals

By default, equilibrium residuals during equilibrium iterations are output. You can choose to suppress

this output entirely, but it is not recommended; without the output of equilibrium residuals, you cannot

see the accuracy of the iteration process.

Input File Usage: *PRINT, RESIDUAL=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Residual

Requesting solver information

By default, information about the number of equations being solved and the required memory for each

iteration is output. You can request that output be suppressed.

Input File Usage: *PRINT, SOLVE=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Solve

4.1.1–10

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Requesting detailed adaptive mesh smoothing printout

You can activate detailed printout of adaptive mesh smoothing in Abaqus/Standard. The output includes

information about the magnitude of the maximum displacement and the node and degree of freedom

where the maximum displacement increment occurs during each mesh sweep. It also provides the node

numbers at which geometric feature changes occur. By default, only a summary is output.

Input File Usage: *PRINT, ADAPTIVE MESH=YES or NO

Abaqus/CAE Usage: Adaptive mesh output to the message file is not supported in Abaqus/CAE.

Monitoring a degree of freedom in the message file

You can write the current value of a specified point and degree of freedom to the message file. This

information can be used to monitor the progress of the solution. The information will also be written in

the status file (see below). You can control the frequency at which the value is printed in the message

file. The default frequency is 1 (or 10 in a direct cyclic analysis).

Degree of freedom monitoring does not apply to eigenvalue buckling prediction, eigenfrequency

extraction, or response spectrum procedures. For other linear perturbation procedures output for the

monitored degree of freedom is the base state value.

Input File Usage: *MONITOR, NODE=node_number, DOF=dof, FREQUENCY=N

The node and degree of freedom being monitored can be changed from step

to step by repeating the *MONITOR option. The node and degree of freedom

specified in the last occurrence of this option in a step will be used for that step.

Abaqus/CAE Usage: Step module: Output→DOF Monitor: Monitor a degree of freedom
throughout the analysis, click Edit to select the point, Degree of
freedom: dof, Print to the message file every N increments

In Abaqus/CAE only one point and degree of freedom can be monitored for an

analysis; you cannot change the monitor request from step to step.

The Abaqus/Explicit message file

In Abaqus/Explicit the message file contains messages if potential problems are detected during an

analysis. You can control the output of diagnostic messages for each step (see “Explicit dynamic

analysis,” Section 6.3.3, and “Contact diagnostics in an Abaqus/Explicit analysis,” Section 39.2.1). A

portion of the diagnostic information in the message file is also written to the output database for use in

Abaqus/CAE (for more information, see “Requesting diagnostic information in Abaqus/Standard and

Abaqus/Explicit” in “Output to the output database,” Section 4.1.3).

The status file

The status file (job-name.sta) is a text file that contains information about the progress of an analysis.

4.1.1–11

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

The Abaqus/Standard or Abaqus/CFD status file

The Abaqus/Standard or Abaqus/CFD status file contains a single 80-character record for each increment

and is updated upon completion of each increment of an analysis. This record is written directly to

secondary storage immediately at the completion of the increment. Therefore, the status file can be

examined as the analysis job is executing, thus providing a monitor of the progress of the analysis. Other

than specifying that a degree-of-freedom variable be monitored in the status file in Abaqus/Standard (as

described below), the information written to the Abaqus/Standard or Abaqus/CFD status file cannot be

controlled.

The Abaqus/Explicit status file

In Abaqus/Explicit the status file (job-name.sta) contains, by default, mass and inertial properties for

the model, initial stable time increment information, a synopsis of the progress of the analysis including

total accumulated CPU usage and the current time increment size, and an estimate of the memory required

to process each step. You can control additional output including the total kinetic energy, the energy

balance, the identifiers of the elements with the smallest stable time increments, and the percent change

in total mass of the model due to mass scaling.

The frequency at which summary increments are written to the Abaqus/Explicit status file depends

on the duration of the analysis in CPU minutes and the amount of output specified in the analysis. The

following list provides general guidelines for when a summary increment will be written to the status

file.

Summary information will generally be written:

• Each time restart information, field output to the output database, or results file output is written.

• Once per increment if the problem requires fewer than 20 increments.

• 20 times during the step for a short analysis (less than 40 CPU minutes).

• Every 2 CPU minutes for an analysis longer than 40 CPU minutes.

A degree-of-freedom variable can be monitored in the status file while the analysis is running.

You can also write additional diagnostic information to the status file (see “Explicit dynamic analysis,”

Section 6.3.3, and “Contact diagnostics in an Abaqus/Explicit analysis,” Section 39.2.1, for details).

A portion of the diagnostic information in the status file, including information for each summary

increment, is also written to the output database for use in Abaqus/CAE (for more information, see

“Requesting diagnostic information in Abaqus/Standard and Abaqus/Explicit” in “Output to the output

database,” Section 4.1.3).

Errors that can be detected only while packaging the data for Abaqus/Explicit or during analysis are

also written to the status file.

Input File Usage: *PRINT

The *PRINT option can appear only once within a step definition.

Abaqus/CAE Usage: Step module: Output→Diagnostic Print

4.1.1–12

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Requesting kinetic energy output

By default, the kinetic energy for the model is written to the status file. This output is written periodically

throughout the step. You can choose to include or exclude the kinetic energy output for each step.

Input File Usage: *PRINT, ALLKE=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Allke

Requesting total energy output

By default, the energy balance is written periodically throughout the step. You can choose to include or

exclude the energy balance output for each step.

Input File Usage: *PRINT, ETOTAL=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Etotal

Requesting output of the critical element

By default, the number of the element with the current minimum stable time increment and its value

are output to the status file. This output is written periodically throughout the step. You can choose to

include or exclude the critical element output for each step.

Input File Usage: *PRINT, CRITICAL ELEMENT=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Crit. Elem.

Requesting output of the change in the total mass

You can write the percent change in total mass of the model due to mass scaling to the status file for each

step. This output is written periodically throughout the step. The percent change in total mass is printed

by default only if mass scaling is present in the model.

Input File Usage: *PRINT, DMASS=YES or NO

Abaqus/CAE Usage: Step module: Output→Diagnostic Print: toggle on Dmass

Monitoring a degree of freedom in the status file

You can write the current value of a specified point and degree of freedom to the Abaqus/Standard status

file. The value of the point and degree of freedom being monitored will appear in the status file for every

increment written during the analysis.

When a degree of freedom is monitored in the Abaqus/Standard status file, the same information

is written to the message file (see above), but the specified frequency has no effect on the output to the

status file.

Degree of freedom monitoring does not apply to eigenvalue buckling prediction, eigenfrequency

extraction, or response spectrum procedures. For other linear perturbation procedures output for the

monitored degree of freedom is the base state value.

4.1.1–13

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Input File Usage: *MONITOR, NODE=node_number, DOF=dof

The node and degree of freedom being monitored can be changed from step

to step by repeating the *MONITOR option. The node and degree of freedom

specified in the last occurrence of this option in a step will be used for that step.

Abaqus/CAE Usage: Step module: Output→DOF Monitor: Monitor a degree of
freedom throughout the analysis, click Edit to select the

point, Degree of freedom: dof

In Abaqus/CAE only one point and degree of freedom can be monitored for an

analysis; you cannot change the monitor request from step to step.

Alternate output formats in Abaqus/CFD

By default, when you request output in Abaqus/CFD, the output is sent to the output database file.

However, you have the option of selecting alternate file formats for field and history output. Field output

can be sent to files in EXODUS-II format; history output can be sent to files in comma-separated values

(CSV) format.

You request the field and history output in the same manner as described in “Requesting output to

the output database.” To select an alternate output format, you set the field and history options on the

command line when you run an Abaqus/CFD analysis. For more information, see “Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2.

Field output in EXODUS-II format

The EXODUS-II format is widely supported by third-party postprocessors for both computational solid

mechanics and computational fluid dynamics. This format is binary, machine independent, and well

suited for transient simulation results on unstructured grids.

The EXODUS-II format and associated EXODUS-II/NEMESIS programming API for

reading and writing were developed at Sandia National Laboratories. This open source software

is available under the BSD License. The source code and documentation can be found at

http://sourceforge.net/projects/exodusii.

The EXODUS-II format cannot natively represent all of the Abaqus/CFD output features. The

features listed in Table 4.1.1–1 cannot be represented directly and are either omitted or modified.

Table 4.1.1–1 Abaqus/CFD output feature representation in EXODUS-II format.

Feature Comment

Parts and assemblies Node and element numbers do not include the part instance

name and are numbered sequentially (see “Naming

conventions” in “Defining an assembly,” Section 2.10.1)

Element sets General element sets are not supported and are omitted

Amplitudes Not supported

4.1.1–14

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

The EXODUS-II format uses file extension exo. For parallel processing of an analysis run,

EXODUS-II output is directed to multiple files (one file per processor is created), which is useful for

some third-party postprocessors. The files are named job.exo.rank, where rank is a number ranging

from 0 to one less than the number of CPUs. In contrast, you can write field output for parallel execution

to a single file (job.exo); the file is written in EXODUS-II format using the NEMESIS library.

Input File Usage: Use the following command line option in Abaqus/CFD to write field output in

EXODUS-II format to one file per processor:

abaqus job=job-name field=exodus

Use the following command line option in Abaqus/CFD to write field output in

EXODUS-II format to a single file for parallel execution:

abaqus job=job-name field=nemesis

Abaqus/CAE Usage: You cannot select an alternate format for field output in Abaqus/CAE.

History output in CSV format

The comma-separated values (CSV) format is a text-based output format. The format of the CSV text

file consists of one or more comment lines followed by one line of comma-separated data per history

output frame. Comments in the CSV file begin with the character #. Each column in the CSV file has a

comment that describes the mesh location, the part instance, and the output request label. Possible values

for mesh locations are node, element, or surface. Vector output requests also include the component; i.e.,

1, 2, or 3.

This format uses file extension csv. History output in the CSV format creates one file per output

request label per step. Additional files are created if the job is run in parallel and the set associated

with the history output request is split between processors due to the domain decomposition. In this

case there will be one file per processor on which the set is present. The files are named job_output-
request_rank_step-number.csv, where rank is a number ranging from 0 to one less than the number

of CPUs.

Input File Usage: Use the following command line option to write history output to an alternate

file format in Abaqus/CFD:

abaqus job=job-name history=csv

Abaqus/CAE Usage: You cannot select an alternate format for history output in Abaqus/CAE.

Requesting output in multiple steps

In general, output requests apply to the step in which they are given and to all subsequent steps until

they are respecified. However, output specifications for linear perturbation steps (available only in

Abaqus/Standard; see below and “General and linear perturbation procedures,” Section 6.1.3) are

treated independently of output requests for general analysis steps and apply only to a continuous

sequence of linear perturbation steps.

Database output, printed output, and results file output are independent output modes in Abaqus;

therefore, changing the specification for one form of output does not affect the other forms.

4.1.1–15

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

General analysis steps

The default output requests are used in the first general analysis step of an analysis unless you redefine

them. For subsequent general analysis steps, the definition of each form of output from the previous

general step is maintained unless you redefine it.

Linear perturbation steps

The default output requests are used in the first of any sequence of linear perturbation steps unless they are

redefined in that step. If a subsequent linear perturbation step is defined without an intermediate general

analysis step, the definition of each mode of output from the previous perturbation step is maintained

unless you redefine it. If an intermediate general step is defined, the default output requests are again

used in the linear perturbation step unless they are redefined in that step.

Element matrix output in Abaqus/Standard

In Abaqus/Standard you can write element stiffness matrices and, if available, mass matrices for each

step to a file. For heat transfer elements the operator matrices are written if stiffness matrix output is

requested.

Element matrix output is available only for elements without internal nodes (unless those nodes

have no active degrees of freedom) and with no acoustic or internal degrees of freedom. Examples

of elements for which element matrix output is prohibited include acoustic, pipe, elbow, frame, gap,

and interface elements as well as axisymmetric elements with Fourier modes. Element matrix output

is not available for elements with coupled fields such as coupled temperature-displacement elements

and pore pressure elements. For incompatible mode and hybrid elements, stiffness matrix output is

prohibited while mass matrix output is available. A substructure matrix output request is used to write

a substructure’s reduced stiffness matrix, mass matrix, and load case vectors to a file (see “Defining

substructures,” Section 10.1.2).

Element matrix output cannot be requested in a mode-based dynamic analysis (response spectrum,

steady-state dynamic, modal dynamic, or random response). However, it can be requested in the

eigenfrequency extraction analysis that precedes the mode-based dynamic analysis to output the mass

and stiffness matrices.

The element matrices are written without the effects of nodal conditions; therefore, boundary

conditions, concentrated loads, and the effects of multi-point constraints are not included in this

output. The degrees of freedom are always in the global directions, even if a local coordinate system

(“Transformed coordinate systems,” Section 2.1.5) has been defined at nodes associated with the

element.

You must select the element set for which output is requested. For models defined in terms of

an assembly of part instances (“Defining an assembly,” Section 2.10.1), element numbers written with

element matrix output are internal numbers generated by Abaqus/Standard. A map between internal

numbers and the original element numbers and part instance names is provided in the data file.

4.1.1–16

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Writing the element matrices to the results file

By default, element matrix output records are written to the Abaqus/Standard results file. The record

formats for the results file are described in “Results file output format,” Section 5.1.2. The file can be

written in binary or ASCII format based on the file format you specify (see “Controlling the format of

the results file in Abaqus/Standard” above).

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=element_set,

OUTPUT FILE=RESULTS FILE

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

Writing the element matrices to a user-defined file

You can write the element matrices to a user-defined file. The file name should not include an extension;

the extension .mtx will be added. (See “Input syntax rules,” Section 1.2.1, for the syntax of user-

specified file names.)

The format of the output file is compatible with the linear user element (see “User-defined elements,”

Section 32.15.1).

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset,

OUTPUT FILE=USER DEFINED, FILE NAME=output_file_name

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

Writing the element matrices to the data file

You can write the element matrix records to the Abaqus/Standard data file.

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset,

OUTPUT FILE=USER DEFINED

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

Including distributed loads

You can choose to write the load vector from distributed loads on the elements. By default, the load

vector is not written.

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset, DLOAD=YES or NO

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

Controlling the frequency of element matrix output

You can control the frequency at which element matrix output will be written by specifying an output

frequency in increments. By default, the element matrices will be output every increment (equivalent to

an output frequency of 1). Specify an output frequency of 0 to suppress output of the element matrices.

Unless the output is suppressed, the matrices will always be written at the last increment of a step.

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset, FREQUENCY=N

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

4.1.1–17

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Writing the stiffness or operator matrix

You can choose to output the stiffness matrix (or operator matrix in heat transfer elements). By default,

the stiffness (operator) matrix is not output.

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset, STIFFNESS=YES or NO

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

Writing the mass matrix

You can choose to output the mass matrix. By default, element mass matrices are not output.

Input File Usage: *ELEMENT MATRIX OUTPUT, ELSET=elset, MASS=YES or NO

Abaqus/CAE Usage: Element matrix output is not supported in Abaqus/CAE.

User-defined output variables in Abaqus/Standard

In Abaqus/Standard output quantities can be defined as functions of any element integration point

variable listed in “Abaqus/Standard output variable identifiers,” Section 4.2.1, by using user subroutine

UVARM. Then, output variable UVARMn can be requested for output to the data file, the results file,

or the output database.

User-defined state variables in Abaqus/Standard

In Abaqus/Standard you can allocate solution-dependent state variables and define them in user

subroutines defining material behavior, as well as user subroutines FRIC, UEL, and UINTER (see “User

subroutines: overview,” Section 18.1.1). Output variable SDVn can be requested for output of these

state variables to the data file, the results file, or the output database. For user-defined elements output

variable SDVn cannot be requested for output to the output database.

Postprocessing with Abaqus/CAE

Abaqus/CAE provides interactive graphical postprocessing from the Abaqus output database file in

the Visualization module (also licensed separately as Abaqus/Viewer). Capabilities include model and

deformed shape plotting, contour plotting, vector plotting, X–Y plotting, and animation.

Recovering additional results output from restart data in Abaqus/Standard

Data needed for restart in Abaqus/Standard are contained in several files that are generated when you

request that restart data be written for an analysis: the restart (.res), analysis database (.mdl and

.stt), part (.prt), and output database (.odb) files. “Restarting an analysis,” Section 9.1.1, describes
the writing of restart data in more detail.

In Abaqus/Standard you can extract output from the restart data and write it to new data (.dat),
results (.fil), and output database (.odb) files using a postprocessing analysis procedure. If

the original analysis included user subroutines, the postprocessing analysis procedure requires the

specification of the user subroutines. The data, results, and output database file output requests are

4.1.1–18

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

defined as described in “Output to the data and results files,” Section 4.1.2, and “Output to the output

database,” Section 4.1.3. The output requests should be defined exactly as they would be in an analysis,

except that:

1. The output frequency specification has no meaning and is, therefore, ignored (unless you are

recovering additional output from a previous direct cyclic or low-cycle fatigue analysis). Instead,

you specify each increment at which output is to be generated in the postprocessing procedure

definition.

2. No default output is provided to the output database. Furthermore, model information, such as

boundary conditions, is not written to the output database.

3. Element set energy information cannot be recovered since it is not written to the restart file.

4. Output is not available for procedures that do not support restart; for example, linear perturbation

procedures.

The element sets and node sets that are defined for the analysis can be used for defining output sets during

the postprocessing procedure. Additional sets can also be defined for the postprocessing procedure. You

specify the step number in the restart file from which output is required. You cannot obtain results at the

beginning of a step (see below).

Input File Usage: *POST OUTPUT, STEP=step_number

When the *POST OUTPUT option is used, it must appear as the first option

in the input file. No data lines from the analysis input file are required. This

option can be repeated as often as necessary to obtain further output. Since

*POST OUTPUT is a purely postprocessing procedure, analysis options must

not appear in the input file.

Abaqus/CAE Usage: Postprocessing of restart data is not supported in Abaqus/CAE.

Recovering additional output from a direct cyclic analysis

If you use this postprocessing technique to recover additional output from a previous direct cyclic analysis

(see “Direct cyclic analysis,” Section 6.2.6), you must specify the iteration number in the restart file from

which output is required instead of the increment. If temperatures (or predefined field variables) are read

from a results (.fil) file in the original direct cyclic analysis, the same temperatures (or predefined field

variables) must be read into the postprocessing analysis. This specification is needed to recover thermal

strains at each time increment in the original direct cyclic analysis since the results file is not stored in

the restart analysis database.

Input File Usage: *POST OUTPUT, STEP=step_number, ITERATION=iteration_number

There are no data lines associated with this option if the ITERATION parameter

is specified.

Abaqus/CAE Usage: Postprocessing of restart data is not supported in Abaqus/CAE.

4.1.1–19

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

Recovering additional output from a low-cycle fatigue analysis

If you use this postprocessing technique to recover additional output from a previous low-cycle fatigue

analysis (see “Low-cycle fatigue analysis using the direct cyclic approach,” Section 6.2.7), you must

specify the cycle number in the restart file from which output is required instead of the increment.

If temperatures (or predefined field variables) are read from a results (.fil) file in the original

low-cycle fatigue analysis, the same temperatures (or predefined field variables) must be read into the

postprocessing analysis. This specification is needed to recover thermal strains at each time increment in

the original low-cycle fatigue analysis since the results file is not stored in the restart analysis database.

Input File Usage: *POST OUTPUT, STEP=step_number, CYCLE=cycle_number

There are no data lines associated with this option if the CYCLE parameter is

specified.

Abaqus/CAE Usage: Postprocessing of restart data is not supported in Abaqus/CAE.

Example

A job can be submitted using the following input file. The analysis for which restart data were written

must be specified when you submit the job (using the oldjob parameter of the Abaqus execution

procedure). This example creates a new data (.dat) file containing tabular data. The first two tables

will contain data from increments 5 and 10 of Step 1 and will give the reaction forces of the nodes in

the set CLAMP, which was defined when the analysis was run. The next table will contain data from

increment 3 of Step 2 and will give displacements from the new node set TIP that is defined in this

postprocessing analysis.

*HEADING

*POST OUTPUT, STEP=1
5, 10

*NODE PRINT, NSET=CLAMP
RF,

*POST OUTPUT, STEP=2
3,

*NSET, NSET=TIP
1200, 1203, 1205

*NODE PRINT, NSET=TIP
U,

The following example input file recovers additional output from a previous direct cyclic analysis

and creates a new output database (.odb) file, which contains the stress and strain for the elements in

the set ELIST from each increment in Iteration 5 of Step 1, followed by data from each increment in

Iteration 10 of Step 1:

*HEADING

*POST OUTPUT, STEP=1, ITERATION=5

*OUTPUT, HISTORY

4.1.1–20

Abaqus Version 6.6 ID:

Printed on:

OUTPUT

*ELEMENT OUTPUT, ELSET=ELIST
S,E

*POST OUTPUT, STEP=1, ITERATION=10

*OUTPUT, HISTORY

*ELEMENT OUTPUT, ELSET=ELIST
S,E

The following example input file recovers additional output from a previous low-cycle fatigue

analysis and creates a new output database (.odb) file, which contains the stress and strain for the

elements in the set ELIST from each increment in Cycle 5 of Step 1, followed by data from each

increment in Cycle 10 of Step 1:

*HEADING

*POST OUTPUT, STEP=1, CYCLE=5

*OUTPUT, HISTORY

*ELEMENT OUTPUT, ELSET=ELIST
S,E

*POST OUTPUT, STEP=1, CYCLE=10

*OUTPUT, HISTORY

*ELEMENT OUTPUT, ELSET=ELIST
S,E

4.1.1–21

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

4.1.2 OUTPUT TO THE DATA AND RESULTS FILES

Products: Abaqus/Standard Abaqus/Explicit

References

• “Output,” Section 4.1.1

• *CONTACT FILE

• *CONTACT PRINT

• *EL FILE

• *EL PRINT

• *ENERGY FILE

• *ENERGY PRINT

• *FILE OUTPUT

• *MODAL FILE

• *MODAL PRINT

• *NODE FILE

• *NODE PRINT

• *RADIATION FILE

• *RADIATION PRINT

• *SECTION PRINT

• *SECTION FILE

Overview

Output variables are available for:

• element integration points, element section points, whole elements, and element sets;

• nodes;

• the whole model;

• modes in mode-based dynamics procedures;

• surfaces in Abaqus/Standard; and

• sections in Abaqus/Standard.

All of the output variables are defined in “Abaqus/Standard output variable identifiers,” Section 4.2.1,

and “Abaqus/Explicit output variable identifiers,” Section 4.2.2. Output quantities from the elements,

nodes, and whole model can be written to the data and results files in Abaqus/Standard and to the selected

results file in Abaqus/Explicit. In Abaqus/Standard output quantities from eigenmodes, surfaces, and

sections can also be written to the data and results files.

4.1.2–1

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

For Abaqus models defined in terms of an assembly of part instances (see “Defining an assembly,”

Section 2.10.1), output in the data and results files is given in terms of node, element, set, and surface

labels generated internally by Abaqus. See “Output,” Section 4.1.1, for details on how to relate the

internally generated numbers and names to those you specified.

Requesting output to the data and results files

The following sections discuss the input file syntax for requesting output to the data and results files.

Abaqus/CAE automatically requests that a data file containing the default printed output for the current

analysis procedure at the end of each step be generated; you cannot control the contents of the data file

from within Abaqus/CAE. An analysis from Abaqus/CAE does not create a results file.

Output to the Abaqus/Standard data file

Abaqus/Standard analysis results can be written to the data (.dat) file. Element output, nodal output,

contact surface output, energy output, modal output, and section output are available.

Input File Usage: Use any of the following options to request output to the Abaqus/Standard data

file:

*CONTACT PRINT

*EL PRINT

*ENERGY PRINT

*MODAL PRINT

*NODE PRINT

*SECTION PRINT

These options are discussed in detail below.

Output to the Abaqus/Standard results file

Abaqus/Standard analysis results can be written to the results (.fil) file. Element output, nodal output,

contact surface output, energy output, modal output, and section output are available.

Input File Usage: Use any of the following options to request output to the Abaqus/Standard

results file:

*CONTACT FILE

*EL FILE

*ENERGY FILE

*MODAL FILE

*NODE FILE

*SECTION FILE

These options are discussed in detail below.

Output to the Abaqus/Explicit results file

You can write Abaqus/Explicit analysis results to the selected results (.sel) file by specifying a results
file output request in conjunction with element output, nodal output, and/or energy output requests, as

4.1.2–2

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

explained below. A results file output request can appear only once per step but remains in effect in

subsequent steps unless it is redefined.

You can convert the selected results file (job-name.sel) into the results (job-name.fil) file
using the convert utility described in “Obtaining results file output in Abaqus/Explicit” in “Output,”

Section 4.1.1, and “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2.

Input File Usage: Use the first option in conjunction with one or more of the subsequent options

to request output to the Abaqus/Explicit selected results file:

*FILE OUTPUT

*EL FILE

*ENERGY FILE

*NODE FILE

Output frequency

You can control the frequency of all Abaqus/Explicit results file output for a particular step by specifying

the number of intervals during the step at which file output will be written, n. The data are always written

at the start and end of each step in which a results file output request is active. The times at which the

results are written are referred to as time marks.

If the specified number of intervals is 10, Abaqus/Explicit will write results 11 times: the values

at the beginning of the step and at the end of 10 equal time intervals throughout the step. The specified

number of intervals must be a positive integer.

By default, results will be written at the increment ending immediately after each time mark.

Alternatively, you can choose to have the time increment size adjusted so that an increment will end

exactly at each of the time marks calculated by dividing the step into n equal intervals.

Input File Usage: Use the following option to request results at the increments ending

immediately after each time interval:

*FILE OUTPUT, NUMBER INTERVAL=n, TIME MARKS=NO

Use the following option to request results at the exact time intervals:

*FILE OUTPUT, NUMBER INTERVAL=n, TIME MARKS=YES

Requesting output in multiple steps

Output requests apply to the step in which they are defined and to all subsequent steps until they are

respecified.

One exception occurs when the step type changes from general to linear perturbation (available

only in Abaqus/Standard). Output requests defined in general steps apply only to subsequent general

steps; output requests defined in linear perturbation steps apply only to subsequent consecutive linear

perturbation steps. In other words, output defined in a general step is independent of output defined in a

linear perturbation step. Propagation between linear perturbation steps occurs only for consecutive linear

perturbation steps. If a general analysis step occurs between perturbation steps, output defined in the first

perturbation step will not propagate to the next perturbation step. In addition, section output requests are

not propagated among linear perturbation steps in Abaqus/Standard.

4.1.2–3

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Element output

You can output element variables (stresses, strains, section forces, element energies, etc.) for a

particular step to the Abaqus/Standard data (.dat) file, the Abaqus/Standard results (.fil) file, or the
Abaqus/Explicit selected results (.sel) file. The output requests can be repeated as often as necessary

within a step to define output for different types of element variables, different element sets, etc. The

same element (or element set) can appear in several output requests.

In general, element output requests remain in effect for subsequent steps unless they are redefined;

the appearance of a single element output request in a step removes all element output requests from

a previous step. See “Output,” Section 4.1.1, for a discussion of requesting output in multiple general

analysis steps or linear perturbation steps.

In Abaqus/Explicit the element output is written to the selected results (.sel) file, which must be

converted to the results (.fil) file as explained above.

Input File Usage: Use the following option to output element variables to the Abaqus/Standard

data file:

*EL PRINT

Use the following option to output element variables to the Abaqus/Standard

results file or the Abaqus/Explicit selected results file:

*EL FILE

Selecting the element output variables

The following types of element variables are recognized for the purpose of defining output:

• “Element integration point” variables are associated with the integration points at which the material

calculations are performed (for example, components of stress and strain). For beams and pipes

defined in Abaqus/Standard with a general beam section, integration point variables are available

only if the output section points were specified for the section (see “Using a general beam section to

define the section behavior,” Section 29.3.7). For first-order heat transfer elements the integration

points are located at the corners of the element in heat capacitance calculations.

• “Element section point” variables are associated with the cross-section of a beam, pipe, or a shell

(for example, bending moments and membrane forces on the section).

• “Whole element” variables are attributes of an entire element (for example, the total energy content

of the element).

• “Whole element set” variables are attributes of an entire element set (for example, the current

coordinates of the center of mass); these variables are available only in Abaqus/Standard.

The element variables that can be written to the data and results files are defined in “Abaqus/Standard

output variable identifiers,” Section 4.2.1, and “Abaqus/Explicit output variable identifiers,”

Section 4.2.2.

Abaqus/Standard allows only complete sets of basic variables (for example, all of the stress or strain

components) to be written to the results file. Individual variables (such as a particular stress component)

cannot be selected and must be obtained by postprocessing. Abaqus/Standard element variables can be

4.1.2–4

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

written to the data and results files at the integration points, at the centroid, averaged at the nodes, or

extrapolated to the nodes.

In Abaqus/Explicit the complete stress or strain tensors can be written to the selected results file,

or individual scalar variables such as equivalent plastic strain can be written. Abaqus/Explicit writes

element variables to the results file only at the integration points where they are calculated.

Selecting the elements for which output is required

You can specify the element set for which output is being requested. If you do not specify an element

set, the output will be printed for all elements and, in Abaqus/Explicit, for all rebars in the model. In

Abaqus/Standard output requests for rebars are governed separately, as discussed below.

Input File Usage: Use either of the following options:

*EL PRINT, ELSET=element_set_name

*EL FILE, ELSET=element_set_name

Specifying the section point in beams, pipes, shells, and layered solid elements

For beams, pipes, shells, or layered solid elements in Abaqus/Standard output is provided at the default

section points listed in Part VI, “Elements.” You can specify nondefault output points.

In Abaqus/Explicit output is always provided at all section points for beam, pipe, and shell element

output requests.

Input File Usage: Use either of the following options in Abaqus/Standard:

*EL PRINT

list of output points

*EL FILE

list of output points

Requesting output for rebars in a reinforced model

In Abaqus/Standard you can request output for rebars (“Defining reinforcement,” Section 2.2.3). If you

do not explicitly request rebar output in an Abaqus/Standard model with rebars, the element output

requests govern the output for the matrix material only (except for section forces, where the forces in

the rebar are included in the force calculation). You can request output for a particular rebar. If you do

not specify the name of a rebar, output will be given for all rebars in the specified element set (or in the

whole model, if you have not specified an element set).

In beam and continuum elements in Abaqus/Standard rebar output can be obtained at the integration

points only. In shell, membrane, and surface elements rebar output is available at the integration points

and at the element’s centroid.

In Abaqus/Explicit output for the rebars in the specified element set (or the whole model, if you

have not specified an element set) is always included for element output requests.

Input File Usage: Use either of the following options in Abaqus/Standard:

*EL PRINT, REBAR=rebar_name

*EL FILE, REBAR=rebar_name

4.1.2–5

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Selecting the position of element integration and section point output in Abaqus/Standard

In Abaqus/Standard integration point variables and section variables can be written to the data and results

files in four different positions. By default, output is provided at the integration points.

Obtaining element output at the integration points

By default, the variables are output at the integration points where they are calculated. (You can obtain

the position of the integration points by using output variable COORD—see “Abaqus/Standard output

variable identifiers,” Section 4.2.1.)

Input File Usage: Use either of the following options:

*EL PRINT, POSITION=INTEGRATION POINTS

*EL FILE, POSITION=INTEGRATION POINTS

Obtaining element output at the centroid of each element

You can choose to output the variables at the centroid of each element (the centroid of the reference

surface of a shell element or the midpoint between the end nodes of a beam or a pipe element). Centroidal

values are obtained by interpolation of the integration point values if the integration scheme for the

element does not include a centroidal integration point.

Input File Usage: Use either of the following options:

*EL PRINT, POSITION=CENTROIDAL

*EL FILE, POSITION=CENTROIDAL

Obtaining element output averaged at the nodes

You can choose to extrapolate the variables to the nodes, then average them over all of the elements in the

set that contribute to each node. For derived variables, such as the principal stress, Abaqus/Standard will

first average the extrapolated tensor components over all of the elements connected to the node to obtain

unique components at each node, then calculate the derived value based on the averaged components.

By default, Abaqus/Standard partitions the elements in the model into averaging regions. The

partitioning is based upon the structure of the elements: element type, number of section points, type of

material, single layer or composite, etc. Partitioning is not based upon the values of element properties

(such as thickness), material orientations, or material constants. Averaging will occur only over elements

that contribute to a node and belong to the same averaging region.

In some situations you may want the averaging regions to take into account the values of element

properties. For example, since variables may be discontinuous between elements with different material

constants, you may not want elements with different property definitions included in the same averaging

region. In such cases you can force Abaqus/Standard to take into account values of element properties

by setting the Abaqus environment parameter average_by_section to ON. However, in problems with

many section and/or material definitions the default value of OFF will, in general, give much better

performance than the nondefault value of ON.

4.1.2–6

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Input File Usage: Use either of the following options:

*EL PRINT, POSITION=AVERAGED AT NODES

*EL FILE, POSITION=AVERAGED AT NODES

Obtaining element output extrapolated to the nodes

You can choose to extrapolate the element integration point variables to the nodes of each element

independently, without averaging the results from adjoining elements.

Input File Usage: Use either of the following options:

*EL PRINT, POSITION=NODES

*EL FILE, POSITION=NODES

Extrapolation and interpolation of element output variables

The shape functions of the element are used for purposes of extrapolation and interpolation of output

variables. Extrapolated values are generally not as accurate as the values calculated at the integration

points in the areas of high stress gradients, particularly in the case of modified triangles and tetrahedra.

Therefore, adequately detailed meshing is necessary around nodes where accurate nodal values of such

element results are needed. If a cylindrical or spherical coordinate system is defined for the element

(see “Orientations,” Section 2.2.5), the orientation at each integration point may be different. When

the values at the integration points are extrapolated to the nodes, the difference in the orientation is not

taken into account; therefore, if the orientation varies significantly over the elements connected to a

node, the extrapolated values will not be very accurate. If the material orientation undergoes significant

spatial variation in a region of the model where the material behavior is truly anisotropic, a finer mesh

is required to obtain accurate results even at the integration points. In that situation once the overall

solution has converged with respect to the mesh density, the interpolation or extrapolation away from

the integration points can also be assumed to be reasonably accurate. Element output for second-order

elements with one collapsed side in two dimensions or one collapsed face in three dimensions should

not be extrapolated to the nodes.

In a coupled temperature-displacement and a coupled thermal-electrical-structural analysis nodal

temperatures (variable NT11) are more accurate than temperatures at the integration point (variable

TEMP) extrapolated to the nodes.

For derived variables, such as the Mises equivalent stress, the components are first extrapolated

or interpolated, then the derived value is calculated from the extrapolated or interpolated components.

However, in linear mode-based dynamic analysis procedures where values are obtained as nonlinear

combinations of modal response magnitudes (“Random response analysis,” Section 6.3.11, and

“Response spectrum analysis,” Section 6.3.10), the nonlinear combinations are first calculated at the

integration points. These derived values are extrapolated to the nodes or interpolated to the centroid.

Requesting summaries in the Abaqus/Standard data file

By default in Abaqus/Standard, summaries of element variables are printed in the data file. A summary of

the maximum and minimum values is printed at the end of each column in an output table. The locations

of the maximum and minimum values are also printed. You can choose to suppress this summary.

Input File Usage: *EL PRINT, SUMMARY=YES or NO

4.1.2–7

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Requesting totals in the Abaqus/Standard data file

In Abaqus/Standard you can print the sum (total) of each column in an output table to the data file. Totals

can be used, for example, to obtain a sum of all the energies in a set of elements. By default, these totals

are suppressed.

Input File Usage: *EL PRINT, TOTALS=YES or NO

Controlling the frequency of output

In Abaqus/Standard you can control the frequency of element output by specifying the output frequency

in increments. Unless a frequency of zero is specified to suppress output, the variables will always be

output at the last increment of the step.

In Abaqus/Explicit the frequency of element output is controlled as described in “Output frequency”

above.

Input File Usage: Use either of the following options in Abaqus/Standard:

*EL PRINT, FREQUENCY=n

*EL FILE, FREQUENCY=n

Specifying the directions for element output

For components of stress, strain, and similar material variables, 1, 2, and 3 refer to the directions in

an orthogonal coordinate system. If a local orientation is not defined for the element, the stress/strain

components are in the default directions defined by the convention given in “Conventions,” Section 1.2.2:

global directions for solid elements; surface directions for shell, membrane, and gasket elements; and

axial and transverse directions for beam and pipe elements.

If a local orientation is associated with the element, the element output variable components are in

the local directions defined by the orientation (see “Orientations,” Section 2.2.5). In Abaqus/Standard

you can request that the local directions be written to the results file if component output is requested

for any variable (see “Output of local directions to the results file” below). In Abaqus/Explicit the

local directions will always be written to the results file when tensor output is requested for any

element variable. The local directions are written automatically to the output database file from both

Abaqus/Standard and Abaqus/Explicit.

In large-displacement problems the local directions defined in the reference configuration are rotated

into the current configuration by the average material rotation. See “State storage,” Section 1.5.4 of the

Abaqus Theory Guide, for details.

Controlling the output during eigenvalue extraction

You can control element output during natural frequency extraction (“Natural frequency extraction,”

Section 6.3.5), complex eigenvalue extraction (“Complex eigenvalue extraction,” Section 6.3.6), and

eigenvalue buckling analysis (“Eigenvalue buckling prediction,” Section 6.2.3) by specifying the first

and last mode numbers for which output is required. By default, the first mode number is 1 and the last

mode number is N, where N is the number of modes extracted. If you specify the first mode number, the

default value for the last mode number is M, where M is the value specified for the first mode number.

4.1.2–8

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Input File Usage: Use either of the following options:

*EL PRINT, MODE=m, LAST MODE=n

*EL FILE, MODE=m, LAST MODE=n

Abaqus/Standard data file format

In Abaqus/Standard the printed output of variables is arranged in tables in the data file. For element

variables, each row of a table corresponds to a particular location: an element, a node, a section point

within an element, or an integration point. The rows that will appear in a particular table are defined by

choosing an element set and, possibly, locations within each element in the set.

Each table is defined by a data line of the element output request, which specifies the variables to

appear in that table. There is no limit to the number of tables that can be defined. The first columns

of a table define the location—the element or node number, integration point number, etc. You choose

which data will appear in the remaining columns; up to 9 variables (columns) can appear in a table.

For example, output variables S and E cannot be requested on the same data line in a three-dimensional

analysis because that would produce 12 columns of output. If all of the entries in a row are zero, the row

is not printed.

Each table can contain only one type of output variable (whole element, section, or integration

point); one type of element; and only one type of section definition. If an element output request to the

data file includes more than one type of output variable, element, or section definition, Abaqus/Standard

will split the output automatically into the necessary number of individual tables. All of the tables defined

by the first data line of the output request will be printed, then all of the tables defined by the second data

line, etc.

Results file format

An element header record (the type 1 record described in “Results file output format,” Section 5.1.2) is

created for each line of requests for each integration point and section point in an element. In addition to

the element header record, a direction record (record type 85) can be written in Abaqus/Standard when

complete stress or strain tensor output is requested (see below). In Abaqus/Explicit a direction record is

always written when complete stress or strain tensor output is requested.

For Abaqus/Standard file output requests with multiple variables, it is advantageous to specify as

many variables as possible on each data line of the element output request (up to 16). By keeping the

number of lines of requests to a minimum, extra type 1 and type 85 records are avoided and the size of

the results file may be reduced substantially. This is not an issue in Abaqus/Explicit. Element variables

must be of the same “type” (element integration point variable; element section variable; whole element

variable; etc.) to be entered on a single line—see “Output,” Section 4.1.1. In Abaqus/Standard if all

results in a file output record are zero, the record is not written to the results file.

Output of local directions to the results file

By default, in Abaqus/Standard the local coordinate directions are not written to the results file. If

component output is requested, you can write the local coordinate directions to the results file. A direction

record of type 85 will be written following the type 1 record.

4.1.2–9

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

In Abaqus/Explicit the local coordinate directions are always written to the selected results file as a

direction record of type 85 when complete stress or strain tensor output is requested.

Tensor component output is given in the local coordinate system, which may be inherent to the

element (as is the case in shells and membranes) or user-defined (“Orientations,” Section 2.2.5).

For shell elements a direction record is written for every material point in the section for which

component output is requested, and a separate direction record is written for section forces and section

strains. For geometrically nonlinear analysis in Abaqus/Standard the record contains the current, updated

directions, except for small-strain shells and gasket elements, for which the original directions are given.

For three-dimensional beams, direction output is written only if section output has been requested.

Direction output is not provided for trusses, two-dimensional beams, two-dimensional gasket

elements, axisymmetric shells, axisymmetric membranes, axisymmetric gasket elements, or for values

averaged at nodes. In addition, it is not provided for GKxxN-type gasket elements, which have no

membrane or transverse shear deformation.

Input File Usage: Use the following option in Abaqus/Standard:

*EL FILE, DIRECTIONS=YES

Default element output

If you do not specify an element output request to the results file in a step (or in any previous step of the

analysis), no element output will be written to the results file; similarly, if you do not specify an element

output request to the data file (available only in Abaqus/Standard) in a step (or in any previous step of

the analysis), no element output will be written to the data file.

Node output

You can output nodal variables (displacements, reaction forces, etc.) for a particular step to the

Abaqus/Standard data (.dat) file, the Abaqus/Standard results (.fil) file, or the Abaqus/Explicit

selected results (.sel) file. The output requests can be repeated as often as necessary within a step to

define output for different node sets. The same node (or node set) can appear in several output requests.

In general, nodal output requests remain in effect for subsequent steps unless they are redefined; the

appearance of a single nodal output request in a step removes all nodal output requests from a previous

step. See “Output,” Section 4.1.1, for a discussion of requesting output in multiple general analysis steps

or linear perturbation steps.

In Abaqus/Explicit the nodal output is written to the selected results (.sel) file, which must be

converted to the results (.fil) file as explained above.

Input File Usage: Use the following option to output nodal variables to the Abaqus/Standard data

file:

*NODE PRINT

Use the following option to output nodal variables to the Abaqus/Standard

results file or the Abaqus/Explicit selected results file:

*NODE FILE

4.1.2–10

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Selecting the nodal output variables

The nodal variables that can be written to the data and results files are defined in the “Nodal variables”

portion of “Abaqus/Standard output variable identifiers,” Section 4.2.1, and “Abaqus/Explicit output

variable identifiers,” Section 4.2.2.

Abaqus allows only complete sets of basic variables (for example, all of the displacement

components) to be written to the results file. Individual variables (such as a particular displacement

component) cannot be selected and must be obtained by postprocessing.

Selecting the nodes for which output is required

You can specify the node set for which output is being requested. If you do not specify a node set, the

output will be printed for all nodes in the model.

Input File Usage: Use either of the following options:

*NODE PRINT, NSET=node_set_name

*NODE FILE, NSET=node_set_name

Requesting summaries in the Abaqus/Standard data file

By default in Abaqus/Standard, summaries of nodal variables are printed in the data file. A summary of

the maximum and minimum values is printed at the end of each column in an output table. The locations

of the maximum and minimum values are also printed. You can choose to suppress this summary.

Input File Usage: *NODE PRINT, SUMMARY=YES or NO

Requesting totals in the Abaqus/Standard data file

In Abaqus/Standard you can print the sum (total) of each column in an output table to the data file. Totals

can be used, for example, to sum reaction forces at the nodes. By default, these totals are suppressed.

Input File Usage: *NODE PRINT, TOTALS=YES or NO

Controlling the frequency of output

In Abaqus/Standard you can control the frequency of nodal output by specifying the output frequency

in increments. Unless a frequency of zero is specified to suppress output, the variables will always be

output at the last increment of the step.

In Abaqus/Explicit the frequency of nodal output is controlled as described in “Output frequency”

above.

Input File Usage: Use either of the following options in Abaqus/Standard:

*NODE PRINT, FREQUENCY=n

*NODE FILE, FREQUENCY=n

Specifying the directions for nodal output

For nodal variables 1, 2, and 3 refer to the global directions X, Y, and Z, respectively. For axisymmetric

elements 1 and 2 refer to the global directions r and z.

4.1.2–11

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

In Abaqus/Standard components of nodal variables such as reaction forces are output in the global

directions unless a local coordinate system has been defined at a node (see “Transformed coordinate

systems,” Section 2.1.5). In this case you can specify whether output is desired in global or local

directions. The local directions defined by the nodal transformation cannot be written to the results file.

The data in the Abaqus/Explicit selected results file are always output in the global directions, even

if a local coordinate system has been defined at a node.

Obtaining nodal output in the global directions

In Abaqus/Standard you can request vector-valued nodal variables in the global directions, which is the

default for nodal output requests to the results file since most postprocessors assume that components

are given in the global system.

Input File Usage: Use either of the following options:

*NODE PRINT, GLOBAL=YES

*NODE FILE, GLOBAL=YES

Obtaining nodal output in the local directions defined by nodal transformations

In Abaqus/Standard you can request vector-valued nodal variables in the local directions defined by nodal

transformations, which is the default for nodal output requests to the data file.

Input File Usage: Use either of the following options:

*NODE PRINT, GLOBAL=NO

*NODE FILE, GLOBAL=NO

Controlling the output during eigenvalue extraction

You can control nodal output during natural frequency extraction, complex eigenvalue extraction, and

eigenvalue buckling analysis by specifying the first and last mode numbers for which output is required,

as described above for element output.

Input File Usage: Use either of the following options:

*NODE PRINT, MODE=m, LAST MODE=n

*NODE FILE, MODE=m, LAST MODE=n

Abaqus/Standard data file format

In Abaqus/Standard the printed output of variables is arranged in tables by node set in the data file. For

nodal variables each row of a table corresponds to an individual node.

Each table is defined by a data line of the nodal output request, which specifies the variables to

appear in that table. There is no limit to the number of tables that can be defined. The first column of

each table is the node number. You choose the variables to appear in the remaining columns; up to nine

variables (columns) can appear in a table. If all of the entries in a row are zero, the row is not printed.

Displacement, velocity, and acceleration components less than a relative tolerance (equal to 100 times

the machine precision times the current maximum value in the model) are treated as zero.

4.1.2–12

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Results file format

There is no header or direction record for nodes, so it makes little difference whether items are requested

on a single line or multiple lines. In Abaqus/Standard if all results in a record are zero, the record is not

written to the results file.

Default nodal output

If you do not specify a nodal output request to the results file in a step (or in any previous step of the

analysis), no nodal output will be written to the results file; similarly if you do not specify a nodal output

request to the data file (available only in Abaqus/Standard) in a step (or in any previous step of the

analysis), no nodal output will be written to the data file.

Total energy output

You can output summaries of the energy content of the model to the Abaqus/Standard data (.dat) file,
the Abaqus/Standard results (.fil) file, or the Abaqus/Explicit selected results (.sel) file. Energy

output requests are not available for the following procedures:

• “Eigenvalue buckling prediction,” Section 6.2.3

• “Natural frequency extraction,” Section 6.3.5

• “Complex eigenvalue extraction,” Section 6.3.6

Energy output requests remain in effect for subsequent steps. Detailed energy density output is

available by using element output requests (see “Element output”).

In Abaqus/Explicit the energy output is written to the selected results (.sel) file, which must be

converted to the results (.fil) file as explained above.

Input File Usage: Use the following option to output summaries of the energy content to the

Abaqus/Standard data file:

*ENERGY PRINT

Use the following option to output summaries of the energy content to the

Abaqus/Standard results file or the Abaqus/Explicit selected results file:

*ENERGY FILE

External work calculation due to concentrated follower forces

Abaqus/Standard may generate inaccurate external work (ALLWK) in the presence of a concentrated

follower load that rotates with time (see “Specifying concentrated follower forces” in “Concentrated

loads,” Section 34.4.2). This problem may occur in both static and implicit dynamic analyses and may

result in an inaccurate total energy (ETOTAL) history output. Other results (displacements, stresses,

strains, etc.) are not affected. The inaccuracy is due to the fact that the increment of work is calculated

using the direction of the concentrated load at the end of the increment instead of using an average load

over the increment.

4.1.2–13

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Selecting the energy output variables

When energy output is requested, all of the total energy quantities listed in “Abaqus/Standard output

variable identifiers,” Section 4.2.1, or “Abaqus/Explicit output variable identifiers,” Section 4.2.2, are

output; the variables cannot be selected individually.

Selecting the element set for which total energy output is required

In Abaqus/Standard you can specify the element set for which total energy output is being requested. In

this case the energies are summed for all the elements in the specified set. You cannot specify an element

set for the following procedures:

• “Transient modal dynamic analysis,” Section 6.3.7

• “Mode-based steady-state dynamic analysis,” Section 6.3.8

• “Response spectrum analysis,” Section 6.3.10

• “Random response analysis,” Section 6.3.11

If you do not specify an element set, the total energies for the whole model will be output. If total energy

output for both the whole model and for different element sets is desired, the energy output requests must

be repeated; once without a specified element set to request energy output for the whole model and once

for each specified element set.

In Abaqus/Explicit you cannot specify selected element sets for an energy output request; the total

energies for the whole model will always be output.

Input File Usage: Use one of the following options in Abaqus/Standard:

*ENERGY PRINT, ELSET=element_set_name

*ENERGY FILE, ELSET=element_set_name

Controlling the frequency of output

In Abaqus/Standard you can control the frequency of energy output by specifying the output frequency

in increments. Unless a frequency of zero is specified to suppress output, the variables will always be

output at the last increment of the step.

In Abaqus/Explicit the frequency of energy output is controlled as described in “Output frequency”

above.

Input File Usage: Use either of the following options in Abaqus/Standard:

*ENERGY PRINT, FREQUENCY=n

*ENERGY FILE, FREQUENCY=n

Default energy output

Energy output requests must be included for total energy output to be written to the data and results files;

no default output is provided.

4.1.2–14

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Modal output from Abaqus/Standard

You can output generalized coordinate (modal amplitude and phase) values during modal dynamic

procedures (see “Dynamic analysis procedures: overview,” Section 6.3.1, for an overview of the modal

dynamic procedures available in Abaqus/Standard) to the data (.dat) file or results (.fil) file.
You can also request that eigenvalues be written to the results file during “Eigenvalue buckling

prediction,” Section 6.2.3, or “Natural frequency extraction,” Section 6.3.5. The eigenvalues are always

written to the results file when element or nodal output to the results file is requested; however, modal

output requests allow you to write the eigenvalues to the results file without requesting any additional

output.

Input File Usage: Use the following option to output modal variables to the Abaqus/Standard data

file:

*MODAL PRINT

Use the following option to output modal variables to the Abaqus/Standard

results file:

*MODAL FILE

Selecting the modal output variables

The modal variables that can be written to the data and results files are defined in the “Modal variables”

portion of “Abaqus/Standard output variable identifiers,” Section 4.2.1.

Controlling the frequency of output

You can control the frequency of modal output by specifying the output frequency in increments. Unless

a frequency of zero is specified to suppress output, the variables will always be output at the last increment

of the step.

Input File Usage: Use either of the following options:

*MODAL PRINT, FREQUENCY=n

*MODAL FILE, FREQUENCY=n

Default modal output

Modal output requests must be included for modal results to be written to the data and results files; no

default output is provided.

Surface output from Abaqus/Standard

In Abaqus/Standard you can write variables associated with surfaces in contact, coupled temperature-

displacement, coupled thermal-electrical-structural, coupled thermal-electrical, and crack propagation

problems to the data and results files. The output requests can be repeated as often as necessary within

a step to define output for different contact pairs and different types of surface variables.

4.1.2–15

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

See “Cavity radiation,” Section 41.1.1, for information on requesting output of surface variables

associated with cavity radiation.

Use element output requests (see “Element output”) to obtain data and results file output for contact

elements (such as slide line elements; see “Slide line contact elements,” Section 40.4.1).

Selecting the surface output variables

The following types of surface variables are recognized for the purpose of defining output:

• “Slave node” variables are associated with the integration points at which the material calculations

are performed (for example, the contact stress).

• “Whole surface” variables are attributes of an entire slave surface (for example, the total force due

to contact pressure).

The surface variables that can be written to the data and results files are listed in the “Surface variables”

portion of “Abaqus/Standard output variable identifiers,” Section 4.2.1.

Selecting the contact pairs for which output is required

You can select the master and slave surfaces for which output is required, and you can specify a subset

of slave nodes for output in addition to the master and slave surfaces or independently. If no surfaces

or slave nodes are specified, surface variables are written for all the contact pairs in the model. If you

specify the slave surface but not the master surface, output is given for all contact pairs that involve the

specified slave surface.

Input File Usage: Use either of the following options:

*CONTACT PRINT, MASTER=master, SLAVE=slave, NSET=node_set

*CONTACT FILE, MASTER=master, SLAVE=slave, NSET=node_set

Requesting summaries in the data file

By default, summaries of surface variables are printed in the data file. A summary of the maximum and

minimum values is printed at the end of each column in an output table. The locations of the maximum

and minimum values are also printed. You can choose to suppress this summary.

Input File Usage: *CONTACT PRINT, SUMMARY=YES or NO

Requesting totals in the data file

You can print the sum (total) of each column in an output table to the data file. By default, these totals

are suppressed.

Input File Usage: *CONTACT PRINT, TOTALS=YES or NO

Controlling the frequency of output

You can control the frequency of surface output by specifying the output frequency in increments. Unless

a frequency of zero is specified to suppress output, the variables will always be output at the last increment

of the step.

4.1.2–16

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Input File Usage: Use either of the following options:

*CONTACT PRINT, FREQUENCY=n

*CONTACT FILE, FREQUENCY=n

Default surface output

Surface output requests must be included for surface variables associated with contact pairs to be written

to the data and results files; no default output is provided.

If a surface output request is defined without any specified output variables, the following variables

will be written to the data and results files by default:

• For contact analysis, contact pressure (CPRESS), frictional shear stresses (CSHEAR), contact

opening (COPEN), and relative tangential motions (CSLIP); see “Defining contact pairs in

Abaqus/Standard,” Section 36.3.1.

• For heat transfer analysis, heat flux per unit area (HFL), heat flux (HFLA), time integrated HFL

(HTL), and time integrated HFLA (HTLA); see “Thermal contact properties,” Section 37.2.1.

• For coupled thermal-electrical analysis, HFL, HFLA, HTL, HTLA, electrical current per unit

area (ECD), electrical current (ECDA), time integrated ECD (ECDT), and time integrated ECDA

(ECDTA); see “Electrical contact properties,” Section 37.3.1.

• For coupled pore fluid-mechanical analysis, CPRESS, CSHEAR, COPEN, CSLIP, pore fluid

volume flux per unit area (PFL), pore fluid volume flux (PFLA), time integrated PFL (PTL), and

time integrated PFLA (PTLA); see “Pore fluid contact properties,” Section 37.4.1.

• For crack propagation analysis, there are no default output quantities; bond failure quantities must

be requested explicitly; see “Crack propagation analysis,” Section 11.4.3.

Data file format

Printed output of variables is arranged in tables. Each table is defined by a data line of the surface output

request, which specifies the variables to appear in that table. Each table can contain only one type of

output variable (slave node or whole surface). For example, output variables CSTRESS and CFN cannot

be requested on the same data line. For the slave node type of output, each row of a table corresponds

to a node on the slave surface. The rows that will appear in a particular table will be limited to the

node set specified in the output request. The first column of each table defines the location (the node

number). The remaining columns contain variables such as contact pressure, frictional shear stresses,

contact opening, and relative tangential (slip) motions. For the whole surface type of output, each row

of a table corresponds to an entire slave surface. If all of the variables in a row of a table are zero, the

row is not printed.

If a contact output request refers to more than one contact pair, a separate table will be generated

for each contact pair. All of the tables defined by the first data line of the output request will be printed,

then all of the tables defined by the second line, etc.

Results file format

A contact output request record (the type 1503 record described in “Results file output format,”

Section 5.1.2) is created for each output request. For the slave node type of output, this record is

4.1.2–17

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

followed by several node header records, each of which contains a node on the slave surface. Each node

header record is followed by records that contain output variables. The output will be limited to the

node set specified in the output request. For the whole surface type of output, the type 1503 record is

followed by only one type 1504 node header record with a node number zero. The node header record

is followed by records containing the requested output variables.

If a contact output request refers to more than one contact pair, a separate contact output request

record is generated for each contact pair.

Section output from Abaqus/Standard

In Abaqus/Standard you can output accumulated quantities associated with user-defined sections (see

“Abaqus/Standard output variable identifiers,” Section 4.2.1) for a particular step to the data or results

file. This facility provides “free body diagram” output, allowing analyses of force flow through a

redundant structure. The output requests can be repeated as often as necessary within a step to define

output for different sections and different section output variables. You can assign a label to each

output request that will be used to identify the output for the section. Section output is not available

for eigenfrequency extraction, eigenvalue buckling prediction, complex eigenfrequency extraction, or

linear dynamics procedures or in procedures using multiple load cases.

Defining the surface section

Section output requests are available only for sections defined using element-based surfaces (see

“Element-based surface definition,” Section 2.3.2). Consequently, the sections must be defined using

faces of continuum elements although other types of elements (beams, membranes, shells, springs,

dashpots, etc.) can be attached to the section.

Calculation of accumulated quantities on the section (such as the total force) involves nodal

quantities associated with elements on one side of the section only. Therefore, the surface definition

should use elements only from one side of the section (the “base elements,” as defined in “Prescribed

assembly loads,” Section 34.5.1), thus precisely identifying the side from which accumulated quantities

are computed.

Since the section usually cuts through the mesh in a typical section output request, automatic

generation of the surface cannot be used. Specifying the element faces gives exact control over which

element faces form the surface, which is essential when defining a cross-section through a solid body.

You must specify the name of the surface for which output is being requested.

Surfaces that are defined in a restart analysis can be used only for section output requests. The

newly defined surface cannot be used for any other purpose (such as a contact pair or pre-tension section

definition).

Input File Usage: Use either of the following options:

*SECTION PRINT, NAME=section_name, SURFACE=surface_name

*SECTION FILE, NAME=section_name, SURFACE=surface_name

Example

For example, the following input illustrates a typical section output request to the data file:

4.1.2–18

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

*HEADING
Section print example
…

*SURFACE, NAME=surface_name
Data lines that specify the elements and their associated faces to define the

surface section

…

*STEP
…

*SECTION PRINT, NAME=section_name,
SURFACE=surface_name, …
…

*END STEP

Alternatively, if additional section output requests are needed after the analysis is completed, a restart

analysis can be performed to request more output as shown in the following input:

*RESTART, READ, …
…

*SURFACE, NAME=surface_name
Data lines that specify the elements and their associated faces to define the

surface section

…

*STEP
…

*SECTION PRINT, NAME=section_name,
SURFACE=surface_name, …
…

*END STEP

Selecting the coordinate system in which output is desired

You can specify the choice of coordinate system in which the section output is desired. By default, the

components of vector quantities associated with the section are obtained with respect to the global system

of coordinates. Alternatively, you can specify that output is desired in a local system as defined below.

Input File Usage: Use either of the following options:

*SECTION PRINT, NAME=section_name, SURFACE=surface_name,

AXES=GLOBAL or LOCAL

*SECTION FILE, NAME=section_name, SURFACE=surface_name,

AXES=GLOBAL or LOCAL

Defining a coordinate system local to the surface section

You can allow Abaqus/Standard to define the local system, or you can specify it directly.

4.1.2–19

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

Default local system

The default local system is particularly useful when the section is flat or almost flat. While it can also be

used in the case when the defined surface is curved, the default local system may be irrelevant for such

problems.

The default system is defined by a straight line in two-dimensional and axisymmetric cases or by

a plane in three-dimensional cases, fitted (in a least square sense) through the nodes belonging to the

section. The anchor point (origin) of the local system is the centroid of the projection of the surface

on the fitted line or plane. The local directions are given by the normal (1-direction) and the tangent

direction (the 2-direction in two-dimensional and axisymmetric cases) or the tangent directions (the 2-

and 3-directions in three-dimensional cases) to the fitted line or plane. When several straight lines or

planes can be fit equally well between the nodes defining the section (for example, a closed circular or

spherical surface), the original local directions will be parallel to the global axes.

The positive local 1-direction is selected such that it will form an acute angle with the average

normal direction to the section, computed by averaging the positive normals to the element faces defining

the section. If the average normal direction is zero (a closed surface), the 1-direction will form an acute

angle with the global x-axis. If in two-dimensional or axisymmetric cases the 1-direction is within 0.1° of

being normal to the global x-axis, it will form an acute angle with the global y-axis. In three-dimensional

cases if the 1-direction is within 0.1° of being normal to the globalX–Y plane, it will form an acute angle

with the global z-axis.

In two-dimensional and axisymmetric cases the local 2-direction is obtained by rotating the local

1-direction counterclockwise by 90° about the anchor point. For three-dimensional situations the tangent

directions of the surface are defined using the Abaqus conventions for local directions on surfaces in

space (see “Conventions,” Section 1.2.2).

Input File Usage: Use either of the following options to use the default local coordinate system:

*SECTION PRINT, NAME=section_name, SURFACE=surface_name,

AXES=LOCAL

*SECTION FILE, NAME=section_name, SURFACE=surface_name,

AXES=LOCAL

User-specified local system

A user-specified local system is defined by specifying the origin and the directions of the axes. You can

specify the origin (anchor point) by giving a node number or by specifying the coordinates of the anchor

point.

In two-dimensional and axisymmetric cases the local 2-direction is defined by specifying either

a predefined node number or the coordinates of a point (point a) on the local 2-direction. The local

1-direction is then obtained by rotating the local 2-axis clockwise by 90° about the anchor point (see

Figure 4.1.2–1). If node numbers are used to define the anchor point or the local directions, they must

be connected to the mesh.

In three-dimensional cases either two predefined nodes or the coordinates of two points can be used

to specify the local directions. A rectangular Cartesian coordinate system is then defined by its origin

(the anchor point) and these two points. The first point (point a) must lie on the local 2-direction, and

4.1.2–20

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

2

a

3
b

1
defined section

2
a

1

anchor point

anchor point

Y
Y

X X
elements used to
define the section

2D and axisymmetric 3D

defined section

Z

Figure 4.1.2–1 User-defined local coordinate system.

the second (point b) must be in the local 2–3 plane on the side of the local 3-direction. Although it is

not necessary, it is intuitive to select the second point such that it is on or near the local 3-direction (see

Figure 4.1.2–1).

If you do not specify the anchor point of the local system, it is taken to be the centroid of the

projection of the surface on the fitted line or plane. If you do not specify the directions of the axes, the

local system will be anchored at the specified anchor point and its axes will be parallel to the default

axes of the projected surface. If neither the anchor point nor the directions are defined, the default local

system will be used.

In large-deformation analyses the surface section may rotate significantly during the deformation.

By default, when output is requested in a local coordinate system, the system rotates with the average

rigid body motion of the elements used to define the surface section (i.e., the local system and the output

are updated during the analysis). The anchor point and local directions must then be specified relative

to the undeformed configuration. You can choose to obtain vector output in the original local coordinate

system instead. This choice is irrelevant in steps in which geometric nonlinearities are not considered.

Input File Usage: Use either of the following options to specify the local coordinate system

directly:

*SECTION PRINT, NAME=section_name, SURFACE=surface_name,

AXES=LOCAL, UPDATE=YES or NO

anchor point definition

axes definition

4.1.2–21

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

*SECTION FILE, NAME=section_name, SURFACE=surface_name,

AXES=LOCAL, UPDATE=YES or NO

anchor point definition

axes definition

Controlling the frequency of output

You can control the frequency of section output by specifying the output frequency in increments. Unless

a frequency of zero is specified to suppress output, the variables will always be output at the last increment

of the step.

Input File Usage: Use either of the following options:

*SECTION PRINT, NAME=section_name, SURFACE=surface_name,

FREQUENCY=n

*SECTION FILE, NAME=section_name, SURFACE=surface_name,

FREQUENCY=n

Data file format

Printed output is arranged in tables. The first line of the table contains the name of the requested output

variable (see “Abaqus/Standard output variable identifiers,” Section 4.2.1), and the second line contains

the corresponding value. If a section output request is defined without any specified output variables, all

appropriate variables associated with the current analysis type are output.

If several section output requests to the data file are encountered in one particular step, separate

tables will be created for each request. Each table has a header denoting the name of the section and the

name of the surface used. In addition, if the output is requested in a local coordinate system, the global

coordinates of the anchor point and the cosine directions of the local axes are output.

Results file format

Several section output records (record numbers 1580–1591 in “Results file output format,” Section 5.1.2)

are output for each section output request to the results file. The actual collection of records to be written

to the results file depends on the number of valid output requests. If a section output request is defined

without any specified output variables, all records relevant to the current analysis type are stored in the

results file.

Vector output in the section

Vector output associated with section output requests consists of the total force (SOF), the total moment

(SOM), and the center of forces (SOCF). Output variable SOF is computed as a vector sum of the stress-

based (internal) nodal forces of the nodes in the surface.

Output variable SOM is computed with respect to the origin of the coordinate system considered.

Thus, if the output is requested in the global coordinate system, the total moment is computed about the

global origin; if the output is requested in a local coordinate system, the moment is computed about the

current anchor point of the local system. The coordinates of the current anchor point may change during

the analysis if the local coordinate system is updated. Output variables SOF and SOM are both reported

in the coordinate system considered.

4.1.2–22

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

The center of forces SOCF is computed as the closest point to the centroid of the section through

which the total force SOF acts. SOCF is always reported in the global coordinate system. If the total

force vector is equal to zero, the centroid of the section is reported as the center of forces SOCF.

The total moment vector, SOM, will not necessarily equal the cross product of the center of force

vector, SOCF, and total force vector, SOF. Forces acting on two different points of the section may have

components acting in opposite directions, such that these force components generate a net moment but

not a net force; therefore, the total moment may not arise entirely from the resultant force.

Scalar output in the section

Scalar output associated with a section output request consists of the area of the defined section

(SOAREA), the total heat flux (SOH) in heat transfer analysis, the total current (SOE) in electrical

analysis, the total mass flow (SOD) in mass diffusion analysis, and the total pore fluid volume flux

(SOP) in couple pore fluid diffusion-stress analysis. These output variables are computed as the

algebraic sum of the scalar internal nodal fluxes (work-conjugate to the associated primary solution

variables) of the nodes in the surface. For example, in heat transfer analysis the total heat flux (SOH) is

the sum of the NFLUX values at the nodes on the surfaces.

Limitations when using section output requests

Section output requests are subject to the following limitations:

• Section output requests are available only for sections defined by an element-based surface. Thus,

they can be used only for sections along faces of continuum elements.

• When defining the section, elements on only one side of the section must be used. Abaqus/Standard

identifies all elements attached to the surface on this side and computes the section output variables

as in a free-body diagram.

• The defined section must cut completely through the mesh, form a closed surface, or be on the

exterior of the body. Figure 4.1.2–2 presents some typical cases of valid surfaces. If the section cuts

only partially through the mesh, a valid free-body diagram cannot be isolated (see Figure 4.1.2–3)

and incorrect answers may be computed. Abaqus/Standard will attempt to identify the invalid cases

and will issue error or warning messages.

• Elements attached to the section can be on either side of the surface but must not cross the

defined section. Figure 4.1.2–3 presents a few invalid cases. In most cases Abaqus/Standard will

successfully identify elements that cross the surface, and warning messages will be issued. The

elements will then not be considered in the calculation of the section variables.

• For section output purposes, Abaqus/Standard will ignore the elements attached to the section for

which it cannot establish whether they belong to one side or the other of the section (e.g., SPRING1

elements).

• Section output requests cannot be specified within a substructure.

• Section output requests cannot be specified in random response analyses.

• The total force and the total moment in the section are computed based only on the stresses (internal

forces) in the identified elements. Thus, inaccurate results may be obtained if distributed body

4.1.2–23

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

beam spring A

spring A

defined section

elements used to define the section

pressure load

Figure 4.1.2–2 Valid section definitions.

defined section

elements used to define the section

incomplete cut defining elements on
both sides

beam

beam crossing the
section

Figure 4.1.2–3 Invalid section definitions.

loads are present in these elements since their effect on the total force in the section is not included.

Common examples are the inertial loading in dynamic analyses, gravity loads, distributed body

forces, and centrifugal loads. In these cases the total force in the section may depend on the choice

of elements used to define the section as illustrated in Figure 4.1.2–4(a). Assuming that gravity

loading is the only active load, the element stresses will be different in the two elements. Hence,

if the same section is defined first using element 1 and then using element 2, different answers for

the total force will be obtained. In a similar way the effects of any distributed body fluxes (heat,

electrical, etc.) prescribed in the identified elements are not included.

4.1.2–24

Abaqus Version 6.6 ID:

Printed on:

.DAT AND .FIL OUTPUT

1

2

1

2

surface defined
using element 1

surface defined
using element 2

(a) (b)

distributed
body loads

concentrated
loads

Figure 4.1.2–4 Total force in the section.

• Depending on which side of the surface is used to define the section, different answers will be

obtained in analyses similar to the case illustrated in Figure 4.1.2–4(b). Assuming a static analysis

with the concentrated loads shown in the figure being the only active loads, a zero total force is

reported if the section is defined using element 1 and a nonzero force equal to the sum of the

concentrated loads is obtained if the section is defined using element 2.

4.1.2–25

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

4.1.3 OUTPUT TO THE OUTPUT DATABASE

Products: Abaqus/Standard Abaqus/Explicit Abaqus/CFD Abaqus/CAE

References

• “Element-based surface definition,” Section 2.3.2

• “Integrated output section definition,” Section 2.5.1

• “Output,” Section 4.1.1

• “The postprocessing calculator,” Section 4.3.1

• *OUTPUT

• *FILTER

• *CONTACT OUTPUT

• *ELEMENT OUTPUT

• *ENERGY OUTPUT

• *INTEGRATED OUTPUT

• *INCREMENTATION OUTPUT

• *MODAL OUTPUT

• *NODE OUTPUT

• *RADIATION OUTPUT

• *SURFACE OUTPUT

• “Understanding output requests,” Section 14.4 of the Abaqus/CAE User’s Guide

Overview

Output variables are available for:

• element integration points, element section points, whole elements, and element sets;

• surfaces in Abaqus/Explicit and Abaqus/CFD;

• integrated output sections in Abaqus/Explicit;

• nodes; and

• the whole model.

All the output variables are defined in “Abaqus/Standard output variable identifiers,” Section 4.2.1,

“Abaqus/Explicit output variable identifiers,” Section 4.2.2, and “Abaqus/CFD output variable

identifiers,” Section 4.2.3.

Model information and analysis results are stored in terms of an assembly of part instances (see

“Defining an assembly,” Section 2.10.1).

See the Abaqus ScriptingUser’s Guide for a description of how to use the Abaqus Scripting Interface

or C++ to access an output database.

4.1.3–1

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Requesting output to the output database

Three types of information are stored in the output database in Abaqus/Standard and Abaqus/Explicit:

“field” output, “history” output, and diagnostic information. In Abaqus/CFD four types of information

are stored in the output database: nodal field output, surface field output, element history output, and

surface history output. Field output and history output are controlled by output database requests as

described in this section. A subset of the diagnostic information that is written to the message file for

Abaqus/Standard analyses and to the status and message files for Abaqus/Explicit analyses is included

in the output database.

• Field output is intended for infrequent requests for a large portion of the model and can be

used to generate contour plots, animations, symbol plots, X–Y plots, and displaced shape plots

in Abaqus/CAE. Only complete sets of basic variables (for example, all the stress or strain

components) can be requested as field output.

• History output is intended for relatively frequent output requests for small portions of the model

and is displayed in X–Y data plots in Abaqus/CAE. Individual variables (such as a particular stress

component) can be requested.

• Diagnostic information in Abaqus/Standard and Abaqus/Explicit is intended to provide analysis

warning and/or error information as well as convergence information for use in Abaqus/CAE.

Output database requests can be repeated as often as necessary within a step to produce both field

and history output at multiple frequencies.

Requesting field output
Contact surface output, element output, nodal output, and radiation output are available as field output in

Abaqus/Standard and Abaqus/Explicit. Nodal, element, and surface output are available as field output

in Abaqus/CFD.

Input File Usage: Use the first option in conjunction with one or more of the subsequent options

to request field output to the output database:

*OUTPUT, FIELD

*CONTACT OUTPUT

*ELEMENT OUTPUT

*NODE OUTPUT

*RADIATION OUTPUT

*SURFACE OUTPUT

These options are discussed in detail below.

Abaqus/CAE Usage: Step module: field output request editor

Requesting history output

Contact surface output, element output, energy output, integrated output, time incrementation output,

modal output, nodal output, and radiation output are available as history output in Abaqus/Standard and

Abaqus/Explicit. Both element output and surface output are available as history output in Abaqus/CFD.

4.1.3–2

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Requesting large amounts of history output (more than 1000 output requests) may cause

performance to degrade in Abaqus/Standard and will cause performance to degrade in Abaqus/Explicit

and Abaqus/CFD. For vector- or tensor-valued output variables each component is considered to be

a single request. In the case of element variables history output will be generated at each integration

point. For example, requesting history output of the tensor variable S (stress) for a C3D10M element

will generate 24 history output requests: (6 components) × (4 integration points). When requesting

history output of vector- and tensor-valued variables, it is recommended that individual components

be selected where available.

Input File Usage: Use the first option in conjunction with one or more of the subsequent options

to request history output to the output database:

*OUTPUT, HISTORY

*CONTACT OUTPUT

*ELEMENT OUTPUT

*ENERGY OUTPUT

*INTEGRATED OUTPUT

*INCREMENTATION OUTPUT

*MODAL OUTPUT

*NODE OUTPUT

*RADIATION OUTPUT

*SURFACE OUTPUT

These options are discussed in detail below.

Abaqus/CAE Usage: Step module: history output request editor

Requesting diagnostic information in Abaqus/Standard and Abaqus/Explicit

By default, a subset of the diagnostic information that is written to the message file for Abaqus/Standard

analyses and to the status and message files for Abaqus/Explicit analyses is also written to the output

database. You can use the Visualization module of Abaqus/CAE to view this diagnostic information

interactively, highlighting problematic areas on a view of the model and using them to resolve errors

and warnings in the analysis. For more information, see “The message file in Abaqus/Standard and

Abaqus/Explicit” in “Output,” Section 4.1.1, and Chapter 41, “Viewing diagnostic output,” of the

Abaqus/CAE User’s Guide.

Input File Usage: Use the following option to write diagnostic information to the output database:

*OUTPUT, DIAGNOSTICS=YES

Use the following option to exclude diagnostic information:

*OUTPUT, DIAGNOSTICS=NO

Abaqus/CAE Usage: You cannot exclude diagnostic information from the output database from

within Abaqus/CAE. Use the following option to view the saved diagnostic

information:

Visualization module: Tools→Job Diagnostics

4.1.3–3

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Controlling the output frequency

The frequency of output to the output database is controlled differently in Abaqus/Standard,

Abaqus/Explicit, and Abaqus/CFD. Control of the output frequency in Abaqus/Explicit depends upon

whether field or history output was selected.

Controlling the output frequency in Abaqus/Standard

Abaqus/Standard provides several options for controlling the output frequency, depending on whether

the analysis is in the time domain (e.g., general statics), frequency domain (e.g., steady state dynamics),

or mode domain (e.g., natural frequency extraction). These options can be used to reduce the amount of

output written and hence improve performance and disk space use as compared to the default output.

History output in Abaqus/Standard is buffered and is written to disk only after every 10 increments

of history data output or when a step has completed. Therefore, history results may not be available

immediately for postprocessing.

Default output frequency

If you do not specify the output frequency, field and history output will be written at every increment of

the analysis for all procedure types except dynamic and modal dynamic analyses for which output will

be written every 10 increments.

Controlling output frequency in a frequency domain analysis

In frequency domain procedures, you only can control the frequency of output by specifying the

frequency of output in increments. The data will be written at this frequency as well as at the end of

each step of the analysis. Specify an output frequency of zero to suppress output.

Input File Usage: *OUTPUT, FREQUENCY=n

Abaqus/CAE Usage: Step module: field or history output request editor: Frequency:
Every n increments: n

Controlling output frequency in a mode domain analysis

In an eigenvalue extraction or eigenvalue buckling analysis, you can select the modes at which output is

desired. If you do not specify a list of modes, output is produced for all of the modes.

Input File Usage: *OUTPUT, FIELD, MODE LIST

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Specify
modes: list of modes

Controlling output frequency in a time domain analysis

In time domain analyses, you can control the frequency of output by specifying the output frequency in

terms of increments, the number of intervals during the step, the size of regular time intervals throughout

the step, or time points throughout the step. The different options are described in more detail below.

4.1.3–4

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Whichever option is chosen, the output will always be written at the zero-increment and last

increment of the analysis and, for a low-cycle fatigue analysis, at the end of each cycle. The

zero-increment output represents the initial conditions for the current analysis step and is essential for

sequential thermal-stress analyses and analyses involving submodeling, for which a complete solution

history (including the solution state at the beginning of the step) is needed to ensure proper interpolation

in time. The zero-increment state is written at the beginning of the step, before the solution of the

incremental nonlinear finite-element equations for the step commences, and is therefore in general not

an equilibrium solution. Particular examples where the solution is not in equilibrium include the first

step of an analysis in which an initial stress state is defined and when loads or boundary condition

changes are discontinuous between steps.

Usually, the zero-increment output in any step corresponds to the base state, which is the state of

the model at the end of the last general step. The exception to this is modal transient dynamic analysis,

where the zero-increment output represents the linear perturbation response at time zero.

Time domain analysis: specifying output frequency in increments

You can specify how frequently you want output in terms of increments. Specify an output frequency of

zero to suppress output.

Input File Usage: *OUTPUT, FREQUENCY=n

Abaqus/CAE Usage: Step module: field or history output request editor: Frequency:
Every n increments: n

Time domain analysis: specifying output frequency in number of intervals

You can specify the output frequency in number of intervals, n. The specified number of intervals must

be a positive integer.

By default, Abaqus/Standard adjusts the time increment (in some cases Abaqus/Standard might

violate the minimum time increment specified) to ensure that data are written at the exact times

calculated by dividing the step into n equal intervals. Alternatively, you can specify that the data be

written immediately after each time mark. In this case no adjustment of the time increment is necessary.

Input File Usage: Use the following option to request results at the exact time intervals:

*OUTPUT, NUMBER INTERVAL=n, TIME MARKS=YES

Use the following option to request results at the increments ending

immediately after each time interval:

*OUTPUT, NUMBER INTERVAL=n, TIME MARKS=NO

Abaqus/CAE Usage: Use the following option to request results at the exact time intervals:

Step module: field or history output request editor: Frequency: Evenly
spaced time intervals, Interval: n, Timing: Output at exact times

Use the following option to request results at the increments ending

immediately after each time interval:

4.1.3–5

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Step module: field or history output request editor: Frequency: Evenly
spaced time intervals, Interval: n, Timing: Output at approximate times

Time domain analysis: specifying output frequency in regular time interval size

You can write the results at specified regular intervals throughout the step as well as at the end of the step.

By default, Abaqus/Standard will adjust the time increment (in some cases Abaqus/Standard might

violate the minimum time increment specified) to ensure that data will be written at the exact times, as

defined by multiples of the time interval, t. Alternatively, the data can be written immediately after each

time mark. In this case no adjustment of the time increment is necessary.

Input File Usage: Use the following option to request results at the exact time intervals:

*OUTPUT, TIME INTERVAL=t , TIME MARKS=YES

Use the following option to request results at the increments ending

immediately after each time interval:

*OUTPUT, TIME INTERVAL=t , TIME MARKS=NO

Abaqus/CAE Usage: Use the following option to request results at the exact time intervals:

Step module: field or history output request editor: Frequency: Every
x units of time: t, Timing: Output at exact times

Use the following option to request results at the increments ending

immediately after each time interval:

Step module: field or history output request editor: Frequency: Every
x units of time: t, Timing: Output at approximate times

Time domain analysis: specifying output frequency in time points

You can write the results at specified time points throughout the step.

By default, Abaqus/Standard adjusts the time increment (in some cases Abaqus/Standard might

violate the minimum time increment specified) to ensure that data are written at the exact time points

specified. Alternatively, you can specify that the data be written immediately after each time point. In

this case no adjustment of the time increment is necessary.

Input File Usage: Use the following options to request results at the exact time points:

*TIME POINTS, NAME=time points name

*OUTPUT, TIME POINTS=time points name, TIME MARKS=YES

Use the following options to request results at the increments ending

immediately after each time point:

*TIME POINTS, NAME=time points name

*OUTPUT, TIME POINTS=time points name, TIME MARKS=NO

Abaqus/CAE Usage: Use the following option to request results at the exact time points:

Step module: field or history output request editor: From time points,
Name: time points name, Timing: Output at exact times

4.1.3–6

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Use the following option to request results at the increments ending

immediately after each time point:

Step module: field or history output request editor: From time points,
Name: time points name, Timing: Output at approximate times

Time domain analysis: time incrementation

If the output frequency is specified at exact times and in terms of the number of intervals, in regular time

intervals, or in time points, Abaqus/Standard adjusts the time increments to ensure that data are written

at the exact time points. In some cases Abaqus may use a time increment smaller than the minimum time

increment allowed in the step in the increment directly before a time point. However, Abaqus will not

violate the minimum time increment allowed for consolidation, transient mass diffusion, transient heat

transfer, transient couple thermal-electrical, transient coupled temperature-displacement, and transient

coupled thermal-electrical-structural analyses. For these procedures if a time increment smaller than the

minimum time increment is required, Abaqus will use the minimum time increment allowed in the step

and will write output data at the first increment after the time point.

When the output frequency is specified at exact times and in terms of the number of intervals, in

regular time intervals, or in time points, the number of increments necessary to complete the analysis

might increase, which might adversely affect performance.

Controlling the output frequency for field output in Abaqus/Explicit

Field output data are always written at the start and end of each step in which the output request is active.

In addition, you can specify the output frequency in terms of the number of intervals during the step, the

size of regular time intervals throughout the step, or time points throughout the step. The times at which

the results are written are referred to as time marks.

Specifying field output frequency in number of intervals

You can specify the output frequency in number of intervals, n. The specified number of intervals must

be a positive integer. For example, if the specified number of intervals is 10, Abaqus/Explicit will write

field data 11 times: the values at the beginning of the step and at the end of 10 equal time intervals

throughout the step.

By default, field data will be written at the increment ending immediately after each time mark.

Alternatively, when you specify the output frequency in number of intervals, you can choose to have the

time increment size adjusted so that an increment will end exactly at each of the time marks calculated

by dividing the step into n equal intervals.

Input File Usage: Use the following option to request results at the increments ending

immediately after each time interval:

*OUTPUT, FIELD, NUMBER INTERVAL=n, TIME MARKS=NO

Use the following option to request results at the exact time intervals:

*OUTPUT, FIELD, NUMBER INTERVAL=n, TIME MARKS=YES

4.1.3–7

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Abaqus/CAE Usage: Use the following option to request results at the increments ending

immediately after each time interval:

Step module: field output request editor: Frequency: Evenly spaced time
intervals, Interval: n, Timing: Output at approximate times

Use the following option to request results at the exact time intervals:

Step module: field output request editor: Frequency: Evenly spaced
time intervals, Interval: n, Timing: Output at exact times

Specifying field output frequency in regular time interval size

Alternatively, you can write the results at specified regular intervals throughout the step as well as at the

beginning and end of the step. The time increment size will not be adjusted to meet the specified time

marks; results will be written at the increment ending immediately after each time mark, as defined by

multiples of the time interval, t.

Input File Usage: *OUTPUT, FIELD, TIME INTERVAL=t

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Every x units of time: t

Specifying field output frequency in time points

You can write the results at specified time points throughout the step. Regular time intervals between

time points are not required; you can specify any desired time points at which the field output is to be

written.

Input File Usage: Use the following option to request results at the exact time points:

*TIME POINTS, NAME=time points name

*OUTPUT, FIELD, TIME POINTS=time points name, TIME MARKS=YES

Use the following option to request results at the increments ending

immediately after each time point:

*TIME POINTS, NAME=time points name

*OUTPUT, FIELD, TIME POINTS=time points name, TIME MARKS=NO

Abaqus/CAE Usage: Use the following option to request results at the exact time points:

Step module: field output request editor: Frequency: From time points,
Name: time points name, Timing: Output at exact times

Use the following option to request results at the increments ending

immediately after each time point:

Step module: field output request editor: Frequency: From time points,
Name: time points name, Timing: Output at approximate times

Default field output

If you do not specify the output frequency (in either number of intervals, time interval size, or time

points), field output will be written at 20 equally spaced intervals throughout the step.

4.1.3–8

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Controlling the output frequency for history output in Abaqus/Explicit

If history output is selected, you can specify the output frequency in terms of either increments or regular

intervals throughout the step.

Specifying history output frequency in increments

You can specify the output frequency in increments. The data will be written at this frequency as well as

at the end of each step of the analysis.

Input File Usage: *OUTPUT, HISTORY, FREQUENCY=n

Abaqus/CAE Usage: Step module: history output request editor: Frequency: Every
n time increments: n

Specifying history output frequency in regular time interval size

Alternatively, you can write the results at specified regular intervals throughout the step as well as at the

end of the step. The time increment size will not be adjusted to meet the specified time marks; results

will be written at the increment ending immediately after each time mark, as defined by multiples of the

time interval, t.

Input File Usage: *OUTPUT, HISTORY, TIME INTERVAL=t

Abaqus/CAE Usage: Step module: history output request editor: Frequency: Every
x units of time: t

Default history output

If you do not specify the output frequency (in either increments or time interval size), history output will

be written at 200 equally spaced intervals throughout the step.

Controlling the output frequency for field output in Abaqus/CFD

Field output data are always written at the start and end of each step in which the output request is active.

In addition, you can specify the output frequency in terms of increments, the number of intervals during

the step, or the size of regular time intervals throughout the step. By default, field output will be written

at 20 equally spaced intervals throughout the step.

Specifying field output frequency in increments

You can specify the output frequency in increments. The data will be written at this frequency as well as

at the beginning and end of each step of the analysis.

Input File Usage: *OUTPUT, FIELD, FREQUENCY=n

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Every
n time increments: n

4.1.3–9

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Specifying field output frequency in number of intervals

You can specify the output frequency in number of intervals, n. The specified number of intervals must

be a positive integer. For example, if the specified number of intervals is 10, Abaqus/CFD will write field

data 11 times: the values at the beginning of the step and at the end of 10 equal time intervals throughout

the step.

Input File Usage: *OUTPUT, FIELD, NUMBER INTERVAL=n

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Evenly
spaced time intervals, Interval: n

Specifying field output frequency in regular time interval size

Alternatively, you can write the results at specified regular intervals throughout the step as well as at the

beginning and end of the step. The time increment size will not be adjusted to meet the specified time

marks; results will be written at the increment ending immediately after each time mark, as defined by

multiples of the time interval, t.

Input File Usage: *OUTPUT, FIELD, TIME INTERVAL=t

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Every x units of time: t

Controlling the output frequency for history output in Abaqus/CFD

You can specify the output frequency in terms of increments, the number of intervals during the step, or

regular intervals throughout the step. By default, no history output is automatically written to the output

database.

Specifying history output frequency in increments

You can specify the output frequency in increments. The data will be written at this frequency as well as

at the beginning and end of each step of the analysis.

Input File Usage: *OUTPUT, HISTORY, FREQUENCY=n

Abaqus/CAE Usage: Step module: history output request editor: Frequency: Every
n time increments: n

Specifying history output frequency in number of intervals

You can specify the output frequency in number of intervals, n. The specified number of intervals must

be a positive integer. For example, if the specified number of intervals is 10, Abaqus/CFD will write

history data 11 times: the values at the beginning of the step and at the end of 10 equal time intervals

throughout the step.

Input File Usage: *OUTPUT, HISTORY, NUMBER INTERVAL=n

Abaqus/CAE Usage: Step module: history output request editor: Frequency: Evenly
spaced time intervals, Interval: n

4.1.3–10

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Specifying history output frequency in regular time interval size

Alternatively, you can write the results at specified regular intervals throughout the step as well as at the

end of the step. The time increment size will not be adjusted to meet the specified time marks; results

will be written at the increment ending immediately after each time mark, as defined by multiples of the

time interval, t.

Input File Usage: *OUTPUT, HISTORY, TIME INTERVAL=n

Abaqus/CAE Usage: Step module: history output request editor: Frequency: Every
x units of time: t

Requesting output in multiple steps

Output requests apply to the step in which they are defined and to all subsequent steps until they are

respecified.

The only exception occurs when the step type changes from general to linear perturbation (available

only in Abaqus/Standard). Output requests defined in general steps apply only to subsequent general

steps; output requests defined in linear perturbation steps apply only to subsequent consecutive linear

perturbation steps. In other words, output defined in a general step is independent of output defined in

a linear perturbation step. Propagation between linear perturbation steps occurs only for consecutive

linear perturbation steps. If a general analysis step occurs between perturbation steps, output defined in

the first perturbation step will not propagate to the next perturbation step.

In any given step you can add or selectively replace the output requests that are continued from

previous steps. Alternatively, you can discontinue all requests from previous steps and request a

completely new set of output. The preselected field variables and preselected history output variables

(see “Preselected output requests” below) are requested by default for the first step of an analysis; you

can modify this request as in any other step.

Specifying new output requests

By default, all output requests defined in previous steps are removed when new requests are defined,

regardless of the type of output request being defined. In other words, a new field output request in a

step removes all field and history output requests defined in previous steps.

Because all existing output requests are removed when a new request is defined in a step, all output

requests within the same step are treated as new (i.e., additional output requests or replacement output

requests are treated as equivalent to new output requests).

Input File Usage: Use one of the following options to remove all existing output requests and to

specify new requests:

*OUTPUT, FIELD, OP=NEW

*OUTPUT, HISTORY, OP=NEW

Abaqus/CAE Usage: Step module: Create Field Output Request or Create
History Output Request

4.1.3–11

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Abaqus/CAE automatically respecifies all previously defined output requests

when you create a new request.

Specifying additional output requests

Alternatively, you can specify additional output requests without removing all default and previously

defined output requests.

Input File Usage: Use one of the following options to specify additional output requests without

removing all default and previously defined output requests:

*OUTPUT, FIELD, OP=ADD

*OUTPUT, HISTORY, OP=ADD

Abaqus/CAE Usage: Step module: Create Field Output Request or Create
History Output Request

Abaqus/CAE automatically respecifies all previously defined output requests

when you create a new request.

Replacing or removing an output request

You can replace an output request of the same type (e.g., field or history) and frequency with a new

request. No other previously defined requests will be affected.

You cannot replace an output request to change its frequency. If no matching request is found, the

request specified is simply added to the step.

To remove a previously defined request, you can replace the output request without specifying any

new output variables.

Input File Usage: Use one of the following options to replace an output request with a new

request:

*OUTPUT, FIELD, OP=REPLACE

*OUTPUT, HISTORY, OP=REPLACE

Abaqus/CAE Usage: Step module: Field Output Requests Manager or History Output
Requests Manager: Edit or Delete

Suppressing output requests defined in previous steps

To suppress completely all output requests that have been defined in previous steps, you can specify an

output frequency of 0.

Preselected output requests

There are two ways to define output variable requests quickly and easily. Both methods are available

for field and history output requests and for the individual output requests used for requesting specific

variable types (e.g., nodal, element). There are no preselected output variables for surface output requests

in Abaqus/CFD. The use of these methods with individual output requests for specific variable types is

explained in detail later in this section.

4.1.3–12

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Requesting procedure-specific preselected output requests

You can activate a procedure-specific set of commonly requested output variables. See Table 4.1.3–1

for a list of procedure types and their accompanying preselected variables. The variables written to the

output database may change if the procedure type changes between steps.

If you request preselected field or history output and request additional output variables using

individual output requests for specific variable types, the variables requested will be appended to the

variables contained in the preselected list.

For geometrically nonlinear analysis in Abaqus/Standard, E is not available for output and

LE is output by default. For linear perturbation analyses and geometrically linear analyses in

Abaqus/Standard, LE and NE strain output requests yield the same output as E. For geometrically linear

analysis in Abaqus/Explicit, LE is output.

Abaqus may omit some preselected variables from the analysis results. Abaqus omits preselected

output variables if they are not applicable for the element type used to mesh the model or if other factors

make the variables unsuitable for the analysis. No preselected variables are available for surface output

in an Abaqus/CFD analysis.

Input File Usage: Use one of the following options:

*OUTPUT, FIELD, VARIABLE=PRESELECT

*OUTPUT, HISTORY, VARIABLE=PRESELECT

Abaqus/CAE Usage: Step module: field or history output request editor: Preselected defaults

Table 4.1.3–1 List of preselected variables for various procedure types.

Procedure type Preselected
element variables
(field; history for

Abaqus/CFD)

Preselected nodal
and surface

variables (field)

Preselected energy
variables (history)

Annealing none none none

Complex frequency

extraction

none U none

Coupled pore fluid

diffusion/stress

S, E, VOIDR, SAT,

POR

U, RF, CF, PFL, PFLA,

PTL, PTLA, TPFL,

TPTL

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

4.1.3–13

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Procedure type Preselected
element variables
(field; history for

Abaqus/CFD)

Preselected nodal
and surface

variables (field)

Preselected energy
variables (history)

Coupled thermal-electric HFL, EPG NT, RFL, EPOT ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Direct cyclic S, E, PE, PEEQ,

PEMAG

U, RF, CF ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Direct-integration

implicit dynamic (with an

output frequency of 10)

S, E, PE, PEEQ,

PEMAG

U, V, A, RF, CF,

CSTRESS, CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Direct-solution

steady-state dynamic

S, E U, V, A, RF, CF ALLKE, ALLSE,

ALLVD, ALLWK

Eigenfrequency

extraction

none U none

Eigenvalue buckling

prediction

none U none

4.1.3–14

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Procedure type Preselected
element variables
(field; history for

Abaqus/CFD)

Preselected nodal
and surface

variables (field)

Preselected energy
variables (history)

Explicit dynamic S, LE, PE,

PEEQ, EVF,

SVAVG, PEVAVG,

PEEQVAVG

U, V, A, RF, CSTRESS ALLKE, ALLSE,

ALLWK, ALLPD,

ALLCD, ALLVD,

ALLDMD, ALLAE,

ALLIE, ALLFD,

ETOTAL

Fully coupled thermal-

electrical-structural in

Abaqus/Standard

S, E, PE, PEEQ,

PEMAG, HFL, EPG

U, RF, CF, NT, RFL,

CSTRESS, CDISP,

EPOT

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Fully coupled

thermal-stress in

Abaqus/Standard

S, E, PE, PEEQ,

PEMAG, HFL

U, RF, CF, NT, RFL,

CSTRESS, CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Fully coupled

thermal-stress in

Abaqus/Explicit

S, LE, PE, PEEQ, HFL U, V, A, RF,

CSTRESS, NT, RFL

ALLKE, ALLSE,

ALLWK, ALLPD,

ALLCD, ALLVD,

ALLDMD, ALLAE,

ALLIE, ALLFD,

ALLIHE, ALLHF,

ETOTAL

4.1.3–15

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Procedure type Preselected
element variables
(field; history for

Abaqus/CFD)

Preselected nodal
and surface

variables (field)

Preselected energy
variables (history)

Geostatic stress field S, E, POR, SAT,

VOIDR

U, RF, CF, CSTRESS,

CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Heat transfer HFL NT, RFL none

Incompressible fluid

dynamics in Abaqus/CFD

V, PRESSURE,

TEMP, TURBNU

U, V, PRESSURE,

TEMP, TURBNU

none

Linear static perturbation S, E U, RF, CF ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Mass diffusion CONC, MFL NNC, RFL none

Modal dynamic (with an

output frequency of 10)

S, E U, V, A, RF, CF ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

SIM-based modal

dynamic

none none none

4.1.3–16

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Procedure type Preselected
element variables
(field; history for

Abaqus/CFD)

Preselected nodal
and surface

variables (field)

Preselected energy
variables (history)

Quasi-static S, E, PE, PEEQ,

PEMAG, CE, CEEQ,

CEMAG

U, RF, CF, CSTRESS,

CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Random response S, E U, V, A none

Response spectrum S, E U, RF, CF ALLKE, ALLSE,

ALLWK

Static S, E, PE, PEEQ,

PEMAG

U, RF, CF, CSTRESS,

CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Steady-state dynamic S, E U, V, A, RF, CF ALLKE, ALLSE,

ALLWK

SIM-based steady-state

dynamic

none none none

Steady-state transport S, E U, RF, CF, CSTRESS,

CDISP

ALLAE, ALLCD,

ALLFD, ALLIE,

ALLKE, ALLPD,

ALLSE, ALLVD,

ALLDMD, ALLWK,

ALLKL, ALLQB,

ALLEE, ALLJD,

ALLSD, ETOTAL

Subspace-based

steady-state dynamic

S, E U, V, A, RF, CF ALLKE, ALLSE,

ALLVD, ALLWK

4.1.3–17

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Requesting all variables applicable to the current procedure and material type in
Abaqus/Standard and Abaqus/Explicit

You can request all variables applicable to the current procedure and material type. Any individual output

requests for specific variable types are ignored in this case.

Input File Usage: Use one of the following options:

*OUTPUT, FIELD, VARIABLE=ALL

*OUTPUT, HISTORY, VARIABLE=ALL

Abaqus/CAE Usage: Step module: field or history output request editor: All

Default output

In Abaqus/Standard and Abaqus/Explicit, if no output database requests are specified, the preselected

field and history output variables are written automatically to the output database. In Abaqus/Standard

the default variables are written at every increment for both field and history output for all procedure

types except dynamic and modal dynamic analyses; the default frequency for field and history output for

these procedure types is every 10 increments. In Abaqus/Explicit the default variables are written at 20

intervals for field output and 200 intervals for history output. In Abaqus/CFD the default variables are

written at 20 intervals for field output.

You can turn these defaults off for an analysis in Abaqus/Standard and Abaqus/Explicit by using

the odb_output_by_default environment file parameter; see “Using the Abaqus environment settings,”

Section 3.3.1, for details. Furthermore, specifying new output database requests in a step (see “Specifying

new output requests”) overrides the default field and history output requests for that step. For large

models the default output to the output database may increase the solution time and required disk space

considerably. In such cases you are encouraged to review carefully the relevance of the default output

variables for the proposed analysis. A C++ program is available that creates a smaller copy of a large

output database by copying data from only selected frames; for more information, see “Decreasing the

amount of data in an output database by retaining data at specific frames,” Section 10.15.4 of the Abaqus

Scripting User’s Guide.

The odb_output_by_default environment file parameter is ignored in a restart analysis. If no output

requests are defined in a restart analysis, the output requests are those that propagate from the original

analysis.

Abaqus/Explicit output as a result of analysis termination

When an Abaqus/Explicit analysis encounters a fatal error in an increment, the preselected variables

applicable to the current procedure are written automatically to the output database as field data. The

analysis will go through an additional increment with a zero time increment size before writing these

data.

4.1.3–18

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Element output

You can request that element variables (stresses, strains, section forces, element energies, etc.) be written

to the output database. The output request can be repeated as often as necessary to define output for

different types of element variables, different element sets, etc. The same element (or element set)

can appear in several output requests. Element output to the output database is not supported for user

elements.

Selecting the element output variables

The following types of element variables are recognized for the purpose of defining output:

• “Element integration point” variables are associated with the integration points at which material

calculations are performed (for example, components of stress and strain).

• “Element section point” variables are associated with the cross-section of a beam, pipe, or a shell (for

example, bending moments and membrane forces on the section); these variables are not available

in Abaqus/CFD.

• “Element face” variables are associated with the faces of a shell or a solid (for example, uniformly

distributed pressure load on the face).

• “Whole element” variables are attributes of an entire element (for example, the total energy content

of the element).

• “Whole element set” variables are attributes of an entire element set (for example, the current

coordinates of the center of mass); these variables are available in Abaqus/Standard and

Abaqus/Explicit.

The element variables that can be written to the output database are defined in “Abaqus/Standard output

variable identifiers,” Section 4.2.1, “Abaqus/Explicit output variable identifiers,” Section 4.2.2, and

“Abaqus/CFD output variable identifiers,” Section 4.2.3.

Input File Usage: *ELEMENT OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: field or history output request editor: Select from list below

Selecting elements for which output is required

For history output you must specify the element set (or, in Abaqus/Explicit, the tracer set) for which

output is being requested. For field output specifying the element set or tracer set is optional; if you do

not specify an element set or tracer set, the output will be written for all the elements in the model.

Input File Usage: *ELEMENT OUTPUT, ELSET=element_set_name

Abaqus/CAE Usage: Step module: field or history output request editor: Domain: Set: set_name

Requesting field output for the exterior elements in the model in Abaqus/Standard and Abaqus/Explicit

You can select output on the element set consisting of all the exterior three-dimensional elements in the

model. This element set is generated internally by Abaqus.

4.1.3–19

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: *ELEMENT OUTPUT, EXTERIOR

Abaqus/CAE Usage: Step module: field output request editor: Domain: Whole
model; toggle on Exterior only

Specifying the section point in beam, pipe, shell, and layered solid elements in Abaqus/Standard and
Abaqus/Explicit

For beams, pipes, shells, or layered solids output is provided at the default section points. You can specify

nondefault output points.

Input File Usage: *ELEMENT OUTPUT

list of output points

list of output variables

Abaqus/CAE Usage: Step module: field or history output request editor: Output at shell, beam,
and layered section points: Specify: list of output points

Requesting output for rebars in a reinforced model in Abaqus/Standard and Abaqus/Explicit

You can request output for rebars (“Defining reinforcement,” Section 2.2.3). If you do not explicitly

request rebar output in a model with rebars, the element output requests govern the output for the

matrix material only (except for section forces, where the forces in the rebar are included in the force

calculation). You can request output for a particular rebar. If you do not specify the name of a rebar,

output will be given for all rebars in the specified element set (or in the whole model, if you have not

specified an element set).

Rebar output is available only in membrane, shell, or surface elements at the integration points and

at the centroid of the element.

Input File Usage: Use the following options:

*OUTPUT, FIELD

*ELEMENT OUTPUT, REBAR=rebar_name, ELSET=element_set_name

*OUTPUT, HISTORY

*ELEMENT OUTPUT, REBAR=rebar_name, ELSET=element_set_name

Abaqus/CAE Usage: Use the following option to request output for rebar in addition to output for

the matrix material:

Step module: field or history output request editor: Output for rebar: Include

Use the following option to request output only for rebar:

Step module: field or history output request editor: Output for rebar: Only

You cannot request output for a particular rebar in Abaqus/CAE; if you request

rebar output, it is given for all rebars in the specified output domain.

4.1.3–20

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Selecting the position of element integration point and section point output

Integration point variables and section variables in Abaqus/Standard and Abaqus/Explicit can be written

as field output to the output database in three different positions: the integration points, the centroid, or

the nodes. By default, output is provided at the integration points.

In most cases Abaqus writes only integration point data to the output database. Transferring of

results from the integration points to the user-specified position in Abaqus/Standard and Abaqus/Explicit

is done by the postprocessing calculator. See “The postprocessing calculator,” Section 4.3.1, for details.

In Abaqus/Standard an alternative procedure is available for three commonly requested output

variables: stress components, Mises equivalent stress, and equivalent pressure stress. To activate

this alternate procedure for Mises equivalent stress and equivalent pressure stress, output variables

MISESONLY and PRESSONLY, respectively, must be requested. If output variables, MISES and

PRESS, are used instead, the old procedure is invoked. If output at the nodes or at the centroid is

requested for any of these variables, the interpolation and extrapolation are performed during the

analysis as soon as stresses are available at the integration points. This eliminates the need to store

stress components at the integration points and reduces the size of the output database. This procedure

is invoked automatically when output is requested for any of the supported variables.

Element history output to the output database is always provided at the integration points.

Obtaining output at the integration points in Abaqus/Standard and Abaqus/Explicit

By default, the variables are output at the integration points where they are calculated. In

Abaqus/Standard you can obtain the position of the integration points by using output variable COORD

(see “Abaqus/Standard output variable identifiers,” Section 4.2.1).

Input File Usage: *ELEMENT OUTPUT, POSITION=INTEGRATION POINTS

Abaqus/CAE Usage: You cannot select the position of element output in Abaqus/CAE; it is always

given at the integration points.

Obtaining output at the centroid of each element in Abaqus/Standard and Abaqus/Explicit

You can choose to output the variables at the centroid of each element (the midpoint between the

end nodes of a beam or a pipe element). Centroidal values are obtained through the postprocessing

calculator by interpolation of the integration point values if the integration scheme for the element

does not include a centroidal integration point. Element output of the element centroidal values is not

available for recovering results within substructures; for more information, see “Using substructures,”

Section 10.1.1.

Input File Usage: *ELEMENT OUTPUT, POSITION=CENTROIDAL

Abaqus/CAE Usage: You cannot select the position of element output in Abaqus/CAE; it is always

given at the integration points.

Obtaining element output extrapolated to the nodes in Abaqus/Standard and Abaqus/Explicit

You can choose to extrapolate the element integration point variables to the nodes of each element

independently, without averaging the results from adjoining elements. Element output at the element

4.1.3–21

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

nodes is not available for recovering results within substructures; for more information, see “Using

substructures,” Section 10.1.1.

Input File Usage: *ELEMENT OUTPUT, POSITION=NODES

Abaqus/CAE Usage: You cannot select the position of element output in Abaqus/CAE; it is always

given at the integration points.

Extrapolation and interpolation of element output variables in Abaqus/Standard and Abaqus/Explicit

The shape functions of the element are used by the postprocessing calculator for purposes of

extrapolation and interpolation of output variables. Extrapolated values are generally not as accurate as

the values calculated at the integration points in the areas of high stress gradients, particularly in the

case of modified triangles and tetrahedra. Therefore, adequately detailed meshing is necessary around

nodes where accurate nodal values of such element results are needed. If a cylindrical or spherical

coordinate system is defined for the element (see “Orientations,” Section 2.2.5), the orientation at each

integration point may be different. When the values at the integration points are extrapolated to the

nodes, the difference in the orientation is not taken into account; therefore, if the orientation varies

significantly over the elements connected to a node, the extrapolated values are not very accurate. If the

material orientation undergoes significant spatial variation in a region of the model where the material

behavior is truly anisotropic, a finer mesh is required to obtain accurate results even at the integration

points. In that situation once the overall solution has converged with respect to the mesh density, the

interpolation or extrapolation away from the integration points can also be assumed to be reasonably

accurate. You should also be particularly careful when interpreting output variables extrapolated to the

nodes for second-order elements with midside nodes outside the quarter-point region, such as when one

edge is collapsed in two dimensions or one face is collapsed in three dimensions.

For derived variables, such as Mises equivalent stress, the components are first extrapolated or

interpolated. The derived value is then calculated from the extrapolated or interpolated components.

However, in linear mode-based dynamic analysis procedures where derived values are obtained as

nonlinear combinations of modal response magnitudes (“Random response analysis,” Section 6.3.11,

and “Response spectrum analysis,” Section 6.3.10), the nonlinear combinations are first calculated at

the integration points. These derived values are then extrapolated to the nodes or interpolated to the

centroid.

Controlling the output frequency

The frequency of element output is controlled as described above in “Controlling the output frequency.”

Requesting preselected output

You can request the preselected, procedure-specific element output variables described in Table 4.1.3–1.

In this case you can specify additional variables as part of the output request.

Alternatively, you can request all element variables applicable to the current procedure and material

type. In this case any additional variables you specify are ignored.

Input File Usage: Use the following option to request the preselected element output variables:

*ELEMENT OUTPUT, VARIABLE=PRESELECT

4.1.3–22

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Use the following option to request all applicable element output variables:

*ELEMENT OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Step module: field or history output request editor:

Preselected defaults or All

Specifying the directions for element output in Abaqus/Standard and Abaqus/Explicit

For components of stress, strain, and similar material variables 1, 2, and 3 refer to the directions for

an orthogonal coordinate system. If a local orientation is not defined for the element, the stress/strain

components are in the default directions defined by the convention given in “Orientations,” Section 2.2.5:

global directions for solid elements, surface directions for shell and membrane elements, and axial and

transverse directions for beam and pipe elements.

By default, the element material directions for element field output are written to the output database.

If a local orientation is associated with the element, by default the results displayed in Abaqus/CAE are

in the directions defined by the local orientation. These directions can be visualized in Abaqus/CAE by

selecting Plot→Material Orientations in the Visualization module. You can choose to suppress the

direction output to the output database.

Input File Usage: Use the following option to indicate that the element material directions should

not be written to the output database:

*ELEMENT OUTPUT, DIRECTIONS=NO

Abaqus/CAE Usage: Step module: field output request editor: toggle off Include local
coordinate directions when available

Node output

You can output nodal variables (displacements, reaction forces, etc.) to the output database. The output

request can be repeated as often as necessary to define output for different node sets. The same node (or

node set) can appear in several output requests.

Selecting the nodal output variables

The nodal variables that can be written to the output database are defined in the “Nodal variables”

section of “Abaqus/Standard output variable identifiers,” Section 4.2.1, “Abaqus/Explicit output variable

identifiers,” Section 4.2.2, and “Abaqus/CFD output variable identifiers,” Section 4.2.3.

Input File Usage: *NODE OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: field or history output request editor: Select from list below

Selecting the nodes for which output is required

For history output you must specify the node set (or, in Abaqus/Explicit, the tracer set) for which output

is being requested. For field output the specification of the node set or tracer set is optional; if you do

not specify a node set or tracer set, the output will be written for all the nodes in the model.

4.1.3–23

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: *NODE OUTPUT, NSET=node_set_name

Abaqus/CAE Usage: Step module: field or history output request editor: Domain: Set: set_name

Requesting field output for the exterior nodes in the model in Abaqus/Standard and Abaqus/Explicit

You can select output on the node set consisting of all the exterior nodes in the model. This node set is

generated internally by Abaqus and includes all the nodes that belong to the exterior three-dimensional

elements.

Input File Usage: *NODE OUTPUT, EXTERIOR

Abaqus/CAE Usage: Step module: field output request editor: Domain: Whole
model; toggle on Exterior only

Controlling the output frequency

The frequency of nodal output is controlled as described above in “Controlling the output frequency.”

Controlling the precision in Abaqus/Standard and Abaqus/Explicit

You can control the precision of nodal output for an analysis.

Input File Usage: Use the following command line option to request single-precision nodal

output:

abaqus job=job-name output_precision=single

Use the following command line option to request double-precision nodal

output:

abaqus job=job-name output_precision=full

Abaqus/CAE Usage: Job module: job editor: Precision: Nodal output precision: Single or Full

Requesting preselected output

You can request the preselected, procedure-specific nodal output variables described in Table 4.1.3–1.

In this case you can specify additional variables as part of the output request.

Alternatively, you can request all nodal variables applicable to the current procedure type. In this

case any additional variables you specify are ignored.

Input File Usage: Use the following option to request the preselected nodal output variables:

*NODE OUTPUT, VARIABLE=PRESELECT

Use the following option to request all applicable nodal output variables:

*NODE OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Step module: field or history output request editor:

Preselected defaults or All

4.1.3–24

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Specifying the directions for nodal field output in Abaqus/Standard and Abaqus/Explicit

For nodal variables 1, 2, and 3 refer to the global directions X, Y, and Z, respectively. For axisymmetric

elements 1 and 2 refer to the global directions r and z. Nodal field results are written to the output

database in the global directions. If a local coordinate system is defined at a node (see “Transformed

coordinate systems,” Section 2.1.5), the local nodal transformations are written to the output database as

well. You can apply these transformations to the results in the Visualization module of Abaqus/CAE to

view components in the local systems.

Specifying the directions for nodal history output in Abaqus/Standard and Abaqus/Explicit

For nodal variables 1, 2, and 3 refer to the global directions X, Y, and Z, respectively. For axisymmetric

elements 1 and 2 refer to the global directions r and z. Nodal history results are written to the output

database in the global directions unless a local coordinate system has been defined at a node (see

“Transformed coordinate systems,” Section 2.1.5). In this case you can specify whether output is

desired in global or local directions.

Obtaining nodal history output in the global directions

You can request vector-valued nodal variables in the global directions, which is the default for nodal

history output requests to the output database since most postprocessors assume that components are

given in the global system.

Input File Usage: *NODE OUTPUT, GLOBAL=YES

Abaqus/CAE Usage: Step module: history output request editor: Domain: Set: toggle on Use
global directions for vector-valued output

Obtaining nodal history output in the local directions defined by nodal transformations

You can request vector-valued nodal variables in the local directions defined by nodal transformations.

Input File Usage: *NODE OUTPUT, GLOBAL=NO

Abaqus/CAE Usage: Step module: history output request editor: Domain: Set: toggle off Use
global directions for vector-valued output

Visualizing boundary conditions

Boundary conditions can be visualized in the Visualization module of Abaqus/CAE by selecting

View→ODB Display Options. Click the Entity Display tab in the dialog box that appears.

In an Abaqus/Standard analysis boundary condition information is written to the output database

only when some nodal output variables are requested as field output.

Tracer particle output from Abaqus/Explicit

In Abaqus/Explicit tracer particles can be used to obtain output at specific material points that may

not correspond to a fixed location in the mesh if adaptive meshing is used. Tracer particles follow the

material motion throughout an analysis regardless of the mesh motion, which makes them ideal for use

4.1.3–25

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

with adaptive meshing (see “Defining ALE adaptive mesh domains in Abaqus/Explicit,” Section 12.2.2).

Both nodal and element output can be obtained at tracer particles.

Defining tracer particles

You define the initial location of each tracer particle to be coincident with a node, called the “parent

node.” These parent nodes are grouped into a tracer set; you must assign a name to the tracer set when

you define the tracer particles.

Input File Usage: *TRACER PARTICLE, TRACER SET=tracer_set_name

list of parent nodes (either node numbers or node set labels)

Abaqus/CAE Usage: Tracer particles are not supported in Abaqus/CAE.

Particle birth stages

Sets of tracer particles can be released from the current locations of the parent nodes at multiple times

during a step. Each release of tracer particles is referred to as a “particle birth.” After particle birth the

tracer particles follow the motion of the associated material regardless of the motion of the mesh. You

can indicate the number of particle birth stages in a step, n. One particle birth will occur at the beginning

of the step, and the rest of the stages will be evenly spaced throughout the step. If you do not specify a

number of particle birth stages, a single particle birth will occur at the beginning of the step.

Input File Usage: *TRACER PARTICLE, TRACER SET=tracer_set_name,

PARTICLE BIRTH STAGES=n

Abaqus/CAE Usage: Tracer particles are not supported in Abaqus/CAE.

Tracer particles in the output database

Tracer sets will appear as both node and element sets in the output database. If a tracer set has multiple

birth stages, additional node and element sets will be created that group all the tracer particles associated

with a given birth stage. These subsets are named by appending the birth stage number to the tracer

set name. For example, if a tracer set with the name INLET is defined with two particle birth stages,

three node sets and three element sets will be created in the output database: INLET Stage 1,
INLET Stage 2, and INLET (which contains all the nodes/elements from both INLET Stage 1
and INLET Stage 2).

Internal field output requests are generated automatically for the requested output variables for all

the elements or nodes in the domain that completely defines the space of possible tracer particle locations.

This region is determined by Abaqus/Explicit and typically corresponds to the elements attached to the

parent nodes and any intersecting adaptive mesh domains. The postprocessing calculator (see “The

postprocessing calculator,” Section 4.3.1) will compute the value of any requested output quantity at a

tracer particle by interpolating the results from the element that encompasses the particle at the time of

output.

Requesting output at tracer particles

You can request element or nodal output for a particular tracer set. Output will be given for all tracer

particles that are associated with the specified tracer set name.

4.1.3–26

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: Use one of the following options:

*NODE OUTPUT, TRACER SET=tracer_set_name

*ELEMENT OUTPUT, TRACER SET=tracer_set_name

Abaqus/CAE Usage: Tracer particle output is not supported in Abaqus/CAE.

Field output at tracer particles

Displacement is the only valid field request for tracer particles. You can obtain the positions of the

tracer particles in a specific tracer set by requesting displacements as nodal field output. Tracer particle

displacements are output automatically if displacement output is requested for the entire model. You can

use the node and element sets created for tracer particles in the output database to control the display of

tracer particles in the Visualization module of Abaqus/CAE.

Input File Usage: Use both of the following options:

*OUTPUT, FIELD

*NODE OUTPUT, TRACER SET=tracer_set_name

U

Abaqus/CAE Usage: Tracer particle output is not supported in Abaqus/CAE.

History output at tracer particles

Requesting history output for tracer particles is similar to requesting history output for elements and

nodes. Any valid element integration point variable can be requested. U, V, A, and COORD are the

only valid nodal requests. Whole element variables and element section variables cannot be requested.

History data are available for a tracer particle only after its birth.

A tracer particle history output request triggers an internal field output request for the desired

variables for all the elements or nodes in the domain that completely defines the space of possible tracer

particle locations.

Input File Usage: Use the following options:

*OUTPUT, HISTORY

*NODE OUTPUT, TRACER SET=tracer_set_name

*ELEMENT OUTPUT, TRACER SET=tracer_set_name

Abaqus/CAE Usage: Tracer particle output is not supported in Abaqus/CAE.

Tracer particle propagation in multiple steps

Once defined, all tracer particles remain active in subsequent steps. However, no further particle births

occur in the steps that follow the tracer set definition. You can define new tracer particles in subsequent

steps by specifying a new tracer set name. The same tracer set name cannot be used more than once

within an analysis.

4.1.3–27

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Tracer particle deactivation

Individual tracer particles are deactivated if they flow out of the mesh across an Eulerian boundary or are

currently tracking material points inside a failed element that has been deleted from the mesh. History

data for tracer particles are zero at all times after deactivation.

Controlling the output frequency at tracer particles

The frequency of tracer particle output is controlled as described above in “Controlling the output

frequency.”

WARNING: Requesting tracer set history output at a high frequency may cause

the output database (.odb) to become large. The disk space required to store the

field data is directly proportional to the size of the adaptive mesh domain and

the number of tracer sets. The disk space usage is independent of the number of

tracer particles in a tracer set. The output database file size is reduced after the

postanalysis calculation is performed.

Integrated output in Abaqus/Explicit

Integrated output can be requested either over a surface or over an element set. An integrated output

request is used to write the time history of variables such as the total force transmitted across a surface,

the total mass of an element set, or the percentage change of the total mass of an element set.

Selecting the integrated output variables
The integrated variables that can be written to the output database are defined in the “Integrated variables”

section of “Abaqus/Explicit output variable identifiers,” Section 4.2.2.

Input File Usage: *INTEGRATED OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: history output request editor: Select from list below

Selecting the surface over which integrated output is required
You can specify the surface directly for an integrated output request. Alternatively, you can associate

an integrated output section that identifies the surface (see “Integrated output section definition,”

Section 2.5.1) with the integrated output request.

Integrated output can be requested for a surface that includes facets, edges, or ends of various

types of deformable elements. The surface can include facets of three-dimensional solid elements and

continuum shell elements; edges of two-dimensional solid elements, membrane elements, conventional

shell, and surface elements; and ends of beam elements, pipe elements, and truss elements.

Specifying the surface for integrated output directly
If you specify the surface for an integrated output request directly, any vector output variables are given

with respect to a fixed global coordinate system and the total moment transmitted across the surface,

SOM, is computed about the fixed global origin. See “Element-based surface definition,” Section 2.3.2,

for information on defining element-based surfaces.

4.1.3–28

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: Use both of the following options:

*SURFACE, NAME=surface_name, TYPE=ELEMENT

*INTEGRATED OUTPUT, SURFACE=surface_name

Abaqus/CAE Usage: You cannot specify the surface for an integrated output request directly in

Abaqus/CAE; you must create an integrated output section as described below.

Specifying the surface through an integrated output section definition
If you associate an integrated output section definition with an integrated output request, the integrated

output variables can be obtained in a local coordinate system that can translate and/or rotate with the

deformation (see Figure 4.1.3–1). In addition, the total moment transmitted across the surface, SOM,

can be computed about a moving location.

2

a

3
b

1
defined section

2
a

1

anchor point

anchor point

Y
Y

X X
elements used to
define the section

2D 3D

defined section

Z

Figure 4.1.3–1 A user-defined local coordinate system.

Input File Usage: Use both of the following options:

*INTEGRATED OUTPUT SECTION, NAME=section_name,

SURFACE=surface_name

*INTEGRATED OUTPUT, SECTION=section_name

Abaqus/CAE Usage: Step module:

Output→Integrated Output Sections→Create: Name: section_name:
select regions for the surface

History output request editor: Domain: Integrated output section:
section_name

4.1.3–29

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Requesting integrated output for “force-flow” studies

To study the “force-flow” through various paths in a model, you must create interior surfaces that cut

through one or more regions (similar to a cross-section) so that you can request integrated output of

the total force transmitted across these surfaces. You can create such interior surfaces over the element

facets, edges, or ends by simply cutting through one or more regions of the model with a plane; see

“Creating interior cross-section surfaces” in “Element-based surface definition,” Section 2.3.2, for more

information.

Input File Usage: Use both of the following options:

*SURFACE, NAME=surface_name, TYPE=CUTTING SURFACE

*INTEGRATED OUTPUT, SURFACE=surface_name

Abaqus/CAE Usage: You cannot specify the surface for an integrated output request directly in

Abaqus/CAE; you must create an integrated output section as described above.

Requesting integrated output over an element set

You can request integrated output over an element set to output its total mass, the percentage change of

its total mass, its average rigid body motion or any combination of these variables. The element set must

have been defined previously, and it can include any type of elements.

Input File Usage: Use the following option to request integrated output over an element set:

*INTEGRATED OUTPUT, ELSET=element set name

Abaqus/CAE Usage: Requesting integrated output over an element set is not supported in

Abaqus/CAE.

Controlling the output frequency

The frequency of integrated output is controlled as described above in “Controlling the output frequency

for history output in Abaqus/Explicit.”

Requesting preselected output

Preselected output variables are available only when the integrated output is requested over a surface. If

integrated output is requested over an element set, you must specify the variables on the data line.

If the integrated output is requested over a surface, you can request the preselected integrated output

variables SOF and SOM. In this case you can also specify additional variables as part of the output

request. Alternatively, you can request all integrated variables applicable to the current procedure type.

In this case any additional variables that you specify are ignored. If you do not request the preselected

variables or all variables, you must specify the variables individually.

Input File Usage: Use the following option to request the preselected integrated output variables:

*INTEGRATED OUTPUT, VARIABLE=PRESELECT

optional additional variables

4.1.3–30

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Use the following option to request all integrated output variables relevant to

the current procedure type:

*INTEGRATED OUTPUT, VARIABLE=ALL

Use the following option to specify individual integrated output variables:

*INTEGRATED OUTPUT

individual variables

Abaqus/CAE Usage: Step module: history output request editor: Preselected defaults or All

Limitations when using integrated output requests

Integrated output requests over a surface are subject to the following limitations:

• Integrated output can be requested over a surface that includes facets, edges, or ends of various

types of deformable elements. The surface can include facets of three-dimensional solid elements

and continuum shell elements; edges of two-dimensional solid elements, membrane elements,

conventional shell, and surface elements; and ends of beam elements, pipe elements, and truss

elements. The surface should not contain facets of axisymmetric elements or facets of rigid

elements.

• When defining the surface, elements on only one side of the surface must be used. Abaqus/Explicit

computes the integrated output variables using the stresses and hourglass-mode forces in elements

underlying the surface as in a free-body diagram.

• The defined surface must cut completely through the mesh, form a closed surface, or be on the

exterior of the body. Figure 4.1.3–2 presents some typical cases of valid surfaces. If the surface cuts

only partially through the mesh, a valid free-body diagram cannot be isolated (see Figure 4.1.3–3)

and incorrect answers may be computed.

beam spring A

spring A

defined section

elements used to define the section

pressure load

Figure 4.1.3–2 Valid section definitions.

4.1.3–31

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

defined section

elements used to define the section

incomplete cut defining elements on
both sides

beam

beam crossing the
section

Figure 4.1.3–3 Invalid section definitions.

• Elements attached to the surface can be on either side of the surface but must not cross the defined

surface. Figure 4.1.3–3 presents a few invalid cases.

• The total force and the total moment in the section are computed based only on the stresses (internal

forces) in the identified elements. Thus, inaccurate results may be obtained if distributed body

loads are present in these elements since their effect on the total force in the section is not included.

Common examples are the inertial loading in dynamic analyses, gravity loads, distributed body

forces, and centrifugal loads. In these cases the total force in the section may depend on the choice

of elements used to define the section as illustrated in Figure 4.1.3–4(a). Assuming that gravity

loading is the only active load, the element stresses will be different in the two elements. Hence,

if the same surface is defined first using element 1 and then using element 2, different answers for

the total force will be obtained. In a similar way the effects of any distributed body fluxes (heat,

electrical, etc.) prescribed in the identified elements are not included.

• Depending on which side of the surface is used to define the section, different answers will be

obtained in analyses similar to the case illustrated in Figure 4.1.3–4(b). Assuming a quasi-static

analysis with the concentrated loads shown in the figure being the only active loads, a zero total

force is reported if the surface is defined using element 1 and a nonzero force equal to the sum of

the concentrated loads is obtained if the surface is defined using element 2.

Total energy output

You can output the total energy of the model or of a specific element set to the output database. Energy

output is available only as history output. Energy output requests are not available for the following

procedures:

• “Eigenvalue buckling prediction,” Section 6.2.3

4.1.3–32

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

1

2

1

2

surface defined
using element 1

surface defined
using element 2

(a) (b)

distributed
body loads

concentrated
loads

Figure 4.1.3–4 Total force in the section.

• “Natural frequency extraction,” Section 6.3.5

• “Complex eigenvalue extraction,” Section 6.3.6

Selecting the energy output variables

The energy variables that can be written to the output database are defined in the “Total energy output

quantities” section of “Abaqus/Standard output variable identifiers,” Section 4.2.1; “Abaqus/Explicit

output variable identifiers,” Section 4.2.2; and “Abaqus/CFD output variable identifiers,” Section 4.2.3.

Input File Usage: *ENERGY OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: history output request editor: Select from list below

Selecting the element set for which total energy output is required

You can specify the element set for which total energy output is being requested. In this case the energies

are summed for all the elements in the specified set. You cannot specify an element set for the following

procedures:

• “Transient modal dynamic analysis,” Section 6.3.7

• “Mode-based steady-state dynamic analysis,” Section 6.3.8

• “Response spectrum analysis,” Section 6.3.10

• “Random response analysis,” Section 6.3.11

The following energies are not available as element set quantities: ALLWK, ALLFD, ALLQB,

ALLKL, ALLFC, and ETOTAL.

If you do not specify an element set, the total energies for the whole model will be output. If

total energy output for both the whole model and for different element sets is desired, the energy output

requests must be repeated: once without a specified element set to request energy output for the whole

model and once for each specified element set.

4.1.3–33

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: *ENERGY OUTPUT, ELSET=element_set_name

Abaqus/CAE Usage: Step module: history output request editor: Domain: Set: set_name

Controlling the output frequency

The frequency of energy output is controlled as described above in “Controlling the output frequency.”

Requesting preselected output

You can request the preselected, procedure-specific energy output variables described in Table 4.1.3–1.

In this case you can specify additional variables as part of the output request.

Alternatively, you can request all energy variables applicable to the current procedure and material

type. In this case any additional variables you specify are ignored.

Input File Usage: Use the following option to request the preselected energy output variables:

*ENERGY OUTPUT, VARIABLE=PRESELECT

Use the following option to request all applicable energy output variables:

*ENERGY OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Step module: history output request editor: Preselected defaults or All

Sensor definition in Abaqus/Standard and Abaqus/Explicit

For nodal and connector element output variables, history output requests can be used to define sensors.

Sensors are named entities that are intended to be used to model physical sensors such as the total force

or displacement of a hydraulic piston, the motion of a given point on a structure, or the acceleration as

measured by an accelerometer. Sensor values can be fed back into the model to produce actuation that

is a function of the sensed quantity thus allowing for modeling of control engineering aspects of your

system.

You can use sensors in user subroutine UAMP or VUAMP to define a customized amplitude that is a

function of sensor values at the end of the previous increment as shown in “VUAMP,” Section 1.2.7 of

the Abaqus User Subroutines Reference Guide, and illustrated in the example in “Crank mechanism,”

Section 4.1.2 of the Abaqus Example Problems Guide. The amplitude function can be used to actuate

any Abaqus feature that can reference an amplitude, such as concentrated loads, boundary conditions,

connector motion/load, distributed pressure, and material properties via field variables.

A sensor must be uniquely associated with a particular scalar output variable (U1, CTF3, etc.) and

can be defined using history output requests by following some simple rules. The sensor name is specified

in the history output definition, and one and only one nodal output or element output request can be

specified for each sensor definition. Since the named sensor must point to a unique real number at a

given time, the node set or element set used in the definition must contain only one member. Moreover,

regardless of the user-specified output frequency, sensors are computed at every increment during the

analysis. However, they are written to the output database according to the user-specified frequency.

Input File Usage: Use the following options to specify a sensor definition using element output:

*OUTPUT, HISTORY, SENSOR, NAME=name

4.1.3–34

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

*ELEMENT OUTPUT

element output variable

Use the following options to specify a sensor definition using nodal output:

*OUTPUT, HISTORY, SENSOR, NAME=name

*NODE OUTPUT

nodal output variable

Abaqus/CAE Usage: Step module: history output request editor: Domain: Set: name,
toggle on Include sensor when available

Filtering output and operating on output in Abaqus/Explicit

You can pre-filter element and nodal field output and element, nodal, contact, integrated, and fastener

interaction history output before it is written to the output database. You can also operate on filtered

or unfiltered (raw) output data to extract the maximum, minimum, or absolute maximum of the output

variables over time. In addition, you can set a limit value for the output variables, and you can stop the

analysis at the time this limit is reached. For field output the time at which the maximum, minimum, and

absolute maximum were reached or the time when the limit was reached is output by default for each

output variable.

If you filter a field output request that includes many output variables and applies to the entire

model, the memory requirements and the running time will both increase. For common output requests

consisting of a few element output variables and a few nodal output variables the memory requirements

and the running time will not increase substantially.

Defining a low-pass Infinite Impulse Response digital filter

You can define three types of low-pass Infinite Impulse Response filters as part of the model definition.

Typical magnitude curves for analog type filters are presented in Figure 4.1.3–5, where represents

the normalized cutoff frequency, which is the ratio of the cutoff frequency to the sampling frequency

(the sampling frequency is the inverse of the time increment). The Butterworth filter is very common; its

response in the pass band is known as maximally flat. The Type I Chebyshev filter has a sharper transition

between the pass band and the stop band, but it has a ripple in the pass band. The Type II Chebyshev

filter also has a sharper transition between the pass band and the stop band than a Butterworth filter

of the same order, but it has a ripple in the stop band. The higher the order of the filter, the narrower

the transition band. However, the computational cost increases as the order increases. In addition, for

high-order filters the phase lag, which is the time delay between the filtered and unfiltered signal, may

become significant. For most applications filter orders of two or four are sufficiently accurate.

To define a Butterworth filter, you must specify the cutoff frequency, , and the filter order, N.

Since the implementation of the filters is done using cascades of second-order sections, Abaqus expects

an even number for the filter order. If you specify an odd number for the order, the order will be increased

internally to the next even number. The default value for the order is two, and the highest order that can

be prescribed is twenty. For the Chebyshev filters you must also specify an additional parameter, the

ripple factor. The ripple factor is equal to for a Type I Chebyshev filter and is equal to for a Type

II Chebyshev filter (see Figure 4.1.3–5).

4.1.3–35

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

1

passband

1
1+ε2

1
A

transition band
c (frequency)

stopband

⏐ ⏐ (magnitude gain)

Butterworth
Type I Chebyshev
Type II Chebyshev

Figure 4.1.3–5 Typical magnitude curves for low-pass filters.

No checks are performed to ensure that the cutoff frequency is appropriate; for example, Abaqus

does not check that only the noise of the signal is eliminated. You need to know the range of the physical

frequencies that are expected in the solution, and you must prescribe a cutoff frequency greater than these

frequencies. In addition, the cutoff frequency should be less than half the sampling frequency; otherwise,

no filtering is performed. Abaqus internally remaps (using a quadratic interpolation) the output raw data

so that the filtering can satisfy the constant time-increment (sampling) requirement.

You must assign each filter definition a name that can be used to refer to the filter from an output

request.

Input File Usage: Use one of the following options to define a filter:

*FILTER, NAME=filter_name, TYPE=BUTTERWORTH

*FILTER, NAME=filter_name, TYPE=CHEBYS1

*FILTER, NAME=filter_name, TYPE=CHEBYS2

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Name: filter_name; Butterworth,
Type I Chebyshev, or Type II Chebyshev

Start-up conditions for the filter

By default, the values of the variables at time zero (zero increment) are used as the initial conditions (or

start-up conditions); however, you can change this initial value.

Input File Usage: Use the following option to use the default initial conditions:

*FILTER, NAME=filter_name, TYPE=filter_type, START CONDITION=DC

4.1.3–36

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Use the following option to specify the initial variable values:

*FILTER, NAME=filter_name, TYPE=filter_type,

START CONDITION=USER DEFINED

Abaqus/CAE Usage: You cannot specify the initial variable values in Abaqus/CAE.

Filtering using the low-pass Infinite Impulse Response filters

To pre-filter element, nodal, contact, or integrated history output or element and nodal field output based

on one of the low-pass Infinite Impulse Response filters that you defined, you refer to this filter by name

from the output request.

Input File Usage: Use the following option to apply a filter to an output request:

*OUTPUT, FILTER=filter_name

Abaqus/CAE Usage: Step module: field or history output request editor: Apply filter: filter_name

Filtering the output based on the time interval

For history output you can request that Abaqus/Explicit create an antialiasing filter that is internally based

on the time interval specified in the output request. The cutoff frequency is set internally to one-sixth of

the time frequency (the time frequency is the inverse of the time interval, t, used for history output). If

no time intervals are specified, the default number of history output intervals is used to create the cutoff

frequency of the filter. You can also use antialiasing filters for a field output request, but in this case

the cutoff frequency is set to one-sixth of a time frequency corresponding to two hundred time intervals

per step if less than two hundred field frames are requested. If more than two hundred field frames are

requested, the cutoff frequency is set to one-sixth of the requested time frequency. The antialiasing filter

is a second-order Butterworth type and a filter definition is not required.

Abaqus/Explicit does not check whether the specified time interval for history output provides an

appropriate cutoff frequency to build the internal filter. You should know approximately how many data

points are required to describe your history curve (or signal) accurately, and Abaqus/Explicit will give

you the most physical (un-aliased) representation of the signal for that number of points. Similarly for

field output Abaqus/Explicit does not check whether the cutoff corresponding to two hundred sampling

intervals or more (if you request more than two hundred frames) is appropriate for your analysis. If a

lower (or higher) cutoff frequency is needed, you should define the filter in the model data.

Filtering field output or history output written at time intervals

You can apply a filter to a field output request or a history output request written at intervals of time in

your analysis.

Input File Usage: Use one of the following options:

*OUTPUT, FIELD, FILTER=ANTIALIASING, TIME INTERVAL=t

*OUTPUT, HISTORY, FILTER=ANTIALIASING, TIME INTERVAL=t

Abaqus/CAE Usage: Step module: field or history output request editor: Frequency: Every
x units of time: t, Apply filter: Antialiasing

4.1.3–37

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Filtering field output written at evenly spaced intervals of time

You can apply a filter to a field output request written at evenly spaced time intervals in your analysis.

Input File Usage: *OUTPUT, FIELD, FILTER=ANTIALIASING, NUMBER INTERVAL=n

Abaqus/CAE Usage: Step module: field output request editor: Frequency: Evenly spaced
time intervals, Interval: n, Apply filter: Antialiasing

Requesting maximum, minimum, or absolute maximum values for an output request

You can apply a filter to a field output request or a history output request to obtain the maximum,

minimum, or absolute maximum values for each variable in the output request. The absolute maximum

option enables you to obtain the largest absolute value, negative or positive, for each variable in the output

request. Abaqus evaluates maximum, minimum, or absolute maximum values at every increment during

the analysis and reports these values at the time given by the output interval specified in the output request.

For field output requests the last output frame will contain the maximum (or absolute maximum) value

and minimum value over the entire step; the intermediate frames will show the maximum, minimum, or

absolute maximum value up to the frame time. An additional output variable containing the time when

the maximum, minimum, or absolute maximum occurred is output automatically for each output variable

requested. This time output is written by default (and it cannot be suppressed).

For field output requests Abaqus filters by default each component of tensor and vector quantities of

output variable independently and provides separate maximum, minimum, or absolute maximum values

for each component of the variable. You can, however, request the maximum or minimum value or apply

a limit value to an invariant such as Mises stress for element output or magnitude for nodal output (see

“Applying bounding values to invariants,” below).

Requesting maximum, minimum, or absolute maximum values for filtered output

You can define a low-pass digital filter that returns the maximum, minimum, or absolute maximum value

for output requests to which it is applied.

Input File Usage: Use one of the following options:

*FILTER, TYPE=filter_type, OPERATOR=MAX

*FILTER, TYPE=filter_type, OPERATOR=MIN

*FILTER, TYPE=filter_type, OPERATOR=ABSMAX

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Butterworth, Type I Chebyshev, or
Type II Chebyshev: Determine bounding value: Maximum, Minimum,

or Absolute maximum

Requesting maximum, minimum, or absolute maximum values for unfiltered output

You can define a filter that returns the maximum, minimum, or absolute maximum value for output

requests to which it is applied without performing any digital filtering of the data.

Input File Usage: Use one of the following options:

*FILTER, OPERATOR=MAX

4.1.3–38

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

*FILTER, OPERATOR=MIN

*FILTER, OPERATOR=ABSMAX

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Operator: Determine
bounding value: Maximum, Minimum, or Absolute maximum

Setting an upper or lower limit on variables in an output request

You can apply a filter to a field output request or a history output request to prescribe a bounding value

for the variables in the output request. If any of the variables in the output request reach a value higher

than the maximum limit, lower than the minimum limit, or greater than the absolute maximum limit,

Abaqus returns the limiting value. The time at which the limit was reached is output separately for each

requested variable. This time output is written by default (and it cannot be suppressed).

Setting an upper limit or a lower limit for filtered output

You can define a low-pass digital filter that enforces an upper or lower bound for the variables in the

output requests to which it is applied.

Input File Usage: *FILTER, TYPE=filter_type, OPERATOR=operator_type, LIMIT=value

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Butterworth, Type I
Chebyshev, or Type II Chebyshev: Determine bounding value:
Maximum, Minimum, or Absolute maximum: toggle on Bounding value
limit: value

Setting an upper limit or a lower limit for unfiltered output

You can define a filter that enforces an upper or lower bound for the variables in the output requests to

which it is applied but that does not perform any Butterworth or Chebyshev filtering of the data.

Input File Usage: *FILTER, OPERATOR=operator_type, LIMIT=value

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Operator: Determine
bounding value: Maximum, Minimum, or Absolute maximum: toggle on

Bounding value limit: value

Stopping an analysis when an output variable reaches a prescribed limit

You can apply a filter to a field output request or a history output request that stops the analysis when the

value of any variable in the output request reaches a specified upper bound or lower bound.

Stopping an analysis of filtered output when a variable reaches a prescribed limit

You can define a low-pass digital filter that stops the analysis if any of the variables in the output requests

to which it is applied reach a prescribed limit.

Input File Usage: *FILTER, TYPE=filter_type, OPERATOR=operator_type,

LIMIT=value, HALT

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Butterworth, Type I Chebyshev, or
Type II Chebyshev: Determine bounding value: Maximum, Minimum,

4.1.3–39

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

or Absolute maximum: toggle on Bounding value limit: value: toggle on
Stop analysis upon reaching limit

Stopping an analysis of unfiltered output when a variable reaches a prescribed limit

You can define a filter that does not perform any Butterworth or Chebyshev filtering of your output data

and stops the analysis if any of the variables in the output requests to which it is applied reach a prescribed

limit.

Input File Usage: *FILTER, OPERATOR=operator_type, LIMIT=value, HALT

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Operator: Determine
bounding value: Maximum, Minimum, or Absolute maximum: toggle

on Bounding value limit: value: toggle on Stop analysis upon reaching
limit

Applying bounding values to invariants

By default, each component of a tensor or vector quantity is filtered individually and the maximum,

minimum, or absolute maximum value and the limiting values are reported separately for each

component. You can, however, apply a filter directly to an invariant. In this case Abaqus internally

monitors the invariant you specified. Abaqus still writes the components to the output database,

but these components correspond to the maximum, minimum, or limiting values of the invariant.

Table 4.1.3–2 shows which invariants are available for output variable categories.

Table 4.1.3–2 Invariants available for output variable categories.

Category First invariant Second invariant

All nodal vector

output
Magnitude –

Stress element output Mises Press

Applying bounding values to invariants of filtered output

You can define a low-pass digital filter that filters the invariant.

Input File Usage: *FILTER, TYPE=filter_type, OPERATOR=operator_type, LIMIT=value,

INVARIANT=FIRST or SECOND

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Butterworth, Type I
Chebyshev, or Type II Chebyshev; toggle on Bounding value limit:
value: Invariant: First or Second

Applying bounding values to invariants of unfiltered output

You can define a filter that does not perform any Butterworth or Chebyshev filtering of your output data

and filters the invariant.

4.1.3–40

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: *FILTER, OPERATOR=operator_type, LIMIT=value, INVARIANT=

FIRST or SECOND

Abaqus/CAE Usage: Step module: Tools→Filter→Create: Type: Operator; toggle on

Bounding value limit: value: Invariant: First or Second

Output variables available for filtering

Low-pass Infinite Impulse Response filters such as Butterworth and Chebyshev filters are intended

for filtering of output variables susceptible to noise, such as accelerations and reaction forces or, to a

lesser degree, stress and strain. However, digital filtering is allowed for most element and nodal output

variables, and you can apply bounding values on unfiltered data for nearly all element and nodal output

variables. Table 4.1.3–3 shows the set of output variables that cannot be digitally filtered but to which

you can apply bounding values, and Table 4.1.3–4 shows the set of output variables for which neither

digital filtering nor application of bounding values are allowed.

Table 4.1.3–3 Output variables to which bounding values can be

applied but digital filtering cannot be applied.

Category Output variables

Tensors and invariants PEEQ

State and field variables TEMP, FV

Energy densities ENER, SENER, PENER, CENER, VENER, DMENER

Additional plasticity quantities PEQC

Cracking model quantities CKSTAT

Whole element variables EDT, EMSF, ELEDEN, ESEDEN, EPDDEN, ECDDEN, EVDDEN,

EASEDEN, EIHEDEN, EDMDDEN, ECDDEN, ELEN, ELSE,

ELCD, ELPD, ELVD, ELASE, ELIHE, ELDMD, ELDC, STATUS

Nodal output variables NT, COORD

Table 4.1.3–4 Output variables that cannot be digitally filtered

or modified with bounding values.

Category Output variables

Cracking model quantities CRACK

Element face variables STAGP, TRNOR, TRSHR

Whole element variables GRAV, BF, SBF, P

Nodal output variables CF

4.1.3–41

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Modal output from Abaqus/Standard

You can output generalized coordinate (modal amplitude and phase) values during modal dynamic

procedures (see “Dynamic analysis procedures: overview,” Section 6.3.1, for an overview of the modal

dynamic procedures available in Abaqus/Standard) to the output database. Modal output is available

only as history output.

Controlling the frequency of output

The frequency of modal output is controlled as described above in “Controlling the output frequency in

Abaqus/Standard.”

Requesting output

You can choose to request all modal variables applicable to the current procedure and material type. In

this case any additional variables you specify are ignored.

Input File Usage: *MODAL OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Step module: history output request editor: All

Surface output in Abaqus/Standard and Abaqus/Explicit

You can write variables associated with surfaces in contact, coupled thermal-electrical-structural

(Abaqus/Standard only), coupled temperature-displacement (Abaqus/Standard only), coupled

thermal-electrical, and crack propagation problems to the output database. Multiple output requests can

be used to customize requests among interactions, surfaces, or node sets.

For surface variables associated with cavity radiation, see “Cavity radiation output in

Abaqus/Standard” below.

Use element output requests (see “Element output”) to obtain database output for contact elements

(such as gap elements; see “Gap contact elements,” Section 40.2.1).

In Abaqus/Standard contact history output cannot be saved in a linear perturbation step with

frequency extraction.

Displacement nodal output is generated automatically in Abaqus/Explicit when requesting surface

output.

Selecting the surface output variables

The surface variables that can be written to the output database are listed in the “Surface variables”

section of “Abaqus/Standard output variable identifiers,” Section 4.2.1, and “Abaqus/Explicit output

variable identifiers,” Section 4.2.2.

Input File Usage: *CONTACT OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: field or history output request editor: Select from list below

4.1.3–42

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Limiting the extent of a surface output request in Abaqus/Standard

Output requests apply to general contact and all contact pair interactions in a model by default in

Abaqus/Standard. Options to limit an output request to certain interactions are discussed below.

Limiting output to a node set in Abaqus/Standard

You can limit a surface output request to apply to a subset of surface nodes involved in contact pairs or

general contact in Abaqus/Standard.

Input File Usage: *CONTACT OUTPUT, NSET=node_set_name

Abaqus/CAE Usage: Step module: field or history output request editor: Domain:
Interaction: contact_interaction_name

Limiting output for contact pairs based on slave and master surface names in Abaqus/Standard

You can limit output to certain contact pairs based on surface names. If you specify both the slave and

master surface names, the output request is limited to a specific contact pair. If you specify the slave

surface but not the master surface, output is written for all contact pairs that involve the specified slave

surface. If you also specify a node set, the applicability of an output request is further limited (i.e., the

output request will generate output only for certain nodes of a certain contact pair (or pairs). Output

requests with a specific slave and/or master surface role specified will not generate output for general

contact.

Input File Usage: *CONTACT OUTPUT, MASTER=master, SLAVE=slave,

NSET=node_set_name

Abaqus/CAE Usage: Step module: field or history output request editor: Domain:
Interaction: contact_interaction_name

Limiting the extent of a surface field output request in Abaqus/Explicit

Field output requests apply to general contact and all contact pair interactions in a model by default

in Abaqus/Explicit. Options to limit a surface field output request to certain interactions are discussed

below.

Limiting surface field output to a contact pair set in Abaqus/Explicit

In Abaqus/Explicit you can select the contact pairs for which surface field output is desired. Surface

output is contact pair-specific, so that contact output for a particular surface involved in a selected contact

pair will include only the contributions from that contact pair if the surface is involved in multiple contact

pairs. Surface output is available only for discrete (node-based or element-based) surfaces; it is not

available for any analytical surfaces within a contact pair.

Input File Usage: Use the following option to request surface field output for a particular contact

pair set:

*CONTACT OUTPUT, CPSET=contact_pair_set_name

4.1.3–43

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Abaqus/CAE Usage: Step module: field output request editor: Domain: Interaction:
contact_interaction_name

Limiting surface field output to general contact in Abaqus/Explicit

You can limit surface field output requests to apply only to general contact in Abaqus/Explicit, but you

cannot further limit this output to a subset of the general contact domain.

Input File Usage: *CONTACT OUTPUT, GENERAL CONTACT

Abaqus/CAE Usage: You cannot limit surface field output to general contact in Abaqus/CAE.

Limiting surface field output to a single surface in Abaqus/Explicit

You can limit surface field output requests to a single surface in the general contact domain in

Abaqus/Explicit. The contact output for the specified surface will include all the contributions from

other contact surfaces interacting with the surface.

Input File Usage: *CONTACT OUTPUT, SURFACE=surface_name

Abaqus/CAE Usage: You cannot limit a single surface output to general contact in Abaqus/CAE.

Limiting surface field output to pairwise surfaces in Abaqus/Explicit

You can specify a pair of surfaces in the general contact domain in Abaqus/Explicit for which the

interactions on one surface due to the contact with another surface will be output. This type of output

cannot be used for surfaces involving Eulerian regions.

Input File Usage: *CONTACT OUTPUT, SURFACE=first_surface_name,

SECOND SURFACE=second_surface_name

Abaqus/CAE Usage: You cannot limit pairwise surface output to general contact in Abaqus/CAE.

Specifying surface history output regions in Abaqus/Explicit

You must specify an interaction to which a surface history output request applies with one of the methods

discussed below.

Specifying surface history output by contact pair set in Abaqus/Explicit

In Abaqus/Explicit you can select the contact pairs for which surface history output is desired. Surface

output is contact pair-specific, so that contact output for a particular surface involved in a selected contact

pair will include only the contributions from that contact pair if the surface is involved in multiple contact

pairs. Surface output is available only for discrete (node-based or element-based) surfaces; it is not

available for any analytical surfaces within a contact pair.

Input File Usage: Use the following option to request surface history output for a particular

contact pair:

*CONTACT OUTPUT, CPSET=contact_pair_set_name

Abaqus/CAE Usage: Step module: history output request editor: Domain: Interaction:
contact_interaction_name

4.1.3–44

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Specifying whole surface history output in Abaqus/Explicit

You can specify a surface in the general contact domain for which whole surface contact force resultants

will be output. Whole surface contact force resultants for a surface in the general contact domain are

available only as history output.

Input File Usage: *CONTACT OUTPUT, SURFACE=surface_name

Abaqus/CAE Usage: Step module: history output request editor: Domain: General
contact surface: surface_name

Specifying pairwise surface history output in Abaqus/Explicit

You can specify a pair of surfaces in the general contact domain for which the resultant contact forces

on one surface due to the contact with another surface will be output. The contact force resultants in

this case consider only the contact interactions between the two specified surfaces. This type of output

cannot be requested for surfaces involving Eulerian regions.

Input File Usage: *CONTACT OUTPUT, SURFACE=first_surface_name,

SECOND SURFACE=second_surface_name

Abaqus/CAE Usage: You cannot request surface history output for a pair of surfaces in Abaqus/CAE.

Specifying surface history output by fastened node set in Abaqus/Explicit

You can select a fastened node set for which bond history output is desired:

Input File Usage: Use the following option to request surface history output for a particular

fastened node set:

*CONTACT OUTPUT, NSET=node_set_name

Abaqus/CAE Usage: You cannot request surface history output for a particular fastened node set in

Abaqus/CAE.

Controlling the output frequency

The frequency of surface output is controlled as described above in “Controlling the output frequency.”

Requesting preselected output

You can request the preselected, procedure-specific surface output variables described in Table 4.1.3–1.

In this case you can specify additional variables as part of the output request.

Alternatively, you can request all surface variables applicable to the current procedure. In this case

any additional variables you specify are ignored.

Input File Usage: Use the following option to request the preselected surface output variables:

*CONTACT OUTPUT, VARIABLE=PRESELECT

Use the following option to request all applicable surface output variables:

*CONTACT OUTPUT, VARIABLE=ALL

4.1.3–45

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Abaqus/CAE Usage: Step module: field or history output request editor:

Preselected defaults or All

Surface output in Abaqus/CFD

You can write field and history output variables associated with surfaces in an Abaqus/CFD analysis to

the output database.

Selecting the surface output variables

The surface variables that can be written to the output database are listed in the “Surface variables”

section of “Abaqus/CFD output variable identifiers,” Section 4.2.3.

Input File Usage: *SURFACE OUTPUT, SURFACE=surface_set_name

list of output variables

Abaqus/CAE Usage: You cannot request surface output in Abaqus/CAE.

Controlling the output frequency

The frequency of surface output is controlled as described above in “Controlling the output frequency.”

Time incrementation output in Abaqus/Explicit

You can output incrementation variables for an Abaqus/Explicit analysis to the output database.

Incrementation output is available only as history output.

Selecting the incrementation output variables

The available incrementation output variables are the Abaqus/Explicit time increment size, DT; the

percent change in mass of the model due to mass scaling, DMASS; and the steady-state detection

variables SSPEEQ, SSSPRD, SSFORC, and SSTORQ.

Input File Usage: *INCREMENTATION OUTPUT

list of output variables

Abaqus/CAE Usage: Step module: history output request editor: Select from list below

Controlling the output frequency

The frequency of incrementation output is controlled as described above in “Controlling the output

frequency for history output in Abaqus/Explicit.”

Requesting preselected output

You can request the preselected, procedure-specific incrementation output variables. In this case you can

specify additional variables as part of the output request.

Alternatively, you can request all incrementation variables applicable to the current procedure type.

In this case any additional variables you specify are ignored.

4.1.3–46

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Input File Usage: Use the following option to request the preselected incrementation output

variables:

*INCREMENTATION OUTPUT, VARIABLE=PRESELECT

Use the following option to request all applicable incrementation output

variables:

*INCREMENTATION OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Step module: history output request editor: Preselected defaults or All

Cavity radiation output in Abaqus/Standard

You can request that cavity-, element-, or surface-based output such as radiation fluxes, viewfactor totals

for a facet, and facet temperatures from an Abaqus/Standard analysis be written to the output database.

The output request can be repeated as often as necessary to define output for different variables, different

cavities, different element sets, different surfaces, etc.

Selecting the radiation output variables

The radiation output variables that can be written to the output database are listed in the “Cavity radiation

variables” section of “Abaqus/Standard output variable identifiers,” Section 4.2.1.

Input File Usage: *RADIATION OUTPUT

list of output variables

Abaqus/CAE Usage: Cavity radiation output requests are not supported in Abaqus/CAE.

Selecting the region of the model for which radiation output is required

You can specify the cavity, element set, or surface for which radiation output is required. Each radiation

output request can apply to only one type of region. If you do not specify a region of the model, radiation

variables are output for all the cavities in the model.

Input File Usage: Use one of the following options:

*RADIATION OUTPUT, CAVITY=cavity_name

*RADIATION OUTPUT, ELSET=element_set_name

*RADIATION OUTPUT, SURFACE=surface_name

Abaqus/CAE Usage: Cavity radiation output requests are not supported in Abaqus/CAE.

Controlling the output frequency

The frequency of radiation output is controlled as described above in “Controlling the output frequency.”

Requesting output

You can request all radiation variables applicable to the current procedure. In this case any additional

variables you specify are ignored.

Input File Usage: *RADIATION OUTPUT, VARIABLE=ALL

Abaqus/CAE Usage: Cavity radiation output requests are not supported in Abaqus/CAE.

4.1.3–47

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

Examples

The examples that follow illustrate how to request multiple types of output over multiple steps in both

Abaqus/Standard and Abaqus/Explicit.

Abaqus/Standard example

The input listing below will produce both field and history output for Step 1. Field output will be written

every 2 increments. This field output request consists of preselected element variables for the whole

model, as well as the variable PEQC. In addition, plastic strains will be written out for element set

SMALL, and the nodal variables U and RF will be written to the output database for node set NSMALL.
History output will be written every increment. The variables ALLKE, ALLSE, and ALLWK will be

written for the whole model. In addition, ALLPD will be written for element set SMALL.
In Step 2 the history output request defined in Step 1 is replaced by a request for the energy variables

ALLKE, ALLPD, and ALLSE for element set SMALL. The history output request defined in Step 1 is

removed. The field output request defined in Step 1 is passed into Step 2 unchanged, but another field

output request for element energies at every increment is added.

*STEP

*STATIC
...
...

*OUTPUT, FIELD, FREQUENCY=2

*ELEMENT OUTPUT, VARIABLE=PRESELECT
PEQC,

*ELEMENT OUTPUT, ELSET=SMALL
PE,

*NODE OUTPUT, NSET=NSMALL
U, RF

*OUTPUT, HISTORY, FREQUENCY=1

*ENERGY OUTPUT
ALLKE, ALLSE, ALLWK

*ENERGY OUTPUT, ELSET=SMALL
ALLPD

*END STEP

*STEP

*STATIC
...
...

*OUTPUT, HISTORY, OP=REPLACE, FREQUENCY=1

*ENERGY OUTPUT, ELSET=SMALL
ALLKE, ALLPD, ALLSE

*OUTPUT, FIELD, OP=ADD, FREQUENCY=1

4.1.3–48

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

*ELEMENT OUTPUT
ELEN

*END STEP

Abaqus/Explicit example

The input listing below will produce both field and history output for Step 1. Field output will be written

at 5 equally spaced intervals, and the time marks will be hit exactly. This field output request consists

of preselected element variables for the whole model, as well as the variable PEQC. In addition, plastic

strains will be written out for element set SMALL, and the nodal variables U and RF will be written to

the output database for node set NSMALL. History output will be written at a time interval of 0.005.

The Abaqus/Explicit time step, DT, will be written, along with the variables ALLKE, ALLSE, and

ALLWK for the whole model. The output variables SOAREA and SOF integrated over the surface

CROSS_SECTION1will be written. The preselected variables SOF and SOM integrated over the surface

CROSS_SECTION2 defined by the integrated output section SECTION1 will be written in the local

coordinate system LOCALSYSTEM. In addition, ALLPD will be written for element set SMALL.

In Step 2 the history output request defined in Step 1 is replaced by a request for the energy variables

ALLKE, ALLPD, and ALLSE for element set SMALL. The history output request defined in Step 1 is

removed. The field output request defined in Step 1 is passed into Step 2 unchanged, but another field

output request for element energies at 10 equally spaced intervals is added.

*STEP

*DYNAMIC, EXPLICIT,.1...
...

*OUTPUT, FIELD, NUMBER INTERVAL=5, TIME MARKS=YES

*ELEMENT OUTPUT, VARIABLE=PRESELECT
PEQC,

*ELEMENT OUTPUT, ELSET=SMALL
PE,

*NODE OUTPUT, NSET=NSMALL
U, RF

*OUTPUT, HISTORY, TIME INTERVAL=0.005

*INCREMENTATION OUTPUT
DT

*ENERGY OUTPUT
ALLKE, ALLSE, ALLWK

*ENERGY OUTPUT, ELSET=SMALL
ALLPD

*INTEGRATED OUTPUT, SURFACE=CROSS_SECTION1
SOF, SOAREA

*INTEGRATED OUTPUT SECTION, NAME=SECTION1,
SURFACE=CROSS_SECTION2, ORIENTATION=LOCALSYSTEM

*INTEGRATED OUTPUT, SECTION=SECTION1, VARIABLE=PRESELECT

4.1.3–49

Abaqus Version 6.6 ID:

Printed on:

.ODB OUTPUT

*END STEP

*STEP

*DYNAMIC, EXPLICIT,.1...
...

*OUTPUT, HISTORY, OP=REPLACE, TIME INTERVAL=0.005

*ENERGY OUTPUT, ELSET=SMALL
ALLKE, ALLPD, ALLSE

*OUTPUT, FIELD, OP=ADD, NUMBER INTERVAL=10

*ELEMENT OUTPUT
ELEN

*END STEP

4.1.3–50

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

4.1.4 ERROR INDICATOR OUTPUT

Products: Abaqus/Standard Abaqus/CAE

WARNING: Error indicator output variables are approximate and do not represent

an accurate or conservative estimate of your solution error. The quality of an error

indicator can be particularly poor if your mesh is coarse. The error indicator

quality improves as you refine the mesh; however, you should never interpret these

variables as indicating what the value of a solution variable would be upon further

refinement of the mesh.

References

• “Abaqus/Standard output variable identifiers,” Section 4.2.1

• “Adaptive remeshing: overview,” Section 12.3.1

• “Selection of error indicators influencing adaptive remeshing,” Section 12.3.2

• *CONTACT OUTPUT

• *ELEMENT OUTPUT

Overview

Error indicator output variables:

• indicate discretization error in a solution quantity (the base solution) and have units of the base

solution;

• can be requested with element output or contact output options or as part of an adaptive remeshing

rule;

• can be normalized by forms of the base solution to obtain nondimensional, such as percentage,

indicators of error;

• can increase your analysis solution time significantly in some cases; and

• are available in Abaqus/Standard but not Abaqus/Explicit.

Solution accuracy

The ability of a finite element analysis to make useful predictions of physical behavior depends on many

factors, including:

• representation of geometry, material behavior, load history, and various other modeling aspects

associated with describing the problem posed;

• spatial and temporal discretization (mesh refinement and incrementation); and

• convergence tolerances.

4.1.4–1

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

The primary focus of this section is spacial discretization error. Discussion to help understand and

control other potential sources of error appears in “Convergence criteria for nonlinear problems,”

Section 7.2.3, “Time integration accuracy in transient problems,” Section 7.2.4, “Evaluating hyperelastic

and viscoelastic material behavior,” Section 12.4.7 of the Abaqus/CAE User’s Guide, and other portions

of the Abaqus documentation. You should perform a detailed study of your analysis methods and

assumptions as part of any error assessment.

Spatial discretization error

The finite element discretization of a model domain results in an approximation to the exact solution for

all but trivial analyses. To aid you in understanding the extent and spatial distribution of the discretization

error in a finite element solution, Abaqus/Standard provides a set of error indicator output variables.

Ideally, error indicator output variables should be supplemented by other techniques, such as a mesh

refinement study, to gain confidence that discretization error is not significantly degrading the ability

of the finite element analysis to make useful predictions. In fact, error indicators can help automate a

mesh refinement study through the adaptive remeshing functionality of Abaqus/CAE; error indicators

variables are used by this functionality to determine where to refine or coarsen a mesh (see “Adaptive

remeshing: overview,” Section 12.3.1).

Error indicator and base solution variables available in Abaqus/Standard

Abaqus error indicator variables provide a measure of the local error resulting from mesh discretization.

Each error indicator, , provides an indication of error in a particular base solution variable, . For

example, the Mises stress error indicator, MISESERI, provides an indicator of error in the Mises stress

variable MISESAVG. Table 4.1.4–1 shows the available error indicator variables and the corresponding

base solution variables.

Table 4.1.4–1 Error indicator variables and their corresponding base solution variables.

Solution Quantity Error indicator
variable ()

Base solution
variable ()

Element energy density ENDENERI ENDEN

Mises stress MISESERI MISESAVG

Contact pressure CPRESSERI CPRESS

Contact shear stress CSHEARERI CSHEAR

Equivalent plastic strain PEEQERI PEEQAVG

Plastic strain PEERI PEAVG

Creep strain CEERI CEAVG

Heat flux HFLERI HFLAVG

Electric flux EFLERI EFLAVG

Electric potential gradient EPGERI EPGAVG

4.1.4–2

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

The algorithms used by Abaqus/CAE to modify mesh seed sizes for the adaptive remeshing

capability consider error indicator values and corresponding base solution values together. When you

create a remeshing rule and request a particular error indicator, Abaqus automatically writes the error

indicator and corresponding base solution variable to the output database.

Input File Usage: *OUTPUT, FIELD, ELSET=ElsetName

*ELEMENT OUTPUT

*CONTACT OUTPUT

Abaqus/CAE Usage: Step module: Output→Field Output Request

Or, if you use the following option to specify an adaptive remeshing rule, the

associated error indicator and base solution output will occur by default:

Mesh module: Create Remeshing Rule: Step and Indicator

Effect of error indicator output requests on solution time

Abaqus/Standard determines error indicator variables based on the difference between a smoothed and

unsmoothed distribution of the base solution, using a smoothing technique such as the patch recovery

technique of Zienkiewicz and Zhu, (1987). The smoothing calculations occasionally noticeably increase

analysis time. If you find that adding an error indicator output request significantly increases analysis

time, strategies for reducing this effect include reducing the output frequency and limiting the output

request to a particular region of interest. Computations for most error indicator variables only occur

just prior to writing the error indicator variable to the output database, so reducing the output frequency

will tend to reduce the computation time; however this is not the case for the element energy density

error indicator, because contributions to this error indicator are accumulated each increment regardless

of whether this error indicator is output for a given increment.

Additional considerations for extent of output requests for element error indicator variables

When you request element error indicator output, the request should only apply to elements supported

for error indicator output.

The patch recovery technique used to compute element error indicator variables assumes that the

solution should be continuous over the element set specified. Abaqus/Standard confirms that your error

indicator output specification is consistent with this assumption by checking section property references

within the error indicator domain and issues a warning message if the elements in the provided element

set refer to distinct section definitions. You can safely ignore this warning if the sections are identical in

their properties.

Interpreting error indicator output

When interpreting error indicator output, you should remember that the error indicators are approximate

measures of the local error in the base solution and are, themselves, subject to discretization error. The

accuracy of the error estimates tends to improve as the mesh is refined. Each error indicator variable

has the same units has the corresponding base solution variable, which facilitates comparison of local

estimates of the error magnitude with local estimates of the base solution.

4.1.4–3

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

Regions of interest of a base solution and corresponding error indicator

Viewing contour plots of a base solution variable and corresponding error indicator variable side-by-side

can provide a useful perspective on the solution accuracy. For example, if the base solution is expressed

in units of stress, the corresponding error indicator is also expressed in units of stress. Figure 4.1.4–1

shows contour plots of CPRESS and CPRESSERI for an analysis of a sphere pressed into a rigid plate.

These plots can be interpreted as follows:

• The contact pressure solution is quite accurate near the center of the active contact region, where

the contact pressure is largest, because the error indicator is a small fraction of the base solution in

that region.

• The contact pressure solution is less accurate near the perimeter of the active contact region, where

local variations in the contact pressure solution are largest (but the contact pressure is significantly

less than the maximum value), because the error indicator is quite large compared to the base

solution in that region.

The analyst may judge that the level of mesh refinement is adequate if the maximum contact pressure

is of primary interest in such a case. Local mesh refinement would be needed to accurately predict

the maximum contact pressure if the active contact region was significantly smaller than that shown in

Figure 4.1.4–1.

CPRESSERI

+0.0e+00
+1.6e+03
+3.2e+03
+4.8e+03
+6.4e+03
+8.0e+03
+9.7e+03
+1.1e+04
+1.3e+04
+1.4e+04
+1.6e+04

CPRESS

+0.0e+00
+6.1e+03
+1.2e+04
+1.8e+04
+2.4e+04
+3.0e+04
+3.6e+04
+4.2e+04
+4.8e+04
+5.4e+04
+6.1e+04

Figure 4.1.4–1 Contour plots of CPRESS and CPRESSERI for

contact between a deformable sphere and a rigid plate.

An error indicator tends to give a crude, non-conservative approximation of the deviation from

the exact solution if the mesh is coarse relative to local solution variations or the exact solution to the

4.1.4–4

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

problem posed involves a stress singularity. The following qualitative interpretations of error indicator

results exceeding approximately 10% of base solution results are often appropriate:

• “Significant potential for solution inaccuracy exists in this region.”

• “The mesh may be too coarse to give a good estimate of solution error in this region.”

• “Perhaps a stress singularity exists at this corner.”

Calculating normalized measures of solution error

You can use corresponding error indicator and base solution variables, and , respectively, to compute

a field of local, normalized error indicators:

where is a normalized error measure. For example,

provides a percentage form of the Mises stress-based error indicator; however this normalized error

measure may not be particularly useful, because it:

• will tend to draw attention to regions where base solution values are small, which typically are not

critical regions of a design; and

• will have divide-by-zero issues where the base solution value is zero.

Other normalization approaches, such as normalizing based on a global norm of the base solution variable

or a constant value that you choose (such as the maximum value of the base solution allowed in a design),

may be more effective.

Normalized forms of an error indicator are not available directly through the error indicator

output variables; however, you can calculate normalized measures using the Visualization module of

Abaqus/CAE (Abaqus/Viewer) to operate on field output data. For more information, see “Building

valid field output expressions,” Section 42.7.1 of the Abaqus/CAE User’s Guide. Alternatively, you

can use the Abaqus Scripting Interface to read the error indicator and the base solution from the output

database and calculate normalized forms. For more information, see Chapter 9, “Using the Abaqus

Scripting Interface to access an output database,” of the Abaqus Scripting User’s Guide.

Limitations

Only the following element types are supported for error indicator computations:

• Planar continuum triangles and quadrilaterals

• Shell triangles and quadrilaterals

• Tetrahedrals

• Hexahedrals

Elements with variable nodes are not supported.

4.1.4–5

Abaqus Version 6.6 ID:

Printed on:

ERROR INDICATOR OUTPUT

Additional reference

• Zienkiewicz, O. C., and J. Z. Zhu, “A Simple Error Estimator and Adaptive Procedure for

Practical Engineering Analysis,” International Journal for Numerical Methods in Engineering,

vol. 24, pp. 337–357, 1987.

4.1.4–6

Abaqus Version 6.6 ID:

Printed on:

OUTPUT VARIABLES

4.2 Output variables

• “Abaqus/Standard output variable identifiers,” Section 4.2.1

• “Abaqus/Explicit output variable identifiers,” Section 4.2.2

• “Abaqus/CFD output variable identifiers,” Section 4.2.3

4.2–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

4.2.1 Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Product: Abaqus/Standard

References

• “Output,” Section 4.1.1

• “Output to the data and results files,” Section 4.1.2

• “Output to the output database,” Section 4.1.3

Overview

The tables in this section list all of the output variables that are available in Abaqus/Standard. These

output variables can be requested for output to the data (.dat) and results (.fil) files (see “Output to
the data and results files,” Section 4.1.2) or as either field- or history-type output to the output database

(.odb) file (see “Output to the output database,” Section 4.1.3). As noted specifically in the tables, a

few of the output variables are written only to the output database and restart (.res) files (they are not

available for output to the data or results files). These variables can be accessed only in the Visualization

module of Abaqus/CAE (Abaqus/Viewer). Each table contains one variable type:

• Element integration point variables

• Element centroidal variables

• Element section variables

• Whole element variables

• Whole element energy density variables

• Nodal variables

• Modal variables

• Surface variables

• Cavity radiation variables

• Section variables

• Whole and partial model variables

• Solution-dependent amplitude variables

• Structural optimization variables

Symbols used in the tables

The availability of the various output variable identifiers is defined by a in the columns of the table,

under the following headings:

.dat

means that the identifier can be used as a data file output selection.

4.2.1–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

.fil

means that the identifier can be used as a results file output selection.

.odb Field

means that the identifier can be used as a field-type output selection to the output database.

.odb History

means that the identifier can be used as a history-type output selection to the output database.

The appearance of a in the .dat, .fil, or .odb columns indicates that the variable cannot be requested

by name but that it will be written to the data, results, or output database file according to the conditions

specified in the table for that particular variable type.

Requesting output of components

Variable identifiers of the form ABCn can be used with (ABC1, ABC2, …), where the

highest value of n is determined by the type of variable. Similarly, variable identifiers of the form DEF

can be used for the ranges of i and j indicated (DEF11, DEF12,).

Individual components cannot be requested in the results (.fil) file. For postprocessing of a

particular component of a variable, request file output for all components of the variable. Output for

individual variables can be requested during postprocessing.

Individual components of variables can be requested as history-type output in the output database

for X–Y plotting in Abaqus/CAE. Individual component requests to the output database are not available

for field-type output, with the exception of state, field, and user-defined variables (SDVn, FVn, and

UVARMn). If a particular component is desired for contouring in Abaqus/CAE, request field output of

the generic variable (e.g., S for stress). Output for individual components of field output can be requested

within the Visualization module of Abaqus/CAE.

Direction definitions

The direction definitions depend on the variable type.

Direction definitions for element variables

For components of stress, strain, and other tensor quantities 1, 2, and 3 refer to the directions in

an orthogonal coordinate system. These directions are global directions for solid elements, surface

directions for shell and membrane elements, and axial and transverse directions for beam elements. For

finite-membrane-strain shell elements, membrane elements, and continuum elements associated with a

local orientation (see “Orientations,” Section 2.2.5), the local output directions rotate with the average

rotation of the element (integral with respect to time of the spin—see “Stress rates,” Section 1.5.3 of the

Abaqus Theory Guide). Tensor components in these cases are output in the rotating local directions.

In some cases the local output directions may differ from one integration point to the next within an

element. Abaqus/Standard does not take this variation into account when extrapolating output variables

to the nodes, which affects output such as element quantities averaged at the nodes or contour plots of

4.2.1–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

individual tensor components. Invariant quantities at the integration points will not be influenced by the

local output directions.

You can control writing the local directions to the output database file or to the results file (see

“Specifying the directions for element output in Abaqus/Standard and Abaqus/Explicit” in “Output to

the output database,” Section 4.1.3, and “Output of local directions to the results file” in “Output to the

data and results files,” Section 4.1.2). By default, the local directions are written to the output database for

all frames that include element field output. The local (material) directions (averaged at the nodes) can

be visualized in Abaqus/CAE by selecting Plot→Material Orientations in the Visualization module.

The directions can be printed to the data file by using user subroutine UVARM.

Direction definitions for equivalent rigid body variables

For all equivalent rigid body variables 1, 2, and 3 refer to global directions.

Direction definitions for nodal variables

For nodal variables 1, 2, and 3 are global directions (1=X, 2=Y, and 3=Z; or for axisymmetric elements,

1=r and 2=z). If a local coordinate system is defined at a node (see “Transformed coordinate systems,”

Section 2.1.5), you can specify whether output to the data or results file of vector-valued quantities at

these nodes is in the local or global system (see “Specifying the directions for nodal output” in “Output

to the data and results files,” Section 4.1.2). By default, nodal output is written to the data file in the

local system, whereas it is written to the results file in the global system (since this is more convenient

for postprocessing).

If nodal field output is requested for a node that has a local coordinate system defined, a quaternion

representing the rotation from the global directions is written to the output database. Abaqus/CAE

automatically uses this quaternion to transform the nodal results into the local directions. Nodal history

data written to the output database are always stored in the global directions.

Direction definitions for integrated variables

For components of total force, total moment, and similar variables obtained through integration over a

surface, the directions 1, 2, and 3 refer to directions in an orthogonal coordinate system. A fixed global

coordinate system is used if the surface is specified directly for the integrated output request. If the

surface is identified by an integrated output section definition (see “Integrated output section definition,”

Section 2.5.1) that is associated with the integrated output request, a local coordinate system in the initial

configuration can be specified and can translate or rotate with the deformation.

Distributed load output

You need to be aware of limitations that may be encountered when distributed load output is requested.

Distributed load output and user subroutines

Output can be requested for many of the distributed loads discussed in “Loads,” Section 34.4. However,

contributions to these loads defined through user subroutines (see “Abaqus/Standard subroutines,”

4.2.1–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Section 1.1 of the Abaqus User Subroutines Reference Guide) are not displayed, except for the variables

FILMCOEF and SINKTEMP.

Distributed load output with modal procedures

For modal procedures only the magnitude of the load is written to the output database.

Strain output

The total strain E is composed of the elastic strain EE, the inelastic strain IE, and the thermal strain THE.

The inelastic strain IE consists of the plastic strain PE and the creep strain CE.

For geometrically nonlinear analysis Abaqus/Standard makes it possible to output different strain

measures as well as elastic and various inelastic strains. The various total strain measures (integrated

strain measure E, nominal strain measure NE, and logarithmic strain measure LE) are described in

“Conventions,” Section 1.2.2. The default strain measure for output to the data (.dat) and results

(.fil) files is E. However, for geometrically nonlinear analysis using element formulations that

support finite strains, E is not available for output to the output database (.odb) file, and LE is the

default strain measure.

Temperature output

In Abaqus temperature can either be a field variable (stress analysis, mass diffusion, …) or a degree of

freedom (heat transfer analysis, fully coupled temperature-displacement analysis, …). For any analysis

that involves temperature, you can request the temperature either at nodes (variable NT) or in elements

(variable TEMP). If element temperature output is requested at the nodes, the integration point values

are extrapolated and, if requested, averaged. These extrapolated values are generally not as accurate

as the nodal temperatures themselves. An exception to this is adiabatic analysis, in which the element

temperatures change due to plastic heat generation but the nodal temperatures are not updated. In that

case the current nodal temperatures are obtained only if element temperature output is requested at the

nodes.

For continuum elements there is only one temperature value per node (NT11). For shells and beams

more than one temperature is available for each node (NT11, NT12, …) since a temperature gradient

can exist through the thickness of a shell or across the cross-section of a beam. In general, variables

NT12, NT13, etc. contain temperature values. However, when temperature is defined by specifying

temperature gradients, nodal temperatures for a given section point can be obtained only by using the

variable TEMP. See “Specifying temperature and field variables” in “Using a beam section integrated

during the analysis to define the section behavior,” Section 29.3.6, and “Specifying temperature and

field variables” in “Using a shell section integrated during the analysis to define the section behavior,”

Section 29.6.5, for discussions on specifying temperatures in beams and shells.

Principal value output

Output of the principal values can be requested for stresses, strains, and other material tensors. Either

all principal values or the minimum, maximum, or intermediate values can be obtained. All principal

4.2.1–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

values of tensor ABC are obtained with the request ABCP. The minimum, intermediate, and maximum

principal values are obtained with the requests ABCP1, ABCP2, and ABCP3.

For three-dimensional, (generalized) plane strain, and axisymmetric elements all three principal

values are obtained. For plane stress, membrane, and shell elements, the out-of-plane principal value

cannot be requested for history-type output. For field-type output, Abaqus/CAE always reports the out-

of-plane principal value as zero. Principal values cannot be obtained for truss elements or for any beam

elements other than the three-dimensional beam elements with torsional shear stresses.

If a principal value or an invariant is requested for field-type output, the output request is replaced

with an output request for the components of the corresponding tensor. Abaqus/CAE calculates all

principal values and invariants from these components. If a principal value is desired as history-type

output, it must be explicitly requested since Abaqus/CAE does no calculations on history data.

Tensor output

Tensor variables that are written to the output database as field-type output are written as components

in either the default directions defined by the convention given in “Orientations,” Section 2.2.5 (global

directions for solid elements, surface directions for shell and membrane elements, and axial and

transverse directions for beam elements), or the user-defined local system. Abaqus/CAE calculates all

principal values and invariants from these components. See “Writing field output data,” Section 9.6.4

of the Abaqus Scripting User’s Guide, for a description of the different types of tensor variables.

For plane stress, membrane, and shell elements, only the in-plane tensor components (11, 22, and

12 components) are stored by Abaqus/Standard. The out-of-plane direct component for stress (S33) is

reported as zero to the output database as expected, and the out-of-plane component of strain (E33) is

reported as zero even though it is not. This is because the thickness direction is computed based on

section properties rather than at the material level. The out-of-plane components can be requested for

field-type output and cannot be requested for history-type output. The out-of-plane stress components

are not reported to the data (.dat) file or to the results (.fil) file.

For three-dimensional beam elements with torsional shear stresses, only the axial and the torsional

components (the 11 and 12 components) are stored by Abaqus/Standard. The other direct component

(the 22 component) is reported as zero for field-type output and cannot be requested for history-type

output.

The components for tensor variables are written to the output database in single precision.

Therefore, a small amount of precision roundoff error may occur when calculating the variables’

principal values. Such roundoff error may be observed, for example, when analytically zero values are

calculated as relatively small nonzero values.

Element integration point variables

You can request element integration point variable output to the data, results, or output database file (see

“Element output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output

to the output database,” Section 4.1.3).

4.2.1–5

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Tensors and associated principal values and invariants

S • • • • All stress components.

Sij • • -component of stress ().

SP • • • • All principal stresses.

SPn • • Minimum, intermediate, and maximum principal

stresses (SP1 SP2 SP3).

SINV • • • • All stress invariant components (MISES, TRESC,

PRESS, INV3). For field output SINV is converted to

a request for the generic variable S.

MISES • • Mises equivalent stress, defined as

where is the deviatoric stress tensor, defined as

where is the stress, p is the equivalent

pressure stress (defined below), and is a unit matrix.

In index notation

where , , and is the

Kronecker delta.

MISESMAX • Maximum Mises stress among all of the section

points. For a shell element it represents the maximum

Mises value among all the section points in the layer,

for a beam element it is the maximum Mises stress

among all the section points in the cross-section, and

for a solid element it represents the Mises stress at the

integration points.

MISESONLY • Mises equivalent stress. When MISESONLY is used

instead of MISES, the stress components are not

written to the output database; consequently, the size

of the database is reduced.

4.2.1–6

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

TRESC • • Tresca equivalent stress, defined as the maximum

difference between principal stresses.

PRESS • • Equivalent pressure stress, defined as

PRESSONLY • Equivalent pressure stress. When PRESSONLY is

used instead of PRESS, the stress components are not

written to the output database; consequently, the size

of the database is reduced.

INV3 • • Third stress invariant, defined as

where is the deviatoric stress defined in the context

of Mises equivalent stress, above.

TRIAX • • Stress triaxiality, .

YIELDS • • Yield stress, , available for Mises, Johnson-Cook,

and Hill plasticity material models.

ALPHA • • • • All total kinematic hardening shift tensor components.

ALPHAij • • -component of the total shift tensor ().

ALPHAk • • All kinematic hardening shift tensor components

().

ALPHAk_ij • -component of the kinematic hardening shift

tensor (and).

ALPHAN • • All tensor components of all the kinematic hardening

shift tensors, except the total shift tensor, ALPHA.

ALPHAP • • • • All principal values of the total shift tensor.

ALPHAPn • • Minimum, intermediate, and maximum principal

values of the total shift tensor (ALPHAP1

ALPHAP2 ALPHAP3).

E • • • • All strain components. For geometrically nonlinear

analysis using element formulations that support finite

strains, E is not available for output to the output

database (.odb) file.

Eij • • -component of strain ().

EP • • • • All principal strains.

EPn • • Minimum, intermediate, and maximum principal

strains (EP1 EP2 EP3).

4.2.1–7

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

NE • • • • All nominal strain components.

NEij • • -component of nominal strain ().

NEP • • • • All principal nominal strains.

NEPn • • Minimum, intermediate, and maximum principal

nominal strains (NEP1 NEP2 NEP3).

LE • • • • All logarithmic strain components. For geometrically

nonlinear analysis using element formulations that

support finite strains, LE is the default strain measure

for output to the output database (.odb) file.

LEij • • -component of logarithmic strain ().

LEP • • • • All principal logarithmic strains.

LEPn • • Minimum, intermediate, and maximum principal

logarithmic strains (LEP1 LEP2 LEP3).

ER • • • • All mechanical strain rate components.

ERij • • -component of strain rate ().

ERP • • • • All principal mechanical strain rates.

ERPn • • Minimum, intermediate, and maximum principal

mechanical strain rates (ERP1 ERP2 ERP3).

DG • • All components of the total deformation gradient.

Available only for hyperelasticity, hyperfoam,

and material models defined in user subroutine

UMAT. For fully integrated first-order quadrilaterals

and hexahedra, the selectively reduced integration

technique is used. A modified deformation gradient is

output for these elements.

DGij • -component of the total deformation gradient (

).

DGP • • Principal stretches.

DGPn • Minimum, intermediate, and maximum values of

principal stretches (DGP1 DGP2 DGP3).

EE • • • • All elastic strain components.

EEij • • -component of elastic strain ().

EEP • • • • All principal elastic strains.

EEPn • • Minimum, intermediate, and maximum principal

elastic strains (EEP1 EEP2 EEP3).

IE • • • • All inelastic strain components.

4.2.1–8

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

IEij • • -component of inelastic strain ().

IEP • • • • All principal inelastic strains.

IEPn • • Minimum, intermediate, and maximum principal

inelastic strains (IEP1 IEP2 IEP3).

THE • • • • All thermal strain components.

THEij • • -component of thermal strain ().

THEP • • • • All principal thermal strains.

THEPn • • Minimum, intermediate, and maximum principal

thermal strains (THEP1 THEP2 THEP3).

PE • • • • All plastic strain components. This identifier also

provides PEEQ, a yes/no flag telling if the material

is currently yielding or not (AC YIELD: “actively

yielding”; that is, the plastic strain changed during the

increment), and PEMAG when PE is requested for the

data or results files. When PE is requested for field

output to the output database, PEEQ is also provided.

PEij • • -component of plastic strain ().

PEEQ • • • Equivalent plastic strain. This identifier also provides

a yes/no flag (1/0 on the output database) telling if

the material is currently yielding or not (AC YIELD:

“actively yielding”; that is, the plastic strain changed

during the increment).

The equivalent plastic strain is defined as

, where is the initial equivalent plastic

strain.

The definition of depends on the material

model. For classical metal (Mises) plasticity

. For other plasticity models,

see the appropriate section in Part V, “Materials.”

When plasticity occurs in the thickness direction to a

gasket element whose plastic behavior is specified as

part of a gasket behavior definition, PEEQ is PE11.

PEEQMAX • Maximum equivalent plastic strain, PEEQ, among all

of the section points. For a shell element it represents

the maximumPEEQ value among all the section points

in the layer, for a beam element it is the maximum

4.2.1–9

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

PEEQ among all the section points in the cross-section,

and for a solid element it represents thePEEQ at the

integration points.

PEEQT • • • • Equivalent plastic strain in uniaxial tension for cast

iron, Mohr-Coulomb tension cutoff, and concrete

damaged plasticity, which is defined as . This

identifier also provides a yes/no flag (1/0 on the output

database) telling if the material is currently yielding

or not (AC YIELDT: “actively yielding”; that is, the

plastic strain changed during the increment).

PEMAG • • • Plastic strain magnitude, defined as .

For most materials, PEEQ and PEMAG are equal only

for proportional loading. When plasticity occurs in the

thickness direction to a gasket element whose plastic

behavior is specified as part of a gasket behavior

definition, PEMAG is PE11.

PEP • • • • All principal plastic strains.

PEPn • • Minimum, intermediate, and maximum principal

plastic strains (PEP1 PEP2 PEP3).

CE • • • • All creep strain components. This identifier also

provides CEEQ, CESW, and CEMAG when CE is

requested for the data or results files.

CEij • • -component of creep strain ().

CEEQ • • • Equivalent creep strain, defined as .

The definition of depends on the material model.

For classical metal (Mises) creep .

For other creep models, see the appropriate section in

Part V, “Materials.”

When creep occurs in the thickness direction to a

gasket element whose creep behavior is specified as

part of a gasket behavior definition, CEEQ is CE11.

CESW • • • Magnitude of swelling strain.

For cap creep CESW gives the equivalent creep strain

produced by the consolidation creep mechanism,

4.2.1–10

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

defined as , where is the equivalent creep

pressure,

CEMAG • • • Magnitude of creep strain (defined by the same

formula given above for PEMAG, applied to the creep

strains).

CEP • • • • All principal creep strains.

CEPn • • Minimum, intermediate, and maximum principal

creep strains (CEP1 CEP2 CEP3).

Additional element stresses

CS11 • • • • Average contact pressure for link and three-

dimensional line gasket elements. Available only

if the gasket contact area is specified; see “Defining

the contact area for average contact pressure output”

in “Defining the gasket behavior directly using a

gasket behavior model,” Section 32.6.6.

TSHR • • • • All transverse shear stress components. Available only

for thick shell elements such as S3R, S4R, S8R, and

S8RT. Contouring of this variable is supported in the

Visualization module of Abaqus/CAE.

TSHRi3 • • -component of transverse shear stress ().

Available only for thick shell elements such as S3R,

S4R, S8R, and S8RT.

CTSHR • • • Transverse shear stress components for stacked

continuum shell elements. Available only for

SC6R and SC8R elements. Contouring of this

variable is supported in the Visualization module of

Abaqus/CAE.

CTSHRi3 • • -component of transverse shear stress ().

Available only for SC6R and SC8R elements.

SS • • All substresses. Available only for ITS elements.

SSn • nth substress (). Available only for ITS

elements.

Vibration and acoustic quantities

INTEN • • Vibration intensity. Available only for the steady-state

dynamics procedure. For real-only steady-state

4.2.1–11

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

dynamics analyses, the intensity is a pure imaginary

vector, but it is stored as real on the output database.

Available for structural, solid, and acoustic elements

and for rebar.

ACV • • Acoustic particle velocity. Available only if the

steady-state dynamic procedure is used, and available

only for acoustic finite elements.

ACVn • Component n of the acoustic particle velocity vector (n

= 1, 2, 3). Available only if the steady-state dynamic

procedure is used, and available only for acoustic finite

elements.

GRADP • • Acoustic pressure gradient. Available only if the

steady-state dynamic procedure is used, and available

only for acoustic finite elements.

Energy densities

ENER • • • • All energy densities. None of the energy densities

are available in mode-based procedures; a limited

number of them are available for direct-solution

steady-state dynamic and subspace-based steady-state

dynamic analyses. In steady-state dynamics all energy

quantities are net per-cycle values, unless otherwise

noted (see “Energy balance,” Section 1.5.5 of the

Abaqus Theory Guide).

SENER • • • Elastic strain energy density (with respect to current

volume). When the Mullins effect is modeled with

hyperelastic materials, this quantity represents only

the recoverable part of energy per unit volume. This

is the only energy density available in the data file

for eigenvalue extraction procedures; to obtain this

quantity for eigenvalue extraction procedures in the

results file or as field output in the output database,

request ENER. In steady-state dynamic analysis this

is the cyclic mean value.

PENER • • • Energy dissipated by rate-independent and rate-

dependent plasticity, per unit volume. Not available

for steady-state dynamic analysis.

4.2.1–12

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CENER • • • Energy dissipated by creep, swelling, and

viscoelasticity, per unit volume. Not available for

steady-state dynamic analysis.

VENER • • • Energy dissipated by viscous effects (except those

from viscoelasticity and static dissipation), per unit

volume.

EENER • • • Electrostatic energy density. Not available for steady-

state dynamic analysis.

JENER • • • Electrical energy dissipated as a result of the flow of

current, per unit volume. Not available for steady-state

dynamic analysis.

DMENER • • • Energy dissipated by damage, per unit volume. Not

available for steady-state dynamic analysis.

State, field, and user-defined output variables

SDV • • • • Solution-dependent state variables.

SDVn • • • Solution-dependent state variable n.

TEMP • • • • Temperature.

FV • • • • Predefined field variables, including those imported

using the FV
i
co-simulation field ID.

FVn • • • Predefined field variable n.

MFR • • • • Predefined mass flow rates.

MFRn • • Component n of predefined mass flow rate

().

UVARM • • • • User-defined output variables.

UVARMn • • • User-defined output variable n.

Composite failure measures

CFAILURE • • • • All failure measure components.

MSTRS • • • Maximum stress theory failure measure.

TSAIH • • • Tsai-Hill theory failure measure.

TSAIW • • • Tsai-Wu theory failure measure.

AZZIT • • • Azzi-Tsai-Hill theory failure measure.

MSTRN • • • Maximum strain theory failure measure.

4.2.1–13

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Fluid link quantities

MFL • • • • Current value of the mass flow rate.

MFLT • • • • Current value of the total mass flow.

Fracture mechanics quantities

JK • • • • J-integral, stress intensity factors. Available only for

line spring elements. Output is in the following order

for LS3S elements: J, K, , and . Output is in

the following order for LS6 elements: J, , , ,

, and .

Concrete cracking and additional plasticity

CRACK • • Unit normal to cracks in concrete.

CONF • • Number of cracks at a concrete material point.

PEQC • • • • All equivalent plastic strains when the model has more

than one yield/failure surface.

PEQCn • • nth equivalent plastic strain ().

For jointed materials: PEQC provides equivalent

plastic strains for all four possible systems (three

joints - PEQC1, PEQC2, PEQC3, and bulk material

- PEQC4). This identifier also provides a yes/no flag

(1/0 on the output database) telling if each individual

system is currently yielding or not (AC YIELD:

“actively yielding”; that is, the plastic strain changed

during the increment).

For cap plasticity: PEQC provides equivalent plastic

strains for all three possible yield/failure surfaces

(Drucker-Prager failure surface - PEQC1, cap surface

- PEQC2, and transition surface - PEQC3) and the total

volumetric inelastic strain (PEQC4). All identifiers

also provide a yes/no flag (1/0 on the output database)

telling whether the yield surface is currently active

or not (AC YIELD: “actively yielding”, that is, the

plastic strain changed during the increment).

When PEQC is requested as output to the output

database, the active yield flags for each component

4.2.1–14

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

are named AC YIELD1, AC YIELD2, etc. and take

the value 1 or 0.

Concrete damaged plasticity

DAMAGEC • • • Compressive damage variable, .

DAMAGET • • • Tensile damage variable, .

SDEG • • • Scalar stiffness degradation variable, d.

PEEQ • • • • Equivalent plastic strain in uniaxial compression,

which is defined as . This identifier also

provides a yes/no flag (1/0 on the output database)

telling if the material is currently undergoing

compressive failure or not (AC YIELD: “actively

yielding”; that is, the plastic strain changed during the

increment).

Rebar quantities

RBFOR • • • • Force in rebar.

RBANG • • • • Angle in degrees between rebar and the user-specified

isoparametric direction. Available only for shell,

membrane, and surface elements.

RBROT • • • • Change in angle in degrees between rebar and the user-

specified isoparametric direction. Available only for

shell, membrane, and surface elements.

Heat transfer analysis

HFL • • • • Current magnitude and components of the heat flux per

unit area vector. The integration points for these values

are located at the Gauss points.

HFLM • • Current magnitude of heat flux per unit area vector.

HFLn • • Component n of the heat flux vector ().

Mass diffusion analysis

CONC • • • • Mass concentration.

ISOL • • • • Amount of solute at an integration point, calculated as

the product of the mass concentration (CONC) and the

integration point volume (IVOL).

4.2.1–15

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

MFL • • • • Current magnitude and components of the

concentration flux vector.

MFLM • • Current magnitude of the concentration flux vector.

MFLn • • Component n of the concentration flux vector (

).

Elements with electrical potential degrees of freedom

EPG • • • • Current magnitude and components of the electrical

potential gradient vector.

EPGM • • Current magnitude of the electrical potential gradient

vector.

EPGn • • Component n of the electrical potential gradient vector

().

Piezoelectric analysis

EFLX • • • • Current magnitude and components of the electrical

flux vector.

EFLXM • • Current magnitude of the electrical flux vector.

EFLXn • • Component n of the electrical flux vector ().

Coupled thermal-electrical elements

ECD • • • • Current magnitude and components of the electrical

current density.

ECDM • • Current magnitude of the electrical current density.

ECDn • • Component n of the electrical current density vector

().

Cohesive elements

MAXSCRT • • • Maximum nominal stress damage initiation criterion.

MAXECRT • • • Maximum nominal strain damage initiation criterion.

QUADSCRT • • • Quadratic nominal stress damage initiation criterion.

QUADECRT • • • Quadratic nominal strain damage initiation criterion.

DMICRT • • • • All active components of the damage initiation criteria.

SDEG • • • • Overall scalar stiffness degradation.

STATUS • • • • Status of the element (the status of an element is 1.0 if

the element is active, 0.0 if the element is not).

4.2.1–16

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Low-cycle fatigue analysis

CYCLEINI • • Number of cycles to initialize the damage at the

material point.

SDEG • • • • Overall scalar stiffness degradation.

STATUS • • • • Status of the element (the status of an element is 1.0 if

the element is active, 0.0 if the element is not).

Pore pressure analysis

VOIDR • • • • Void ratio.

POR • • • • Pore pressure.

SAT • • • • Saturation.

GELVR • • • • Gel volume ratio.

FLUVR • • • • Total fluid volume ratio.

FLVEL • • • • Current magnitude and components of the pore fluid

effective velocity vector.

FLVELM • • Current magnitude of the pore fluid effective velocity

vector.

FLVELn • • Component n of the pore fluid effective velocity vector

().

Pore pressure cohesive elements

GFVR • • • • Gap flow volume rate.

PFOPEN • • • • Pore pressure fracture opening.

LEAKVRT • • • • Leak-off flow rate at the top of the element.

LEAKVRB • • • • Leak-off flow rate at the bottom of the element.

ALEAKVRT • • • • Accumulated leak-off volume at the top of the element.

ALEAKVRB • • • • Accumulated leak-off volume at the bottom of the

element.

Porous metal plasticity quantities

RD • • • • Relative density.

VVF • • • • Void volume fraction.

VVFG • • • • Void volume fraction due to void growth.

VVFN • • • • Void volume fraction due to void nucleation.

4.2.1–17

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Two-layer viscoplasticity quantities

VS • • • • Stress in the elastic-viscous network.

VSij • • -component of stress in the elastic-viscous network

().

PS • • • • Stress in the elastic-plastic network.

PSij • • -component of stress in the elastic-plastic network

().

VE • • • • Viscous strain in the elastic-viscous network.

VEij • • -component of viscous strain in the elastic-viscous

network ().

PE • • • • Plastic strain in the elastic-plastic network.

PEij • • -component of plastic strain in the elastic-plastic

network ().

VEEQ • • • Equivalent viscous strain in the elastic-viscous

network, defined as .

PEEQ • • • Equivalent plastic strain in the elastic-plastic network,

defined as .

Geometric quantities

COORD • • • • Coordinates of the integration point for solid elements

and rebar. These are the current coordinates if the

large-displacement formulation is being used.

IVOL • • • • Integration point volume. Section point volume

in the case of beams and shells. (Not available

for eigenfrequency extraction, eigenvalue buckling

prediction, complex eigenfrequency extraction, or

linear dynamics procedures. Available only for

continuum and structural elements not using general

beam or shell section definitions.)

LOCALDIRn Direction cosines of the local material directions

for an anisotropic hyperelastic material model. This

variable is output automatically if any other element

field output is requested for an anisotropic hyperelastic

material (see “Output” in “Anisotropic hyperelastic

behavior,” Section 22.5.3).

4.2.1–18

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Accuracy indicators

SJP • • Strain jumps at nodes.

Random response analysis

The following variables (beginning with R) are available only for random response dynamic analysis:

RS • • • • Root mean square of all stress components.

RSij • • Root mean square of -component of stress (

).

RMISES • • Root mean square of Mises equivalent stress.

RE • • • • Root mean square of all strain components.

REij • • Root mean square of -component of strain (

).

RCTF • • • RMS values of all components of connector total

forces and moments.

RCTFn • • RMS value of connector total force component n (

).

RCTMn • • RMS value of connector total moment component n

().

RCEF • • • RMS values of all components of connector elastic

forces and moments.

RCEFn • • RMS value of connector elastic force component n

().

RCEMn • • RMS value of connector elastic moment component n

().

RCVF • • • RMS values of all components of connector viscous

forces and moments.

RCVFn • • RMS value of connector viscous force component n

().

RCVMn • • RMS value of connector viscous moment component

n ().

RCRF • • • RMS values of all components of connector reaction

forces and moments.

RCRFn • • RMS value of connector reaction force component n

().

4.2.1–19

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

RCRMn • • RMS value of connector reaction moment component

n ().

RCSF • • • RMS values of all components of connector friction

forces and moments.

RCSFn • • RMS value of connector friction force component n

().

RCSMn • • RMS value of connector friction moment component

n ().

RCSFC • • RMS value of connector friction force in the direction

of the instantaneous slip direction. Available only if

friction is defined in the slip direction.

RCU • • • RMS values of all components of connector relative

displacements and rotations.

RCUn • • RMS value of connector relative displacement in the

n-direction ().

RCURn • • RMS value of connector relative rotation in the

n-direction ().

RCCU • • • RMS values of all components of connector

constitutive displacements and rotations.

RCCUn • • RMS value of connector constitutive displacement in

the n-direction ().

RCCURn • • RMS value of connector constitutive rotation in the

n-direction ().

RCNF • • • RMS values of all components of connector friction-

generating contact forces and moments.

RCNFn • • RMS value of connector friction-generating contact

force component n ().

RCNMn • • RMS value of connector friction-generating contact

moment component n ().

RCNFC • • RMS values of connector friction-generating contact

force components in the instantaneous slip direction.

Available only if friction is defined in the slip direction.

Steady-state dynamic analysis

The following variables (beginning with P) are available only for steady-state (frequency domain)

dynamic analysis. These variables include both the magnitude and phase angle for all components.

Phase angles are given in degrees. In the data file there are two lines of output for each request. The

4.2.1–20

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

first line contains the magnitude, and the second line (indicated by the SSD footnote) contains the phase

angle. In the results file the magnitudes of all components are first, followed by the phase angles of all

components.

PHS • • Magnitude and phase angle of all stress components.

PHSij • Magnitude and phase angle of -component of stress

().

PHE • • Magnitude and phase angle of all strain components.

PHEij • Magnitude and phase angle of -component of strain

().

PHEPG • • Magnitude and phase angles of the electrical potential

gradient vector.

PHEPGn • Magnitude and phase angle of component n of the

electrical potential gradient ().

PHEFL • • Magnitude and phase angles of the electrical flux

vector.

PHEFLn • Magnitude and phase angle of component n of the

electrical flux vector ().

PHMFL • • Magnitude and phase angle of mass flow rate.

Available only for fluid link elements.

PHMFT • • Magnitude and phase angle of total mass flow.

Available only for fluid link elements.

PHCTF • • Magnitude and phase of all components of connector

total forces and moments.

PHCTFn • Magnitude and phase of connector total force

component n ().

PHCTMn • Magnitude and phase of connector total moment

component n ().

PHCEF • • Magnitude and phase of all components of connector

elastic forces and moments.

PHCEFn • Magnitude and phase of connector elastic force

component n ().

PHCEMn • Magnitude and phase of connector elastic moment

component n ().

PHCVF • • Magnitude and phase of all components of connector

viscous forces and moments.

4.2.1–21

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

PHCVFn • Magnitude and phase of connector viscous force

component n ().

PHCVMn • Magnitude and phase of connector viscous moment

component n ().

PHCRF • • Magnitude and phase of all components of connector

reaction forces and moments.

PHCRFn • Magnitude and phase of connector reaction force

component n ().

PHCRMn • Magnitude and phase of connector reaction moment

component n ().

PHCSF • • Magnitude and phase of all components of connector

friction forces and moments.

PHCSFn • Magnitude and phase of connector friction force

component n ().

PHCSMn • Magnitude and phase of connector friction moment

component n ().

PHCSFC • Magnitude and phase of connector friction force in the

direction of the instantaneous slip direction. Available

only if friction is defined in the slip direction.

PHCU • • Magnitude and phase of all components of connector

relative displacements and rotations.

PHCUn • Magnitude and phase of connector relative

displacement in the n-direction ().

PHCURn • Magnitude and phase of connector relative rotation in

the n-direction ().

PHCCU • • Magnitude and phase of all components of connector

constitutive displacements and rotations.

PHCCUn • Magnitude and phase of connector constitutive

displacement in the n-direction ().

PHCCURn • Magnitude and phase of connector constitutive

rotation in the n-direction ().

PHCV • • Magnitude and phase of all components of connector

relative velocities.

PHCVn • Magnitude and phase of connector relative velocity in

the n-direction ().

PHCVRn • Magnitude and phase of connector relative angular

velocity in the n-direction ().

4.2.1–22

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

PHCA • • Magnitude and phase of all components of connector

relative accelerations.

PHCAn • Magnitude and phase of connector relative

acceleration in the n-direction ().

PHCARn • Magnitude and phase of connector relative angular

acceleration in the n-direction ().

PHCNF • • Magnitude and phase of all components of connector

friction-generating contact forces and moments.

PHCNFn • Magnitude and phase of connector friction-generating

contact force component n ().

PHCNMn • Magnitude and phase of connector friction-generating

contact moment component n ().

PHCNFC • Magnitude and phase of connector friction-generating

contact force in the instantaneous slip direction.

Available only if friction is defined in the slip direction.

PHCIVC • • Magnitude and phase of connector instantaneous

velocity in the slip direction. Available only if friction

is defined in the slip direction.

Failure with progressive damage

SDEG • • Scalar stiffness degradation variable.

DMICRT • • All active components of the damage initiation criteria.

DUCTCRT • Ductile damage initiation criterion.

SHRCRT • Shear damage initiation criterion.

FLDCRT • Forming limit diagram (FLD) damage initiation

criterion.

FLSDCRT • Forming limit stress diagram (FLSD) damage

initiation criterion.

MSFLDCRT • Müschenborn-Sonne forming limit stress diagram

(MSFLD) damage initiation criterion.

ERPRATIO • • Ratio of principal strain rates, , used for the MSFLD

damage initiation criterion.

SHRRATIO • • Shear stress ratio, , used for the

shear damage initiation criterion.

Fiber-reinforced materials damage

HSNFTCRT • • • Hashin’s fiber tensile damage initiation criterion.

4.2.1–23

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

HSNFCCRT • • • Hashin’s fiber compressive damage initiation criterion.

HSNMTCRT • • • Hashin’s matrix tensile damage initiation criterion.

HSNMCCRT • • • Hashin’s matrix compressive damage initiation

criterion.

DMICRT • • • • All active components of the damage initiation criteria.

DAMAGEFT • • • • Fiber tensile damage variable.

DAMAGEFC • • • • Fiber compressive damage variable.

DAMAGEMT • • • • Matrix tensile damage variable.

DAMAGEMC • • • • Matrix compressive damage variable.

DAMAGESHR • • • • Shear damage variable.

STATUS • • • • Status of the element (the status of an element is 1.0 if

the element is active, 0.0 if the element is not).

Element centroidal variables

For electromagnetic elements, the element output is at the centroid of the element instead of at the

integration points. These variables are defined for electromagnetic elements in the element descriptions

in Part VI, “Elements,” and in “Eddy current analysis,” Section 6.7.5, and “Magnetostatic analysis,”

Section 6.7.6.

Identifier .dat .fil .odb Description
Field History

EMB • • All components of the magnetic flux density vector.

EMH • • All components of the magnetic field vector.

EME • • All components of the electric field vector.

EMCD • • All components of the eddy current vector in

conducting regions.

EMCDA • • Magnitude and components of the applied volume

current density vector.

EMJH • • Rate of Joule heat dissipation (amount of heat

dissipated per unit volume per unit time) in conductor

regions.

EMBF • • Magnetic body force intensity (force per unit volume)

vector in conductor regions.

EMBFC • • Complex magnetic body force intensity (force

per unit volume) vector in conductor regions in a

time-harmonic eddy current analysis.

4.2.1–24

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Element section variables

You can request element section variable output to the data, results, or output database file (see “Element

output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output to the

output database,” Section 4.1.3). These variables are available only for beam and shell elements with

the exception of STH, which is also available for membrane elements. They are defined for particular

elements in the element descriptions in Part VI, “Elements.”

Identifier .dat .fil .odb Description
Field History

SF • • • • All section force and moment components.

SFn • • Section force component n (for

conventional shells; for continuum

shells; for beams).

SMn • • Section moment component n ().

BIMOM • • Bimoment of beam cross-section. Available only for

open-section beam elements.

ESF1 • • • • Effective axial force for beams and pipes subjected to

pressure loading. Available for all stress/displacement

procedure types except response spectrum and random

response.

SSAVG • • • All average shell section stress components.

SSAVGn • • Average shell section stress component n (

).

SE • • • • All section strain, curvature change, and twist

components.

SEn • • Section strain component n (for

shells; for beams).

SKn • • Section curvature change or twist n ().

BICURV • • Bicurvature of beam cross-section. Available only for

open-section beam elements.

MAXSS • • Maximum axial stress on the section. (This

variable can be used with the following types of

general beam section definitions: standard library

cross-sections, linear generalized cross-sections, or

meshed cross-sections with specified output section

points. If the output section points are specified, the

MAXSS output will be the maximum of the stresses

at the user-specified points.)

4.2.1–25

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

COORD • • • • Coordinates of the section point. These are the current

coordinates if the large-displacement formulation is

being used.

STH • • • • Section thickness (current thickness for SAX1, SAX2,

SAX2T, S3/S3R, S4, S4R, SAXA1N, SAXA2N,

and all membrane elements if the large-displacement

formulation is used; initial thickness for all other

cases).

SVOL • • • • Integrated section volume. (Not available for

eigenfrequency extraction, eigenvalue buckling

prediction, complex eigenfrequency extraction, or

linear dynamics procedures. Available only for

continuum and structural elements not using general

beam or shell section definitions.)

SPE • • • • All generalized plastic strain components. Available

only for inelastic nonlinear response in a general beam

section.

SPEn • • Generalized plastic strain component n (

). Representing axial plastic strain, curvature

change about the local 1-axis, curvature change about

the local 2-axis, and twist of the beam. Available only

for inelastic nonlinear response in a general beam

section.

SEPE • • • • All equivalent plastic strains. Available only for

inelastic nonlinear response in a general beam section.

SEPEn • • Equivalent plastic strain component n ().

Representing axial plastic strain, curvature change

about the local 1-axis, curvature change about the

local 2-axis, and twist of the beam. Available only for

inelastic nonlinear response in a general beam section.

Frame elements

SEE • • • • All elastic section axial, curvature, and twist strain

components.

SEE1 • • Elastic axial strain component.

SKEn • • Elastic section curvature or twist strain component

().

4.2.1–26

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

SEP • • • • All plastic axial displacements and rotations at the

element’s ends. This identifier also provides a yes/no

flag telling if the frame element’s end section is

currently yielding or not (AC YIELD: “actively

yielding”; that is, the plastic strain changed during

the increment) and a yes/no/na flag telling if buckling

occurred in the strut response (AC BUCKL) or is

not applicable. AC YIELD and AC BUCKL are not

available in the output database.

SEP1 • • Plastic axial displacement at the element’s ends.

SKPn • • Plastic rotations, either bending or twisting, at the

element’s ends ().

SALPHA • • • • All generalized backstress components at the

element’s ends.

SALPHAn • • Generalized backstress at the element’s ends

(). The first component is the

axial section backstress, followed by two bending

backstress components and the twist backstress

component.

Whole element variables

You can request whole element variable output to the data, results, or output database file (see “Element

output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output to the

output database,” Section 4.1.3).

Identifier .dat .fil .odb Description
Field History

LOADS • • Current values of distributed loads (not available for

nonuniform loads).

FOUND • • Current values of foundation pressures.

FLUXS • • • Current values of distributed (heat or concentration)

fluxes (not available for nonuniform fluxes), including

those imported using the HFL co-simulation field ID.

CHRGS • • Current values of distributed electrical charges.

ECURS • • Current values of distributed electrical currents.

ELEN • • • • All energy magnitudes in the element. None

of the energies are available in mode-based

4.2.1–27

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

procedures; a limited number of them are available

for direct-solution steady-state dynamic and

subspace-based steady-state dynamic analyses. In

steady-state dynamics all energy quantities are net

per-cycle values, unless otherwise noted.

ELKE • • • Total kinetic energy in the element. In steady-state

dynamic analysis this is the cyclic mean value.

ELSE • • • Total elastic strain energy in the element. When the

Mullins effect is modeled with hyperelastic materials,

this quantity represents only the recoverable part of

energy in the element. This is the only energy request

available in the data file for eigenvalue extraction

procedures; to obtain this quantity for eigenvalue

extraction procedures in the results file or as field

output in the output database, request ELEN. In

steady-state dynamic analysis this is the cyclic mean

value.

ELPD • • • Total energy dissipated in the element by rate-

independent and rate-dependent plastic deformation.

Not available for steady-state dynamic analysis.

ELCD • • • Total energy dissipated in the element by creep,

swelling, and viscoelasticity. Not available for

steady-state dynamic analysis.

ELVD • • • Total energy dissipated in the element by viscous

effects, not including energy dissipated by static

stabilization or viscoelasticity.

ELSD • • • Total energy dissipated in the element resulting from

automatic static stabilization. Not available for steady-

state dynamic analysis.

ELCTE • • • Total electrostatic energy in the element. Not available

for steady-state dynamic analysis.

ELJD • • • Total electrical energy dissipated due to flow of

current. Not available for steady-state dynamic

analysis.

ELASE • • • Total “artificial” strain energy in the element (energy

associated with constraints used to remove singular

modes, such as hourglass control, and with constraints

used to make the drill rotation follow the in-plane

4.2.1–28

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

rotation of the shell element). Not available for

steady-state dynamic analysis.

ELDMD • • • Total energy dissipated in the element by damage. Not

available for steady-state dynamic analysis.

NFORC • • • • Forces at the nodes of an element from both the

hourglass and the regular deformation modes of that

element (negative of the internal forces in the global

coordinate system). The specified position in data and

results file requests is ignored.

NFORCSO • • Forces at the nodes of a beam element caused by the

stress resultants in the element (internal forces in the

beam section orientation coordinate system).

GRAV • Uniformly distributed gravity load.

BF • Uniformly distributed body force.

CORIOMAG • Magnitude of Coriolis load.

ROTAMAG • Magnitude of rotary acceleration load.

CENTMAG • Magnitude of centrifugal load (measured as ,

where is the mass density per unit volume and is

the angular velocity).

CENTRIFMAG • Magnitude of centrifugal load (measured as , where

is the angular velocity).

HBF • Heat body flux.

NFLUX • • • • Fluxes at the nodes of the element caused by the heat

conduction or mass diffusion in the element (internal

fluxes). (The specified position for data and output

database file requests is ignored.)

NFLn • • Flux n at the nodes of the element ()

caused by the heat conduction or mass diffusion in the

element (internal fluxes). (The specified position for

data and output database file requests is ignored.)

NCURS • • • • Electrical current at the nodes due to electrical

conduction in the element.

FILM • • Current values of film conditions (not available for

nonuniform films).

RAD • • Current values of radiation conditions.

EVOL • • • • Current element volume. (Not available for

eigenfrequency extraction, eigenvalue buckling

4.2.1–29

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

prediction, complex eigenfrequency extraction, or

linear dynamics procedures. Available only for

continuum and structural elements not using general

beam or shell section definitions.)

ESOL • • • • Amount of solute in an element, calculated as the sum

of ISOL (amount of solute at an integration point) over

all the integration points in the element.

Enriched elements

STATUSXFEM • • Status of the enriched element. (The status of an

enriched element is 1.0 if the element is completely

cracked; 0.0 if the element is not. If the element is

partially cracked, the value lies between 1.0 and 0.0.)

LOADSXFEM • • Distributed pressure loads applied to the XFEM-based

crack surface.

Enriched elements when the XFEM-based LEFM approach is used

ENRRTXFEM • • All components of strain energy release rate.

Enriched elements in low-cycle fatigue analysis

CYCLEINIXFEM • • Number of cycles to initialize the crack at the enriched

element.

Connector elements

CTF • • • • All components of connector total forces and

moments.

CTFn • • Connector total force component n ().

CTMn • • Connector total moment component n ().

CEF • • • • All components of connector elastic forces and

moments.

CEFn • • Connector elastic force component n ().

CEMn • • Connector elastic moment component n ().

CUE • • • • Elastic displacements and rotations in all directions.

CUEn • • Elastic displacement in the n-direction ().

CUREn • • Elastic rotation in the n-direction ().

CUP • • • • Plastic relative displacements and rotations in all

directions.

4.2.1–30

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CUPn • • Plastic relative displacement in the n-direction (

).

CURPn • • Plastic relative rotation in the n-direction ().

CUPEQ • • • Equivalent plastic relative displacements and rotations

in all directions.

CUPEQn • • Equivalent plastic relative displacement in the

n-direction ().

CURPEQn • • Equivalent plastic relative rotation in the n-direction

().

CUPEQC • • Equivalent plastic relative motion for a coupled

plasticity definition.

CALPHAF • • • All components of connector kinematic hardening

shift forces and moments.

CALPHAFn • • Connector kinematic hardening shift force component

n ().

CALPHAMn • • Connector kinematic hardening shift moment

component n ().

CVF • • • All components of connector viscous forces and

moments.

CVFn • • Connector viscous force component n ().

CVMn • • Connector viscous moment component n ().

CSF • • • All components of connector friction forces and

moments.

CSFn • • Connector friction force component n ().

CSMn • • Connector friction moment component n ().

CSFC • • Connector friction force in the instantaneous slip

direction. Available only if friction is defined in the

slip direction.

CNF • • • All components of connector friction-generating

contact forces and moments.

CNFn • • Connector friction-generating contact force

component n ().

CNMn • • Connector friction-generating contact moment

component n ().

4.2.1–31

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CNFC • • Connector friction-generating contact force in the

instantaneous slip direction. Available only if friction

is defined in the slip direction.

CDMG • • • All components of the overall damage variable.

CDMGn • • Overall damage variable component n ().

CDMGRn • • Overall damage variable component n ().

CDIF • • • Components of connector force-based damage

initiation criterion in all directions.

CDIFn • • Connector force-based damage initiation criterion in

the n-translation direction ().

CDIFRn • • Connector force-based damage initiation criterion in

the n-rotation direction ().

CDIFC • • Connector force-based damage initiation criterion in

the instantaneous slip direction.

CDIM • • • Components of connector motion-based damage

initiation criterion in all directions.

CDIMn • • Connector motion-based damage initiation criterion in

the n-translation direction ().

CDIMRn • • Connector motion-based damage initiation criterion in

the n-rotation direction ().

CDIMC • • Connector motion-based damage initiation criterion in

the instantaneous slip direction.

CDIP • • • Components of connector plastic motion-based

damage initiation criterion in all directions.

CDIPn • • Connector plastic motion-based damage initiation

criterion in the n-translation direction ().

CDIPRn • • Connector plastic motion-based damage initiation

criterion in the n-rotation direction ().

CDIPC • • Connector plastic motion-based damage initiation

criterion in the instantaneous slip direction.

CSLST • • • All flags for connector stop and connector lock status.

CSLSTi • • Flag for connector stop and connector lock status in

the i-direction ().

CASU • • • Components of accumulated slip in all directions.

CASUn • • Connector accumulated slip in the n-direction (

).

4.2.1–32

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CASURn • • Connector angular accumulated slip in the n-direction

().

CASUC • • Connector accumulated slip in the instantaneous slip

direction. Available only if friction is defined in the

slip direction.

CIVC • • • Connector instantaneous velocity in the slip direction.

Available only if friction is defined in the slip direction.

CRF • • • All components of connector reaction forces and

moments.

CRFn • • Connector reaction force component n ().

CRMn • • Connector reaction moment component n (

).

CCF • • • All components of connector concentrated forces and

moments.

CCFn • • Connector concentrated force component n (

).

CCMn • • Connector concentrated moment component n (

).

CP • • • Relative positions in all directions.

CPn • • Relative position in the n-direction ().

CPRn • • Relative angular position in the n-direction

().

CU • • • • Relative displacements and rotations in all directions.

CUn • • Relative displacement in the n-direction ().

CURn • • Relative rotation in the n-direction ().

CCU • • • Constitutive displacements and rotations in all

directions.

CCUn • • Constitutive displacement in the n-direction

().

CCURn • • Constitutive rotation in the n-direction ().

CV • • • Relative velocities in all directions.

CVn • • Relative velocity in the n-direction ().

CVRn • • Relative angular velocity in the n-direction

().

CA • • • Relative accelerations in all directions.

CAn • • Relative acceleration in the n-direction ().

4.2.1–33

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CARn • • Relative angular acceleration in the n-direction (

).

CFAILST • • • All flags for connector failure status.

CFAILSTi • • Flag for connector failure status in the i-direction (

).

Element face variables

You can request element face variable output to the output database (see “Element output” in “Output to

the output database,” Section 4.1.3). These variables are available only for shell, membrane, and solid

elements.

Identifier .dat .fil .odb Description
Field History

P • Uniformly distributed pressure load on element

faces, including those imported using the PRESS

co-simulation field ID. When the pressure is defined

using *DLOAD, the variable name is changed

automatically to PDLOAD. When the pressure

is defined using *DLOAD on shell or membrane

elements, Abaqus changes the sign of its value to

make it consistent with the pressure defined using

*DSLOAD.

HP • Hydrostatic pressure load on element faces. When

the pressure is defined using *DLOAD, the variable

name is changed automatically to HPDLOAD. When

the pressure is defined using *DLOAD on shell or

membrane elements, Abaqus changes the sign of its

value to make it consistent with the pressure defined

using *DSLOAD.

TRNOR • Normal component (component along face normal) of

traction load on element faces.

TRSHR • Shear component (component along face tangent) of

traction load on element faces.

FLUXS • Uniformly distributed heat fluxes on element faces.

FILMCOEF • Reference film coefficient value on element faces.

SINKTEMP • Reference sink temperature on element faces.

4.2.1–34

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Whole element energy density variables

The following energy density output variables are written to the restart (.res) file and the output

database (.odb) file (see “Energy balance,” Section 1.5.5 of the Abaqus Theory Guide):

Identifier .dat .fil .odb Description
Field History

ELEDEN • All energy density components. None of the energies

are available in mode-based procedures; a limited

number of them are available for direct-solution

steady-state dynamic and subspace-based steady-state

dynamic analyses. In steady-state dynamics all energy

quantities are net per-cycle values, unless otherwise

noted.

EKEDEN • • Kinetic energy density in the element. In steady-state

dynamic analysis this is the cyclic mean value.

ESEDEN • • Total elastic strain energy density in the element.

When the Mullins effect is modeled with hyperelastic

materials, this quantity represents only the recoverable

part of energy density in the element. This variable is

not available in eigenvalue extraction procedures. In

steady-state dynamic analysis this is the cyclic mean

value.

EPDDEN • • Total energy dissipated per unit volume in the

element by rate-independent and rate-dependent

plastic deformation. Not available for steady-state

dynamic analysis.

ECDDEN • • Total energy dissipated per unit volume in the element

by creep, swelling, and viscoelasticity. Not available

for steady-state dynamic analysis.

EVDDEN • • Total energy dissipated per unit volume in the element

by viscous effects, not inclusive of energy dissipated

through static stabilization or viscoelasticity.

ESDDEN • • Total energy dissipated per unit volume in the element

resulting from static stabilization. Not available for

steady-state dynamic analysis.

ECTEDEN • • Total electrostatic energy density in the element. Not

available for steady-state dynamic analysis.

EASEDEN • • Total “artificial” strain energy density in the element

(energy associated with constraints used to remove

4.2.1–35

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

singular modes, such as hourglass control, and with

constraints used to make the drill rotation follow the

in-plane rotation of the shell element). Not available

for steady-state dynamic analysis.

EDMDDEN • • Total energy dissipated per unit volume in the element

by damage. Not available for steady-state dynamic

analysis.

Whole element error indicator variables

You can request that the following error indicator variables and element average variables be output only

to the output database (.odb) file (see “Selection of error indicators influencing adaptive remeshing,”

Section 12.3.2).

Identifier .dat .fil .odb Description
Field History

ENDEN • Element energy density, including plastic dissipation

and creep dissipation if present.

ENDENERI • Element energy density error indicator, including

plastic dissipation error and creep dissipation error if

present.

MISESAVG • Element average Mises equivalent stress.

MISESERI • Element Mises equivalent stress error indicator.

PEEQAVG • Element average equivalent plastic strain.

PEEQERI • Element equivalent plastic strain error indicator.

PEAVG • Element average plastic strain.

PEERI • Element plastic strain error indicator.

CEAVG • Element average creep strain.

CEERI • Element creep strain error indicator.

HFLAVG • Element average heat flux.

HFLERI • Element heat flux error indicator.

EFLAVG • Element average electric flux.

EFLERI • Element electric flux error indicator.

EPGAVG • Element average electric potential gradient.

EPGERI • Element electric potential gradient error indicator.

4.2.1–36

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Nodal variables

You can request nodal variable output to the data, results, or output database file (see “Node output” in

“Output to the data and results files,” Section 4.1.2, and “Node output” in “Output to the output database,”

Section 4.1.3).

Identifier .dat .fil .odb Description
Field History

U • • • • All physical displacement components, including

rotations at nodes with rotational degrees of freedom

(for output to the output database, only field-type

output includes the rotations).

UT • • All translational displacement components.

UR • • All rotational displacement components.

Un • • displacement component ().

URn • • rotation component ().

WARP • • Warping magnitude. Available only for open-section

beam elements.

V • • • • All velocity components, including rotational

velocities at nodes with rotational degrees of freedom

(for output to the output database, only field-type

output includes the rotational velocities).

VT • • All translational velocity components.

VR • • All rotational velocity components.

Vn • • velocity component ().

VRn • • rotational velocity component ().

A • • • • All acceleration components, including rotational

accelerations at nodes with rotational degrees of

freedom (for output to the output database, only

field-type output includes the rotational accelerations).

AT • • All translational acceleration components.

AR • • All rotational acceleration components.

An • • acceleration component ().

ARn • • rotational acceleration component ().

POR • • • • Pore or acoustic pressure at a node.

CFF • • • • Concentrated fluid flow at a node, including those

imported using the CFLOW co-simulation field ID.

NT • • • • All temperature values at a node, including those

imported using the TEMP co-simulation field ID.

4.2.1–37

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

These will be the temperatures defined as degrees of

freedom if heat transfer elements are connected to

the node, or predefined temperatures if the node is

connected only to stress or mass diffusion elements

without temperature degrees of freedom.

NTn • • Temperature degree of freedom n at a node

().

EPOT • • • • All electrical potential degrees of freedom at a node.

NNC • • • • All normalized concentration values at a node.

NNCn • • Normalized concentration degree of freedom n at a

node ().

RF • • • • All components of reaction forces, including

components of reaction moments at nodes with

rotational degrees of freedom (conjugate to prescribed

displacements and rotations). For output to the

output database, only the field-type output includes

the components of reaction moments at nodes with

rotational degrees of freedom.

RT • • All reaction force components.

RM • • All reaction moment components.

RFn • • Reaction force component n () (conjugate

to prescribed displacement).

RMn • • Reaction moment component n ()

(conjugate to prescribed rotation).

RWM • • Reaction bimoment in degree of freedom 7, conjugate

to prescribed warping amplitude. Available only for

open-section beam elements.

CF • • • • All components of point loads and concentrated

moments, including loads imported using the CF

co-simulation field ID.

CFn • • Point load component n ().

CMn • • Point moment component n ().

CW • • Load component in degree of freedom 7. Available

only for open-section beam elements.

TF • • • • All components of total forces, including components

of total moments at nodes with rotational degrees of

freedom. Total force is the sum of the reaction force

4.2.1–38

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

and point loads. For output to the output database, only

the field-type output includes the components of total

moments at nodes with rotational degrees of freedom.

TFn • • Total force component n ().

TMn • • Total moment component n ().

VF • • • • All components of viscous forces and moments due to

static stabilization.

VFn • • Stabilization viscous force component n ().

VMn • • Stabilization viscous moment component n (

).

COORD • • • • Coordinates of the node. These are the current

coordinates if the large-displacement formulation is

being used.

COORn • • Coordinate n ().

STRAINFREE • Strain-free adjustments to initial nodal positions

(adjusted position minus unadjusted position; only

written to the output database (.odb) file for the

original field output frame at zero time).

RCHG • • • • Reactive electrical nodal charge (conjugate to

prescribed electrical potential).

CECHG • • • • Concentrated electrical nodal charge.

RECUR • • • • Reactive electrical nodal current (conjugate to

prescribed electrical potential).

CECUR • • • • Concentrated electrical nodal current.

PCAV • • • Hydrostatic fluid gauge pressure (total pressure =

ambient pressure + hydrostatic fluid gauge pressure).

CVOL • • • Hydrostatic fluid cavity volume.

MOT • • • • All components of motion in cavity radiation heat

transfer analysis.

MOTn • • motion component () in cavity radiation

heat transfer analysis.

Acoustic quantities

POR • • • • Acoustic pressure.

INFR • Acoustic infinite element “radius,” used in the

coordinate map for these elements. Available only

if the steady-state dynamic procedure is used, and

4.2.1–39

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

available only for nodes attached to acoustic infinite

elements.

INFC • Acoustic infinite element “cosine,” used in the

coordinate map for these elements. Available only

if the steady-state dynamic procedure is used, and

available only for nodes attached to acoustic infinite

elements.

INFN • Acoustic infinite element normal vector. Available

only if the steady-state dynamic procedure is used, and

available only for nodes attached to acoustic infinite

elements.

PINF • Acoustic pressure coefficients for the higher-order

basis functions in acoustic infinite elements. Available

only if the steady-state dynamic procedure is used,

and available only for acoustic infinite elements.

SPL • • Acoustic sound pressure level at a node.

Enriched element quantities

PHILSM • • Signed distance function to describe the crack surface.

PSILSM • • Signed distance function to describe the initial crack

front.

Heat or mass flux

The following variables correspond to heat flux in temperature analyses or concentration volumetric flux

in mass diffusion analysis:

RFL • • • • All reaction flux values (conjugate to prescribed

temperature or normalized concentration).

RFLn • • Reaction flux value n at a node ()

(conjugate to prescribed temperature or normalized

concentration).

CFL • • • • All concentrated flux values, including those imported

using the CFL co-simulation field ID.

CFLn • • Concentrated flux values n at a node ().

RFLE • • • • The total flux at the node (including flux convected

through the node in convection elements), excluding

external fluxes (due to concentrated fluxes, distributed

fluxes, film conditions, radiation conditions, and

4.2.1–40

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

radiation viewfactors). The value of RFLE is, thus,

equal and opposite to the sum of all applied fluxes.

RFLEn • • Flux value n excluding externally applied flux loads at

a node ().

Steady-state dynamic analysis

The following variables are available only for steady-state (frequency domain) dynamic analyses (modal

and direct). These variables include both magnitude and phase angle for all components. Phase angles

are given in degrees. In the data file there are two lines of output for each request. The first line contains

the magnitude, and the second line (indicated by the SSD footnote) contains the phase angle. In the

results file, the magnitudes of all components are first, followed by the phase angles of all components.

PU • • Magnitude and phase angle of all displacement

components at the node and magnitude and phase

angle of the rotations at nodes with rotational degrees

of freedom.

PUn • Magnitude and phase angle of component n of the

displacement ().

PURn • Magnitude and phase angle of component n of the

rotation ().

PPOR • • Magnitude and phase angle of the fluid, pore, or

acoustic pressure at the node.

PHPOT • • Magnitude and phase angle of the electrical potential

at the node.

PRF • • Magnitude and phase angle of the reaction forces at

the node and of the reaction moments at nodes with

rotational degrees of freedom.

PRFn • Magnitude and phase angle of component n of the

reaction force ().

PRMn • Magnitude and phase angle of component n of the

reaction moment ().

PHCHG • • Magnitude and phase angle of the reactive charge at

the node.

Modal dynamic, steady-state, and random response analysis

The following variables are available only for modal dynamic, steady-state (frequency domain), and

random response analyses. “Relative” values are measured relative to the motion of the primary base

and are obtained with the identifiers U, V, and A; “Total” values include the motion of the primary base.

4.2.1–41

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

For steady-state dynamic output printed to the data file, there are two lines printed for each request;

the first line contains the real part of the variable, and the second line (indicated by the SSD footnote)

contains the imaginary part.

TU • • • • All components of the total displacements at the node

and of the total rotations at nodes with rotational

degrees of freedom.

TUn • • Component n of the total displacement ().

TURn • • Component n of the total rotation ().

TV • • • • All components of the total velocity at the node,

including rotational velocities at nodes with rotational

degrees of freedom.

TVn • • Component n of the total velocity ().

TVRn • • Component n of the total rate of rotation ().

TA • • • • All components of the total acceleration at the node,

including rotational accelerations at nodes with

rotational degrees of freedom.

TAn • • Component n of the total acceleration ().

TARn • • Component n of the total rotational acceleration (

).

Mode-based steady-state dynamic analysis

The following variables are available only for steady-state (frequency domain) dynamic analysis based

on modal superposition. “Total” values include the base motion.

PTU • • Magnitude and phase angle of the total displacement

components at the node and magnitude and phase

angle of the total rotations at nodes with rotational

degrees of freedom.

PTUn • Magnitude and phase angle of component n of the total

displacement ().

PTURn • Magnitude and phase angle of component n of the total

rotation ().

Pore pressure analysis

The following variables correspond to fluid volume flux in pore pressure analyses.

RVF • • • • Reaction fluid volume flux due to prescribed pressure.

This flux is the rate at which fluid volume is entering

4.2.1–42

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

or leaving the model through the node to maintain the

prescribed pressure boundary condition. A positive

value of RVF indicates fluid is entering the model.

RVT • • • • Reaction total fluid volume (computed only in a

transient coupled pore fluid diffusion/stress analysis).

This value is the time integrated value of RVF.

Random response analysis

The following variables are available only for random response dynamic analysis. “Relative” values are

measured relative to the base motion; “Total” values include the base motion.

RU • • • • Root mean square values of all components of

the relative displacement at the node and of the

components of rotation at nodes with rotational

degrees of freedom.

RUn • • Root mean square value of component n of the relative

displacement ().

RURn • • Root mean square value of component n of the relative

rotation ().

RTU • • • • Root mean square values of all components of the

total displacement at the node and of the components

of total rotation at nodes with rotational degrees of

freedom.

RTUn • • Root mean square value of component n of the total

displacement ().

RTURn • • Root mean square value of component n of the total

rotation ().

RV • • • • Root mean square values of all components of the

relative velocity at the node and of the components of

the rate of rotation at nodes with rotational degrees of

freedom.

RVn • • Root mean square value of component n of the relative

velocity ().

RVRn • • Root mean square value of component n of the relative

rate of rotation ().

RTV • • • • Root mean square values of all components of the total

velocity at the node and of the components of total

rotation at nodes with rotational degrees of freedom.

4.2.1–43

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

RTVn • • Root mean square value of component n of the total

velocity ().

RTVRn • • Root mean square value of component n of the total

rate of rotation ().

RA • • • • Root mean square values of all components of the

relative acceleration at the node and of the components

of rotational acceleration at nodes with rotational

degrees of freedom.

RAn • • Root mean square value of component n of the relative

acceleration ().

RARn • • Root mean square value of component n of the relative

rotational acceleration ().

RTA • • • • Root mean square values of all components of the

total acceleration at the node and of the components of

rotational acceleration at nodes with rotational degrees

of freedom.

RTAn • • Root mean square value of component n of the total

value of acceleration ().

RTARn • • Root mean square value of component n of the total

rotational acceleration ().

RRF • • • • Root mean square values of all components of the

reaction forces and of reaction moments at nodes with

rotational degrees of freedom.

RRFn • • Root mean square value of component n of the reaction

force ().

RRMn • • Root mean square value of component n of the reaction

moment ().

Modal variables

You can request modal variable output to the data, results, or output database file (see “Modal output

from Abaqus/Standard” in “Output to the data and results files,” Section 4.1.2, and “Modal output from

Abaqus/Standard” in “Output to the output database,” Section 4.1.3). In steady-state dynamics GU,

etc. provide the amplitude of the mode.

4.2.1–44

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

GU • • • Generalized displacements for all modes.

GUn • • Generalized displacement for mode n.

GV • • • Generalized velocities for all modes.

GVn • • Generalized velocity for mode n.

GA • • • Generalized acceleration for all modes.

GAn • • Generalized acceleration for mode n.

GPU • • • Phase angle of generalized displacements for all

modes.

GPUn • • Phase angle of generalized displacement for mode n.

GPV • • • Phase angle of generalized velocities for all modes.

GPVn • • Phase angle of generalized velocity for mode n.

GPA • • • Phase angle of generalized acceleration for all modes.

GPAn • • Phase angle of generalized acceleration for mode n.

SNE • • • Elastic strain energy for the entire model per each

mode (not available for random response analysis).

SNEn • • Elastic strain energy for the entire model for mode n

(not available for random response analysis).

KE • • • Kinetic energy for the entire model per each mode (not

available for random response analysis).

KEn • • Kinetic energy for the entire model for mode n (not

available for random response analysis).

T • • • External work for the entire model per each mode (not

available for random response analysis).

Tn • • External work for the entire model for mode n (not

available for random response analysis).

BM • • • Base motion (not available for random response or

response spectrum analyses).

Surface variables

You can request surface variable output to the data, results, or output database file (see “Surface

output from Abaqus/Standard” in “Output to the data and results files,” Section 4.1.2, and “Surface

output in Abaqus/Standard and Abaqus/Explicit” in “Output to the output database,” Section 4.1.3).

Additional information on these variables is provided in “Defining contact pairs in Abaqus/Standard,”

Section 36.3.1, and Chapter 37, “Contact Property Models.” The letter “M” at the end of an output

variable identifier designates the magnitude of the variable. Those variables that are output on both

4.2.1–45

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

master and slave surfaces in a single master-slave contact pair are designated below. For exceptions to

output on the master surface, see “Defining contact pairs in Abaqus/Standard,” Section 36.3.1.

Identifier .dat .fil .odb Description
Field History

Mechanical analysis–nodal quantities

CSTRESS • • • • Contact pressure (CPRESS) and frictional shear

stresses (CSHEAR). Output is also available on the

master surface to the .odb file in a single master-slave

setting.

CSTRESSETOS • Contact pressure (CPRESSETOS) and frictional shear

stresses (CSHEARETOS) due to edge-to-surface

contact constraints. Output is also available on the

master surface to the .odb file in a single master-slave

setting.

CSTRESSERI • Error indicators for the contact pressure (CPRESSERI)

and frictional shear stresses (CSHEARERI). Output is

also available on the master surface to the .odb file in

a single master-slave setting.

CDSTRESS • • • • Viscous pressure (CDPRESS) and viscous shear

stresses (CDSHEAR). Output is also available on the

master surface to the .odb file in a single master-slave

setting.

CDISP • • • • Contact opening (COPEN) and relative tangential

motions (CSLIP).

CDISPETOS • Contact opening (COPENETOS) and relative

tangential motions (CSLIPETOS) for edge-to-surface

contact constraints.

CFORCE • Contact normal force (CNORMF) and frictional shear

force (CSHEARF). Output is also available on the

master surface to the .odb file in a single master-slave

setting.

CNAREA • Contact nodal area. Output is also available on the

master surface to the .odb file in a single master-slave

setting.

CSTATUS • Contact status. Output is also available on the master

surface to the .odb file in a single master-slave

setting.

4.2.1–46

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CSMAXSCRT • • Maximum stress-based damage initiation criterion for

cohesive surfaces.

CSQUADSCRT • • Quadratic stress-based damage initiation criterion for

cohesive surfaces.

CSMAXUCRT • • Maximum separation-based damage initiation

criterion for cohesive surfaces.

CSQUADUCRT • • Quadratic separation-based damage initiation criterion

for cohesive surfaces.

CSDMG • • Damage variable for cohesive surfaces.

PPRESS • • • • Fluid pressure for pressure penetration analysis.

SDV • • • • Solution-dependent state variables.

Mechanical analysis–whole surface quantities

CFN • • • Total force due to contact pressure (CFNn, n = 1, 2, 3).

CFNM • Magnitude of total force due to contact pressure.

CFS • • • Total force due to frictional stress (CFSn, n = 1, 2, 3).

CFSM • Magnitude of total force due to frictional stress.

CFT • • • Total force due to contact pressure and frictional stress

(CFTn, n = 1, 2, 3).

CFTM • Magnitude of total force due to contact pressure and

frictional stress.

CMN • • • Total moment about the origin due to contact pressure

(CMNn, n = 1, 2, 3).

CMNM • Magnitude of total moment about origin due to contact

pressure.

CMS • • • Total moment about the origin due to frictional stress

(CMSn, n = 1, 2, 3).

CMSM • Magnitude of total moment about the origin due to

frictional stress.

CMT • • • Total moment about the origin due to contact pressure

and frictional stress (CMTn, n = 1, 2, 3).

CMTM • Magnitude of total moment about the origin due to

contact pressure and frictional stress.

CAREA • • • Total area in contact.

4.2.1–47

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

CTRQ • • • Maximum torque that can be transmitted about the

z-axis by a contact surface in an axisymmetric analysis

with a friction coefficient of unity.

XN • • • Center of the total force due to contact pressure (XNn,

n = 1, 2, 3).

XS • • • Center of the total force due to frictional stress (XSn,

n = 1, 2, 3).

XT • • • Center of the total force due to contact pressure and

frictional stress (XTn, n = 1, 2, 3).

Heat transfer analysis

HFL • • • • Heat flux per unit area leaving the slave surface.

HFLA • • • • HFL multiplied by the nodal area.

HTL • • • • Time integrated HFL.

HTLA • • • • Time integrated HFLA.

Coupled thermal-electrical analysis

ECD • • • • Electrical current per unit area.

ECDA • • • • ECD multiplied by the nodal area.

ECDT • • • • Time integrated ECD.

ECDTA • • • • Time integrated ECDA.

HFL • • • • Heat flux per unit area leaving the slave surface.

HFLA • • • • HFL multiplied by the nodal area.

HTL • • • • Time integrated HFL.

HTLA • • • • Time integrated HFLA.

SJD • • • • Heat flux per unit area due to electrical current.

SJDA • • • • SJD multiplied by the nodal area.

SJDT • • • • Time integrated SJD.

SJDTA • • • • Time integrated SJDA.

WEIGHT • • • • Weighting factor for heat distribution between the

interface surfaces.

Fully coupled temperature-displacement analysis

HFL • • • • Heat flux per unit area leaving the slave surface.

HFLA • • • • HFL multiplied by the nodal area.

HTL • • • • Time integrated HFL.

4.2.1–48

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

HTLA • • • • Time integrated HFLA.

SFDR • • • • Heat flux per unit area due to frictional dissipation.

SFDRA • • • • SFDR multiplied by the nodal area.

SFDRT • • • • Time integrated SFDR.

SFDRTA • • • • Time integrated SFDRA.

WEIGHT • • • • Weighting factor for heat distribution between the

interface surfaces.

Fully coupled thermal-electrical-structural analysis

ECD • • • • Electrical current per unit area.

ECDA • • • • ECD multiplied by the nodal area.

ECDT • • • • Time integrated ECD.

ECDTA • • • • Time integrated ECDA.

HFL • • • • Heat flux per unit area leaving the slave surface.

HFLA • • • • HFL multiplied by the nodal area.

HTL • • • • Time integrated HFL.

HTLA • • • • Time integrated HFLA.

SFDR • • • • Heat flux per unit area due to frictional dissipation.

SFDRA • • • • SFDR multiplied by the nodal area.

SFDRT • • • • Time integrated SFDR.

SFDRTA • • • • Time integrated SFDRA.

SJD • • • • Heat flux per unit area due to electrical current.

SJDA • • • • SJD multiplied by the nodal area.

SJDT • • • • Time integrated SJD.

SJDTA • • • • Time integrated SJDA.

WEIGHT • • • • Weighting factor for heat distribution between the

interface surfaces.

Coupled pore fluid-mechanical analysis–nodal quantities

PFL • • • • Pore fluid volume flux per unit area leaving the slave

surface.

PFLA • • • • PFL multiplied by the nodal area.

PTL • • • • Time integrated PFL.

PTLA • • • • Time integrated PFLA.

4.2.1–49

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Coupled pore fluid-mechanical analysis–whole surface quantities

TPFL • • Total pore fluid volume flux leaving the slave surface.

TPTL • • Time integrated TPFL.

Bond failure quantities

DBT • • • • Time when bond failure occurs.

DBS • • • • All components of remaining stress in the failed bond.

DBSF • • • • Fraction of stress that remains at bond failure.

BDSTAT • • • • Bond state (varies from 1.0 to 0.0).

CSDMG • • • • Damage variable.

OPENBC • • • • Relative displacement behind crack when fracture

criterion is met.

CRSTS • • • • All components of critical stress at failure.

ENRRT • • • • All components of strain energy release rate.

EFENRRTR • • • • Effective energy release rate ratio.

Cavity radiation variables

The following variables are associated with facets (sides of elements) composing cavities in radiation heat

transfer and include contributions due to exchanges with the ambient. You can request cavity radiation

variable output to the data, results, or output database file (see “Requesting surface variable output” in

“Cavity radiation,” Section 41.1.1, and “Cavity radiation output in Abaqus/Standard” in “Output to the

output database,” Section 4.1.3).

Identifier .dat .fil .odb Description
Field History

RADFL • • • • Radiation flux per unit area.

RADFLA • • • • Radiation flux over the facet.

RADTL • • • • Time integrated radiation per unit area.

RADTLA • • • • Time integrated radiation over the facet.

VFTOT • • • • Total viewfactor for the facet (sum of viewfactor

values in the row of viewfactor matrix corresponding

to the facet).

FTEMP • • • • Facet temperature.

4.2.1–50

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Section variables

You can request section variable output to the data or results file (see “Section output from

Abaqus/Standard” in “Output to the data and results files,” Section 4.1.2). By default, all components of

forces and moments are given with respect to the global system. If a local coordinate system is defined

for the section output request, all components are given with respect to the local system.

Different output variables are available depending on the type of analysis. For coupled analyses

the appropriate combination of variables can be requested. For example, in a coupled thermal-electrical

analysis both SOH and SOE are valid output requests. Section output variables are not available for

random response analysis.

Identifier .dat .fil .odb Description
Field History

All analysis types

SOAREA • • Area of the defined section.

Stress/displacement analysis

SOF • • Total force in the section.

SOM • • Total moment in the section.

SOCF • • Center of the total force in the section.

Heat transfer analysis

SOH • • Total heat flux associated with the section.

Electrical analysis

SOE • • Total current associated with the section.

Mass diffusion analysis

SOD • • Total mass flow associated with the section.

Coupled pore fluid diffusion-stress analysis

SOP • • Total pore fluid volume flux associated with the

section.

Whole and partial model variables

The output variables listed below are available for part of the model as well as the whole model.

4.2.1–51

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

Adaptive mesh domains

The following variable is available only for adaptive domains (see “Defining ALE adaptive mesh

domains in Abaqus/Standard,” Section 12.2.6).

VOLC • • • Change in area or change in volume of an element set

solely due to adaptive meshing.

Equivalent rigid body motion variables

You can request equivalent rigid body motion whole element set variable output to the data, results, or

output database file (see “Element output” in “Output to the data and results files,” Section 4.1.2, and

“Element output” in “Output to the output database,” Section 4.1.3). The variables listed are available

only for implicit dynamic analyses using direct integration except where indicated.

XC • • • Current coordinates of the center of mass for the

entire set or the entire model. Not available for

eigenfrequency extraction, eigenvalue buckling

prediction, complex eigenfrequency extraction, or

linear dynamics procedures. Available also for static

analyses but only from the output database.

XCn • • Coordinate n of the center of mass for the entire set or

the entire model ().

UC • • • Current displacement of the center of mass for the

entire set or the entire model. Available also for static

analyses but only from the output database.

UCn • • Displacement component n of the center of mass for

the entire set or the entire model ().

URCn • • Rotation component n of the center of mass for the

entire set or the entire model ().

VC • • • Equivalent rigid body velocity components summed

over the entire set or the entire model.

VCn • • Component n of the equivalent rigid body velocity

summed over the entire set or the entire model (

).

VRCn • • Component n of the equivalent rigid body angular

velocity summed over the entire set or the entire

model ().

HC • • • Current angular momentum about the center of mass

for the entire set or the entire model.

4.2.1–52

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

HCn • • Component n of the angular momentum about the

center of mass for the entire set or the entire model

().

HO • • • Current angular momentum about the origin for the

entire set or the entire model.

HOn • • Component n of the angular momentum about

the origin for the entire set or the entire model

().

RI • • • Current rotary inertia about the origin of the entire set

or the entire model. Not available for eigenfrequency

extraction, eigenvalue buckling prediction, complex

eigenfrequency extraction, or linear dynamics

procedures. Available also for static analyses but

only from the output database.

RIij • • -component of the rotary inertia about the origin of

the entire set or the entire model ().

MASS • • • Current mass of the entire set or the entire model.

Available also for static analyses but only from the

output database.

VOL • • • Current volume of the entire set or the entire model.

Available also for static analyses but only from the

output database. (Available only for continuum and

structural elements that do not use general beam or

shell section definitions.)

Inertia relief output variables

You can request inertia relief whole model variable output to the data or output database file (see “Element

output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output to the

output database,” Section 4.1.3). Since these variables have unique values for the entire model, the

variable output is independent of the specified region. The variables listed are available only for those

analyses that include inertia relief loading (see “Inertia relief,” Section 11.1.1).

IRX • • Current coordinates of the reference point.

IRXn • • Coordinate n of the reference point ().

IRA • • Equivalent rigid body acceleration components.

IRAn • • Component n of the equivalent rigid body acceleration

().

4.2.1–53

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

IRARn • • Component n of the equivalent rigid body angular

acceleration with respect to the reference point

().

IRF • • Inertia relief load corresponding to the equivalent rigid

body acceleration.

IRFn • • Component n of the inertia relief load corresponding

to the equivalent rigid body acceleration ().

IRMn • • Component n of the inertia relief moment

corresponding to the equivalent rigid body angular

acceleration with respect to the reference point

().

IRRI • • Rotary inertia about the reference point.

IRRIij • • -component of the rotary inertia about the reference

point ().

IRMASS • • Whole model mass.

Mass diffusion analysis

You can request variable output from a mass diffusion analysis (“Mass diffusion analysis,” Section 6.9.1)

to the data, results, or output database file (see “Element output” in “Output to the data and results files,”

Section 4.1.2, and “Element output” in “Output to the output database,” Section 4.1.3). If you specify an

output region, the variable is calculated over the user-specified region. If you do not specify an output

region, the variable is calculated as the total over the entire model.

SOL • • • Amount of solute in an element set, calculated as the

sum of ESOL (amount of solute in each element) over

all the elements in the set.

Analyses with time-dependent material behavior

CRPTIME • Creep time, which is equal to the total time in

procedures with time-dependent material behavior

(see “Rate-dependent plasticity: creep and swelling,”

Section 23.2.4).

Eigenvalue extraction

The following variables are output automatically during a frequency extraction analysis (“Natural

frequency extraction,” Section 6.3.5).

EIGVAL Eigenvalues.

EIGFREQ Eigenfrequencies.

4.2.1–54

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

GM Generalized masses.

CD Composite damping factors.

PFn Modal participation factors 1–7 (

corresponding to displacements, for

the rotations, and for acoustic pressure).

EMn Modal effective masses 1–7 (

corresponding to displacements,

for the rotations, and for acoustic pressure).

Complex eigenvalue extraction

The following variables are output automatically during a complex frequency extraction analysis

(“Complex eigenvalue extraction,” Section 6.3.6).

EIGREAL Real parts of the eigenvalues.

EIGIMAG Imaginary parts of the eigenvalues.

EIGFREQ Eigenfrequencies.

DAMPRATIO Damping ratios.

Total energy output quantities

If the following whole model variables are relevant for a particular analysis, you can request them as

output to the data, results, or output database file (see “Total energy output” in “Output to the data and

results files,” Section 4.1.2, and “Total energy output” in “Output to the output database,” Section 4.1.3).

If you do not specify an output region, whole model variables are calculated. When you specify an output

region, the relevant energy totals are calculated over the user-specified region.

These variables are not available for eigenvalue buckling prediction, eigenfrequency extraction, or

complex frequency extraction analysis. You cannot specify an output region for modal dynamic,

random response, response spectrum, or steady-state dynamic analysis.

See “Energy balance,” Section 1.5.5 of the Abaqus Theory Guide, for details of the energy definitions.

ALLAE • “Artificial” strain energy associated with constraints

used to remove singular modes (such as hourglass

control), and with constraints used to make the drill

rotation follow the in-plane rotation of the shell

elements.

ALLCD • Energy dissipated by creep, swelling, viscoelasticity,

and energy associated with viscous regularization for

cohesive elements.

ALLEE • Electrostatic energy.

4.2.1–55

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

ALLFD • Total energy dissipated through frictional effects.

(Available only for the whole model.)

ALLIE • Total strain energy. (ALLIE = ALLSE + ALLPD +

ALLCD+ALLAE+ALLQB+ALLEE+ALLDMD.)

ALLJD • Electrical energy dissipated due to flow of electrical

current.

ALLKE • Kinetic energy.

ALLKL • Loss of kinetic energy at impact. (Available only for

the whole model.)

ALLPD • Energy dissipated by rate-independent and rate-

dependent plastic deformation.

ALLQB • Energy dissipated through quiet boundaries (infinite

elements). (Available only for the whole model.)

ALLSD • Energy dissipated by automatic stabilization. This

includes both volumetric static stabilization and

automatic approach of contact pairs (the latter part

included only for the whole model).

ALLSE • Recoverable strain energy.

ALLVD • Energy dissipated by viscous effects including

viscous regularization (except for cohesive elements),

not inclusive of energy dissipated by automatic

stabilization and viscoelasticity.

ALLDMD • Energy dissipated by damage.

ALLWK • External work. (Available only for the whole model.)

ETOTAL • Total energy balance (available only for the whole

model). (ETOTAL = ALLKE + ALLIE + ALLVD +

ALLSD + ALLKL + ALLFD + ALLJD − ALLWK.)

Solution-dependent amplitude variables

Solution-dependent amplitude variables are given automatically with any file output or output database

request.

Identifier .dat .fil .odb Description
Field History

LPF Load proportionality factor in a static Riks analysis.

AMPCU Current value of the solution-dependent amplitude.

4.2.1–56

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE IDENTIFIERS

Identifier .dat .fil .odb Description
Field History

RATIO Current maximum ratio of creep strain rate and target

creep strain rate.

Structural optimization variables

Structural optimization output variables are requested by the Abaqus Topology Optimization Module

during each design cycle. For more information, see Chapter 13, “Optimization Techniques.”

Identifier .dat .fil .odb Description
Field History

Toplogy optimization

The following variable is output automatically during topology optimization (see “Topology

optimization” in “Structural optimization: overview,” Section 13.1.1).

MAT_PROP_NORMALIZED Element-based normalized material value.

Shape optimization

The following variables are output automatically during shape optimization (see “Shape optimization”

in “Structural optimization: overview,” Section 13.1.1).

CTRL_INPUT(OPT) Material scaling coefficient.

DISP_OPT_VAL The value of the optimization displacement.

DISP_OPT A vector representing the optimization displacement.

4.2.1–57

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

4.2.2 Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Product: Abaqus/Explicit

References

• “Output,” Section 4.1.1

• “Output to the data and results files,” Section 4.1.2

• “Output to the output database,” Section 4.1.3

Overview

Except for the information in the status file, results can be obtained from Abaqus/Explicit only by

postprocessing.

The tables in this section list all of the output variables that are available in Abaqus/Explicit. These

output variables can be requested for output to the results (.fil) file (see “Output to the data and results
files,” Section 4.1.2) or as either field- or history-type output to the output database (.odb) file (see

“Output to the output database,” Section 4.1.3). When the output variables are requested for output to

the results file, Abaqus/Explicit will first output these variables to the selected results (.sel) file and

will then convert the selected results file to the results file after the analysis completes.

Symbols used in the tables

The availability of the various output variable identifiers is defined by a in the columns of the table,

under the following headings:

.fil

means that the identifier can be used as a results file output selection.

.odb Field

means that the identifier can be used as a field-type output selection to the output database.

.odb History

means that the identifier can be used as a history-type output selection to the output database.

Direction definitions

The direction definitions depend on the variable type.

Direction definitions for element variables

For components of stress, strain, and similar material variables, 1, 2, and 3 refer to the directions in an

orthogonal coordinate system. These are global directions for solid elements, surface directions for shell

and membrane elements, and axial and transverse directions for beam and pipe elements. However, if a

4.2.2–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

local orientation (“Orientations,” Section 2.2.5) is associated with the elements for which output is being

requested, 1, 2, and 3 are local directions.

Direction definitions for nodal variables

For nodal variables, 1, 2, and 3 refer to the global directions (1=X, 2=Y, 3=Z except for axisymmetric

elements, in which case 1=R, 2=Z). Even if a local coordinate system has been defined at a node

(“Transformed coordinate systems,” Section 2.1.5), the data in the results file and the selected results

file are still output in the global directions.

If nodal field output is requested for a node that has a local coordinate system defined, a quaternion

representing the rotation from the global directions is written to the output database. Abaqus/CAE

automatically uses this quaternion to transform the nodal results into the local directions. Nodal history

data written to the output database are always stored in the global directions.

Direction definitions for integrated variables

For components of total force, total moment, and similar variables obtained through integration over a

surface, the directions 1, 2, and 3 refer to directions in an orthogonal coordinate system. A fixed global

coordinate system is used if the surface is specified directly for the integrated output request. If the

surface is identified by an integrated output section definition (see “Integrated output section definition,”

Section 2.5.1) that is associated with the integrated output request, a local coordinate system in the initial

configuration can be specified and can translate or rotate with the deformation.

Distributed load output and user subroutines

Output can be requested for many of the distributed loads discussed in “Loads,” Section 34.4. However,

contributions to these loads defined through user subroutines (see “Abaqus/Explicit subroutines,”

Section 1.2 of the Abaqus User Subroutines Reference Guide) are not displayed.

Principal value output

Output of the principal values can be requested for stresses, logarithmic strains, and nominal strains.

Either all principal values or the minimum, intermediate, or maximum values can be obtained. All

principal values of tensor ABC are obtained with the request ABCP, and the minimum, intermediate, and

maximum principal values are obtained with the requests ABCP1, ABCP2, and ABCP3, respectively. For

three-dimensional, plane strain, and axisymmetric elements all three principal values are obtained. For

plane stress, membrane, and shell elements only the in-plane principal values are obtained for history-

type output, and the out-of-plane principal value cannot be requested. For field-type output, all three

principal values are obtained through Abaqus/CAE. Principal values cannot be obtained for beam, pipe,

and truss elements, and principal values of plastic strains cannot be requested.

If a principal value or an invariant is requested for field-type output, the output request is replaced

with an output request for the components of the corresponding tensor. Abaqus/CAE calculates all

principal values and invariants from these components. If a principal value is desired as history-type

output, it must be requested explicitly since Abaqus/CAE does no calculations on history data.

4.2.2–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Tensor output

Tensor variables that are written to the output database as field-type output are written as components

in either the default directions defined by the convention given in “Orientations,” Section 2.2.5 (global

directions for solid elements, surface directions for shell and membrane elements, and axial and

transverse directions for beam and pipe elements), or the user-defined local system. Abaqus/CAE

calculates all principal values and invariants from these components. See “Writing field output data,”

Section 9.6.4 of the Abaqus Scripting User’s Guide, for a description of the different types of tensor

variables.

The components for tensor variables are written to the output database in single precision.

Therefore, a small amount of precision roundoff error may occur when calculating the variables’

principal values. Such roundoff error may be observed, for example, when analytically zero values are

calculated as relatively small yet nonzero values.

Requesting output of components

Individual components of variables can be requested as history-type output in the output database for

X–Y plotting in Abaqus/CAE. Individual component requests are not available for field-type output.

If a particular component is desired for contouring in Abaqus/CAE, request field output of the generic

variable (e.g., S for stress). Output for individual components of this field output can be requested within

the Visualization module of Abaqus/CAE.

Element integration point variables

You can request element integration point variable output to the results or output database file (see

“Element output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output

to the output database,” Section 4.1.3).

Identifier .fil .odb Description
Field History

Tensors and invariants

S • • • All stress components.

MISESMAX • MaximumMises stress among all of the section points.

For a shell element it represents the maximum Mises

value among all the section points in the layer, for a

beam or pipe element it is the maximum Mises stress

among all the section points in the cross-section, and

for a solid element it represents the Mises stress at the

integration points.

Sij • -component of stress ().

SP • • • All principal stress components.

4.2.2–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

SPn • Minimum, intermediate, and maximum principal

stress components (SP1 SP2 SP3).

E • • • All infinitesimal strain components for geometrically

linear analysis.

Eij • -component of infinitesimal strain ().

LE • • • All logarithmic strain components.

LEij • -component of logarithmic strain ().

LEP • • • All principal logarithmic strain components.

LEPn • Minimum, intermediate, and maximum principal

logarithmic strain components (LEP1 LEP2

LEP3).

ER • • • All logarithmic strain rate components.

ERij • -component of logarithmic strain rate().

ERP • • • All principal logarithmic strain rate components.

ERPn • Minimum, intermediate, and maximum principal

strain rate components (ERP1 ERP2 ERP3).

NE • • • All nominal strain components.

NEij • -component of nominal strain ().

NEP • • • All principal nominal strain components.

NEPn • Minimum, intermediate, and maximum principal

nominal strain components (NEP1 NEP2 NEP3).

PE • • • All plastic strain components.

PEij • -component of plastic strain ().

PEP • • All principal plastic strains.

PEPn • Minimum, intermediate, and maximum principal

plastic strains.

ERV • • • Volumetric strain rate.

MISES • • • Mises equivalent stress, defined as ,

where is the deviatoric stress tensor, defined as

, where is the stress and is

the equivalent pressure stress.

PRESS • • • Equivalent pressure stress, .

TRIAX • • Stress triaxiality, .

YIELDS • • Yield stress, , available for Mises, Johnson-Cook,

and Hill plasticity material models.

4.2.2–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

MASSADJUST • Adjusted or redistributed mass in each element

that is included in the element sets used with mass

adjustment. This output is available only in the first

output frame of the first analysis step.

ALPHA • • • All total kinematic hardening shift tensor components.

ALPHAij • -component of the total shift tensor ().

ALPHAP • • • All principal values of the total shift tensor.

ALPHAPn • Minimum, intermediate, and maximum principal

values of the total shift tensor (ALPHAP1

ALPHAP2 ALPHAP3).

PEEQ • • • Equivalent plastic strain.

For porous metal plasticity PEEQ is the equivalent

plastic strain in the matrix material defined as

.

For cap plasticity PEEQ gives (the cap position).

For crushable foam plasticity with volumetric

hardening PEEQ gives the volumetric compacting

plastic strain defined as .

For crushable foam plasticity with isotropic hardening

PEEQ gives the equivalent plastic strain defined as

, where is the uniaxial compression yield

stress.

PEEQT • • Equivalent plastic strain in uniaxial tension for cast

iron, Mohr-Coulomb tension cutoff, and concrete

damaged plasticity, which is defined as .

PEEQMAX • Maximum equivalent plastic strain, PEEQ, among all

of the section points. For a shell element it represents

the maximum PEEQ value among all the section points

in the layer, for a beam or a pipe element it is the

maximum PEEQ among all the section points in the

cross-section, and for a solid element it represents the

PEEQ at the integration points.

4.2.2–5

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

DMICRTMAX • Maximum damage initiation among all of the section

points and all of the damage initiation criteria.

This output variable generates three output quantities

as follows:

DMICRTMAXVAL outputs the maximum damage

initiation value.

DMICRTPOS outputs the section point in the layer in

which the maximum damage initiation value occurred.

For solid elements, the output value is one.

DMICRTTYPE outputs a value that represents the

damage initiation criteria type that reached the

maximum value in the element as follows:

For elements that have failure with progressive

damage: 1-DUCTCRT, 2-SHRCRT, 3-JCCRT,

4-FLDCRT, 5-MSFLDCRT, 6-FLSDCRT, and

7-MKCRT.

For elements that have fiber-reinforced material

damage: 11-HSNFTCRT, 12-HSNFCCRT, 13-

HSNMTCRT, and 14-HSNMCCRT.

For cohesive elements with traction-separation

behavior: 21-MAXSCRT, 22-MAXECRT, 23-

QUADSCRT, and 24-QUADECRT.

The maximum damage initiation output values are

retained across the requested output frames until a

higher maximum damage initiation value is computed.

Geometric quantities

COORD • • Coordinates of the integration point for solid

elements. These are the current coordinates if the

large-displacement formulation is being used.

4.2.2–6

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

LOCALDIRn Direction cosines of the local material directions for

an anisotropic hyperelastic material model, or yarn

direction cosines for a fabric material model. This

variable is output automatically if any other element

field output is requested for anisotropic hyperelastic

or fabric material (see “Output” in “Anisotropic

hyperelastic behavior,” Section 22.5.3, and “Output”

in “Fabric material behavior,” Section 23.4.1).

Additional element stresses

TSHR • • • All transverse shear stress components for three-

dimensional conventional shell elements.

TSHR13 • -component of transverse shear stress.

TSHR23 • -component of transverse shear stress.

Energy densities

ENER • • • All energy densities.

SENER • Elastic strain energy density, per unit volume.

PENER • Energy dissipated by rate-independent and rate-

dependent plasticity, per unit volume.

CENER • Energy dissipated by viscoelasticity, per unit volume

(not supported for hyperelastic and hyperfoam

material models).

VENER • Energy dissipated by viscous effects, per unit volume.

DMENER • Energy dissipated by damage, per unit volume.

State and field variables

SDV • • • Solution-dependent state variables.

SDVn • • Solution-dependent state variable n.

TEMP • • • Temperature.

DENSITY • • Material density.

FV • • Field variables.

FVn • Field variable n.

Composite failure measures

CFAILURE • All failure measure components.

MSTRS Maximum stress theory failure measure.

4.2.2–7

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

TSAIH Tsai-Hill theory failure measure.

TSAIW Tsai-Wu theory failure measure.

AZZIT Azzi-Tsai-Hill theory failure measure.

MSTRN Maximum strain theory failure measure.

Additional plasticity quantities

PEQC • • • All equivalent plastic strains, when themodel hasmore

than one yield/failure surface.

PEQCn • nth equivalent plastic strain ().

For cap plasticity: PEQC provides equivalent plastic

strains for all three possible yield/failure surfaces

(Drucker-Prager failure surface - PEQC1, cap surface

- PEQC2, and transition surface - PEQC3) and the

total volumetric plastic strain (PEQC4). All identifiers

also provide a yes/no flag (1/0 in the output database),

telling whether the yield surface is currently active or

not (AC YIELD: “actively yielding”).

When PEQC is requested as output to the output

database, the active yield flags for each component

are named AC YIELD1, AC YIELD2, etc.

Porous metal plasticity quantities

VVF • • • Void volume fraction (porous metal plasticity).

VVFG • • • Void volume fraction due to growth (porous metal

plasticity).

VVFN • • • Void volume fraction due to nucleation (porous metal

plasticity).

Concrete damaged plasticity

DAMAGEC • • Compressive damage variable, .

DAMAGET • • Tensile damage variable, .

SDEG • • Scalar stiffness degradation variable, d.

PEEQ • • Equivalent plastic strain in uniaxial compression,

which is defined as .

4.2.2–8

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

Cracking model quantities

CKE • All cracking strain components.

CKEij -component of cracking strain.

CKLE • All cracking strain components in local crack axes.

CKLEij -component of cracking strain in local crack axes.

CKEMAG • Cracking strain magnitude, defined as

.

CKLS • All stress components in local crack axes.

CKLSij -component of stress in local crack axes.

CRACK • Crack orientations.

CKSTAT • Crack status of each crack. CKSTAT can have the

following values for each crack: 0.0=uncracked,

1.0=closed crack, 2.0=actively cracking, 3.0=crack

closing/reopening.

Failure with progressive damage

DMICRT • • All active components of the damage initiation criteria.

DUCTCRT • Ductile damage initiation criterion.

JCCRT • Johnson-Cook damage initiation criterion.

SHRCRT • Shear damage initiation criterion.

FLDCRT • Forming limit diagram (FLD) damage initiation

criterion.

FLSDCRT • Forming limit stress diagram (FLSD) damage

initiation criterion.

MSFLDCRT • Müschenborn-Sonne forming limit stress diagram

(MSFLD) damage initiation criterion.

MKCRT • Marciniak-Kuczynski (M-K) damage initiation

criterion.

SDEG • • Overall scalar stiffness degradation.

ERPRATIO • • Ratio of principal strain rates, , used for the MSFLD

damage initiation criterion.

SHRRATIO • • Shear stress ratio, , used for the

shear damage initiation criterion.

Fiber-reinforced materials damage

DMICRT • • All active components of the damage initiation criteria.

4.2.2–9

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

HSNFTCRT • Hashin’s fiber tensile damage initiation criterion.

HSNFCCRT • Hashin’s fiber compressive damage initiation criterion.

HSNMTCRT • Hashin’s matrix tensile damage initiation criterion.

HSNMCCRT • Hashin’s matrix compressive damage initiation

criterion.

DAMAGEFT • • Fiber tensile damage variable.

DAMAGEFC • • Fiber compressive damage variable.

DAMAGEMT • • Matrix tensile damage variable.

DAMAGEMC • • Matrix compressive damage variable.

DAMAGESHR • • Shear damage variable.

Fabric material

Output variable LOCALDIR (described above) is output automatically for fabric materials.

SFABRIC • • All fabric stress components.

EFABRIC • • All fabric strain components.

SFABRICij • -component of fabric stress ().

EFABRICij • -component of fabric strain ().

Equation of state

BURNF • • Burn fraction of the ignition and growth material.

DBURNF • • Reaction rate of the ignition and growth material.

RHOE • • Density of the unreacted explosive in the ignition and

growth material.

RHOP • • Density of the reacted gas product in the ignition and

growth material.

PALPH • • Distension, , of the porous material.

PALPHMIN • • Minimum value, , of the distension attained

during plastic compaction of the porous

material.

Rebar quantities

RBFOR • • • Force in rebar.

RBANG • • • Angle, in degrees, between rebar and the user-

specified isoparametric direction. Available only for

shell and membrane elements.

4.2.2–10

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

RBROT • • • Change in angle, in degrees, between rebar and the

user-specified isoparametric direction. Available only

for shell and membrane elements.

Integration point coordinates

COORD • • Coordinates of element integration point.

Coupled thermal-stress elements

HFL • • • Current magnitude and components of the heat flux per

unit area vector.

HFLM • Current magnitude of the heat flux per unit area vector.

HFLn • Component n of the heat flux vector ().

Cohesive elements

MAXSCRT • Maximum nominal stress damage initiation criterion.

MAXECRT • Maximum nominal strain damage initiation criterion.

QUADSCRT • Quadratic nominal stress damage initiation criterion.

QUADECRT • Quadratic nominal strain damage initiation criterion.

DMICRT • • All active components of the damage initiation criteria.

SDEG • • Overall scalar stiffness degradation.

STATUS • • Status of the element (the status of an element is 1.0 if

the element is active, 0.0 if the element is not).

Eulerian elements

EVF • • Eulerian volume fraction. Output includes volume

fraction data for each material defined in the Eulerian

section, plus the volume fraction of void.

DENSITYVAVG • Density, computed as a volume fraction weighted

average of all materials in the element.

MISESVAVG • Mises stress, computed as a volume fraction weighted

average of all materials in the element.

PEVAVG • Plastic strain components, computed as a volume

fraction weighted average of all materials in the

element.

PEEQVAVG • Equivalent plastic strain, computed as a volume

fraction weighted average of all materials in the

element.

4.2.2–11

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

PRESSVAVG • Equivalent pressure stress, computed as a volume

fraction weighted average of all materials in the

element.

SVAVG • Stress components, computed as a volume fraction

weighted average of all materials in the element.

TEMPMAVG • Temperature, computed as a mass fraction weighted

average of all materials in the element.

Element section variables

You can request element section variable output to the results or output database file (see “Element

output” in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output to the

output database,” Section 4.1.3). These variables are available only for beam, pipe, and shell elements

with the exception of STH, which is also available for membrane and plane stress elements. They are

defined for particular elements in the element descriptions in Part VI, “Elements.”

Identifier .fil .odb Description
Field History

STH • • • Section thickness (shell, membrane, and plane stress

elements only).

STHIN • • • Section thinning or thickening is defined as

, where is the

original thickness specified on the section definition

for shell, membrane, and plane stress elements.

SF • • • All section resultant components, both translational

(forces) and rotational (moments).

SFn • Section force component n, for

conventional shells; for continuum

shells; for beams and pipes.

SMn • Section moment component n, .

SE • • • All section nominal strains, both translational and

rotational (e.g., midplane strain and curvature in

shells).

SEn • Section nominal strain component n,

for shells; for

beams and pipes.

SKn • Section curvature change or twist n, .

4.2.2–12

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

SSAVG • • All average membrane and transverse shear stress

components (shell elements only).

SSAVGn • Average membrane or transverse shear stress

component n, (shell elements

only).

Whole element variables

You can request whole element variable output to the results or output database file (see “Element output”

in “Output to the data and results files,” Section 4.1.2, and “Element output” in “Output to the output

database,” Section 4.1.3).

Identifier .fil .odb Description
Field History

ELEN • • • All energy magnitudes in the element.

ELSE • • Total elastic strain energy in the element (includes

energy in transverse shear deformation in shells).

ELCD • • Total energy dissipated in the element by viscoelastic

deformation. (Not supported for hyperelastic and

hyperfoam material models.)

ELPD • • Total energy dissipated in the element by rate-

independent and rate-dependent plastic deformation.

ELVD • • Total energy dissipated in the element by viscous

effects. This includes bulk viscosity and material

damping.

ELASE • • Total “artificial” strain energy in the element. This

includes hourglass energy and drilling stiffness energy

in shells.

ELIHE • • Internal heat energy in the element.

ELDMD • • Total energy dissipated in the element by damage.

ELDC • • Total energy dissipated in the element by distortion

control.

ELEDEN • All element energy density components.

ESEDEN • Total elastic strain energy density in the element.

EPDDEN • Total energy dissipated per unit volume in the

element by rate-independent and rate-dependent

plastic deformation.

4.2.2–13

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

ECDDEN • Total energy dissipated per unit volume in the element

by viscoelasticity.

EVDDEN • Total energy dissipated per unit volume in the element

by viscous effects.

EASEDEN • Total “artificial” strain energy density in the element

(energy associated with constraints used to remove

singular modes, such as hourglass control).

EIHEDEN • Internal heat energy density in the element.

EDMDDEN • Total energy dissipated per unit volume in the element

by damage.

EDCDEN • Total energy dissipated per unit volume in the element

by distortion control.

EDT • • • Element stable time increment.

EMSF • • • Element mass scaling factor.

STATUS • • • Status of element (material failure with progressive

damage, shear failure model, tensile failure model,

porous failure criterion, brittle failure model, Johnson-

Cook plasticity model, and VUMAT). The status of an
element is 1.0 if the element is active, 0.0 if the element

is not.

EVOL • Current element volume. (Only available for

continuum and structural elements not using general

beam or shell section definitions.)

NFORC • • Forces at the nodes of an element from both the

hourglass and the regular deformation modes of that

element (negative of the internal forces in the global

coordinate system).

GRAV • Uniformly distributed gravity load.

SBF • Stagnation body force.

BF • Uniformly distributed body force, including viscous

body force.

EDMICRTMAX •

4.2.2–14

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

Whole shell element maximum damage initiation

output among all of the layers, all of the damage

initiation criteria, and for fully integrated elements

across all of the integration points.

This output variable is the same as DMICRTMAX

output for solid and beam elements but complements

the DMICRTMAX output variable for composite shell

elements because it extracts the maximum damage

initiation across all of the layers.

This output variable generates four element output

quantities as follows:

EDMICRTMAXVAL outputs the maximum damage

initiation value in the entire element.

EDMICRTLAYER outputs the layer number in which

the maximum damage initiation value occurred.

EDMICRTTYPE outputs a value that represents

the damage initiation criteria type that reached the

maximum value in the element, as described in the

DMICRTMAX output variable description.

EDMICRTINTP outputs the integration point number

for which the maximum damage value occurred. For

reduced-integration elements, the output value is one.

The maximum damage initiation output values are

retained across the requested output frames until a

higher maximum damage initiation value is computed.

Connector elements

CTF • • • All components of connector total forces and

moments.

CTFn • Connector total force component n ().

CTMn • Connector total moment component n ().

CEF • • • All components of connector elastic forces and

moments.

CEFn • Connector elastic force component n ().

CEMn • Connector elastic moment component n ().

4.2.2–15

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CUE • • • Elastic displacements and rotations in all directions.

CUEn • Elastic displacement in the n-direction ().

CUREn • Elastic rotation in the n-direction ().

CUP • • • Plastic relative displacements and rotations in all

directions.

CUPn • Plastic relative displacement in the n-direction (

).

CURPn • Plastic relative rotation in the n-direction ().

CUPEQ • • • Equivalent plastic relative displacements and rotations

in all directions, and equivalent plastic relative motion

for a coupled plasticity definition.

CUPEQn • Equivalent plastic relative displacement in the

n-direction ().

CURPEQn • Equivalent plastic relative rotation in the n-direction

().

CUPEQC • Equivalent plastic relative motion for a coupled

plasticity definition.

CALPHAF • • All components of connector kinematic hardening

shift forces and moments.

CALPHAFn • Connector kinematic hardening shift force component

n ().

CALPHAMn • Connector kinematic hardening shift moment

component n ().

CVF • • • All components of connector viscous forces and

moments.

CVFn • Connector viscous force component n ().

CVMn • Connector viscous moment component n ().

CUF • • All components of connector uniaxial forces and

moments.

CUFn • Connector uniaxial force component n ().

CUMn • Connector uniaxial moment component n (

).

CSF • • All components of connector friction forces and

moments.

CSFn • Connector friction force component n ().

CSMn • Connector friction moment component n ().

4.2.2–16

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CSFC • Connector friction force in the instantaneous slip

direction. Available only if friction is defined in the

slip direction.

CNF • • All components of connector friction-generating

contact forces and moments.

CNFn • Connector friction-generating contact force

component n (n = 1, 2, 3).

CNMn • Connector friction-generating contact moment

component n (n = 1, 2, 3).

CNFC • Connector friction-generating contact force in the

instantaneous slip direction. Available only if friction

is defined in the slip direction.

CDMG • • • All components of the overall damage variable.

CDMGn • Overall damage variable component n ().

CDMGRn • Overall damage variable component n ().

CDIF • • Components of connector force-based damage

initiation criterion in all directions.

CDIFn • Connector force-based damage initiation criterion in

the n-translation direction ().

CDIFRn • Connector force-based damage initiation criterion in

the n-rotation direction ().

CDIFC • Connector force-based damage initiation criterion in

the instantaneous slip direction.

CDIM • • Components of connector motion-based damage

initiation criterion in all directions.

CDIMn • Connector motion-based damage initiation criterion in

the n-translation direction ().

CDIMRn • Connector motion-based damage initiation criterion in

the n-rotation direction ().

CDIMC • Connector motion-based damage initiation criterion in

the instantaneous slip direction.

CDIP • • • Components of connector plastic motion-based

damage initiation criterion in all directions (including

the instantaneous slip direction).

CDIPn • Connector plastic motion-based damage initiation

criterion in the n-translation direction ().

4.2.2–17

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CDIPRn • Connector plastic motion-based damage initiation

criterion in the n-rotation direction ().

CDIPC • Connector plastic motion-based damage initiation

criterion in the instantaneous slip direction.

CSLST • • All flags for connector stop and connector lock status.

CSLSTi • Flag for connector stop and connector lock status in

the i-direction ().

CASU • • Components of accumulated slip in all directions.

CASUn • Connector accumulated slip in the n-direction (n = 1,

2, 3).

CASURn • Connector angular accumulated slip in the n-direction

(n = 1, 2, 3).

CASUC • Connector accumulated slip in the instantaneous slip

direction. Available only if friction is defined in the

slip direction.

CIVC • • Connector instantaneous velocity in the slip direction.

Available only if friction is defined in the slip direction.

CRF • • All components of connector reaction forces and

moments.

CRFn • Connector reaction force component n ().

CRMn • Connector reaction moment component n (

).

CCF • • All components of connector concentrated forces and

moments.

CCFn • Connector concentrated force component n (

).

CCMn • Connector concentrated moment component n (

).

CP • • • Relative positions in all directions.

CPn • Relative position in the n-direction ().

CPRn • Relative angular position in the n-direction

().

CU • • • Relative displacements and rotations in all directions.

CUn • Relative displacement in the n-direction ().

CURn • Relative rotation in the n-direction ().

4.2.2–18

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CCU • • Constitutive displacements and rotations in all

directions.

CCUn • Constitutive displacement in the n-direction

().

CCURn • Constitutive rotation in the n-direction ().

CV • • • Relative velocities in all directions.

CVn • Relative velocity in the n-direction ().

CVRn • Relative angular velocity in the n-direction

().

CA • • • Relative accelerations in all directions.

CAn • Relative acceleration in the n-direction ().

CARn • Relative angular acceleration in the n-direction (

).

CFAILST • • • All flags for connector failure status.

CFAILSTi • Flag for connector failure status in the i-direction (

).

CDERU • • Connector derived displacement.

CDERF • • Connector derived force.

Element face variables

You can request element face variable output to the output database file (see “Element output” in “Output

to the output database,” Section 4.1.3). These variables are available only for shell, membrane, and solid

elements.

Identifier .fil .odb Description
Field History

P • Uniformly distributed pressure load on element faces.

When the pressure is defined using *DLOAD, the

variable name is changed automatically to PDLOAD.

STAGP • Stagnation pressure load on element faces.

VP • Viscous pressure load on element faces.

IWCONWEP • Air blast pressure load from the CONWEP model on

element faces.

TRNOR • Normal component (component along face normal) of

traction load on element faces.

4.2.2–19

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

TRSHR • Shear component (component along face tangent) of

traction load on element faces.

Nodal variables

You can request nodal variable output to the results or output database file (see “Node output” in “Output

to the data and results files,” Section 4.1.2, and “Node output” in “Output to the output database,”

Section 4.1.3).

Identifier .fil .odb Description
Field History

COORD • • • Coordinates of the node. These are the current

coordinates if the large-displacement formulation is

being used.

COORn • Coordinate n ().

U • • • Displacement components.

Results file and field-type output: both translation and

rotation.

History-type output: translation only. Rotation results

should be requested by components.

UT • • Translational displacement components.

UR • • Rotational displacement components.

Un • displacement component ().

URn • rotation component ().

V • • • Velocity components (both translation and rotation).

Results file and field-type output: both translation and

rotation.

History-type output: translation only. Rotation results

should be requested by components.

VT • • Translational velocity components.

VR • • Rotational velocity components.

Vn • velocity component ().

VRn • rotational velocity component ().

4.2.2–20

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

A • • • Acceleration components (both translation and

rotation).

Results file and field-type output: both translation and

rotation.

History-type output: translation only. Rotation results

should be requested by components.

AT • • Translational acceleration components.

AR • • Rotational acceleration components.

An • acceleration component ().

ARn • rotational acceleration component ().

POR • • • Acoustic pressure at a node.

PABS • • • Acoustic absolute pressure at a node.

NT • • • All temperature values at a node. Available only for

coupled thermal-stress analysis.

NTn • Temperature degree of freedom n at a node ().

Available only for coupled thermal-stress analysis.

RF • • • Reaction force and moment components.

Results file and field-type output: both translation and

rotation.

History-type output: translation only. Rotation results

should be requested by components.

RT • • Reaction force components.

RM • • Reaction moment components.

RFn • Reaction force component n () (conjugate

to prescribed displacement).

RFL • • • All reaction flux values. Available only for coupled

thermal-stress analysis.

RFLn • • Reaction flux value n at a node (). Available

only for coupled thermal-stress analysis.

RMn • Reaction moment component n ()

(conjugate to prescribed rotation).

CF • • All components of point loads and concentrated

moments.

CFn • Point load component n ().

4.2.2–21

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CMn • Point moment component n ().

NVF • Nodal volume fraction.

STRAINFREE • Strain-free adjustments to initial positions (adjusted

position minus unadjusted position). Only written to

the output database (.odb) file for the original field

output frame at zero time.

TIEDSTATUS • Status of the tied slave nodes (the status of a slave node

is 2 if the slave node is not tied, 1 if the slave node is

tied, and 0 for nodes that do not participate in a tie

constraint).

TIEADJUST • Position adjustment vector components of the tied

slave nodes. Only written to the output database

(.odb) file for the original field output frame at zero

time.

Fluid cavity variables

PCAV • • Fluid cavity gauge pressure.

CVOL • • Fluid cavity volume.

CTEMP • Fluid cavity temperature for an ideal gas model used

under adiabatic conditions.

CSAREA • Fluid cavity surface area.

CLAREA • Fluid cavity unblocked leakage area.

CBLARAT • Ratio of the blocked leakage area to the unblocked

leakage area.

CMASS • Mass of the fluid contained in a fluid cavity.

APCAV • Average gauge pressures for multiple fluid cavities.

TCVOL • Total volume of multiple fluid cavities.

ACTEMP • Average fluid cavity temperature for an ideal gas

model used under adiabatic conditions for multiple

fluid cavities.

TCSAREA • Total surface area of multiple fluid cavities.

TCMASS • Total mass of the fluid contained in the multiple fluid

cavities.

CMF • Molecular mass fraction of fluid species contained in

a fluid cavity.

CMFL • Mass flow rate out of a fluid cavity.

4.2.2–22

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CMFLT • Accumulated mass flow out of a fluid cavity.

CEFL • Heat energy flow rate out of a fluid cavity.

CEFLT • Accumulated heat energy flow out of a fluid cavity.

MINFL • Inflator mass flow rate into a fluid cavity.

MINFLT • Accumulated inflator mass flow into a fluid cavity.

TINFL • Inflator temperature.

Surface variables

You can request surface variable output to the output database file (see “Surface output in

Abaqus/Standard and Abaqus/Explicit” in “Output to the output database,” Section 4.1.3); additional

information on these variables is provided in “Defining general contact interactions in Abaqus/Explicit,”

Section 36.4.1; “Defining contact pairs in Abaqus/Explicit,” Section 36.5.1; and “Thermal contact

properties,” Section 37.2.1.

Identifier .fil .odb Description
Field History

Mechanical analysis–nodal quantities

CFORCE • Contact normal force (CNORMF) and frictional shear

force (CSHEARF).

CSTRESS • Contact pressure (CPRESS) and frictional shear stress

(CSHEAR). CSHEAR is not available for general

contact analyses.

CTHICK • Contact thickness in general contact or contact pairs.

CSMAXSCRT • Maximum stress-based damage initiation criterion for

cohesive surfaces in general contact.

CSQUADSCRT • Quadratic stress-based damage initiation criterion for

cohesive surfaces in general contact.

CSMAXUCRT • Maximum separation-based damage initiation

criterion for cohesive surfaces in general contact.

CSQUADUCRT • Quadratic separation-based damage initiation criterion

for cohesive surfaces in general contact.

CSDMG • Damage variable for cohesive surfaces in general

contact.

4.2.2–23

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

FSLIP • Length of contact slip path at slave nodes during

contact (FSLIPEQ) and in some cases (see “Defining

contact pairs in Abaqus/Explicit,” Section 36.5.1)

components of net contact slip in local tangent

directions (FSLIP1 and FSLIP2). These variables

remain constant while a slave node is not in contact.

FSLIPR • Magnitude of contact slip rate at slave nodes during

contact (FSLIPR) and in some cases (see “Defining

contact pairs in Abaqus/Explicit,” Section 36.5.1)

components of contact slip rate in local tangent

directions (FSLIPR1 and FSLIPR2). These variables

are set to zero while a slave node is not in contact.

BONDSTAT • Spot weld bond status.

BONDLOAD • Spot weld bond load.

Crack bond failure quantities

DBT • Time when bond failure occurs.

DBS • All components of remaining stress in the failed bond.

DBSF • Fraction of stress that remains at bond failure.

BDSTAT • Bond state (the state is 1.0 if bonded, 0.0 if unbonded).

OPENBC • Relative displacement behind crack when fracture

criterion is met.

CRSTS • All components of critical stress at failure.

ENRRT • All components of strain energy release rate.

EFENRRTR • Effective energy release rate ratio.

Mechanical analysis–whole surface quantities

CFN • Total force due to contact pressure (CFNn, n = 1, 2, 3).

CFNM • Magnitude of total force due to contact pressure.

CFS • Total force due to frictional stress (CFSn, n = 1, 2, 3).

CFSM • Magnitude of total force due to frictional stress.

CFT • Total force due to contact pressure and frictional stress

(CFTn, n = 1, 2, 3).

CFTM • Magnitude of total force due to contact pressure and

frictional stress.

CMN • Total moment about the origin due to contact pressure

(CMNn, n = 1, 2, 3).

4.2.2–24

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

CMNM • Magnitude of total moment about the origin due to

contact pressure.

CMS • Total moment about the origin due to frictional stress

(CMSn, n = 1, 2, 3).

CMSM • Magnitude of total moment about the origin due to

frictional stress.

CMT • Total moment about the origin due to contact pressure

and frictional stress (CMTn, n = 1, 2, 3).

CMTM • Magnitude of total moment about the origin due to

contact pressure and frictional stress.

CAREA • Total area in contact.

XN • Center of the total force due to contact pressure (XNn,

n = 1, 2, 3).

XS • Center of the total force due to frictional stress (XSn,

n = 1, 2, 3).

XT • Center of the total force due to contact pressure and

frictional stress (XTn, n = 1, 2, 3).

Fully coupled temperature-displacement analysis

HFL • Heat flux per unit area leaving the surface.

HFLA • HFL multiplied by the nodal area.

HTL • Time integrated HFL.

HTLA • HTL multiplied by the nodal area.

SFDR • Heat flux per unit area due to frictional dissipation.

SFDRA • SFDR multiplied by the nodal area.

SFDRT • Time integrated SFDR.

SFDRTA • SFDRT multiplied by the nodal area.

Integrated variables

You can request integrated variable output to the output database (see “Integrated output in

Abaqus/Explicit” in “Output to the output database,” Section 4.1.3). The output quantity is computed

by integration over a surface or an element set that is specified either directly in the integrated

output request or by associating an integrated output section definition (see “Integrated output section

definition,” Section 2.5.1) or an element set definition with the integrated output request.

The components of the vector output variables are given with respect to a global coordinate system

when no integrated output section definition is associated with the integrated output request. When an

integrated output section is associated with the integrated output request and a local coordinate system is

4.2.2–25

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

defined for the integrated output section, the components are given in the local system. The local system

will rotate with the deformation if a reference node with rotation degrees of freedom is associated with

the section definition.

Identifier .fil .odb Description
Field History

SOAREA • Area of the surface as projected onto a plane normal to

the average surface normal.

SOF • Total force transmitted through the surface.

SOM • Total moment transmitted through the surface. The

moment of the forces transmitted through the surface

is taken about the current location of the reference

node if one is specified on an integrated output section

and is associated with the integrated output request.

The moment is taken about the global origin either if

no section definition is associated with the integrated

output request or if there is no reference node defined

in the associated section definition.

MASS • Total mass of the element set.

DMASS • Total mass change in percentage of the element set due

to mass scaling.

UCOM • Equivalent rigid-body translational displacement of

the element set.

VCOM • Equivalent rigid-body translational velocity of the

element set.

ACOM • Equivalent rigid-body translational acceleration of the

element set.

COORDCOM • Coordinates of the center of mass of the element set.

MASSEUL • Total mass of each Eulerian material instance in the

element set.

VOLEUL • Total volume of each Eulerian material instance in the

element set.

Total energy output

You can request total energy variable output to the results or output database file (see “Total energy

output” in “Output to the data and results files,” Section 4.1.2, and “Total energy output” in “Output

to the output database,” Section 4.1.3). All of these variables are written when total energy output is

requested. Energy history totals can be requested to the output database for part of the model as well as

the whole model.

4.2.2–26

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Identifier .fil .odb Description
Field History

ALLAE • • “Artificial” strain energy associated with constraints

used to remove singular modes (such as hourglass

control) and with constraints used to make the drill

rotation follow the in-plane rotation of the shell

elements.

ALLCD • • Energy dissipated by viscoelasticity. (Not supported

for hyperelastic and hyperfoam material models).

ALLFD • • Total energy dissipated through frictional effects.

(Available only for the whole model).

ALLIE • • Total strain energy. (ALLIE=ALLSE + ALLPD +

ALLCD + ALLAE + ALLDMD+ ALLDC+ ALLFC.)

ALLKE • • Kinetic energy.

ALLPD • • Energy dissipated by rate-independent and rate-

dependent plastic deformation.

ALLSE • • Recoverable strain energy.

ALLVD • • Energy dissipated by viscous effects.

ALLWK • • External work. (Available only for the whole model).

ALLIHE • • Internal heat energy.

ALLHF • • External heat energy through external fluxes.

ALLDMD • • Energy dissipated by damage.

ALLDC • • Energy dissipated by distortion control.

ALLFC • Fluid cavity energy, defined as the negative of the work

done by all fluid cavities. (Available only for the whole

model.)

ALLPW • Work done by contact penalties, including general

contact and penalty/kinematic contact pairs.

(Available only for the whole model.)

ALLCW • Work done by constraint penalties. (Available only for

the whole model.)

ALLMW • Work done in propelling mass added in mass scaling.

(Available only for the whole model.)

ETOTAL • • Energy balance defined as: ALLKE + ALLIE +

ALLVD + ALLFD + ALLIHE − ALLWK − ALLPW

− ALLCW − ALLMW − ALLHF. (Available only for

the whole model.)

4.2.2–27

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE IDENTIFIERS

Time increment and mass output

The DT andDMASS variables are always written when any results file output is requested (see “Output to

the Abaqus/Explicit results file” in “Output to the data and results files,” Section 4.1.2). You can request

output of the time increment and the steady-state detection variables SSPEEQ, SSSPRD, SSFORC, and

SSTORQ to the output database (see “Time incrementation output in Abaqus/Explicit” in “Output to the

output database,” Section 4.1.3).

Identifier .fil .odb Description
Field History

DT • • Time increment.

DMASS • • Percent change in mass of the model due to mass

scaling.

SSPEEQ • Steady-state equivalent plastic strain norms.

SSPEEQn • Steady-state equivalent plastic strain norm n.

SSSPRD • Steady-state spread strain norms.

SSSPRDn • Steady-state spread norm n.

SSFORC • Steady-state force norms.

SSFORCn • Steady-state force norm n.

SSTORQ • Steady-state torque norms.

SSTORQn • Steady-state torque norm n.

4.2.2–28

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

4.2.3 Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

Products: Abaqus/CFD Abaqus/CAE

References

• “Output,” Section 4.1.1

• “Output to the data and results files,” Section 4.1.2

• “Output to the output database,” Section 4.1.3

Overview

Results can be obtained from Abaqus/CFD only by postprocessing.

The tables in this section list all of the output variables that are available in Abaqus/CFD. The

output variables can be requested for either field- or history-type output to the output database (.odb)
file (see “Output to the output database,” Section 4.1.3). The field type variables can be requested at the

nodes, elements, or element faces attached to a surface.

Symbols used in the tables

The availability of the various output variable identifiers is defined by a in the columns of the table,

under the following headings:

.odb Field

means that the identifier can be used as a field-type output selection to the output database.

.odb History

means that the identifier can be used as a history-type output selection to the output database.

Direction definitions

The direction definitions depend on the variable type.

Direction definitions for element variables

For element variables, 1, 2, and 3 refer to the global directions (1=X, 2=Y, and 3=Z). Even if a local

coordinate system has been defined at a node (“Transformed coordinate systems,” Section 2.1.5), the

data are still output in the global directions.

Direction definitions for nodal variables

For nodal variables, 1, 2, and 3 refer to the global directions (1=X, 2=Y, and 3=Z). Even if a local

coordinate system has been defined at a node (“Transformed coordinate systems,” Section 2.1.5), the

data are still output in the global directions.

4.2.3–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

Requesting output of components

Individual components of variables can be requested as history-type output in the output database for

X–Y plotting in Abaqus/CAE. Individual component requests are not available for field-type output.

If a particular component is desired for contouring in Abaqus/CAE, request field output of the generic

variable (e.g., V for velocity). Output for individual components of this field output can then be requested

within the Visualization module of Abaqus/CAE.

Element variables

You can request element variable output to the output database file (see “Element output” in “Output to

the output database,” Section 4.1.3).

Identifier .odb Description
Field History

Geometric quantities

COORD • • Coordinates of the element centroid for solid elements.

These are the current coordinates if the mesh has

moved.

EVOL • • Element volume.

State and field variables

DENSITY • • Fluid density.

DIV • • Divergence of the fluid velocity.

ENSTROPHY • • Enstrophy per unit mass.

HELICITY • • Dot product of vorticity and velocity.

PRESSURE • • Fluid pressure.

TEMP • • Fluid temperature.

V • • Fluid velocity.

VGINV2 • Second invariant of the rate-of-strain tensor

(symmetric part of the velocity gradient tensor).

VORTICITY • • Curl of the velocity vector.

VISCOSITY • Element molecular viscosity.

SHEARRATE • Shear rate computed using the second invariant of the

rate-of-strain tensor.

Turbulence variables

DIST • • Wall-normal distance.

TURBEPS • • Energy dissipation rate.

4.2.3–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

Identifier .odb Description
Field History

TURBKE • • Turbulent kinetic energy.

TURBNU • • Turbulent eddy viscosity.

Nodal variables

You can request nodal variable output to the output database file (see “Node output” in “Output to the

output database,” Section 4.1.3).

Identifier .odb Description
Field History

Geometric quantities

COORD • Coordinates of the node. These are the current

coordinates if the mesh has moved.

COORn • Coordinate n ().

State and field variables

DENSITY • Fluid density at a node.

DIV • Divergence of the fluid velocity at a node.

ENSTROPHY • Enstrophy per unit mass at a node.

HELICITY • Helicity at a node.

PRESSURE • Fluid pressure at a node.

TEMP • Fluid temperature at a node.

U • Fluid displacement components at a node.

Un • fluid displacement component ().

V • Fluid velocity components at a node.

Vn • fluid velocity component ().

VGINV2 • Second invariant of the rate-of-strain tensor

(symmetric part of the velocity gradient tensor).

VORTICITY • Vorticity components at a node.

VORTICITYn • Vorticity vorticity component ().

SHEARRATE • Shear rate at the nodes computed using the second

invariant of the rate-of-strain tensor.

Turbulence variables

DIST • Wall-normal distance.

TURBEPS • Energy dissipation rate.

4.2.3–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

Identifier .odb Description
Field History

TURBKE • Turbulent kinetic energy.

TURBNU • Turbulent eddy viscosity at a node.

Surface variables

You can request surface variable output to the output database file (see “Surface output in Abaqus/CFD”

in “Output to the output database,” Section 4.1.3). The field output corresponds to the element faces

attached to a surface.

Identifier .odb Description
Field History

Geometric quantities

SURFAREA • Area of a surface. For deforming meshes, it is the

surface area in the current configuration.

State and field variables

AVGPRESS • Area-averaged surface pressure.

AVGTEMP • Area-averaged surface temperature.

AVGVEL • Area-averaged surface velocity vector.

FORCE • Total fluid force components on the surface.

HEATFLOW • Integrated normal heat flux on a given surface. Heat

flow is considered positive if heat is added to the

system and negative otherwise.

HFL • Heat flux vector on a surface.

HFLN • Normal heat flux on a surface.

MASSFLOW • Integrated mass flow rate across a given surface.

NTRACTION • Fluid normal traction on a surface.

PRESSFORCE • Fluid pressure force on a given surface.

STRACTION • Fluid surface (or shear) traction on a surface.

TRACTION • Fluid total traction on a surface. This is equal to the

sum of the normal traction (NTRACTION) and the

shear traction (STRACTION).

VISCFORCE • Fluid viscous force on a given surface.

VOLFLOW • Integrated volume flow rate across a given surface.

WALLSHEAR • Fluid shear stress magnitude on a surface. It is the

magnitude of the shear traction (STRACTION) vector.

4.2.3–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE IDENTIFIERS

Identifier .odb Description
Field History

Turbulence variables

YPLUS • Wall-normal distance measured in viscous lengths or

wall units. A default value of 0 is output for surfaces

that are not attached to a wall boundary.

YSTAR • Wall-normal distance scaled using turbulent kinetic

energy and viscosity. YSTAR output is available only

when TYPE=RNG KEPSILON is specified. A default

value of 0 is output for surfaces that are not attached

to a wall boundary.

Whole and partial model variables

The output variables listed below are available for part of the model as well as the whole model.

Identifier .odb Description
Field History

Geometric quantities

VOL • Current volume of the entire set or the entire model.

Total energy output quantities

If the following whole model variables are relevant for a particular analysis, you can request them

as output to the output database file (see “Total energy output” in “Output to the output database,”

Section 4.1.3). If you do not specify an output region, whole model variables are calculated. When

you specify an output region, the relevant energy totals are calculated over the user-specified region.

ALLKE • Kinetic energy.

4.2.3–5

Abaqus Version 6.6 ID:

Printed on:

THE POSTPROCESSING CALCULATOR

4.3 The postprocessing calculator

• “The postprocessing calculator,” Section 4.3.1

4.3–1

Abaqus Version 6.6 ID:

Printed on:

THE POSTPROCESSING CALCULATOR

4.3.1 THE POSTPROCESSING CALCULATOR

Products: Abaqus/Standard Abaqus/Explicit

References

• “Output to the output database,” Section 4.1.3

• “Abaqus/Standard output variable identifiers,” Section 4.2.1

• “Abaqus/Explicit output variable identifiers,” Section 4.2.2

• “Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2

Overview

The postprocessing calculator can perform operations on output quantities written to the output database

(job-name.odb) by Abaqus. It then expands the output database by writing these new output quantities

to the output database. Once this expansion is done, it is not possible to convert the output database

back to its original form. The postprocessing calculator is for use only with the Visualization module of

Abaqus/CAE (Abaqus/Viewer).

Functionality of the calculator

The postprocessing calculator performs the following calculations on data written to the output database:

• Extrapolation of integration point quantities to the nodes or interpolation of integration point

quantities to the centroid of an element, according to the user-specified position for element output;

see “Selecting the position of element integration point and section point output” in “Output to the

output database,” Section 4.1.3, for details.

• Calculation of history output at tracer particles; see “Tracer particle output from Abaqus/Explicit”

in “Output to the output database,” Section 4.1.3.

Running the calculator

By default, the postprocessing calculator will run automatically upon the completion of an analysis.

During the execution of the analysis, Abaqus will determine if there are keywords in the input file

that require the use of the calculator and will initiate the calculator upon completion if it is required.

You can override this default behavior by using the environment variable auto_calculate in the Abaqus

environment file. See “Using the Abaqus environment settings,” Section 3.3.1, for details.

You can run the postprocessing calculator manually by using the convert=odb option on the abaqus

execution procedure.

To see the postprocessed results before an analysis is complete, you can run the postprocessing

calculator manually while the analysis is still running, using the oldjob option in conjunction with the

convert=odb option on the abaqus execution procedure. The postprocessing calculator will write a

new output database using the value of the job parameter as the file name. Due to the fact that the

4.3.1–1

Abaqus Version 6.6 ID:

Printed on:

THE POSTPROCESSING CALCULATOR

analysis is writing to the output database at the same time the postprocessing calculator is attempting

to read it, the output database may be in an inconsistent state that makes reading it impossible. If this

problem occurs, the postprocessing calculator will stop attempting to read the output database and exit. A

warning message explaining what has happened will be output to the screen. You can then attempt to run

the postprocessing calculator again. If the inconsistent state has cleared, the postprocessing calculator

will run normally.

If the postprocessing calculator is run during an analysis without the oldjob option, Abaqus will ask

you to confirm that the existing output database can be overwritten. You should make sure the analysis

is complete before running the postprocessing calculator manually without the oldjob option. If the

analysis is still running when the postprocessing calculator is run without using the oldjob option, the

output database will be corrupted.

For a detailed description of the procedure for running the postprocessing calculator manually, see

“Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution,” Section 3.2.2.

If an analysis aborts because available CPU time has expired and you restart the analysis, the

postprocessing calculator will not automatically expand the output database from the original, aborted

run. You must manually run the postprocessing calculator to expand the original output database using

the procedure outlined above.

4.3.1–2

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

5. File Output Format

Accessing the results file 5.1

Abaqus Version 6.6 ID:

Printed on:

ACCESSING THE RESULTS FILE

5.1 Accessing the results file

• “Accessing the results file: overview,” Section 5.1.1

• “Results file output format,” Section 5.1.2

• “Accessing the results file information,” Section 5.1.3

• “Utility routines for accessing the results file,” Section 5.1.4

5.1–1

Abaqus Version 6.6 ID:

Printed on:

RESULTS FILE OUTPUT

5.1.1 ACCESSING THE RESULTS FILE: OVERVIEW

Writing information to the results file

The Abaqus results file is the medium through which analysis results can be carried over into other

software, such as postprocessing programs. The following types of output can be written to the results

file:

• element output, nodal output, energy output, modal output, contact surface output, and section

output (see “Output to the data and results files,” Section 4.1.2)

• element matrix output (see “Element matrix output in Abaqus/Standard” in “Output,” Section 4.1.1)

• substructure matrix output (see “Writing the recovery matrix, reduced stiffness matrix, mass matrix,

load case vectors, and gravity vectors to a file” in “Defining substructures,” Section 10.1.2)

• cavity radiation viewfactor matrices (see “Writing the viewfactor matrices to the results file” in

“Cavity radiation,” Section 41.1.1)

“Output,” Section 4.1.1, describes the general format of the results file.

An Abaqus model can be defined in terms of an assembly of part instances (see “Defining an

assembly,” Section 2.10.1). However, the results file is not organized by part; it contains internal node and

element numbers (see “Output,” Section 4.1.1). A map between the original numbers and part instance

names and the internal numbers is written to the data file.

Accessing information in the results file

This chapter contains technical descriptions of the results file and is intended to be read by users or

programmers who need to write programs that use the results file.

• “Results file output format,” Section 5.1.2, describes the format of the individual records in the

results file.

• “Accessing the results file information,” Section 5.1.3, describes the subroutine calls required to

read the file output, contains an example of a program written to use the Abaqus results file, and

shows how you can write (or modify) a results file using the Abaqus file format.

• “Utility routines for accessing the results file,” Section 5.1.4, describes the utility subroutines that

can be used to access the results file.

5.1.1–1

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

5.1.2 RESULTS FILE OUTPUT FORMAT

Products: Abaqus/Standard Abaqus/Explicit

References

• “Accessing the results file: overview,” Section 5.1.1

• “Abaqus/Standard output variable identifiers,” Section 4.2.1

• “Abaqus/Explicit output variable identifiers,” Section 4.2.2

Overview

This section describes the format of the individual records in the Abaqus results file. Where applicable,

the output variable identifier used in writing a given value to the file is printed below the corresponding

record type description. Records that are available only in Abaqus/Standard are designated with an
(S) ; records that are available only in Abaqus/Explicit are designated with an (E) . The record key for a

particular record may differ between Abaqus/Standard and Abaqus/Explicit.

Record format

The results file is written as a sequential file. Each record has the following format:

Location Length Description

1 1 Record length ()

2 1 Record type key

3, 4... () Attributes

All words in the results file are of the same length, whether they contain integer, floating point

number, or character string data. The word length is that of a double precision floating point number

(8 bytes).

The attributes in a given record may depend on the element type being considered. For example,

the stress components associated with three-dimensional shell elements are , , and (in local

directions), while those associated with three-dimensional solids are , , , , , and

(in global directions if no local orientation is specified). Thus, care must be used in interpreting the data

when postprocessing the file output. Refer to Part VI, “Elements,” for a definition of the ordering of

element-dependent attributes.

In steady-state dynamic analyses, complex values are stored as the real components followed by

the imaginary components. For example, the stress components associated with three-dimensional shell

elements are , , and followed by , , and .

In models that are defined in terms of an assembly of part instances, the results file contains internal

(global) node and element numbers, as explained in “Output,” Section 4.1.1. Part and assembly records

are not included in the results file.

5.1.2–1

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Local coordinate system

If the components of an element quantity are in local directions, a record of type 85 defining these

directions is generated for each point at which component output is requested if the local coordinate

directions were requested in Abaqus/Standard (see “Output of local directions to the results file” in

“Output to the data and results files,” Section 4.1.2) and automatically in Abaqus/Explicit. The local

coordinate system may be inherent to the element, as is the case in shells and membranes, or may have

been defined by a local orientation (see “Orientations,” Section 2.2.5).

For shell elements a direction record is written for every material point in the section for which

component output is requested, and a separate direction record is written for section forces and section

strains. For geometrically nonlinear analysis in Abaqus/Standard the record contains the current, updated

directions, except for small-strain shells, in which case the original directions are given. Direction output

is not provided for trusses, two-dimensional beams, axisymmetric shells or membranes, or for values

averaged at nodes.

Label record

Some record types include labels, such as element and node set names, written in A8 format. If a label

exceeds 8 characters, an integer identifier will be written instead. This identifier can then be used to

cross-reference the actual label stored in 10A8 format on record type 1940.

Records written for any file output request

Record Record type Attributes
key

1900 Element definitions 1. Element number.

2. Element type (characters, A8 format, left

justified).

3. First node on the element.

4. Second node on the element.

5. Etc.

1990(S) Element definition continuation 1. Node on the element in the previous 1900 record.

2. Etc.

In Abaqus/Explicit quadrilateral/brick elements that are degenerate (i.e., possessing identical nodes) are

written out in record 1900 as corresponding triangular/tetrahedral/wedge elements. For example, a CPE4R

element with two identical nodes is written as a CPE3 element, and a C3D8R element with identical third

and fourth nodes and identical seventh and eighth nodes is written as a C3D6 element.

1901 Node definitions 1. Node number.

2. First coordinate.

3. Second coordinate.

4. Etc.

5.1.2–2

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

Record key 1902 (below) defines the location of each active degree of freedom. For example, if the model

contains only two-dimensional beam elements, the only active degrees of freedom are 1, 2, and 6. Therefore,

this record would have the attributes (1, 2, 0, 0, 0, 3), meaning that degree of freedom 1 () is the first active

variable at each node; degree of freedom 2 () is the second active variable at each node; degrees of freedom

3, 4, and 5 are not active in the model; and degree of freedom 6 is the third active variable at each node.

1902 Active degrees of freedom 1. Location in nodal arrays of degree of freedom 1

(0 if DOF 1 is not active in the model).

2. Location in nodal arrays of degree of freedom 2

(0 if DOF 2 is not active in the model).

3. Etc.

1910(S) Substructure path 1. 0 substructure enter record; 1 substructure leave

record.

2. Element number on usage level.

3. Substructure type identifier (Zn).

4. Element number at the previous level if it is not

the usage level.

5. Etc.

1911 Output request definition 1. Flag for element-based output (0), nodal output

(1), modal output (2), or element set energy output

(3).

2. Set name (node or element set) used in the request

(A8 format). This attribute is blank if no set was

specified.

3. Element type (only for element output, A8

format).

1921 Abaqus release, etc. 1. Abaqus release number (A8 format).

2. Date (2A8 format).

3. Date cont’d.

4. Time (A8 format).

5. Number of elements in the model.

6. Number of nodes in the model.

7. Typical element length in the model.

1922 Heading 1. Attributes 1–10. The heading entered as the first

data line of the *HEADING option (A8 format).

Equivalent to the job description in Abaqus/CAE.

5.1.2–3

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1931 Node set 1. Node set name (A8 format). In Abaqus/Explicit

only node sets defined as part of the model

definition are written.

2. First node in the node set.

3. Second node in the node set.

4. Etc.

1932 Node set continuation 1. Node number in the node set of the previous 1931

record.

2. Etc.

1933 Element set 1. Element set name (A8 format). In

Abaqus/Explicit only element sets defined

as part of the model definition are written.

2. First element in the element set.

3. Second element in the element set.

4. Etc.

1934 Element set continuation 1. Element number in the element set of the previous

1933 record.

2. Etc.

1940 Label cross-reference 1. Integer reference.

2. Label (10A8 format).

Record written once per eigenvalue in natural frequency extraction

Record Record type Attributes
key

1980(S) Modal 1. Eigenvalue number.

2. Eigenvalue.

3. Generalized mass.

4. Composite damping.

5. Participation factor for degree of freedom 1.

6. Effective mass for degree of freedom 1.

7. Participation factor for degree of freedom 2.

8. Effective mass for degree of freedom 2.

9. Etc.

Any nodal or element data after this record refer to the eigenvector, until a new record key 1980 or a record

key 2001 is encountered. Eigenvalue output for substructures (see “Writing the recovery matrix, reduced

stiffness matrix, mass matrix, load case vectors, and gravity vectors to a file” in “Defining substructures,”

Section 10.1.2) also uses these records to divide up elemental and nodal results. This record is written if

5.1.2–4

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

there are any results file output requests for an eigenvalue buckling prediction or eigenfrequency extraction

step. The generalized mass, etc. are not written for an eigenvalue buckling prediction step. This record is not

written for a complex eigenfrequency extraction step.

Records written once per increment

Record Record type Attributes
key

2000 Increment start record 1. Total time.

2. Step time.

3. Maximum creep strain-rate ratio (control of

solution-dependent amplitude) in

Abaqus/Standard; currently not used in

Abaqus/Explicit.

4. Solution-dependent amplitude in

Abaqus/Standard; currently not used in

Abaqus/Explicit.

5. Procedure type: gives a key to the step type. See

Table 5.1.2–1 at the end of this section.

6. Step number.

7. Increment number.

8. Linear perturbation flag in Abaqus/Standard:

0 if general step, 1 if linear perturbation step;

currently not used in Abaqus/Explicit.

9. Load proportionality factor: nonzero only in static

Riks steps; currently not used in Abaqus/Explicit.

10. Frequency (cycles/time) in a steady-state dynamic

response analysis or steady-state transport angular

velocity (rad/time) in a steady-state transport

analysis; currently not used in Abaqus/Explicit.

11. Time increment.

12. Attributes 12–21. The step subheading entered

as the first data line of the *STEP option

(A8 format). Equivalent to the step description in

Abaqus/CAE.

The following record is written once per increment, after all data records have been written for that increment.

2001 Increment end record 1. No attributes.

5.1.2–5

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

Note: When binary format is used, the results file is written in blocks of 512 words for each

increment. If there are fewer than 512 words in the last block of the current increment, record 2001

has zeros appended to it so that the total length of the block is 512. Hence, the length of record

2001 is 2 + the number of zeros appended. For an ASCII format results file record 2001 is extended

to complete an 80 character logical record, and a logical record of 80 blank characters is added

after this record. See “Accessing the results file information,” Section 5.1.3.

Records written for any element file output request

These records contain data about element variables at integration points within the elements, at the centroid

of elements, or at the nodes of an element.

Record Record type Attributes
key

1 Element header record 1. Element number or the node number if the

subsequent records contain nodal averaged

element values.

2. Integration point number if the subsequent records

contain integration point data. Node number

if the subsequent records contain data at the

nodes of the element. Integration plane number

if the subsequent records contain centroidal

values for CAXA and SAXA elements. 0 if the

subsequent records contain centroidal values or

nodal averaged values.

3. Section point number if this is a shell, beam,

or layered solid element and the subsequent

records contain data at a section point through

the thickness. 0 for continuum elements and for

section values in beams and shell elements.

4. Location identification. 0 if the subsequent

records contain data at an integration point; 1

if the subsequent records contain values at the

centroid of the element; 2 if the subsequent

records contain data at the nodes of the element; 3

if the subsequent records contain data associated

with rebar within an element; 4 if the subsequent

records contain nodal averaged values; 5 if the

subsequent records contain values associated with

the whole element.

5.1.2–6

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

5. Rebar name if the subsequent records contain

values associated with a named rebar.

6. Number of direct stresses at a point (NDI).
7. Number of shear stresses at a point (NSHR).
8. 0, currently not used in Abaqus/Standard;

number of directions in which displacement

or temperature gradients are computed in the

element (NDIR) in Abaqus/Explicit.

9. Number of section force or section strain

components (NSFC).

2 Temperature

Output variable: TEMP

1. Temperature.

3(S) Distributed load

Output variable: LOADS

1. Load type.

2. Magnitude.

4(S) Distributed flux

Output variable: FLUXS

1. Flux type.

2. Magnitude.

5 Solution-dependent state variables

Output variable: SDV

1. State variable 1.

2. State variable 2.

3. Etc. The record can have up to 80 words in ASCII

format or 512 words in binary format. Repeat this

record as often as necessary to output all active

state variables in the model.

6(S) Void ratio

Output variable: VOIDR

1. Void ratio.

7(S) Foundation pressure

Output variable: FOUND

1. Foundation type.

2. Magnitude.

8(S) Coordinates

Output variable: COORD

1. First coordinate.

2. Etc.

9(S) Field variables

Output variable: FV

1. First field variable.

2. Etc.

10(S) Nodal flux caused by heat

Output variable: NFLUX

1. Node number.

2. First flux component.

3. Etc.

11 Stresses

Output variable: S

1. First stress component.

2. Second stress component.

5.1.2–7

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

475(S) Average contact pressure (for

link and three-dimensional line

gasket elements)

Output variable: CS11

1. Magnitude (available only when the gasket

contact area is specified; see “Defining the

contact area for average contact pressure output”

in “Defining the gasket behavior directly using a

gasket behavior model,” Section 32.6.6).

12(S) Stress invariants

Output variable: SINV

1. Mises stress.

2. Tresca stress.

3. Hydrostatic pressure.

4. Currently not used.

5. Currently not used.

6. Currently not used.

7. Third stress invariant.

13 Section forces and moments

Output variable: SF

1. First section force.

2. Second section force.

3. Etc. (See Part VI, “Elements,” for a description of

which section forces are available for each beam

or shell element type.)

449(S) Effective axial section force

Output variable: ESF1

1. Effective axial section force for beams and pipes

subjected to pressure loading.

14(S) Energy densities

Output variable: ENER

1. Strain energy. Elastic strain energy is the only

energy density request available in eigenvalue

extractions. None of the energy densities are

available in modal procedures or direct-solution

steady-state dynamics analyses.

2. Plastic dissipation.

3. Creep dissipation.

4. Viscous dissipation.

5. Electrostatic energy.

6. Energy dissipated due to electrical conduction.

7. Damage dissipation.

14(E) Energy densities

Output variable: ENER

1. Elastic strain energy.

2. Plastic dissipation.

3. Viscoelastic dissipation (not supported for

hyperelastic and hyperfoam material models).

5.1.2–8

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

4. Viscous dissipation.

5. Currently not used.

6. Currently not used.

7. Damage dissipation.

15(S) Nodal forces caused by stress

Output variable: NFORC

1. Node number.

2. First force component.

3. Etc.

16(S) Maximum section stresses 1. Maximum stress on section.

The order of the data and the number of data items for record 17 depends on the element type. For LS3S

elements:

17(S) Js, K for LS3S line springs

Output variable: JK

1. J (J-integral).

2. K (stress intensity).

3. (elastic part of J-integral).

4. (plastic part of J-integral).

For LS6 elements:

17(S) Js, Ks for LS6 line springs

Output variable: JK

1. J (J-integral).

2. (elastic part of J-integral).

3. (plastic part of J-integral).

4. (Mode I stress intensity factor).

5. (Mode II stress intensity factor).

6. (Mode III stress intensity factor).

18(S) Pore or acoustic pressure

Output variable: POR

1. Liquid pressure.

19(S) Energy summed over element

Output variable: ELEN

1. Kinetic energy.

2. Strain energy. Elastic strain energy is the only

whole element energy request available in

eigenvalue extractions. None of the element

energies are available in modal procedures or

direct-solution steady-state dynamics analyses.

3. Plastic dissipation.

4. Creep dissipation.

5. Viscous dissipation, not including dissipation due

to stabilization.

6. Static dissipation (due to stabilization).

7. Artificial strain energy.

5.1.2–9

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

8. Electrostatic energy.

9. Electrical energy dissipated in a conductor.

10. Damage dissipation.

19(E) Energy summed over element

Output variable: ELEN

1. Currently not used.

2. Strain energy.

3. Plastic dissipation.

4. Viscoelastic dissipation (not supported for

hyperelastic and hyperfoam material models).

5. Viscous dissipation.

6. Artificial strain energy.

7. Distortion control dissipation.

8. Currently not used.

9. Internal heat energy.

10. Damage dissipation.

21 Total strain in Abaqus/Standard;

infinitesimal strain in

Abaqus/Explicit

Output variable: E

1. First strain component.

2. Second strain component.

3. Etc. (See Part VI, “Elements,” for a definition of

the components for a given element type.)

22 Plastic strains

Output variable: PE

1. First plastic strain component.

2. Second plastic strain component.

3. Etc; followed by the equivalent plastic

strain, actively yielding flag (yes or no, A8

format), and magnitude of plastic strain in

Abaqus/Standard; followed by “0.0, UNUSED,

0.0” in Abaqus/Explicit for consistency with

the length of the Abaqus/Standard record. (See

Part VI, “Elements,” for a definition of the

components for a given element type.)

23(S) Creep strains (including swelling)

Output variable: CE

1. First creep strain component.

2. Second creep strain component.

3. Etc; followed by the equivalent creep strain,

volumetric swelling strain, and magnitude of

creep strain.

24(S) Total inelastic strains

Output variable: IE

1. First inelastic strain component.

2. Second inelastic strain component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

5.1.2–10

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

25(S) Total elastic strains

Output variable: EE

1. First elastic strain component.

2. Second elastic strain component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

26 Unit normal to crack in concrete

Output variable: CRACK

1. 11-component (if a 1D, 2D, or 3D analysis).

2. 12-component (if a 2D or 3D analysis).

3. 13-component (if a 3D analysis).

4. 21-component (if a 2D or 3D analysis).

5. 22-component (if a 2D or 3D analysis).

6. 23-component (if a 3D analysis).

7. 31-component (if a 3D analysis).

8. 32-component (if a 3D analysis).

9. 33-component (if a 3D analysis).

27 Section thickness

Output variable: STH

1. Current section thickness for membranes and

finite-strain shells in Abaqus/Standard and for

plane stress elements, membranes, and all shells

in Abaqus/Explicit.

28 Heat flux vector

Output variable: HFL

1. Magnitude.

2. First component.

3. Second component.

4. Etc.

29 Section strains and curvatures

Output variable: SE

1. First section strain.

2. Second section strain.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of what section

strains are available for each beam or shell

element type.)

30(S) Deformation gradient

Output variable: DG

1. .

2. Etc. The record will have NDI diagonal

components of , then NSHR above diagonal

components (, ,), then NSHR below

diagonal components (, ,), where NDI
and NSHR are given in the element header record

(record key 1). Available only for hyperelasticity,

hyperfoam, and material models defined in user

subroutine UMAT.

5.1.2–11

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

31(S) Concrete failure

Output variable: CONF

1. Summary of the state of a concrete material point.

This is the number of cracks or −1 if the concrete

has crushed.

32(S) Strain jumps at nodes

Output variable: SJP

1. First strain jump component.

2. Second strain jump component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

33(S) Film

Output variable: FILM

1. Type.

2. Sink temperature.

3. Film coefficient.

34(S) Radiation

Output variable: RAD

1. Type.

2. Sink temperature.

3. Radiation constant.

35(S) Saturation (pore pressure analysis)

Output variable: SAT

1. Saturation.

36(S) Substresses (for ITT elements)

Output variable: SS

1. First substress.

2. Second substress.

38(S) Mass concentration (mass

diffusion analysis)

Output variable: CONC

1. Concentration.

446(S) Amount of solute at the integration

point (mass diffusion analysis)

Output variable: ISOL

1. Amount of solute.

447(S) Amount of solute in the current

element (mass diffusion analysis)

Output variable: ESOL

1. Amount of solute.

448(S) Amount of solute in the element set

or model (mass diffusion analysis)

Output variable: SOL

1. Amount of solute.

The number of data items for record 39 depends on the element type. For pore pressure elements and mass

diffusion analysis:

39(S) Mass concentration flux vector

Output variable: MFL

1. Magnitude.

2. First component.

5.1.2–12

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Second component.

4. Etc.

For fluid link elements:

39(S) Mass flow rate

Output variable: MFL

1. Current flow rate.

40(S) Gel (pore pressure analysis)

Output variable: GELVR

1. Gel volume ratio.

43(S) Total fluid volume ratio

Output variable: FLUVR

1. Total fluid volume ratio.

61(E) Element status

Output variable: STATUS

1. Status of element (shear failure model, tensile

failure model, porous failure criterion, brittle

failure model, Johnson-Cook plasticity model,

and VUMAT). The status of an element is 1.0 if the

element is active, 0.0 if the element is not.

73(E) Equivalent plastic strain

Output variable: PEEQ

1. Equivalent plastic strain. For crushable foam

plasticity with volumetric hardening, it is the

volumetric compacting plastic strain. For cap

plasticity it is (the cap position).

74(E) Mean pressure stress

Output variable: PRESS

1. Mean pressure stress.

75(E) Mises equivalent stress

Output variable: MISES

1. Mises stress.

79(S) Creep strain rate ratio

Output variable: RATIO

1. Current maximum ratio of creep strain rate and

target creep strain rate.

79(E) Volumetric strain rate

Output variable: ERV

1. Volumetric strain rate.

80(S) Solution-dependent

amplitude value

Output variable: AMPCU

1. Current value of the solution-dependent

amplitude.

83(S) Average shell section stresses

Output variable: SSAVG

1. First section stress.

2. Second section stress.

3. Etc. (See Part VI, “Elements,” for a description of

which section stresses are available for each shell

element type.)

5.1.2–13

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

The following record is generated in Abaqus/Standard when the local coordinate directions are requested,

component output is requested for a material or section point, and the components are given in a local

coordinate system (see “Output of local directions to the results file” in “Output to the data and results files,”

Section 4.1.2); it is generated automatically in Abaqus/Explicit when component output is requested for a

material or a section point and the components are given in a local coordinate system. Only the first two

directions are given; if needed, the third direction can be obtained as the cross product of the first two. The

direction record is not generated for trusses, two-dimensional beams, axisymmetric shells or membranes, or

for values averaged at nodes.

85 Local coordinate directions 1. First component of the first direction.

2. Second component of the first direction.

3. Third component of the first direction.

4. First component of the second direction.

5. Second component of the second direction.

6. Third component of the second direction.

86 Backstress for kinematic

hardening plasticity

Output variable: ALPHA

1. First component.

2. Second component.

3. Etc. (The number of components is equal to the

number of stress components; see the element

description in Part VI, “Elements.”)

87(S) User-defined output variables

Output variable: UVARM

1. Output variable 1.

2. Output variable 2.

3. Etc.

88(S) Thermal strains

Output variable: THE

1. First thermal strain component.

2. Second thermal strain component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

89 Logarithmic strains

Output variable: LE

1. First logarithmic strain component.

2. Second logarithmic strain component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

90 Nominal strains

Output variable: NE

1. First nominal strain component.

2. Second nominal strain component.

5.1.2–14

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

91(S) Mechanical strain rates

Output variable: ER

1. First strain rate component.

2. Second strain rate component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

96(S) Total mass flow through fluid link

Output variable: MFLT

1. Magnitude.

97(S) Pore fluid effective velocity vector

Output variable: FLVEL

1. Magnitude.

2. First component.

3. Second component.

4. Etc.

476(E) Scaling factor

Output variable: EMSF

1. Element mass scaling factor.

477(E) Element time increment

Output variable: EDT

1. Element stable time increment.

Principal value records

For all principal values, the number of components equals NDI unless NDI equals 1, in which case the number

of components equals NDI plus NSHR, where NDI and NSHR are given on the element header record. In the

cases where NDI equals 2, only the in-plane values are given.

401 Principal stresses

Output variable: SP

1. Minimum principal stress.

2. Etc.

402 Principal values of backstress tensor

for kinematic hardening plasticity

Output variable: ALPHAP

1. Minimum principal value.

2. Etc.

403 Principal strains

Output variable: EP

1. Minimum principal strain.

2. Etc.

404 Principal nominal strains

Output variable: NEP

1. Minimum principal nominal strain.

2. Etc.

405 Principal logarithmic strains

Output variable: LEP

1. Minimum principal logarithmic strain.

2. Etc.

5.1.2–15

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

406(S) Principal mechanical strain rates

Output variable: ERP

1. Minimum principal strain rate.

2. Etc.

407(S) Principal values of deformation

gradient

Output variable: DGP

1. Minimum principal value.

2. Etc.

408(S) Principal elastic strains

Output variable: EEP

1. Minimum principal elastic strain.

2. Etc.

409(S) Principal inelastic strains

Output variable: IEP

1. Minimum principal inelastic strain.

2. Etc.

410(S) Principal thermal strains

Output variable: THEP

1. Minimum principal thermal strain.

2. Etc.

411(S) Principal plastic strains

Output variable: PEP

1. Minimum principal plastic strain.

2. Etc.

412(S) Principal creep strains

Output variable: CEP

1. Minimum principal creep strain.

2. Etc.

Records for porous metal plasticity

413 Void volume fraction

Output variable: VVF

1. f.

414 Void volume fraction (growth)

Output variable: VVFG

1. .

415 Void volume fraction (nucleation)

Output variable: VVFN

1. .

416(S) Relative density

Output variable: RD

1.

Records for brittle cracking

421(E) Cracking strains

Output variable: CKE

1. First cracking strain component.

2. Second cracking strain component.

3. Etc. (See Part VI, “Elements,” for a definition of

the number and the type of the components for the

element type.)

422(E) Local cracking strains

Output variable: CKLE

1. First strain component in local crack directions.

2. Second strain component in local crack directions.

5.1.2–16

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Etc. (See Part VI, “Elements,” for a definition of

the number and the type of the components for the

element type.)

423(E) Local cracking stresses

Output variable: CKLS

1. First stress component in local crack directions.

2. Second stress component in local crack directions.

3. Etc. (See Part VI, “Elements,” for a definition of

the number and the type of the components for the

element type.)

424(E) Status of cracks

Output variable: CKSTAT

1. Status of first crack (if a 1D, 2D, or 3D analysis).

CKSTAT can have the following values:

0.0=uncracked, 1.0=closed crack, 2.0=actively

cracking, 3.0=crack closing/reopening.

2. Status of second crack (if a 2D or 3D analysis).

3. Status of third crack (if a 3D analysis).

441(E) Cracking strain magnitude

Output variable: CKEMAG

1. Magnitude of cracking strain.

Records for inelastic nonlinear response in a beam general section

42(S) Plastic strain components

Output variable: SPE

1. Axial plastic strain.

2. Curvature change about the local 1-axis.

3. Curvature change about the local 2-axis (available

only for 3D beams).

4. Twist of the beam (available only for 3D beams).

47(S) Equivalent plastic strains

Output variable: SEPE

1. Axial equivalent plastic strain.

2. Curvature change about the local 1-axis.

3. Curvature change about the local 2-axis (available

only for 3D beams).

4. Twist of the beam (available only for 3D beams).

Records for elastic-plastic response in frame elements

462(S) Elastic section strain components

Output variable: SEE

1. Elastic axial strain.

2. Elastic curvature change about the local 1-axis.

3. Elastic curvature change about the local 2-axis

(available only for 3D frame elements).

4. Elastic twist of the beam (available only for 3D

frame elements).

5.1.2–17

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

463(S) Plastic displacements at frame

element’s ends

Output variable: SEP

1. Plastic axial displacement.

2. Plastic rotation about the local 1-axis.

3. Plastic rotation about the local 2-axis (available

only for 3D frame elements).

4. Plastic rotation about the element axis (available

only for 3D frame elements).

5. Actively yielding flag (yes or no, A8 format) for

frame element’s end sections.

6. Buckling flag (yes, no, or na; A8 format) for frame

element’s end sections.

464(S) Generalized backstress components

Output variable: SALPHA

1. Axial backstress component.

2. Bending backstress about the local 1-axis.

3. Bending backstress about the local 2-axis

(available only for 3D frame elements).

4. Twist backstress of the beam (available only for

3D frame elements).

Records for connector elements

495 Connector total force

Output variable: CTF

1. First component of total force.

2. Second component of total force.

3. Etc.

496 Connector elastic force

Output variable: CEF

1. First component of elastic force.

2. Second component of elastic force.

3. Etc.

497 Connector viscous force

Output variable: CVF

1. First component of viscous force.

2. Second component of viscous force.

3. Etc.

498 Connector friction force

Output variable: CSF

1. First component of friction force.

2. Second component of friction force.

3. Etc.

499 Connector lock and connector

stop status flags

Output variable: CSLST

1. Flag in the 1-direction.

2. Flag in the 2-direction.

3. Etc.

500 Connector reaction force

Output variable: CRF

1. First component of reaction force.

2. Second component of reaction force.

3. Etc.

5.1.2–18

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

501 Connector concentrated force

Output variable: CCF

1. First component of concentrated force.

2. Second component of concentrated force.

3. Etc.

502 Connector relative position

Output variable: CP

1. First component of relative position.

2. Second component of relative position.

3. Etc.

503 Connector relative displacement

Output variable: CU

1. First component of relative displacement.

2. Second component of relative displacement.

3. Etc.

504 Connector constitutive

displacement

Output variable: CCU

1. First component of constitutive displacement.

2. Second component of constitutive displacement.

3. Etc.

505 Connector relative velocity

Output variable: CV

1. First component of relative velocity.

2. Second component of relative velocity.

3. Etc.

506 Connector relative acceleration

Output variable: CA

1. First component of relative acceleration.

2. Second component of relative acceleration.

3. Etc.

507(E) Connector failure status flags

Output variable: CFAILST

1. Flag in the 1-direction.

2. Flag in the 2-direction.

3. Etc.

542 Connector friction-generating

contact force

Output variable: CNF

1. First component of friction-generating force.

2. Second component of friction-generating force.

3. Etc.

546 Connector relative velocity in the

direction of instantaneous slip

Output variable: CIVC

1. Relative velocity in the direction of instantaneous

slip.

548 Accumulated frictional slip

Output variable: CASU

1. First component of accumulated frictional slip.

2. Second component of accumulated frictional slip.

3. Etc.

556 Connector elastic displacement

Output variable: CUE

1. First component of elastic displacement.

2. Second component of elastic displacement.

3. Etc.

5.1.2–19

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

557 Connector plastic relative

displacement

Output variable: CUP

1. First component of plastic relative displacement.

2. Second component of plastic relative

displacement.

3. Etc.

558 Connector equivalent plastic

relative displacement

Output variable: CUPEQ

1. First component of equivalent plastic relative

displacement.

2. Second component of equivalent plastic relative

displacement.

3. Etc.

559(E) Connector overall damage variable

Output variable: CDMG

1. First component of overall damage variable.

2. Second component of overall damage variable.

3. Etc.

560(E) Connector force-based damage

initiation criterion

Output variable: CDIF

1. First component of connector force-based damage

initiation criterion.

2. Second component of connector force-based

damage initiation criterion.

3. Etc.

561(E) Connector motion-based damage

initiation criterion

Output variable: CDIM

1. First component of connector motion-based

damage initiation criterion.

2. Second component of connector motion-based

damage initiation criterion.

3. Etc.

562(E) Connector plastic motion-based

damage initiation criterion

Output variable: CDIP

1. First component of connector plastic motion-

based damage initiation criterion.

2. Second component of connector plastic motion-

based damage initiation criterion.

3. Etc.

563 Connector kinematic hardening

shift force

Output variable: CALPHAF

1. First component of connector kinematic

hardening shift force.

2. Second component of connector kinematic

hardening shift force.

3. Etc.

Record for plane stress orthotropic failure measures

44(S) Failure measures

Output variable: CFAILURE

1. Maximum stress theory.

2. Tsai-Hill theory.

3. Tsai-Wu theory.

5.1.2–20

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

4. Azzi-Tsai-Hill theory.

5. Maximum strain theory.

Record for equivalent plastic strain components for cap plasticity

45 Equivalent plastic strain

components

Output variable: PEQC

1. Equivalent plastic strain for Drucker-Prager

failure surface.

2. Actively yielding flag (yes or no, A8 format) for

Drucker-Prager failure surface.

3. Equivalent plastic strain for cap surface.

4. Actively yielding flag (yes or no, A8 format) for

cap surface.

5. Equivalent plastic strain for transition surface.

6. Actively yielding flag (yes or no, A8 format) for

transition surface.

7. Total volumetric inelastic strain.

8. Actively yielding flag (yes or no, A8 format).

Record for equivalent plastic strain components for jointed materials

45(S) Equivalent plastic strain

components

Output variable: PEQC

1. Equivalent plastic strain for joint 1.

2. Actively yielding flag (yes or no, A8 format) for

joint 1.

3. Equivalent plastic strain for joint 2.

4. Actively yielding flag (yes or no, A8 format) for

joint 2.

5. Equivalent plastic strain for joint 3.

6. Actively yielding flag (yes or no, A8 format) for

joint 3.

7. Equivalent plastic strain for bulk material.

8. Actively yielding flag (yes or no, A8 format) for

bulk material.

Record for equivalent plastic strain in uniaxial tension for cast iron plasticity

473(S) Equivalent plastic strain in

uniaxial tension

Output variable: PEEQT

1. Equivalent plastic strain in uniaxial tension for

cast iron plasticity model.

2. Actively yielding flag (yes or no, A8 format).

Records for two-layer viscoplasticity

22(S) Plastic strains in the elastic-

plastic network

Output variable: PE

1. First plastic strain component.

2. Second plastic strain component.

5.1.2–21

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Etc.; followed by the equivalent plastic strain,

actively yielding flag (yes or no, A8 format),

and magnitude of plastic strain. (See Part VI,

“Elements,” for a definition of the components

for a given element type.)

524(S) Stresses in the elastic-viscous

network

Output variable: VS

1. First stress component.

2. Second stress component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

525(S) Stresses in the elastic-plastic

network

Output variable: PS

1. First stress component.

2. Second stress component.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

526(S) Viscous strains in the elastic-

viscous network

Output variable: VE

1. First viscous strain component.

2. Second viscous strain component.

3. Etc.; followed by the equivalent viscous strain.

Record for elements with electric potential degrees of freedom

50(S) Electrical potential gradients

Output variable: EPG

1. Magnitude.

2. First potential gradient.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

Records for rebar quantities

442 Force in rebar

Output variable: RBFOR

1. Magnitude.

443 Rebar angle

Output variable: RBANG

1. Angle in degrees between the reinforcing and the

user-specified isoparametric direction. Available

only for membrane, shell, and surface elements.

444 Change in rebar angle

Output variable: RBROT

1. Change in angle in degrees between the

reinforcing and the user-specified isoparametric

direction. Available only for membrane, shell,

and surface elements.

5.1.2–22

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

Record for forced convection/diffusion heat transfer elements

445(S) Mass flow rates

Output variable: MFR

1. First mass flow rate.

2. Etc.

Records for piezoelectric materials

46(S) Magnitudes and phases of potential

gradients (linear dynamics only)

Output variable: PHEPG

1. Magnitude of first electrical potential gradient.

2. Magnitude of second electrical potential gradient.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

4. Phase angle of first electrical potential gradient.

5. Phase angle of second electrical potential

gradient.

6. Etc.

49(S) Magnitudes and phases of

electrical charge fluxes (linear

dynamics only)

Output variable: PHEFL

1. Magnitude of first charge flux.

2. Magnitude of second charge flux.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

4. Phase angle of first charge flux.

5. Phase angle of second charge flux.

6. Etc.

51(S) Electrical charge fluxes

Output variable: EFLX

1. Magnitude.

2. First charge flux.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

60(S) Distributed electrical charges

Output variable: CHRGS

1. Charge type.

2. Magnitude.

Records for coupled thermal-electric elements

425(S) Electrical current density

Output variable: ECD

1. Magnitude.

2. First current density.

3. Etc. (See the element description in Part VI,

“Elements,” for a definition of the number and

type of the components for the element type.)

5.1.2–23

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

426(S) Distributed electrical current

density

Output variable: ECURS

1. Electrical current type.

2. Magnitude.

427(S) Nodal current due to electric

conduction

Output variable: NCURS

1. Node number.

2. Magnitude.

Records for cohesive elements

252(S) All active components of the

damage initiation criteria

Output variable: DMICRT

1. MAXSCRT, maximum nominal stress damage

initiation criterion.

2. MAXECRT, maximum nominal strain damage

initiation criterion.

3. QUADSCRT, quadratic nominal stress damage

initiation criterion.

4. QUADECRT, quadratic nominal strain damage

initiation criterion.

235(S) Overall scalar stiffness degradation

Output variable: SDEG

1. Magnitude.

61(S) Element status

Output variable: STATUS

1. Status of the element (the status of an element is

1.0 if the element is active, 0.0 if the element is

not).

Records for equivalent rigid body variables in direct-integration implicit dynamic analyses

Records 52–59 provide values summed over an element set. These variables are available only in direct-

integration implicit dynamic analyses (see “Implicit dynamic analysis using direct integration,” Section 6.3.2).

52(S) Current coordinates of

center of mass

Output variable: XC

1. Coordinate 1.

2. Coordinate 2.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

53(S) Displacement of the center of mass

Output variable: UC

1. Displacement 1.

2. Displacement 2.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

54(S) Equivalent rigid body velocity

Output variable: VC

1. Component 1.

2. Component 2.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

5.1.2–24

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

55(S) Angular momentum about

center of mass

Output variable: HC

1. Component 1.

2. Component 2.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

56(S) Angular momentum about origin

Output variable: HO

1. Component 1.

2. Component 2.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

57(S) Rotary inertia about the origin

Output variable: RI

1. Component 11.

2. Component 22.

3. Etc. (The number of components depends upon

the overall dimensionality of the element set.)

58(S) Current mass of element set

Output variable: MASS

1. Mass.

59(S) Current volume of element set

Output variable: VOL

1. Volume. (Only available for continuum and

structural elements not using general beam or

shell section definitions.)

Record for transverse shear stress in thick shell elements such as S3R, S4R, S8R, and S8RT

48 Transverse shear stresses in

13 and 23 planes

Output variable: TSHR

1. Component 13.

2. Component 23.

Records for linear dynamics

62(S) Magnitude and phase angle of

stress components

Output variable: PHS

1. Magnitude of first stress component.

2. Magnutude of second stress component.

3. Etc.

4. Phase angle of first stress component.

5. Phase angle of second stress component.

6. Etc.

63(S) RMS values of stress components

Output variable: RS

1. First component of stress.

2. Second component of stress.

3. Etc.

65(S) Magnitude and phase angle of

strain components

Output variable: PHE

1. Magnitude of first strain component.

2. Magnitude of second strain component.

3. Etc.

4. Phase angle of first strain component.

5.1.2–25

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

5. Phase angle of second strain component.

6. Etc.

66(S) RMS values of strain components

Output variable: RE

1. First component of strain.

2. Second component of strain.

3. Etc.

Records for connector elements (available only for linear dynamics)

508(S) Magnitude and phase angle of

connector total forces

Output variable: PHCTF

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

509(S) Magnitude and phase angle of

connector elastic forces

Output variable: PHCEF

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

510(S) Magnitude and phase angle of

connector viscous forces

Output variable: PHCVF

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

511(S) Magnitude and phase angle of

connector reaction forces

Output variable: PHCRF

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

520(S) Magnitude and phase angle of

connector friction forces

Output variable: PHCSF

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

5.1.2–26

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

512(S) Magnitude and phase angle of

connector relative displacements

Output variable: PHCU

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

513(S) Magnitude and phase angle

of connector constitutive

displacements

Output variable: PHCCU

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

522(S) Magnitude and phase angle of

connector relative velocities

Output variable: PHCV

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

523(S) Magnitude and phase angle of

connector relative accelerations

Output variable: PHCA

1. Magnitude of the first component.

2. Magnitude of the second component.

3. Etc.

4. Phase angle of the first component.

5. Phase angle of the second component.

6. Etc.

543(S) Magnitude and phase angle of

friction-generating connector force

Output variable: PHCNF

1. Magnitude of the first component of friction-

generating connector force.

2. Magnitude of the second component of friction-

generating connector force.

3. Etc.

4. Phase angle of the first component of friction-

generating connector force.

5. Phase angle of the second component of friction-

generating connector force.

6. Etc.

5.1.2–27

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

547(S) Magnitude and phase angle of

connector relative velocity in the

direction of instantaneous slip

Output variable: PHCIVSL

1. Magnitude of connector relative velocity in the

direction of instantaneous slip.

2. Phase angle of connector relative velocity in the

direction of instantaneous slip.

514(S) RMS values of connector

total forces

Output variable: RCTF

1. First component of force.

2. Second component of force.

3. Etc.

515(S) RMS values of connector

elastic forces

Output variable: RCEF

1. First component of force.

2. Second component of force.

3. Etc.

516(S) RMS values of connector

viscous forces

Output variable: RCVF

1. First component of force.

2. Second component of force.

3. Etc.

517(S) RMS values of connector

reaction forces

Output variable: RCRF

1. First component of force.

2. Second component of force.

3. Etc.

521(S) RMS values of connector

friction forces

Output variable: RCSF

1. First component of force.

2. Second component of force.

3. Etc.

518(S) RMS values of connector relative

displacements

Output variable: RCU

1. First component of relative displacements.

2. Second component of relative displacements.

3. Etc.

519(S) RMS values of connector

constitutive displacements

Output variable: RCCU

1. First component of constitutive displacements.

2. Second component of constitutive displacements.

3. Etc.

544(S) RMS values of connector force

generating friction

Output variable: RCNF

1. RMS values of first component of friction-

generating connector force.

2. RMS values of second component of friction-

generating connector force.

3. Etc.

Records for fluid link elements (available only for linear dynamics)

94(S) Magnitude and phase angle of

mass flow rate

Output variable: PHMFL

1. Magnitude.

2. Phase angle.

5.1.2–28

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

95(S) Magnitude and phase angle of

total mass flow

Output variable: PHMFT

1. Magnitude.

2. Phase angle.

Records for output of element volumes

The following three variables are not available for eigenfrequency extraction, complex eigenfrequency

extraction, eigenvalue buckling prediction, or linear dynamics procedures. They are available only for

continuum and structural elements not using general beam or shell section definitions.

76(S) Integration point volume

Output variable: IVOL

1. Current integration point volume. Section point

volume in the case of beams and shells.

77(S) Section volume

Output variable: SVOL

1. Current section volume.

78(S) Whole element volume

Output variable: EVOL

1. Current element volume.

Record for solid elements in an adaptive mesh domain in Abaqus/Standard

264(S) Change in volume.

Output variable: VOLC

1. Change in area or volume of an element set solely

due to adaptive meshing.

Records written for any node file output request

Record Record type Attributes
key

101 Displacements

Output variable: U

1. Node number.

2. First component of displacement.

3. Second component of displacement.

4. Etc.

102 Velocities

Output variable: V

1. Node number.

2. First component of velocity.

3. Second component of velocity.

4. Etc.

103 Accelerations

Output variable: A

1. Node number.

2. First component of acceleration.

3. Second component of acceleration.

4. Etc.

104 Reaction forces

Output variable: RF

1. Node number.

2. First component of reaction force.

5.1.2–29

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Second component of reaction force.

4. Etc.

105(S) Electrical potential

Output variable: EPOT

1. Node number.

2. Magnitude.

106(S) Point loads, moments, fluxes

Output variable: CF

1. Node number.

2. First component of load or flux.

3. Second component of load or flux.

4. Etc.

107 Coordinates

Output variable: COORD

1. Node number.

2. First coordinate.

3. Second coordinate.

4. Etc.

108 Pore or acoustic pressure

Output variable: POR

1. Node number.

2. Pressure.

109(S) Reactive fluid volume flux

Output variable: RVF

1. Node number.

2. Reaction fluid volume flux.

110(S) Reactive fluid total volume

Output variable: RVT

1. Node number.

2. Reaction fluid total volume.

119(S) Electrical reaction charges

Output variable: RCHG

1. Node number.

2. Charge scalar value.

120(S) Concentrated electrical

nodal charges

Output variable: CECHG

1. Node number.

2. Current scalar value.

136 Fluid cavity pressure

Output variable: PCAV

1. Fluid cavity reference node number.

2. Pressure.

137 Fluid cavity volume

Output variable: CVOL

1. Fluid cavity reference node number.

2. Volume.

138(S) Electrical reaction current

Output variable: RECUR

1. Node number.

2. Electrical current.

139(S) Concentrated electrical

nodal current

Output variable: CECUR

1. Node number.

2. Electrical current.

5.1.2–30

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

145(S) Viscous forces due to static

stabilization

Output variable: VF

1. Node number.

2. First component of viscous force.

3. Second component of viscous force.

4. Etc.

146(S) Total forces

Output variable: TF

1. Node number.

2. First component of total force.

3. Second component of total force.

4. Etc.

151(E) Acoustic absolute pressure

Output variable: PABS

1. Node number.

2. Absolute pressure.

201 Temperatures

Output variable: NT

1. Node number.

2. Temperature.

3. Etc. (for heat shells)

204(S) Residual fluxes

Output variable: RFL

1. Node number.

2. Residual flux.

3. Etc. (for heat shells)

204(E) Reaction fluxes

Output variable: RFL

1. Node number.

2. First component of reaction flux.

3. Second component of reaction flux.

4. Etc.

206(S) Concentrated fluxes

Output variable: CFL

1. Node number.

2. Concentrated flux.

3. Etc. (for heat shells)

214(S) Internal fluxes

Output variable: RFLE

1. Node number.

2. Flux, excluding external flux.

3. Etc. (for heat shells)

221(S) Normalized concentration (mass

diffusion analysis)

Output variable: NNC

1. Node number.

2. Concentration.

237(S) Motions (in cavity radiation

analysis)

Output variable: MOT

1. Node number.

2. First component of motion.

3. Second component of motion.

4. Etc.

320(S) Concentrated fluid flow

Output variable: CFF

1. Node number.

2. Magnitude of fluid flow.

5.1.2–31

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

Records for linear dynamics

111(S) Magnitude and phase angle of

relative displacement

Output variable: PU

1. Node number.

2. Magnitude of first displacement component.

3. Magnitude of second displacement component.

4. Etc.

5. Phase angle of first displacement component.

6. Phase angle of second displacement component.

7. Etc.

112(S) Magnitude and phase angle of

total displacement

Output variable: PTU

1. Node number.

2. Magnitude of first displacement component.

3. Magnitude of second displacement component.

4. Etc.

5. Phase angle of first displacement component.

6. Phase angle of second displacement component.

7. Etc.

113(S) Total displacement

Output variable: TU

1. Node number.

2. First component of displacement.

3. Second component of displacement.

4. Etc.

114(S) Total velocity

Output variable: TV

1. Node number.

2. First component of velocity.

3. Second component of velocity.

4. Etc.

115(S) Total acceleration

Output variable: TA

1. Node number.

2. First component of acceleration.

3. Second component of acceleration.

4. Etc.

116(S) Magnitude and phase angle of

acoustic or fluid cavity pressure

Output variable: PPOR

1. Node number.

2. Magnitude of pressure.

3. Phase angle of pressure.

117(S) Magnitude and phase angle of

electrical potential

Output variable: PHPOT

1. Node number.

2. Magnitude of potential.

3. Phase angle of potential.

5.1.2–32

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

118(S) Magnitude and phase angle of

reactive charge (piezoelectric

analysis)

Output variable: PHCHG

1. Node number.

2. Magnitude of charge.

3. Phase angle of charge.

123(S) RMS values of relative

displacement

Output variable: RU

1. Node number.

2. First component of displacement.

3. Second component of displacement.

4. Etc.

124(S) RMS values of total displacement

Output variable: RTU

1. Node number.

2. First component of displacement.

3. Second component of displacement.

4. Etc.

127(S) RMS values of relative velocity

Output variable: RV

1. Node number.

2. First component of velocity.

3. Second component of velocity.

4. Etc.

128(S) RMS values of total velocity

Output variable: RTV

1. Node number.

2. First component of velocity.

3. Second component of velocity.

4. Etc.

131(S) RMS values of relative acceleration

Output variable: RA

1. Node number.

2. First component of acceleration.

3. Second component of acceleration.

4. Etc.

132(S) RMS values of total acceleration

Output variable: RTA

1. Node number.

2. First component of acceleration.

3. Second component of acceleration.

4. Etc.

134(S) RMS values of reaction forces

Output variable: RRF

1. Node number.

2. First component of reaction force.

3. Second component of reaction force.

4. Etc.

135(S) Magnitude and phase angle

of reaction force

Output variable: PRF

1. Node number.

2. Magnitude of first component of reaction force.

3. Magnitude of second component of reaction

force.

5.1.2–33

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

4. Etc.

5. Phase angle of first component of reaction force.

6. Phase angle of second component of reaction

force.

7. Etc.

Records written for any modal file output request during mode-based dynamic analysis

Record Record type Attributes
key

301(S) Generalized displacements

Output variable: GU

1. First generalized displacement.

2. Second generalized displacement.

3. Etc.

302(S) Generalized velocities

Output variable: GV

1. First generalized velocity.

2. Second generalized velocity.

3. Etc.

303(S) Generalized accelerations

Output variable: GA

1. First generalized acceleration.

2. Second generalized acceleration.

3. Etc.

304(S) Base motions

Output variable: BM

1. 1 if displacement, 2 if velocity, 3 if acceleration.

2. x-direction component.

3. y-direction component.

4. z-direction component.

5. x-rotation component.

6. y-rotation component.

7. z-rotation component.

8. Base name.

305(S) Phase angle of generalized

displacement

Output variable: GPU

1. Phase angle of generalized displacement for first

mode.

2. Phase angle of generalized displacement for

second mode.

3. Etc.

306(S) Phase angle of generalized velocity

Output variable: GPV

1. Phase angle of generalized velocity for first mode.

2. Phase angle of generalized velocity for second

mode.

3. Etc.

5.1.2–34

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

307(S) Phase angle of generalized

acceleration

Output variable: GPA

1. Phase angle of generalized acceleration for first

mode.

2. Phase angle of generalized acceleration for second

mode.

3. Etc.

308(S) Strain energy per mode

Output variable: SNE

1. Strain energy for first mode.

2. Strain energy for second mode.

3. Etc.

309(S) Kinetic energy per mode

Output variable: KE

1. Kinetic energy for first mode.

2. Kinetic energy for second mode.

3. Etc.

310(S) External work per mode

Output variable: T

1. External work for first mode.

2. External work for second mode.

3. Etc.

Records written for any element matrix or substructure matrix file output request

The ordering of variables on element matrices is the same as that used for user elements (see “User-defined

elements,” Section 32.15.1): first the variables at the element’s first node, then those at its second node, etc.

Abaqus allows elements to have repeated nodes.

Record Record type Attributes
key

1001(S) Element matrix header record 1. Element number (zero if this is a substructure).

2. Element or substructure type in A8 format.

3. Number of nodes on the element.

4. Node number of the element’s first node.

5. Node number of the element’s second node.

6. Etc.

1002(S) Element or substructure recovery

matrix nodal DOF

1. First DOF at the element’s or at the recovery

matrix’s first retained node.

2. Second DOF at the element’s or at the recovery

matrix’s first retained node.

3. Etc.

1003(S) Element or substructure recovery

matrix nodal DOF change

1. Node where the DOFs change.

2. First DOF at this node.

3. Second DOF at this node.

4. Etc.

5.1.2–35

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1004(S) Element matrix record size 1. Maximum record length (including the record

length and record key words) for element matrix

and load vector records that follow. The matrix

or load vector records will be subdivided into

multiple records as needed to fit within this

maximum length. The record key for any

continuation record will be the same as for

the first record.

1005(S) Element matrix header (continued) 1. Element node number continued from record

1001 (if necessary).

2. Etc.

1011(S) Symmetric element stiffness matrix 1. (1, 1) stiffness.

2. (1, 2) stiffness.

3. (2, 2) stiffness.

4. Etc., stored in columns, from the first row to the

diagonal term of each column.

1012(S) Nonsymmetric element

stiffness matrix

1. (1, 1) stiffness.

2. (2, 1) stiffness.

3. (3, 1) stiffness.

4. Etc., stored in columns.

1021(S) Symmetric element mass matrix 1. (1, 1) mass.

2. (1, 2) mass.

3. (2, 2) mass.

4. Etc., stored in columns, from the first row to the

diagonal term of each column.

1022(S) Nonsymmetric elementmassmatrix 1. (1, 1) mass.

2. (2, 1) mass.

3. (3, 1) mass.

4. Etc., stored in columns.

1031(S) Load vector 1. Load case.

2. Load on first DOF.

3. Load on second DOF.

4. Etc.

5.1.2–36

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1032(S) Substructure load case vector 1. Load case name (A8 format).

2. Load on first DOF.

3. Load on second DOF.

4. Etc.

1041(S) Substructure recovery matrix

header record

1. Zero.

2. Element or substructure type in A8 format.

3. Number of eliminated nodes.

4. Node number of the first eliminated node.

5. Node number of the second eliminated node.

6. Etc.

1042(S) Substructure recovery matrix 1. Column number corresponding to the retained

DOFs list.

2. Coefficient of first eliminated DOF.

3. Coefficient of second eliminated DOF.

4. Etc.

1043(S) Substructure recovery matrix

header (continued)

1. Node number continued from record 1041 (if

necessary).

2. Etc.

Record written for any energy file output request

When you do not specify an element set for which energy output is being requested in Abaqus/Standard,

record 1999 provides values summed over the entire model; when you specify an element set for energy

output, record 1999 provides values summed over all the elements in the specified element set. You can

distinguish between a whole model 1999 energy record and an element set 1999 energy record by searching

for a 1911 output request definition record containing the element set name; this 1911 record will be written

just before the element set 1999 energy record. This 1911 record also has the first attribute set to 3 to indicate

element set output. In Abaqus/Explicit you cannot specify selected element sets for an energy output request;

record 1999 provides the total energies for the whole model.

Record Record type Attributes
key

1999(S) Total energies record 1. Total kinetic energy (ALLKE).

2. Total recoverable (elastic) strain energy (ALLSE).

3. Total external work (ALLWK, available only for

the whole model.)

4. Total plastic dissipation (ALLPD).

5. Total creep dissipation (ALLCD).

5.1.2–37

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

6. Total viscous dissipation, not including

dissipation due to stabilization (ALLVD).

7. Total loss of kinetic energy at impacts (ALLKL,

available only for the whole model).

8. Total artificial strain energy (ALLAE).

9. Total energy dissipated through quiet boundaries

(ALLQB, available only for the whole model).

10. Total electrostatic energy (ALLEE).

11. Total strain energy (ALLIE).

12. Total energy balance (ETOTAL, available only for

the whole model).

13. Total energy dissipated through frictional effects

(ALLFD, available only for the whole model).

14. Total electrical energy dissipated in

conductors (ALLJD).

15. Total static dissipation (due to stabilization,

ALLSD).

16. Total damage dissipation (ALLDMD).

17. Currently not used.

18. Currently not used.

1999(E) Total energies record 1. Total kinetic energy (ALLKE).

2. Total recoverable (elastic) strain energy (ALLSE).

3. Total external work (ALLWK).

4. Total plastic dissipation (ALLPD).

5. Total viscoelastic dissipation (ALLCD).

6. Total viscous dissipation (ALLVD, not supported

for hyperelastic and hyperfoam material models).

7. Currently not used.

8. Total artificial strain energy (ALLAE).

9. Total distortion control dissipation energy

(ALLDC).

10. Currently not used.

11. Total strain energy (ALLIE).

12. Total energy balance (ETOTAL).

13. Total energy dissipated through frictional effects

(ALLFD).

14. Currently not used.

15. Percent change in mass (DMASS).

16. Total damage dissipation (ALLDMD).

5.1.2–38

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

17. Internal heat energy (ALLIHE).

18. External heat energy (ALLHF).

Records written for contour integrals

Calculations of the J-integral and the C -integral, the stress intensity factors, the crack propagation direction,

and the T-stress can be requested. The record is written for each crack, one record per crack front location.

See record key 17 for J-integral values for line spring elements.

Record Record type Attributes
key

1991(S) J-integral values 1. Crack number.

2. Node set (A8 format).

3. Number of contours.

4. J-integral value estimated by first contour.

5. J-integral value estimated by second contour.

6. Etc.

1992(S) C -integral values 1. Crack number.

2. Node set (A8 format).

3. Number of contours.

4. C -integral value estimated by first contour.

5. C -integral value estimated by second contour.

6. Etc.

1995(S) Stress intensity factors 1. Crack number.

2. Node set (A8 format).

3. Number of contours.

4. (Mode I stress intensity factor) estimated by

first contour.

5. (Mode II stress intensity factor) estimated by

first contour.

6. (Mode III stress intensity factor) estimated

by first contour (available only for 3D elements).

7. Crack propagation direction (in degrees)

estimated by first contour (available only for

homogeneous, isotropic elastic materials).

8. J-integral value estimated from stress intensity

factors of first contour.

9. (Mode I stress intensity factor) estimated by

second contour.

5.1.2–39

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

10. (Mode II stress intensity factor) estimated by

second contour.

11. (Mode III stress intensity factor) estimated

by second contour (available only for 3D

elements).

12. Crack propagation direction (in degrees)

estimated by second contour (available only

for homogeneous, isotropic elastic materials).

13. J-integral value estimated from stress intensity

factors of second contour.

14. Etc.

1996(S) T-stress values 1. Crack number.

2. Node set (A8 format).

3. Number of contours.

4. T-stress value estimated by first contour.

5. T-stress value estimated by second contour.

6. Etc.

Record written for crack propagation analysis

The following record is written for each crack that is identified in the crack propagation analysis:

Record Record type Attributes
key

1993(S) Crack tip location and associated

quantities

1. Crack number.

2. Slave surface (A8 format).

3. Master surface (A8 format).

4. Initial crack-tip node number.

5. Current crack-tip node number.

6. Flag to indicate crack propagation criterion. 1

for crack length criterion. 2 for critical stress

criterion. 3 for crack opening displacement

criterion. 5 for VCCT criterion.

7. Cumulative incremental crack length.

8. Value of if critical stress criterion is

used. Current value of critical crack opening

displacement if crack opening displacement

criterion is used.

9. Value of if critical stress criterion is used.

5.1.2–40

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Records written once for any file output request when surfaces are defined in Abaqus/Standard

The number of data items for the following record depends on the type of surface being defined.

Record Record type Attributes
key

Rigid surfaces

1501(S) Surface definition header 1. Surface name.

2. Dimension key (1-1D, 2-2D, 3-3D,

4-Axisymmetric).

3. Type key (1-Deformable, 2-Rigid).

4. Number of facets making up the surface.

5. Reference node label.

Deformable surfaces

1501(S) Surface definition header 1. Surface name.

2. Dimension key (1-1D, 2-2D, 3-3D,

4-Axisymmetric).

3. Type key (1-Deformable, 2-Rigid).

4. Number of facets making up the surface.

5. Number of contact master surfaces associated

with this surface through contact pairing (0 if this

surface is a master surface).

6. First master surface name.

7. Second master surface name.

8. Etc.

1502(S) Surface facet 1. Underlying element number.

2. Element face key (1–S1, 2–S2, 3–S3, 4–S4, 5–S5,

6–S6, 7–SPOS, 8–SNEG).

3. Number of nodes in facet.

4. Node number of the facet’s first node.

5. Node number of the facet’s second node.

6. Etc.

5.1.2–41

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Records written for any contact surface file output request

Record Record type Attributes
key

5(S) Solution-dependent state variables

Output variable: SDV

1. State variable 1.

2. State variable 2.

3. Etc. The record can have up to 80 words in ASCII

format or 512 words in binary format. Repeat this

record as often as necessary to output all active

state variables in the model.

1503(S) Output request definition 1. Contact file output (0).

2. Slave surface name.

3. Master surface name.

4. Node set containing a subset of the nodes making

up the slave surface.

1504(S) Node header 1. Node number.

2. Number of traction components (2 for 2D or

axisymmetric cases, 3 for 3D cases).

1511(S) Contact tractions

Output variable: CSTRESS

1. Contact pressure between the node on the slave

surface and the master surface with which it

interacts.

2. Frictional shear traction component in the local

1-direction on the master surface.

3. Frictional shear traction component in the local

2-direction on the master surface for 3D.

1512(S) Viscous tractions

Output variable: CDSTRESS

1. Viscous pressure between the node on the slave

surface and the master surface with which it

interacts.

2. Viscous shear traction component in the local 1-

direction on the master surface.

3. Viscous shear traction component in the local 2-

direction on the master surface for 3D.

1521(S) Contact clearances

Output variable: CDISP

1. Separation of the surfaces in the direction of the

normal to the master surface.

2. Accumulated relative tangential displacement of

the surfaces in the local 1-direction on the master

surface.

5.1.2–42

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

3. Accumulated relative tangential displacement of

the surfaces in the local 2-direction on the master

surface for 3D.

1522(S) Total force due to contact pressure

Output variable: CFN

1. Magnitude.

2. Force component in the global 1-direction.

3. Force component in the global 2-direction.

4. Force component in the global 3-direction.

1523(S) Total force due to frictional stress

Output variable: CFS

1. Magnitude.

2. Force component in the global 1-direction.

3. Force component in the global 2-direction.

4. Force component in the global 3-direction.

1575(S) Total force due to contact pressure

and frictional stress

Output variable: CFT

1. Magnitude.

2. Force component in the global 1-direction.

3. Force component in the global 2-direction.

4. Force component in the global 3-direction.

1524(S) Total area in contact

Output variable: CAREA

1. Magnitude.

1526(S) Total moment about the origin

due to contact pressure

Output variable: CMN

1. Magnitude.

2. Moment component about the global 1-axis.

3. Moment component about the global 2-axis.

4. Moment component about the global 3-axis.

1527(S) Total moment about the origin

due to frictional stress

Output variable: CMS

1. Magnitude.

2. Moment component about the global 1-axis.

3. Moment component about the global 2-axis.

4. Moment component about the global 3-axis.

1576(S) Total moment about the origin

due to contact pressure and

frictional stress

Output variable: CMT

1. Magnitude.

2. Moment component about the global 1-axis.

3. Moment component about the global 2-axis.

4. Moment component about the global 3-axis.

1578(S) Maximum torque that can be

transmitted about the z-axis

by a contact surface in an

axisymmetric analysis with a

friction coefficient of unity

Output variable: CTRQ

1. Magnitude.

5.1.2–43

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1573(S) Coordinates of the center of the

force due to contact pressure

Output variable: XN

1. Coordinate in the global 1-direction.

2. Coordinate in the global 2-direction.

3. Coordinate in the global 3-direction.

1574(S) Coordinates of the center of the

force due to frictional stress

Output variable: XS

1. Coordinate in the global 1-direction.

2. Coordinate in the global 2-direction.

3. Coordinate in the global 3-direction.

1577(S) Coordinates of the center of the

force due to contact pressure

and frictional stress

Output variable: XT

1. Coordinate in the global 1-direction.

2. Coordinate in the global 2-direction.

3. Coordinate in the global 3-direction.

1528(S) Heat flux density

Output variable: HFL

1. Magnitude.

1529(S) HFL multiplied by the nodal area

Output variable: HFLA

1. Magnitude.

1530(S) Time integrated HFL

Output variable: HTL

1. Magnitude.

1531(S) Time integrated HFLA

Output variable: HTLA

1. Magnitude.

1532(S) Heat flux density due to frictional

dissipation

Output variable: SFDR

1. Magnitude.

1533(S) SFDR multiplied by the nodal area

Output variable: SFDRA

1. Magnitude.

1534(S) Time integrated SFDR

Output variable: SFDRT

1. Magnitude.

1535(S) Time integrated SFDRA

Output variable: SFDRTA

1. Magnitude.

1536(S) Weighting factor

Output variable: WEIGHT

1. Magnitude.

1537(S) Heat flux density due to

electrical current

Output variable: SJD

1. Magnitude.

1538(S) SJD multiplied by the nodal area

Output variable: SJDA

1. Magnitude.

5.1.2–44

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1539(S) Time integrated SJD

Output variable: SJDT

1. Magnitude.

1540(S) Time integrated SJDA

Output variable: SJDTA

1. Magnitude.

1541(S) Electrical current density

Output variable: ECD

1. Magnitude.

1542(S) ECD multiplied by area

Output variable: ECDA

1. Magnitude.

1543(S) Time integrated ECD

Output variable: ECDT

1. Magnitude.

1544(S) Time integrated ECDA

Output variable: ECDTA

1. Magnitude.

1545(S) Pore fluid volume flux per unit area

Output variable: PFL

1. Magnitude.

1546(S) PFL multiplied by the nodal area

Output variable: PFLA

1. Magnitude.

1547(S) Time integrated PFL

Output variable: PTL

1. Magnitude.

1548(S) Time integrated PFLA

Output variable: PTLA

1. Magnitude.

1549(S) Total pore fluid volume flux

leaving the slave surface

Output variable: TPFL

1. Magnitude.

1550(S) Time integrated TPFL

Output variable: TPTL

1. Magnitude.

Records for bond failure quantities from crack propagation analysis

1570(S) Time when bond failure occurs

Output variable: DBT

1. Magnitude.

1571(S) Fraction of stress that remains

at bond failure

Output variable: DBSF

1. Magnitude.

1572(S) Remaining stress in the failed bond

Output variable: DBS

1. 11-component of debond stress.

2. 12-component of debond stress.

5.1.2–45

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

290(S) Relative displacement behind crack

when fracture criterion is met

Output variable: OPENBC

1. Magnitude.

293(S) Effective energy release rate ratio

Output variable: EFENRRTR

1. Magnitude.

294(S) Bond state (varies from 1.0 to 0.0)

Output variable: BDSTAT

1. Magnitude.

235(S) Damage variable

Output variable: CSDMG

1. Magnitude.

295(S) Critical stress at failure

Output variable: CRSTS

1. 11-component of critical stress.

2. 12-component of critical stress.

3. 13-component of critical stress (only available to

three-dimensional models).

296(S) Strain energy release rate

Output variable: ENRRT

1. 11-component of strain energy release rate.

2. 12-component of strain energy release rate.

3. 13-component of strain energy release rate (only

available to three-dimensional models).

Record for surface-based pressure penetration analysis

1592(S) Fluid pressure for surface-based

pressure penetration analysis

Output variable: PPRESS

1. Magnitude.

Records for surface-based cohesive behavior with damage

253(S) Overall value of the scalar

damage variable

Output variable: CSDMG

1. Magnitude.

345(S) Maximum contact stress damage

initiation criterion

Output variable: CSMAXSCRT

1. Magnitude.

346(S) Maximum separation damage

initiation criterion

Output variable: CSMAXUCRT

1. Magnitude.

347(S) Quadratic contact stress damage

initiation criterion

Output variable: CSQUADSCRT

1. Magnitude.

5.1.2–46

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

348(S) Quadratic separation damage

initiation criterion

Output variable: CSQUADUCRT

1. Magnitude.

Records written once for any file output request when cavities are defined

Record Record type Attributes
key

1601(S) Cavity definition header 1. Number of surfaces making up the cavity.

2. Cavity name.

3. Name of cavity’s first surface.

4. Name of cavity’s second surface.

5. Etc.

1610(S) Facet order record size 1. Maximum record length (including the record

length and record key words) for cavity facet

order records that follow. The cavity facet order

data will be subdivided into multiple records as

needed to fit within this maximum length. The

record key for any continuation record will be the

same as for the first record.

1602(S) Cavity facet order 1. Number of facets making up the cavity.

2. Cavity name.

3. Cavity’s first (underlying) element number.

4. First element face key (1-S1, 2–S2, 3–S3, 4–S4,

5–S5, 6–S6, 7–SPOS, 8–SNEG)

5. Cavity’s second (underlying) element number.

6. Second element face key (1–S1, 2–S2, 3–S3,

4–S4, 5–S5, 6–S6, 7–SPOS, 8–SNEG)

7. Etc.

Records written for any viewfactor matrix output request

The ordering of the facets (each facet corresponds to one row of the viewfactor matrix) is that appearing in

the cavity facet order record 1602.

Record Record type Attributes
key

1608(S) Output request definition 1. Viewfactor output (0).

2. Cavity name.

5.1.2–47

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

1605(S) Viewfactor matrix header 1. Number of facets in the cavity.

2. Cavity name.

1609(S) Viewfactor matrix record size 1. Maximum record length (including the record

length and record key words) for viewfactor

matrix and facet area records that follow. The

matrix or facet area records will be subdivided

into multiple records as needed to fit within

this maximum length. The record key for any

continuation record will be the same as for the

first record.

1606(S) Nonsymmetric viewfactor matrix 1. (1, 1) dimensionless viewfactor.

2. (1, 2) dimensionless viewfactor.

3. (1, 3) dimensionless viewfactor.

4. Etc., stored in rows.

1607(S) Facet areas 1. Area of first facet.

2. Area of second facet.

3. Area of third facet.

4. Etc.

Records written for any radiation file output request

Record Record type Attributes
key

1603(S) Output request definition 1. Radiation file output (1).

2. Cavity name.

3. Surface name.

4. Element set name.

1604(S) Facet header record 1. (Underlying) user element number.

2. Element face key (1–S1, 2–S2, 3–S3, 4–S4, 5–S5,

6–S6, 7–SPOS, 8–SNEG)

3. Facet area.

231(S) Radiation flux density 1. Magnitude.

232(S) Radiation flux 1. Magnitude.

233(S) Time integrated radiation

flux density

1. Magnitude.

234(S) Time integrated radiation flux 1. Magnitude.

5.1.2–48

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

235(S) Total viewfactor (sum of viewfactor

matrix row)

1. Magnitude.

236(S) Facet temperature 1. Magnitude.

Records written for any section file output request

The output variables described below are not available for random response analysis.

Record Record type Attributes
key

1580(S) Output request definition 1. Surface section output (1).

2. Section name.

1581(S) Section output header record 1. Surface name.

2. System of coordinates used for output (1–Global,

2–Local).

3. Flag to indicate whether or not the local

coordinate system and the output are updated

during the analysis (1–Yes, 2–No).

For all analysis types

The following two records are generated only when section output is requested in a local coordinate system.

In that case all components of forces and moments are given with respect to the local system. Only the first

two directions of the local coordinate system are given; if needed, the third direction can be calculated as the

cross product of the first two.

1582(S) Global coordinates of the

anchor point

1. First coordinate.

2. Etc.

1583(S) Direction cosines of the local

coordinate system

1. First component of the first direction.

2. Second component of the first direction.

3. Third component of the first direction.

4. First component of the second direction.

5. Second component of the second direction.

6. Third component of the second direction.

1584(S) Area of the defined section

Output variable: SOAREA

1. Magnitude.

5.1.2–49

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Record Record type Attributes
key

For stress/displacement analyses

1585(S) Total force in the section in

the selected system

Output variable: SOF

1. Magnitude.

2. First force component.

3. Etc.

1586(S) Total moment in the section about

the origin of the selected system

Output variable: SOM

1. Magnitude.

2. First moment component.

3. Etc.

1587(S) Global coordinates of the center of

the total force in the section

Output variable: SOCF

1. First coordinate.

2. Etc.

For heat transfer analyses

1588(S) Total heat flux across the section

Output variable: SOH

1. Magnitude.

For electrical analyses

1589(S) Total current across the section

Output variable: SOE

1. Magnitude.

For mass diffusion analyses

1590(S) Total mass flow across the section

Output variable: SOD

1. Magnitude.

For coupled pore fluid diffusion-stress analyses

1591(S) Total pore fluid volume flux

across the section

Output variable: SOP

1. Magnitude.

For coupled analyses the appropriate combination of records is available. For example, in a thermal-electrical

analysis both SOH and SOE are valid output requests.

Procedure type keys

Table 5.1.2–1 Keys to procedure types.

Key Description

1 Static, automatic incrementation

2 Static, direct incrementation

5.1.2–50

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Key Description

4 Direct cyclic, automatic time incrementation

5 Direct cyclic, fixed time incrementation

11 Implicit dynamic, half-increment residual tolerance given

12 Implicit dynamic, fixed time increments

13 Implicit dynamic, subspace projection

17 Explicit dynamic

21 Quasi-static, explicit time integration

22 Quasi-static, implicit integration

31 Heat transfer, steady-state

32 Heat transfer, transient, fixed time increments

33 Heat transfer, transient, maximum allowable nodal temperature change given

34 Mass diffusion, steady-state

35 Mass diffusion, transient, fixed time increments

36 Mass diffusion, transient, maximum allowable normalized concentration change given

41 Eigenvalue frequency extraction

42 Eigenvalue buckling prediction

51 Substructure generation

61 Geostatic stress field

62 Coupled pore fluid diffusion/stress, steady-state, fixed time incrementation

63 Coupled pore fluid diffusion/stress, steady-state, automatic time incrementation

64 Coupled pore fluid diffusion/stress, transient, fixed time incrementation

65 Coupled pore fluid diffusion/stress, transient, automatic time incrementation

71 Coupled thermal-stress, steady-state

72 Coupled thermal-stress, transient, fixed time increments

73 Coupled thermal-stress, transient, maximum allowable nodal temperature change and/or

accuracy tolerance parameter given

74 Explicit dynamic coupled thermal-stress

75 Coupled thermal-electrical, steady-state

76 Coupled thermal-electrical, transient analysis, fixed time increments

5.1.2–51

Abaqus Version 6.6 ID:

Printed on:

FILE OUTPUT FORMAT

Key Description

77 Coupled thermal-electrical, transient analysis, maximum allowable nodal temperature

change given

85 Steady-state transport, automatic incrementation

86 Steady-state transport, direct incrementation

91 Response spectrum

92 Modal dynamic

93 Steady-state dynamic

94 Random response

95 Direct-solution steady-state dynamic

98 Annealing

5.1.2–52

Abaqus Version 6.6 ID:

Printed on:

ACCESSING THE FILE INFORMATION

5.1.3 ACCESSING THE RESULTS FILE INFORMATION

Products: Abaqus/Standard Abaqus/Explicit

References

• “Accessing the results file: overview,” Section 5.1.1

• “Results file output format,” Section 5.1.2

• “Utility routines for accessing the results file,” Section 5.1.4

Overview

The Abaqus results (.fil) file is written using internal data management routines to minimize I/O cost.

A postprocessing program must use these same Abaqus data management routines to read the results

file. The following utility routines must be called to obtain data from the Abaqus results file:

• INITPF

• DBRNU

• DBFILE

• POSFIL

You can also write a file in the format of the Abaqus results file by using the following utility subroutines:

• INITPF

• DBFILW

The syntax of these utility subroutines is described in “Utility routines for accessing the results file,”

Section 5.1.4.

Reading floating point and integer variables

To read both floating point and integer variables in the records, the following coding can be used in the

postprocessing program:

INCLUDE 'aba_param.inc'
DIMENSION ARRAY(513), JRRAY(NPRECD,513)
EQUIVALENCE (ARRAY(1),JRRAY(1,1))

With this technique, for example, the record key is available after each call to DBFILE with LOP=0 as

KEY = JRRAY (1,2)

The use of aba_param.inc eliminates the need to have different versions of the code for single and

double precision. The file aba_param.inc defines an appropriate IMPLICIT REAL statement and

sets the value of NPRECD to 1 or 2, depending upon whether the machine uses single or double precision.

5.1.3–1

Abaqus Version 6.6 ID:

Printed on:

ACCESSING THE FILE INFORMATION

The file aba_param.inc is referenced from the site subdirectory of the Abaqus installation when

the postprocessing program is compiled and linked using the abaqus make utility (explained below).

Linking the postprocessing program

The postprocessing program must be linked using the make parameter when running the Abaqus

execution procedure (see “Making user-defined executables and subroutines,” Section 3.2.16). To link

properly, the postprocessing program cannot contain a FORTRAN PROGRAM statement. Instead, the

program must begin with a FORTRAN SUBROUTINE with the name ABQMAIN.

Compiling, linking, and running a postprocessing program consists of two steps. For example, if

the name of the postprocessing program is postproc.f, use the following command to compile and

link postproc.f:

abaqus make job=postproc

The program must then be run using the command:

abaqus postproc

Calling the utility subroutines for reading the results file

Subroutine INITPF must be called before any results file is accessed. This subroutine contains

FORTRAN OPEN statements for all FORTRAN units assigned to results files through the call to

INITPF; therefore, your code must not contain any OPEN statements for these units. Abaqus

constructs a file name for a given unit based on information supplied as LRUNIT(1,K1) and FNAME,
as discussed in “Utility routines for accessing the results file,” Section 5.1.4.

Subroutine DBRNU must also be called before reading the first results file and then again each time

you need to change to reading another results file. This subroutine simply establishes the FORTRAN

unit number of the results file being read; no information is returned. DBRNU can be called before or

after INITPF but must be called before DBFILE.
Subroutine DBFILE is used to read each record from the results file. This subroutine will return

one record at a time in the format described in “Results file output format,” Section 5.1.2.

Example

The following program reads all the vonMises stresses in the results file and obtains the maximum value.

Then, it prints this value along with the element, section point, and integration point numbers where it

occurred.

In this example FORTRAN unit 8 is used to read the results file, and the name of the results file is

assumed to be TEST.fil. The results file is assumed to be a binary file, and only one results file will

be read. Thus, LRUNIT is dimensioned as LRUNIT(2,1); and in the call to the INITPF routine NRU
is set to 1, LRUNIT(1,1) is set to 8, and LRUNIT(2,1) is set to 2. A new results file will not be

written, so LOUTF is set to zero.

5.1.3–2

Abaqus Version 6.6 ID:

Printed on:

ACCESSING THE FILE INFORMATION

SUBROUTINE ABQMAIN
C Calculate the maximum von Mises stress and its location
C

INCLUDE 'aba_param.inc'
CHARACTER*80 FNAME
DIMENSION ARRAY(513),JRRAY(NPRECD,513),LRUNIT(2,1)
EQUIVALENCE (ARRAY(1),JRRAY(1,1))

C
C File initialization
C

FNAME='TEST'
NRU=1
LRUNIT(1,1)=8
LRUNIT(2,1)=2
LOUTF=0
CALL INITPF(FNAME,NRU,LRUNIT,LOUTF)
JUNIT=8
CALL DBRNU(JUNIT)

C
C Loop on all records in results file
C

STRESS=0.
DO 100 K1=1,99999

C
CALL DBFILE(0,ARRAY,JRCD)
IF(JRCD.NE.0)GO TO 110
KEY=JRRAY(1,2)

C
IF(KEY.EQ.1) THEN

C
C Element header record:
C extract element, sec pt, int pt numbers
C

JEL=JRRAY(1,3)
JPNT=JRRAY(1,4)
JSPNT=JRRAY(1,5)

C
C Stress invariant record for Abaqus/Standard

ELSE IF(KEY.EQ.12)THEN
C Stress invariant record for Abaqus/Explicit

ELSE IF(KEY.EQ.75)THEN
C

5.1.3–3

Abaqus Version 6.6 ID:

Printed on:

ACCESSING THE FILE INFORMATION

C Extract von Mises stress
C

IF(ARRAY(3).GT.STRESS)THEN
STRESS=ARRAY(3)
KEL=JEL
KPNT=JPNT
KSPNT=JSPNT

END IF
END IF

C
100 CONTINUE
110 CONTINUE

C
WRITE(6,120) KEL,KPNT,KSPNT,STRESS

120 FORMAT(5X,'ELEMENT',I5,5X,'POINT',I4,5X,'SECTION POINT',
1 I4,5X,'STRESS',1PG12.3)
STOP
END

See Chapter 15, “Postprocessing of Abaqus Results,” of the Abaqus Example Problems Guide for

additional examples.

Writing a file in the results file format

Subroutine DBFILW can be used to write a file in the format of the Abaqus results file to modify the file

information or to add additional information before postprocessing. Subroutine INITPF must be called

before DBFILW.
The file will be written to FORTRAN unit 9 with the extension .fin. Unit 9 is opened by Abaqus

when DBFILW is first called; your coding must not open or redefine unit 9, but you must ensure that

FORTRAN unit 9 is saved following the job.

“Joining data from multiple results files and converting file format: FJOIN,” Section 15.1.2 of

the Abaqus Example Problems Guide, contains an example of the use of subroutine DBFILW to merge

specific records of discontinuous results files. Continuous results files are required for postprocessing

purposes; if you have written a results file during an analysis and a new results file on the restart of

the analysis without making the files continuous, they must be made continuous before postprocessing.

“Analysis of a cantilever subject to earthquakemotion,” Section 1.4.13 of the Abaqus Benchmarks Guide,

also shows the use of DBFILW for merging results files. Alternatively, results files can be merged using

the abaqus append utility as described in “Joining results (.fil) files,” Section 3.2.13.

The DBFILW subroutine can also be used to convert the Abaqus results file from binary to ASCII

format to transfer it from one computer system to another. Alternatively, this conversion can be done

automatically by using the abaqus ascfil execution procedure, as described in “ASCII translation of

results (.fil) files,” Section 3.2.12.

5.1.3–4

Abaqus Version 6.6 ID:

Printed on:

UTILITIES FOR RESULTS FILE ACCESS

5.1.4 UTILITY ROUTINES FOR ACCESSING THE RESULTS FILE

Products: Abaqus/Standard Abaqus/Explicit

References

• “Accessing the results file information,” Section 5.1.3

• “URDFIL,” Section 1.1.49 of the Abaqus User Subroutines Reference Guide

• “Joining data from multiple results files and converting file format: FJOIN,” Section 15.1.2 of the

Abaqus Example Problems Guide

• “Calculation of principal stresses and strains and their directions: FPRIN,” Section 15.1.3 of the

Abaqus Example Problems Guide

• “Creation of a perturbed mesh from original coordinate data and eigenvectors: FPERT,”

Section 15.1.4 of the Abaqus Example Problems Guide

Overview

The Abaqus results (.fil) file can be accessed with the utility routines described in this section. Access
is subsequent to an analysis by a user-written postprocessing program or, in Abaqus/Standard, from

within an analysis by user subroutine URDFIL.
The following utility subroutines are available:

• DBFILE (read from a file)

• DBFILW (write to a file)

• DBRNU (set a unit number for a file)

• INITPF (initialize a file)

• POSFIL (determine position in a file; available only in Abaqus/Standard)

These utility subroutines are described below in alphabetical order.

Only the subroutines DBFILE and POSFIL can be called from user subroutine URDFIL.

DBFILE (read from a file)

Interface

CALL DBFILE(LOP,ARRAY,JRCD)

Variable to be provided to the utility routine

LOP
A flag, which you must set before calling DBFILE, indicating the operation. Set LOP=0 to read the

next record in the file; set LOP=2 to rewind the file currently being read (for example, if it is necessary

5.1.4–1

Abaqus Version 6.6 ID:

Printed on:

UTILITIES FOR RESULTS FILE ACCESS

to read the file more than once, it must be rewound since it is a sequential file). If LOP=2 is used, the

file must first be read to the end, and it should be rewound only when the end-of-file is reached.

Variables returned from the utility routine

ARRAY
The array containing one record from the file, in the format described in “Results file output format,”

Section 5.1.2. When LOP=0, this array will be filled by the data management routines with the

contents of the next record in the file as each call to DBFILE is executed. ARRAYmust be dimensioned

adequately in your routines to contain the largest record in the file. For almost all cases 500 words is

sufficient. The exceptions arise if the problem definition includes user elements or user materials that

use more than this many state variables or if substructures with a large number of retained degrees of

freedom are used (see “Using substructures,” Section 10.1.1, for more details regarding substructures).

When the results file has been written on a system on which Abaqus runs in double precision, ARRAY
must be declared double precision in your routine.

JRCD
Returned as nonzero if an end-of-file marker is read when DBFILE is called with LOP=0.

DBFILW (write to a file)

Interface

CALL DBFILW(LOP,ARRAY,JRCD)

Variables to be provided to the utility routine

ARRAY
The array containing one record to be written to the file, in the format described in “Results file output

format,” Section 5.1.2.

JRCD
Return code (0 – record written successfully, 1 – record not written).

LOP
Not currently used.

DBRNU (set a unit number for a file)

Interface

CALL DBRNU(JUNIT)

5.1.4–2

Abaqus Version 6.6 ID:

Printed on:

UTILITIES FOR RESULTS FILE ACCESS

Variable to be provided to the utility routine

JUNIT
The FORTRAN unit number of the results file to be read. Valid unit numbers are 8 to read the .fil
file, 15–18, or numbers greater than 100.

INITPF (initialize a file)

Interface

CALL INITPF(FNAME,NRU,LRUNIT,LOUTF)

Variables to be provided to the utility routine

FNAME
A character string defining the root file name (that is, the name without an extension) of the files

being read or written. FNAME must be declared as CHARACTER*80 and can include the directory

specification as well as the root file name. The extension of each individual file is defined by the

LRUNIT array below. See the discussion below for file naming conventions.

NRU
An integer giving the number of results files that the postprocessing program will read. Normally only

one results file is read, but sometimes it is necessary to read several results files—for example, to merge

them into a single file.

LRUNIT
An integer array that must be dimensioned LRUNIT(2,NRU) in the postprocessing program and must

contain the following data before INITPF is called:

LRUNIT(1,K1) is the FORTRAN unit number on which the K1th results file will be read. Valid
unit numbers are 8 to read the .fil file, 15–18, or numbers greater than 100. All other units are

reserved by Abaqus. See below for naming conventions based on the unit numbers.

LRUNIT(2,K1) is an integer that must be set to 2 if the K1th results file was written as a binary
file or set to 1 if the K1th results file was written in ASCII format.

LOUTF
Needs to be defined only if the program that is making the call to INITPF will also write an output file

in the Abaqus results file format (for example, if results files are being merged into a single results file

or if a results file is being converted from binary to ASCII format). In that case LOUTF should be set to

2 if the output file is to be written as a binary file or set to 1 if the output file is to be written as an ASCII

file. This results file will be written with the file name extension .fin. See “Accessing the results file
information,” Section 5.1.3, for a discussion of writing results files; see below for information on the

naming of this file.

5.1.4–3

Abaqus Version 6.6 ID:

Printed on:

UTILITIES FOR RESULTS FILE ACCESS

File naming conventions

The file extension is derived from the value of LRUNIT(1,K1). If LRUNIT(1,K1) is 8, the file name

will be constructed with the extension fil. Any other unit number will result in a file extension of 0nn,
where nn is the number assigned to LRUNIT(1,K1). For example, if LRUNIT(1,K1) is 15, the file

extension is .015. If an output file has been indicated by a nonzero value of LOUTF, its extension will

be .fin.

For example, to read a file xxxx.fil, set LRUNIT(1,K1) to 8 and the character variable FNAME
to xxxx using assignment or data statements. If desired, FNAME can include a directory specification,

device name, or path. Operating system environment and shell variables will not be translated properly

and, therefore, should not be used.

All error messages generated by Abaqus are written to FORTRAN unit 6. On most machines error

messages will be printed by default directly to the screen if the program is run interactively. You can

include an open statement for unit 6 in the main program to redirect messages to a file. If you wish to

read or write to units other than those units specified in LRUNIT, OPEN statements for those units may

have to be included in the program (depending upon the computer being used). Unit numbers of such

auxiliary files should be greater than 100 to avoid any conflict with Abaqus internal files.

POSFIL (determine position in a file)

The POSFIL utility routine is available only in Abaqus/Standard.

Interface

CALL POSFIL(NSTEP,NINC,ARRAY,JRCD)

Variables to be provided to the utility routine

NSTEP
Desired step. If this variable is set to 0, the first available step will be read.

NINC
Desired increment. If this variable is set to 0, the first available increment of the specified step will be

read.

Variables returned from the utility routine

ARRAY
Real array containing the values of record 2000 from the results file for the requested step and

increment.

5.1.4–4

Abaqus Version 6.6 ID:

Printed on:

UTILITIES FOR RESULTS FILE ACCESS

JRCD
Return code (0 – specified increment found, 1 – specified increment not found). If the step and

increment requested are not found in the results file, POSFIL will return an error and leave you

positioned at the end of the results file.

Positioning with POSFIL

You may find it convenient to call POSFIL with both NSTEP and NINC set to 0 to skip over the

information that is written to the results file at the beginning of an analysis (see “Results file output

format,” Section 5.1.2) and, thus, start reading from the first increment written to the file.

POSFIL cannot be used to move backward in the results file: you cannot use POSFIL to find a

given increment in the file and then make a second call to POSFIL later to read an increment earlier

than the first one found. If this is attempted, POSFIL will return an error indicating that the requested

increment was not found.

5.1.4–5

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

OI.1 Abaqus/Standard OUTPUT VARIABLE INDEX

This index provides a reference to all of the output variables that are available in Abaqus/Standard. Output

variables are listed in alphabetical order.

Variable Page

A . 4.2.1–37

ACV. 4.2.1–12

ACVn 4.2.1–12

ALEAKVRB 4.2.1–17

ALEAKVRT 4.2.1–17

ALLAE. 4.2.1–55

ALLCD. 4.2.1–55

ALLDMD 4.2.1–56

ALLEE 4.2.1–55

ALLFD. 4.2.1–56

ALLIE 4.2.1–56

ALLJD 4.2.1–56

ALLKE. 4.2.1–56

ALLKL. 4.2.1–56

ALLPD. 4.2.1–56

ALLQB. 4.2.1–56

ALLSD. 4.2.1–56

ALLSE 4.2.1–56

ALLVD. 4.2.1–56

ALLWK 4.2.1–56

ALPHA. 4.2.1–7

ALPHAij. 4.2.1–7

ALPHAk 4.2.1–7

ALPHAk_ij 4.2.1–7

ALPHAN 4.2.1–7

ALPHAP. 4.2.1–7

ALPHAPn 4.2.1–7

AMPCU 4.2.1–56

An . 4.2.1–37

AR . 4.2.1–37

ARn . 4.2.1–37

AT . 4.2.1–37

AZZIT 4.2.1–13

BDSTAT 4.2.1–50

Variable Page

BF . 4.2.1–29

BICURV 4.2.1–25

BIMOM 4.2.1–25

BM. 4.2.1–45

CA . 4.2.1–33

CALPHAF 4.2.1–31

CALPHAFn. 4.2.1–31

CALPHAMn 4.2.1–31

CAn . 4.2.1–33

CAREA 4.2.1–47

CARn 4.2.1–34

CASU. 4.2.1–32

CASUC 4.2.1–33

CASUn 4.2.1–32

CASURn 4.2.1–33

CCF . 4.2.1–33

CCFn 4.2.1–33

CCMn. 4.2.1–33

CCU. 4.2.1–33

CCUn 4.2.1–33

CCURn 4.2.1–33

CD . 4.2.1–55

CDIF 4.2.1–32

CDIFC 4.2.1–32

CDIFn 4.2.1–32

CDIFRn 4.2.1–32

CDIM 4.2.1–32

CDIMC. 4.2.1–32

CDIMn 4.2.1–32

CDIMRn 4.2.1–32

CDIP 4.2.1–32

CDIPC 4.2.1–32

CDIPn 4.2.1–32

CDIPRn 4.2.1–32

OI.1–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

CDISP 4.2.1–46

CDISPETOS 4.2.1–46

CDMG 4.2.1–32

CDMGn 4.2.1–32

CDMGRn 4.2.1–32

CDSTRESS 4.2.1–46

CE . 4.2.1–10

CEAVG. 4.2.1–36

CECHG 4.2.1–39

CECUR 4.2.1–39

CEEQ 4.2.1–10

CEERI 4.2.1–36

CEF . 4.2.1–30

CEFn 4.2.1–30

CEij . 4.2.1–10

CEMAG 4.2.1–11

CEMn 4.2.1–30

CENER. 4.2.1–13

CENTMAG 4.2.1–29

CENTRIFMAG 4.2.1–29

CEP . 4.2.1–11

CEPn 4.2.1–11

CESW 4.2.1–10

CF . 4.2.1–38

CFAILST 4.2.1–34

CFAILSTi 4.2.1–34

CFAILURE 4.2.1–13

CFF . 4.2.1–37

CFL . 4.2.1–40

CFLn 4.2.1–40

CFn . 4.2.1–38

CFN . 4.2.1–47

CFNM 4.2.1–47

CFORCE. 4.2.1–46

CFS . 4.2.1–47

CFSM. 4.2.1–47

CFT . 4.2.1–47

CFTM. 4.2.1–47

CHRGS 4.2.1–27

Variable Page

CIVC 4.2.1–33

CMn . 4.2.1–38

CMN 4.2.1–47

CMNM 4.2.1–47

CMS. 4.2.1–47

CMSM 4.2.1–47

CMT 4.2.1–47

CMTM 4.2.1–47

CNAREA 4.2.1–46

CNF . 4.2.1–31

CNFC 4.2.1–32

CNFn 4.2.1–31

CNMn 4.2.1–31

CONC 4.2.1–15

CONF. 4.2.1–14

COORD 4.2.1–18

4.2.1–26

4.2.1–39

COORn. 4.2.1–39

CORIOMAG 4.2.1–29

CP . 4.2.1–33

CPn . 4.2.1–33

CPRn 4.2.1–33

CRACK 4.2.1–14

CRF . 4.2.1–33

CRFn 4.2.1–33

CRMn. 4.2.1–33

CRPTIME 4.2.1–54

CRSTS 4.2.1–50

CS11 4.2.1–11

CSDMG 4.2.1–47

4.2.1–50

CSF . 4.2.1–31

CSFC 4.2.1–31

CSFn 4.2.1–31

CSLST 4.2.1–32

CSLSTi. 4.2.1–32

CSMAXSCRT 4.2.1–47

CSMAXUCRT. 4.2.1–47

OI.1–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

CSMn 4.2.1–31

CSQUADSCRT 4.2.1–47

CSQUADUCRT. 4.2.1–47

CSTATUS 4.2.1–46

CSTRESS 4.2.1–46

CSTRESSERI 4.2.1–46

CSTRESSETOS 4.2.1–46

CTF . 4.2.1–30

CTFn 4.2.1–30

CTMn 4.2.1–30

CTRL_INPUT(OPT). 4.2.1–57

CTRQ. 4.2.1–48

CTSHR. 4.2.1–11

CTSHRi3 4.2.1–11

CU . 4.2.1–33

CUE . 4.2.1–30

CUEn 4.2.1–30

CUn . 4.2.1–33

CUP . 4.2.1–30

CUPEQ. 4.2.1–31

CUPEQC 4.2.1–31

CUPEQn 4.2.1–31

CUPn 4.2.1–31

CUREn 4.2.1–30

CURn 4.2.1–33

CURPEQn. 4.2.1–31

CURPn 4.2.1–31

CV . 4.2.1–33

CVF . 4.2.1–31

CVFn 4.2.1–31

CVMn 4.2.1–31

CVn . 4.2.1–33

CVOL. 4.2.1–39

CVRn 4.2.1–33

CW . 4.2.1–38

CYCLEINI 4.2.1–17

CYCLEINIXFEM 4.2.1–30

DAMAGEC. 4.2.1–15

DAMAGEFC. 4.2.1–24

Variable Page

DAMAGEFT. 4.2.1–24

DAMAGEMC 4.2.1–24

DAMAGEMT 4.2.1–24

DAMAGESHR 4.2.1–24

DAMAGET. 4.2.1–15

DAMPRATIO 4.2.1–55

DBS . 4.2.1–50

DBSF 4.2.1–50

DBT . 4.2.1–50

DG . 4.2.1–8

DGij . 4.2.1–8

DGP . 4.2.1–8

DGPn 4.2.1–8

DISP_OPT 4.2.1–57

DISP_OPT_VAL 4.2.1–57

DMENER 4.2.1–13

DMICRT. 4.2.1–16

4.2.1–23

4.2.1–24

DUCTCRT 4.2.1–23

E . 4.2.1–7

EASEDEN 4.2.1–35

ECD . 4.2.1–16

4.2.1–48

4.2.1–49

ECDA. 4.2.1–48

4.2.1–49

ECDDEN 4.2.1–35

ECDM 4.2.1–16

ECDn 4.2.1–16

ECDT 4.2.1–48

4.2.1–49

ECDTA. 4.2.1–48

4.2.1–49

ECTEDEN 4.2.1–35

ECURS. 4.2.1–27

EDMDDEN. 4.2.1–36

EE . 4.2.1–8

EEij . 4.2.1–8

OI.1–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

EENER. 4.2.1–13

EEP . 4.2.1–8

EEPn 4.2.1–8

EFENRRTR. 4.2.1–50

EFLAVG. 4.2.1–36

EFLERI 4.2.1–36

EFLX 4.2.1–16

EFLXM 4.2.1–16

EFLXn 4.2.1–16

EIGFREQ 4.2.1–54

4.2.1–55

EIGIMAG 4.2.1–55

EIGREAL 4.2.1–55

EIGVAL 4.2.1–54

Eij . 4.2.1–7

EKEDEN 4.2.1–35

ELASE 4.2.1–28

ELCD 4.2.1–28

ELCTE 4.2.1–28

ELDMD 4.2.1–29

ELEDEN. 4.2.1–35

ELEN 4.2.1–27

ELJD 4.2.1–28

ELKE 4.2.1–28

ELPD 4.2.1–28

ELSD 4.2.1–28

ELSE 4.2.1–28

ELVD 4.2.1–28

EMB 4.2.1–24

EMBF. 4.2.1–24

EMBFC 4.2.1–24

EMCD 4.2.1–24

EMCDA 4.2.1–24

EME. 4.2.1–24

EMH 4.2.1–24

EMJH 4.2.1–24

EMn . 4.2.1–55

ENDEN 4.2.1–36

ENDENERI. 4.2.1–36

Variable Page

ENER 4.2.1–12

ENRRT. 4.2.1–50

ENRRTXFEM 4.2.1–30

EP . 4.2.1–7

EPDDEN 4.2.1–35

EPG . 4.2.1–16

EPGAVG 4.2.1–36

EPGERI 4.2.1–36

EPGM 4.2.1–16

EPGn 4.2.1–16

EPn . 4.2.1–7

EPOT 4.2.1–38

ER . 4.2.1–8

ERij . 4.2.1–8

ERP . 4.2.1–8

ERPn 4.2.1–8

ERPRATIO 4.2.1–23

ESDDEN 4.2.1–35

ESEDEN. 4.2.1–35

ESF1 4.2.1–25

ESOL 4.2.1–30

ETOTAL. 4.2.1–56

EVDDEN 4.2.1–35

EVOL. 4.2.1–29

FILM 4.2.1–29

FILMCOEF 4.2.1–34

FLDCRT 4.2.1–23

FLSDCRT 4.2.1–23

FLUVR. 4.2.1–17

FLUXS 4.2.1–27

4.2.1–34

FLVEL 4.2.1–17

FLVELM. 4.2.1–17

FLVELn 4.2.1–17

FOUND 4.2.1–27

FTEMP. 4.2.1–50

FV . 4.2.1–13

FVn . 4.2.1–13

GA . 4.2.1–45

OI.1–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

GAn . 4.2.1–45

GELVR. 4.2.1–17

GFVR. 4.2.1–17

GM . 4.2.1–55

GPA . 4.2.1–45

GPAn 4.2.1–45

GPU . 4.2.1–45

GPUn 4.2.1–45

GPV . 4.2.1–45

GPVn 4.2.1–45

GRADP 4.2.1–12

GRAV. 4.2.1–29

GU . 4.2.1–45

GUn . 4.2.1–45

GV . 4.2.1–45

GVn . 4.2.1–45

HBF . 4.2.1–29

HC . 4.2.1–52

HCn . 4.2.1–53

HFL . 4.2.1–15

4.2.1–48

4.2.1–49

HFLA 4.2.1–48

4.2.1–49

HFLAVG 4.2.1–36

HFLERI 4.2.1–36

HFLM 4.2.1–15

HFLn 4.2.1–15

HO . 4.2.1–53

HOn . 4.2.1–53

HP . 4.2.1–34

HSNFCCRT 4.2.1–24

HSNFTCRT. 4.2.1–23

HSNMCCRT 4.2.1–24

HSNMTCRT 4.2.1–24

HTL . 4.2.1–48

4.2.1–49

HTLA. 4.2.1–48

4.2.1–49

Variable Page

IE. 4.2.1–8

IEij . 4.2.1–9

IEP. 4.2.1–9

IEPn . 4.2.1–9

INFC 4.2.1–40

INFN 4.2.1–40

INFR 4.2.1–39

INTEN 4.2.1–11

INV3 4.2.1–7

IRA . 4.2.1–53

IRAn 4.2.1–53

IRARn 4.2.1–54

IRF. 4.2.1–54

IRFn . 4.2.1–54

IRMASS 4.2.1–54

IRMn 4.2.1–54

IRRI . 4.2.1–54

IRRIij 4.2.1–54

IRX . 4.2.1–53

IRXn 4.2.1–53

ISOL 4.2.1–15

IVOL 4.2.1–18

JENER 4.2.1–13

JK . 4.2.1–14

KE . 4.2.1–45

KEn . 4.2.1–45

LE . 4.2.1–8

LEAKVRB 4.2.1–17

LEAKVRT 4.2.1–17

LEij . 4.2.1–8

LEP . 4.2.1–8

LEPn 4.2.1–8

LOADS. 4.2.1–27

LOADSXFEM. 4.2.1–30

LOCALDIRn 4.2.1–18

LPF . 4.2.1–56

MASS. 4.2.1–53

MAT_PROP_NORMALIZED . . 4.2.1–57

MAXECRT 4.2.1–16

OI.1–5

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

MAXSCRT 4.2.1–16

MAXSS 4.2.1–25

MFL. 4.2.1–14

4.2.1–16

MFLM 4.2.1–16

MFLn 4.2.1–16

MFLT 4.2.1–14

MFR. 4.2.1–13

MFRn 4.2.1–13

MISES 4.2.1–6

MISESAVG. 4.2.1–36

MISESERI 4.2.1–36

MISESMAX 4.2.1–6

MISESONLY. 4.2.1–6

MOT 4.2.1–39

MOTn. 4.2.1–39

MSFLDCRT 4.2.1–23

MSTRN 4.2.1–13

MSTRS. 4.2.1–13

NCURS 4.2.1–29

NE . 4.2.1–8

NEij . 4.2.1–8

NEP . 4.2.1–8

NEPn 4.2.1–8

NFLn 4.2.1–29

NFLUX. 4.2.1–29

NFORC 4.2.1–29

NFORCSO 4.2.1–29

NNC. 4.2.1–38

NNCn 4.2.1–38

NT . 4.2.1–37

NTn . 4.2.1–38

OPENBC 4.2.1–50

P . 4.2.1–34

PCAV 4.2.1–39

PE . 4.2.1–9

4.2.1–18

PEAVG. 4.2.1–36

Variable Page

PEEQ 4.2.1–9

4.2.1–15

4.2.1–18

PEEQAVG 4.2.1–36

PEEQERI 4.2.1–36

PEEQMAX 4.2.1–9

PEEQT 4.2.1–10

PEERI 4.2.1–36

PEij . 4.2.1–9

4.2.1–18

PEMAG 4.2.1–10

PENER 4.2.1–12

PEP . 4.2.1–10

PEPn 4.2.1–10

PEQC 4.2.1–14

PEQCn 4.2.1–14

PFL . 4.2.1–49

PFLA 4.2.1–49

PFn . 4.2.1–55

PFOPEN 4.2.1–17

PHCA. 4.2.1–23

PHCAn 4.2.1–23

PHCARn 4.2.1–23

PHCCU 4.2.1–22

PHCCUn 4.2.1–22

PHCCURn 4.2.1–22

PHCEF 4.2.1–21

PHCEFn 4.2.1–21

PHCEMn 4.2.1–21

PHCHG 4.2.1–41

PHCIVC 4.2.1–23

PHCNF. 4.2.1–23

PHCNFC. 4.2.1–23

PHCNFn 4.2.1–23

PHCNMn 4.2.1–23

PHCRF 4.2.1–22

PHCRFn 4.2.1–22

PHCRMn 4.2.1–22

PHCSF 4.2.1–22

OI.1–6

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

PHCSFC 4.2.1–22

PHCSFn 4.2.1–22

PHCSMn. 4.2.1–22

PHCTF 4.2.1–21

PHCTFn 4.2.1–21

PHCTMn 4.2.1–21

PHCU. 4.2.1–22

PHCUn 4.2.1–22

PHCURn 4.2.1–22

PHCV. 4.2.1–22

PHCVF. 4.2.1–21

PHCVFn 4.2.1–22

PHCVMn 4.2.1–22

PHCVn 4.2.1–22

PHCVRn 4.2.1–22

PHE . 4.2.1–21

PHEFL 4.2.1–21

PHEFLn 4.2.1–21

PHEij 4.2.1–21

PHEPG 4.2.1–21

PHEPGn 4.2.1–21

PHILSM 4.2.1–40

PHMFL 4.2.1–21

PHMFT 4.2.1–21

PHPOT 4.2.1–41

PHS . 4.2.1–21

PHSij 4.2.1–21

PINF 4.2.1–40

POR . 4.2.1–17

4.2.1–37

4.2.1–39

PPOR 4.2.1–41

PPRESS 4.2.1–47

PRESS 4.2.1–7

PRESSONLY. 4.2.1–7

PRF . 4.2.1–41

PRFn 4.2.1–41

PRMn 4.2.1–41

PS . 4.2.1–18

Variable Page

PSij . 4.2.1–18

PSILSM 4.2.1–40

PTL . 4.2.1–49

PTLA 4.2.1–49

PTU . 4.2.1–42

PTUn 4.2.1–42

PTURn 4.2.1–42

PU . 4.2.1–41

PUn . 4.2.1–41

PURn 4.2.1–41

QUADECRT 4.2.1–16

QUADSCRT 4.2.1–16

RA . 4.2.1–44

RAD. 4.2.1–29

RADFL. 4.2.1–50

RADFLA 4.2.1–50

RADTL. 4.2.1–50

RADTLA 4.2.1–50

RAn . 4.2.1–44

RARn 4.2.1–44

RATIO 4.2.1–57

RBANG 4.2.1–15

RBFOR. 4.2.1–15

RBROT 4.2.1–15

RCCU. 4.2.1–20

RCCUn 4.2.1–20

RCCURn. 4.2.1–20

RCEF 4.2.1–19

RCEFn 4.2.1–19

RCEMn 4.2.1–19

RCHG 4.2.1–39

RCNF 4.2.1–20

RCNFC. 4.2.1–20

RCNFn 4.2.1–20

RCNMn 4.2.1–20

RCRF 4.2.1–19

RCRFn 4.2.1–19

RCRMn 4.2.1–20

RCSF 4.2.1–20

OI.1–7

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

RCSFC 4.2.1–20

RCSFn 4.2.1–20

RCSMn. 4.2.1–20

RCTF 4.2.1–19

RCTFn 4.2.1–19

RCTMn 4.2.1–19

RCU. 4.2.1–20

RCUn 4.2.1–20

RCURn 4.2.1–20

RCVF 4.2.1–19

RCVFn 4.2.1–19

RCVMn 4.2.1–19

RD . 4.2.1–17

RE . 4.2.1–19

RECUR 4.2.1–39

REij . 4.2.1–19

RF . 4.2.1–38

RFL . 4.2.1–40

RFLE 4.2.1–40

RFLEn 4.2.1–41

RFLn 4.2.1–40

RFn . 4.2.1–38

RI. 4.2.1–53

RIij. 4.2.1–53

RM. 4.2.1–38

RMISES 4.2.1–19

RMn . 4.2.1–38

ROTAMAG. 4.2.1–29

RRF . 4.2.1–44

RRFn 4.2.1–44

RRMn. 4.2.1–44

RS . 4.2.1–19

RSij . 4.2.1–19

RT . 4.2.1–38

RTA . 4.2.1–44

RTAn 4.2.1–44

RTARn 4.2.1–44

RTU . 4.2.1–43

RTUn 4.2.1–43

Variable Page

RTURn 4.2.1–43

RTV . 4.2.1–43

RTVn 4.2.1–44

RTVRn 4.2.1–44

RU . 4.2.1–43

RUn . 4.2.1–43

RURn 4.2.1–43

RV . 4.2.1–43

RVF . 4.2.1–42

RVn . 4.2.1–43

RVRn 4.2.1–43

RVT . 4.2.1–43

RWM 4.2.1–38

S . 4.2.1–6

SALPHA. 4.2.1–27

SALPHAn 4.2.1–27

SAT . 4.2.1–17

SDEG 4.2.1–15

4.2.1–16

4.2.1–17

4.2.1–23

SDV . 4.2.1–13

4.2.1–47

SDVn 4.2.1–13

SE . 4.2.1–25

SEE . 4.2.1–26

SEE1 4.2.1–26

SEn . 4.2.1–25

SENER 4.2.1–12

SEP . 4.2.1–27

SEP1 4.2.1–27

SEPE 4.2.1–26

SEPEn 4.2.1–26

SF . 4.2.1–25

SFDR 4.2.1–49

SFDRA. 4.2.1–49

SFDRT 4.2.1–49

SFDRTA 4.2.1–49

SFn . 4.2.1–25

OI.1–8

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

SHRCRT. 4.2.1–23

SHRRATIO 4.2.1–23

Sij . 4.2.1–6

SINKTEMP. 4.2.1–34

SINV 4.2.1–6

SJD . 4.2.1–48

4.2.1–49

SJDA 4.2.1–48

4.2.1–49

SJDT 4.2.1–48

4.2.1–49

SJDTA 4.2.1–48

4.2.1–49

SJP. 4.2.1–19

SKEn 4.2.1–26

SKn . 4.2.1–25

SKPn 4.2.1–27

SMn . 4.2.1–25

SNE . 4.2.1–45

SNEn 4.2.1–45

SOAREA 4.2.1–51

SOCF 4.2.1–51

SOD . 4.2.1–51

SOE . 4.2.1–51

SOF . 4.2.1–51

SOH . 4.2.1–51

SOL . 4.2.1–54

SOM 4.2.1–51

SOP . 4.2.1–51

SP . 4.2.1–6

SPE . 4.2.1–26

SPEn 4.2.1–26

SPL . 4.2.1–40

SPn . 4.2.1–6

SS . 4.2.1–11

SSAVG 4.2.1–25

SSAVGn 4.2.1–25

SSn . 4.2.1–11

Variable Page

STATUS 4.2.1–16

4.2.1–17

4.2.1–24

STATUSXFEM 4.2.1–30

STH . 4.2.1–26

STRAINFREE 4.2.1–39

SVOL 4.2.1–26

T . 4.2.1–45

TA . 4.2.1–42

TAn . 4.2.1–42

TARn 4.2.1–42

TEMP. 4.2.1–13

TF . 4.2.1–38

TFn . 4.2.1–39

THE . 4.2.1–9

THEij 4.2.1–9

THEP 4.2.1–9

THEPn 4.2.1–9

TMn . 4.2.1–39

Tn . 4.2.1–45

TPFL 4.2.1–50

TPTL 4.2.1–50

TRESC 4.2.1–7

TRIAX 4.2.1–7

TRNOR 4.2.1–34

TRSHR. 4.2.1–34

TSAIH 4.2.1–13

TSAIW 4.2.1–13

TSHR 4.2.1–11

TSHRi3 4.2.1–11

TU . 4.2.1–42

TUn . 4.2.1–42

TURn 4.2.1–42

TV . 4.2.1–42

TVn . 4.2.1–42

TVRn 4.2.1–42

U . 4.2.1–37

UC . 4.2.1–52

UCn . 4.2.1–52

OI.1–9

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Standard OUTPUT VARIABLE INDEX

Variable Page

Un . 4.2.1–37

UR . 4.2.1–37

URCn 4.2.1–52

URn . 4.2.1–37

UT . 4.2.1–37

UVARM 4.2.1–13

UVARMn 4.2.1–13

V . 4.2.1–37

VC . 4.2.1–52

VCn . 4.2.1–52

VE . 4.2.1–18

VEEQ. 4.2.1–18

VEij . 4.2.1–18

VENER. 4.2.1–13

VF . 4.2.1–39

VFn . 4.2.1–39

VFTOT 4.2.1–50

VMn. 4.2.1–39

Vn . 4.2.1–37

VOIDR 4.2.1–17

Variable Page

VOL. 4.2.1–53

VOLC. 4.2.1–52

VR . 4.2.1–37

VRCn 4.2.1–52

VRn . 4.2.1–37

VS . 4.2.1–18

VSij . 4.2.1–18

VT . 4.2.1–37

VVF . 4.2.1–17

VVFG. 4.2.1–17

VVFN. 4.2.1–17

WARP 4.2.1–37

WEIGHT 4.2.1–48

4.2.1–49

XC . 4.2.1–52

XCn . 4.2.1–52

XN . 4.2.1–48

XS . 4.2.1–48

XT . 4.2.1–48

YIELDS 4.2.1–7

OI.1–10

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

OI.2 Abaqus/Explicit OUTPUT VARIABLE INDEX

This index provides a reference to all of the output variables that are available in Abaqus/Explicit. Output

variables are listed in alphabetical order.

Variable Page

A . 4.2.2–21

ACOM 4.2.2–26

ACTEMP 4.2.2–22

ALLAE. 4.2.2–27

ALLCD. 4.2.2–27

ALLCW 4.2.2–27

ALLDC. 4.2.2–27

ALLDMD 4.2.2–27

ALLFC 4.2.2–27

ALLFD. 4.2.2–27

ALLHF. 4.2.2–27

ALLIE 4.2.2–27

ALLIHE 4.2.2–27

ALLKE. 4.2.2–27

ALLMW. 4.2.2–27

ALLPD. 4.2.2–27

ALLPW 4.2.2–27

ALLSE 4.2.2–27

ALLVD. 4.2.2–27

ALLWK 4.2.2–27

ALPHA. 4.2.2–5

ALPHAij. 4.2.2–5

ALPHAP. 4.2.2–5

ALPHAPn 4.2.2–5

An . 4.2.2–21

APCAV. 4.2.2–22

AR . 4.2.2–21

ARn . 4.2.2–21

AT . 4.2.2–21

AZZIT 4.2.2–8

BDSTAT 4.2.2–24

BF . 4.2.2–14

BONDLOAD. 4.2.2–24

BONDSTAT 4.2.2–24

Variable Page

BURNF 4.2.2–10

CA . 4.2.2–19

CALPHAF 4.2.2–16

CALPHAFn. 4.2.2–16

CALPHAMn 4.2.2–16

CAn . 4.2.2–19

CAREA 4.2.2–25

CARn 4.2.2–19

CASU. 4.2.2–18

CASUC 4.2.2–18

CASUn 4.2.2–18

CASURn 4.2.2–18

CBLARAT 4.2.2–22

CCF . 4.2.2–18

CCFn 4.2.2–18

CCMn. 4.2.2–18

CCU. 4.2.2–19

CCUn 4.2.2–19

CCURn 4.2.2–19

CDERF. 4.2.2–19

CDERU 4.2.2–19

CDIF 4.2.2–17

CDIFC 4.2.2–17

CDIFn 4.2.2–17

CDIFRn 4.2.2–17

CDIM 4.2.2–17

CDIMC. 4.2.2–17

CDIMn 4.2.2–17

CDIMRn 4.2.2–17

CDIP 4.2.2–17

CDIPC 4.2.2–18

CDIPn 4.2.2–17

CDIPRn 4.2.2–18

CDMG 4.2.2–17

OI.2–1

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

Variable Page

CDMGn 4.2.2–17

CDMGRn 4.2.2–17

CEF . 4.2.2–15

CEFL 4.2.2–23

CEFLT 4.2.2–23

CEFn 4.2.2–15

CEMn 4.2.2–15

CENER. 4.2.2–7

CF . 4.2.2–21

CFAILST 4.2.2–19

CFAILSTi 4.2.2–19

CFAILURE 4.2.2–7

CFn . 4.2.2–21

CFN . 4.2.2–24

CFNM 4.2.2–24

CFORCE. 4.2.2–23

CFS . 4.2.2–24

CFSM. 4.2.2–24

CFT . 4.2.2–24

CFTM. 4.2.2–24

CIVC 4.2.2–18

CKE . 4.2.2–9

CKEij 4.2.2–9

CKEMAG 4.2.2–9

CKLE 4.2.2–9

CKLEij 4.2.2–9

CKLS 4.2.2–9

CKLSij 4.2.2–9

CKSTAT 4.2.2–9

CLAREA 4.2.2–22

CMASS 4.2.2–22

CMF. 4.2.2–22

CMFL. 4.2.2–22

CMFLT. 4.2.2–23

CMn . 4.2.2–22

CMN 4.2.2–24

CMNM 4.2.2–25

CMS. 4.2.2–25

CMSM 4.2.2–25

Variable Page

CMT 4.2.2–25

CMTM 4.2.2–25

CNF . 4.2.2–17

CNFC 4.2.2–17

CNFn 4.2.2–17

CNMn 4.2.2–17

COORD 4.2.2–6

4.2.2–11

4.2.2–20

COORDCOM 4.2.2–26

COORn. 4.2.2–20

CP . 4.2.2–18

CPn . 4.2.2–18

CPRn 4.2.2–18

CRACK 4.2.2–9

CRF . 4.2.2–18

CRFn 4.2.2–18

CRMn. 4.2.2–18

CRSTS 4.2.2–24

CSAREA 4.2.2–22

CSDMG 4.2.2–23

CSF . 4.2.2–16

CSFC 4.2.2–17

CSFn 4.2.2–16

CSLST 4.2.2–18

CSLSTi. 4.2.2–18

CSMAXSCRT 4.2.2–23

CSMAXUCRT. 4.2.2–23

CSMn 4.2.2–16

CSQUADSCRT 4.2.2–23

CSQUADUCRT. 4.2.2–23

CSTRESS 4.2.2–23

CTEMP 4.2.2–22

CTF . 4.2.2–15

CTFn 4.2.2–15

CTHICK 4.2.2–23

CTMn 4.2.2–15

CU . 4.2.2–18

CUE . 4.2.2–16

OI.2–2

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

Variable Page

CUEn 4.2.2–16

CUF . 4.2.2–16

CUFn 4.2.2–16

CUMn 4.2.2–16

CUn . 4.2.2–18

CUP . 4.2.2–16

CUPEQ. 4.2.2–16

CUPEQC 4.2.2–16

CUPEQn 4.2.2–16

CUPn 4.2.2–16

CUREn 4.2.2–16

CURn 4.2.2–18

CURPEQn. 4.2.2–16

CURPn 4.2.2–16

CV . 4.2.2–19

CVF . 4.2.2–16

CVFn 4.2.2–16

CVMn 4.2.2–16

CVn . 4.2.2–19

CVOL. 4.2.2–22

CVRn 4.2.2–19

DAMAGEC. 4.2.2–8

DAMAGEFC. 4.2.2–10

DAMAGEFT. 4.2.2–10

DAMAGEMC 4.2.2–10

DAMAGEMT 4.2.2–10

DAMAGESHR 4.2.2–10

DAMAGET. 4.2.2–8

DBS . 4.2.2–24

DBSF 4.2.2–24

DBT . 4.2.2–24

DBURNF 4.2.2–10

DENSITY 4.2.2–7

DENSITYVAVG 4.2.2–11

DMASS 4.2.2–26

4.2.2–28

DMENER 4.2.2–7

DMICRT. 4.2.2–9

4.2.2–11

Variable Page

DMICRTMAX. 4.2.2–6

DT . 4.2.2–28

DUCTCRT 4.2.2–9

E . 4.2.2–4

EASEDEN 4.2.2–14

ECDDEN 4.2.2–14

EDCDEN 4.2.2–14

EDMDDEN. 4.2.2–14

EDMICRTMAX. 4.2.2–15

EDT . 4.2.2–14

EFABRIC 4.2.2–10

EFABRICij 4.2.2–10

EFENRRTR. 4.2.2–24

EIHEDEN 4.2.2–14

Eij . 4.2.2–4

ELASE 4.2.2–13

ELCD 4.2.2–13

ELDC 4.2.2–13

ELDMD 4.2.2–13

ELEDEN. 4.2.2–13

ELEN 4.2.2–13

ELIHE 4.2.2–13

ELPD 4.2.2–13

ELSE 4.2.2–13

ELVD 4.2.2–13

EMSF 4.2.2–14

ENER 4.2.2–7

ENRRT. 4.2.2–24

EPDDEN 4.2.2–13

ER . 4.2.2–4

ERij . 4.2.2–4

ERP . 4.2.2–4

ERPn 4.2.2–4

ERPRATIO 4.2.2–9

ERV . 4.2.2–4

ESEDEN. 4.2.2–13

ETOTAL. 4.2.2–27

EVDDEN 4.2.2–14

EVF . 4.2.2–11

OI.2–3

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

Variable Page

EVOL. 4.2.2–14

FLDCRT 4.2.2–9

FLSDCRT 4.2.2–9

FSLIP 4.2.2–24

FSLIPR. 4.2.2–24

FV . 4.2.2–7

FVn . 4.2.2–7

GRAV. 4.2.2–14

HFL . 4.2.2–11

4.2.2–25

HFLA 4.2.2–25

HFLM 4.2.2–11

HFLn 4.2.2–11

HSNFCCRT 4.2.2–10

HSNFTCRT. 4.2.2–10

HSNMCCRT 4.2.2–10

HSNMTCRT 4.2.2–10

HTL . 4.2.2–25

HTLA. 4.2.2–25

IWCONWEP 4.2.2–19

JCCRT 4.2.2–9

LE . 4.2.2–4

LEij . 4.2.2–4

LEP . 4.2.2–4

LEPn 4.2.2–4

LOCALDIRn 4.2.2–7

MASS. 4.2.2–26

MASSADJUST 4.2.2–5

MASSEUL 4.2.2–26

MAXECRT 4.2.2–11

MAXSCRT 4.2.2–11

MINFL 4.2.2–23

MINFLT 4.2.2–23

MISES 4.2.2–4

MISESMAX 4.2.2–3

MISESVAVG. 4.2.2–11

MKCRT 4.2.2–9

MSFLDCRT 4.2.2–9

MSTRN 4.2.2–8

Variable Page

MSTRS. 4.2.2–7

NE . 4.2.2–4

NEij . 4.2.2–4

NEP . 4.2.2–4

NEPn 4.2.2–4

NFORC 4.2.2–14

NT . 4.2.2–21

NTn . 4.2.2–21

NVF . 4.2.2–22

OPENBC 4.2.2–24

P . 4.2.2–19

PABS 4.2.2–21

PALPH 4.2.2–10

PALPHMIN. 4.2.2–10

PCAV 4.2.2–22

PE . 4.2.2–4

PEEQ 4.2.2–5

4.2.2–8

PEEQMAX 4.2.2–5

PEEQT 4.2.2–5

PEEQVAVG 4.2.2–11

PEij . 4.2.2–4

PENER 4.2.2–7

PEP . 4.2.2–4

PEPn 4.2.2–4

PEQC 4.2.2–8

PEQCn 4.2.2–8

PEVAVG. 4.2.2–11

POR . 4.2.2–21

PRESS 4.2.2–4

PRESSVAVG. 4.2.2–12

QUADECRT 4.2.2–11

QUADSCRT 4.2.2–11

RBANG 4.2.2–10

RBFOR. 4.2.2–10

RBROT 4.2.2–11

RF . 4.2.2–21

RFL . 4.2.2–21

RFLn 4.2.2–21

OI.2–4

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

Variable Page

RFn . 4.2.2–21

RHOE. 4.2.2–10

RHOP. 4.2.2–10

RM. 4.2.2–21

RMn . 4.2.2–21

RT . 4.2.2–21

S . 4.2.2–3

SBF . 4.2.2–14

SDEG 4.2.2–8

4.2.2–9

4.2.2–11

SDV . 4.2.2–7

SDVn 4.2.2–7

SE . 4.2.2–12

SEn . 4.2.2–12

SENER 4.2.2–7

SF . 4.2.2–12

SFABRIC 4.2.2–10

SFABRICij 4.2.2–10

SFDR 4.2.2–25

SFDRA. 4.2.2–25

SFDRT 4.2.2–25

SFDRTA 4.2.2–25

SFn . 4.2.2–12

SHRCRT. 4.2.2–9

SHRRATIO 4.2.2–9

Sij . 4.2.2–3

SKn . 4.2.2–12

SMn . 4.2.2–12

SOAREA 4.2.2–26

SOF . 4.2.2–26

SOM 4.2.2–26

SP . 4.2.2–3

SPn . 4.2.2–4

SSAVG 4.2.2–13

SSAVGn 4.2.2–13

SSFORC 4.2.2–28

SSFORCn 4.2.2–28

SSPEEQ 4.2.2–28

Variable Page

SSPEEQn 4.2.2–28

SSSPRD 4.2.2–28

SSSPRDn 4.2.2–28

SSTORQ. 4.2.2–28

SSTORQn 4.2.2–28

STAGP 4.2.2–19

STATUS 4.2.2–11

4.2.2–14

STH . 4.2.2–12

STHIN 4.2.2–12

STRAINFREE 4.2.2–22

SVAVG 4.2.2–12

TCMASS 4.2.2–22

TCSAREA 4.2.2–22

TCVOL. 4.2.2–22

TEMP. 4.2.2–7

TEMPMAVG. 4.2.2–12

TIEADJUST 4.2.2–22

TIEDSTATUS 4.2.2–22

TINFL 4.2.2–23

TRIAX 4.2.2–4

TRNOR 4.2.2–19

TRSHR. 4.2.2–20

TSAIH 4.2.2–8

TSAIW 4.2.2–8

TSHR 4.2.2–7

TSHR13 4.2.2–7

TSHR23 4.2.2–7

U . 4.2.2–20

UCOM 4.2.2–26

Un . 4.2.2–20

UR . 4.2.2–20

URn . 4.2.2–20

UT . 4.2.2–20

V . 4.2.2–20

VCOM 4.2.2–26

VENER. 4.2.2–7

Vn . 4.2.2–20

VOLEUL 4.2.2–26

OI.2–5

Abaqus Version 6.6 ID:

Printed on:

Abaqus/Explicit OUTPUT VARIABLE INDEX

Variable Page

VP . 4.2.2–19

VR . 4.2.2–20

VRn . 4.2.2–20

VT . 4.2.2–20

VVF . 4.2.2–8

VVFG. 4.2.2–8

Variable Page

VVFN. 4.2.2–8

XN . 4.2.2–25

XS . 4.2.2–25

XT . 4.2.2–25

YIELDS 4.2.2–4

OI.2–6

Abaqus Version 6.6 ID:

Printed on:

Abaqus/CFD OUTPUT VARIABLE INDEX

OI.3 Abaqus/CFD OUTPUT VARIABLE INDEX

This index provides a reference to all of the output variables that are available in Abaqus/CFD. Output

variables are listed in alphabetical order.

Variable Page

ALLKE. 4.2.3–5

AVGPRESS. 4.2.3–4

AVGTEMP 4.2.3–4

AVGVEL 4.2.3–4

COORD 4.2.3–2

4.2.3–3

COORn. 4.2.3–3

DENSITY 4.2.3–2

4.2.3–3

DIST 4.2.3–2

4.2.3–3

DIV . 4.2.3–2

4.2.3–3

ENSTROPHY 4.2.3–2

4.2.3–3

EVOL. 4.2.3–2

FORCE. 4.2.3–4

HEATFLOW 4.2.3–4

HELICITY 4.2.3–2

4.2.3–3

HFL . 4.2.3–4

HFLN 4.2.3–4

MASSFLOW. 4.2.3–4

NTRACTION 4.2.3–4

PRESSFORCE. 4.2.3–4

PRESSURE 4.2.3–2

4.2.3–3

SHEARRATE 4.2.3–2

4.2.3–3

Variable Page

STRACTION. 4.2.3–4

SURFAREA 4.2.3–4

TEMP. 4.2.3–2

4.2.3–3

TRACTION. 4.2.3–4

TURBEPS. 4.2.3–2

4.2.3–3

TURBKE 4.2.3–3

4.2.3–4

TURBNU 4.2.3–3

4.2.3–4

U . 4.2.3–3

Un . 4.2.3–3

V . 4.2.3–2

4.2.3–3

VGINV2 4.2.3–2

4.2.3–3

VISCFORCE 4.2.3–4

VISCOSITY 4.2.3–2

Vn . 4.2.3–3

VOL. 4.2.3–5

VOLFLOW 4.2.3–4

VORTICITY 4.2.3–2

4.2.3–3

VORTICITYn 4.2.3–3

WALLSHEAR 4.2.3–4

YPLUS 4.2.3–5

YSTAR 4.2.3–5

OI.3–1

Abaqus Version 6.6 ID:

Printed on:

About SIMULIA
SIMULIA is the Dassault Systèmes brand that delivers a scalable portfolio of Realistic
Simulation applications including Abaqus for unified Finite Element Analysis and
multiphysics simulation; Isight for design exploration and optimization; and SLM for
managing simulation data, processes, and intellectual property. SIMULIA’s realistic
simulation applications are used as part of key business practices by world-leading
manufacturing and research organizations to explore physical behavior, discover
innovative solutions, and improve product performance.

About Dassault Systèmes
Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people
with virtual universes to imagine sustainable innovations. Its world-leading solutions
transform the way products are designed, produced, and supported. Dassault
Systèmes’ collaborative solutions foster social innovation, expanding possibilities for
the virtual world to improve the real world. The group brings value to over 150,000
customers of all sizes, in all industries, in more than 80 countries. www.3ds.com

Abaqus, the 3DS logo, SIMULIA, CATIA, SolidWorks, DELMIA, ENOVIA, 3DVIA, Isight,
and Unified FEA are trademarks or registered trademarks of Dassault Systèmes or its
subsidiaries in the US and/or other countries. Other company, product, and service
names may be trademarks or service marks of their respective owners.

© Dassault Systèmes, 2013

	Abaqus 6.13 PDF Documentation
	Abaqus Analysis User's Guide
	Legal Notices
	Preface
	Contents
	Part I: Introduction, Spatial Modeling, and Execution
	1. Introduction
	1.1 Introduction
	1.1.1 Introduction: general
	Overview of the Abaqus finite element system
	Overview of this guide
	Using Abaqus
	Reviewing the results of an Abaqus simulation

	1.2 Abaqus syntax and conventions
	1.2.1 Input syntax rules
	Overview
	Keyword lines
	Data lines
	Sets
	Labels
	Repeating data lines
	Example: Multiple data lines due to field variable dependence
	Ordering the data lines

	1.2.2 Conventions
	Overview
	Degrees of freedom
	Axisymmetric elements
	Fluid continuum elements
	Electromagnetic elements
	Activation of degrees of freedom
	Internal variables in Abaqus/Standard

	Coordinate systems
	Units
	Rotation and angle measures
	International System of units (SI)
	American or English units
	Symbols used in Abaqus for units

	Time
	Local tangent directions on surfaces in space
	Rotation of the local directions

	Convention used for stress and strain components
	Nonisotropic material behavior
	Zero-valued stress components
	Shear strains

	Stress and strain measures
	Total (integrated) strain
	Green's strain
	Nominal strain
	Logarithmic strain

	Stress invariants
	Finite rotations
	Compound rotations
	Example

	1.3 Abaqus model definition
	1.3.1 Defining a model in Abaqus
	Overview
	The input file
	Model data
	Required model data
	Optional model data

	History data
	Required history data
	Optional history data

	Including model or history data from an external file
	Including an encrypted data file

	1.4 Parametric modeling
	1.4.1 Parametric input
	Overview
	Introduction
	Parameters
	Independent parameters
	Dependent parameters
	Expressional dependence
	Tabular dependence

	Rules for parameters
	Parameter evaluation
	Parameter substitution
	Data types
	Continuous and discrete parameters
	Auxiliary input files

	Parametrization of input quantities
	Parametrizing individual input quantities
	Parametrizing groups of input quantities (expressional dependence)
	Parametrizing groups of input quantities (tabular dependence)

	Python language
	Statement length and continuation lines
	Comments
	Parameter names
	Data types
	Type conversion
	Numeric operators
	Functions
	Character string operators

	Execution of parametrized input
	Parameter check jobs

	Display of parametric input
	Data file display

	Additional reference

	2. Spatial Modeling
	2.1 Node definition
	2.1.1 Node definition
	Overview
	Assigning a node number to the node
	Specifying a local coordinate system in which to define nodes
	Defining the nodal coordinate system
	Defining a nodal coordinate system within part definitions

	Defining individual nodes by specifying their coordinates
	Reading node definitions from a file
	Specifying a local coordinate system for the nodal coordinates

	Grouping nodes into node sets
	Creating an unsorted node set
	Assigning nodes to a node set as they are created
	Assigning previously defined nodes to a node set
	Listing the nodes that define the set directly
	Generating the node set
	Generating a node set from an element set
	Limitation on updating node sets that are used to define other node sets

	Defining part and assembly sets
	Example
	Alternate method for defining assembly-level node sets

	Internal node sets created by Abaqus/CAE

	Transferring of node sets
	Creating nodes from existing nodes by generating them incrementally
	Defining a straight line between the two end nodes
	Defining a circular arc between the two end nodes
	Defining a parabola between the two end nodes
	Defining the extra point and the normal direction in a local coordinate system

	Creating nodes by copying existing nodes
	Translating and rotating the coordinates of the old nodes
	Applying the rotation multiple times

	Reflecting the coordinates of the old nodes
	Reflecting the coordinates through a line
	Reflecting the coordinates through a plane
	Reflecting the coordinates through a point

	Projecting the nodes in the old set from a pole node

	Creating nodes by filling in nodes between two bounds
	Example
	Concentrating the nodes toward one bound or the other
	Example
	Applying the bias value at every second interval along the line

	Creating quarter-point spacing
	Example

	Mapping a set of nodes from one coordinate system to another
	Scaling the local coordinates before they are mapped
	Specifying the scaling factors directly
	Specifying the scaling with respect to a reference point

	Introducing a simple shift and/or rotation by mapping from one coordinate system to another
	Introducing a pure shift by specifying the axis and magnitude of the translation
	Introducing a pure rotation by specifying the axis, origin, and angle of the rotation
	Mapping from cylindrical coordinates
	Mapping from skewed Cartesian coordinates
	Mapping from spherical coordinates
	Mapping from toroidal coordinates
	Mapping by means of blended quadratics

	2.1.2 Parametric shape variation
	Overview
	Parametrization of nodal coordinates
	Direct parametrization of individual nodal coordinates
	Parametrization of nodal coordinates using node generation

	Shape change by linear combination of shape variations
	Shape parametrization using shape variations
	Defining shape variations directly or reading them from an alternate input file
	Defining shape variations in alternative coordinate systems

	Using auxiliary analyses to generate shape variations
	Reading shape variations from a static analysis results file
	Reading shape variations from an eigenvalue analysis results file

	Shape parametrization and design sensitivity analysis
	Visualization of shape variations
	Using Abaqus/CAE to compute shape variations

	2.1.3 Nodal thicknesses
	Overview
	Defining nodal thicknesses
	Reading nodal thicknesses from an alternate file
	Generating continuously varying thicknesses between two nodes or node sets

	Specifying a continuously varying thickness for shell, membrane, and rigid elements
	Specifying a continuously varying thickness for a composite shell
	Example

	Creating a discontinuity in the shell, membrane, or rigid element thicknesses

	2.1.4 Normal definitions at nodes
	Overview
	Contact surfaces in Abaqus/Standard
	Elements
	Beam and shell elements
	Line spring elements
	Gasket elements
	Contour integral evaluation

	The coordinate system in which normals are defined

	2.1.5 Transformed coordinate systems
	Overview
	Defining a local coordinate system
	Defining a local coordinate system in a model that contains an assembly of part instances
	Large-displacement analysis
	Defining a rectangular Cartesian coordinate transformation
	Defining a cylindrical coordinate transformation
	Defining a spherical coordinate transformation

	Output at a node associated with a coordinate transformation

	2.1.6 Adjusting nodal coordinates
	Overview
	Adjusting nodal coordinates
	Specifying the nodal adjustment direction

	2.2 Element definition
	2.2.1 Element definition
	Overview
	Assigning an element number to the element
	Defining individual elements by specifying their nodes
	Using large node numbers with elements that use many nodes
	Reading element definitions from a file
	Reading substructure definitions from a substructure library
	Defining axisymmetric elements with asymmetric deformation
	Defining gasket elements
	Using solid element connectivity to define gasket elements
	Examples

	Defining cohesive elements
	Defining a cohesive element by specifying all nodes
	Defining a cohesive element by specifying only the bottom face nodes
	Defining a pore pressure cohesive element by specifying only the bottom and top face nodes

	Grouping elements into element sets
	Assigning elements to an element set as they are created
	Assigning previously defined elements to an element set
	Listing the elements that form the set directly
	Generating the element set
	Limitation on updating element sets that are used to define other element sets

	Defining part and assembly sets
	Example
	Alternate method for defining assembly-level element sets

	Internal element sets created by Abaqus/CAE

	Transferring of element sets
	Creating elements from existing elements by generating them incrementally
	Incrementing special-purpose nodes

	Creating elements by copying existing elements
	Special considerations for continuum elements

	2.2.2 Element foundations
	Overview
	Defining element foundation behavior

	2.2.3 Defining reinforcement
	Overview
	Defining a rebar layer
	Assigning a name to the rebar layer
	Specifying rebar geometry
	Defining rebar with constant spacing
	Defining rebar spacing as a function of radial position
	Defining rebar using the tire “lift” equation

	Local rebar orientation system
	Local orientation system for three-dimensional elements
	Local orientation system for axisymmetric elements

	Large-displacement considerations

	Defining rebar in Abaqus/Standard €beam elements
	Defining the rebar material
	Initial conditions
	Defining prestress in rebar
	Holding prestress in rebar in Abaqus/Standard
	Defining the initial values of solution-dependent state variables for rebars

	Output
	Specifying the direction for rebar angle output
	Example

	Visualizing rebar orientation and results in rebar

	2.2.4 Defining rebar as an element property
	Overview
	Assigning a name to the rebar set
	Defining rebars in three-dimensional shell and membrane elements
	Defining isoparametric rebars in three-dimensional shell and membrane elements
	Defining skew rebars in three-dimensional shell and membrane elements
	Defining skew rebars relative to the default projected local coordinate system
	Defining skew rebars relative to a user-defined local coordinate system

	Defining rebars in axisymmetric shell and membrane elements
	Defining rebars in continuum elements
	Defining layers of rebars in planar and axisymmetric continuum elements
	Defining isoparametric rebars
	Defining skew rebars

	Defining single rebars in two-dimensional axisymmetric and generalized plane strain continuum elements
	Defining layers of rebars in three-dimensional continuum elements
	Defining isoparametric rebars
	Example: isoparametric rebar
	Defining skew rebars
	Example: skew rebar

	Defining single rebars in three-dimensional continuum elements

	Defining the rebar material
	Initial conditions
	Defining prestress in rebar
	Holding prestress in rebar in Abaqus/Standard
	Defining the initial values of solution-dependent state variables for rebars

	Output
	Specifying the direction for rebar angle output in shell and membrane elements
	Example

	Visualizing rebar orientation and results in rebar

	2.2.5 Orientations
	Overview
	Assigning a name to an orientation
	Defining a local coordinate system in a model that contains an assembly of part instances
	Defining a local coordinate system directly
	Available coordinate systems
	Defining a rectangular coordinate system
	Defining a cylindrical coordinate system
	Defining a spherical coordinate system

	Methods for defining a coordinate system
	Defining a coordinate system by specifying the locations of points a, b, and c directly
	Defining a coordinate system by giving global node numbers for points a, b, and c
	Defining a coordinate system by giving local node numbers for points a, b, and c
	Defining a coordinate system by giving an offset from another coordinate system
	Defining a coordinate system by giving two edges

	Defining local material directions for anisotropic hyperelastic materials
	Defining yarn directions in the reference configuration for a fabric material
	Defining a local coordinate system in Abaqus/Standard €using a user subroutine
	Multiple references to an orientation definition
	Large-displacement considerations
	Use with two-dimensional solid elements
	Use with shell, membrane, or gasket elements or contact surfaces
	Defining rebars in shell, membrane, and surface elements
	Special considerations when defining orientations on contact surfaces in Abaqus/Standard

	Use with laminated shells
	Use with laminated three-dimensional solid elements
	Use with pipe-soil interaction elements
	Use with beam, frame, and truss elements
	Use with the fabric material model
	Use with the jointed material model
	Use with rotary inertia and connector elements
	Use with the kinematic coupling constraint
	Use with surface-based coupling constraints
	Use with inertia relief
	Use with distributed general traction, shear traction, and general edge loads
	Orientations defined with distributions
	Output

	2.3 Surface definition
	2.3.1 Surfaces: overview
	Overview
	Why use surfaces?
	Internal surfaces created by Abaqus/CAE
	Restrictions on surfaces

	2.3.2 Element-based surface definition
	Overview
	Defining element-based surfaces
	General restrictions on element-based surfaces
	Surface discretization
	Creating surfaces on solid, continuum shell, and cohesive elements
	Generating the free surface automatically
	Special treatment of cohesive elements for automatic free surface generation

	Creating surface facets by specifying solid, continuum shell, and cohesive element faces
	Generating an interior surface automatically

	Creating surfaces on structural, surface, and rigid elements
	Defining single-sided surfaces
	Defining double-sided surfaces
	Defining edge-based surfaces
	Defining a surface over the cross-section at the ends of beam, pipe, and truss elements
	Defining a surface along the length of three-dimensional beam, pipe, and truss elements
	Surfaces along the length of two-dimensional beam, pipe, and truss elements
	Shell, membrane, or rigid element thickness and shell offset

	Creating surfaces on gasket elements
	Surfaces on three-dimensional gasket line elements

	Creating interior cross-section surfaces
	Whole-model free surface in an Abaqus/Explicit input file
	Trimming the perimeter of an open surface
	The effect of surface trimming
	Why Abaqus will, by default, trim most surfaces

	2.3.3 Node-based surface definition
	Overview
	Creating a node-based surface

	2.3.4 Analytical rigid surface definition
	Overview
	What are analytical rigid surfaces and why use them?
	Advantages
	Disadvantages

	Creating an analytical rigid surface
	Defining a surface profile
	Two-dimensional rigid surfaces
	Three-dimensional cylindrical rigid surfaces
	Three-dimensional surfaces of revolution
	Defining the surface normals
	Smoothing analytical rigid surfaces
	Surface tangent conventions

	Creating an analytical rigid surface in a user subroutine
	Defining analytical rigid surfaces when drag chain or rigid surface elements are used
	Two-dimensional rigid surfaces
	Three-dimensional cylindrical rigid surfaces

	2.3.5 Eulerian surface definition
	Overview
	What are Eulerian surfaces and why use them?
	Advantages of creating Eulerian surfaces

	Creating an Eulerian surface

	2.3.6 Operating on surfaces
	Overview
	Creating a combined surface
	Union of existing surfaces
	Intersection or difference of existing surfaces

	Creating a cropped surface

	2.4 Rigid body definition
	2.4.1 Rigid body definition
	Overview
	What is a rigid body?
	Determining when to use a rigid body
	Creating a rigid body
	The rigid body reference node
	Positioning the reference node at the center of mass

	The collection of nodes that constitute the rigid body
	Assigning elements to a rigid body
	Assigning nodes to a rigid body
	Assigning analytical surfaces to a rigid body
	Defining a rigid body in a model that is defined in terms of an assembly of part instances

	Rigid body mass and inertial properties
	Defining mass and inertia properties by discretization
	Defining mass and inertia properties directly

	Kinematics of a rigid body
	Rigid body motions
	Boundary conditions
	Constraints
	Connector elements
	Planar rigid body
	Axisymmetric rigid body
	Three-dimensional rigid body

	Defining loads on rigid bodies
	Rigid bodies with temperature degrees of freedom
	Modeling contact with a rigid body
	Limitations in Abaqus/Standard
	Limitations in Abaqus/Explicit

	Using rigid bodies in geometrically linear Abaqus/Standard €analysis

	2.5 Integrated output section definition
	2.5.1 Integrated output section definition
	Overview
	Introduction
	Creating an integrated output section
	Creating interior cross-section surfaces
	The integrated output section reference node
	Positioning the reference node at the center of the surface
	Setting the reference node to track the average motion of the surface

	The integrated output section local coordinate system
	Projecting the coordinate system onto the section surface

	Associating an integrated output section with an integrated output request
	Limitations

	2.6 Mass adjustment
	2.6.1 Adjust and/or redistribute mass of an element set
	Overview
	Adjusting the total mass of an element set to a known value
	Redistribution of mass to raise the minimum stable time increment to a target value
	Defining mass adjustment
	Defining total mass for an element set without altering its center of mass
	Defining mass redistribution to raise the time increment

	2.7 Nonstructural mass definition
	2.7.1 Nonstructural mass definition
	Overview
	Nonstructural mass
	Defining nonstructural mass
	Specifying the units of the nonstructural mass
	Specifying units of mass
	Specifying units of mass per unit volume
	Specifying units of mass per unit area
	Specifying units of mass per unit length

	Controlling the distribution of the total mass from nonstructural features
	Distributing the nonstructural mass in proportion to the element structural mass
	Distributing the nonstructural mass in proportion to the element volume

	2.8 Distribution definition
	2.8.1 Distribution definition
	Overview
	Distributions
	Specifying the location of a distribution
	Defining a distribution on elements
	Defining a distribution on nodes
	Defining a distribution used in Abaqus/CFD

	Defining a distribution table
	Applying distributions
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	2.9 Display body definition
	2.9.1 Display body definition
	Overview
	What is a display body?
	Creating a display body
	The reference nodes

	Using display bodies with connectors
	Input file template

	2.10 Assembly definition
	2.10.1 Defining an assembly
	Overview
	Introduction
	Terminology
	Example

	Defining parts, part instances, and the assembly
	Defining a part
	Defining part instances
	Defining the assembly
	Example
	Notes

	Organizing the model definition
	Rules for defining an assembly
	Referring to items between levels
	Naming conventions
	Quoted labels
	Example

	The mesh (nodes and elements)
	Section definitions
	Sets and surfaces
	Defining assembly-level sets
	Adding sets and surfaces on restart

	Rigid bodies
	Materials
	Interactions
	Constraints
	Distributions
	Examples

	Coordinate system definitions
	Translating and rotating a part instance

	Limitations
	Input file template

	2.11 Matrix definition
	2.11.1 Defining matrices
	Overview
	What is a matrix in Abaqus/Standard ?
	Including matrices in a model
	Specifying a matrix type
	Scaling the matrix data
	Providing matrix data directly
	Reading the matrix data in text format from an alternate file
	Reading the matrix data from the SIM database

	Defining the stiffness, mass, and damping with matrices included in a model
	Connecting a part of a model represented by matrices
	Remapping user-defined nodes in assembled matrices
	Multiple instantiation of matrices
	Internal nodes in matrix data

	Using matrices in nonlinear analyses
	Using matrices in linear perturbation analyses
	Constraints and transformations
	Initial conditions
	Boundary conditions
	Loads
	Elements
	Output
	Limitations
	Input file template

	3. Job Execution
	3.1 Execution procedures: overview
	3.1.1 Execution procedure for Abaqus: overview
	Overview
	Conventions
	Environment settings
	Selecting TCP/UDP port numbers

	3.2 Execution procedures
	3.2.1 Obtaining information
	Overview
	Command summary
	Command line options
	Examples

	3.2.2 Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD execution
	Overview
	Command summary
	Command line options
	Required option
	Mutually exclusive options that determine which phases of an analysis are performed
	Additional options available for the analysis module
	Additional option available for the datacheck module

	Examples
	Running analyses in Abaqus/Standard
	Running analyses in Abaqus/Explicit
	Running analyses in Abaqus/CFD
	Running different phases of an analysis

	3.2.3 SIMULIA Co-Simulation Engine director execution
	Overview
	Command summary
	Command line options
	Example
	Running an Abaqus/Standard to Abaqus/Explicit co-simulation

	3.2.4 Abaqus/Standard, Abaqus/Explicit, and Abaqus/CFD co-simulation execution
	Overview
	Allocating CPUs for parallel processing
	Specifying the number of CPUs for each job
	Distributing CPUs between analysis jobs
	Distributing CPUs between analysis products
	Rounding considerations for distributing CPUs

	Specifying options for child analyses
	Performing a co-simulation with input files that specify co-simulation controls
	Limitations
	Command summary
	Command line options
	Required global options
	Required option for child analyses
	Parallel processing options
	Additional global options available
	Additional options for child analyses

	Examples
	Running an Abaqus/Standard to Abaqus/CFD co-simulation interactively
	Allocating CPUs in an Abaqus/Explicit to Abaqus/CFD co-simulation
	Submitting an Abaqus/Standard to Abaqus/Explicit co-simulation to a batch queue

	3.2.5 Dymola model execution
	Overview
	Command summary
	Command line options
	Example
	Running the Dymola simulation
	Running the Abaqus/Explicit simulation

	3.2.6 Abaqus/CAE execution
	Overview
	Command summary
	Command line options
	Examples
	Opening a model database
	Passing arguments to a script
	Running Abaqus/CAE without the graphical user interface

	3.2.7 Abaqus/Viewer execution
	Overview
	Command summary
	Command line options

	3.2.8 Python execution
	Overview
	Command summary
	Command line option

	3.2.9 Parametric studies
	Overview
	Command summary
	Command line options
	Examples

	3.2.10 Abaqus documentation
	Overview
	Using Abaqus documentation
	Configuration of documentation application
	Configuration of web browser
	Configuration of PDF reader executable

	Command summary

	3.2.11 Licensing utilities
	Overview
	Command summary
	Command line options

	3.2.12 ASCII translation of results (.fil) files
	Overview
	Command summary
	Command line options
	Example

	3.2.13 Joining results (.fil) files
	Overview
	Command summary
	Command line options
	Example

	3.2.14 Querying the keyword/problem database
	Overview
	Command summary
	Command line options
	Examples
	Querying for keywords and parameters
	Querying for user-specified parameter values

	3.2.15 Fetching sample input files
	Overview
	Command summary
	Command line options
	Examples

	3.2.16 Making user-defined executables and subroutines
	Overview
	Command summary
	Command line options
	Example

	3.2.17 Input file and output database upgrade utility
	Overview
	Command summary
	Command line options
	Required option
	Mutually exclusive options
	Additional options

	3.2.18 Generating output database reports
	Overview
	Output database structure
	Generating summary reports
	Adding information to a report
	Additional options
	Command summary
	Command line options
	Required options
	File formatting option
	Option to generate a full output database report
	Options to report model data
	Options to report results data
	Options to report field output variables
	Options to report different field variable attributes
	Options to report history output variables
	Additional options

	Examples
	File naming and formatting
	Adding information to a report
	Additional options
	Selecting frames

	3.2.19 Joining output database (.odb) files from restarted analyses
	Overview
	Appending data when the analysis restarts between steps versus midstep
	Customizing the combined output database file
	Command summary
	Command line options
	Examples

	3.2.20 Combining output from substructures
	Overview
	Combining data for models with more than two substructures
	Customizing the combined output database
	Command summary
	Command line options
	Examples
	Combining two substructures
	Combining more than two substructures
	Combining specific elements of the substructures

	3.2.21 Combining data from multiple output databases
	Overview
	Filters
	Master output database
	Configuration file usage
	Configuration file template
	Data not included in combined output databases
	Command summary
	Command line options

	3.2.22 Network output database file connector
	Overview
	Command summary
	Command line options

	3.2.23 Mapping thermal and magnetic loads
	Overview
	Results conversion
	Utility execution
	Command summary
	Command line options

	3.2.24 Element matrix assembly utility
	Overview
	Command summary
	Command line options

	3.2.25 Fixed format conversion utility
	Overview
	Command summary
	Command line options

	3.2.26 Translating Nastran bulk data files to Abaqus input files
	Overview
	Using the translator
	Summary of Nastran entities translated
	Command summary
	Command line options

	3.2.27 Translating Abaqus files to Nastran bulk data files
	Overview
	Using the translator
	Summary of Abaqus keywords translated
	Command summary
	Command line options

	3.2.28 Translating ANSYS input files to Abaqus input files
	Overview
	Using the translator
	Summary of ANSYS entities translated
	Command summary
	Command line options

	3.2.29 Translating PAM-CRASH input files to partial Abaqus input files
	Overview
	Using the translator
	Element numbering and grouping
	Material models
	History section data

	Summary of PAM-CRASH entities translated
	Command summary
	Command line options

	3.2.30 Translating RADIOSS input files to partial Abaqus input files
	Overview
	Using the translator
	Element numbering and grouping
	Material models

	Summary of RADIOSS entities translated
	Command summary
	Command line options

	3.2.31 Translating Abaqus output database files to Nastran Output2 results files
	Overview
	Using the translator
	Command summary
	Command line options

	3.2.32 Translating LS-DYNA data files to Abaqus input files
	Overview
	Using the translator
	Element numbering and grouping
	Material models
	Mapping LS-DYNA elements that end in _ID or _TITLE

	Summary of LS-DYNA entities translated
	Command summary
	Command line options

	3.2.33 Exchanging Abaqus data with ZAERO
	Overview
	Universal file
	Preparing the Abaqus analysis input file
	Workflow
	Modal analysis in Abaqus
	Aeroelastic analysis in ZAERO
	Stress analysis in Abaqus

	Command summary
	Command line options

	3.2.34 Translating Abaqus data to msc.adams modal neutral files
	Overview
	Using the translator
	Contents of the modal neutral file
	Preparing the substructure SIM database file
	The Abaqus substructure model
	Setting up the Abaqus model to create a modal neutral file

	Units
	Translating modes with negative eigenvalues
	Command summary
	Command line options

	3.2.35 Encrypting and decrypting Abaqus input data
	Overview
	Specifying additional access levels and controls
	Security and support considerations
	Adding comments to the header of an encrypted file
	Command summary
	Command line options
	Examples
	Creating encrypted files
	Limiting access to decrypted files by license feature or site ID
	Creating encrypted files that must be included to be used by Abaqus

	3.2.36 Job execution control
	Overview
	Command summary
	Command line options
	Required option

	3.3 Environment file settings
	3.3.1 Using the Abaqus environment settings
	Overview
	Environment settings hierarchy
	Syntax
	Troubleshooting
	Command line default parameters
	System resource parameters
	System customization parameters
	Co-simulation parameters
	Environment file examples
	UNIX environment file:
	Windows environment file:

	3.4 Managing memory and disk resources
	3.4.1 Managing memory and disk use in Abaqus
	Overview
	Understanding resource use
	Abaqus data
	Requirements and considerations

	Resource management parameters
	Memory management parameters
	Disk management parameters

	Input file processing and data check
	Guidelines for memory settings

	Abaqus/Standard analysis
	Guidelines for memory settings
	Setting memory on single-user machines
	Setting memory on multi-user machines
	Setting memory when using queues

	3.5 Parallel execution
	3.5.1 Parallel execution: overview
	Overview
	Parallel processing support for Abaqus features
	Parallel execution on shared memory computers
	Parallel execution on computer clusters
	Parallel execution using GPGPU hardware
	Use with user subroutines

	3.5.2 Parallel execution in Abaqus/Standard
	Overview
	Parallel equation solution with the default direct sparse solver
	GPGPU acceleration of the direct sparse solver
	Memory requirements for the parallel direct sparse solver
	Equation ordering for minimum solve time

	Parallel equation solution with the iterative solver
	Parallel execution of the element operations in Abaqus/Standard
	Memory management with parallel execution of the element operations
	Transverse shear stress output for stacked continuum shells

	Consistency of results

	3.5.3 Parallel execution in Abaqus/Explicit
	Overview
	Invoking parallel processing
	Domain-level parallelization
	Consistency of results
	Features that do not allow domain-level parallelization
	Features that cannot be split across domains
	Restart
	Co-simulation

	Loop-level parallelization
	Restart

	Measuring parallel performance
	Output

	3.5.4 Parallel execution in Abaqus/CFD
	Overview
	Invoking parallel processing
	Domain-based parallelism
	Co-simulation
	Restart

	Output

	3.6 File extension definitions
	3.6.1 File extensions used by Abaqus
	Overview
	File extensions

	3.7 FORTRAN unit numbers
	3.7.1 FORTRAN unit numbers used by Abaqus
	Overview
	FORTRAN unit numbers

	Part II: Output
	4. Output
	4.1 Output
	4.1.1 Output
	Overview
	The data file
	Controlling the amount of analysis input file processor information written to the data file
	Input file echo
	Input parameter information
	Parameter-free input file information
	Model and history definition summaries
	Contact constraint information
	Mass information

	Requesting printed results
	Viewing part and assembly information in the data file

	The output database
	Requesting output to the output database
	Format of the output database

	The selected results file
	The results file
	Obtaining results file output in Abaqus/Standard
	Obtaining results at the beginning of a step

	Obtaining results file output in Abaqus/Explicit
	Part and assembly information
	Format of the results file
	Controlling the format of the results file in Abaqus/Standard
	Controlling the format of the results file in Abaqus/Explicit
	ASCII format
	Precision of floating point data in the results file

	Maximizing the efficiency of the results file
	Example

	The message file in Abaqus/Standard and Abaqus/Explicit
	The Abaqus/Standard message file
	Controlling the frequency of output to the message file
	Requesting detailed contact printout
	Requesting detailed model change printout
	Requesting detailed printout of problems with the plasticity algorithms
	Requesting output of equilibrium residuals
	Requesting solver information
	Requesting detailed adaptive mesh smoothing printout
	Monitoring a degree of freedom in the message file

	The Abaqus/Explicit message file

	The status file
	The Abaqus/Standard or Abaqus/CFD status file
	The Abaqus/Explicit status file
	Requesting kinetic energy output
	Requesting total energy output
	Requesting output of the critical element
	Requesting output of the change in the total mass

	Monitoring a degree of freedom in the status file

	Alternate output formats in Abaqus/CFD
	Field output in EXODUS-II format
	History output in CSV format

	Requesting output in multiple steps
	General analysis steps
	Linear perturbation steps

	Element matrix output in Abaqus/Standard
	Writing the element matrices to the results file
	Writing the element matrices to a user-defined file
	Writing the element matrices to the data file
	Including distributed loads
	Controlling the frequency of element matrix output
	Writing the stiffness or operator matrix
	Writing the mass matrix

	User-defined output variables in Abaqus/Standard
	User-defined state variables in Abaqus/Standard
	Postprocessing with Abaqus/CAE
	Recovering additional results output from restart data in Abaqus/Standard
	Recovering additional output from a direct cyclic analysis
	Recovering additional output from a low-cycle fatigue analysis
	Example

	4.1.2 Output to the data and results files
	Overview
	Requesting output to the data and results files
	Output to the Abaqus/Standard data file
	Output to the Abaqus/Standard results file
	Output to the Abaqus/Explicit results file
	Output frequency

	Requesting output in multiple steps
	Element output
	Selecting the element output variables
	Selecting the elements for which output is required
	Specifying the section point in beams, pipes, shells, and layered solid elements
	Requesting output for rebars in a reinforced model

	Selecting the position of element integration and section point output in Abaqus/Standard
	Obtaining element output at the integration points
	Obtaining element output at the centroid of each element
	Obtaining element output averaged at the nodes
	Obtaining element output extrapolated to the nodes
	Extrapolation and interpolation of element output variables

	Requesting summaries in the Abaqus/Standard data file
	Requesting totals in the Abaqus/Standard data file
	Controlling the frequency of output
	Specifying the directions for element output
	Controlling the output during eigenvalue extraction
	Abaqus/Standard data file format
	Results file format
	Output of local directions to the results file

	Default element output

	Node output
	Selecting the nodal output variables
	Selecting the nodes for which output is required
	Requesting summaries in the Abaqus/Standard data file
	Requesting totals in the Abaqus/Standard data file
	Controlling the frequency of output
	Specifying the directions for nodal output
	Obtaining nodal output in the global directions
	Obtaining nodal output in the local directions defined by nodal transformations

	Controlling the output during eigenvalue extraction
	Abaqus/Standard data file format
	Results file format
	Default nodal output

	Total energy output
	External work calculation due to concentrated follower forces
	Selecting the energy output variables
	Selecting the element set for which total energy output is required
	Controlling the frequency of output
	Default energy output

	Modal output from Abaqus/Standard
	Selecting the modal output variables
	Controlling the frequency of output
	Default modal output

	Surface output from Abaqus/Standard
	Selecting the surface output variables
	Selecting the contact pairs for which output is required
	Requesting summaries in the data file
	Requesting totals in the data file
	Controlling the frequency of output
	Default surface output
	Data file format
	Results file format

	Section output from Abaqus/Standard
	Defining the surface section
	Example

	Selecting the coordinate system in which output is desired
	Defining a coordinate system local to the surface section
	Default local system
	User-specified local system

	Controlling the frequency of output
	Data file format
	Results file format
	Vector output in the section
	Scalar output in the section
	Limitations when using section output requests

	4.1.3 Output to the output database
	Overview
	Requesting output to the output database
	Requesting field output
	Requesting history output
	Requesting diagnostic information in Abaqus/Standard and Abaqus/Explicit

	Controlling the output frequency
	Controlling the output frequency in Abaqus/Standard
	Default output frequency
	Controlling output frequency in a frequency domain analysis
	Controlling output frequency in a mode domain analysis
	Controlling output frequency in a time domain analysis
	Time domain analysis: specifying output frequency in increments
	Time domain analysis: specifying output frequency in number of intervals
	Time domain analysis: specifying output frequency in regular time interval size
	Time domain analysis: specifying output frequency in time points
	Time domain analysis: time incrementation

	Controlling the output frequency for field output in Abaqus/Explicit
	Specifying field output frequency in number of intervals
	Specifying field output frequency in regular time interval size
	Specifying field output frequency in time points
	Default field output

	Controlling the output frequency for history output in Abaqus/Explicit
	Specifying history output frequency in increments
	Specifying history output frequency in regular time interval size
	Default history output

	Controlling the output frequency for field output in Abaqus/CFD
	Specifying field output frequency in increments
	Specifying field output frequency in number of intervals
	Specifying field output frequency in regular time interval size

	Controlling the output frequency for history output in Abaqus/CFD
	Specifying history output frequency in increments
	Specifying history output frequency in number of intervals
	Specifying history output frequency in regular time interval size

	Requesting output in multiple steps
	Specifying new output requests
	Specifying additional output requests
	Replacing or removing an output request
	Suppressing output requests defined in previous steps

	Preselected output requests
	Requesting procedure-specific preselected output requests
	Requesting all variables applicable to the current procedure and material type in Abaqus/Standard and Abaqus/Explicit

	Default output
	Abaqus/Explicit output as a result of analysis termination

	Element output
	Selecting the element output variables
	Selecting elements for which output is required
	Requesting field output for the exterior elements in the model in Abaqus/Standard and Abaqus/Explicit
	Specifying the section point in beam, pipe, shell, and layered solid elements in Abaqus/Standard and Abaqus/Explicit
	Requesting output for rebars in a reinforced model in Abaqus/Standard and Abaqus/Explicit

	Selecting the position of element integration point and section point output
	Obtaining output at the integration points in Abaqus/Standard and Abaqus/Explicit
	Obtaining output at the centroid of each element in Abaqus/Standard and Abaqus/Explicit
	Obtaining element output extrapolated to the nodes in Abaqus/Standard and Abaqus/Explicit
	Extrapolation and interpolation of element output variables in Abaqus/Standard and Abaqus/Explicit

	Controlling the output frequency
	Requesting preselected output
	Specifying the directions for element output in Abaqus/Standard and Abaqus/Explicit

	Node output
	Selecting the nodal output variables
	Selecting the nodes for which output is required
	Requesting field output for the exterior nodes in the model in Abaqus/Standard and Abaqus/Explicit

	Controlling the output frequency
	Controlling the precision in Abaqus/Standard and Abaqus/Explicit
	Requesting preselected output
	Specifying the directions for nodal field output in Abaqus/Standard and Abaqus/Explicit
	Specifying the directions for nodal history output in Abaqus/Standard and Abaqus/Explicit
	Obtaining nodal history output in the global directions
	Obtaining nodal history output in the local directions defined by nodal transformations

	Visualizing boundary conditions

	Tracer particle output from Abaqus/Explicit
	Defining tracer particles
	Particle birth stages
	Tracer particles in the output database
	Requesting output at tracer particles
	Field output at tracer particles
	History output at tracer particles

	Tracer particle propagation in multiple steps
	Tracer particle deactivation
	Controlling the output frequency at tracer particles

	Integrated output in Abaqus/Explicit
	Selecting the integrated output variables
	Selecting the surface over which integrated output is required
	Specifying the surface for integrated output directly
	Specifying the surface through an integrated output section definition

	Requesting integrated output for “force-flow” studies
	Requesting integrated output over an element set
	Controlling the output frequency
	Requesting preselected output
	Limitations when using integrated output requests

	Total energy output
	Selecting the energy output variables
	Selecting the element set for which total energy output is required
	Controlling the output frequency
	Requesting preselected output

	Sensor definition in Abaqus/Standard and Abaqus/Explicit
	Filtering output and operating on output in Abaqus/Explicit
	Defining a low-pass Infinite Impulse Response digital filter
	Start-up conditions for the filter

	Filtering using the low-pass Infinite Impulse Response filters
	Filtering the output based on the time interval
	Filtering field output or history output written at time intervals
	Filtering field output written at evenly spaced intervals of time

	Requesting maximum, minimum, or absolute maximum values for an output request
	Requesting maximum, minimum, or absolute maximum values for filtered output
	Requesting maximum, minimum, or absolute maximum values for unfiltered output

	Setting an upper or lower limit on variables in an output request
	Setting an upper limit or a lower limit for filtered output
	Setting an upper limit or a lower limit for unfiltered output

	Stopping an analysis when an output variable reaches a prescribed limit
	Stopping an analysis of filtered output when a variable reaches a prescribed limit
	Stopping an analysis of unfiltered output when a variable reaches a prescribed limit

	Applying bounding values to invariants
	Applying bounding values to invariants of filtered output
	Applying bounding values to invariants of unfiltered output

	Output variables available for filtering

	Modal output from Abaqus/Standard
	Controlling the frequency of output
	Requesting output

	Surface output in Abaqus/Standard and Abaqus/Explicit
	Selecting the surface output variables
	Limiting the extent of a surface output request in Abaqus/Standard
	Limiting output to a node set in Abaqus/Standard
	Limiting output for contact pairs based on slave and master surface names in Abaqus/Standard

	Limiting the extent of a surface field output request in Abaqus/Explicit
	Limiting surface field output to a contact pair set in Abaqus/Explicit
	Limiting surface field output to general contact in Abaqus/Explicit
	Limiting surface field output to a single surface in Abaqus/Explicit
	Limiting surface field output to pairwise surfaces in Abaqus/Explicit

	Specifying surface history output regions in Abaqus/Explicit
	Specifying surface history output by contact pair set in Abaqus/Explicit
	Specifying whole surface history output in Abaqus/Explicit
	Specifying pairwise surface history output in Abaqus/Explicit
	Specifying surface history output by fastened node set in Abaqus/Explicit

	Controlling the output frequency
	Requesting preselected output

	Surface output in Abaqus/CFD
	Selecting the surface output variables
	Controlling the output frequency

	Time incrementation output in Abaqus/Explicit
	Selecting the incrementation output variables
	Controlling the output frequency
	Requesting preselected output

	Cavity radiation output in Abaqus/Standard
	Selecting the radiation output variables
	Selecting the region of the model for which radiation output is required
	Controlling the output frequency
	Requesting output

	Examples
	Abaqus/Standard example
	Abaqus/Explicit example

	4.1.4 Error indicator output
	Overview
	Solution accuracy
	Spatial discretization error

	Error indicator and base solution variables available in Abaqus/Standard
	Effect of error indicator output requests on solution time
	Additional considerations for extent of output requests for element error indicator variables

	Interpreting error indicator output
	Regions of interest of a base solution and corresponding error indicator
	Calculating normalized measures of solution error

	Limitations
	Additional reference

	4.2 Output variables
	4.2.1 Abaqus/Standard output variable identifiers
	Overview
	Symbols used in the tables
	Requesting output of components
	Direction definitions
	Direction definitions for element variables
	Direction definitions for equivalent rigid body variables
	Direction definitions for nodal variables
	Direction definitions for integrated variables

	Distributed load output
	Distributed load output and user subroutines
	Distributed load output with modal procedures

	Strain output
	Temperature output
	Principal value output
	Tensor output
	Element integration point variables
	Tensors and associated principal values and invariants
	Additional element stresses
	Vibration and acoustic quantities
	Energy densities
	State, field, and user-defined output variables
	Composite failure measures
	Fluid link quantities
	Fracture mechanics quantities
	Concrete cracking and additional plasticity
	Concrete damaged plasticity
	Rebar quantities
	Heat transfer analysis
	Mass diffusion analysis
	Elements with electrical potential degrees of freedom
	Piezoelectric analysis
	Coupled thermal-electrical elements
	Cohesive elements
	Low-cycle fatigue analysis
	Pore pressure analysis
	Pore pressure cohesive elements
	Porous metal plasticity quantities
	Two-layer viscoplasticity quantities
	Geometric quantities
	Accuracy indicators
	Random response analysis
	Steady-state dynamic analysis
	Failure with progressive damage
	Fiber-reinforced materials damage

	Element centroidal variables
	Element section variables
	Frame elements

	Whole element variables
	Enriched elements
	Enriched elements when the XFEM-based LEFM approach is used
	Enriched elements in low-cycle fatigue analysis
	Connector elements

	Element face variables
	Whole element energy density variables
	Whole element error indicator variables
	Nodal variables
	Acoustic quantities
	Enriched element quantities
	Heat or mass flux
	Steady-state dynamic analysis
	Modal dynamic, steady-state, and random response analysis
	Mode-based steady-state dynamic analysis
	Pore pressure analysis
	Random response analysis

	Modal variables
	Surface variables
	Mechanical analysis–nodal quantities
	Mechanical analysis–whole surface quantities
	Heat transfer analysis
	Coupled thermal-electrical analysis
	Fully coupled temperature-displacement analysis
	Fully coupled thermal-electrical-structural analysis
	Coupled pore fluid-mechanical analysis–nodal quantities
	Coupled pore fluid-mechanical analysis–whole surface quantities
	Bond failure quantities

	Cavity radiation variables
	Section variables
	All analysis types
	Stress/displacement analysis
	Heat transfer analysis
	Electrical analysis
	Mass diffusion analysis
	Coupled pore fluid diffusion-stress analysis

	Whole and partial model variables
	Adaptive mesh domains
	Equivalent rigid body motion variables
	Inertia relief output variables
	Mass diffusion analysis
	Analyses with time-dependent material behavior
	Eigenvalue extraction
	Complex eigenvalue extraction
	Total energy output quantities

	Solution-dependent amplitude variables
	Structural optimization variables
	Toplogy optimization
	Shape optimization

	4.2.2 Abaqus/Explicit output variable identifiers
	Overview
	Symbols used in the tables
	Direction definitions
	Direction definitions for element variables
	Direction definitions for nodal variables
	Direction definitions for integrated variables

	Distributed load output and user subroutines
	Principal value output
	Tensor output
	Requesting output of components
	Element integration point variables
	Tensors and invariants
	Geometric quantities
	Additional element stresses
	Energy densities
	State and field variables
	Composite failure measures
	Additional plasticity quantities
	Porous metal plasticity quantities
	Concrete damaged plasticity
	Cracking model quantities
	Failure with progressive damage
	Fiber-reinforced materials damage
	Fabric material
	Equation of state
	Rebar quantities
	Integration point coordinates
	Coupled thermal-stress elements
	Cohesive elements
	Eulerian elements

	Element section variables
	Whole element variables
	Connector elements

	Element face variables
	Nodal variables
	Fluid cavity variables

	Surface variables
	Mechanical analysis–nodal quantities
	Crack bond failure quantities
	Mechanical analysis–whole surface quantities
	Fully coupled temperature-displacement analysis

	Integrated variables
	Total energy output
	Time increment and mass output

	4.2.3 Abaqus/CFD output variable identifiers
	Overview
	Symbols used in the tables
	Direction definitions
	Direction definitions for element variables
	Direction definitions for nodal variables

	Requesting output of components
	Element variables
	Geometric quantities
	State and field variables
	Turbulence variables

	Nodal variables
	Geometric quantities
	State and field variables
	Turbulence variables

	Surface variables
	Geometric quantities
	State and field variables
	Turbulence variables

	Whole and partial model variables
	Geometric quantities
	Total energy output quantities

	4.3 The postprocessing calculator
	4.3.1 The postprocessing calculator
	Overview
	Functionality of the calculator
	Running the calculator

	5. File Output Format
	5.1 Accessing the results file
	5.1.1 Accessing the results file: overview
	Writing information to the results file
	Accessing information in the results file

	5.1.2 Results file output format
	Overview
	Record format
	Local coordinate system
	Label record
	Records written for any file output request
	Record written once per eigenvalue in natural frequency extraction
	Records written once per increment
	Records written for any element file output request
	Principal value records
	Records for porous metal plasticity
	Records for brittle cracking
	Records for inelastic nonlinear response in a beam general section
	Records for elastic-plastic response in frame elements
	Records for connector elements
	Record for plane stress orthotropic failure measures
	Record for equivalent plastic strain components for cap plasticity
	Record for equivalent plastic strain components for jointed materials
	Record for equivalent plastic strain in uniaxial tension for cast iron plasticity
	Records for two-layer viscoplasticity
	Record for elements with electric potential degrees of freedom
	Records for rebar quantities
	Record for forced convection/diffusion heat transfer elements
	Records for piezoelectric materials
	Records for coupled thermal-electric elements
	Records for cohesive elements
	Records for equivalent rigid body variables in direct-integration implicit dynamic analyses
	Record for transverse shear stress in thick shell elements such as S3R, S4R, S8R, and S8RT
	Records for linear dynamics
	Records for connector elements (available only for linear dynamics)
	Records for fluid link elements (available only for linear dynamics)
	Records for output of element volumes
	Record for solid elements in an adaptive mesh domain in Abaqus/Standard

	Records written for any node file output request
	Records for linear dynamics

	Records written for any modal file output request during mode-based dynamic analysis
	Records written for any element matrix or substructure matrix file output request
	Record written for any energy file output request
	Records written for contour integrals
	Record written for crack propagation analysis
	Records written once for any file output request when surfaces are defined in Abaqus/Standard
	Rigid surfaces
	Deformable surfaces

	Records written for any contact surface file output request
	Records for bond failure quantities from crack propagation analysis
	Record for surface-based pressure penetration analysis
	Records for surface-based cohesive behavior with damage

	Records written once for any file output request when cavities are defined
	Records written for any viewfactor matrix output request
	Records written for any radiation file output request
	Records written for any section file output request
	For all analysis types
	For stress/displacement analyses
	For heat transfer analyses
	For electrical analyses
	For mass diffusion analyses
	For coupled pore fluid diffusion-stress analyses

	Procedure type keys

	5.1.3 Accessing the results file information
	Overview
	Reading floating point and integer variables
	Linking the postprocessing program
	Calling the utility subroutines for reading the results file
	Example

	Writing a file in the results file format

	5.1.4 Utility routines for accessing the results file
	Overview
	DBFILE (read from a file)
	Interface
	Variable to be provided to the utility routine
	Variables returned from the utility routine

	DBFILW (write to a file)
	Interface
	Variables to be provided to the utility routine

	DBRNU (set a unit number for a file)
	Interface
	Variable to be provided to the utility routine

	INITPF (initialize a file)
	Interface
	Variables to be provided to the utility routine
	File naming conventions

	POSFIL (determine position in a file)
	Interface
	Variables to be provided to the utility routine
	Variables returned from the utility routine
	Positioning with POSFIL

	OI.1 Abaqus/Standard Output Variable Index
	OI.2 Abaqus/Explicit Output Variable Index
	OI.3 Abaqus/CFD Output Variable Index

	actionField12:
	actionField13:
	actionField14:
	actionField18:
	actionField19:
	actionField20:
	actionField21:
	actionField22:
	actionField23:
	actionField24:
	actionField26:
	actionField27:
	actionField28:
	actionField29:
	actionField30:
	actionField31:
	actionField32:
	actionField33:
	actionField34:
	actionField35:
	actionField36:
	actionField37:
	actionField38:
	actionField39:
	actionField40:
	actionField41:
	actionField44:
	actionField45:
	actionField46:
	actionField47:
	actionField48:
	actionField52:
	actionField53:
	actionField54:
	actionField55:
	actionField56:
	actionField57:
	actionField58:
	actionField59:
	actionField60:
	actionField61:
	actionField62:
	actionField68:
	actionField69:
	actionField70:
	actionField71:
	actionField72:
	actionField73:
	actionField74:
	actionField75:
	actionField76:
	actionField77:
	actionField78:
	actionField79:
	actionField80:
	actionField81:
	actionField82:
	actionField83:
	actionField84:
	actionField85:
	actionField86:
	actionField87:
	actionField88:
	actionField89:
	actionField90:
	actionField91:
	actionField92:
	actionField94:
	actionField95:
	actionField96:
	actionField97:
	actionField98:
	actionField99:
	actionField100:
	actionField101:
	actionField102:
	actionField104:
	actionField105:
	actionField106:
	actionField108:
	actionField109:
	actionField110:
	actionField111:
	actionField112:
	actionField114:
	actionField115:
	actionField118:
	actionField119:
	actionField120:
	actionField121:
	actionField122:
	actionField123:
	actionField124:
	actionField125:
	actionField126:
	actionField127:
	actionField128:
	actionField129:
	actionField130:
	actionField132:
	actionField134:
	actionField135:
	actionField136:
	actionField137:
	actionField138:
	actionField139:
	actionField140:
	actionField141:
	actionField142:
	actionField143:
	actionField144:
	actionField145:
	actionField146:
	actionField148:
	actionField149:
	actionField150:
	actionField151:
	actionField152:
	actionField153:
	actionField154:
	actionField155:
	actionField156:
	actionField157:
	actionField158:
	actionField159:
	actionField160:
	actionField161:
	actionField162:
	actionField163:
	actionField164:
	actionField165:
	actionField166:
	actionField167:
	actionField168:
	actionField169:
	actionField170:
	actionField172:
	actionField173:
	actionField174:
	actionField175:
	actionField176:
	actionField177:
	actionField178:
	actionField179:
	actionField180:
	actionField181:
	actionField182:
	actionField183:
	actionField184:
	actionField185:
	actionField188:
	actionField189:
	actionField190:
	actionField192:
	actionField193:
	actionField194:
	actionField195:
	actionField196:
	actionField197:
	actionField198:
	actionField199:
	actionField200:
	actionField201:
	actionField202:
	actionField203:
	actionField204:
	actionField205:
	actionField206:
	actionField207:
	actionField208:
	actionField209:
	actionField210:
	actionField211:
	actionField212:
	actionField213:
	actionField214:
	actionField215:
	actionField216:
	actionField217:
	actionField218:
	actionField219:
	actionField220:
	actionField221:
	actionField222:
	actionField223:
	actionField224:
	actionField225:
	actionField226:
	actionField227:
	actionField228:
	actionField232:
	actionField233:
	actionField234:
	actionField235:
	actionField236:
	actionField237:
	actionField238:
	actionField239:
	actionField240:
	actionField241:
	actionField242:
	actionField243:
	actionField244:
	actionField245:
	actionField246:
	actionField247:
	actionField248:
	actionField252:
	actionField253:
	actionField254:
	actionField255:
	actionField256:
	actionField260:
	actionField261:
	actionField262:
	actionField266:
	actionField267:
	actionField268:
	actionField269:
	actionField272:
	actionField273:
	actionField274:
	actionField275:
	actionField276:
	actionField277:
	actionField278:
	actionField282:
	actionField283:
	actionField284:
	actionField288:
	actionField289:
	actionField290:
	actionField291:
	actionField292:
	actionField293:
	actionField294:
	actionField295:
	actionField296:
	actionField297:
	actionField298:
	actionField299:
	actionField300:
	actionField301:
	actionField302:
	actionField303:
	actionField304:
	actionField305:
	actionField308:
	actionField309:
	actionField310:
	actionField311:
	actionField312:
	actionField313:
	actionField314:
	actionField320:
	actionField321:
	actionField324:
	actionField325:
	actionField326:
	actionField327:
	actionField328:
	actionField329:
	actionField330:
	actionField331:
	actionField332:
	actionField333:
	actionField334:
	actionField335:
	actionField336:
	actionField337:
	actionField338:
	actionField339:
	actionField340:
	actionField341:
	actionField342:
	actionField343:
	actionField344:
	actionField345:
	actionField346:
	actionField348:
	actionField349:
	actionField350:
	actionField351:
	actionField352:
	actionField353:
	actionField354:
	actionField355:
	actionField356:
	actionField358:
	actionField360:
	actionField361:
	actionField362:
	actionField363:
	actionField364:
	actionField366:
	actionField367:
	actionField368:
	actionField370:
	actionField371:
	actionField372:
	actionField373:
	actionField374:
	actionField375:
	actionField376:
	actionField377:
	actionField378:
	actionField379:
	actionField380:
	actionField381:
	actionField382:
	actionField383:
	actionField384:
	actionField385:
	actionField386:
	actionField387:
	actionField388:
	actionField389:
	actionField390:
	actionField392:
	actionField393:
	actionField394:
	actionField396:
	actionField397:
	actionField398:
	actionField399:
	actionField400:
	actionField401:
	actionField402:
	actionField403:
	actionField404:
	actionField406:
	actionField408:
	actionField409:
	actionField410:
	actionField411:
	actionField412:
	actionField413:
	actionField414:
	actionField415:
	actionField416:
	actionField417:
	actionField418:
	actionField419:
	actionField420:
	actionField421:
	actionField422:
	actionField424:
	actionField425:
	actionField426:
	actionField427:
	actionField428:
	actionField430:
	actionField431:
	actionField432:
	actionField433:
	actionField434:
	actionField435:
	actionField436:
	actionField438:
	actionField439:
	actionField440:
	actionField441:
	actionField442:
	actionField443:
	actionField444:
	actionField445:
	actionField446:
	actionField447:
	actionField448:
	actionField449:
	actionField450:
	actionField451:
	actionField452:
	actionField453:
	actionField454:
	actionField455:
	actionField456:
	actionField458:
	actionField459:
	actionField460:
	actionField461:
	actionField462:
	actionField463:
	actionField464:
	actionField465:
	actionField466:
	actionField467:
	actionField468:
	actionField469:
	actionField470:
	actionField471:
	actionField472:
	actionField473:
	actionField474:
	actionField478:
	actionField479:
	actionField480:
	actionField481:
	actionField482:
	actionField483:
	actionField484:
	actionField488:
	actionField489:
	actionField490:
	actionField491:
	actionField492:
	actionField496:
	actionField497:
	actionField498:
	actionField499:
	actionField500:
	actionField501:
	actionField502:
	actionField503:
	actionField504:
	actionField505:
	actionField506:
	actionField507:
	actionField508:
	actionField509:
	actionField510:
	actionField511:
	actionField514:
	actionField515:
	actionField516:
	actionField517:
	actionField520:
	actionField521:
	actionField528:
	actionField529:
	actionField530:
	actionField531:
	actionField532:
	actionField533:
	actionField534:
	actionField535:
	actionField536:
	actionField537:
	actionField538:
	actionField539:
	actionField540:
	actionField541:
	actionField542:
	actionField543:
	actionField544:
	actionField545:
	actionField546:
	actionField547:
	actionField548:
	actionField550:
	actionField551:
	actionField552:
	actionField553:
	actionField554:
	actionField555:
	actionField556:
	actionField557:
	actionField558:
	actionField559:
	actionField560:
	actionField561:
	actionField562:
	actionField563:
	actionField564:
	actionField565:
	actionField566:
	actionField567:
	actionField568:
	actionField569:
	actionField570:
	actionField571:
	actionField572:
	actionField573:
	actionField574:
	actionField576:
	actionField577:
	actionField578:
	actionField579:
	actionField580:
	actionField581:
	actionField582:
	actionField583:
	actionField584:
	actionField585:
	actionField586:
	actionField587:
	actionField588:
	actionField589:
	actionField590:
	actionField591:
	actionField592:
	actionField593:
	actionField594:
	actionField595:
	actionField596:
	actionField597:
	actionField598:
	actionField599:
	actionField600:
	actionField601:
	actionField602:
	actionField603:
	actionField604:
	actionField605:
	actionField606:
	actionField607:
	actionField608:
	actionField609:
	actionField610:
	actionField611:
	actionField612:
	actionField613:
	actionField614:
	actionField615:
	actionField616:
	actionField617:
	actionField618:
	actionField619:
	actionField620:
	actionField621:
	actionField622:
	actionField623:
	actionField624:
	actionField625:
	actionField626:
	actionField627:
	actionField628:
	actionField629:
	actionField630:
	actionField631:
	actionField634:
	actionField635:
	actionField636:
	actionField637:
	actionField638:
	actionField639:
	actionField640:
	actionField641:
	actionField642:
	actionField643:
	actionField644:
	actionField645:
	actionField646:
	actionField647:
	actionField648:
	actionField649:
	actionField650:
	actionField651:
	actionField652:
	actionField653:
	actionField654:
	actionField655:
	actionField656:
	actionField657:
	actionField658:
	actionField659:
	actionField660:
	actionField661:
	actionField662:
	actionField663:
	actionField664:
	actionField665:
	actionField666:
	actionField667:
	actionField668:
	actionField669:
	actionField670:
	actionField671:
	actionField672:
	actionField673:
	actionField674:
	actionField675:
	actionField676:
	actionField677:
	actionField678:
	actionField679:
	actionField680:
	actionField681:
	actionField682:
	actionField683:
	actionField684:
	actionField685:
	actionField686:
	actionField687:
	actionField688:
	actionField689:
	actionField690:
	actionField692:
	actionField693:
	actionField694:
	actionField695:
	actionField696:
	actionField697:
	actionField698:
	actionField699:
	actionField700:
	actionField701:
	actionField702:
	actionField703:
	actionField704:
	actionField705:
	actionField706:
	actionField707:
	actionField708:
	actionField709:
	actionField710:
	actionField711:
	actionField712:
	actionField713:
	actionField714:
	actionField715:
	actionField716:
	actionField717:
	actionField718:
	actionField719:
	actionField720:
	actionField721:
	actionField722:
	actionField723:
	actionField724:
	actionField728:
	actionField729:
	actionField734:
	actionField736:
	actionField737:
	actionField738:
	actionField739:
	actionField740:
	actionField741:
	actionField742:
	actionField743:
	actionField744:
	actionField745:
	actionField746:
	actionField747:
	actionField748:
	actionField749:
	actionField750:
	actionField751:
	actionField752:
	actionField753:
	actionField754:
	actionField755:
	actionField756:
	actionField757:
	actionField758:
	actionField759:
	actionField760:
	actionField761:
	actionField762:
	actionField763:
	actionField764:
	actionField765:
	actionField766:
	actionField767:
	actionField768:
	actionField769:
	actionField770:
	actionField771:
	actionField772:
	actionField773:
	actionField774:
	actionField775:
	actionField776:
	actionField777:
	actionField778:
	actionField779:
	actionField780:
	actionField781:
	actionField782:
	actionField783:
	actionField784:
	actionField785:
	actionField786:
	actionField787:
	actionField788:
	actionField789:
	actionField790:
	actionField791:
	actionField792:
	actionField793:
	actionField794:
	actionField795:
	actionField796:
	actionField798:
	actionField799:
	actionField800:
	actionField801:
	actionField802:
	actionField803:
	actionField804:
	actionField805:
	actionField806:
	actionField807:
	actionField808:
	actionField809:
	actionField810:
	actionField811:
	actionField812:
	actionField813:
	actionField814:

